

Modulhandbuch Master

Wirtschaftsingenieurwesen: Vertiefungsrichtung Automatisierung und Biomedizinische Technik

Prüfungsordnungsversion: 2011

gültig für das Studiensemester: Wintersemester 2013/14

Erstellt am: Mittwoch 27. November 2013

aus der POS Datenbank der TU Ilmenau

Herausgeber: Der Rektor der Technischen Universität Ilmenau

URN: urn:nbn:de:gbv:ilm1-mhba-8974

- Archivversion -

Modulhandbuch

Master Wirtschaftsingenieurwesen

Prüfungsordnungsversion:2011 Vertiefung:ABT

Erstellt am:
Mittwoch 27 November 2013
aus der POS Datenbank der TU Ilmenau

Inhaltsverzeichnis

Name des Moduls/Fachs	1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS VSPVSPVSPVSPVSPVSPVSPVSPVSPVSPVSPVSPVSPV		LP	Fachnr.
Ingenieurwissenschaftliche Grundlagenfächer		FP	12	
Grundlagen der Biomedizinischen Technik	210	PL 90min	3	1372
Grundlagen der Biosignalverarbeitung	210	PL 120min	3	1707
Modellbildung	2 1 0	PL 30min	3	6316
Prozessoptimierung 1	210	PL 30min	3	1469
Biomedizinische Technik		FP	26	
Anatomie und Physiologie 1	200	PL 60min	3	618
Bildgebende Systeme in der Medizin 1	200	PL 60min	2	1693
Biosignalverarbeitung 1	210	PL 90min	3	1355
Grundlagen des Strahlenschutzes	200	PL 20min	2	5606
Informationsverarbeitung in der Medizin	210	PL 60min	3	1379
Klinische Verfahren 1	200	PL 60min	3	1696
Krankenhausökonomie	200	PL 60min	2	630
Technische Sicherheit und Qualitätssicherung in der Medizin	200	PL 60min	2	1404
Verfahren der Biomedizinischen Messtechnik	2 1 0	PL 30min	3	5603
Bildverarbeitung in der Medizin 1	2 1 0	PL 90min	3	5592
Biomedizinische Technik in der Therapie	200	SL	2	1691
Hauptseminar BMT	020	PL	2	1685
KIS, Telemedizin, eHealth	210	PL 30min	3	5601
Krankenhausmanagement	110	PL 60min	2	1714
Labor BMT	0 0 2	SL	2	1694
Automatisierungstechnik		FP	26	
Prozessmess- und Sensortechnik 1	210	PL 20min	3	1467
Regelungs- und Systemtechnik 2	210	PL 45min	3	1472
Digitale Regelungen	2 1 0	PL 90min	3	1424
Kommunikations- und Bussysteme	2 1 0	PL 30min	3	899
Matlab für Ingenieure	2 1 0	SL 90min	3	5550
Nichtlineare Regelungstechnik	2 1 0	PL 90min	4	5536
Prozessleittechnik	2 1 0	PL 30min	3	1393
Simulation	2 1 0	PL 30min	3	1400

Wissensbasierte Systeme 1	211	1	PL 30min	3	5553
Automatisierungstechnik 2		2 1 0	PL 30min	3	5541
Fuzzy- and Neuro Control		2 1 0	PL 30min	4	5912
Hauptseminar Automatisierungstechnik und Systemtechnik		020	PL	2	6410
Labor Automatisierungstechnik und Systemtechnik		002	SL	2	6418
Prozessoptimierung 2		2 1 0	PL 30min	4	5538

Modul: Ingenieurwissenschaftliche Grundlagenfächer

Modulnummer6322

Modulverantwortlich: Univ.-Prof. Dr.-Ing. habil. Christoph Ament

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Grundlagen der Biomedizinischen Technik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1372 Prüfungsnummer:2200009

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2221

	1	I.FS	;	2	2.FS	3	,	3.FS	3		1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Grundlagen der Biomedizinischen Technik zu vermitteln. Die Studierenden kennen und verstehen die Modellierungsstrategien in biologischen Systemen, können diese analysieren, bewerten und anwenden. Die Studierenden sind in der Lage für gegebene Teilsysteme Modelle zu entwerfen. Die Studierenden besitzen Fach- und Methodenkompetenz bei Kompartmentmodellen, Herz- und Kreislaufmodellierung, Modellierung und Steuerung der Atmung und der Steuerung von Bewegungssystemen. Die Studierenden sind in der Lage ethische Aspekte in der Medizintechnik zu verstehen und zu bewerten, sowie bei der Entwicklung von Medizintechnikprodukten zu berücksichtigen. Die Studierenden sind in der Lage grundlegende Sachverhalte der Biomedizinischen Technik klar und korrekt zu kommunizieren.

Vorkenntnisse

Mathematik 1-3, Physik 1-2, Anatomie und Physiologie 1-2, Elektro- und Neurophysiologie, Allgemeine Elektrotechnik 1-3, Theoretische Elektrotechnik

Inhalt

Einführung (Begriffsdefinition, Spezifik der Modellierung biologischer Systeme, Modell und Experiment, Modellierungsstrategien in Physiologie und Medizin); Kompartmentmodelle (Grundlagen, Parameterschätzung, Validierung, medizinische Anwendungen); Herz- und Kreislaufmodellierung (Vorteile und Grenzen des Patientenmodells, Gefäßmodelle, Herzmodelle, kombinierte Herz-Kreislauf-Modelle, neurale und humorale Steuerung); Modellierung und Steuerung der Atmung (Regelungshierarchie der Atmung, Modelle der Atmungssteuerung, Optimierung der Beatmung, Schlussfolgerungen); Methoden und Werkzeuge zur Identifikation physiologischer Systeme; Steuerung von Bewegungssystemen Ethische Aspekte der biomedizinischen Technik: Berufsethik in der Biomedizinischen Technik, Ethische Grundlagen für Experimente am Menschen und am Tier bei der Entwicklung von Medizintechnik, Organisationen und Richtlinien

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1993 Meyer-Waarden, K.: Bioelektrische Signale und ihre Ableitverfahren, Schattauer-Verlag Stuttgart/New York 1985 Webster, J.G. (Ed.): Medical Instrumentation - Application and Design, Houghton Mifflin Co. Boston/Toronto, 1992 Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000 Hendee, W.R., Ritenour, E.R.: Medical imaging physics, Wiley-Liss, Inc., New York, 2002 Malmivuo, J.: Bioelectromagnetism, Oxford University Press, 1995 Haueisen, J.: Numerische Berechnung und Analyse biomagnetischer Felder. Wissenschaftsverlag Ilmenau, 2004

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 90 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2008

Bachelor Mathematik 2009

Bachelor Mathematik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Technische Physik 2008

Master Technische Physik 2011

Master Technische Physik 2013

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT Modul: Ingenieurwissenschaftliche Grundlagenfächer

Grundlagen der Biosignalverarbeitung

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1707 Prüfungsnummer:2200047

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Peter Husar

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2222

	1	l.FS	3	2	2.FS	3	;	3.FS	3	4	1.FS)		5.FS	3		3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Studierende erweitern ihre Grundkenntnisse aus der Elektrotechnik, Systemanalyse, Automatisierungstechnik und Schaltungstechnik sowie Signalverarbeitung um medizinisch und medizintechnisch relevante Bereiche der Messtechnik für Diagnostik, Therapie und Rehabilitation. Ein neues, erweitertes Grundverständnis für das biologische Objekt aufbauend auf der Kenntnis über die Unterschiede zur Technik, Physik und Ingenieurwissenschaft wird erworben und aus Sicht der Medizin vermittelt. Studierende sind in der Lage, die Problematik der Sensorik, Messtechnik, Signalverarbeitung und Elektronik im medizinischen Bereich aufbauend auf den Kenntnissen aus der Technik zu erfassen und zu analysieren.

Vorkenntnisse

- Regelungs- und Systemtechnik
- Signale und Systeme
- Elektrotechnik
- Mathematik
- Grundlagen der Schaltungstechnik
- Medizinische Grundlagen
- Anatomie und Physiologie
- Elektro- und Neurophysiologie
- Technische Informatik
- Elektronik
- Elektrische Messtechnik
- Prozessmess- und Sensortechnik

Inhalt

Im Rahmen der Vorlesung und Übung werden Grundlagen der Biosignalverarbeitung vermittelt. Die gesamte Messkette, beginnend am Sensor, über den Messverstärker, analoge Filter, Abtastung, Digitalisierung und digitale Filter bis hin zur Auswertung wird hinsichtlich ihrer methodischen Breite, technologischer Lösungsansätze und grundlegenden Eigenschaften behandelt:

- Einführung in die Problematik der medizinischen Messtechnik und Signalverarbeitung
- Sensoren für die medizinische Messtechnik: Messung elektrischer und nichtelektrischer Größen
- Besonderheiten der medizinischen Messverstärkertechnik: Differenzverstärker, Guardingtechnik
- Störungen bei medizintechnischen Messungen ihre Erkennung und Reduktion
- Analoge Filterung, Signalkonditionierung
- Zeitliche Diskretisierung von Biosignalen: Besonderheiten bei instationären Prozessen
- Digitalisierung von Biosignalen: AD-Wandler für den medizintechnischen Bereich

- Prinzip, Analyse und Synthese digitaler Filter
- Adaptive Filterung

Medienformen

Folien mit Beamer für die Vorlesung, Tafel, Computersimulationen. Whiteboard und rechentechnisches Kabinett für das Seminar

Literatur

- 1. John L. Semmlow: Biosignal and Medical Image Processing, CRC Press, 2. Edition, 2009.
- 2. Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1993
- 3. Meyer-Waarden, K.: Bioelektrische Signale und ihre Ableitverfahren, Schattauer-Verlag Stuttgart/New York 1985
- 4. Webster, J.G. (Ed.): Medical Instrumentation Application and Design, Houghton Mifflin Co. Boston/Toronto, 1992
- 5. Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000
- 6. Husar, P.: Biosignalverarbeitung, Springer, 2010

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 120 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2013

Bachelor Informatik 2010

Bachelor Mathematik 2009

Bachelor Mathematik 2013

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT Modul: Ingenieurwissenschaftliche Grundlagenfächer

Modellbildung

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6316 Prüfungsnummer:2200242

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Christoph Ament

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2211

	1	I.FS	3	2	2.FS	3		3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Die Studierenden können für wesentliche technische Systeme ein mathematisches Modell aufbauen, das für Analyse, Simulation und Reglerentwurf geeignet ist. Sie kennen wesentliche Modellbildungsprinzipien der theoretischen Modellbildung und können im Rahmen einer experimentellen Modellbildung eine Versuchsplanung und Parameteridentifikation durchführen.

Vorkenntnisse

Vorausgesetzt wird der erfolgreiche Abschluss folgender Fächer:

- · Mathematik 1 und 2
- Physik 1 und 2
- Elektrotechnik 1

Inhalt

Möchte man das Verhalten eines technischen Systems vor seiner Realisierung simulativ untersuchen oder eine Regelung für das System entwerfen, benötigt man ein Modell (also eine mathematische Beschreibung) des Systems. Die Entwicklung eines geeigneten Modells kann sich in der Praxis als aufwändig erweisen. In der Vorlesung werden systematische Vorgehensweisen und Methoden für eine effiziente Modellbildung entwickelt. Dabei wird in die Wege der theoretischen und experimentellen Modellbildung unterschieden.

Nach einer Einführung (Kapitel 1) werden zunächst Methoden der theoretischen Modellbildung (Kapitel 2-3) vorgestellt. Ausgangspunkt sind Modellansätze und Modellbildungsprinzipien in verschiedenen physikalischen Domänen wie z.B. der Mechanik. Diese werden durch Analogierbetrachtungen und die Darstellung im Blockschaltbild miteinander verknüpft. Für eine anschließende Modellvereinfachung werden Methoden der Linearisierung, Ordnungsreduktion, Orts- und Zeitdiskretisierung vermittelt.

Für die experimentelle Modellbildung (Kapitel 4-6) werden allgemeine Modellansätze eingeführt und anschließend Methoden Identifikation von Modellparametern aus Messdaten entwickelt. Zur effizienten experimentellen Analyse von Systemen mit mehreren Einflussfaktoren wird eine geeignete Versuchsplanung und -analyse entwickelt. Den Abschluss bildet eine Klassifikation der ermittelten Modelle (Kapitel 7).

Die Kapitel der Vorlesung gliedern sich wie folgt:

- 1. Einführung
- 2. Physikalische ("Whitebox") Modelle
- 3. Modellvereinfachung
- 4. Allgemeine ("Blackbox") Modelle
- 5. Parameteridentifikation
- 6. Experimentelle Versuchsplanung und -analyse

7. Modelle

Medienformen

Die Konzepte werden während der Vorlesung an der Tafel entwickelt. Über Beamer steht ergänzend das Skript mit Beispielen und Zusammenfassungen zur Verfügung. Zur Veranschaulichung werden numerische Simulationen gezeigt. Das Skript kann im Copyshop erworben oder im PDF-Format frei herunter geladen werden. Auf der Vorlesungs-Webseite finden sich weiterhin aktuelle Informationen, Übungsaufgaben und Unterlagen zur Prüfungsvorbereitung.

Literatur

- R. Isermann, M. Münchhof: Identification of Dynamic Systems An Introduction with Applications, Springer Verlag, 2011
- J. Wernstedt: Experimentelle Prozessanalyse, VEB Verlag Technik, 1989
- K. Janschek: Systementwurf mechatronischer Systeme, Methoden Modelle Konzepte, Springer, 2010
- W. Kleppmann: Taschenbuch Versuchsplanung, Produkte und Prozesse optimieren, 7. Auflage, Hanser, 2011

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Ingenieurinformatik 2008

Bachelor Maschinenbau 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Technische Kybernetik und Systemtheorie 2013

Master Electrical Power and Control Engineering 2013

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Modul: Ingenieurwissenschaftliche Grundlagenfächer

Prozessoptimierung 1

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1469 Prüfungsnummer:2200024

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Pu Li

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2212

	1	I.FS	`	2	2.FS	3	,	3.FS	3	4	I.FS	S	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden können

- die Grundlagen, Problemstellungen und Methoden der statischen Prozessoptimierung klassifizieren,
- · Methoden und Werkzeuge anwenden,
- unterschiedliche Problemstellungen und mathematische Herleitungen analysieren und generieren sowie

Anwendungsfälle für industrielle Prozesse analysieren, entwickeln und bewerten.

Vorkenntnisse

Grundlagen der Mathematik, Physik, Elektrotechnik, Regelungs- und Systemtechnik

Inhalt

Optimierung des Designs und des Betriebs industrieller Prozesse

- · Lineare und Nichtlineare Programmierung
- Mixed-Integer Optimierung
- · Anwendung von Optimierwerkzeugen (GAMS) am Rechner
- Praktische Anwendungsbeispiele

Lineare Programmierung:

Theorie der linearen Programmierung, Freiheitsgrad, zulässiger Bereich, graphische Darstellung/Lösung, Simplexmethode, Dualität, Mischungsproblem, optimale Produktionsplanung.

Nichtlineare Optimierung:

Konvexitätsanalyse, Probleme ohne und mit Nebenbedingungen, Optimalitätsbedingungen, Methode des goldenen Schnitts, das Gradienten-, Newton-, Quasi-Newton-Verfahren, Probleme mit Nebenbedingungen, Kuhn-Tucker-Bedingungen, SQP-Verfahren (Sequentiell Quadratische Programmierung), "Active-Set"-Methode, Approximation der Hesse-Matrix, Anwendung in der optimalen Auslegung industrieller Prozesse.

Mixed-Integer Nichtlineare Programmierung (MINLP):

Mixed-Integer Lineare und Nichtlineare Programmierung (MILP, MINLP), Branch-and-Bound-Methode, Master-Problem, Optimierungssoftware GAMS, Anwendung im Design industrieller Prozesse.

Medienformen

Präsentation, Vorlesungsskript, Tafelanschrieb

Literatur

- U. Hoffmann, H. Hofmann: Einführung in die Optimierung. Verlag Chemie. Weinheim. 1982
- T. F. Edgar, D. M. Himmelblau. Optimization of Chemical Processes. McGraw-Hill. New York 1989
- K. L. Teo, C. J. Goh, K. H. Wong. A Unified Computational Approach to Optimal Control Problems. John Wiley & Sons. New York. 1991
- C. A. Floudas: Nonlinear and Mixed-Integer Optimization. Oxford University Press. 1995
- L. T. Biegler, I. E. Grossmann, A. W. Westerberg. Systematic Methods of Chemical Process Design. Prentice Hall. New Jersey. 1997
- M. Papageorgiou. Optimierung. Oldenbourg Verlag. München. 2006
- J. Nocedal, S. J. Wright. Numerical Optimization. Springer-Verlag. 1999

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Modulnummer9016

Modulverantwortlich: Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Ziel des Moduls ist es die grundlegenden Kompetenzen auf dem Gebiet der biomedizinischen Technik in Diagnose und Therapie für Studierende des Studiengangs Informatik zu vermittelt. Die Studierenden haben ein Grundverständnis für die innere logische Gliederung der Medizin (Wissenschaft und Praxis). Die Studierenden besitzen Grundkenntnisse über Bau und Funktionen ausgewählter Organsysteme. Die Studierenden kennen und verstehen die Modellierungsstrategien in biologischen Systemen, können diese analysieren, bewerten und anwenden, sowie für gegebene Teilsysteme Modelle entwerfen. Sie verstehen die Modellierungsstrategien als Grundlage für die Entwicklung von Diagnose- und Therapieverfahren. Die Studierenden besitzen Kenntnissen der Bildsignalgenerierung im Ergebnis des genutzten physikalischen Wechselwirkungsprozesses sowie der Übertragung, Visualisierung und Speicherung des Bildsignales. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien ausgewählter Biomedizinischer Therapietechnik, können diese analysieren, bewerten und beim Syntheseprozess mitwirken. Die Studierenden sind in der Lage grundlegende Wechselwirkungen zwischen Biomedizinischer Technik und Gesellschaft, sowie ethische Aspekte in der Medizintechnik zu verstehen und zu bewerten, sowie bei der Entwicklung von Medizintechnikprodukten zu berücksichtigen. Die Studierenden sind in der Lage grundlegende Sachverhalte der Biomedizinischen Technik klar und korrekt zu kommunizieren.

Vorraussetzungen für die Teilnahme

AET 1+2. Mathematik 1+2

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelgt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Modul: Biomedizinische Technik

Anatomie und Physiologie 1

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 618 Prüfungsnummer:2300075

Fachverantwortlich: Univ.-Prof. Dipl.-Ing. Dr. med. Hartmut Witte

Leistungspunkte: 3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Maschinenbau						Fachgebiet:	2348

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS	3		5.FS	3	(3.FS	3		7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester	2	0	0																		

Lernergebnisse / Kompetenzen

Lernziele und erworbene Kompetenzen sind am Berufsbild "Biomedizinische Technik" orientiert.

- 1. Die Studierenden haben ein Grundverständnis für die innere logische Gliederung der Medizin (Wissenschaft und Praxis).
- 2. Die Studierenden können mit Ärzten und medizinischem Hilfspersonal fachlich korrekt und terminologisch verständlich kommunizieren (Frage- und Antwortfähigkeit). 3. Die Studierenden besitzen Grundkenntnisse über Bau und Funktionen ausgewählter Organsysteme: 3.a. Bewegungsapparat 3.b. Herz-Kreislauf-System 3.c. Atmungssystem 4. Die Studierenden kennen die Grenzen ihrer medizinischen Kenntnisse und Fähigkeiten. Weitere Kapitel zum Themenkomplex werden in den Veranstaltungen "Anatomie und Physiologie 2", "Elektro- und Neurophysiologie" / "Neurobiologie" und "Biokompatible Werkstoffe" erarbeitet. 5. Die Studierenden kennen den Rechtsrahmen ärztlichen Handelns (wem ist unter welchen Bedingungen mit Einwilligung des Patienten eine Körperverletzung erlaubt?).

Vorkenntnisse

Curriculares Abiturwissen Biologie, Chemie und Physik

Inhalt

Einführung: • Der Systembegriff • Der medizinische Normalitätsbegriff in Abgrenzung zum Pathologischen • Saluto- vs. Pathogenese • Innere Logik der medizinischen Fächergliederung • Medizinische Terminologie Allgemeine Anatomie: • Pariser Nomina Anatomica (PNA), Terminologia Anatomica • Orientierungsbegriffe. • Gewebegliederung, Grundbegriffe der Zytologie Histologie. Spezielle Anatomie, Physiologie und relevante Biochemie folgender Systeme in speziell für Ingenieurstudenten aufbereiteter Form: • Bewegungsapparat: o Muskulatur o Knochen o Gelenke (Diarthrosen, Amphiarthrosen) o Interaktion des Muskels mit den übrigen Elementen des Bewegungsapparates o Kinematische Ketten • Herz-Kreislauf-System: o Blut o Arterien vs. Venen, Definitionen, Aufbau, Funktionen o Flussbild Gesamtsystem, Volumenströme, Drucke o Zeitaufgelöste Pumpfunktionen, Windkesseleffekt o Herzwandaufbau, Höhlen, Einbindung in die Umgebung, topographische Konsequenzen o Herzmechanik o Erregungsbildung und -leitung • Atmung (äußere, innere): o Äußere Atmung – Gastransport im Blut – Innere Atmung o Atemmechanik o Aufbau der Luftwege o Bilanzen der Gasströme, medizinisch übliche Kenngrößen o Laminare vs. turbulente Gasströme, Widerstände o Diffusionsgesetz und Konsequenzen für den Gasaustausch

Medienformen

Präsentation, Tafel, Anatomie am Lebenden, e-Learning (moodle)

Literatur

Allgemeine Primärempfehlung (Prüfungswissen): • Aumüller et al.: Anatomie, MLP Duale Reihe, Thieme, Stuttgart. • Silbernagel et al.: Taschenatlas der Physiologie. Thieme, Stuttgart.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2013

Bachelor Biotechnische Chemie 2013

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2008

Bachelor Mathematik 2009

Bachelor Mathematik 2013

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Bildgebende Systeme in der Medizin 1

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1693 Prüfungsnummer:2200014

Fachverantwortlich: Dr.-Ing. Dunja Jannek

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2221

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	I.FS)	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

Die Kerninhalte orientieren sich überwiegend an methodenorientierten Kenntnissen der Bildsignalgenerierung im Ergebnis des genutzten physikalischen Wechselwirkungsprozesses sowie der Übertragung, Visualisierung und Speicherung des Bildsignales. Gerätetechnische Kenntnisse werden als aktuelle Anwendungsbeispiele gestaltet. Die Studierenden begreifen Bilderzeugungssysteme in der Medizin als spezialisierten Gegenstands- und Methodenbereich der Biomedizinischen Technik, der sich mit Analyse, Synthese und Optimierung sowie mit der Qualitätssicherung der Anwendung von radiologischen Bilderzeugungssystemen in der Medizin beschäftigt. Die Studierenden sind in der Lage, auf der Ebene des Signalübertragungsprozesses Aufbau und Funktion der Bilderzeugungssysteme zu erkennen und zu analysieren einschließlich der Aufwärtseffekte der genutzten physikalischen Wechselwirkungsprozesse. Sie verstehen die komplexen Zusammenhänge Bildgebender Systeme als technische Hilfsmittel zum Erkennen von Krankheiten. Sie sind in der Lage, deren Aufwand, Nutzen und Risiko im medizinischen Versorgungs- und ärztlichen Betreuungsprozess zu bewerten.

Vorkenntnisse

Strahlenbiologie/Medizinische Strahlenphysik, Strahlungsmesstechnik, Signale und Systeme 1, Klinische Verfahren 1 -2

Inhalt

Röntgenstrahlung:

Röntgendiagnostische Technik - Begriffe, Zuordnung; Röntgendiagnostischer Prozess.

Röntgenstrahlenquellen - Diagnostikröntgenröhren, Anforderungen; Festanodenröntgenröhren; Drehanodenröntgenröhren, Leistungsparameter, Elektrische Eigenschaften, Betriebsarten, Alterung, Herstellungstechnologie; Drehkolbenröhren;

Röntgendiagnostikgeneratoren, Arten, Überblick, Einpuls-Transformator-Generator, Konvertergenerator.

Streustrahlung – Entstehung; Wirkung auf den Kontrast; Minimierung der Streustrahlung, Am Ort der Entstehung, Abstandstechnik, Streustrahlenraster.

Röntgenbildwandler - Fotografische Registrierung, Röntgenfilm,

Verstärkerfolien, Film-Folien-Systeme; Digitale Röntgenbildwandler, Möglichkeiten, Speicherphosphorfolien,

Flachbilddetektoren; Elektronenoptischer Röntgenbildverstärker, Aufbau, Bildwandlungen, Übertragungsverhalten,

Arbeitsmöglichkeiten; Röntgenfernsehen, Bildzerlegung, Digitales Röntgenfernsehen; Digitale Subtraktionsangiografie;

Dosisbedarf u. Auflösungsvermögen v. Röntgenbildwandlern. Computertomografie - Historische Entwicklung; Gerätetechnik, Bilddarstellung und –auswertung; Aktuelle technische Entwicklungen; Abbildungsgüte.

Gammastrahlung:

Nuklearmedizinische Technik - Begriffe; Nuklearmedizinische Methoden.

Radionuklide, Radiopharmaka - Möglichkeiten der Radionukliderzeugung; Radiopharmaka, Anforderungen.

Szintillationskamera – Kollimatoren; Aufbau; Detektion von Ort und Energie; Übertragungsverhalten.

Emmissions-Computertomographie – Prinzip; SPECT-Kamerasysteme..

PET – Prinzip; Positronenstrahler; Ortsdetektion; PET-Scanner.

Medienformen

Tafel, Arbeitsblätter, Powerpoint-Präsentation

Literatur

- 1. Angerstein, W., Aichinger, H.: Grundlagen der Strahlenphysik und radiologischen Technik in der Medizin. 5. Aufl. Berlin: Hoffmann 2005.
- 2. Buzug, T.M.: Computed tomography. From photon statistics to modern cone-beam CT : with 10 tables. Berlin: Springer 2008.
- 3. Dössel, O.: Bildgebende Verfahren in der Medizin. Von der Technik zur medizinischen Anwendung. Berlin: Springer 2000.
- 4. Kalender, W.A.: Computed tomography. Fundamentals, system technology, image quality, applications. 3rd rev. ed., Germany: Publicis Pub 2011.
 - 5. Krieger, H.: Strahlungsquellen für Technik und Medizin. 1. Aufl. Wiesbaden: Teubner 2005.
- 6. Morneburg, H.: Bildgebende Systeme für die medizinische Diagnostik. Röntgendiagnostik und Angiographie, Computertomographie, Nuklearmedizin, Magnetresonanztomographie, Sonographie, Integrierte Informationssysteme. 3. Aufl. Erlangen: Publicis MCD Verl 1995.

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Biosignalverarbeitung 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1355 Prüfungsnummer:2200015

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Peter Husar

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2222

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden kennen die wichtigsten Biosignale im Amplituden- und Frequenzverhalten. Sie sind in der Lage, die grundlegenden Algorithmen und Abläufe zur Beschreibung spezifischer Biosignale zu analysieren und zu verstehen. Dabei erwerben sie die Kompetenz, aus der Vielzahl der zur Verfügung stehenden Methoden die relevanten zur Lösung einer speziellen Analyseaufgabe auszuwählen und die Möglichkeiten und Beschränkungen dieser zu bewerten. Die Studierenden entwerfen eigene Lösungsansätze und Programme unter MatLab, um charakteristische Merkmale aus medizinischen Beispieldaten zu extrahieren und zu klassifizieren. Sie sind dabei in der Lage, im Team diese Lösungen zu diskutieren und zu beurteilen.

Vorkenntnisse

- Signale und Systeme
- Mathematik
- Medizinische Grundlagen
- Elektro- und Neurophysiologie
- Elektrische Messtechnik
- Prozessmess- und Sensortechnik

Inhalt

- Grundlagen der Statistik zur Analyse stochastischer Prozesse
- Stationarität, Ergodizität
- Leistungsdichtespektrum: Direkte und Indirekte Methoden
- Fensterung
- Periodogramm: Methoden nach Bartlett und Welch
- Schätzung von Korrelationsfunktionen: Erwartungstreue und Biasbehaftete
- Kreuzleistungsdichte und Kohärenz
- Spektrale Schätzung mit parametrischen Modellen, lineare Prädiktion
- Fourierreihe und -transformation, DFT, FFT
- Methoden der Zeit-Frequenzanalyse, Zeitvariante Verteilungen
- STFT und Spektrogramm
- Wavelets: Theorie und algorithmische sowie technische Umsetzung
- Wigner-Verteilung

Medienformen

Folien mit Beamer für die Vorlesung, Tafel, Computersimulationen. Whiteboard und rechentechnisches Kabinett für das

Seminar

Literatur

- 1. Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000
- 2. Husar, P.: Biosignalverarbeitung, Springer, 2010
- 3. Akay M.: Time Frequency and Wavelets in Biomedical Signal Proessing. IEEE Press, 1998
- 4. Bendat J., Piersol A.: Measurement and Analysis of Random Data. John Wiley, 1986
- 5. Hofmann R.: Signalanalyse und -erkennung. Springer Verlag, Berlin, Heidelberg, New York, 1998
- 6. Hutten H.: Biomedizinische Technik Bd.1 u. 3. Springer Verlag, New York, Berlin, Heidelberg, 1992
- 7. Proakis, J.G, Manolakis, D.G.: Digital Signal Processing, Pearson Prentice Hall, 2007

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 90 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Grundlagen des Strahlenschutzes

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5606 Prüfungsnummer:2200236

Fachverantwortlich: Dr.-Ing. Dunja Jannek

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	atik und	d Automatisierung					Fachgebiet:	2221

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

Die Kerninhalte orientieren sich überwiegend am Zusammenhang zwischen Nutzen und Risiko von Strahlenanwendungen. Das Risiko schädigender Nebenwirkungen ionisierender Strahlen wird in seiner Qualität auf physikalischer und biologischer Ebene und in seiner Quantität auf messtechnischer Ebene vorgestellt. Aus den bekannten strahlen-biologischen Kenntnissen werden Ziele und Grundsätze zur Tolerierung des Strahlenrisikos abgeleitet. EU-Grundnormen bestimmen nationale, normative Rahmen zur Risikobegrenzung und -minimierung. Die Studierenden begreifen den Strahlenschutz als komplexes, multidisziplinäres Gebiet zum Erkennen und Bewerten von und zum Schutz vor Strahlenwirkungen beim Menschen, anderen Lebewesen, in der Umwelt und an Sachgütern. Die Studierenden sind in der Lage, Strahlenanwendungen im komplexen Zusammenhang von Aufwand, Nutzen und Risiko bei der Produktion materieller Güter bzw. in Dienstleistungsprozessen zu bewerten.

Vorkenntnisse

Physik, Messtechnik, Strahlenbiologie/Medizinische Strahlenphysik

Inhalt

Strahlenexposition des Menschen - Expositionswege und –quellen; Natürliche Exposition; Zivilisat. Erhöhung d. Exp. aus natürl. Quellen; Zivilisatorische Exposition, Überblick, Medizinische Exposition.

Strahlenwirkung, Strahlenrisiko - Biologische Strahlenwirkungen, Überblick; Zielstellungen des Strahlenschutzes; Risiko; Risiko stochastischer Strahlenwirkungen; Risikofaktoren; Begründung des Basisgrenzwertes.

Strahlenschutzmesstechnik – Messaufgaben; Aktivität, Nuklididentifikation; Strahlenschutzdosimetrie; Körperdosisgrößen, Energiedosis, Organenergiedosis, Organenergiedosis, Effektive Dosis; Dosismessgrößen, Konzept, Äquivalentdosis,

Ortsdosisgrößen, Personendosisgrößen; Dosimetrie bei äußerer Exposition, Arten, Möglichkeiten, Anforderungen,

 $Do sime ter film,\ Gleitschatten do sime ter;\ Do sime trie\ bei\ innerer\ Exposition,\ Offene\ Strahlen quellen,\ Expositions wege,$

Problemstellung, Einflussgrößen, Inkorporierte und kumulierte Aktivität, Effektive Folgedosis, Berechnung. Grundsätze des Strahlenschutz - Ableitung aus den Zielstellungen; Rechtfertigung; Minimierung; Begrenzung. Grundlagen des Strahlenschutzrechtes – Geschichtliches; Rechtsgrundsatz; Normenpyramide; Internationale Grundlagen; Struktur und

Organisation in Deutschland; Gesetze; Verordnungen, Geltungsbereiche, Verantwortung.

Verordnungen – Strahlenschutzverordnung; Röntgenverordnung. Strahlenschutztechnik - Aufgaben, Arten; Einflüsse auf Dosis und Dosisleistung; Strahlenfeld einer Röntgeneinrichtung, Anteile, Einflussgrößen, Strahlenschutztechnik bei äußerer Exposition; Prüfung, Bewertung der Schutzwirkung. Überwachung und Kontrolle – Überblick; Notwendigkeit, Umfang. Stör- und Unfälle - Begriffe, Beispiele; Maßnahmen; Strahlenexposition bei Hilfeleistungen; Meldepflicht; Vorbereitung der Brandbekämpfung.

Medienformen

Literatur

- 1. Krieger, H.: Grundlagen der Strahlungsphysik und des Strahlenschutzes. Vieweg+Teubner Verlag; 4. Aufl. 2012.
- 2. Vogt, HG.; Schultz, H., Vahlbruch, JW.: Grundzüge des praktischen Strahlenschutzes. Carl Hanser Verlag GmbH & CO. KG; 6. Aufl. 2011.
- 3. Grupen, C.: Grundkurs Strahlenschutz. Praxiswissen für dern Umgang mit radioaktiven Stoffen. Springer Berlin Heidelberg; 4. Aufl. 2008.
- 4. Fiebich, M., Westermann, K., Zink, C.: RöV & Co: Medizinischer Strahlenschutz Vorschriften, Formeln, Glossar. Tüv Media; 2. Aufl. 2012.

Detailangaben zum Abschluss

Für BMT-MSc

Prüfungsform: mündlich Dauer: 30 min

Abschluss: benotete Studienleistung

Für WIW-MSc (ABT)
Prüfungsform: mündlich
Dauer: 20 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Master Biomedizinische Technik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Informationsverarbeitung in der Medizin

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 1379 Prüfungsnummer:2200016

Fachverantwortlich: Prof. Dr.-Ing. habil. Vesselin Detschew

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2222

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

• Die Studierenden haben ein Grundverständnis für den Aufbau und die Organisation des Gesundheitswesens • Die Studierenden können mit Ärzten und medizinischem Hilfspersonal fachlich korrekt und terminologisch verständlich kommunizieren. • Die Studierenden besitzen Grundkenntnisse über Datenverarbeitungsaufgaben und EDV-Systeme im Krankenhaus. • Die Studierenden kennen den Rechtsrahmen ärztlichen Handelns (Datenschutz) und die daraus abgeleiteten Aufgaben (Datensicherheit).

Vorkenntnisse

Grundlegende medizinische Begriffe

Inhalt

• Einsatz von Informationsverarbeitungssystemen (IV) im ärztlich/pflegerischen sowie im wirtschaftlichen Bereich, Struktur und Aufgaben der medizinischen IV; • Krankenhausinformationssysteme – Architektur, Automatisierungsgrad, Aufgaben; • medizinische Dokumentation – Ziele, Umsetzung, konventionelle und elektronische Patientenakte, klinische Basisdokumentation; • Datenschutz und Datensicherheit, Sicherheitskonzept; • elektronischer Datenaustausch – HL7, DICOM; • Telemedizin und E-Health

Medienformen

Tafel, Präsentation, Demonstration

Literatur

Seelos, H.-J.: Medizinische Informatik, Biometrie und Epidemiologie. De-Gruyter 1997 Lehmann, T.: Handbuch der Medizinischen Informatik. Hanser 2005 Kramme, R. (Hrsg.): Medizintechnik - Verfahren, Systeme, Informationsverarbeitung. Springer 2002 Haux, R.: Management von Informationssystemen: Analyse, Bewertung, Auswahl. Teubner 1998 Haas, P.: Medizinische Informationssysteme und elektronische Krankenakte. Springer 2005 Jähn, K. e-Health. Springer 2004

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2008

Bachelor Mathematik 2009

Bachelor Mathematik 2013

Master Wirtschaftsinformatik 2009

Master Wirtschaftsinformatik 2011

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Klinische Verfahren 1

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:unbekannt

Fachnummer: 1696 Prüfungsnummer:2200007

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2221

	1	I.FS	6	2	2.FS	3	;	3.FS	3	4	1.FS	3		5.FS	3	6	3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

1. Die Studierenden verstehen die Grundprinzipien ärztlichen Handelns. 2. Die Studierenden besitzen Grundkenntnisse über ausgewählte Krankheitsbilder (Klinik, Pathologie – Prävention, Diagnostik, Therapie). 3. Die Studierenden überblicken die Möglichkeiten ausgewählter diagnostischer und therapeutischer Verfahren und verstehen die Zuordnung zu Indikationsstellungen. 4. Die Studierenden kennen Bedeutung, Möglichkeiten und Grenzen der Epidemiologie. 5. Die Studierenden besitzen einen Überblick über Berufsfelder und Zuständigkeiten in der Medizin sowie die relevanten Rechtsnormen. 6. Die Studierenden können medizin-ethische Diskussionen fachlich fundiert verstehen und führen.

Vorkenntnisse

- 1. Abiturwissen Biologie und Chemie
- 2. Medizinisches Grundlagenwissen in Tiefe und Umfang wie im Fach Anatomie und Physiologie 1 vermittelt

Inhalt

Grundlagen der medizinischen Diagnostik (klinische Untersuchungsverfahren der ärztlichen Routinediagnostik, einfache apparative Untersuchungstechniken, spezielle Therapieverfahren).

Krankheitsbilder:

- Herzkreislauferkrankungen mit Schwerpunkt auf Herzinfarkt, coronare Durchblutungsstörung, Herzklappenerkrankung, angeborene Herzfehler
- Moderne interventionelle und operative Therapieverfahren bei Herz-Kreislauferkrankungen
- Herz-Lungen-Maschine, Hypothermie, PTCA, Herzklappenersatz mit unterschiedlichen Prothesen, Herzunterstützungsverfahren, transplantationsmedizinische Grundbegriffe.

Verfahren:

- Röntgendiagnostische Verfahren
- Kardiopulmonale Funktionsdiagnostik
- Ultraschalldiagnostik
- Endoskopie
- Elektrotherapie
- Minimalinvasive Chirurgie
- Herzschrittmachertherapie einschl. CRT
- Elektrochirurgie
- Lasertherapie und -diagnostik

Medienformen

Tafel, Präsentation, Demonstrationsobjekte, Demonstration von Fallbeispielen

Literatur

Speziell zusammengestellter "Reader"

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2013

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Ingenieurinformatik 2008

Bachelor Mathematik 2009

Bachelor Mathematik 2013

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Krankenhausökonomie

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 630 Prüfungsnummer:2200035

Fachverantwortlich: Prof. Dr.-Ing. habil. Rüdiger Blau

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	itik un	d Automatisierung					Fachgebiet:	2222

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

- · Die Studierenden sind fähig
 - · die Struktur des deutschen Gesundheitssystems und deren Finanzierungen zu verstehen und zu bewerten
 - die Kostenträger und Leistungserbringer zu analysieren und in ihren Unterschieden zu bewerten.
- Sie können diese insbesondere auf den akutstationären Sektor (Krankenhausfinanzierung) anwenden.
- Die Studierenden analysieren Entgeltsysteme und bewerten deren Anreizfunktionen.
- Die Studierenden verstehen das fallpauschalierte Entgeltsystem (G-DRG) und sind in der Lage die Erlösermittlung durchzuführen.
 - Nachdem die Studierende die Veranstaltung besucht haben können sie:
 - Die sektorale Struktur des deutschen Gesundheitssystems verstehen.
 - Die Finanzierungsströme analysieren.
 - Die Finanzierung der Krankenhäuser auf Basis der Entgeltsysteme verstehen und Entgelte berechnen.

Vorkenntnisse

Grundlegende medizinische Begriffe, allgemeine betriebswirtschaftliche Kenntnisse

Inhalt

Die Vorlesung vermittelt allgemeine wirtschaftliche und grundlegende ökonomische Kenntnisse sowie spezielle betriebswirtschaftliche Lehrinhalte aus dem Gesundheitswesen.

- Die einzelnen "Gesundheits"-Leistungen im Sozialsystem
- · Strukturen und Sektoren des Gesundheitswesens
- · Erläuterung der Finanzierung der verschiedenen Bereiche des Gesundheitswesens
- Vermittlung des Zwiespaltes "Gesundheit" als ein wirtschaftliches Produkt zu betrachten
- Finanzierung der Krankenhäuser über Fallpauschalen
- · Controlling in Klinikkonzernen

Medienformen

Tafel, Präsentation, Film, Vorlesungsgliederung, Übungsaufgaben

Literatur

DRG-Vergütung in deutschen Krankenhäusern: Auswirkungen auf Verweildauer und Behandlungsqualität von Sina Hilgers (16. August 2011)

Kosten- und Leistungsrechnung in Krankenhäusern; Systematische Einführung von Joachim Hentze und Erich Kehres (Dezember 2007)

Gesundheitsökonomie. Lehrbuch für Mediziner und andere Gesundheitsberufe von Karl W. Lauterbach, Stephanie Stock und Helmut Brunner (Hrsg.) (6. August 2009)

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Mathematik 2009

Bachelor Mathematik 2013

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Technische Sicherheit und Qualitätssicherung in der Medizin

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1404 Prüfungsnummer:2200011

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	tik un	nd Automatisierung					Fachgebiet:	2221

	1.FS		2	2.FS	3	3.FS				1.FS	3	5	5.FS	3	(3.FS	3	7.FS			
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Technische Sicherheit und Qualitätssicherung in der Biomedizinischen Technik zu vermitteln. Die Studierenden kennen und verstehen Gefahrenquellen und Risiken im Krankenhaus und bei medizintechnischen Produkten. Die Studierenden können Gefahrenquellen und Risiken im Krankenhaus und bei medizintechnischen Produkten analysieren und bewerten, sowie angemessene Maßnahmen zur Korrektur einleiten. Die Studierenden kennen und verstehen die wesentlichen physiologischen Grundlagen der Stromeinwirkung auf den menschlichen Organismus. Die Studierenden können grundlegende Effekte der Stromeinwirkung auf den Organismus analysieren und bewerten. Die Studierenden kennen und verstehen die relevanten Normen und rechtlichen Reglungen für technische Sicherheit bei medizintechnischen Produkten und können diese in der Praxis anwenden. Die Studierenden können medizintechnische Geräte bezüglich wesentlicher sicherheitsrelevanter Aspekte analysieren und bewerten. Die Studierenden sind in der Lage, basierend auf den geltenden Vorschriften, Prüfverfahren für medizintechnische Geräte zu entwerfen. Die Studierenden sind in der Lage sicherheitsrelevante Prüfungsergebnisse medizintechnischer Geräte zu analysieren und zu bewerten. Die Studierenden sind in der Lage sicherheitsrelevante Sachverhalte in der Biomedizinischen Technik klar und korrekt zu kommunizieren.

Vorkenntnisse

Mathematik 1-3, Physik 1-2, Anatomie und Physiologie 1, Elektro- und Neurophysiologie, Allgemeine Elektrotechnik 1-3, Grundlagen der Biomedizinischen Technik

Inhalt

Einführung: Gefahrenquellen und Risiken im Krankenhaus, Patientensicherheit und technische Sicherheit Physiologie und Pathologie der Stromeinwirkung: Begriffe, Definitionen, Körperimpedanz und Stromverteilung, Reaktionen des Organismus auf äußere elektrische Energieeinwirkung, Stromschwellenwerte, Gefährdungsfaktoren und Grenzwerte, Elektrische Stromeinwirkung am Herzen Schutzmaßnahmen gegen gefährliche Körperströme: Begriffe, Definitionen, Schutzklassen elektrischer Geräte, Typen und Eigenschaften von Wechselstromnetzen, Maßnahmen zum Schutz gegen direktes und indirektes Berühren Starkstromanlagen in medizinischen Einrichtungen: Begriffe, Definitionen, Schutz gegen gefährliche Körperströme Elektrische Sicherheit von elektromedizinischen Geräten: Begriffe, Definitionen, Klassifikation der Geräte, Ableitströme, Ersatzableitströme, Geräteprüfungen unter Einsatzbedingungen, Elektromagnetische Verträglichkeit Rechtliche Regelungen für den Verkehr mit Medizinprodukten: Normen und Zuständigkeiten, Medizinproduktegesetz (MPG), Medizinprodukte-Betreiberverordnung Qualitätssicherung: Begriffe, Grundlagen Qualitätssicherung in Gesundheitseinrichtungen, Standard operating procedures, Zertifizierungs- und Akkreditierungsverfahren

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

• Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1992 • Meyer-Waarden, K.: Bioelektrische Signale und ihre Ableitverfahren, Schattauer-Verlag Stuttgart/New York 1985 • Webster, J.G. (Ed.): Medical Instrumentation - Application and Design, Houghton Mifflin Co. Boston/Toronto, 1992 • Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000 • Webster, J.G. and A.M. Cook: Clinical Engineering - Principles and Practices, Prentice Hall/Englewood Cliffs, Bos-ton 1979 • Reilly, J.P. Electrical Stimulation and Electropathology, Cambridge University Press, 1992 • Schmidt, R. F., Thews, G., Lang, F. (Hrsg.): Physiologie des Menschen, 28. Aufl., Springer-Verlag Berlin/ Heidel-berg/ New York, 2000

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Verfahren der Biomedizinischen Messtechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 5603 Prüfungsnummer:2200105

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2221

	1.FS			2	2.FS	3	3.FS			4.FS				5.FS	3	6.FS			7.FS		
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Verfahren der Medizinischen Messtechnik zu vermitteln. Die Studierenden kennen und verstehen die Messprinzipien in der Medizinischen Praxis, die damit verbundenen spezifischen Problemfelder und die Anforderungen an medizinische Messgeräte. Die Studierenden können Messaufgaben im klinischen Umfeld analysieren, bewerten und geeignete Lösungsansätze entwickeln. Die Studierenden sind in der Lage medizinische Messgeräte zu analysieren und zu bewerten. Die Studierenden verstehen die Messtechnik für bioelektrische und biomagnetische Signale, können diese in der Klinik anwenden und bewerten. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung von Messtechnik für bioelektrische und biomagnetische Signale. Die Studierenden sind in der Lage messtechnische Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage Systemkompetenz für medizinische Messtechnik in interdisziplinären Teams zu vertreten.

Vorkenntnisse

Grundlagen der Biomedizinischen Technik, Grundlagen der Medizinischen Messtechnik

Inhalt

Elektrophysiologische Messverfahren (Elektrokardiografie, Elektroenzephalografie); Blutdruckmessung (methodische Grundlagen, Blutdruck-Parameter, direkte / indirekte Messverfahren); Blutflussmessung (methodische Grundlagen, Messverfahren); Respiratorische Messverfahren (physiolog./ messmethodische Grundlagen, Messgrößen, Messverfahren); optische Messverfahren (methodische Grundlagen, Photoplethysomgrafie, Spektralfotometrie, Pulsoximetrie)

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

• Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1992 • Meyer-Waarden, K.: Bioelektrische Signale und ihre Ableitverfahren, Schattauer-Verlag Stuttgart/New York 1985 • Webster, J.G. (Ed.): Medical Instrumentation - Application and Design, Houghton Mifflin Co. Boston/Toronto, 1992 • Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000 • Malmivuo, J.: Bioelectromagnetism, Oxford University Press, 1995 • Kramme, R. (Hrsg.): Medizintechnik, Springer-Verlag Berlin, Heidelberg, New York, 2002

Detailangaben zum Abschluss

Prüfungsform: mündlich Dauer: 20 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Master Biomedizinische Technik 2009

Master Biomedizinische Technik 2013

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Bildverarbeitung in der Medizin 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5592 Prüfungsnummer:2200084

Fachverantwortlich: Dr.-Ing. Dunja Jannek

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	atik un	d Automatisierung					Fachgebiet:	2221

	1.FS		2.FS			3.FS			4.FS			5	5.FS	3	(3.FS	3	7.FS			
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Der Studierende erkennt die speziellen Probleme der medizinischen Bildverarbeitung und erwirbt die grundlegende Methodenkompetenz, um eigenständig elementare medizinische Bildverarbeitungsprobleme zu lösen. Dabei nutzt der Studierende auch die bereits erworbenen Grundlagen, die zuvor in anderen Fächern zur Signalverarbeitung und zur Bildgebung vermittelt wurden. Der Studierende ist in der Lage die erworbene Methodenkompetenz in Matlab umzusetzen und auf praktische Problemstellungen anwenden zu können. Des Weiteren ist er befähigt auf Basis der erworbenen Grundlagen auch fortgeschrittene Methoden der medizinischen Bildverarbeitung zu untersuchen.

Vorkenntnisse

- Signale und Systeme
- Grundlagen der Biosignalverarbeitung
- Biosignalverarbeitung 1
- Bildgebung in der Medizin 1

Inhalt

Im Rahmen der Vorlesung werden die Grundlagen der Bildverarbeitung mit einem speziellen Fokus auf die in der Medizintechnik relevanten Bereiche vermittelt. Die Schwerpunkte werden dabei insbesondere auf die Bildrepräsentation und Bildeigenschaften, die Bildvorverarbeitung, sowie die Segmentierungsverfahren gelegt. Im Rahmen des Seminars werden die behandelten Methoden zur Lösung praktischer Aufgabenstellungen mit Hilfe von Matlab eingesetzt und diskutiert. Gliederung:

- Einführung in die Bildverarbeitung und Vorstellung spezieller Probleme in medizinischen Anwendungen
- Bildrepräsentation und Bildeigenschaften im Ortsbereich und im Ortsfrequenzbereich (zweidimensionale Fouriertransformation)
- Bildvorverarbeitung (lineare diskrete Operatoren, Bildrestauration, Bildregistrierung, Bildverbesserung)
- Morphologische Operationen
- Segmentierung (Pixelbasierte Segmentierung, Regionenbasierte Segmentierung, Kantenbasierte Segmentierung, Wasserscheidentransformation, Modellbasierte Segmentierung)
- Merkmalsextraktion und Einführung in die Klassifikation

Medienformen

Hauptsächlich Tafel ergänzt um Folien mit Beamer für die Vorlesung; Whiteboard und rechentechnisches Kabinett für das Seminar

Literatur

- 1. Klaus D. Tönnies, "Grundlagen der Bildverarbeitung", Pearson Studium, 1. Auflage, 2005.
- 2. Heinz Handels, "Medizinische Bildverarbeitung", Vieweg + Teubner, 2. Auflage, 2009.
- 3. Bernd Jähne, "Digitale Bildverarbeitung", Springer, 6. Auflage, 2005.
- 4. Angelika Erhardt, "Einführung in die Digitale Bildverarbeitung", Vieweg + Teubner, 1. Auflage, 2008.
- 5. Rafael C. Gonzales and Richard E. Woods, "Digital Image Processing", Pearson International, 3. Edition, 2008.
- 6. Geoff Dougherty, "Digital Image Processing for Medical Applications", Cambridge University Press, 1. Edition, 2009.
- 7. William K. Pratt, "Digital Image Processing", Wiley, 4. Edition, 2007.
- 8. Wilhelm Burger and Mark J. Burge, "Principles of Digital Image Processing Core Algorithms", Springer, 1. Edition, 2009.
- 9. John L. Semmlow, "Biosignal and Medical Image Processing", CRC Press, 2. Edition, 2009.

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 90 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Master Biomedizinische Technik 2009

Master Biomedizinische Technik 2013

Master Ingenieurinformatik 2009

Master Mathematik und Wirtschaftsmathematik 2008

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Biomedizinische Technik in der Therapie

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 1691 Prüfungsnummer:2200042

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	tik un	nd Automatisierung					Fachgebiet:	2221

	1.FS		2.FS			3.FS			4.FS			5	5.FS	3	(3.FS	3	7.FS			
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	0	0												

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Grundlagen und Anwendungen der Biomedizinische Technik in der Therapie zu vermitteln. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien ausgewählter Biomedizinischer Therapietechnik, die damit verbundenen spezifischen Problemfelder und die Anforderungen an medizinische Therapiegeräte. Die Studierenden sind in der Lage ausgewählte medizinische Therapiegeräte zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen zu Art und Einsatz von Biomaterialien und sind in der Lage künstliche Organe zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen der Organtransplantation und von Sterilisationsverfahren. Die Studierenden kennen und verstehen Beatmungs- und Narkosetechniken. Die Studierenden sind in der Lage die entsprechende Gerätetechnik zu analysieren, zu bewerten und beim Designprozess mitzuwirken. Die Studierenden kennen und verstehen Dialysetechniken, Herzschrittmacher, Tiefenhirnstimulation, Minimal-invasive Chirurgietechniken und Laser in der Medizin. Sie sind in der Lage die entsprechende Gerätetechnik zu analysieren, zu bewerten und beim Syntheseprozess mitzuwirken. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung von Biomedizinischer Therapietechnik. Die Studierenden sind in der Lage therapiegrätetechnische Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage Systemkompetenz für Biomedizinische Technik in der Therapie in interdisziplinären Teams zu vertreten.

Vorkenntnisse

Mathematik 1-3, Physik 1-2, Anatomie und Physiologie 1, Elektro- und Neurophysiologie, Allgemeine Elektrotechnik 1-3, Theoretische Elektrotechnik, Grundlagen der Biomedizinischen Technik

Inhalt

Einführung: Klassifizierung und Strukturierung Biomedizinischer Technik in der Therapie, Anforderungen an medizinische Therapiegräte, spezifische Problemfelder bei Therapiegeräten Biomaterialien und Biokompatibilität: Arten und Einsatz der Biomaterialien, Biokompatibilität, künstliche Organe und Organtransplantation, Sterilisation, Beatmungs- und Narkosetechnik: medizinische und physiologische Grundlagen, methodische und technische Lösungen, Dialyse/ künstliche Niere: medizinische und physiologische Grundlagen, Hämodialyse, extrakorporaler Kreislauf, Technik der Hämodialyse, Ultrafiltration, Dialyse-Monitoring, Herzschrittmacher: medizinische und physiologische Grundlagen, Stimulation, Elektroden, Gerätespezifikation, Einsatz Tiefenhirnstimulation: medizinische und physiologische Grundlagen, Stimulationstechniken, Therapiegeräte Minimal-invasive Chirurgie: Entwicklung der Endoskopie, Anforderungen an minimal-invasive Gerätestystem, Techniken und Instrumente Laser in der Medizin: Anwendungsspektrum der Laser in der Medizin, Prinzipien medizinischer Laser, Ophthalmologische Technik: Technik der Cataract-Operation und Intraokularlinsenimplantation, Glaskörperchirurgie, ophthalmologische Implantate

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1992 Bronzino, J. D. (Ed.): The Biomedical Engineering Hand-book, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: benotete Studienleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2013

Bachelor Informatik 2010

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Modul: Biomedizinische Technik

Hauptseminar BMT

Fachabschluss: Prüfungsleistung alternativ

Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 1685 Prüfungsnummer:2200237

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2222

	1	I.FS	3	2	2.FS	3	,	3.FS	3	2	1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							0	2	0												

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verstehen ein spezielles Forschungsthema auf dem Gebiet der Biomedizinischen Technik. Sie sind in der Lage: 1. Den Stand der Technik zu einer vorgegebenen Fragestellung zu erfassen, einzuordnen und zu bewerten. 2. Ein vorgegebenes Experiment zu planen, durchzuführen und auszuwerten. 3. Zu einer vorgegebenen Fragestellung einen praktischen Aufbau oder Algorithmus zu planen, zu realisieren und zu testen. Methodenkompetenz: Die Studierenden sind in der Lage, wissenschaftlich-technische Literatur zu recherchieren und auszuwerten. Systemkompetenz: Die Studierenden werden befähigt, Abhängigkeiten einer speziellen Problemstellung zu verschiedenen Anwendungsgebieten herzustellen. Sozialkompetenz: Die Studierenden werden befähigt, wissenschaftliche Themen schriftlich und mündlich zu präsentieren.

Vorkenntnisse

Pflichtmodul 2: BMT

Inhalt

Das Hauptseminar besteht in der selbstständigen Bearbeitung eines Forschungsthemas, welches als solches nicht direkt Bestandteil der bisherigen Ausbildung war. Das Ziel besteht darin, zum Thema den State of the art zu erfassen, einzuordnen und zu bewerten. Der Student hat folgende Aufgaben zu erfüllen: Einarbeitung und Verständnis des Themenbereichs auf der Basis bisherigen Ausbildung, der vorgegebenen und weiterer für die umfassende Behandlung und das Verständnis notwendiger, selbst zu findender Literaturquellen. Einordnung des Themenbereichs in das wissenschaftliche Spektrum ingenieurtechnischer Fragestellungen auf der Basis der bis dahin in der Ausbildung vermittelten Erkenntnisse; Schriftliche und mündliche Präsentation der Ergebnisse

Medienformen

Workshops mit Präsentation (Tafel, Handouts, Laptop)

Literatur

Themenspezifische Vorgabe

Detailangaben zum Abschluss

Prüfungsform:

- 1.Schriftlicher Teil
- -15 20 Seiten (incl. Literaturverzeichnis)
- -deutsche oder englische Sprache
- -Elektronisch und Papierform

2.Mündlicher Teil

- -Vortrag (30 min)
- -Diskussion (ca. 10 min)

Abschluss:

benotete Studienleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2013

Master Biomedizinische Technik 2009

Master Biomedizinische Technik 2013

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Modul: Biomedizinische Technik

KIS, Telemedizin, eHealth

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:unbekannt

Fachnummer: 5601 Prüfungsnummer:2200106

Fachverantwortlich: Prof. Dr.-Ing. habil. Vesselin Detschew

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	atik und	d Automatisierung					Fachgebiet:	2222

	1	I.FS	;	2	2.FS	3	;	3.FS	3	4	1.FS)		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Wissen über die wichtigsten informationsverarbeitenden Systeme der modernen Gesundheitsversorgung zu vermitteln. Die Studierenden kennen und verstehen die Struktur und Architektur heutiger Krankenhausinformationssysteme und telemedizinische Anwendungen, die damit verbundenen spezifischen Problemfelder und die Anforderungen an Hard- und Software. Die Studierenden können adäquate Aufgaben aus dem klinischen Umfeld analysieren, bewerten und geeignete Lösungsansätze entwickeln. Die Studierenden sind in der Lage medizinische Software zu analysieren und zu bewerten und können diese in der Klinik anwenden. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung medizinischer IVSysteme.

Die Studierenden sind in der Lage informationstechnische Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage System-kompetenz für medizinische Informationsverarbeitung in interdisziplinären Teams zu vertreten.

Vorkenntnisse

Pflichtmodul 2: BMT; Informationsverarbeitung in der Medizin; Grundkenntnisse in Datenbanken und Software Engineering

Inhalt

Krankenhausinformationssystem - Definition, Bestandteile, Struktur und Architektur, stationäre und ambulante Patientenverwaltung, Operationsmanagement, Qualitätssicherung, Labor, Pflegeplanung und -dokumentation, Intensivmedizin, Funktionsbereiche, Klinische Behandlungspfade und ihre Integration in das KIS; Wissensbasierte Systeme in der Gesundheitsversorgung; Telemedizin - Definition, Anwendungen;

Telemedizinische Standards, Telehomecare, Telekonsultation, e-Health, elektronische Gesundheitskarte; methodische Vorgehensweise bei der Entwicklung - System Engineering, Modell eines Krankenhauses als Basis für konkrete Realisierung eines wissensbasierten Systems.

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, studentische Vorträge

Literatur

- 1. Kramme, R. (Hrsg.): Medizintechnik, Springer 2002
- 2. Seelos, H.J..: Medizinische Informatik, de Gruyter 1997
- 3. Lehmann, T.: Handbuch der Medizinischen Informatik, Hanser 2002
- 4. Trill, R.: Krankenhaus Management, Luchterhand 2000
- 5. Haas, P.: Medizinische Informationssysteme und Elekt-ronische Krankenakten, Springer 2005
- 6. Herbig, B.: Informations- und Kommunikationstechnologien im Krankenhaus, Schattauer 2006

- 7. Jahn, K.: e-Health, Springer 2004
- 8. Ammenwerth, E.: Projektmanagement im Krankenhaus und Gesundheitswesen, Schattauer 2005
- 9. Haux, R.: Management von Informationssystemen, Teubner 1998

Detailangaben zum Abschluss

Prüfungsform: mündlich Dauer: 30 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Master Biomedizinische Technik 2009

Master Biomedizinische Technik 2013

Master Ingenieurinformatik 2009

Master Wirtschaftsinformatik 2009

Master Wirtschaftsinformatik 2011

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Modul: Biomedizinische Technik

Krankenhausmanagement

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1714 Prüfungsnummer:2200036

Fachverantwortlich: Prof. Dr.-Ing. habil. Rüdiger Blau

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	itik und	d Automatisierung					Fachgebiet:	2222

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS	6	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							1	1	0												

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, theoretische und methodische Grundlagen im Bereich des Krankenhauswesens zu verstehen, um eigenständig Probleme auf dem Gebiet des Krankenhauswesens zu analysieren und im entsprechenden Zusammenhang Lösungsvorschläge zu erarbeiten und fremde zu bewerten.
- Die Studierenden besitzen ein Grundverständnis für den Aufbau und die Organisation des Gesundheitswesens.
- Die Studierenden sind fähig, die einzelnen Verflechtungen im Gesundheitswesen zu verstehen und können daraus resultierende Vorraussetzungen wie beispielsweise die Einflussfaktoren auf Strukturen, Prozesse und Ergebnisse der Gesundheitseinrichtungen- für das Krankenhausmanagement bewerten.
- Die Studierenden haben die Möglichkeit, als Mittler in verschiedenen Organisationsstrukturen zu agieren und können sich den technischen Anwendungen des Managements stellen. Der Gesundheitssektor bietet den Studierenden die Möglichkeit, in industriellen Bereichen oder in Dienstleistungsbereichen, wie Krankenversicherungen, Krankenhäusern oder Beratungsstellen tätig zu werden.

Vorkenntnisse

Grundlegende medizinische Begriffe auf Abiturniveau, allgemeine betriebswirtschaftliche Kenntnisse; Vorlesung Krankenhausökonomie

Inhalt

- Erläuterung der Veränderung des Krankenhausleitungsstils vom schlichten Verwalten zum echten Management.
- Beschreibung der Komplexität der Managementaufgaben im Krankenhaus
- Gesetzliche Beeinflussung des Unternehmens "Krankenhaus"
- Die einzelnen "Gesundheits"- Leistungen im Sozialsystem
- · Komponenten des Gesundheitswesens
- Personalmanagement (Führung, Arbeitszeitrecht im Krankenhaus)
- Krankenhaus und Wettbewerb- der Patient als Kunde
- Krankenhausinformationssysteme (Auswahl und Komponenten von KIS)

Medienformen

Tafel, Präsentation, Film, Vorlesungsgliederung

Literatur

MONOGRAFIEN:

- Krankenhausmanagement, Eichhorn/ Seelos/ Graf Schulenberg, Olsen und Fischer 2000
- Das moderne Krankenhaus- Managen statt verwalten, Jürgen Meier, Luchterhand 1994 Betriebswirtschaft und

Management im Krankenhaus, Manfred Haubrock/ Walter Schär Huber/ Bern 2002 • Strategische Krankenhausführung, Andrea Braun von Reinersdorff/ Huber, Bern 2002

- Management von Gesundheits- und Sozialeinrichtungen. Handlungsfelder, Methoden, Lösungen, Hans- Joachim Schubert, Luchterhand Verlag 2002
- Zukunft des Sozialstaates, Ministerium für Arbeit, Gesundheit und Soziales NRW (Hrsg.) Kohlhammer 1998
- Haftungsrecht und Haftpflicht im Krankenhaus, Norbert Netzer, Bettendorf 1996
- Ideenhandbuch für erfolgreiches Krankenhausmarketing, Klaus- Dieter Thill, Baumann Fachzeitschriften Verlag 1996 ZEITSCHRIFTEN: f&w führen und wirtschaften im Krankenhaus das Krankenhaus
- Krankenhausumschau
- Management & Krankenhaus
- G+G Gesundheit und Gesellschaft Krankenhaus & Recht Medizin Produkte & Recht

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Labor BMT

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 1694 Prüfungsnummer:2200008

Fachverantwortlich: Dr.-Ing. Dunja Jannek

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	ıtik ur	nd Automatisierung					Fachgebiet:	2221

	1	I.FS	3	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							0	0	2												

Lernergebnisse / Kompetenzen

Die Praktikumsinhalte orientieren sich an den Kerninhalten der Fächer. Die Studierenden vertiefen die methodischen Kenntnisse durch experimentelle Verfahren und Ergebnisse. Sie erwerben praktische Fähigkeiten und Fertigkeiten auf spezifisch technischer Wechselwirkungsebene und gleichzeitig Erfahrungen über Aufwand, Nutzen und Risiko Biomedizinischer Technik als technisches Hilfsmittel im medizinischen Versorgungs- und Betreuungsprozess.

Vorkenntnisse

Den Versuchen zugrundeliegende Module mit entsprechenden Fächern.

Inhalt

Beatmungstechnik; Bildverarbeitung; Dialysetechnik; Röntgendiagnostikeinrichtung; Grundlagen der Biosignalverarbeitung; Biostatistik / Biometrie; Erfassung bioelektrischer Signale; Strahlungsdetektoren; Elektronische Patientenakte; Elektrische Sicherheit

Medienformen

Arbeitsunterlagen für jedes einzelne Praktikum mit Grundlagen, Versuchsplatz, Versuchsaufgaben und Versuchsauswertung

Literatur

Versuchsbezogen aus der Anleitung zu entnehmen

Detailangaben zum Abschluss

Prüfungsform: Praktikum

Abschluss: benotete Studienleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2013

Bachelor Elektrotechnik und Informationstechnik 2008

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT
Master Wirtschaftsingenieurwesen 2010
Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT
Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT
Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Modul: Automatisierungstechnik

Modulnummer9017

Modulverantwortlich: Univ.-Prof. Dr.-Ing. Johann Reger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden sind in der Lage weiterführende Methoden aus ausgewählten Bereichen der Regelungstechnik, Automatisierungstechnik und Systemtechnik anzuwenden. Sie können Modelle für dynamische Prozesse entwickeln, diese analysieren, simulieren sowie optimieren. Sie besitzen fortgeschrittene Fähigkeiten zum Entwurf und zur Bewertung komplexer Automatisierungs- und Regelungssysteme.

Vorraussetzungen für die Teilnahme

keine

Detailangaben zum Abschluss

Modul: Automatisierungstechnik

Prozessmess- und Sensortechnik 1

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1467 Prüfungsnummer:2300076

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Thomas Fröhlich

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Maschine	enbau						Fachgebiet:	2372

	1	I.FS)		2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3		7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	V	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Die Studierenden können sich in der metrologischen Begriffswelt bewegen und kennen die mit der Metrologie verbundenen Wechselwirkungen in Wirtschaft und Gesellschaft. Im Gebiet der Mess- und Automatisierungstechnik überblicken die Studierenden die Messverfahren der Längenmesstechnik, Spannungs- und Dehnungsmesstechnik und Kraftmess- und Wägetechnik hinsichtlich ihrer Funktion, Eigenschaften, mathematischen Beschreibung für statisches und dynamisches Verhalten, Anwendungsbereich und Kosten. Die Studierenden können in bestehenden Messanordnungen die eingesetzten Prinzipien erkennen und bewerten. Die Studierenden sind fähig, Aufgaben der elektrischen Messung nichtelektrischer Größen zu analysieren, geeignete Messverfahren zur Lösung der Messaufgaben auszuwählen, Quellen von Messabweichungen zu erkennen und den Weg der Ermittlung der Messunsicherheit mathematisch zu formulieren und bis zum vollständigen Messergebnis zu gehen. Mit der Lehrveranstaltung erwerben die Studierenden zu etwa 60% Fachkompetenz. Die verbleibenden 40% verteilen sich mit variierenden Anteilen auf Methoden- und Systemkompetenz. Sozialkompetenz erwächst aus praktischen Beispielen in den Lehrveranstaltungen und der gemeinsamen Problemlösung im Seminar.

Vorkenntnisse

Abgeschlossenes ingenieurwissenschaftliches Grundstudium

Inhalt

Grundlagen der Messtechnik:

Prozessmesstechnik, Sensortechnik, Wandlungs- und Strukturschema, Messwandlung; Metrologie und metrologische Begriffe, PTB, DKD/DAkkS, Normale, Kalibrieren, Eichen; Einheiten, SI-System; Messen, Messabweichungen (Fehler), ISO-Guide, Messunsicherheit, Messergebnis; Ausgleichsrechnung.

Temperaturmesstechnik:

Kelvindefinition, Thermodynamische Temperaturskale, Gasthermometer, ITS 90, Tripelpunkte, Erstarrungspunkte, Interpolationsinstrumente; Berührungsthermometer, Flüssigkeitsthermometer; Thermoelemente, Widerstandsthermometer, Messschaltungen; Strahlungsthermometer, Strahlungsgesetze; Spektralpyrometer, Gesamtstrahlungspyrometer. Spannungs- und Dehnungsmesstechnik:

Bedeutung der Spannungs- und Dehnungsmesstechnik, Überblick der Messverfahren; Dehnungsmessstreifen, K-Faktor, messtechnische Eigenschaften; Brückenschaltungen für DMS, Vorzeichenregel, Temperatur- und Kriechkompensation; Anwendung von DMS, geometrische Integration, Kraft-Momenten-Sensoren.

Kraftmesstechnik:

Prinzip der Kraftmessung; Verformungskörper, DMS-Kraftsensoren; Elektromagnetische Kraftkompensation, Parallellenkerkrafteinleitungssystem; Magnetoelastische Kraftsensoren, Piezoelektrische Kraftsensoren, Gyroskopische Kraftmesszelle, Schwingsaitenkraftsensor, Interferenzoptische Kraftsensoren, Faseroptische Kraftsensoren; Dynamisches Verhalten von Kraftsensoren, Ersatzmodell, Bewegungsdifferentialgleichung, Frequenzgänge, dynamische Wägelinie.

Wägetechnik:

Einheit der Masse; Bauelemente einer Waage, Empfindlichkeit, Auftriebskorrektur; Balkenwaage, Laufgewichtswaage, Neigungswaage, Tafelwaage, Brückenwaage, Einfluss von Hebelübersetzungen auf das dynamische Verhalten. Praktikum Prozessmesstechnik mit einer Auswahl von 3 aus 6 Versuchen PMS.

Medienformen

Nutzung der Möglichkeiten von Beamer/Laptop mit Präsentationssoftware. Für die Studierenden werden Lehrmaterialien bereitgestellt. Sie bestehen u.a. aus kapitelweise nummerierten Arbeitsblättern mit Erläuterungen und Definitionen sowie Skizzen der Messprinzipien und -geräte, deren Inhalt mit der Präsentation identisch ist. Eventuelle Ergänzungen enthält ein operativer universitätsinterner Downloadbereich mit variablem Inhalt.

Literatur

Die Lehrmaterialien enthalten ein aktuelles Literaturverzeichnis.

- 1. Internationales Wörterbuch der Metrologie International Vocabulary of Basic and General Terms in Metrology. DIN. ISBN 3-41 0-13086-1
- 2. DIN V ENV 13005- Leitfaden zur Angabe der Unsicherheit beim Messen
- 3. Dubbel Taschenbuch für den Maschinenbau. Springer. ISBN: 3-540-22142-5

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Automatisierungstechnik

Regelungs- und Systemtechnik 2

Fachabschluss: Prüfungsleistung mündlich 45 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:unbekannt

Fachnummer: 1472 Prüfungsnummer:2200020

Fachverantwortlich: Univ.-Prof. Dr.-Ing. Johann Reger

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2213

	1	l.FS	3	2	2.FS	3	;	3.FS	3	4	1.FS)		5.FS	3		3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Basierend auf der im Fach Regelungs- und Systemtechnik eingeführten Zustandsraummethodik können die Studenten die Zustandsgleichung eines Systems im Zeit- und Laplacebereich lösen. Die Studierenden lernen die wichtigsten Eigenschaften linearer Systeme im Zustandsraum, wie Stabilität, Steuerbarkeit und Beobachtbarkeit, kennen und beurteilen. Die Studierenden können Systeme in den gebräuchlichen Normalformen (Steuerungs- und Beobachtungsnormalformen) beschreiben, was Voraussetzung für den Entwurf von Zustandsreglern und Beobachtern ist. Die Studierenden sind in der Lage Zustandsregler auf verschiedenen Wegen sowohl für Eingrößen- als auch für Mehrgrößensysteme zu entwerfen. Weiterhin können die Studenten erweiterte Strukturen, wie z.B. die Zustandsregelung mit Vorfilter zur Sicherung der Stationarität, bemessen.

Vorkenntnisse

Abgeschlossene Fächer Mathematik 1-3, Physik 1-2, Regelungs- und Systemtechnik und des Moduls Informatik

Inhalt

- 1 Allgemeine Lösung der Zustandsgleichung
- 1.1. Lösung der skalaren Gleichung
- 1.2. Lösung der Vektor-Differentialgleichung
- 1.3. Berechnung der Transitionsmatrix 1.3.1. Direkte Auswertung
- 1.3.2. Berechnung der Transitionsmatrix über den Satz von Cayley-Hamilton
- 1.3.3. Berechnung der Transitionsmatrix durch Ähnlichkeitstransformation
- 1.4. Auswertung der Lösung der Zustandsgleichung
- 1.4.1. Impulsantwort und Sprungantwort (siehe auch RT1)
- 1.4.2. Lösung der Zustandsgleichung im Laplacebereich
- 1.5. Linearisierung um die Ruhelage
- 2 Strukturelle Eigenschaften linearer Systeme im Zustandsraum
- 2.1. Stabilitätsverhalten eines linearen zeitinvarianten Systems
- 2.2. Anmerkungen zu Eigenwert-Lage und Zeitverhalten
- 2.3. Steuerbarkeit
- 2.3.1. Steuerbarkeitskriterium Kalman
- 2.3.2. Steuerbarkeitskriterium nach Gilbert und Hantus
- 2.4. Beobachtbarkeit
- 2.4.1. Beobachtbarkeitskriterium nach Kalman
- 2.4.2. Beobachtbarkeitskriterium nach Gilbert/Hantus
- 2.5. Normalformen

- 2.5.1. Jordansche Normalform
- 2.5.2. Beobachtungsnormalform 1.Art (BNF)
- 2.5.3. Beobachtungsnormalform 2.Art
- 2.5.4. Steuerungsnormalform 1. Art (SNF)
- 2.5.5. Steuerungsnormalform 2. Art (SNF 2. Art)
- 3 Struktur von Zustandsgleichungen
- 3.1. Vorfilterberechnung auf Stationarität
- 3.2. Vorsteuerung mit Führungsgrößenaufschaltung
- 4 Zustandsreglersynthese 4.1. Polvorgabe (Eigenwert-Vorgabe)
- 4.2. Polvorgabe bei Transformation auf SNF 2.Art
- 4.3. Modale Regelung
- 4.4. Reglerentwurf durch Minimieren eines quadratischen Gütemaßes (Riccati Regler)
- 4.4.1. Die Ljapunov-Gleichung
- 4.4.2. Berechnung des Riccati-Reglers
- 4.4.3. Iterativ numerische Lösung der Riccati-Gleichung
- 4.4.4. Direkte Methode zur Lösung der Riccati-Gleichung
- 4.4.5. Vergleich zwischen Polvorgabe und Riccati-Entwurf
- 4.5. Entwurf von Regelungen für MIMO durch Entkopplung
- 4.5.1. Motivation
- 4.5.2. Differenzordnung
- 4.5.3. Direkte Systembeschreibung
- 4.5.4. Entkopplung
- 4.6 Vollständige modale Synthese nach Roppenecker
- 4.6.1 Allgemeine Zustandsreglerformel

Medienformen

Skript in Verbindung mit Folien, Tafelschrieb

Literatur

- Föllinger, O.: Regelungstechnik. Hüthig; Auflage: 5. Auflage 1985
- · Lunze, J.: Regelungstechnik 2. Springer, Berlin 2004
- Unbehauen, H.: Regelungstechnik II, Vieweg Verlag 2000

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Automatisierungstechnik

Digitale Regelungen

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1424 Prüfungsnummer:2200023

Fachverantwortlich: Dr. Kai Wulff

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2213

	1	I.FS	;	2	2.FS	3	;	3.FS	3	4	1.FS)		5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Nach erfolgreichem Abschluss des Moduls:

- Kennen die Studierenden die Beschreibung von Abtastsystemen und deren Anwendung auf digitale Regelungen.
- Kennen und verstehen die Studierenden die Beschreibung linearer zeitdiskreter Systeme im Zustandsraum sowie deren Ein-Ausgangsverhalten als z-Übertragungsfunktion.
- Können die Studierenden zeitdiskrete Zustandsraummodelle auf ihre grundlegenden strukturellen Eigenschaften untersuchen.
- Kennen die Studierenden die gängigen Verfahren zum Entwurf zeitdiskreter Regelungen und sind in der Lage diese anzuwenden.
- Sind die Studierenden in der Lage typische Softwarewerkzeuge zur Analyse und zum Entwurf von digitalen Regelkreisen zu verwenden.
 - Können die Studierenden zeitdiskrete Regler auf gängigen Plattformen implementieren.

Vorkenntnisse

Abgeschlossenes gemeinsames ingenieurwissenschaftliches Grundstudium (GIG). Regelungs- und Systemtechnik 1

Inhalt

- Charakterisierung des Abtastregelkreises (Abtastung, Zustandsraumbeschreigung, Lösung von Systemen von Differenzengleichungen, Eigenbewegungen, Stabilität, Abbildung der Eigenwerte durch Abtastung)
- Zustandsraumbeschreibung zeitdiskreter Systeme (Errreichbarkeit, Zustandsrückführung, Formel von Ackermann, Deadbeat Regler, Beobachtbarkeit, Zustandsbeobachter, Separationsprinzip, PI-Regler mit Zustandsrückführung, Störgrößenaufschaltung mit Zustandsbeobachter)
- Ein- Ausgangsbeschreibung von zeitdiskreten Systemen (z-Transformation, Übertragungsfunktion zeitdiskreter Systeme, kanonische Realisierungen zeitdiskreter Übertragungsfunktionen)
- Reglerentwurf für Abtastsysteme im Frequenzbereich (Übertragungsfunktion eines Abtastsystems, diskreter Frequenzgang, Tustin-Transformation, Frequenzkennlinienverfahren für Abtastsysteme, Wahl der Abtastzeit, Approximation zeitkontinuierlicher Regler)
 - Regelkreisarchitekturen (Störgrößenaufschaltung, Kaskadenregelung, Internal Model Control, Anti Wind-up Schaltung)

Medienformen

Entwicklung an der Tafel, Folienpräsentationen, Simulationen, Beiblätter, Übungsblätter und Simulationsbeispiele unter:

Literatur

- Franklin, Powell, Workman, "Digital Control of Dynamic Systems, Addison Wesley, 1997
- Gausch, Hofer, Schlacher, "Digitale Regelkreise", Oldenbourg Verlag, 1993
- Goodwin, Graebe, Salgado, "Control System Design", Prentice Hall, 2001
- · Horn, Dourdouma, "Regelungstechnik", Pearson, 2004
- Lunze, "Regelungstechnik 2", Springer, 2001
- Rugh, "Linear System Theory", Prentice Hall, 1996

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Ingenieurinformatik 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Fahrzeugtechnik 2009

Master Fahrzeugtechnik 2014

Master Maschinenbau 2009

Master Maschinenbau 2011

Master Maschinenbau 2014

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Automatisierungstechnik

Kommunikations- und Bussysteme

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 899 Prüfungsnummer:2200096

Fachverantwortlich: Dr.-Ing. Fred Roß

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2211

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Der Hörer erhält eine Übersicht über Methoden und Technologien der Netzwerktechnik. Es werden Fähigkeiten und Fertigkeiten zum Einsatz von Feldbussystemen erarbeitet. Die Vorlesung soll darüber hinaus die methodische und begriffliche Basis legen, um sich spezielle Lösungsansätze aus Textbüchern oder Veröffentlichungen eigenständig aneignen zu können.

Vorkenntnisse

Technische Informatik 1 und 2; Regelungstechnik, Systemanalyse

Inhalt

Kommunikationsstrukturen (offene und geschlossene Systeme, Einsatzgebiete), Netzwerktopologien (Stern-, Bus-, Baum-, Ringstrukturen), ISO/OSI-Referenzmodell, Bezugsgriffsverfahren (determiniert, nach Bedarf), Datenübertragung (Übertragungsarten, Codierungsarten, Fehlerarten, Methoden der Übertragungssicherheit), Verbindungsmedien (Zweidrahtleitung, Koaxialleitung, Lichtwellenleiter, Koppelstationen), Spezielle Bussysteme (PROFIBUS, Interbus, LON, CAN)

Medienformen

Die Konzepte werden während der Vorlesung an der Tafel entwickelt. Zur Veranschaulichung werden Overhead-Projektionen eingefügt. Ein Script im PDF-Format wird angeboten.

Literatur

- R. Bure, Feldbussysteme im Vergleich, Pflaum 1996
- K. W. Bonfig, Feldbus-Systeme, expend-Verlag 1992
- D. Piscitello, L. Chapin, Open systems-networking, Addison-Wesley 1994
- · A. Baginski, Interbus, Hüthig 1998 K. Bender, M. Katz, Profibus, Hanser 1992

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Ingenieurinformatik 2009

Master Maschinenbau 2009

Master Maschinenbau 2011

Master Maschinenbau 2014

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Automatisierungstechnik

Matlab für Ingenieure

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5550 Prüfungsnummer:2200240

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Pu Li

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2212

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS	6	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden können die Grundzüge des Simulationssystems MATLAB/Simulink und dessen Kopplungsmöglichkeiten zu anderen Simulationssystemen/ -sprachen beschreiben. Sie wenden numerische Integrationsverfahren zur Lösung von Differenzialgleichungssystemen an. Sie sind in der Lage, Simulationsaufgabenstellungen mit der grafischen Benutzeroberfläche von Simulink zu implementieren und zu lösen. Typische Simulationsaufgaben im regelungstechnischen Umfeld (Nutzung unterschiedlicher Modellbeschreibungen, Stabilitätsprüfung, Analyse und Syntheseaufgaben) werden durch die Studierenden analysiert und entwickelt. Ebenso werden lineare und nichtlineare Optimierungsaufgabenstellungen charakterisiert, beurteilt und entworfen, um mit Optimierungsverfahren gelöst zu werden. In einem benoteten Hausbeleg weist jeder Studierende seine Fähigkeit nach, mit dem vorgestellten Simulationswerkzeug MATLAB/Simulink eine gestellte Aufgabe zu lösen und auszuwerten.

Vorkenntnisse

Grundlagen der Mathematik, der Physik, der Elektrotechnik sowie Regelungs- und Systemtechnik 1 + 2

Inhalt

Einführung in MATLAB/Simulink; Kopplung zu anderen Simulationssystemen/-sprachen; Numerische Integration von Differenzialgleichungssystemen, Beispiele; Simulation dynamischer Systeme mittels SIMULINK, Beispiele; Regelungstechnik: Ein-/ Ausgangsmodelle, Zustandsraummodelle, kontinuierliche und zeitdiskrete Modelle, Modelltransformationen, Stabilitätsprüfung, regelungstechnische Analyse- und Syntheseverfahren im Zeit-, Frequenz- und Bildbereich, zugehörige Tools, Beispiele; Formulierung und Lösung von Optimierungsaufgaben, Beispiele

Medienformen

Präsentation, Vorlesungsskript, Tafelanschrieb, Übungen im PC-Pool, Hausbeleg am PC

Literatur

Biran, A., Breiner, M.: MATLAB 5 für Ingenieure, Addison-Wesley, 2000.

Bossel, H.: Simulation dynamischer Systeme, Vieweg, 1987.

Bossel, H.: Modellbildung und Simulation, Vieweg, 1992.

Dorf, R.C., Bishop, R.H.: Moderne Regelungssysteme. Pearson Studium. 2006

Hoffmann, J.: MATLAB und SIMULINK, Addison-Wesley, 1998.

Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback control of dynamic systems. Pearson Education. 2006 Hoffmann, J., Brunner, U.: MATLAB und Tools: Für die Simulation dynamischer Systeme, Addison-Wesley, 2002.

Lunze, J.: Regelungstechnik 1. Springer. 1999

Lunze, J.: Regelungstechnik 2. Springer. 1997

Papageorgiou, M.: Optimierung. Oldenbourg. 1991

Scherf, H.E.: Modellbildung und Simulation dynamischer Systeme, Oldenbourg, 2003.

Schwetlick, H., Kretzschmar, H.: Numerische Verfahren für Naturwissenschaftler und Ingenieure, Fachbuchverlag Leipzig, 1991.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Modul: Automatisierungstechnik

Nichtlineare Regelungstechnik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch, auf Nachfrage Pflichtkennz.: Pflichtfach Turnus: unbekannt

Englisch

Fachnummer: 5536 Prüfungsnummer:2200094

Fachverantwortlich: Univ.-Prof. Dr.-Ing. Johann Reger

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	atik und	Δutomatisierung				Fachgehiet: 22	13

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Vorkenntnisse

Grundlagen der Regelungs- und Systemtechnik

Inhalt

·Nichtlineare dynamische Systeme als Anfangswertproblem; Existenz und Eindeutigkeit ·Stabilitätsbegriff nach Lyapunov ·Stabilitätsuntersuchung in der Phasenebene ·Direkte und indirekte Methode nach Lyapunov ·Lyapunov-Theorie: Backstepping, Passivität, Universalregler nach Sontag ·Steuerbarkeits- und Beobachtbarkeitskonzepte ·Exakte Linearisierung und Flachheit; Nulldynamik ·Vorsteuerung und Entwurf von Folgeregelungen

Medienformen

Tafel, Beiblätter, PC-Simulationen, Rechenübungen

Literatur

·Hassan Khalil, Nonlinear Systems, Prentice Hall, 1996 ·Miroslav Krsti, Ioannis Kanellakopoulus, Petar Kokotovi, Nonlinear and Adaptive Control Design, Wiley, 1995 ·Jean-Jacques Slotine, Weiping Li, Applied Nonlinear Control, Prentice Hall, 1991 ·Eduardo Sontag, Mathematical Contol Theory, Springer, 1998 ·Mark Spong, Seth Hutchinson, Mathukumalli Vidyasagar, Robot Modeling and Control, Wiley, 2005 ·Mathukumalli Vidyasagar, Nonlinear Systems Analysis, SIAM, 2002

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

[·]Kenntnis von charakteristischen Eigenschaften von nichtlinearen dynamischen Systemen ·Fähigkeit zur Untersuchung der Stabilitätseigenschaften nichtlinearer Systeme ·Vermittlung elementarer Methoden für den Reglerentwurf ·Grundkenntnis von weiterführenden Regelungskonzepten

Modul: Automatisierungstechnik

Prozessleittechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:unbekannt

Fachnummer: 1393 Prüfungsnummer:2200027

Fachverantwortlich: Prof. Dr.-Ing. Steven Lambeck

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	3.0	
Fakultät für Informa	atik un	d Automatisierung					Fachgebiet:	2215

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS)	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden können die einzelnen Automatisierungsaufgaben hierarchisch gliedern und den verschiedenen Ebenen des Produktionsprozesses zuordnen. Die Studierenden sind in der Lage, Automatisierungsaufgaben für komplizierte Prozesse entsprechend der hierarchischen Struktur (Prozesssicherung, -überwachung, -stabilisierung, -optimierung) zu entwerfen. Die Studierenden können gebräuchliche Notationen (z.B. Rohrleitungs- und Instrumentierungsschema) für Anlagen interpretieren. Die Studierenden lernen den gesamten Engineeringprozess einer Automatisierungsanlage kennen. Die Studierenden entwerfen Ablaufsteuerungen, welche an den praxisrelevanten Standard der NAMUR Empfehlung 33 angelehnt sind.

Vorkenntnisse

Abgeschlossenene Grundlagenausbildung in Elektrotechnik und Informatik (wünschenswert auch Regelungs- und Systemtechnik aber nicht Bedingung)

Inhalt

Gliederung zur Vorlesung "Prozessleittechnik" 1. Einführung und Grundlagen • Kernfelder der Prozessleittechnik • Begriffe • Automatisierungsziele und –Funktionen 2. Engineering und Systementwicklung • Lasten- und Pflichtenheft • Vorgehensmodelle • Strukturierte Analyse • Objektorientierter Entwurf 3. Aufgaben- und lösungsbezogene Notationen der Prozessleittechnik • textuell- grafische Beschreibungssprachen nach DIN 19227 • RI-Fließbilder technischer Prozesse • Notationsbeispiele 4. Strategien zum Entwurf von Prozessleitstrukturen • Geräteorientierte Entwicklung • Anlagenorientierte Entwicklung • Funktionsorientierte Entwicklung • Informationsorientierte Entwicklung • Objektorientierte Entwicklung 5. Strukturentwurf für Basisautomatisierung • Grundstrukturen typischer Regelkreise • Algorithmus zur Strukturauswahl • Verwendung unterschiedlicher Gütekriterien 6. Strukturentwurf für hierarchische PLT-Aufgaben • Grundstruktur für hierarchische Aufgabengliederung • Entwurfsbeispiel 7. Entwurf von Ablaufsteuerungen • Rezeptfahrweise nach NAMUR 33 8. Entwicklungstendenzen der PLT • Technische Kommunikation • Busstrukturen • Mensch-Maschine-Kommunikation

Medienformen

Skript in Verbindung mit Folien, Tafelschrieb

Literatur

Polke, M.: Prozessleittechnik.Oldenbourg 2001 Schuler, H.: Prozessführung. Oldenbourg Industrieverlag 1999 Früh, K.W.: Handbuch der Prozessautomatisierung. Oldenbourg Industrieverlag 2004

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Automatisierungstechnik

Simulation

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1400 Prüfungsnummer:2200028

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Pu Li

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2212

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS)	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden können Grundbegriffe der Modellierung und Simulation und die historische Einordnung der analogen Simulation im Vergleich zum Schwerpunkt der Veranstaltung, der digitalen Simulation zeitkontinuierlicher und zeitdiskreter Systeme, darlegen. Sie sind in der Lage, Simulationsaufgabenstellungen zu bewerten und eine systematische Herangehensweise an die Problemlösung anzuwenden. Die Studierenden testen und beurteilen sowohl die blockorientierte, die zustandsorientierte als auch die objektorientierte Simulation einschließlich der Spezifika, wie z.B. numerische Integrationsverfahren, physikalische Modellierung. Durch vorgestellte Simulationssprachen, -systeme und –software (MATLAB/SIMULINK, Scilab, OpenModelica, PHASER) können die Studierenden typische Simulationsaufgaben im regelungstechnischen Umfeld und darüber hinaus bewerten und entwickeln. In einem Hausbeleg weist jeder Studierende seine Fähigkeit nach, eine Simulationsaufgabe zu lösen und auszuwerten.

Vorkenntnisse

Grundlagen der Mathematik, der Physik, der Modellbildung sowie der Regelungs- und Systemtechnik

Inhalt

Einführung: Einsatzgebiete, Abgrenzung, Rechenmittel, Arbeitsdefinition, Systematik bei der Bearbeitung von Simulationsund Entwurfsaufgaben; Systembegriff (zeitkontiniuerlich, zeitdiskret, qualitativ, ereignis-diskret, chaotisch) mit
Aufgabenstellungen; Analoge Simulation: Wesentliche Baugruppen und Programmierung von Analogrechnern, Vorzüge und
Nachteile analoger Berechnung, heutige Bedeutung; Digitale Simulation: blockorientierte Simulation, Integrationsverfahren,
Einsatzempfehlungen, algebraische Schleifen, Schrittweitensteuerung, steife Differenzialgleichungen, Abbruchkriterien;
zustandsorientierte Simulation linearer Steuerungssysteme; physikalische objektorientierte Modellierung und Simulation;
Simulationssprachen und -systeme: MATLAB (Grundaufbau, Sprache, Matrizen und lineare Algebra, Polynome,
Interpolation, gewöhnliche Differenzialgleichungen, schwach besetzte Matrizen, M-File-Programmierung, Visualisierung,
Simulink, Toolboxen, Beispiele); Scilab (Grundaufbau, Befehle, Unterschiede zu MATLAB/Simulink, Beispiele);
objektorientierte Modellierungssprache Modelica und Simulationssystem OpenModelica (Merkmale,
Modellierungsumgebung, Bibliotheken, Beispiele, Optimierung); PHASER (Grundaufbau, vorgefertigte und eigene
Problemstellungen, Zeitverhalten, Phasendiagramm, Beispiele)

Medienformen

Präsentation, Vorlesungsskript, Tafelanschrieb, Übungen im PC-Pool, Hausbeleg am PC

Literatur

Biran, A., Breiner, M.: MATLAB 5 für Ingenieure, Addison-Wesley, 1999.

Bossel, H.: Simulation dynamischer Systeme, Vieweg, 1987.

Bossel, H.: Modellbildung und Simulation, Vieweg, 1992.

Bub, W., Lugner, P.: Systematik der Modellbildung, Teil 1: Konzeptionelle Modellbildung, Teil 2: Verifikation und Validation, VDI-Berichte 925, Modellbildung für Regelung und Simulation, VDI-Verlag, S. 1-18, S. 19-43, 1992.

Cellier, F. E.: Coninuous System Modeling, Springer, 1991.

Cellier, F. E.: Integrated Continuous-System Modeling and Simulation Environments, In: Linkens, D.A. (Ed.): CAD for Control Systems, Marcel Dekker, New York, 1993, pp. 1-29.

Fritzson, P.: Principles of object-oriented modeling and simulation with Modelica 2.1, IEEE Press, 2004.

Fritzson, P.: Introduction to Medeling and Simulation of Technical and Physical Systems with Modelica. Wiley-IEEE Press. 2011

Gomez, C.: Engineering and scientific computing with Scilab, Birkhäuser, 1999.

Hoffmann, J.: MATLAB und SIMULINK, Addison-Wesley, 1998.

Hoffmann, J., Brunner, U.: MATLAB und Tools: Für die Simulation dynamischer Systeme, Addison-Wesley, 2002.

Kocak, H.: Differential and difference equations through computer experiments, (... PHASER ...), Springer, 1989.

Otter, M.: Objektorientierte Modellierung Physikalischer Systeme, Teil 1, at - Automatisierungstechnik, (47(1999)1, S. A1-A4 (und weitere 15 Teile von OTTER, M. als Haupt-- bzw. Co-Autor und anderer Autoren in Nachfolgeheften).

Scherf, H.E.: Modellbildung und Simulation dynamischer Systeme, Oldenbourg, 2003.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Technische Kybernetik und Systemtheorie 2013

Master Electrical Power and Control Engineering 2008

Master Electrical Power and Control Engineering 2013

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Modul: Automatisierungstechnik

Wissensbasierte Systeme 1

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5553 Prüfungsnummer:2200241

Fachverantwortlich: Dr.-Ing. Fred Roß

Fakultät für Informatik und Automatisierung	Fachgebiet: 2211

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester				2	1	1															

Lernergebnisse / Kompetenzen

Der Hörer erhält eine Übersicht über Konzepte und Methoden des Entwurfs wissensbasierter Systeme. Er soll in die Lage versetzt werden, solche Systeme eigenständig designen zu können. Die Vorlesung soll darüber hinaus die methodische und begriffliche Basis legen, um sich spezielle Lösungsansätze aus Textbüchern oder Veröffentlichungen aneignen zu können.

Vorkenntnisse

Prozessanalyse/Modellbildung, Wahrscheinlichkeitsrechnung/Statistik, Fuzzy Control (von Vorteil)

Inhalt

Grundlagen wissensbasierterter Systeme (Wissensarten, Wissensdarstellung/-repräsentation, Architekturen, Design), Methoden der Entscheidungstheorie (Entscheidungssituationen, Darstellung der Entscheidungssituationen, Entscheidungsregeln bei Ungewissheit, Entscheidungsregeln bei Risiko), Automatische Klassifikation (Grundlagen, Bayes-Klassifikator, Abstandsklassifikatoren, Trennfunktionsklassifikatoren, Punkt-zu-Punkt-Klassifikator), Expertensysteme (Darstellung deklarativen Wissens, Suchstrategien, Besonderheiten großer Fuzzy-Systeme)

Medienformen

Die Konzepte werden während der Vorlesung an der Tafel entwickelt. Zur Veranschaulichung werden Overhead-Projektionen eingefügt. Ein Script im PDF-Format wird angeboten.

Literatur

- H. Laux: Entscheidungstheorie, Springer Verlag 2005
- H. Wiese: Entscheidungs- und Spieltheorie, Springer Verlag 2002
- F. Puppe: Einführung in Expertensysteme, Springer Verlag 1991
- H. H. Bock: Automatische Klassifikation, Vandenhoeck & Ruprecht 1971

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Automatisierungstechnik

Automatisierungstechnik 2

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 5541 Prüfungsnummer:2200138

Fachverantwortlich: Prof. Dr.-Ing. Matthias Althoff

Leistungspunkte:	3	Workload (h): 90	0	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2215

	1	I.FS	;	2	2.FS	3	,	3.FS	3		1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Aufbauend auf den Kenntnissen von diskreten Systemen in der Automatisierungstechnik 1, werden theoretische Grundlagen zu stochastischen diskreten Systemen und hybriden (gemischt diskret / kontinuierlichen) Systemen vermittelt. Stochastische diskrete Systeme werden insbesondere zur Optimierung, Diagnose und Zustandsbeobachtung von Automatisierungssystemen behandelt. Die hybriden Systeme verknüpfen die Erkenntnisse aus der Regelungs- und Systemtechnik mit denen aus der Automatisierungstechnik 1, indem diskretes und kontinuierliches Verhalten ganzheitlich

Vorkenntnisse

betrachtet wird.

Automatisierungstechnik 1

Inhalt

Wiederholung endlicher Automaten

Steuerbarkeit und Beobachtbarkeit endlicher Automaten

Gezeitete endliche Automaten

Verifikation gezeiteter endlicher Automaten

Stochastische gezeitete Automaten

Markov Ketten

Warteschlangentheorie

Hybride Automaten

Simulation hybrider Systeme

Stabilität hybrider Systeme

Verifikation hybrider Systeme

Medienformen

Folien zur Vorlesung, Tafelanschrieb

Literatur

C. G. Cassandras and S. Lafortune: Introduction to Discrete Event Systems. Springer, 2008.

A. van der Schaft and H. Schumacher: An Introduction to Hybrid Dynamical Systems. Springer, 2008.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Fahrzeugtechnik 2009

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Automatisierungstechnik

Fuzzy- and Neuro Control

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5912 Prüfungsnummer:2200095

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Christoph Ament

Leistungspunkte:	4	Workload (h): 12	20	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2211

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Aneignung von Kenntnissen und praktischen Fertigkeiten beim Entwurf von Fuzzy- und Neuro-Systemen zur Anwendung auf den Gebieten der Modellbildung, des Entwurfs regelungstechnischer Systeme und der Lösung von Klassifikationsaufgaben in wissensbasierten Entscheidungshilfesystemen. Kennenlernen von Basismechanismen und Anwendungsgebieten von Evolutionären Algorithmen.

Vorkenntnisse

Abschluss der Grundausbildung in Mathematik, Regelungstechnik, Systemanalyse

Inhalt

Grundlagen der Fuzzy-Theorie, Module des Fuzzy-Systems, Kennlinien und Kennflächen von Fuzzy-Sytemen, Fuzzy-Modellbildungsstrategien, Fuzzy-Klassifikation und -Klassensteuerung, optimaler Entwurf von Fuzzy-Steuerungen und Regelungen, adaptive/lernende Fuzzy-Konzepte, Beispiele aus Technik, verwendete Tools: Fuzzy-Control Design Toolbox, Fuzzy Logic Toolbox für MATLAB.

Theoretische Grundlagen Künstlicher Neuronaler Netze. Lernstrategien (Hebbsches Lernen, Delta-Regel Lernen, Competetives Lernen). Vorstellung grundlegender Netzwerktypen wie Perzeptron, Adaline, Madaline, Back-Propagation Netze, Kohonen-Netze. Modellbildung mit Hilfe Neuronaler Netze für statische (Polynommodell) und dynamische (Differenzengleichungsmodell, Volterra-Reihen-Modell) nichtlineare Systeme einschließlich entsprechender Anwendungshinweise (Fehlermöglichkeiten, Datenvorverarbeitung, Gestaltung des Lernprozesses). Strukturen zur Steuerung/Regelung mit Hilfe Neuronaler Netze (Kopieren eines konventionellen Reglers, Inverses Systemmodell, Internal Model Control, Model Predictive Control, direktes Training eines neuronalen Reglers, Reinforcement Learning). Methoden zur Neuro-Klassifikation (Backpropagation, Learning Vector Quantization). Anwendungsbeispiele und Vorstellung von Entwicklungstools für Künstliche Neuronale Netze , verwendete Tools: Neural Network Toolbox für MATLAB, HALCON, NeuralWorks Professional.

Medienformen

Bei der Vorlesung werden über Beamer die wichtigsten Skizzen, Gleichungen und Strukturen dargestellt. Einfache Beispiele, das Herleiten von Gleichungen und die Erstellung von Strukturen werden anhand von Tafelbildern entwickelt. Zusätzlich wird der Lehrstoff mit Beispielen unter Verwendung der in MATLAB vorhandenen Toolboxen anhand untermauert. Die Vorlesungsfolien und das Skript können als PDF-Dokument heruntergeladen werden. Es findet zusätzlich zur Vorlesung alle zwei Wochen ein rechnergestütztes Seminar statt, in welchem die Studenten unter Verwendung von MATLAB/Simulink Aufgaben im Bereich der Modellbildung, Regelung und Klassifikation mit Fuzzy und Neuro Methoden lösen.

Literatur

- Adamy J.: Fuzzy Logik, Neuronale Netze und Evolutionäre Algorithmen Shaker Verlag, Aachen 2005.
- Koch M., Kuhn Th., Wernstedt J.: Fuzzy Control Optimale Nachbildung und Entwurf optimaler Entscheidungen, Oldenbourg, München, 1996.
 - Kiendl H.: Fuzzy Control methodenorientiert, Oldenbourg, München 1997.
- D. Patterson: Künstliche Neuronale Netze, München,...: Prentice Hall, 1996. R. Brause: Neuronale Netze, Stuttgart: Teubner, 1995. K. Warwick, G.W.Irwin, K.J. Hunt: Neural networks for control and systems, London: Peter Pelegrinus Ltd., 1992.
- Schöneburg E., Heinzmann F., Fedderson S.: Genetische Algorithmen und Evolutionsstrategien, Addison-Wesley, 1994.
 - Rechenberg I.: Evolutionsstrategie '94, frommann-holzboog, 1994

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Electrical Power and Control Engineering 2008

Master Ingenieurinformatik 2009

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Automatisierungstechnik

Hauptseminar Automatisierungstechnik und Systemtechnik

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 6410 Prüfungsnummer:2200238

Fachverantwortlich: Univ.-Prof. Dr.-Ing. Johann Reger

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	itik un	d Automatisierung					Fachgebiet:	2213

	1	I.FS	5	2	2.FS	3	,	3.FS	3	4	I.FS	;	5	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester							0	2	0												

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, wissenschaftlich-technische Literatur zu recherchieren und auszuwerten.
- Die Studierenden können ein neues weiterführendes Verfahren oder Anwendungsfall eigenständig erfassen und bewerten.
 - Die Studierenden können, ein wissenschaftliches Thema schriftlich und mündlich angemessen präsentieren.

Vorkenntnisse

abgeschlossenes gemeinsames ingenieurwissenschaftliches Grundstudium (GIG). Regelungs- und Systemtechnik 1

Inhalt

wechselnde Themen aus den Gebieten Automatisierungstechnik, Optimierung, Regelungstechnik, Systemanalyse und Systemtheorie

Medienformen

Tafel, Folienpräsentationen, Simulationen,

Handouts

http://www.tu-ilmenau.de/regelungstechnik/lehre/hauptseminar

Literatur

abhängig vom Thema variierend

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Automatisierungstechnik

Labor Automatisierungstechnik und Systemtechnik

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 6418 Prüfungsnummer:2200239

Fachverantwortlich: Univ.-Prof. Dr.-Ing. Johann Reger

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	itik und	d Automatisierung					Fachgebiet:	2213

	1	I.FS	3	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							0	0	2												

Lernergebnisse / Kompetenzen

Anwendung der erworbenen Kenntnisse in Vorlesungen und Seminaren an industriell eingesetzten Reglern und speicherprogrammierbaren Steuerungen; Anwendung von Modellbildungs- und Prozessanalysemethoden an praxisrelevanten Aufgabenstellungen; Auslegung von Mehrgrößenregelungen und Test am Laboraufbau Dreitanksystem; Formulierung und Lösung von Simulations- und Optimierungsaufgaben unter Anwendung unterschiedlicher Methoden mit Praxishintergrund

Vorkenntnisse

Grundlagen der Automatisierungs-, Regelungs-, Systemtechnik, Prozessoptimierung 1, Simulation, Modellbildung, Prozessanalyse

Inhalt

Versuche: Industrielle Kompaktregler, SPS-Programmierung, Ausgewählte Methoden der Korrelationsanalyse, Methoden der statischen Modellbildung, Nichtlineare Optimierung, Mehrgrößenregelungen - Dreitanksystem, Numerische Integrationsverfahren zur Lösung von Simulationsaufgaben

Medienformen

Versuchsanleitungen (im Internet verfügbar), Vorlesungsskripte, Lehrbücher

Literatur

Lehrbücher zu Automatisierungs-, Regelungs-, Systemtechnik, Modellbildung, Systemanalyse, Parameteroptimierung, Simulation

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Modul: Automatisierungstechnik

Prozessoptimierung 2

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5538 Prüfungsnummer:2200093

Fachverantwortlich: Univ.-Prof. Dr.-Ing. habil. Pu Li

Leistungspunkte:	4	Workload (h): 120	0	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2212

		I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS	3	Ę	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р	>	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Die Studierenden können

- die Grundlagen, Problemstellungen und Methoden der dynamischen Prozessoptimierung klassifizieren,
- · Methoden und Werkzeuge anwenden,
- unterschiedliche Problemstellungen und mathematische Herleitungen analysieren und generieren
- optimale Steuerungen berechnen sowie
- Anwendungsfälle für industrielle Prozesse analysieren, entwickeln und bewerten.

Vorkenntnisse

Grundlagen der Mathematik, Physik, Elektrotechnik, Regelungs- und Systemtechnik, Prozessoptimierung 1

Inhalt

Indirekte Verfahren

- Variationsverfahren, Optimalitätsbedingungen
- Das Maximum-Prinzip
- Dynamische Programmierung
- Riccati-Optimal-Regler

Direkte Verfahren

- Methoden zur Diskretisierung, Orthogonale Kollokation
- Lösung mit nichtlinearen Programmierungsverfahren
- Simultane und Sequentielle Verfahren

Anwendungsbeispiele

- Prozesse in der Luft- und Raumfahrtindustrie
- Prozesse in der Chemieindustrie
- Prozesse in der Wasserbewirtschaftung

Medienformen

Präsentation, Vorlesungsskript, Tafelanschrieb

Literatur

-] . Lunze: Regelungstechnik 2. Springer. 1997
- R. Unbehauen: Regelungstechnik 2. Vieweg. 1993
- O. Föllinger: Regelungstechnik. Hüthig. 1992

- D. G. Luenberger: Introduction to Dynamic Systems. Wiley. 1979
- M. Papageorgiou: Optimierung. Oldenbourg. 1996
- R. F. Stengel. Optimal Control and Estimation. Dover Publications. 1994
- J. Macki. Introduction to Optimal Control Theory. Springer. 1998
- D. G. Hull. Optimal Control Theory for Applications. Springer. 2003

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Glossar und Abkürzungsverzeichnis:

LP Leistungspunkte

SWS Semesterwochenstunden

FS Fachsemester

V S P Angabe verteilt auf Vorlesungen, Seminare, Praktika

N.N. Nomen nominandum, Nomen nescio, Platzhalter für eine noch unbekannte Person (wikipedia)

Objekttypen It. K=Kompetenzfeld; M=Modul; P,L,U= Fach (Prüfung,Lehrveranstaltung,Unit)

Inhaltsverzeichnis