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Abstract

By means of the functional renormalization group (FRG), systems can be described in a

nonperturbative way. The derived flow equations are solved via pseudo-spectral methods.

As they allow to resolve the full field dependence of the effective potential and provide highly

accurate results, these numerical methods are very powerful but have hardly been used in

the FRG context. We show their benefits using several examples. Moreover, we apply the

pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled

order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa

potential.

In the phase diagram of systems with two competing order parameters, fixed points gov-

ern multicritical behavior. Such systems are often discussed in the context of condensed

matter. Considering the phase diagram of the bosonic model between two and three dimen-

sions, we discover additional fixed points besides the well-known ones from studies in three

dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram,

two universality classes coexist. To our knowledge, this is the first bosonic model where

coexisting (multi-)criticalities are found.

Also, the absence of nontrivial fixed points can have a physical meaning, such as in the

electroweak sector of the standard model which suffers from the triviality problem. The

electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian

fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable

potential. However, the existence of the lower Higgs-mass bound eventually is interrelated

with the maximal ultraviolet extension of the standard model. A relaxation of the lower

bound would mean that the standard model may be still valid to even higher scales. Within

a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms,

which relax the Higgs-mass bound, including higher field operators.



Zusammenfassung

Mithilfe der funktionalen Renormierungsgruppe (FRG), können Systeme nicht-

störungstheoretisch beschrieben werden. Die daraus abgeleiteten Flussgleichungen werden

mittels pseudo-spektraler Methoden gelöst. Da die volle Feldabhängigkeit des Potentials

aufgelöst und eine hohe Genauigkeit der Resultate erreicht werden kann, sind diese Metho-

den sehr interessant, jedoch bisher wenig genutzt im FRG Kontext. Wir zeigen ihre Vorteile

an einer Reihe von Beispielen. Darüber hinaus, wenden wir pseudo-spektrale Methoden an,

um das Phasendiagramm des O(N) ⊕ O(M) Modells zu erforschen und die Existenz einer

Metastabilität des Higgs-Yukawa Potentials zu klären.

Im Phasendiagramm von Systemen mit zwei Ordnungsparametern beherrschen Fixpunkte

multikritisches Verhalten. Solche Systeme werden oft im Kontext von Festkörpern disku-

tiert. Wir studieren das Phasendiagramm des O(N) ⊕ O(M) Modells zwischen zwei und

drei Dimensionen und finden weitere Fixpunkte neben den bekannten Fixpunkten aus Un-

tersuchungen in drei Dimensionen. Interessanterweise legen unsere Resultate nahe, dass in

bestimmten Bereichen des Phasendiagramms zwei Universalitätsklassen koexistieren. Uns ist

kein anderes bosonisches Modell bekannt, in dem koexistierende (multi-)kritische Phänome-

ne gefunden wurden.

Die Abwesenheit von nicht-trivialen Fixpunkten kann auch eine physikalische Bedeutung

haben, wie zum Beispiel im elektroschwachen Sektor des Standardmodells, welches das Tri-

vialitätsproblem aufweist. Der elektroschwache Übergang mit dem Higgs-Mechanismus ist

dominiert durch den Gaußschen Fixpunkt. Wegen der geringen Higgsmasse sagen Störungs-

rechnungen ein metastabiles Potential voraus. Die Existenz der unteren Higgsmassenschranke

ist jedoch verknüpft mit der maximalen Ultraviolettskala, bis zu der das Standardmodell nur

gültig sein kann. Eine Aufweichung der unteren Higgsmassenschranke würde bedeuten, dass

das Standardmodell auch auf höheren Skalen gültig sein könnte. In einem einfachen Higgs-

Yukawa Modell diskutieren wir den Ursprung von Metastabilitäten und Mechanismen, welche

die Higgsmassenschranke unter Einbeziehung von höherwertigen Feldoperatoren aufweichen.
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1. Introduction

Our world consists of various structures on different length scales. For a long time, only a

small window of scales was accessible for mankind. In the last centuries, we spent a lot of

effort to overcome these boundaries.

Nowadays, we know that we are comparatively tiny creatures living on the planet Earth,

which is a little component of the solar system that is placed in a larger Galaxy in an even

larger Universe. Gravity is an important force on these length scales. Whereas Newton’s

theory can successfully explain the gravitational force on a wide range of scales, general

relativity provides an even more precise description which particularly applies for “extreme”

cases, such as high densities or at speeds comparable to the speed of light. There is, however,

a huge number of effects not yet understood, for instance dark energy or dark matter.

On the opposite side of the length measurement, a coherent picture of the fundamental

building blocks of our world is also still incomplete. Bacteria live on small length scales that

we mostly are not able to resolve by eye. Nevertheless, just like us, they are also composed

of atoms which are between three to six orders of magnitude smaller. On these length scales,

quantum fluctuations become more and more important. In our everyday life, which can be

described classically pretty well, quantum effects are, however, far away from intuition.

These examples indicate that the physically relevant degrees of freedom of a theory nat-

urally change as a function of the length or energy scale. An appropriate description of the

scale dependence of theories is provided by the renormalization group (RG). According to

the Wilsonian idea, quantum fluctuations are taken into account scale by scale, starting at

large energy scales and ending up at small energy scales. This procedure is described as a

flow from microscopic to macroscopic scales of a given theory.

Grazing the space of all possible theories, we may find scale invariant theories which look

similar on all scales. These theories arise as fixed points of the RG flow. Of course, fixed

points are of high physical relevance, as they give rise to universal properties of flows in

their vicinity. Moreover, critical phenomena are connected to these scale invariant points. It

clearly seems puzzling at first sight that the critical behavior of two very different microscopic

systems is the same. The RG, however, yields an explanation going back to Wilson’s work

[1–3] for which he was awarded the Nobel Prize in 1982. Critical phenomena and fixed points

indicate the existence of phase transitions. The phases are characterized by the preservation

or spontaneous breaking of the theory’s symmetry. Commonly, an order parameter can be

defined which measures the degree of order of the phases. In some cases, different kinds of

3



1. Introduction

symmetry breaking occur with different residual symmetries leading to a rich structure of

the phase diagram. The behavior of the order parameter at the transition allows to distin-

guish between different types of phase transitions. Usually, phase transitions of second order

are connected with critical, universal behavior. However, some degree of universality can

also be found in bosonic models for weak first order phase transitions [4]. The confinement-

deconfinement phase in quantum chromodynamics (QCD) [5–7], condensed matter systems

such as anisotropic antiferromagnets in an external magnetic field [8, 9], high-Tc supercon-

ductors [10, 11] and graphene [12, 13] are only a few examples of a huge number of systems

exhibiting critical behavior. In particle physics, the dynamical breaking of the electroweak

symmetry, which gives rise to the nonvanishing vacuum expectation value of the Higgs field

[14, 15], attracted a lot of attention in the last decades.

In the first part of this work, we are interested in multicritical behavior such as arising

in systems with two competing order parameters. These systems have been explored the-

oretically in great detail, in particular in three dimensions, [16–25]. Furthermore, they are

heavily discussed in the context of anisotropic antiferromagnets [26–33] which exhibit transi-

tions from the paramagnetic phase to the spin-flop or antiferromagnetic phase as a function

of the temperature and the magnetic field. Another interesting application is given by high-

Tc superconductors [34–36] showing an antiferromagnetic and d-wave superconducting order.

Certain aspects of Dirac materials, e.g., graphene, also fall into the class of multicritical sys-

tems [37, 38]. Recently, multicritical field theories have also drawn attention as toy models

for fundamental quantum field theories [25].

The O(N) ⊕ O(M) model plays an important role for condensed matter physics as it serves

as a perfect playground for investigating multicritical systems. As they are experimentally

realizable, systems with phase diagrams with two transition lines of second order, which

meet at a multicritical point, have been in the focus of the literature. Besides the usual three

phases – two corresponding to the breaking of the separate symmetries and one symmetric

phase – there may exist an additional so-called “mixed” phase close to the multicritical point.

Which kind of phase structure is realized, can be answered by the properties of that point,

which is either bicritical or tetracritical. Multicritical points show up as scale invariant points

in theory space.

The O(N) ⊕ O(M) model has already been in the focus of various studies employing,

e.g., the ε = 4 − d expansion [16, 19, 39, 40], Monte Carlo simulations [11, 33, 41], two-loop

perturbative RG methods [21, 42, 43] and the exact RG [22–25, 44]. However, the results

from these studies do not necessarily give rise to a clear picture or partly do not agree with

experimental investigations [9, 26, 27], e.g., for the case of the anisotropic antiferromagnet.

Therefore, a lot of open questions remain such as a detailed understanding of the phase di-

agram between two and three dimensions. As a function of N and M , different fixed points

determine the phase structure of the multicritical system. This gives rise to interrelations

between these points in dependence on N and M . It is an interesting question how the inter-
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play between the multicritical points works as a function of the dimension. Furthermore, in

two dimensions, the two coupled Ising models (O(1) models) provide a fascinating case: One

possible candidate for the multicritical point yields tetracritical behavior and a decoupling

of both field sectors. It can be derived from the analytic Onsager solution of the single-field

model. Another candidate features a symmetry enhancement to an O(2) symmetry which

would suggest Berezinskii-Kosterlitz-Thouless (BKT) type physics that is a phase transition

of “infinite” order. The phases of such a topological phase transition correspond to binding

and unbinding vortex-antivortex pairs. For “theoretical discoveries of topological phase tran-

sitions and topological phases of matter”,1 Thouless, Haldane and Kosterlitz were recently

awarded the Nobel Prize that shows the significance of identifying BKT physics in systems.

Which kind of physical behavior is realized in the O(N) ⊕ O(M) model as a function of the

dimension shall be discussed in detail in this work for the first time.

A wide range of systems does not exhibit a nontrivial fixed point. In particular, the

absence of such a fixed point promotes the triviality problem which is an open problem

of the standard model. The electroweak phase transition in particle physics is therefore

connected with the Gaussian fixed point. So far, colliders probe a regime where Nature is

close to that fixed point and perturbative approaches successfully describe the electroweak

collider data. The spontaneous symmetry breaking within the electroweak sector, the Higgs

mechanism, is crucial to explain the generation of the mass for the massive gauge bosons [14,

15, 45–47] and the fermions [48–50] in the standard model of particle physics. The discovery

of the therein predicted Higgs boson at the LHC [51, 52] finally completed the search for the

building blocks of the standard model.

The Higgs mass is in principle a free but not an arbitrary parameter. With some “natural”

assumptions, upper and lower bounds on the Higgs mass can be computed. In order to fix

the renormalization condition in the infrared (IR) to the measured value of the Higgs mass,

perturbative calculations yield a metastable Higgs potential, i.e., a second vacuum besides

the electroweak Higgs vacuum. This becomes already visible as an instability in a simple

Higgs-Yukawa model which mimics the electroweak sector of the standard model.

In the present work, we address the origin of the arising in-/metastability in the simple

Higgs-Yukawa model and consider a more general class of microscopic actions in order to

study mechanisms relaxing the conventional lower Higgs-mass bound. For that purpose, we

assume that the standard model is an effective theory valid up to the ultraviolet (UV) cutoff

scale. Beyond that scale, new degrees of freedom, e.g., gravitational ones, are supposed

to become important. These degrees should be incorporated in a more fundamental theory.

From this viewpoint, there is no unique choice for a suitable microscopic action. In particular,

the UV action should be provided by the underlying theory which is, however, unknown.

The mass bounds are connected with the maximal UV extension of the standard model up

to which the measured Higgs mass lies within the range between the two bounds. Thus, the

1www.nobelprize.org/nobel_prizes/physics/laureates/2016/
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1. Introduction

Higgs-mass bounds are directly related to the range of validity of the standard model.

We consider the extension of the class of perturbatively renormalizable actions by higher

dimensional operators which requires a careful analysis. Due to their RG irrelevance, they

do not exert a significant effect on the IR physics. On the other hand, they may render

the Higgs potential stable in the UV [53]. This has been confirmed by lattice simulations in

the range of scales accessible to current lattice sizes [54–57]. Resolving the Higgs potential

as a function of the Higgs field, we pursue the question as to whether there is nevertheless

a possibility, that a metastability can arise. We pick up the discussion of [53, 58, 59] and

clarify the situation in this work.

Both studies within the O(N) ⊕ O(M) model and the Higgs-Yukawa model are unified

in a technical way. We employ the functional renormalization group (FRG) combined with

a pseudo-spectral expansion of the effective average potentials. The FRG has been proven

to be a powerful tool in a quite more general context such as in applications to scalar field

theories [60–69], fermionic systems [58, 70–75], critical phenomena [76–82], gauge theories

[83–90] and quantum gravity [91–105]. In many cases, physical phenomena are dominated

by strong correlations, or the description of a theory is governed by couplings that run from

small to large values during the flow. A prominent example is given by QCD, which is

asymptotically free at high energy scales and strongly coupled at low energy scales. Also the

UV completion of gravity in terms of asymptotic safety [91, 106, 107] demands the inclusion

of strong correlations. Hence, to cover all aspects of our study, a nonperturbative approach

such as the FRG is indispensable. From a technical perspective, the generic outcome of FRG

computations is a coupled system of nonlinear (integro-)differential equations of complex

structure. Commonly, the full equations cannot be solved analytically and one has to consider

the system within some truncation, retaining only a manageable number of operators. Even

then, the equations are rarely analytically solvable, e.g., in a mean-field approximation.

However, if one seeks a solution without a mean-field approximation or an expansion in

powers of the field for instance, numerical methods appear indispensable. In the present

work, we employ a pseudo-spectral expansion in Chebyshev polynomials.

In a general physical context, pseudo-spectral methods have become an often used numer-

ical method [108–115]. First applications to FRG problems can be found in [116–121]. Let

us point out that full potential flows were already solved in the past employing finite ele-

ment or finite difference methods [4, 122–136]. Here, we show that pseudo-spectral methods

are a versatile tool which deserves even more attention especially referring to FRG prob-

lems. Pseudo-spectral methods allow for global solutions to functional fixed-point equations

which we compute in the first part and (global) functional flows in theory space which are

considered in the second part of this work.

This work is organized as follows: In Chap. 2, we provide a short review of the FRG in

terms of the effective average action and of critical behavior, in particular close to continuous

phase transitions. As we study various models, some of them treating as a benchmark for our
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numerical method, we introduce them once in the last section of this chapter. In Chap. 3, we

summarize the most important properties of pseudo-spectral methods and sketch how they

are applied in the particular cases. At the beginning of the next two chapters, the benefits

of this numerical method are demonstrated including also special cases where they yield

superior results while other commonly used methods are unfeasible. In Chap. 4, the O(N)

model between two and three dimensions and a simple Yukawa model in three dimensions

are in the focus of our tests. As we provide global solutions for the fixed-point potentials also

for cases where polynomial truncations cannot be trusted, we gain a deeper insight into both

systems. In the second part of this chapter, an extensive study of the phase diagram of the

O(N) ⊕ O(M) model for various dimensions follows which yields new results, in particular

below three dimensions. The following chapter deals with functional flows. We demonstrate

the power of pseudo-spectral methods with the example of the O(N) model, which can be

solved analytically within the large N limit. We study the approach to convexity and flows

between different universality classes. Within quantum mechanics, we consider the flow of

bounded potentials from above and below which gives rise to new technical challenges. Such

potentials are prominent in models for Higgs inflation and dark energy. In the last part of this

chapter, we conduct an extensive study of the Higgs-Yukawa model, shedding light on the fate

of the metastability of the Higgs potential, the influence of nonperturbatively renormalizable

operators on the perturbative lower Higgs-mass bound, and the phase diagram as a function

of the microscopic couplings. New insights concerning the effect of convexity on estimates

of the tunnel rate are found. Finally, we conclude in Chap. 6.

The compilation of this thesis is solely due to the author. However, parts of this work have

been developed in several collaborations with members of the Theoretical Physical Institute

in Jena and the Imperial College in London. The results on the global fixed-point solutions

in Chap. 4 were achieved in collaboration with B. Knorr and can be also found in [137,

138]. The study of the O(N) ⊕ O(M) model was done with A. Eichhorn and published in

[139]. The results of the first two sections of Chap. 5 have been elaborated with B. Knorr

and reported in [140]. The last section where flows within a simple Higgs-Yukawa model are

considered originates from the collaboration with H. Gies and R. Sondenheimer and was

pulished in [141].
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2. Flows in quantum field theory and

critical behavior

The effective action provides an efficient way of describing a quantum field theory in terms

of the path integral. In the following section, we exemplify its construction for a theory

with single scalar field. For the computation of the effective action, a nonlinear, functional,

integro-differential equation has to be solved for which different approaches exist. In the

present work, we employ the FRG method providing an exact differential flow equation. For

this purpose, we introduce the effective average action depending on a momentum scale k.

We give first insights applying it to the Ising model with a single scalar field. For more

details we refer the reader to [62, 74, 76, 84, 85, 122]. After pointing out the relevance of

scale independent solutions, we discuss their relation to critical phenomena. In the second

part of this chapter, we give an introduction to the models which play a role in this work.

2.1. The effective action

Let us consider a quantum field theory of one real scalar field ϕ in d dimensional spacetime

with Euclidean signature. All information of this quantum field theory is stored in terms of

correlation functions which can be derived from the generating functional,

Z[J ] ≡ eW [J ] :=

∫

Λ

Dϕ e−S[ϕ]+
∫
Jϕ, (2.1)

by differentiating with respect to J and setting J = 0 afterwards. In the integral, all field

configurations are weighted by the classical, microscopic action S[ϕ] (which is also called

bare action) and the source term
∫

Jϕ. The UV momentum modes are cut off at the scale

Λ for a proper regularization.

An efficient way of storing quantum information is provided by the effective action, which

is obtained by the Legendre transform of the Schwinger functional W [J ],

Γ[φ] := sup
J

(Jφ−W [J ]) . (2.2)

In presence of the source J , the expectation value of the field ϕ is given by the classical field

φ(x) = δW [J ]
δJ(x)

= 〈ϕ(x)〉J . The source acts as an inhomogeneity in the quantum equation of

8



2.2. The functional renormalization group

motion,

J =
δΓ[φ]

δφ
. (2.3)

From the definition (2.2), it can be seen that Γ is a convex functional of φ.

For the effective action, we obtain a nonlinear, first order, functional, integro-differential

equation

e−Γ[φ] =

∫

Λ

Dϕ exp

(

−S[ϕ+ φ] +

∫

δΓ[φ]

δφ
ϕ

)

. (2.4)

Note that these considerations can be easily extended to other kinds of fields such as vector

or fermionic fields.

There are different ways of solving Eq. (2.4), e.g., given by Dyson-Schwinger equations,

see [142] for a detailed review. However, from a practical viewpoint, it is more convenient

to employ the FRG in our cases, in particular for critical phenomena.

2.2. The functional renormalization group

The FRG is a versatile nonperturbative approach for solving Eq. (2.4). We restart with a

slightly modified definition of the generating functional

Zk[J ] ≡ eWk[J ] :=

∫

Λ

Dϕ e−S[ϕ]−∆Sk[ϕ]+
∫
Jϕ, (2.5)

where the regulator term

∆Sk[ϕ] =
1

2

∫

ddp

(2π)d
ϕ(−p)Rk(p)ϕ(p) (2.6)

acts as an additional mass term which suppresses low momentum modes p2 < k2. Thus, the

scale k denotes an IR momentum scale. By contrast, high momentum modes k2 < p2 < Λ2

are integrated out according to the Wilsonian idea of momentum-shell-wise integration of

quantum fluctuations. This is implemented by requiring the following conditions for the

regulator function

lim
p2/k2→0

Rk(p) > 0, (2.7)

lim
k2/p2→0

Rk(p) = 0, (2.8)

lim
k→Λ→∞

Rk(p) → ∞. (2.9)

The condition (2.8) guarantees that Zk→0 = Z. For k → Λ → ∞, no fluctuations are

integrated out and we recover the classical action.
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2. Flows in quantum field theory and critical behavior

We define the effective average action as

Γk[φ] = sup
J

(Jφ−Wk[J ]) − ∆Sk[φ]. (2.10)

Also on this level, the properties of the regulator function imply Γk→0 = Γ and ΓΛ →
S + const. The quantum equation of motion becomes

J(x) =
δΓk[φ]

δφ(x)
+

∫

ddp

(2π)d
eipxRk(p)φ(p). (2.11)

In contrast to the source, the field φ = δWk[J ]
δJ(x)

= 〈ϕ(x)〉J is assumed to be independent from

the scale k. From Eq. (2.11), one can infer that Γ(2)
k [φ] + Rk corresponds to the inverse of

the connected propagator. Here, we have used the shorthand notation

Γ(n)
k [φ] =

δnΓk[φ]

δφ . . . δφ
. (2.12)

The flow of the effective average action from one scale k to another is described by a

functional differential equation, the Wetterich equation [143],

∂tΓk[φ] =
1

2
STr

[

(

Γ(2)
k [φ] +Rk

)−1

∂tRk

]

, (2.13)

where t = ln(k/Λ). The super trace acts as an ordinary trace for bosonic fields, but provides

a minus sign for the fermions. Although Eq. (2.13) is of one loop structure, it is exact due

to the presence of the full propagator. IR physics does not depend on the specific choice of

the regulator, i.e., all IR observables are regularization scheme independent. However, this

property is not necessarily maintained if a truncation scheme is employed which neglects

classes of operators. Therefore, the necessity for the choice of an optimized regulator arises

that guarantees a fast convergence of the physical observables. An optimization criterion is

provided in [144–146] which encloses a natural minimum sensitivity condition. For practical

purposes, this condition is usually used to optimize a specific physical observable. The

solutions then also depend on the considered class of regulator functions. We mostly use the

linear optimized regulator [145] in this work, which is

Rφ,k(p) = Zφ,kp
2rφ,k(p

2) with ropt
φ,k =

(

k2

p2
− 1

)

Θ(k2 − p2) (2.14)

for bosons, and

Rψ,k(p) = −Zψ,k/prψ,k(p2) with ropt
ψ,k =

(

√

k2

p2
− 1

)

Θ(k2 − p2) (2.15)
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2.3. Truncations and critical behavior

for fermions, where we have introduced the bosonic and fermionic wave function renormal-

izations Zφ,k and Zψ,k, cf. below. For more details about an adapted choice of the regulator,

see also [44, 85].

The flow equation (2.13) also contains perturbation theory. If we insert the loop expansion

Γ1−loop
k = S+~Γ1

k + O(~2) into Eq. (2.13), we obtain the one-loop effective action for k → 0,

Γ1−loop
eff = S +

1

2
~ STr lnS(2) + const = S +

1

2
~ ln SdetS(2) + const. (2.16)

Note that the trace/determinant still requires an appropriate regularization. In the case of

the Higgs potential in Sec. 5.3.3, this formula corresponds to the mean-field effective action

if only fermionic fluctuations are taken into account.

2.3. Truncations and critical behavior

In most cases of interest, Eq. (2.13) cannot be solved exactly. A possible ansatz has already

been given by the loop expansion. However, perturbation theory fails if the system is strongly

coupled and loop terms of higher order become important. Thus, we solve Eq. (2.13) within

nonperturbative approximation schemes which can be summarized under the method of

truncations. Within the vertex expansion,

Γk[φ̄] =
∑

n=0

1

n!

∫

ddx1 . . . d
dxnΓ(n)

k (x1, . . . , xn)φ̄(x1) . . . φ̄(xn), (2.17)

the full momentum dependence is collected in the vertices Γ(n)
k (x1, . . . , xn), whereas only a

finite order of the power in the field is taken into account. From now on, the dimensionful,

unrenormalized field is denoted by φ̄. Assuming that φ̄ stands for a bosonic field and d

approaches 2, the canonical dimension for all vertices is [Γ(n)
k (x1, . . . , xn)] = 2. A power-

counting hierarchy of the terms breaks down such that the vertex truncation scheme is not

suitable in this limit. Another scheme, which allows for arbitrary field dependence and we

usually use in this work, is the derivative expansion. For a theory with a single scalar field

φ̄, a starting point for a systematic expansion is given by

Γk[φ̄] =

∫

ddx

[

1

2
Zφ,k

(

∂µφ̄
)2

+ Uk(φ̄)

]

, (2.18)

where we have introduced the bosonic, effective potential Uk next to the wave function renor-

malization Zφ,k. Note that this example corresponds to the local potential approximation.

We distinguish between Zφ,k ≡ 1 (LPA) and scale-dependent wave function renormalization

(LPA′) which is a compromise between LPA and the next-to-leading order in the derivative

expansion (NLO). Within NLO, the full field dependence of all operators up to O(∂2), i.e., a

field dependent Zφ,k, is taken into account. Employing next-to-next-to-leading order, higher

11



2. Flows in quantum field theory and critical behavior

derivatives of the field are included. Also, if we have a scalar field with more than a single

component, the structure of the momentum dependent part becomes more complex because

there are two different modes entering the game, the Goldstone modes next to the radial

mode.

Let us make some general remarks on the model (2.18) that is called Ising or O(1) model.

The potential Uk is a function of ρ̄ = φ̄2/2 rather than of φ̄. Thus, the model exhibits a Z2

symmetry in the field φ̄ → −φ̄. Taking the Ising model as an example, we compute the flow

of the potential within the derivative expansion to leading order. It is given by projecting

the right-hand-side of Eq. (2.13) onto constant fields [60],

∂tUk =
1

2

∫

ddp

(2π)d
∂tRk(p)

Zφ,kp2 +Rk(p) + U ′
k(ρ̄) + 2ρ̄U ′′

k (ρ̄)
, (2.19)

where the prime stands for the derivative with respect to the field invariant ρ̄. For the

dimensionless potential u = k−d Uk as a function of the dimensionless renormalized field

ρ = k2−dρ̄R = k2−dφ̄2
R/2 = Zφ,kk

2−dφ̄2/2, we obtain

∂tu = −du+ (d− 2 + ηφ)ρu
′ +

1

2
k−d

∫

ddp

(2π)d
∂tRk(p)

Zφ,kp2 +Rk(p) + (u′ + 2ρu′′)k2
, (2.20)

with the bosonic anomalous dimension

ηφ = −∂tZφ,k
Zφ,k

. (2.21)

Within LPA′, the flow of Zφ,k is typically evaluated at the minimum of the potential which

approaches the vacuum expectation value (VEV) for k → 0. For brevity, we refer to this

running minimum also as VEV even for finite k. Although the potential u is still k-dependent,

the subscript k at dimensionless quantities is suppressed for the sake of a compact notation.

The first part of Eq. (2.20) corresponds to the canonical and anomalous scaling of u, the

second part provides the quantum fluctuations. A common ansatz for solving Eq. (2.20) is

given by a Taylor expansion,

u(ρ) =

Np
∑

n=0

λn
n!

(ρ− κ)n, (2.22)

where κ as the expansion point is usually the flowing minimum of the potential. The flow

of the potential (2.20) translates into the flow of the couplings βλn = ∂tλn and the VEV

βκ = ∂tκ. The beta functions can be derived by inserting Eq. (2.22) into Eq. (2.20) and

projecting onto these couplings and the VEV. Although in many practical cases, Taylor

expansions provide satisfying results, the reliability of the derived quantities is hard to control

when the convergence radius shrinks or higher order field operators become important which

is the case particularly for low dimensions d → 2. Additionally, global statements cannot be

made. Therefore, we will follow another ansatz, which is explained in the next chapter and

12



2.3. Truncations and critical behavior

more advanced in the sense that the potential is not expanded at only one point but at a

special grid employing a set of orthogonal basis functions.

Fluctuations can drive the system (2.18) into different regimes, the symmetric or the

spontaneously broken regime. Depending on the IR behavior, we distinguish between the

two corresponding phases. In the symmetric phase, the VEV vanishes whereas it is nontrivial

in the spontaneously broken phase. There, the Z2 symmetry is broken close to the VEV.

Thus, it serves as an order parameter whose value provides a clear criterion to distinguish

both phases. In case of a field with N components with a nonvanishing VEV, we observe

a massive radial mode and a number of massless Goldstone modes that corresponds to the

N − 1 broken symmetry generators. The occurrence of Goldstone bosons [147–149] appears

quite generally in the context of spontaneously broken continuous global symmetries.

The two phases are separated by a phase transition exhibiting critical behavior. Systems

close to criticality are controlled by fixed points – scale invariant solutions of Eq. (2.13),

e.g., solutions of the flow equation (2.20) setting the left-hand-side to zero. The flow close

to the fixed points is governed by universal behavior which only depends on the long range

degrees of freedom, symmetry and dimensionality of the model. That becomes visible in the

suppression of irrelevant eigendirections in the vicinity of the fixed points, whereas relevant

directions grow. These eigendirections δu and the corresponding critical exponents θ can be

derived from the perturbed, linearized flow equation

− θ δu =
∑

n=0

∂(∂tu)

∂u(n)

∣

∣

∣

∣

u=u∗

δu(n). (2.23)

Using Eq. (2.22), Eq. (2.23) reads in terms of the couplings λn

− θ δλi =

Np
∑

n=0

∂(∂tλi)

∂λn
δλn. (2.24)

As the flow scales like e−θt in the direction δu, a positive sign of θ is assigned to a relevant and

a negative sign to an irrelevant direction. In experiments, relevant directions have to be tuned

in order to observe critical behavior. A fixed point is said to be stable, if only one parameter

has to be tuned, i.e., there is only one θ > 0.2 The corresponding phase transition is of second

order and is characterized by a continuous change of the order parameter. Otherwise, for

unstable fixed points, the presence of additional relevant directions generally entails the

discontinuous change of the order parameter between the phases which is a phase transition

of first order.

The behavior of the Ising model close to criticality can be understood in terms of the

2We ignore the trivial exponent which is related to the zero point energy (“cosmological constant”) of the
potential, cf. discussion below.
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2. Flows in quantum field theory and critical behavior

critical behavior of ferromagnets. Let us assume the following microscopic action at k = Λ,

u = λ2,Λ(ρ− κΛ)2. (2.25)

The deviation from the phase transition given by δκΛ can be interpreted as the deviation

from the critical temperature |δκΛ| ∝ |Tc − T |. Equation (2.3) gives a relation between

the magnetic field, denoted by J , the temperature and the field φ̄ which corresponds to the

magnetization of the ferromagnetic system. Close to the second order phase transition, δκΛ

and φ̄ completely describe the system at k = 0. Taking a proper rescaling into account, we

find that the universal scaling function [4, 150, 151],

f(x) =
∂φ̄Uk=0

φ̄δ
, x =

−δκΛ

φ̄1/β
, (2.26)

with the critical exponents δ and β, only depends on the Widom scaling variable x [152].

With these prerequisites, the scaling of thermodynamic quantities and relations between

the corresponding critical exponents can be determined, see also [60, 153–155]. Close to the

phase transition of second order, δu1 ≈ δκΛ 6= 0, we observe an exponential decay of the

two-point correlation function

G(x; δu1, . . .) ∝ e−|x|/ξ, (2.27)

with the inverse decay rate ξ, which is the correlation length of the system. At the phase

transition, fluctuations occur on any scale and ξ tends to infinity. The correlation function

decays as a power law

G(x; δu1 = 0, . . .) ∝ 1

|x|d−2+ηφ
, (2.28)

with the anomalous dimension introduced above. The divergence of ξ is described by the

critical exponent ν,

ξ = m̄−1
R ∝ |δκΛ|−ν with ν =

1

θ1

, (2.29)

where θ1 > 0 is the largest critical exponent derived from Eq. (2.23). The correlation length

is linked to the renormalized mass of the theory m̄R = m̄k=0/Zφ,k=0. Equivalently, the

unrenormalized mass m̄2
k=0 which corresponds to the inverse susceptibility χ, obeys a simple

scaling behavior,

χ = m̄−2 ∝ |δκΛ|−γ, (2.30)

with γ fulfilling the scaling relation γ = ν(2 − ηφ). The external source vanishes at the

minimum of the potential which corresponds to the situation of a vanishing magnetic field.

For the unrenormalized VEV φ̄0, it can then be shown that

〈ϕ(x)〉J=0 = φ̄0 ∝ δκβΛ. (2.31)
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2.3. Truncations and critical behavior

The critical exponent β satisfies β = ν(d− 2 + ηφ)/2. Similarly, we can study the system at

the critical temperature, δκΛ = 0, but at nonvanishing source and find

〈ϕ(x)〉J ∝ |J |1/δ sgn J, (2.32)

with the scaling relation δ = (d+ 2 − ηφ)/(d− 2 + ηφ).

In case of an additional relevant parameter a third scale is introduced in our system that

exhibits a phase transition of first order then. For instance, this new scale is the jump of the

order parameter at the transition. Note that also the correlation length jumps. In [4], it was

stated that also in the case of a bosonic system close to a weak first order phase transition,

a universal scaling function can be found which depends on two instead of only one scaling

variables.

Besides continuous and discontinuous phase transitions, there is another special kind of

phase transition in two dimensional systems, the BKT phase transition. In terms of the O(2)

nonlinear σ-model, the two topological phases are related to the unbinding and binding of

vortices [156, 157]. Vortices correspond to singular points of circulating field configurations.

For low temperatures, true long-range order is avoided by thermal fluctuations. Nevertheless,

the two phases can be identified from the behavior of the correlation length. Whereas the

correlation length is finite in the high temperature phase, it diverges for low temperatures.

There, the correlation function G decays as a power law with increasing distance, similar

to Eq. (2.28), but the critical exponent ηφ continuously depends on the temperature now.

Instead of isolated fixed points, the β functions vanish on a line of fixed points. In terms of

the FRG, the O(2) linear σ-model in d = 2 provides an effective description for the behavior

at a BKT phase transition without introducing vortices [82, 158–160]. In fact, there is a close

correspondence between the linear and the nonlinear σ-model as both phase transitions lie

in the same universality class [158]. Experimentally, the BKT phase transition was observed,

e.g., in liquid-helium films [161, 162] and atomic gases [163–166].

We close this review with a short comment on systems with two order parameters which

play a role in Sec. 4.2. The two order parameters can receive finite values independently from

each other corresponding to different phases. In comparison with the Ising model, the phase

diagram is more complex due to several phase transition lines which can be of first or second

order. We are interested in the case where these lines meet at a multicritical fixed point. The

details of the phase diagram depend on the properties of the bosonic fixed-point potential.

Stable fixed points now have two relevant directions because of the two order parameters.

Similar to systems with one order parameter, each fixed point provides a universality class

with universal critical exponents.

15



2. Flows in quantum field theory and critical behavior

2.4. Introduction to the models

In this work, we mainly consider two classes of models: the purely bosonic O(N) model and

a simple Yukawa model including fermionic degrees of freedom. Note that the Yukawa model

can be understood as arising from partial bosonization of the Gross-Neveu model with only

fermionic fields. Because of their comparatively simple structure, both models have great

importance in understanding general aspects of quantum physical systems, which, however,

are by no means simple in their nature. Their role in the investigation of technical as well

as physical aspects is undeniable. For instance, both models give rise to nontrivial fixed

points below d = 4, and they reveal a complex structure of multicritical fixed points for

d → 2 [69, 167, 168]. In the context of one order parameter, “multicritical fixed points” are

not to be confused with multicritical points arising in models with two order parameters.

Their significant relevance for physical systems range from electroweak physics over QCD

to condensed matter systems. Scalar field theories for example may serve as toy models to

investigate the properties of phase transitions occurring in these systems [169]. The electrons

close to the K-point in graphene can be effectively described by massless Dirac fermions in

d = 3, see, e.g., [170–172]. For d → 4, the Yukawa model as a simplified quark-meson model

allows for the investigation of the chiral phase transition, cf. [168]. Furthermore, in d = 4, it

can be seen as a reduction of the standard model to the most important degrees of freedom

regarding Higgs-top interactions [53, 141, 173, 174]. In Sec. 5.3, we employ this model to

particularly study the lower mass bound of the Higgs boson. Finally, the Yukawa model

serves as a toy model for exploring asymptotic safety in d = 3 [73].

In Sec. 4.2, we consider a system of two competing order parameters, characterized by an

O(N) and O(M) symmetry. As a function of two external parameters, the separate symme-

tries may be broken spontaneously. A multicritical fixed point determines the phase diagram

of the O(N) ⊕ O(M) model. Examples for systems described by two order parameters are

anisotropic antiferromagnets in an external magnetic field, with N = 1, M = 2 [8, 9, 26–31],

models of high-Tc superconductors [10, 11, 34–36], as well as graphene [13, 37, 38].

Let us start with the O(N) model with an arbitrary number of components of the bosonic

field φ̄. For N = 1, which corresponds to the Ising model, a short discussion of the effective

action and its flow has been given above. More generally, the ansatz of the effective average

action within LPA′ reads

Γk[φ̄] =

∫

ddx

{

1

2
Zφ,k(∂µφ̄

a)(∂µφ̄
a) + Uk

(

φ̄aφ̄a

2

)}

, (2.33)

where the sum over a = 1, . . . , N is understood implicitly. Due to the symmetry, the flow

of the potential and the wave function renormalization can be written in terms of the field

invariant ρ̄ = φ̄aφ̄a/2. If φ̄ acquires a nonvanishing VEV, the O(N) symmetry is broken to

an O(N − 1) symmetry, where the field consists of one radial and N − 1 Goldstone modes.

16



2.4. Introduction to the models

In principle, most of the information of interest for us is contained in the first derivative

of the potential u′ with respect to the field invariant. Thus, we investigate the flow of u′ in

most cases. The potential can be obtained by an integration then. In d > 1, the integration

constant corresponds to the cosmological constant which, however, does not play a role in

this work. By contrast, it has a meaningful interpretation in quantum mechanics (d = 1) as

it yields the ground state energy of the system, cf. Sec. 5.2. In this case, we compute it from

the flow of u′ at the VEV. Here, we give the flow equation for the potential, which reads,

[60],

∂tu = −du+ (d− 2 + ηφ)ρu
′ + 2vdl

(B)d
0 (u′ + 2ρu′′; ηφ) + 2vd(N − 1)l(B)d

0 (u′; ηφ), (2.34)

or for the first derivative

∂tu
′ =(−2 + ηφ)u

′ + (d− 2 + ηφ)ρu
′′ − 2vd(3u

′′ + 2ρu′′′)l(B)d
1 (u′ + 2ρu′′; ηφ)

− 2vd(N − 1)u′′l
(B)d
1 (u′; ηφ). (2.35)

The anomalous dimension,

ηφ =
16vd
d

κu′′2m
(B)d
2 (u′ + 2κu′′; ηφ), (2.36)

is evaluated at the VEV, ρ = κ. Here, we have introduced v−1
d := 2d+1πd/2Γ(d/2) and the

threshold functions l(B)d
n and m

(B)d
2 which contain all information about the regulator, see

App. A for their definition. Note that the equation for the anomalous dimension gives rise

to some confusion for N = 1. Although Eq. (2.36) corresponds to the Goldstone anomalous

dimension, in comparison with the anomalous dimension of the radial mode, it provides

superior results. In this work, we especially focus on the N = 1, 4 and large N case. In the

limit N → ∞, only the Goldstone contributions (leading order in N) and the dimensional

scaling terms survive. The flow of the wave function renormalization vanishes. In this

limit, an analytical implicit solution can be computed by the method of characteristics [175].

Additionally, there exists an exact solution for N = 1 in d = 1 [176] as well as d = 2 [177].

We can add fermionic degrees of freedom to the O(N) model. Generally, the fermionic

field ψ consist of Nf flavors whereas we now take only one bosonic field into account. The

Yukawa model with the effective average action

Γk[ψ̄, ψ, φ̄] =

∫

ddx

{

ψ̄(Zψ,ki/∂ + ih̄kφ̄)ψ +
1

2
Zφ,k(∂µφ̄)2 + U

(

φ̄2

2

)}

. (2.37)

features a discrete chiral symmetry

ψ 7→ iγ5ψ, ψ̄ 7→ iψ̄γ5, φ̄ 7→ −φ̄. (2.38)
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2. Flows in quantum field theory and critical behavior

The 4 × 4 matrix γ5 anticommutes with the Dirac matrices of the dγ = 4 representation of

the Dirac algebra,

{γµ, γν} = 2δµν✶4, (2.39)

and furthermore fulfills γ2
5 = 1. As this representation is reducible in d = 3, we can find

an additional matrix entailing additional continuous symmetries [73]. These shall not be of

interest here.

The flow of the scalar potential and its first derivative in this Yukawa model are given by,

[53],

∂tu = −du+ (d− 2 + ηφ)ρu
′ + 2vd

[

l
(B)d
0 (u′ + 2ρu′′; ηφ) − dγNf l

(F)d
0

(

2ρh2; ηψ
)

]

, (2.40)

or

∂tu
′ =(−2 + η)u′ + (d− 2 + η)ρu′′ − 2vd(3u

′′ + 2ρu′′′)l(B)d
1 (u′ + 2ρu′′; ηφ)

+ 4vddγNfh
2l

(F)d
1 (2ρh2; ηφ), (2.41)

respectively. As for the O(N) model, we solve Eq. (2.41) for practical reasons. The Yukawa

coupling provides the interaction between the fermions and the bosons and is assumed to

be field independent, see [168, 178] for field dependent studies. The flow equation for the

dimensionless renormalized Yukawa coupling, h2 = Z−1
φ,kZ

−2
ψ,kk

d−4h̄2, reads

∂th
2 = [ηφ + 2ηψ + d− 4]h2 + 8vdh

4
[

l
(FB)d
1,1

(

2h2κ, u′ + 2κu′′; ηψ, ηφ
)

−
(

6κu′′ + 4κ2u′′′
)

l
(FB)d
1,2

(

2h2κ, u′ + 2κu′′; ηψ, ηφ
)

(2.42)

− 4h2κ l
(FB)d
2,1

(

2h2κ, u′ + 2κu′′; ηψ, ηφ
)

]

and is evaluated at the potential’s running minimum. The bosonic and fermionic anomalous

dimensions are

ηφ =
8vd
d

[

κ [3u′′ + 2κu′′′]2 m(B)d
4 (u′ + 2κu′′; ηφ)

+ dγh
2Nf

[

m
(F)d
4

(

2h2κ; ηψ
)

− 2h2κm
(F)d
2

(

2h2κ; ηψ
)

]

]

, (2.43)

ηψ =
8vd
d
h2m

(FB)d
1,2

(

2h2κ, u′ + 2κu′′; ηψ, ηφ
)

, (2.44)

which are again computed at the minimum. In contrast to the O(N) model, we use the

anomalous dimension of the radial mode here, which is actually the correct one for N = 1.

In Sec. 4.1, we solve the fixed point equation as a function of the parameter Nf . We are

also interested in the large Nf limit for which the system has an analytical solution [73].

Employing a proper rescaling, only the fermionic fluctuations contribute to the flow. The
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2.4. Introduction to the models

evolution of h2 even reduces to its dimensional scaling, whereas the fermionic anomalous

dimension vanishes.

Let us now consider the combination of an O(N) with an O(M) model which has two

competing order parameters and exhibits an O(N) ⊕ O(M) symmetry. The vector valued

fields φ̄a (a = 1, ..., N) and χ̄b (b = 1, ...,M) parametrize the O(N) and O(M) symmetry,

respectively. If φ̄ acquires a nonvanishing VEV, the O(N) symmetry is broken spontaneously

to an O(N − 1) symmetry, and accordingly for χ̄. The corresponding invariants read

ρ̄φ =
φ̄aφ̄a

2
and ρ̄χ =

χ̄bχ̄b

2
. (2.45)

The potential of the effective average action,

Γk[φ̄, χ̄] =

∫

ddx

{

Zφ,k
2
∂µφ̄

a∂µφ̄
a +

Zχ,k
2
∂µχ̄

b∂µχ̄
b + Uk

(

φ̄aφ̄a

2
,
χ̄bχ̄b

2

)}

, (2.46)

depends on both these invariants. The dimensionless renormalized fields are given by ρφ =

Zφ,kρ̄φk
2−d, ρχ = Zχ,kρ̄χk

2−d. Derivatives of the potential are denoted by the shorthand

δn1

δρφn1

δn2

ρχn2
u(ρφ, ρχ) = u(n1,n2)(ρφ, ρχ). (2.47)

In the case of two order parameters, it is convenient to consider the potential u rather than

derivatives of it, since we would have to consider the derivative in both field directions. The

flow of the potential yields, [22],

∂tu = − du+ (d− 2 + ηφ)ρφu
(1,0) + (d− 2 + ηχ)ρχu

(0,1)

+ 2vd

[

l
(B)d
R,0 (ωφ, ωχ, ωφχ; ηφ, ηχ) + (N − 1)l(B)d

0 (u(1,0); ηφ) (2.48)

+ (M − 1)l(B)d
0 (u(0,1); ηχ)

]

.

The arguments of the threshold function l
(B)d
R,0 read

ωφ =u(1,0) + 2ρφu
(2,0), (2.49)

ωχ =u(0,1) + 2ρχu
(0,2), (2.50)

ωφχ =4ρφρχ
(

u(1,1)
)2
. (2.51)

The flow of the wave function renormalizations is given by the corresponding anomalous
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2. Flows in quantum field theory and critical behavior

dimensions, [179],

ηφ =
16vd
d

[

(

u(2,0)
)2
κφ
(

1 + u(0,1) + 2u(0,2)κχ
)2 − 4u(2,0)

(

u(1,1)
)2
κχκφ

(

1 + u(0,1) + 2u(0,2)κχ
)

+
(

u(1,1)
)2
κχ
(

1 + 2u(1,0) +
(

u(1,0)
)2

+ 4
(

u(1,1)
)2
κχκφ

)

]

× (2.52)

×
[

(

1 + u(1,0)
)(

1 + u(0,1) + 2u(0,2)κχ
)(

1 + u(1,0) + 2u(2,0)κφ
)

− 4
(

u(1,1)
)2
κφκχ

]−2

,

ηχ =ηφ
{

φ ↔ χ, u(i,j) ↔ u(j,i)
}

, (2.53)

where (κφ, κχ) is the position of the nontrivial minimum in both field directions.
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3. Pseudo-spectral methods

This chapter gives an overview over the properties of pseudo-spectral expansions, their con-

vergence and how these methods are applied to flow equations. In the first section, we

compare pseudo-spectral expansions to other numerical methods and elucidate their advan-

tages. Afterwards, the different kinds of convergence are introduced and shortly discussed.

Finally, we describe the implementation of pseudo-spectral methods for solving systems of

nonlinear differential equations. For a detailed presentation of this topic, we refer the reader

to [108, 180–182].

3.1. Pseudo-spectral expansions

Let us consider a smooth function f : [a, b] → R. This function could be, e.g., the unknown

solution of a differential equation with the nonlinear differential operator L

Lf(x) = 0, (3.1)

which shall be solved numerically at a set of grid points {xn}Np

n=0. Therefore, we search for

approximations of f(xn) and its derivatives. There are several approximation schemes, such

as finite elements, finite differences and (pseudo-)spectral methods. For the latter, f(x) is

expanded as

f(x) ≈
Np
∑

n=0

anΩn(x), (3.2)

where {Ωn(x)}Np

n=0 is a set of orthogonal basis functions and Np the interpolation order

of the expansion which in comparison with finite elements or finite difference methods, is

usually high. In contrast to these methods, the basis functions Ωn(x) are nonzero on the

whole interval [a, b] except at some points. For finite elements or differences, only locally

nonvanishing functions or sequences of overlapping polynomials of fixed degree are employed,

respectively.

In order to solve Eq. (3.1), the residual function R(x; a0, . . . , aNp
) = Lf(x) must be min-

imized in dependence on the coefficients. We use the collocation method where R = 0 is

required at {xn}Np

n=0 which are called collocation points. The Galerkin method provides an

alternative criterion

rn = (R,Ωn) = 0, n = 0, 1, . . . , Np, (3.3)
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3. Pseudo-spectral methods

where the bilinear operator (·, ·) is the inner product with respect to the weight w(x) of

the orthogonality condition of the {Ωn(x)}Np

n=0. Under the assumption that the collocation

points are carefully chosen, cf. discussion below, both methods are identical if Gaussian

quadrature is employed for evaluating the inner products. Note that the number of the grid

points is equal to the number of the coefficients. The function values f(xn) depend on the an

via a linear map and vice versa and can, therefore, be used instead of the coefficients. The

connection between the interpolation order of the expansion and the number of coefficients

has a remarkable benefit: if Np is increased, the approximation error is lowered not only

due to the increasing order but also due to the decreasing distance between the grid points,

ǫ ∼ O
[

(1/Np)Np
]

. This entails that we already obtain comparatively high accuracy for

comparatively small Np. In this sense, spectral methods are memory-minimizing in contrast

to finite elements or differences. Of course, there is also a price to pay: As the basis functions

Ωn(x) do not vanish on the whole interval, the matrices, e.g., differential matrices we have to

deal with, are usually dense. Therefore, it may be advantageous to use a hybrid of spectral

methods and finite elements which is called spectral elements. We come back to this in the

last section.

Employing Eq. (3.2), we ask for a suitable choice of basis functions Ωn(x). If the domain

of f(x) is [0,∞), the Hermite or Laguerre polynomials appear to be natural choices because

they are also defined on an unbounded interval [183–186]. However, increasing the interpo-

lation order changes the asymptotic behavior. For the problems usually encountered, the

asymptotic behavior is fixed and thus the convergence properties of Hermite and Laguerre

polynomials are difficult to control. In this work, we employ Chebyshev polynomials of the

first kind defined on [−1, 1],

Tn(cos(x)) = cos(nx), n ∈ N0 (3.4)

which satisfy the orthogonality condition

∫ 1

−1

Tn(x)Tm(x)
dx√

1 − x2
=



















0, n 6= m

π, n = m = 0

π/2, n = m 6= 0,

(3.5)

with w(x) =
√

1 − x2
−1

. Legendre polynomials which are defined on a bounded interval as

well, are also considered as a possible set of basis functions [187, 188]. However, Chebyshev

polynomials generally show slightly better convergence properties [189]. Note that they are

closely related to the Fourier basis functions which actually differ only by a transformation

in the argument. Therefore, Chebyshev series inherit many properties from Fourier series,

such as convergence properties. Nevertheless, no conditions of periodicity are imposed on

f(x).
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3.2. Convergence properties

For the choice of grid points, there are four different types [190], the Lobatto grid,

xn = − cos

(

πn

Np

)

, n = 0, 1, . . . , Np, (3.6)

the Gauss grid,

xn = − cos

(

π
(

n+ 1
2

)

Np + 1

)

, n = 0, 1, . . . , Np, (3.7)

and right-sided or left-sided Radau grid,

xn = cos

(

2π(Np − n)

2Np + 1

)

, or xn = − cos

(

2πn

2Np + 1

)

, n = 0, 1, . . . , Np. (3.8)

The points correspond to the nodes or extrema of Chebyshev polynomials. Due to their

nonequidistant distribution – there are more points at the end of the interval than in the

middle – the Runge phenomenon is avoided. More generally, choosing these grid points is

the key to obtain an optimal interpolation of the function f(x).

3.2. Convergence properties

By Darboux’s principle, the rate and domain of convergence of Eq. (3.2) in the complex plane

is controlled by the location and strength of the singularities of f(x). This includes poles,

fractional powers, logarithms, branch cuts and discontinuities. For Taylor series for instance,

the shape of the convergence domain is a disc around the expansion point. Although f(x)

might have singularities exclusively on the imaginary axis, the range of convergence on the

real axis is equal to their distance from the expansion point. By contrast, the convergence

domain of a Chebyshev series is the interior of an ellipse with foci ±1. This guarantees

convergence on [−1, 1] regardless of the position of the singularities unless they are not

exactly in the interval [−1, 1].

To determine the order of convergence, we introduce the algebraic index which is the

largest real number q > 0 satisfying

lim
n→∞

|an|nq < ∞. (3.9)

If q is finite, the convergence is called to be algebraic and the absolute value of the coefficients

decays asymptotically as ∼ O(1/nq). For an unbounded q, it decreases faster than any power

of n which is called exponential convergence ∼ O
(

e−snr)

with positive real numbers s, r.

23



3. Pseudo-spectral methods

The rate of exponential convergence is defined as

lim
n→∞

| ln(|an|)|
n

=



















∞, supergeometric

const, geometric

0, subgeometric.

(3.10)

If the coefficients oscillate, the rate of convergence is determined by the envelope of the

spectral coefficients. We point out that convergence can only be read off from the asymp-

totic behavior of the coefficients. However in practical applications, it may be spoiled by a

“roundoff plateau” due to the limited machine precision.

For the accuracy of an approximation, three different types of errors are important to

control: The truncation error originates from the negligence of the coefficients n > Np. The

discretization error is the deviation of the truncated series from the expansion of the exact

solution up to order Np. Finally, the interpolation error comes from the approximation of a

function to agree with the exact one at only a finite number of collocation points. As the

exact solution is usually not known, the last two errors can be hardly estimated. Therefore,

the assumption of equal errors is commonly applied that states that all errors are of the

same order of magnitude and, thus, the truncation error can be taken as a representative for

the overall error. For practical purposes, the last coefficient provides a rough estimate for

the truncation error,

∣

∣

∣

∣

∣

f(x) −
Np
∑

n=0

anTn(x)

∣

∣

∣

∣

∣

≤
∞
∑

n=Np+1

|an| =
∞
∑

n=Np+1

(

e−s
)n

=
(e−s)Np+1

1 − e−s
∼ O(|aNp

|), (3.11)

in case of geometrically exponential convergence, and

∣

∣

∣

∣

∣

f(x) −
Np
∑

n=0

anTn(x)

∣

∣

∣

∣

∣

≤
∞
∑

n=Np+1

|an| =
∞
∑

n=Np+1

1

nq
∼ 1

(q − 1)N q−1
p

∼ O(Np|aNp
|), (3.12)

for algebraic convergence.

3.3. Implementation

In this work, we have to deal with ordinary differential equations (ODEs), such as fixed-point

equations in Sec. 4.1 and partial differential equations (PDEs), i.e., fixed-point equations with

more than one field invariant, see Sec. 4.2, and functional flows in Chap. 5. In case of more

than one variable, e.g., f = f(x, y), we expand the function as a tensor product,

f(x, y) =

Nx
p
∑

i=0

ai(y)Ti(x) =

Nx
p
∑

i=0

Ny
p
∑

j=0

aijTi(x)Tj(y). (3.13)
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3.3. Implementation

Besides the field direction x, the second variable is either the RG scale or a second field

invariant. Of course, the arguments x and y do not necessarily correspond to the physical

variables of our problems. In what follows, we assume that there exists a linear, invertible

map between the domain of definition of the physical variables and the arguments of the

Chebyshev functions.

A fast way of evaluating the sum of Chebyshev polynomials is given by the Clenshaw

algorithm [191],

bNp+2 = bNp+1 = 0,

bi = ai + 2xbi+1 − bi+2, (3.14)

f(x) = a0 + xb1 − b2.

The derivative of f can again be expanded in a sum of Chebyshev polynomials of degree

Np − 1 with coefficients

a′
Np−1 = 2NpaNp

,

a′
Np−2 = 2(Np − 1)aNp−1, (3.15)

a′
i = 2(i+ 1)ai+1 + a′

i+2

a′
0 = a1 +

1

2
a′

2.

Due to the recursive nature of these high-performance algorithms, they are numerically

stable.

Regarding the differential equation (3.1), we now know how to discretize the system and

how to compute derivatives. To obtain a solution, we evaluate the system (3.1) at the grid

points and require R(xi; a0, . . . , aNp
) = 0 at every point as a function of the coefficients

{ai}Np

n=0. This leaves us with an algebraic equation which we solve by a stabilized Newton-

Raphson iteration where the Jacobian,

Jij =
∂Lf(xi)

∂aj
, (3.16)

must be inverted. This matrix is usually dense and, depending on the size, iterative solvers

have to be used. In order to obtain a Jacobian which is more sparse, it may be convenient

to use the spectral elements method. There, the domain of f is divided into subdomains on

which f is expanded in Chebyshev series separately. Note that the number of subdomains

cannot be arbitrarily large. For each expansion on a subdomain, less coefficients are taken

into account, otherwise the efficiency would not increase. Hence, the more subdomains are

used the less coefficients each expansion contains. However, for the number of coefficients

falling below a certain limit, the convergence of the expansions is spoiled. We emphasize that

the number of subdomains which we use is chosen due to practical convenience. Furthermore,
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3. Pseudo-spectral methods

Fig. 3.1.: The role of the parameter L in the field compactification (3.17).

using multiple domains has another advantage going beyond considerations of speed and

efficiency. Assuming f is only piecewise analytical, we can improve the convergence of the

coefficients if the border of two domains is as close as possible to the singular point. At the

boundaries of the patches, we impose matching conditions for the function and its derivatives.

In particular, for a differential equation of order q, q − 1 derivatives and the function itself

have to be matched. For each matching condition, we employ additional coefficients which

actually conflicts the one-to-one mapping between grid points and coefficients assumed in

the previous sections. At the collocation points, we exclusively require the fulfillment of the

differential equation (3.1). Another less problematic possibility is to demand the matching

conditions on grid points instead of the fulfillment of the equation. However, we emphasize

that we did not encounter a worse convergence or stability problems arising from this. In

this sense, we usually employ the Gauss- or Radau grid. As these types of collocation points

do not include any or only one boundary, a potential overdetermination by imposing too

many conditions at one point does not occur.

In this work, the function f is the effective average potential u or its derivative which

depends on one or two field invariants and the RG scale k. The operator L corresponds to a

differential operator such as given in Eq. (2.20). In addition, we may have to deal with RG

time dependent but field independent quantities, e.g., anomalous dimensions or the Yukawa

coupling in a fermionic system, cf. Sec. 2.4. We emphasize that this method is also adapted

for systems of differential equations. In some cases, we are interested in the global behavior

of the potential in field space. For this purpose, we use the compactification

u(′)
comp =

u(′)

ρα
and ρcomp =

ρ

ρ+ L
(3.17)

for the potential or its derivative u(′) with the asymptotic behavior ∝ ρα and for the field,

respectively, with the free parameter L > 0. We employ the compactificaton of the derivative

of the potential u′
comp only in Sec. 4.1 for the outermost subdomain. We emphasize that the

compactification is well defined in this case. The compactification in the field can be applied

only to the outer subdomain, cf. Sec. 4.1, or all subdomains, cf. Sec. 5.2. Figure 3.1 shows

how L influences the map of the field range [0,∞) onto [0, 1]. For the discussion of particular

choices, see Sec. 4.1. More details about compactifications using pseudo-spectral methods

can be found in App. B and in [192–195].

In case of functional flows, where the potential is a function of one field invariant and
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4. Solving functional fixed-point

equations via pseudo-spectral

methods

In the first chapter, we have argued that scale invariant solutions are of physical relevance in

many aspects, such as critical phenomena. There is a number of well-established methods to

solve fixed-point equations. Employing Taylor expansions, for instance, yields local solutions

with a finite convergence radius. As we see in this chapter, the convergence of Taylor

expansions may be spoiled in some cases and, therefore, the results become unreliable. To

obtain fixed-point potentials on a larger domain, the shooting method can be used. A

parameter of the potential is tuned such that the integration of the potential remains stable

over a large field range. However, this method is very intricate for systems with a number of

additional couplings, e.g., Yukawa couplings, and anomalous dimensions, or with more than

one order parameter.

The first part of this chapter demonstrates the power of pseudo-spectral methods by con-

structing global solutions of FRG equations in field space to high accuracy with a compar-

atively small amount of effort. Our approach is benchmarked using the critical behavior of

the Ising model, providing results for the global fixed-point potential as well as leading crit-

ical exponents and their respective global eigenfunctions in d = 3. We also compare to the

analytical solution of a three-dimensional simple Yukawa model for large flavor numbers.

Where local expansions break down, we nevertheless provide new results for multicritical

scaling solutions of the Ising model in d ≤ 3 and the Yukawa model for small flavor numbers

due to the superior convergence properties of pseudo-spectral methods.

In the second part of this chapter, we explore universal critical behavior in models with

two competing order parameters, and an O(N) ⊕ O(M) symmetry for dimensions 2 < d ≤ 3.

There is a complex interplay between different universality classes. For the first time of our

knowledge, coexisting stable fixed points are found and discussed in a bosonic model. Also

in the two field case, pseudo-spectral methods are an efficient tool to give reliable results. As

far as we know, there is no comparable method for solving the FRG fixed-point equations

which also works well for the low dimensional case.

This chapter follows the line of argument of [137, 138] in the first part and [139] in the

second part.
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4.1. Fixed-point equations of Z2 symmetric models with one order parameter

4.1. Fixed-point equations of Z2 symmetric models with

one order parameter

For the following examples, a few technical remarks are in order: We decompose the space

of the field invariant ρ into two subdomains [0, ρ1] and [ρ1,∞), where the matching point

ρ1 is chosen appropriately, see below. In the first subdomain, the derivative of the fixed-

point potential itself is interpolated, whereas we use the compactification (3.17) in the second

subdomain to capture its global behavior. In order to map the field values [ρ1,∞) onto [0, 1],

ρ has to be shifted by ρ1 in the field compactification. The distribution of the grid points

over the second subdomain is affected by the choice of the parameter L. The order of the

asymptotic behavior denoted by α in Eq. (3.17) can be easily derived from the dimensional

scaling terms of the fixed-point equations.

4.1.1. The Ising model near criticality

This section is devoted to a detailed study of various properties of the Ising model with the

effective average action (2.33). Here, we solve the fixed-point equation (2.35) for the first

derivative of the potential, setting N = 1 and the left-hand-side to zero. The potential can

be easily derived from it by integration. The anomalous dimension, if taken into account, is

given by Eq. (2.36).

Wilson-Fisher fixed point in LPA and LPA′

In the following, we compare the Wilson-Fisher solution in LPA (ηφ = 0), and in LPA′, where

we include the anomalous dimension. As numerical parameters, ρ1 = 3/10 and L = 1 were

chosen, and we used float128. From Eq. (2.35), one infers the leading asymptotic behavior

u′
∞(ρ) ∝ ρ(2−ηφ)/(d−2+ηφ) as the quantum fluctuations contribute only to subleading order.
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Fig. 4.1.: Derivative of the fixed-point potential at the Wilson-Fisher fixed point in LPA and LPA′.
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4.1. Fixed-point equations of Z2 symmetric models with one order parameter

in the second domain. This behavior is indeed expected by the asymptotic behavior of

the potential, as it rises with a fractional power. Furthermore, one can also see that this

problem is irrelevant for all practical purposes, as the algebraic convergence only sets in at

about 10−18, up to that point one still observes exponential convergence. This emphasizes

the fact that any statement about convergence is really an asymptotic one, and one cannot

predict where this behavior sets in. As a final comment on this, note also the number of

coefficients needed to gain a certain accuracy: In case of exponential convergence, one needs

very few coefficients to get an adequate result, but as soon as there are singularities of any

kind, one needs a large number of coefficients to further increase the accuracy as can be seen

in Fig. 4.2.

Let us now expand the LPA solution into a Taylor series (2.22) with vanishing expansion

point κ = 0 as well as a Laurent series around ρ = ∞. As a further test for the method,

we compare whether the relations between the coefficients λn, obtained by plugging in such

an ansatz into the fixed point equation, are satisfied. One obtains the well-known relations

(see, e.g., [80])

λ2 = −4π2λ1(1 + λ1)
2,

λ3 =
24

5
π4λ1(1 + λ1)

3(1 + 13λ1), (4.3)

λ4 = −1728

7
π6λ2

1(1 + λ1)
4(1 + 7λ1),

λ5 =
768

7
π8λ2

1(1 + λ1)
5(2 + λ1(121 + 623λ1)), etc.

Inserting our solution, one finds that the absolute error in these coefficients are (< 10−30, 2×
10−23, 2 × 10−19, 7 × 10−16). For the expansion around infinity, one obtains

u′
∗(ρ) = Aρ2 − 1

75Aπ2ρ3
+ O(ρ−5). (4.4)

Expanding our solution, the coefficients of ρ1, ρ0, ρ−1, ρ−2 (which should vanish in the ex-

act solution) are (−4 × 10−27, 3 × 10−24,−8 × 10−22, 10−19), and the relation between the

leading and the first sub-leading coefficient is fulfilled to an absolute accuracy of 10−17. For

completeness, let us give the values of λ1 and A both in LPA and LPA′:

λLPA
1 = −0.18606424947031443565,

λLPA′

1 = −0.16574071049155738982, (4.5)

ALPA = 84.182303273336100651,

ALPA′

= 50.323366981670544177.

These results match with [80] and [201] where local expansions and the shooting method

were employed. This underlines that we can trust the global solution and that we can relate
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Fig. 4.3.: Eigenperturbations of the Wilson-Fisher fixed point, normalized to 0.01 at ρ = 0.

to earlier results.

Let us now turn our attention to the critical exponents of the Wilson-Fisher fixed point.

They are defined by Eq. (2.23). Again, a global approach to the solution of the perturbed

equation is used. Figure 4.3 shows the eigenfunctions corresponding to the five highest eigen-

values, where the anomalous dimension has been taken into account. As for the fixed-point

solution itself, any precision can be achieved in the eigenfunctions and critical exponents.

The critical exponents match with earlier results, e.g., given in [24, 61]. Let us emphasize

again that the largest error arises from the systematic errors of the derivative expansion to

order LPA/LPA′. If we compare with Monte-Carlo results [200], we find a deviation of about

1% for the first and 14% for the second critical exponent. Especially the error of the second

critical exponent is to be expected from the low order of the derivative expansion used, see

[63]. For this reason, from now on we only give a few relevant digits, bearing in mind that

within a given truncation, we in principle could calculate as many digits as needed.

Multi-critical fixed points for 2 < d < 3

It is worthwhile to have a closer look at fractional dimensions 2 < d < 3. The fixed-

point structure is getting richer for decreasing dimension. Therefore, it is interesting to

investigate the interpolation between the two fixed points in d = 3, the Gaussian and the

Wilson-Fisher fixed point, and the infinite number of fixed points in d = 2. In [202], for

N = 1 and d = 2, and in [69, 167], as a function of d and N , the existence and properties

of multicritical fixed points are investigated. In this context, multicritical means that the

corresponding fixed points have more than one relevant direction, i.e., they are unstable

compared with the stable Wilson-Fisher fixed point, and are therefore supposed to exhibit a

phase transition of first order. Any of these fixed points represents a new universality class

next to the Wilson-Fisher universality class. Two dimensions is an intriguing case due to the

Mermin-Wagner-Hohenberg theorem [203–206]. It states that continuous symmetries cannot

be broken within a continuous phase transition in d = 2. An RG proof of this theorem can
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Fig. 4.4.: First derivative of multicritical fixed-point potentials in d = 2.4 exhibiting two minima
regarded as function of the dimensionless renormalized scalar field φ (blue, Wilson-Fisher
potential), three minima (yellow), four minima (red), five minima (green). The small
insets depict the global behavior of the solutions.

be found, e.g., in [67, 69]. We emphasize that N = 2 is a special case giving rise to a BKT

phase transition.

As has been done in [67], we restrict ourselves to N = 1. We emphasize that the following

investigations can straightforwardly be applied to arbitrary numbers N if the set of fixed-

point solutions is still discrete. In [67], a sequence of critical dimensions dc,i = 2i/(i − 1)

where the next multicritical fixed-point potential ui(ρ) emerges was stated. These are those

dimensions where new operators ∼ ρi become relevant for d < dc,i. The emergence of new

solutions can be motivated as follows: If one of the critical exponents is zero, the solution of

the fixed-point equation is degenerate. Here, the degenerate solution is the Gaussian fixed

point for whose critical exponents dimensional power counting can be applied. Lowering d,

the degenerate solution separates into two distinct solutions, the Gaussian fixed point and

a new multicritical fixed point. Concentrating in the following on d = 2.4 as an example,

we find three more multicritical fixed points FPi∈{3,4,5} besides the Wilson-Fisher (FP2) and

the Gaussian (FP1) fixed point. The index i ≥ 2 counts the minima of the corresponding

fixed-point potential regarded as a function of the dimensionless renormalized scalar field φ.

Our results around d = 2.4 confirm the predicted value dc,6 = 12
5

.

For our calculations, we have employed Eq. (2.35) within the LPA′ truncation. The

anomalous dimension, Eq. (2.36), is again evaluated at the global minimum of the potential
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4. Solving functional fixed-point equations via pseudo-spectral methods

WF-FP multicritical FPi=4

ηφ relev. exp. irrelev. exp. ηφ relev. exp. irrelev. exp.
0.1390 1.1883 −1.0977 0.001753 1.9968 −0.3035

−3.1108 1.4607 −1.3957
−5.6147 0.6632

multicritical FPi=3 multicritical FPi=5

ηφ relev. exp. irrelev. exp. ηφ relev. exp. irrelev. exp.
0.01598 1.9636 −0.5467 8.2715 × 10−5 1.9999 −0.1555

0.8507 −2.0694 1.5972 −0.9284
−3.8156 1.1235

0.5329

Tab. 4.1.: Anomalous dimensions and highest critical exponents of all scaling solutions in d = 2.4
besides the Gaussian fixed point.

which is in the following cases the outermost minimum. In Fig. 4.4, the first derivative of

the multicritical fixed-point potentials is shown. As the values of the anomalous dimension

of the multicritical fixed points FPi≥3 are small compared to the one of the Wilson-Fisher

fixed point, the convergence of their coefficients is exponential within the used precision of

float128. Therefore, the deviation from the exact solution can be estimated to be below

10−30. In Tab. 4.1, the anomalous dimensions and the largest critical exponents calculated

by pseudo-spectral methods are given. The highest relevant critical exponent for the fixed

points i ≥3 is close to the mean-field value 2 which they attain at the corresponding critical

dimension. The other relevant exponents are smaller. Our results are in good agreement

with [67, 69, 167]. Additionally, the results for the Wilson-Fisher fixed point in d = 2.4 can

be related to earlier works [207–209], where the ε-expansion and lattice simulations were

applied.

The sequence of critical dimensions predicts that a new fixed-point potential with six

minima (regarded as function of the dimensionless scalar field) emerges exactly at d = 2.4.

Similar to the Wilson-Fisher fixed point that probably does not exist in d = 4 but exists in

all dimensions 2 < d < 4, we find this fixed point for all dimensions 2 < d < 2.4. In fact, we

are able to determine a global solution for d = 2.399 where the nonasymptotic behavior is

realized on very small scales |u′
∗(ρ ≤ κ)| ∼ 10−6 and ηφ = 2.3446 × 10−10.

4.1.2. A simple Yukawa model model in d = 3

We extend our studies to the simple Yukawa model in d = 3 with the fermionic field ψ

containing Nf flavors. The effective average action is given by Eq. (2.37). As a function of

the parameter Nf , the Gross-Neveu fixed-point potential is in the symmetric regime for large

Nf and in the symmetry broken regime for small Nf . We use the flow equations (2.41)-(2.44).
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Large Nf analysis

The large Nf approximation is a good test case for our numerical method because an explicit

analytical solution for the fixed-point potential can be found [73]. Interestingly, the scalar

anomalous dimension does not vanish in contrast to the one of the Wilson-Fisher fixed

point for increasing Nf . Even the fixed-point potential looks very different. The fixed-point

equations in the large Nf limit are given by, [73],

0 =(−2 + ηφ)u
′ + (d− 2 + ηφ)ρu

′′ + 4vddγh
2l

(F)d
1 (2ρh2; ηφ), (4.6)

0 = (ηφ + 2ηψ + d− 4)h2, (4.7)

ηφ =
8vd
d
dγh

2
[

m
(F)d
4

(

2h2κ; ηψ
)

− 2h2κm
(F)d
2

(

2h2κ; ηψ
)

]

, (4.8)

ηψ =0. (4.9)

Note that an appropriate rescaling has been taken into account. In this approximation, we

encounter a first order system. For solutions with a nontrivial Yukawa coupling, the bosonic

anomalous dimension can be read off from Eqs. (4.7) and (4.9) to be ηφ = 1 exactly. We can

reproduce this result to all digits of float128 which gives an accuracy of about 10−32. The

exact fixed-point value of the Yukawa coupling reads

h2
∗ =

(

d

dγvd

)

(d− 4)(d− 2)

(8 − 6d)
, (4.10)

and can be confirmed up to 10−32 as well. The fixed-point potential is given by the Gaussian

hypergeometric function,

u∗(ρ) = − 4(8 − 6d+ d2)

3d− 4
ρ×

2F1

(

1

1 − d
, 1;

2 − d

1 − d
;
d

dγvd

8 − 6d+ d2

3d− 4
ρ

)

.

(4.11)

The absolute difference between the analytical solution and our numerical one can be esti-

mated to be smaller than 3 × 10−17 for large ρ. For finite ρ, it is even smaller. This is due to

the Gaussian grid which only has points at finite ρ. Thus, the asymptotic prefactor is only

tuned regarding finite field values and, therefore, has a larger error of about 3 × 10−17. For

this calculation we have used ρ1 = 3/10 and L = 2. The decay of the coefficients can be seen

in Fig. 4.5. The Chebyshev expansion in the first domain shows exponential convergence.

By contrast, the expansion in the second domain decreases exponentially at first, but only

up to a certain number of coefficients. The actual convergence rate is algebraic. This is to

be expected due to the asymptotic behavior ∝ √
ρ. The downwards bending of the last coef-

ficients shows a truncation effect which is not a numerical effect. If we calculate the spectral

coefficients from the analytical solution, we obtain a good agreement with the numerically
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in d = 3 for Nf lying between 0.3 and 12, see Fig. 4.7. We obtain a very good agreement

with the polynomial approximation employed in [73] for Nf ≥ 2. Even the relevant exponent

matches in the first four relevant digits. It is worth mentioning that this good agreement is

only obtained by taking high orders in the polynomial truncation into account [73], especially

for small Nf . Our results for Nf ≥ 2 are also compatible with other methods such as 1/Nf

expansions [211, 212], and Monte-Carlo simulations [213, 214]. In fact, systematic truncation

errors appear to be smaller for the Yukawa model in comparison with the Ising model. The

overall consensus among the nonperturbative methods is very satisfactory.

Let us now concentrate on the small Nf regime. The transition from the symmetric to

the symmetry-broken regime can be determined to be at Nt ≈ 0.5766. As a new result, we

observe that the Gross-Neveu fixed point does not approach the Wilson-Fisher fixed point

for small Nf . This can be seen from the behavior of the Yukawa coupling and the anomalous

dimensions on the one hand and the relevant exponent on the other hand. In particular, the

behavior of h∗ suggests that the Gross-Neveu fixed point moves to infinity in theory space

for N → 0.

It is instructive to compare our results for Nf = 1/2 with those of [210] where also a full

potential flow has been studied (note that our convention of Nf = 1/2 corresponds to Nf = 1

in [210]; for aspects of criticality see [77]). In [210], the fluctuation terms ∝ κu′′h4, ∝ κ2u′′′h4

and ∝ κh6 have been missed in the derivation of the flow equation of the Yukawa coupling,

see the discussion in [118]. If we artificially switch off these terms, the vacuum expectation

value and the critical exponent of our calculations are in good agreement with those of [210].

On the contrary, including these terms, even the first relevant digit changes. For Nf = 1/2,

we obtain ν = 1/θ1 = 0.4836, ηφ = 0.3227 and ηψ = 0.1204. In conclusion, it is remarkable

that our approach is able to find a global solution in a regime where a polynomial truncation

is not reliable.
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4.2. Universal behavior of coupled order parameters below three dimensions

4.2. Universal behavior of coupled order parameters below

three dimensions

Let us now consider the combination of an O(N) with an O(M) model exhibiting an O(N) ⊕
O(M) symmetry with two competing order parameters. It is already known that the phase

diagram of a system with an O(N) ⊕ O(M) symmetry features multicritical points3 [39, 215,

216]. We are interested in the following case: As a function of two external parameters, the

O(N) and O(M) symmetry are separately broken to an O(N − 1) or O(M − 1) symmetry

across second-order phase transition lines which meet at such a point. The universality class

of that point is encoded in a stable fixed point featuring two relevant directions [40]. For a

bicritical fixed point, there are three phases adjacent to it - the two broken phases and a

phase of unbroken symmetry. If it is a tetracritical point, an additional mixed phase with

two spontaneously broken symmetries exists.

It is an intriguing question what is the dominating critical behavior for d = 2 and N =

M = 1. On the one hand, it could be determined by the decoupled fixed point, a combination

of the Onsager solutions of the simple Ising model. On the other hand, multicritical models

also feature fixed points exhibiting an enhanced O(N + M) symmetry. This would suggest

BKT type physics as d approaches 2. Besides, the model also features a biconical fixed point

which provides another candidate for a stable fixed point in d = 2 for N = M = 1. Finally,

additional fixed points may exist below d = 3, which could become relevant for the physics

of two coupled Ising models in d = 2.

In what follows, we are interested in the phase diagram, that shows which of the various

O(N) ⊕ O(M) fixed points is the stable one as a function of N = M and d. In particular, we

investigate how the stability is traded between the multicritical points. We discover that sev-

eral simultaneously stable fixed points underlie different possibilities for the universal critical

behavior of the system. We find that besides the long-range degrees of freedom, symmetries

and the dimensionality of the system, additional information is required to determine which

of the possible universality classes is realized in the IR.

According to Eq. (3.13), we use an expansion in the two field invariants ρφ and ρχ. If

global issues are not particularly concerned, an expansion of the effective potential on a

finite domain is sufficient. Of course, that domain must be large enough to capture all the

physics relevant for the system. Doing so, we do not observe any significant influence of the

choice of the maximal field values. We mostly choose the whole domain to be [0, 1] × [0, 1]

in ρφ and ρχ and use a decomposition into 3 × 3 subdomains increasing the speed of the

computation. The innermost domain is chosen such that the VEV lies in it. The outer ones

are already dominated by the asymptotic behavior of the potential.

3Note that multicritical has a different meaning in this context than in Sec. 4.1 where it was used for
unstable fixed points.
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4.2.1. Systems of competing orders

The degrees of freedom of the O(N) ⊕ O(M) model are given by two fields φa, a = 1, ..., N

and χb, b = 1, ...,M which may assume a nonvanishing VEV separately. In d = 3, universal

critical behavior can be studied within the ε-expansion around d = 4 dimensions, however,

this becomes challenging already for the O(N) model in d = 2, see, e.g., [217], as well as for

two coupled order parameters [32]. Thus, we employ the FRG for which it has been shown in

[22–25] and in the previous section as well as [64, 65, 67, 167, 202, 218, 219] to give reliable

results for the physics of coupled order parameters in d = 3 and for O(N) models below

d = 3, respectively.

Equation (2.46) yields an ansatz for the effective average action. The flow of the potential

and the wave function renormalizations is given by Eqs. (2.48) and (2.52), (2.53). For

tetracritical fixed points, the nontrivial minimum lies at nonvanishing expectation values for

both order parameter fields, (κφ, κχ). In this case, the anomalous dimensions are projected

onto the nontrivial (κφ, κχ). By contrast, for bicritical fixed points with the minima lying

on the axes, we evaluate ηφ at (κφ, 0) and ηχ at (0, κχ). In d = 3, the local expansion of the

potential,

u(ρφ, ρχ) =
∑

i,j

λi,j
i!j!

(ρφ − κφ)
i (ρχ − κχ)j , (4.12)

is a suitable approximation. For the symmetry broken regime, it is advantageous to choose

the expansion points κφ/χ as the nontrivial minima. However, for lower d, the expansion

breaks down as it is to be expected from the dimensional power counting and shown explicitly

in Sec. 4.2.3. Therefore, we consider the full potential as a general function of the two fields.

According to Eq. (2.23), a linearized equation for small perturbations around the fixed point

can be derived from the fixed-point equation (2.48) with vanishing left-hand side. As done

with the potential, we expand the eigenperturbations on a finite domain inferring the critical

exponents from the solution of the analog of Eq. (2.23).

An important property of the fixed point is encoded in the field dependent parameter ∆,

which is related to the determinant of the matrix consisting of the second derivatives of the

potential, [22]. The general definition is given by

∆ = u(2,0)u(0,2) −
(

u(1,1)
)2
. (4.13)

If we choose a nontrivial expansion point for the effective potential, as in Eq. (4.12), the

evaluation of ∆ reduces to

∆ = λ2,0λ0,2 − λ2
1,1. (4.14)

If the first derivatives of u vanish at the expansion point, the expansion point corresponds to

a saddle point for ∆ ≤ 0, whereas it corresponds to a minimum for ∆ > 0. Thus, for ∆ > 0,

the fixed point is tetracritical, as a mean-field analysis relates it to a multicritical point which
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Fig. 4.8.: We show the three-dimensional theory space spanned by the quartic couplings. The
orange surface is defined by ∆ = 0, and blue arrows show the RG flow towards the IR.
Blue dots denote different fixed points that lie in this surface.

is bordered by a mixed phase [216]. On the other hand, for ∆ ≤ 0, there is no mixed phase,

which corresponds to a bicritical fixed-point. As the sign of ∆ for the fixed-point solutions

we consider does not depend on whether it is evaluated at the extremum/saddle point or

the origin in field space, we typically extract ∆ at the origin in field space.

If ∆ = 0 at every point in field space, the symmetry is enhanced to an O(N+M) symmetry.

An enhanced O(N+M) symmetry requires that the potential has a flat direction everywhere

in field space, i.e., the Hessian must have vanishing determinant. Hence, the RG flow cannot

cross the hypersurface defined by ∆ = 0 as a global criterion. That hypersurface also contains

several separatrices between fixed points, cf. Fig. 4.8. Note that this does not necessarily

imply that ∆ = 0, if it is imposed only locally in field space, is preserved during the flow.

Within a local expansion up to fourth order in the fields, one can show that the flow of ∆

is proportional to ∆, using scale dependent redefinitions of the field. These correspond to

deforming “elliptical” potentials such that the symmetry enhancement is obvious. We assume

in the following that the sign of ∆ evaluated at the extremum/saddle point κφ = κχ 6= 0 of

the potential does not change under the flow, if that flow is in the universality class of an

IR fixed point. In particular, it might be possible that additional separatrices outside the

global surface ∆ = 0 connect the fixed points in Fig. 4.8, if they have appropriate attractive

directions perpendicular to that surface. These separatrices would serve to separate the

theory space. To comprehensively uncover the structure of the theory space and its separate

regions, global flows have to be considered that do not rely on a choice of expansion point.
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4.2.2. Fixed-point content

This section provides an overview over the fixed-point content of the model for dimensions

2 < d ≤ 3. We are interested in the stable fixed point, which features not more than two rele-

vant directions. These correspond to parameters that require tuning in a given experimental

situation, in order to observe the universal scaling behavior associated to the fixed-point

solution. Typically, there is one tunable parameter for each of the order parameters, e.g.,

the temperature and the magnetic field for an anisotropic antiferromagnet.

Gaussian fixed point

The trivial scaling solution is the Gaussian fixed point (GFP). The critical exponents can

be deduced from dimensional scaling, which implies, that in d = 3, there are five relevant

directions and even more for lower d. Hence, it will not play a role for the description of

realistic systems at criticality.

Decoupled fixed points

The O(N) ⊕ O(M) model decouples into an O(N) and O(M) model, if the mixed couplings

vanish, λn,m = 0 for n > 0 and m > 0. The fixed-point potentials separate into two unrelated

scaling solutions of the single-field models. In particular, the decoupled fixed point (DFP) is

the combination of the O(N) and O(M) Wilson-Fisher scaling solutions. As ∆ > 0, the fixed

point corresponds to tetracritical behavior, cf. Fig. 4.9. In addition to one relevant direction

from each Wilson-Fisher solution, the vanishing mixed couplings λn,m are associated to

nontrivial critical exponents. Hence, the fixed point can be stable, i.e., features two relevant

directions, depending on the values of those exponents. The third critical exponent is related

to the inverse Wilson-Fisher correlation length critical exponents, θ1/2 = 1
ν1/2

, by Aharony’s

scaling relation [10, 16–18],

θ3 = θ1 + θ2 − d. (4.15)

The scaling relation is satisfied to any order in the ε-expansion [19] and thus expected to

be exact. Within LPA, it is fulfilled whereas LPA′ gives rise to an ambiguity, see [24]: The

scaling relation is only satisfied if the anomalous dimensions are held fixed in the computation

of the critical exponents. However, the critical exponents dominating the flow close to the

fixed point correspond to the one where variations of the anomalous dimensions are taken

into account. In particular, the first two relevant critical exponents change whereas θ3 does

not depend on variations of the anomalous dimension. This ambiguity might be resolved in

a further extension of the truncation beyond LPA′. In order to obtain results consistent with

those of the other fixed points, we compute the critical exponents by employing Eq. (2.23)

and taking the variations of the anomalous dimensions into account within the usual LPA′

scheme if not stated differently.
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Note that we have adopted a convenient redefinition of the couplings, corresponding to a

potential of the form

uǫ∗(φ, χ) = λ2,0φ
4 + 2λ1,1φ

2χ2 + λ0,2χ
4, (4.20)

where we have specialized to the case N = M = 1. We now implement the rotation (4.16),

which leaves us with

uǫ∗ =
φ′4 + χ′4

4
(λ2,0 + λ0,2 + 2λ1,1) +

(

φ′3 χ′ + φ′ χ′3
)

(λ2,0 − λ0,2)

+
φ′2 χ′2

2
(3(λ2,0 + λ0,2) − 2λ1,1) . (4.21)

For this to be a viable fixed-point potential, we demand

0 = λ2,0 − λ0,2, λ′
2,0 =

λ2,0

2
+
λ1,1

2
, λ′

1,1 =
3

2
λ2,0 − λ1,1

2
, (4.22)

where the first requirement corresponds to the exchange symmetry φ ↔ χ. Let us take

the DFP in d = 3 as a representative which fulfills this requirement. Its coordinates are

λ2,0 = λ0,2 = 1
72

and λ1,1 = 0. Upon the rotation (4.16), this gives a bicritical fixed-point

potential with coordinates λ2,0 = λ0,2 = 1
144

and λ1,1 = 1
48

. This fixed point was already

considered in [22], see also [221–223], and called symmetric fixed point (SFP). We refer to

it as the rotated decoupled fixed point (RDFP). In d = 3, the BFP equals the rotated DFP

at N = 1, which is also visible by comparing the left panel in Fig. 4.9 and the right panel in

Fig. 4.10. Below d = 3, that degeneracy is lifted, and the BFP exists independently of the

RDFP at N = 1. Accordingly, the BFP implies the existence of another scaling solution,

which we call the rotated biconical fixed point (RBFP).

From these considerations, one can infer that the eigenvalue spectra of u∗(ρφ, ρχ) and its

rotated counterpart are related to each other. The equation for the eigenperturbations in-

herits the π/4 symmetry from Eq. (2.48) as it is linear in δu. Similar to the requirement

θ1 θ2 θ3 θ4 θ5 θ6

d = 2.8
DFP 1.408 1.408 0.0165 -0.753 -0.753 -2.145

RDFP 2 1.408 0.0165 0 -0.753 -2
BFP 1.498 1.329 -0.0098 -0.734 -0.759 -2.126

RBFP 1.944 1.329 -0.0098 -0.154 -0.759 -2.077
d = 2.7

DFP 1.334 1.334 -0.033 -0.800 -0.800 -2.166
RDFP 2 1.334 0 -0.033 -0.800 -2

Tab. 4.2.: We show the five largest critical exponents of the DFP and BFP and the rotated coun-
terparts in LPA for N = M = 1. The dimension d = 2.8 is chosen as a representative.
For the RDFP we additionally give the values for d = 2.7 to clarify that 2, 0, −2, . . . are
always present in the spectrum at N = 1, independent of the dimension.
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ηφ,χ θ1 θ2 θ3 θ4 θ5 θ6

d = 2.7
DFP 0.0841 1.398 1.398 0.0232 -0.916 -0.916 -2.051

RDFP 0.0480 1.952 1.371 0.0015 -0.102 -0.864 -1.952
BFP 0.0789 1.522 1.296 -0.0108 -0.877 -0.915 -2.035

RBFP 0.0491 1.945 1.362 -0.0014 -0.123 -0.866 -1.963
d = 2.5

DFP 0.119 1.264 1.264 -0.0549 -1.038 -1.038 -2.048
RDFP 0.0694 1.931 1.221 -0.104 -0.134 -0.973 -1.931

Tab. 4.3.: Anomalous dimensions and first critical exponents of the DFP and BFP and the rotated
counterparts in LPA′ for N = M = 1, where the symmetry (4.16) is slightly broken.
The dimensions d = 2.7 is chosen as a representative. For the DFP we additionally give
the values for d = 2.5 to show that we do not obtain d-independent critical exponents
anymore.

above, only those eigenperturbations δu that preserve the φ ↔ χ symmetry are also eigen-

perturbations of the rotated solution ũ∗, cf. Tab. 4.2. A clear explanation of this requirement

can be found in App. C. From Tab. 4.2 it can be seen that the instability of the DFP implies

instability of the RDFP. By contrast, if the DFP is stable, the RDFP features an addi-

tional marginal direction, as we obtain θi = 2, 0,−2, ... as additional critical exponents,5

independent of d, at least within LPA.

Finally, we emphasize that the π/4 symmetry is only exact in LPA. Table 4.3 shows that

the anomalous dimensions are not invariant under the transformation (4.16). In fact, the

difference between the anomalous dimensions of u∗ and its rotated counterpart may be large.

Thus, the π/4 rotational symmetry is broken in LPA′. Note that this could change in a more

extensive truncation, where a field dependent wave function renormalization is taken into

account. However, that does not affect the existence of the rotated fixed-point solutions.

Moreover, those critical exponents that are exactly equal for the solution u∗ and its rotation

in LPA, are still close to each other in LPA′, cf. Tab. 4.2 and Tab. 4.3. Thus, rotating the

(D/B)FP at N = M = 1 by π/4 in field space results in a potential that is not exactly equal

but close to the R(D/B)FP.

4.2.3. Breakdown of local expansions

We explicitly show the necessity of solving for the fixed-point potential nonlocally, in par-

ticular for d towards 2. For that purpose, we review the convergence properties of LPA′ in a

local expansion. We focus on the DFP as a representative example, cf. Tab. 4.4. Whereas in

d = 3, the difference between LPA′ 12 and LPA′ 16 (see Tab. 4.4 for explanation) is at the

level of 0.3 %, it is of order 2% in d = 2.9, 17 % in d = 2.8. For satisfying convergence, higher

orders in the polynomial expansion have to be taken into account. However, in particular for

5Note that θ3 = 0 presumably implies the existence of another fixed point with which the RDFP collides
at that point. In this work, we do not search for such a fixed-point solution.
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the coupled fixed points as the BFP, it is much more challenging to reach comparably high

orders because they do not follow from single-field fixed-point solutions. Thus, they require

the simultaneous solution of a much larger set of fixed-point equations for all the couplings.

d θ3(n = 4) θ3(n = 8) θ3(n = 12) θ3(n = 16) θ3(n = ∞)

3 0.8026 0.1274 0.1412 0.1408 0.1407
2.9 0.9919 0.1317 0.1298 0.1327 0.1321
2.8 1.1976 0.1644 0.1033 0.1208 0.1175

Tab. 4.4.: We give the third largest critical exponent θ3 at the DFP for N = M = 1 in d dimensions
in LPA′ n using the scaling relation (4.15). n = 4 includes all couplings up to four powers
in the fields (i.e., two powers in the invariants ρφ, ρχ) and correspondingly for higher n.
Results from the solution computed via pseudo-spectral methods (n = ∞) are given for
comparison.

4.2.4. Interplay of fixed points and phase structure in d ≤ 3

Fixed points trade their stability in collisions in the space of couplings that occur at particular

values of N and M , see, e.g., [23], where one critical exponent vanishes. These are distinct

from fixed-point annihilations in which the two fixed points collide and then disappear into

the complex plane. In a stability trading collision, both fixed points continue to exist after

the collision, and simply “pass through” each other on the real line. As stability trading

must involve fixed-point collisions, a fixed point can only become (un)stable, if it approaches

another fixed point. At the collision point, the fixed-point action of both fixed points is

the same. Therefore, collisions between specific classes of fixed points cannot occur. In

particular, tetracritical (∆ > 0) and bicritical (∆ < 0) fixed points cannot collide with each

other due to the different location of the minima of the potential. Both types of fixed points

can however collide with the IFP since the IFP interpolates between both types. In that

collision, they pass through the surface ∆ = 0 and thereby change their nature from bi- to

tetracritical and vice versa. Note that it is not a contradiction that the RG flow for a given

theory, at fixed N and M cannot pass through the symmetry enhanced surface ∆ = 0, while

the location of fixed points under variations of N and M , i.e., for different theories, can, of

course, pass through that surface. With the choice of the evaluation point of the anomalous

dimensions, some of the critical exponents jump as soon as the collision partner of the IFP

changes its nature. However, as the anomalous dimensions themselves and the third critical

exponent change continuously, that discontinuity is not relevant in the following.

In what follows, we concentrate on the case N = M . Moreover, we focus on fixed points

with an explicit φ ↔ χ exchange symmetry and do not explore possible fixed points which

do not share that symmetry.
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Fig. 4.12.: We show the third critical exponent of the IFP (orange squares) and the BFP/RDFP
(green/red inverted triangles) in d = 2.88 within LPA (left panel) and d = 2.87 (right
panel), where two additional bicritical fixed points (red inverted triangles and purple
diamonds) exist. The second bicritical fixed point, indicated by red inverted triangles
corresponds to the rotation of the DFP at N = 1. In d = 2.88, the BFP and RDFP are
still degenerate.

Appearance of new fixed points for d < 3

A pair of new fixed points appears below d = 3. Its influence can already be detected in the

left panel of Fig. 4.12: There, the third critical exponent of the BFP/RDFP exhibits a slight

kink near N ≈ 1.024 < Ncrit, IFP. That kink is due to a pair of fixed points that still lies within

the complex plane at that value of d, but already starts to approach the BFP. At a slightly

lower value of d, that pair emerges from the complex plane at N = Nem, cf. right panel of

Fig. 4.12. As soon as these new bicritical fixed points appear, the degeneracy between the

BFP and the RDFP is lifted. As Ncrit, IFP > Nem, the BFP is bicritical in that region as

well, allowing it to collide with one of the new fixed points. At that collision point, they

move off into the complex plane. Thus, one of the newly appearing fixed points has a rather

short “lifespan”, emerging from the complex plane at Nem = 1.01925, and disappearing at

Nann = 1.0191 (in LPA). It serves as the annihilation partner of the BFP. In that process, the

second new bicritical fixed point is left behind and continues to exist for lower N . At N = 1,

it can be rotated by π/4 in the space of fields, where it maps onto the DFP. Continuing

to lower d, the new fixed points play a more important role, as they take part in stability

trading mechanisms.

Separation of stability trading mechanisms in d ≈ 2.7

At Ncrit,DFP, the tetracritical BFP trades stability with the DFP for all d ≤ 3. However, it

ceases to trade stability with the IFP, which instead finds a new trading partner. Hence,

the stability trading of IFP and DFP becomes disconnected, i.e., the stability is no longer

transmitted between the two by a single fixed point, cf. Fig. 4.13. Instead, the trading

partner of the IFP never approaches the DFP.

Towards lower d, Ncrit, IFP decreases. The major change in the stability trading mechanism

occurs when Ncrit, IFP . 1, where the IFP finds a new trading partner. The dynamics
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when referring to numerical values for Ncrit etc. from LPA′.

Coexisting stable fixed points

In d = 2.7, we first observe the new property of coexisting stable fixed points. Usually, one

might expect that the critical behavior in bosonic systems only depends on the long-range

degrees of freedom, the symmetries and the dimensionality. Here, there are two fixed points

that are simultaneously stable for 0.98 < N = M . 1, and underly possible continuous

phase transitions. These two are the BFP, and the newly generated bicritical fixed point,

the RBFP, cf. Fig. 4.13.

These two imply very distinct phase diagrams in the vicinity of the multicritical point.

The tetracritical BFP implies the existence of a fourth, mixed phase, however, the other

fixed point is bicricitcal, preventing the formation of a mixed phase. To decide which of the

two stable fixed points is dominant for low-energy physics, we conjecture that the sign of

∆ at the extremum/saddle point is all the additional information that is required in this

case. We assume that microscopic models with ∆ > 0 most likely flow towards the BFP,

and exhibit tetracritical behavior. Microscopic models with ∆ < 0 conversely flow towards

the RBFP and exhibit bicritical behavior. It would be interesting to understand whether ∆

corresponds to a microscopic parameter in realistic models, or whether it can be related to a

macroscopic parameter, just as the mass-like couplings in these models which can be related

to the temperature or magnetic field.

A related property, namely that universality classes can depend on the presence of un-

broken “spectator symmetries” has been discussed in [12]. In fermionic systems, coexisting

stable fixed points are a common phenomenon, see, e.g., [72, 220, 224, 225]. In these cases,

there is a unique fixed point with zero relevant directions, but there exist several fixed points

with one relevant direction. To our best knowledge, ours is the first example of coexisting

stable fixed points in bosonic systems.

Stability trading in d = 2.5

The only change between d ≈ 2.7 and d . 2.5 lies in the properties of the IFP’s collision

partner. At N = 1, the collision partner of the IFP is always bicritical, cf. Fig. 4.15 (right

panel), and can thus be related to one of the two tetracritical fixed points, the DFP or the

BFP, by an (approximate) π/4 rotation in field space. In d ≈ 2.7, that relation is with the

BFP, i.e., the collision partner of the IFP is the RBFP. Towards d ≈ 2.5, Ncrit,DFP approaches

1, the BFP and the DFP become more similar to each other at N = 1. Accordingly,

so do their rotated counterparts, the RBFP and the RDFP. For d = 2.63 (within LPA′),

Ncrit,DFP = 1, and the DFP and BFP lie on top of each other at N = 1. At that point,

the rotated counterparts must be degenerate as well. Actually, this happens slightly before

Ncrit,DFP = 1 at d ≈ 2.69 in LPA′, since the rotation in field space is not exact. Thus, at
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Fig. 4.17.: The third critical exponent (left panel) and ∆ (right panel) of the DFP (blue dots),
IFP (orange squares), BFP (green triangles), and RDFP (red inverted triangles) as a
function of N for d = 2.2. The IFP divides the bicritical region (∆ < 0) from the
tetracritical region (∆ > 0). The BFP collides with the DFP at N = Ncrit,DFP = 0.68.
The IFP collides with the RDFP at N = Ncrit,IFP = 0.71.

Stability trading towards d = 2: Overlapping stability regions of the DFP and the IFP

Towards lower d, Ncrit, IFP and Ncrit,DFP approach each other. Finally, both stability regions

touch and then start to overlap. Note that the DFP and the IFP can never be degenerate.

Whereas the IFP still lies in the plane of enhanced symmetry ∆ = 0, the DFP must stay

tetracritical ∆ > 0. Thus, collisions between them are excluded. This also holds for the

case, where both scaling solutions change stability at the same value of N . Viewed in the

space of couplings, the two stability trading fixed-point collisions occur at rather different

positions, similar to the case shown in Fig. 4.17 (right panel), even if they accidentally occur

at the same value of N .

The collision partners of the IFP and DFP are the RDFP and BFP, respectively. Figure

4.17 (left panel) depicts the situation where both the stability regions of the DFP and IFP

overlap, Ncrit,DFP < Ncrit, IFP < 1 at d = 2.2, which is another instance of two coexisting

stable fixed points. Note that our estimates for Ncrit, I/DFP are not yet quantitatively exact,

cf. Sec. 4.2.6.

4.2.5. Summary: Stability trading between d = 3 and d = 2

We summarize the mechanisms of stability trading. There are two kinds of fixed-point

potentials, tetracritical fixed points, as the DFP, and bicritical fixed points. The bicritical

IFP is a special fixed-point solution with ∆ = 0 everywhere in field space. The DFP can

collide only with another tetracritical fixed point whereas the IFP can trade stability with

either tetra- or bicritical fixed points, changing their nature (∆ ≷ 0) within the process.

At N = M = 1, the DFP and BFP imply the existence of two further fixed points, the

RDFP and RBFP. These fixed-point potentials are bicritical and related to the DFP and

BFP, respectively, by an (approximate) π/4 rotation in field space.

Figure 4.18 summarizes the stability regions of the IFP, DFP and BFP in LPA and LPA′.
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4.2.6. Testing the quantitative reliability of our results

LPA and LPA′, combined with a Taylor expansion, give rather good results in d = 3,

[22], in comparison to high orders of the loop expansion [19, 21], at a very manageable

computational complexity. As we have seen in Sec. 4.2.3, the Taylor expansion breaks

down towards d = 2 and we, therefore, resort to nonlocal methods. Moreover, momentum-

dependence is becoming more important, indicated, e.g., by the growth of the anomalous

dimension. Thus, we expect that our estimates for Ncrit, IFP and Ncrit,DFP are not fully

accurate in the limit d → 2.

Comparing LPA and LPA′ in Fig. 4.18, the stability boundaries are shifted to lower values

of d in LPA′. The point where the DFP and IFP stability lines intersect lies at a different

value of d, but at a similar value of N . Taking these observations into account, it is an

interesting question, how far the stability lines are shifted to lower dimensions when the

order of the derivative expansion is increased.

To judge the quantitative reliability of our results, we use the Onsager solution for the

Ising model in d = 2. We can combine the scaling relation (4.15) for the DFP with the

Onsager solution in d = 2 [177],

νOnsager = 1, (4.23)

to obtain

θ3(d = 2) = 1 + 1 − 2 = 0. (4.24)

Thus, the DFP is on the verge of stability for the O(1) ⊕ O(1) model in d = 2. Note that

for clarifying if the third eigenperturbation is marginally relevant or irrelevant, higher orders

beyond the linear one have to be taken into account in the eigenvalue problem (2.23). As

θ3 > 0 for the DFP in d = 3, and θ3 = 0 in d = 2, a monotonic dependence on d would

suggest that θ3 > 0 for 2 < d < 3. In our approximation, θ3 changes sign at dcrit above d = 2,

cf. Fig. 4.19. As we improve the approximation from LPA to LPA′ and employ the scaling
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Fig. 4.19.: The third largest critical exponent of the DFP for N = M = 1 as a function of d is
depicted. The symbols (colors) indicate different truncations: The blue dots correspond
to LPA, the orange squares to LPA′ and the green triangles to LPA′ but employing the
scaling relation (4.15).
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relation, dcrit decreases, as expected. We find dcrit ≈ 2.45 using the scaling relation and

θ3 ≈ 0.5 (approximately with and without the scaling relation) at d = 2, implying that our

results are not yet quantitatively precise. Extended truncations with momentum-dependent

interactions are expected to improve these results.

For the overlapping stability region of the IFP and DFP at d = 2, there are several possible

scenarios: The overlapping region persists and is shifted to N ≈ 1. In this case, the system of

two coupled Ising models in two dimensions might either exhibit a tetracritical phase diagram

with a mixed phase, or a multicritical point associated to a BKT type phase transition. In

the case that the π/4 rotational symmetry holds at N = 1 in extended derivative expansions,

the stability trading mechanisms are linked to the position of Ncrit,DFP and Ncrit, IFP with

respect to N = 1. As Ncrit,DFP = 1 at d = 2 is predicted by the Onsager solution, it is rather

unlikely that the overlapping stability region of the IFP and DFP still exists in this case.

If the overall picture of the coexistence of several stable fixed points persists, the RDFP or

the RBFP potentially provide further candidates for stable fixed points, in particular in the

case of the broken rotational symmetry.

4.3. Conclusions

In this chapter, we have shown the application of pseudo-spectral methods to fixed-point

equations with one and two order parameters. For systems with a single order parameter, we

have employed a compactification for resolving the whole field space. The existence of global

fixed-point solutions is an important question, since the nonlinear differential equations en-

countered in FRG studies can have many stable, but local solutions. If only local information

is accessible, they are hardly distinguishable from global ones. For instance, the physical

criterion of polynomial boundedness is difficult to impose locally [226]. The pseudo-spectral

method presented here offers a comparatively easy access to global considerations. Even if

the fully global potential is not of interest, cf. Sec. 4.2, the pseudo-spectral expansion is still

superior to local expansions which, for example, is visible for d → 2 where arbitrarily high

orders of polynomial couplings become important.

We have first considered the well known Ising model in three dimensions in both LPA and

LPA′. There are numerous works on expansions for small and large fields and results gained

via the shooting method which give a good notion of the global behavior of the Wilson-Fisher

fixed point. We reported on the difference between LPA and LPA′ truncations taking the

global behavior of the potential into account. Although the anomalous dimension is very

small, the asymptotic behavior, especially with regard to the prefactor, changes significantly.

Besides the fixed-point potential itself, we calculated the eigenfunctions globally and deter-

mined the critical exponents. For all quantities we obtained good agreement with already

known results calculated with other methods. As far as numerical accuracy is concerned, our

method outperforms previous results by many orders of magnitude, while being very stable,
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fast and lightweight.

Subsequently, we extended our study to fractional dimensions, taking d = 2.4 as a repre-

sentative. We considered all multicritical fixed-point potentials (with more than one relevant

direction) predicted in [67] and could moreover determine their global behavior. Especially

in these cases, the structure with more than one local minimum cannot be captured within

a single local expansion. We were able to see the next higher critical fixed point emerging

at d < 2.4 which demonstrates that our numerical method is highly accurate and stable.

All physical quantities, the anomalous dimension and critical exponents, again match with

earlier results.

In the simple Yukawa model, fermionic and bosonic degrees of freedom respect a discrete

chiral symmetry. In Sec. 5.3, we study flows of the Higgs potential in d = 4 where the Yukawa

model is taken as a suitable reduction of the standard model for that purpose. Here, we

considered d = 3 where it gives rise to the nontrivial Gross-Neveu fixed point. The large Nf

limit provides an explicit analytical solution with which we obtained a conclusive agreement.

For finite Nf , our results agree very well with other data, including 1/Nf-expansions and

lattice methods. We determined the transition flavor number Nt ≈ 0.5766 where the fixed-

point potential goes over from the symmetric to the symmetry broken regime. The small

Nf limit is not easily accessible by use of common local expansions which provides another

instance for demonstrating the power of our method. We found that the fixed point Yukawa

coupling grows large for Nf → 0. This suggests that the Gross-Neveu fixed point does not

merge with the Wilson-Fisher fixed point in the limit Nf → 0, contrary to what has been

anticipated in [73]. Additionally, we saw that all fluctuation terms in the Yukawa fixed-point

equation which occur in the symmetry broken regime have a significant influence on physical

quantities, such as critical exponents. Compared to [210] where some fluctuation terms were

missed, we determine the deviation to be up to 30%.

Finally, we investigated the stability trading between the fixed points of the O(N) ⊕ O(M)

model. As both d and N = M can be treated as continuous parameters in the FRG, we

explored 2 < d ≤ 3 and N = M in the vicinity of N = M ≈ 1. The system is dominated

by an interplay of several fixed points, which trade stability and thus physical relevance for

the critical behavior of different systems at fixed-point collisions. We observed regions of

simultaneously stable fixed-point solutions. However, in each of the separate regions of the

theory space, defined by the sign of ∆ at the minimum or saddle point, we have only found

one stable fixed point. We conjectured that this provides a criterion to decide which of the

universality classes is realized in the IR. To test this conjecture, studies of RG trajectories

are necessary. For the case of one order parameter, we come to that in the next chapter. For

two order parameters, however, this is technically more involved and is thus left for future

work.

For the low dimensional case, d = 2, the comparison to the Onsager solution shows that

the order of derivative expansion has to be increased in order to get quantitatively precise
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results.6 Therefore, we are not yet able to give a clear answer, which of the fixed points

dominates the critical behavior at N = M = 1. The comparison between LPA and LPA′

indicates that the mechanisms that we observed for stability trading, might only be shifted

to lower d. It is an interesting question if the overlapping stability regions, in particular

those of the DFP and IFP, persist. Besides the DFP and IFP, further candidates for the

dominating universality class in d = 2 and at N = M = 1 might be provided by the RDFP

or RBFP. Our conjecture could be tested employing, e.g., lattice simulations.

Another interesting region of the phase diagram is around N = 1 and M = 2 corresponding

to anisotropic antiferromagnets. The nature of the multicritical point, explored in [32, 33],

see also references therein, can be further clarified, and connected to experimental results in

quasi-two-dimensional systems [227–233].

We already mentioned the existence of multicritical solutions in the sense of Sec. 4.1 in the

decoupled and symmetry enhanced sector. We anticipate that there are new fixed points,

such as generalizations of the BFP, which are unique to two field models. Thus, stability-

trading mechanisms as the ones that we have discussed here, could also be relevant for each

of the multicritical sectors. It would be interesting to explore this conjecture further.

6We emphasize, that once the flow equations of the NLO system are calculated, solving them is straight-
forwardly doable with our method.
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pseudo-spectral methods

Plenty of information can already be retrieved from the fixed-point structure of the theory

as we have seen in the previous chapter. On the other hand, it turned out that for a clear

discussion of, e.g., the phase diagram of the O(N) ⊕ O(M) model, functional flows need

to be considered. Also phase transitions of first order, systems far away from criticality, or

the fate of metastabilities of the Higgs potential are suitable examples which require the

solution of full functional flows. As discussed for fixed-point equations, Taylor expansions

cannot resolve nonlocal behavior. Moreover, it may give a wrong indication for the flow

towards the IR if the convergence radius shrinks.

In this chapter, we solve functional flows with the help of pseudo-spectral methods in order

to capture also nonlocal information. In the first section, we again benchmark the method

considering the O(N) model in the large N limit and for finite N in d = 3. The occurrence of

convexity poses one of the most challenging problems to the convergence of pseudo-spectral

methods. We discuss how close the singularity can be approached. We finally consider flows

between two (multicritical) fixed points, the tricritical one and the Wilson-Fisher one in

d = 2.4, cf. Sec. 4.1. We find a separatrix connecting the multicritical fixed point and the

Wilson-Fisher fixed point.

Whereas these potentials grow arbitrarily large for increasing field, we additionally consider

bounded potentials in quantum mechanics. The energies of the first eigenstates can be

deduced from the flow and compared to the exact values obtained from the solution of

the Schrödinger equation. From a technical view point, the flow has interesting properties.

These investigations can be taken as a notion of a nonperturbative flow of potentials which

are reminiscent to those employed in Higgs inflation models.

In the last part of this chapter, we consider a simple Higgs-Yukawa model which features

the most important degrees of freedom relevant for the investigation of Higgs-mass bounds

and vacuum stability. Employing the FRG, we particularly discuss the lower mass bound,

also in presence of higher field operators in the microscopic action which are perturbatively

nonrenormalizable, and a potential metastable phase. These results are compared to those

of polynomial expansions and mean-field calculations.

We use the expansion (3.13) of the potential as a function of the field invariant ρ and

the RG scale k. We consider flows on a finite field range [0, ρmax], typically starting from a
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UV cutoff Λ and integrating down to an effective scale kIR. Generally, kIR is chosen to be

small enough such that the characteristic scales of the theory do not depend significantly on

the remaining momentum scales k < kIR. These low momentum modes mainly affect the

nonconvex regions of the potential, but do not modify the outer part. The dependence of the

potential, in particular the inner region, on kIR may be interpreted as a scheme dependence

describing the effect of different coarse graining procedures, cf. [61]. For quantum mechanics,

no UV regularization is needed and Λ can be sent to infinity.

To ensure the absence of boundary effects, the potential should actually be considered

on the global domain [0,∞) as it is done for the bounded potentials in Sec. 5.2. Resolving

the dynamics on that infinite interval is numerically challenging but possible via pseudo-

spectral techniques. For a finite interval, ρmax could be understood to be a parameter of a

truncation scheme the potential may depend on.7 However, if the potential is unbounded

from above for large field values, it is practically sufficient to choose the value of ρmax such

that the physically relevant field range is resolved without observing a significant scheme

dependence. The fluctuations are damped for large values of the potential.

The time interval is divided into patches with approximately 10 coefficients which are

joined by imposing continuity conditions. The field domain is decomposed into subdomains

which not only increases the efficiency of the algorithm but also the resolution, i.e., in regions

where the potential gives rise to singular structures.

The content of this chapter follows the line of argument of [140] and [141].

5.1. Flows of the O(N) model

We take the same ansatz for the effective average action, Eq. (2.33), as in Sec. 4.1.1. We

use the flow equation for the first derivative of the potential (2.35). The scalar anomalous

dimension obeys Eq. (2.36). In the first part of this section, we set ηφ ≡ 0 (Zφ,k ≡ 1) which

becomes exact in the large N limit. In the second part, we take the scale dependence of the

wave function renormalization into account.

5.1.1. Flows for large N in d = 3: A comparison

In the large N limit, the flow is analytically solvable by the method of characteristics [175].

This offers the opportunity to easily demonstrate the accuracy of pseudo-spectral flows. For

that purpose, we choose trajectories in the symmetry broken phase close to criticality to

show stability of the numerical method over 5 orders of magnitude (t ∈ [0,−12.4]). We use

7Note that this is more or less a technical viewpoint. Practically, the influence of boundary effects decides
if this problem is well-defined.
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Eqs. (2.35) and (2.36) in the limit N → ∞ [175],

∂tu
′ = (−2 + ηφ)u

′ + (d− 2 + ηφ)ρu
′′ − 2vdu

′′l
(B)d
1 (u′; ηφ),

ηφ = 0,
(5.1)

where an appropriate rescaling has been taken into account. We switch to dimensional

quantities as soon as the VEV starts scaling exponentially in t. We expand the first derivative

of the potential on [0, 0.2] for the dimensionless and on [0, 0.2kS] for the dimensional flow,

where kS is the scale of switching between both regimes. With this choice, the maximal field

value is 10 − 20 times larger than the VEV which is large enough to avoid boundary effects.

The initial condition reads

U ′
Λ(ρ̄) = −0.008443603515625 + 0.5ρ̄ (5.2)

at t = 0 or k = Λ, where Λ is the UV cutoff. All dimensional quantities are to be understood

in units of Λ, which we set to 1. For switching to the dimensional version of the flow (5.1), we

choose tS = ln(kS/Λ) = −10.1. Furthermore, the temporal subdomains and the number of

coefficients in time direction are taken to achieve exponential convergence down to machine

precision. In order to compare the analytical potential [175] with the numerically computed

one, we employ the maximum norm of their difference as error criterion.

In Fig. 5.1, the absolute deviation between the numerical and the analytical flow in de-

pendence of the number of the coefficients in field direction Np can be seen. The flow was

compared at two scales: t = −10 (k = 4.5 ·10−5), before switching to dimensional quantities,

and k = 4 · 10−6 (t = −12.4), after switching to dimensional quantities, where we have

stopped the integration. We also depict the relative error of the dimensional VEV κ̄ at this
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Fig. 5.1.: Absolute and relative error (δu′(ρ), δU ′
k(ρ̄) and δκ̄/κ̄) of the first derivative of the potential

and the VEV, respectively, as a function of the number of coefficients Np in field direction.
The errors δU ′(ρ̄) and δκ̄/κ̄ decrease. For the error of u′(ρ) at t = −10, one can see a
plateau which is due to the condition of the differential equation. This indicates that the
solution is accurate to almost machine precision.
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scale. The more coefficients are taken into account, the higher the accuracy, which can be

seen by the decrease of δU ′(ρ̄) and δκ̄/κ̄ in particular. For the error δu′(ρ) at t = −10,

we see a plateau for Np & 60. This can be explained by the condition of the differential

equation. To illustrate this, we compare two analytically computed solutions, one with the

initial condition (5.2), and the other with a small deviation from it. To obtain an error of

about ∼ 10−11 at t = −10, one can allow for a deviation of 10−18 for the constant term, and

10−16 for the linear term, which is about the order of magnitude that we can resolve with

long double. This example indicates how accurately the time integration has to be done for

staying close to the original trajectory. On the other hand, it shows that we have integrated

out the flow close to machine precision over many orders of magnitude for Np & 60. This

fact is supported by the exponential convergence till ∼ 10−18 of the coefficients.

For the IR flow, the decrease of the error is slower, but still tends to the lower bound

∼ 10−11 for a large number of coefficients. The error is now dominated by the truncation

error of the expansion of the potential in field direction since convexity starts to set in. From

the asymptotic decrease of the last coefficients for Np & 60, we obtain a measure for the

truncation error which agrees very well with the errors depicted in Fig. 5.1. It is based on an

estimate for the sum over the neglected coefficients. In order to achieve machine precision,

more coefficients are needed.

We conclude that the pseudo-spectral flow is highly efficient in a large part of theory space,

and we generically observe exponential convergence for an increasing number of Chebyshev

coefficients. Therefore, we concentrate in the following on the most challenging part of theory

space involving the built-up of nonanalyticities, whose first adumbration we just started to

discuss.

5.1.2. Flows for N = 1, 4 in d = 3

In the spontaneously symmetry broken phase, the effective potential is nonconvex in the

field for all intermediate scales k > 0. On the other hand, by definition of the effective

action as a Legendre transform of the Schwinger functional (2.2), the effective action and

particularly its potential has to be convex at k = 0, see e.g., [122, 234], even in LPA.

Technically, convexity of the effective potential is generated by singularities in the bosonic

propagators, in particular in the radial mode as we see at the end of Sec. 5.2, entering the

threshold functions. In Eq. (2.34), the bosonic threshold function l(B)d
0 corresponding to the

regularized radial propagator is proportional to

l
(B)d
0 ∼ 1

1 + u′ + 2ρu′′
, (5.3)

which exhibits a singularity at u′ + 2ρu′′ → −1, or u′ → −1 for small ρ or small absolute

value of u′′. The flow avoids this singularity by renormalizing the negative curvature of the
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Fig. 5.2.: Evolution of U ′
k(ρ̄) from blue (bottom) to orange (top) for N = 1 (left

panel; t = 0, −0.5, −1, −1.5, −1.7, −2, −2.1) and N = 4 (right panel; t =
0, −0.5, −1, −2, −3, −4, −5, −13). Convexity is seen in the flattening of U ′

k(ρ̄) for small
fields ρ̄ < κ̄. Whereas U ′′

k (ρ̄) is still continuous for N = 4, in the single-scalar case a jump
occurs.

potential in the inner region 0 ≥ ∂2Uk(φ̄)/∂φ̄2 ∼ k2(u′ + 2ρu′′) & −k2 → 0 with k → 0. This

establishes convexity for k → 0. While the outer region (ρ̄ > κ̄) already is convex, the inner

region (ρ̄ < κ̄) becomes flat during the IR flow. Since the radial mass does not vanish for

N = 1, the curvature jumps at the VEV at k = 0. By contrast for N > 1, the influence of

Goldstone bosons partly suppresses this nonanalyticity.

We picked out two particular values for N , namely N = 1 and N = 4. The following

calculations are done with the dimensional version of Eq. (2.35) since we choose the initial

condition to be far from criticality, U ′
Λ(ρ̄) = −0.1+0.5ρ̄ at k = Λ, where a fast growth of the

dimensionless couplings already sets in close to Λ. It is convenient to use the logarithmic time

scale t instead of k. After a few orders of magnitude dimensional scaling can be observed.

Figure 5.2 depicts the evolution of U ′
k(ρ̄) for N = 1 and N = 4, from large to small

scales. The approach to convexity is clearly visible. The built-up of the corresponding

nonanalyticity can be monitored over a range of scales, especially for N = 4. As U ′
k(ρ̄) for

N = 1 has an edge at κ̄ at k = 0 where U ′′
k (κ̄) jumps, the flow is numerically much harder

to track and finally breaks down earlier. The reason is as follows: Exponential convergence

of the coefficients is only guaranteed if the function is analytical as discussed in Sec. 3.2.

For k = Λ, the convergence of the coefficients in field direction is very fast. Plateaus that

build up for higher order coefficients are on the level of the machine precision. However, for

low scales k, the requirement for exponential convergence is not fulfilled anymore. Thus, we

observe a slower convergence of the coefficients till it breaks down. Although this problem

cannot be avoided completely, there are two possibilities for improvement. On the one hand,

one can simply take more coefficients. This will not cure the problem completely since the

convergence becomes too slow and finally, an unacceptably large number of coefficients is

needed. On the other hand, one can choose the domains in such a way that the nonanalyticity

lies close to the boundary of two neighboring domains. For that reason, we have used 24

or 16 domains for N = 1 or N = 4, respectively. The high accuracy of pseudo-spectral
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Fig. 5.3.: u′(0) approaches the singularity −1 for t → −∞. Due to the stronger nonanalyticity in
the single-scalar case, the numerically computed flow ceases to exist earlier.

methods prevents the flow to erroneously jump over the singularity of the propagator for a

long time. Figure 5.3 shows how the flow approaches the singular point. Due to the reasons

given above, for N = 4, we get closer to u′(0) = −1 in comparison to N = 1.

We have shown that pseudo-spectral methods can also be applied to numerically challeng-

ing problems, such as convexity. The convergence of the expansion coefficients is strongly

connected to the properties of the solution. Therefore, it is not surprising that the numerical

effort increases the closer the singularity is approached. We emphasize that there are other

approaches, e.g., [127, 136], which are adjusted to tackle convexity issues. Pseudo-spectral

methods have the striking advantage that the error is controllable by the convergence pat-

tern of the expansion coefficients, which was especially demonstrated in the previous section.

Here, we have used domains, whose boundaries were fixed during the flow. If one is gen-

erally interested in convexity mechanisms, less domains and coefficients are needed, when

the boundaries are adapted to the flow of the singularity. On the other hand, if only IR

quantities are of interest, e.g., the VEV, they can be inferred from the flow before convexity

becomes challenging. We obtain κ̄ = 0.183 for N = 1 and κ̄ = 0.130 for N = 4 and the

radial mass m̄2 = 2κ̄U ′′
eff(κ̄) = 0.168 for N = 1. It is worth mentioning that the VEV for

N = 4 deviates by 2% from the VEV derived from the analytical large N solution. That

indicates that the large N limit already is a proper approximation for the N = 4 case.

5.1.3. Flow between two critical regimes for N = 1

In the previous section, we have investigated flows far from criticality. As discussed in

Sec. 4.1, for d < 4 nontrivial fixed points occur. The first one is the well known Wilson-Fisher

fixed point. Lowering the dimension further, multicritical fixed points emerge. Now, we take

a closer look at the first two nontrivial fixed points, the Wilson-Fisher fixed point among

them, in d = 2.4. We are interested in a trajectory connecting both. Therefore, we start

at the tricritical fixed point with a small deviation constructed from a linear combination

of its relevant eigenperturbations. For our calculations, we employ Eq. (2.35) and a scale
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integral with respect to the Euclidean time. As exact solutions can be obtained by employing

the Schrödinger equation, studies in quantum mechanics provide an excellent test case for

probing the quality of FRG calculations. Furthermore, they may give an indication for the

quantum field theory case. Here, we are not interested in tunneling phenomena, but in the

evolution of microscopic potentials of a special shape. The UV potentials which we consider

have the property that they are bounded from below and above, i.e., they are flat for large

|x|. Due to its boundedness from above, it is to be expected that fluctuations for arbitrary

large |x| contribute significantly to the flow in contrast to the examples above. Here, a case

study of such flows shall be given by means of three microscopic potentials as representatives.

Furthermore, flat potentials are interesting in the context of dark energy and Higgs inflation

[236–241]. The slow roll provides a mechanism to implement the idea of inflation and to

solve problems of cosmology such as the horizon problem. It commonly requires a flat part

of the potential in field direction. For details on Higgs inflation in the framework of the

exact renormalization group, see [120, 242–244].

From the effective potentials, we extract the energies of the ground state and first excited

state and compare them to the numerically exact results from the Schrödinger equation.

In the case of bounded potentials, it is not clear to which accuracy the first excited state

can really be estimated from the flow due to convexity mechanisms. To put the results into

perspective, we also give the values obtained from various analytical approximations.

From a technical point of view, these considerations provide a further example to demon-

strate the power of pseudo-spectral methods as a global resolution of the field range is

required.

5.2.1. Models

Each of the following three microscopic potentials gives rise to a particularly interesting

aspect. The first microscopic potential is given by

Ucl(x) =
2

π
arctan

(

x2
)

. (5.4)

If an infinite number of space coordinates is taken into account which formally corresponds

to the large N limit, the flow for this potential can be solved explicitly. In Sec. 5.2.6, we

exploit this fact to clarify our results. Second, we choose a modified version of the well-known

Pöschl-Teller potential,

Ucl(x) =
λ(1 + λ)

2

(

1 − 1

cosh2(λx)

)

. (5.5)

For this potential, the Schrödinger equation can be solved analytically, such that all bound

states and their corresponding energies are known [245]. Here, we will specify to the case
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λ = 1. Lastly, we investigate the potential

Ucl(x) = e−1/x2

, (5.6)

which has a nonanalyticity at x = 0. Due to this nonanalyticity, it is not possible to extract

physical information of the system from a simple Taylor series around its minimum. It is

worthwhile to investigate how the nonanalyticity behaves during the flow and influences

the convergence of the pseudo-spectral methods. All potentials are normalized such that

Ucl(0) = 0 and Ucl(|x| → ∞) = 1.

5.2.2. Exact results

At first, we present the exact solutions for the energies of the ground state and the first

excited state, if they exist, for all potentials by solving the Schrödinger equation,

− 1

2

∂2

∂x2
Ψ(x) + Ucl(x)Ψ(x) = EΨ(x), (5.7)

where Ψ denotes the quantum mechanical wave function. If no analytical solution exists,

we again apply pseudo-spectral techniques, as done for the eigenvalue problem (2.23) in the

context of fixed-point equations, to solve Eq. (5.7) “numerically exactly”. All energies and

their corresponding wave functions were determined with an accuracy of at least 10−20.

For the potential (5.4), the ground state energy E0, and the energy gap ∆E = E1 − E0,

are

E0 = 0.448004, ∆E = 0.509453. (5.8)

For the Pöschl-Teller potential (5.5) (with λ = 1), there is only one bound state, which can

be stated explicitly,

Ψ0(x) =
1

cosh(x)
, E0 = 1/2. (5.9)

On the other hand, for the nonanalytical potential (5.6), we obtain

E0 = 0.356644, ∆E = 0.542040. (5.10)

In order to assess the numerical results employing the FRG, we first compute E0 and E1

within the WKB and the one-loop approximation.

5.2.3. WKB approximation

The formula for the approximated energy levels within the WKB approximation reads,

∫ x0

−x0

√

2(En − Ucl(x)) =

(

n+
1

2

)

π, (5.11)
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where x0 is the classical turning point, Ucl(x0) = Ucl(−x0) = En. The index n counts the

energy level. Evaluating Eq. (5.11) for each model, we obtain for the potential (5.4),

E0 ≈ 0.520, E1 ≈ 0.955, ∆E ≈ 0.435. (5.12)

For the Pöschl-Teller potential (5.5), the ground state energy is

E0 ≈ 0.582. (5.13)

Finally for the last potential (5.6), we have

E0 ≈ 0.405, E1 ≈ 0.905, ∆E ≈ 0.500. (5.14)

It is remarkable that E1 deviates less than 1% from the exact value, whereas E0 is off

by 13% − 16%. This is to be expected, since the WKB approximation works well in the

semiclassical limit λ ≪ 2x0, where λ/2 is the distance between two knots of the wave

function Ψ. This translates into the condition n ≫ 1.

5.2.4. One-loop approximation

As a further step to put subsequent results into perspective, we perform a one-loop calcula-

tion. The one-loop effective potential reads

U1−loop
eff (x) = Ucl(x) +

1

2

√

∂2
xUcl(x), (5.15)

which can be inferred from Eq. (2.16), see App. D for details. Note that for the trace no

regularization is needed in the quantum mechanical case. Clearly, the one-loop effective

potential is only a meaningful approximation for ∂2
xUcl > 0. The ground state energy is

given by the value of the effective potential at its minimum, which is in all our cases at

x = 0, thus

E0 = Ueff(x = 0), (5.16)

whereas the energy gap is the square root of the curvature of it, also evaluated at the

minimum,

∆E =
√

∂2
xUeff(x) |x=0. (5.17)

We obtain

E0 =
1√
π

≈ 0.564, ∆E =
2√
π

≈ 1.128, (5.18)

for the potential (5.4). For such a “rough” approximation, the value of the ground state

energy is admissible. However, the one-loop result predicts that there are no further bound

states, as the energy gap is too large. For the Pöschl-Teller potential (5.5), the one-loop
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computation yields

E0 =
1√
2

≈ 0.707, ∆E =

√

2
(

1 −
√

2
)

≈ 0.910 i. (5.19)

The ground state energy is off by about 40% whereas the energy gap takes on an imaginary

and therefore nonphysical value. This comes along with the fact that the convexity of the

effective potential is not covered by a one-loop calculation. That phenomenon is well-known

to be an artifact of the loop expansion, and extensively discussed in, e.g., [246, 247]. Finally,

for the potential (5.6), no meaningful one-loop calculation can be provided. Due to the

nonanalyticity, any order in perturbation theory fails to produce a nonzero result for the

energy levels.

5.2.5. Flow of the effective potential

We study the full FRG flow of the given microscopic potentials starting from Λ and inte-

grating down to an effective mass scale at which we encounter convexity mechanisms. In

particular, we send Λ → ∞ as UV divergences are absent. Note that the flow hardly depends

on the UV modes [235]. We use the effective action (2.33). As we deal with the quantum

mechanical case, the integration variable is the time coordinate and the field φ̄ is replaced by

the space coordinate x. We compare the flows employing two different regulator functions,

the linear optimized regulator (2.14) and the Callan-Symanzik regulator,

Rk(p
2) = k2. (5.20)

For the linear optimized regulator, the flow is given by Eq. (2.35) (setting d = 1 and N = 1).

We deal with the dimensional version of it. Using the regulator (5.20), the flow equation

reads

∂kU
′
k = −1

4
k

3U ′′
k + 2ρ̄U ′′′

k

(k2 + U ′
k + 2ρ̄U ′′

k )3/2
, (5.21)

where ρ̄ = x2/2. For the ground state energy, we need the flow of the cosmological constant

which is not incorporated in the flow of U ′
k. Therefore, the flow of the potential at ρ̄ = 0 has

to be solved in addition. As soon as the flow of its first derivative is known, this corresponds

to a simple numerical integration of the flow equation of the potential. Note that this flow

equation has to be normalized such that the flow of a vanishing potential also vanishes. We

restrict our investigations to LPA (Zφ,k = 1). Both the scale k and the invariant ρ̄ are

compactified in the same way using Eq. (3.17) with L = 1.

We first point out some expectations on the outcome of the flow before discussing the

actual results. If we start with a classical, bounded potential, the effective potential at

k = 0 is bounded as well. One can prove this by considering the following definition of the
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effective potential [248],

Ueff(x̂) = inf
Ψ:〈x〉=x̂

〈H〉Ψ. (5.22)

It states that the effective potential at a point x̂ is given by the infimum of the expectation

value of the Hamiltonian over all states with position expectation value x̂. Exhaustive

discussions of the effective potential in quantum field theory can be found in, e.g., [248–251].

We assume that the classical potential is bounded from above by C ∈ ❘+ and from below by

zero without loss of generality. Therefore, expression (5.22) must be greater than or equal to

zero as a lower bound. For the upper bound, let us consider a normalized Gaussian function,

Ψ(x) =

(

eλ

π

)1/4

e−λ(x−x̂)2

, (5.23)

as a possible state with the position expectation value x̂. Employing Eq. (5.22), one easily

derives

Ueff(x̂) ≤ 〈P 2/2〉Ψ + 〈Ucl〉Ψ ≤ λ

2
+ C, (5.24)

which was to show. From the definition of the effective action (2.2), it is clear that the

effective potential is convex at k = 0. However, any bounded function which is not constant

cannot be convex. Consequently, if we could integrate the flow equations down to k = 0, we

would end up with a constant potential, and the constant is exactly the ground state energy.

Our naive expectation for the flow is therefore that we can hope to find the ground state

energy, but probably not the energy of the first excited state. Surprisingly, it turns out that

one can extract some estimate for the energy of the excited state from the flow.

As an exemplary case, we display the numerically computed flow for the nonanalytical

potential (5.6). The other two potentials show the same qualitative behavior. In Tab. 5.1,

Ucl(x) = 2/π arctan (x2)

exact CS opt
E0 0.448004 0.445 0.447
∆E 0.509453 0.477 0.558

Ucl(x) = 1 − 1/ cosh2(x)

exact CS opt
E0 1/2 0.496 0.499
∆E - 0.464 0.585

Ucl(x) = exp(−1/x2)

exact CS opt
E0 0.356644 0.355 0.356
∆E 0.542040 0.515 0.570

Tab. 5.1.: Overview of exact results from solving the Schrödinger equation and results obtained
from the flow of the potential for all three classical potentials. CS and opt indicate that
the Callan-Symanzik and the optimized regulator were used, respectively.
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Fig. 5.7.: Flow of the derivative of the potential for the Callan-Symanzik regulator. One can see
that the nonanalyticity of the classical potential smoothens out quickly. Convexity at
small scales arises for large values of ρ̄ in contrast to conventional unbounded potentials.

potential (5.4), the flow can be solved explicitly. The effective potential at k = 0 reads

Ueff(x) =
−πx2 +

√

16π(1 + x4) − π2

8π(1 + x4)
+

2

π

(

arctan(x2) + arctan

(
√

π

16(1 + x4) − π

))

.

(5.25)

A plot of both the classical and the effective potential is given in Fig. 5.8. Notably, the

large N effective potential is not convex. This seeming paradox has the following reason:

Convexity is tied to the condition that the propagator avoids a singularity for negative U ′
k(ρ̄)

and U ′′
k (ρ̄) which appears in the equivalent of the radial mode propagator. In the large N

approximation, however, only the equivalent of the Goldstone mode propagator survives. To

be finite, it is enough that U ′
k(ρ̄) is nonnegative. This is indeed the case for the solution

given above.

Not only in quantum mechanics and for bounded potentials, but in a much more general

context, the large N limit does not necessarily give rise to a convex effective potential.
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Fig. 5.8.: Comparison of the classical potential (5.4) and the corresponding effective potential (5.25)
in the large N limit. In contrast to finite N , we do not observe convexity of the effective
potential, but only that the derivative with respect to ρ̄ is nonnegative.

73



5. Solving functional flow equations via pseudo-spectral methods

It is easy to show for the O(N) model in d > 1 that nonconvexities remain in the IR if

U ′′
k (ρ̄) < 0 for some ρ̄. For a completely convex potential the presence of the radial mode

propagator turns out to be indispensable as argued above. The Goldstone mode propagation

only implements a “weak” convexity condition which applies for potentials with U ′′
k (ρ̄) ≥ 0.

Interestingly, there is no smooth interpolation between the large N limit and finite N at

least for this type of effective potentials. Therefore, no conclusion for the finite N case can

be drawn.
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5.3. Flows of the Higgs potential in a Yukawa model

The discovery of the Higgs boson at the LHC [51, 52] completed the search for the building

blocks of the standard model of particle physics. Although the mass of the Higgs boson

cannot be predicted exactly by the standard model, it is not necessarily an arbitrary pa-

rameter. For instance, assuming that the description of fundamental physics in terms of

standard-model degrees of freedom is valid at a high energy scale Λ and that the theory is

sufficiently weakly coupled, the Higgs boson mass is restricted to a finite range, the so-called

IR window [252–258]. The measured, comparatively small mass m̄H ≃ 125GeV raises new

questions concerning the Higgs-mass bounds and the stability of the electroweak vacuum.

Actually, the edges of the IR window [256, 259–285], i.e., the upper and lower admissible

values, for the Higgs mass are not sharply defined, but depend on a number of additional

assumptions. For the upper “triviality bound”, as the Higgs sector becomes strongly coupled

at high scales for large values of the Higgs mass, perturbative estimates of this bound for

example depend on an ad hoc choice of coupling values up to which perturbation theory is

trusted. By contrast, nonperturbative methods have shown that this upper bound relaxes

considerably if one allows the system to start microscopically with a strong Higgs self-

coupling [53, 58].

In the following work, we concentrate on the lower edge of the IR window. There, a similar

fuzziness arises due to the assumptions imposed on the precise form of the microscopic theory

at the high scale Λ within a perturbative treatment. Taking only perturbatively renormal-

izable operators into account corresponds to fixing infinitely many couplings of higher-order

operators. Otherwise, if the standard model is defined in terms of its symmetries, field

content and measured IR parameters, the microscopic action remains largely unspecified as

long as the underlying theory is not known. Electroweak collider data suggests that the ex-

plored region of theory space is close to the Gaussian fixed point. Here, power-counting can

be applied. Whereas IR observables constrain relevant and marginal couplings, irrelevant

couplings are left undetermined.

It has recently been shown that these unconstrained higher-dimensional operators in fact

can relax the lower edge of the IR window, i.e., can decrease the lower (stability) bound

on the Higgs mass without introducing metastability [53, 58, 59]. Comparatively simple

modifications of the bare action, e.g., in terms of a dimension-six operator at the Planck

scale can lower the lower mass bound by ∼ 1GeV, while preserving absolute stability on all

scales [59].

While controlled quantitative results have been obtained for a small class of operators

represented by simple low-order polynomials of the field, a possible metastable regime with

competing vacua has not been explored so far. For this purpose, a full functional renor-

malization of the effective Higgs potential as a function of the field and the RG scale is

required.

75



5. Solving functional flow equations via pseudo-spectral methods

The simple Yukawa model has proven to be useful for addressing the qualitative properties

of the IR window. At the beginning of this section, we discuss which degrees of freedom

of the standard model are incorporated in this model. We summarize recent results gained

within perturbation theory to put our study into perspective. An extensive mean-field study

in terms of Eq. (2.16), taking only fermionic fluctuations into account, follows. We explore

the full RG flow of the potential by means of pseudo-spectral methods and compare it with

both mean-field and polynomial results. Furthermore, we confirm the lowering of the Higgs-

mass bounds to a high accuracy in the fully stable regimes. As a new result, we discuss

the fate of the potential flows in the metastable regime. Finally, we consider the impact of

convexity mechanisms on estimates of the tunnel rate from static quantities and the phase

diagram as a function of the parameters of the microscopic action.

5.3.1. Higgs-Yukawa model with discrete symmetry

As mentioned above, the simple Yukawa model contains all degrees of freedom which are

relevant for our study. The simplest ansatz for the classical Euclidean action S is given by

Eq. (2.37), setting d = 4, k = Λ, Zφ,Λ = 1 and Zψ,Λ = 1. It corresponds to a reduction of

the standard model to one fermion flavor (Nf = 1), the top quark ψ with the largest Yukawa

coupling, and a real scalar Higgs field φ̄. The discrete chiral Z2 symmetry (2.38) mimics the

electroweak symmetry group, and protects the fermions against acquiring a mass term. No

massless Goldstone bosons appear after spontaneous symmetry breaking as the symmetry

is discrete. Hence, the particle spectrum is gapped in the broken phase as in the standard

model. This toy model was intensively discussed in the context of stability of the effective

potential in the literature, e.g., [53, 173, 174, 286, 287].

In order to make semi-quantitative contact with the standard model, we impose Coleman-

Weinberg renormalization conditions [247] on the effective potential obtained after integrat-

ing out all fluctuations down to the IR,

U ′
eff(φ̄0) = 0, m̄2

H = U ′′
eff(φ̄0), m̄2

t = φ̄2
0h̄

2
eff , (5.26)

where primes denote the derivative of the potential with respect to the argument and m̄H

and m̄t are the renormalized Higgs and top mass, respectively. All couplings are considered

to be renormalized at a suitable renormalization point µ, e.g., µ = φ̄0. Note that if we

take the scale dependence of Zφ,k and Zψ,k into account, we have to consider quantities

renormalized by the wave function renormalizations as we do in the second part of this

section. As the zero energy is irrelevant here, the zero point is chosen such that either

U(0) = 0 or U(φ̄0) = 0 depending on numerical convenience. For the observable parameters,

we choose m̄t = 173GeV for the top mass, and φ̄0 ≡ v = 246GeV for the electroweak VEV.

The Higgs mass m̄H then is treated as a function of the cutoff and a functional of the bare

action, m̄H = m̄H[SΛ; Λ].
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Despite this apparent physical fixing, the simplified model, of course, deviates quantita-

tively from the standard model in essential aspects. For instance, whereas the center of the

IR window for the Higgs mass is near ∼ 150GeV for a Planck scale cutoff in the standard

model [283], it is near ∼ 215GeV for the present simple model at high energy scales [288]

mainly due to the absence of the gauge sectors.

5.3.2. Perturbative effective single-scale potential

In order to make contact with the conventional perturbative treatment, we briefly sketch the

standard line of argument to obtain an estimate of the effective potential. For simplicity,

we consider only the one-loop level. Perturbatively, only the renormalizable operators of the

bare potential are considered,

UΛ =
m̄2

Λ

2
φ̄2 +

λ̄2,Λ

8
φ̄4, (5.27)

featuring the bare mass parameter m̄2
Λ and bare φ̄4 coupling λ̄2,Λ. The estimate for the

effective potential is based on the β function for the renormalized running coupling λ̄2,k,

∂tλ̄2,k =
1

16π2
(9λ̄2

2,k + 8h̄2λ̄2,k − 16h̄4
k), (5.28)

depending as well on the renormalized running Yukawa coupling h̄k. For the present line

of argument, it suffices to ignore the running of h̄k = h̄ which will be fully included in

our detailed studies later. The discussion can even be simplified further by noting that the

λ̄2,k-terms in (5.28) are small compared to the h̄4 term for small Higgs masses and large top

masses. In this limit, which corresponds to ignoring scalar fluctuations, the integration of

the β function yields

∂tλ̄2,k = − h̄4

π2
⇒ λ̄2,k = λ̄2,µ − h̄4

2π2
ln
k2

µ2
, (5.29)

with µ denoting the renormalization point for λ̄2,k.

The conventional perturbative estimate of the effective potential is then inspired by the

Coleman-Weinberg form of the effective potential [247]. One assumes that the effective poten-

tial is well approximated by identifying the dependence of the integrated scalar self-coupling

on the RG scale k with the scalar field itself, λ̄2,k=φ̄. We emphasize, that the identification

k = φ̄ mixes momentum scale information k with the field amplitude. In general, the full

effective action in field theory would provide separate information about the two scales which

need not be the same. By this identification, we obtain a single-scale potential which in our
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Fig. 5.9.: Conventional effective single-scale potential US
eff as a function of the field amplitude φ̄.

While the potential looks stable around the electroweak minimum, it develops an insta-
bility at large field values within our toy model. This instability seems to be driven by
top fluctuations which turn the scalar self-coupling negative at large scales, cf. Eq. (5.29).

simple approximation reads

US
eff(φ̄) =

1

2
m̄2
µφ̄

2 +
λ̄2,k=φ̄

8
φ̄4

=
1

2
m̄2
µφ̄

2 +
λ̄2,µ

8
φ̄4 − h̄4φ̄4

16π2
ln
φ̄2

µ2
. (5.30)

One can show that the direct computation of the effective action via Eq. (2.16) leads to the

same result, cf. App. E. Imposing the renormalization conditions (5.26) together with the

choice µ = φ̄0 = v, we can write the single-scale potential as

US
eff(φ̄) = −1

4

[

m̄2
H +

m̄4
t

2π2v2

]

φ̄2 +
1

8

[

m̄2
H

v2
+

3m̄4
t

4π2v4

]

φ̄4 − m̄4
t φ̄

4

16π2v4
ln
φ̄2

v2
. (5.31)

Note also, that the bare potential (5.27) remains completely unspecified in this derivation.

The implicit use of only renormalizable operators together with the limit Λ → ∞ permitted

by perturbative renormalizability seems to suggest that the details of the bare potential are

irrelevant.

Clearly, this single-scale potential develops an instability for large Yukawa couplings, i.e.,

large m̄t. For the present choice of parameters, the instability occurs at a scale of ∼ 107GeV

in our toy model, see Fig. 5.9. This instability is related to the running of λ̄2,k, which turns

negative at sufficiently large k, cf. Eq. (5.29).

In the full standard model, the corresponding instability scale is of order ∼ 1010GeV.

Current state-of-the-art calculations [280, 283, 285] determine the single-scale potential to

NNLO precision, including two-loop threshold corrections, and self-consistent resummations

[289, 290]. However, the present rather cartoon-like presentation in a toy model still captures

the essence of the origin of the instability occurring in the perturbative estimate of the single-

scale potential.
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5.3. Flows of the Higgs potential in a Yukawa model

A qualitative difference arises in the standard model from the electroweak gauge fluctu-

ations, which render the φ̄4 coupling positive again at even higher scales. The single-scale

potential becomes bounded from below and a second minimum arises beyond the Planck

scale which turns out to be the global one. Therefore, the absolute instability of the single-

scale potential is a particularity of our model. Below, this will actually be useful to make

one of our main points more transparent.

5.3.3. Mean-field effective potential and stability

In the following, we use mean-field methods, cf. Eq. (2.16), to study the effective potential.

We stick to the same simplifications as before, ignoring bosonic fluctuations and the running

of the Yukawa coupling, but keep track of all scales involved, the momentum scale of fluc-

tuations k, the field amplitude φ̄ and the UV cutoff scale Λ. Therefore, we are left with the

evaluation of the determinant in Eq. (2.16) containing only fermionic contributions. Parts

of this discussion follows [53, 58], where also more technical details can be found. Here, we

focus on the new aspects arising for un-/metastable scenarios, cf. [141].

Mean-field potential

With these prerequisites, the mean-field potential is directly related to the fermion determi-

nant. More precisely, working with an explicit UV cutoff Λ and an IR regulator scale k, the

mean-field potential reads,

UMF
k (φ̄) = UΛ − 1

Ω
ln det Λ,k(i/∂ + ih̄φ̄), (5.32)

where Ω denotes the spacetime volume, and irrelevant field independent constants are ig-

nored. If we would introduce Nf fermion flavors, the mean-field approximation would become

exact in the limit Nf → ∞. The notation detΛ,k indicates that the determinant is regularized

and includes momentum modes p in the range k2 ≤ p2 ≤ Λ2. The result is regularization

dependent. As long as we do not send Λ → ∞, this dependence is physical and can be

viewed as a model for the details of the embedding into a more fundamental underlying

UV complete theory. For a close contact with later sections, we use the linear optimized

regulator (2.15). We emphasize that all conclusions remain the same also for a sharp mo-

mentum cutoff, propertime or zeta-function regularization, see [58]. Evaluating the fermion

determinant which is done in App. F, we obtain,

UMF
k (φ̄) = UΛ − h̄2(Λ2 − k2)φ̄2

16π2
+
h̄4φ̄4

16π2
ln

Λ2 + h̄2φ̄2

k2 + h̄2φ̄2
, (5.33)
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Fig. 5.10.: Comparison between the effective potential where the cutoff is kept finite (black solid
line, Λ = Λcr = 1.22 · 107GeV) and the single-scale potential (red dashed line). Both
approaches describe the same low energy physics around the Fermi scale as they should,
while at high energies a seeming instability appears for US

eff .

which makes all scale dependencies explicit. By varying the RG scale k from k = Λ to k → 0,

we can observe how the mean-field effective potential as a function of the field amplitude φ̄,

UMF
eff (φ̄) = UMF

k=0(φ̄) =
1

2

(

m̄2
Λ − h̄2Λ2

8π2

)

φ̄2 +
λ̄2,Λ

8
φ̄4 +

h̄4φ̄4

16π2
ln

(

1 +
Λ2

h̄2φ̄2

)

, (5.34)

is built up from fermionic fluctuations renormalizing the bare potential UΛ.

Apart from the induced mass term ∼ h̄2Λ2φ̄2, the whole interaction part of the determinant

∼ h̄4φ̄4 ln(. . .) is positive. The bare mass term m̄2
Λ can now be fixed by the renormalization

condition (5.26), which sets the Fermi scale,

m̄2
Λ =

h̄2Λ2

8π2
− h̄4v2

8π2

[

2 ln

(

1 +
Λ2

h̄2v2

)

− Λ2

Λ2 + h̄2v2

]

− 1

2
λ̄2,Λv

2. (5.35)

Inserting Eq. (5.35) into Eq. (5.34) yields a globally stable effective potential for any value

of the UV cutoff Λ and any admissible nonnegative value of the bare φ̄4 coupling λ̄2,Λ ≥ 0,

cf. solid black line in Fig. 5.10. It is important to stress that a bare potential of quartic

type, Eq. (5.27), with negative λ̄2,Λ would be inconsistent right from the beginning, as the

functional integral over the scalar field would be ill-defined.

For completeness of the presentation, we recall that the Higgs mass now becomes a function

of the cutoff and λ̄2,Λ, cf. [53, 58],

m̄2
H =UMF

eff
′′(v)

=
m̄4

t

4π2v2

[

2 ln

(

1 +
Λ2

m̄2
t

)

− 3Λ4 + 2m̄2
t Λ

2

(Λ2 + m̄2
t )2

]

+ v2λ̄2,Λ. (5.36)

This demonstrates that a lower bound for the Higgs mass is obtained by the physical re-

striction that the bare potential of φ̄4-type at a given UV cutoff Λ must be bounded from
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5.3. Flows of the Higgs potential in a Yukawa model

below, i.e., λ̄2,Λ ≥ 0. Thus, the lower bound (lower edge of the IR window) is given by

λ̄2,Λ = 0 for this class of bare potentials. This way of determining the lower bound has

been suggested in [286, 287], and has been used in full nonperturbative lattice simulations

[291–294]. Generically, one observes a strong quantitative agreement with mean-field theory

for this lower bound.

For the purpose of the present work, we reverse the line of argument: for a given Higgs

mass of, say m̄H = 125GeV, this implies that a maximal scale of UV extension Λ is obtained.

Choosing the minimal admissible value λ̄2,Λ = 0 a cutoff of Λcr = 1.22 · 107GeV is obtained

by writing Λ = Λ(m̄2
H, λ̄2,Λ). For larger values of the UV cutoff, Λ > Λcr no physical (mean-

field) RG trajectory can be found that connects an admissible bounded bare potential to an

IR Higgs mass of 125GeV. As long as Λ ≤ Λcr, the bare potential as well as the effective

potential do not exhibit an instability. Figure 5.10 shows a comparison between the mean-

field potential (solid/black line) where the cutoff is kept finite and the single-scale potential

(red/dashed line) where the cutoff has implicitly been sent to infinity. The single-scale

potential approximation starts to break down for field amplitudes, where h̄φ̄/Λ & O(1), i.e.,

where terms which are dropped in the implicit Λ → ∞ limit are actually sizable.

It is, of course, possible to reduce the multi-scale mean-field potential to the single-scale

potential. First, we blindly enforce all renormalization conditions. In particular the first

condition in (5.26) for large cutoffs compared to the electroweak scale implies

λ̄2,Λ =
m̄2

H

v2
− h̄4

2π2

[

ln
Λ2

m̄2
t

− 3

2

]

+ O
(

1

Λ2

)

. (5.37)

Inserting Eqs. (5.37) and (5.35) into the mean-field effective potential finally leads to a

potential with the requested minimum at v and Higgs mass of m̄H by construction. The

cutoff remains still a free parameter. In the naive large cutoff limit, we obtain

UMF
eff

“Λ→∞”−−−−→ − 1

4

[

m̄2
H +

m̄4
t

2π2v2

]

φ̄2 +

[

m̄2
H

v2
+

3m̄4
t

4π2v4

]

1

8
φ̄4

− m̄4
t φ̄

4

16π2v4
ln

(

Λ2

Λ2 + h2φ̄2

φ̄2

v2

)

+ O
(

1

Λ2

)

. (5.38)

For a cutoff larger than the critical value Λcr, the potential develops an instability and rapidly

approaches the single-scale potential, see Fig. 5.11. For Λ > 108GeV, the difference between

the mean-field effective potential with a finite cutoff and the single-scale potential with

implicit limit Λ → ∞ becomes very small. Taking the naive limit Λ → ∞, the single-scale

potential (5.31) is obtained as expected.

We emphasize that the consistency condition that the bare potential should be bounded

from below for a well-defined generating functional is no longer fulfilled for all Λ > Λcr. This

can be directly read off from expression (5.37): λ̄2,Λ has to be chosen negative for Λ > Λcr,

and thus already the bare potential is unstable. At this point, we conclude that the apparent
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Fig. 5.11.: Approach of the mean-field potential to the single-scale potential if we blindly allow
for cutoffs Λ larger than the critical value of Λcr = 1.22 · 107GeV (black solid) with IR
physics kept fixed; Λ = 2 · 107GeV (blue dotted line), and Λ = 5 · 107GeV (orange dotted
line). For Λ > 108GeV, there is no visible difference between the mean-field potential
and the single-scale potential (red dashed line) in this plot.

instability of the single-scale potential appears due to an inconsistent UV boundary condition

for the theory. As long as the consistency condition λ̄2,Λ ≥ 0 is fulfilled, no instability can

be found within the class of quartic bare potentials.

Generalized bare potentials

As already emphasized in [53, 58, 59], these observations do not imply that in- or metasta-

bilities are completely excluded. Whether or not an in-/metastability occurs is not a matter

of the fermionic fluctuations but has to be seeded by the microscopic underlying theory. A

specific example from string phenomenology is given in [295].

From the perspective of the standard model as an effective field theory, the embedding

into a UV complete theory is parametrized by the bare action at the cutoff Λ. Of course, the

bare action is expected to host all operators compatible with the symmetry with couplings

of order O(1) in units of the cutoff Λ.

In the following, we consider the simplest extension of the bare potential by including a

higher-dimensional φ̄6 operator as an example,

UΛ =
m̄2

Λ

2
φ̄2 +

λ̄2,Λ

8
φ̄4 +

λ̄3,Λ

48Λ2
φ̄6. (5.39)

Within the same mean-field approximation as used before, we can straightforwardly compute

the mass of the Higgs boson in our model as a function of Λ and the parameters λ̄2,Λ and

λ̄3,Λ, cf. Eq. (5.36),

m̄2
H =

m̄4
t

4π2v2

[

2 ln

(

1 +
Λ2

m̄2
t

)

− 3Λ4 + 2m̄2
t Λ

2

(Λ2 + m̄2
t )2

]

+ v2λ̄2,Λ +
v4

2Λ2
λ̄3,Λ. (5.40)
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Fig. 5.12.: Higgs masses for the class of generalized bare potentials for Λ = 107GeV. The bare po-
tential is stabilized by λ̄3,Λ = 3. The horizontal black solid line marks the lower Higgs
mass consistency bound within quartic bare potentials. The blue solid line indicates val-
ues for λ̄2,Λ where the IR potential is stable while for the blue dashed line a metastability
occurs, λ̄2,Λ . −0.067.

It is obvious that the previous lower bound of (5.36) can be relaxed by a negative value

for λ̄2,Λ, while a positive λ̄3,Λ can stabilize the bare potential. For small negative λ̄2,Λ and

sufficiently large λ̄3,Λ the effective potential as well as the potential at intermediate scales k

are globally stable and have a unique minimum. In this regime, it is easily possible to obtain

Higgs masses below the perturbative lower bound, i.e., decrease the edge of the IR window.

For even smaller λ̄2,Λ, i.e., larger absolute values of a negative λ̄2,Λ, the effective potential

UMF
k starts to develop a second minimum towards lower RG scales k and becomes metastable,

while the bare potential UΛ is still stable. For even smaller values of λ̄2,Λ, also the bare

potential can become metastable.

For an illustration, let us assume a fixed cutoff Λ = 107GeV. Within the class of quartic

bare potentials (5.27), the lowest Higgs mass according to (5.36) is given by m̄H = 123.8GeV

for λ̄2,Λ = 0. Stabilizing the more general class of bare potentials (5.39) with a fixed value

of λ3,Λ = 3, we can choose negative values of λ̄2,Λ, yielding also smaller values of the Higgs

mass, see Fig. 5.12. The resulting mean-field potentials are stable with a unique (electroweak)

minimum on all scales (blue solid line) until we reach a value for the bare quartic coupling

of λ̄2,Λ = −0.065. For even smaller values of λ̄2,Λ, a second minimum arises in the course

of the mean-field flow, while the bare potential still has a unique minimum. This second

minimum is a local minimum only for a small range of λ̄2,Λ values, −0.0671 < λ̄2,Λ < −0.065.

For λ̄2,Λ < −0.0671, the second minimum becomes the global one (blue dashed line), which

renders the electroweak minimum in the effective potential metastable. Within this regime of

metastability, the Higgs mass can be made arbitrarily small by a suitable choice of parameters

even without any metastability in the bare potential.

It is important to emphasize that the metastability observed here in this model is a

consequence of the shape of the bare potential encoded in both renormalizable and non-

renormalizable operators. In the present model, this metastability remains invisible in the
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Fig. 5.13.: Mean-field potential (black solid) as the difference between the bare potential (blue
dashed) and the absolute value of the fermion determinant (red dotted). The Fermi
minimum at φ̄ = 246GeV is hardly visible on the scale of the plot. Left panel: the quartic
bare potential always exceeds the contributions from the fermion loop for field values
above the Fermi scale (Λ = 107GeV, λ̄2,Λ = 0, λ̄3,Λ = 0). Right panel: a metastability
seeded by the bare potential develops in the course of the RG flow (Λ = 107GeV,
λ̄2,Λ = −0.15, λ̄3,Λ = 3).

perturbatively estimated single-scale potential which would predict complete instability. We

conclude that metastability properties of the model can only be reliably calculated if the

bare potential at an UV scale is known. The single-scale potential is not sufficient as a

matter of principle.

In the considered model, this conclusion becomes obvious as the single-scale potential

does not even exhibit a metastable region. This is different from the standard model, where

the single-scale potential itself predicts metastability for light Higgs masses, as the single-

scale potential is stabilized by electroweak fluctuations again at high field amplitudes. Still,

the same conclusion about the reliability of the metastability estimate of the single-scale

potential holds as for the simple model.

The fact that the metastability in the effective potential is seeded in the bare potential is

illustrated in Fig. 5.13. Here, the effective mean-field potential (black solid line) is shown

as the difference between the bare potential (blue dashed line) and the absolute value of

the fermion determinant (red dotted line). The left panel depicts the case with stable bare

as well as effective potential (initial parameters: Λ = 107GeV, λ̄2,Λ = 0, λ̄3,Λ = 0). By

contrast, the right panel shows the case where a second minimum arises in the effective

potential (initial parameters: Λ = 107GeV, λ̄2,Λ = −0.15, λ̄3,Λ = 3). One clearly sees how

the modified structure of the generalized bare potential with a negative λ̄2,Λ is responsible for

the second minimum at large scales besides the electroweak one (the latter at φ̄ = 246GeV is

hardly visible on the scales of the plot). We emphasize again that there is no possibility for

the mean-field potential to develop a second minimum for the general case of quartic bare

potentials. As it can be seen in Fig. 5.13 for the smallest possible value λ̄2,Λ = 0, the bare

potential always exceeds the fermion determinant, especially for larger UV values of λ̄2,Λ.
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Fig. 5.14.: Full mean-field potential (black solid line) and the potential approximated by a Taylor
expansion (red dashed line) around the origin up to φ8 for different values of the RG
scale k. The left panel shows the bare potential for Λ = 109GeV (λ̄3,Λ = 3, and λ̄2,Λ is
chosen such that m̄H = 125GeV), where the Taylor approximation fits the full potential
as it should. The middle plot shows the scalar potential slightly below the UV cutoff,
k1 = 2.5 · 108GeV < Λ, where the second minimum is built up. Towards the IR,
k2 = 5 · 107GeV, the second minimum settles while it disappears within the Taylor
expansion (right plot).

Break down of the Taylor expansion at a mean-field example

With the mean-field effective potential, we can investigate the convergence of the Taylor

expansion in the case of a metastability. In [59], a pseudo-stable phase was observed within a

polynomial expansion. There, polynomial RG flows were observed that start at k = Λ with

a globally stable bare potential, then run trough a metastable regime with two minima and

finally end up in the IR k = 0 with one stable minimum at the Fermi scale. We now expand

the mean-field effective average potential (5.33) around the minimum at the origin and follow

its flow in comparison with the flow of the full mean-field effective potential. This is depicted

in Fig. 5.14. Indeed, the potential approximated by a polynomial expansion shows the same

pseudo-stable behavior as observed in [59]. A second minimum appears but disappears again

after a short RG time. The polynomial expansion thus looks stable again in the IR. This is

in contrast to the full mean-field potential where the second minimum survives the RG flow

towards the IR. Thus, the global effective mean-field potential exhibits a metastability. We

conclude that the pseudo-stable phase is an artifact of the finite convergence radius of the

polynomial expansion.

This example shows that a simple Taylor expansion is not appropriate to correctly resolve

the metastability of the effective potential which develops during the flow. That also holds

for the beyond-mean-field case. Therefore, we are now interested in full flows of the potential

as a function of the field and the RG scale.

5.3.4. Nonperturbative flow of the scalar potential

While the mean-field approximation is highly convenient for first analytically controllable

estimates, we have to go beyond for quantitative accuracy, for which the FRG provides a

perfect tool. Doing so, all fermionic and bosonic fluctuations are integrated out. Equation

(2.37) serves as an ansatz for the effective average action. The flow of the effective potential
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is given by Eq. (2.40). Again, it is convenient to consider the stable flow of its first derivative

(2.41) and to compute the effective potential by integration. Now, we take the scaling of

the wave function renormalizations in terms of the anomalous dimensions, Eq. (2.43) and

Eq. (2.44), and the Yukawa coupling (2.42) into account. After the dimensionless electroweak

VEV shows dimensional scaling, we switch to the dimensional flow. Note that we now

consider dimensional quantities which are renormalized by the corresponding wave function

renormalizations (m̄H = m̄H,R and m̄t = m̄t,R).

For the flow of potentials exhibiting a single minimum, a polynomial expansion [53, 58, 296,

297] around the minimum has proven to be appropriate. However, the example of the seeming

pseudo-stable phase above has shown that a proper description of metastability doubtlessly

requires the resolution of the full potential as a function of both k and ρ̄. In order to run the

RG flow over many orders of magnitude in presence of a relevant operator φ̄2 of canonical

dimension 2, the PDE solver additionally needs to be of high precision. The following results

show that pseudo-spectral methods are a well suited tool for these requirements. This enables

us to choose high UV cutoffs. The choice is solely restricted by the number of digits needed

for tuning the IR quantities. Due to the canonical scaling of the mass operator, we need

to tune approximately twice as many digits as the number of orders of magnitude between

the UV scale and the Fermi scale. All full potential computations have been done with

long double. Thus, we restricted ourselves to a maximal UV cutoff of 1010GeV for the full

potential calculation. In principle, higher values for Λ are straightforwardly accessible by

using a higher accuracy for the floating-point arithmetics.

Higgs-mass bounds

As a benchmark, we perform a comparison to local polynomial solutions of the flow equation.

For this purpose, we compute Higgs masses for different initial values over a large range of

cutoff values. In Fig. 5.15, we depict the resulting IR Higgs mass as a function of the UV

cutoff Λ. The solid lines mark the Higgs masses computed within the polynomial truncation,

whereas the filled circles correspond to those resulting from the pseudo-spectral full potential

computation. For the restricted class of φ̄4 bare potentials, the black data shows the resulting

lowest possible Higgs mass, i.e., the conventional lower bound for λ̄2,Λ = 0. Examples within

the class of generalized bare potentials that lead to a relaxation of the lower bound are

shown in red (λ̄2,Λ = −0.1, λ̄3,Λ = 3) and orange (λ̄2,Λ = −0.15, λ̄3,Λ = 3). The black and

red line agree with the results of [53]. For all cases, the pseudo-spectral data lies perfectly

on top of the polynomial results. The orange data corresponds to a potential that develops

a metastability, i.e., it seems pseudo-stable in the polynomial expansion. The full numerical

PDE solution thus provides a strong confirmation that the polynomial expansion is suitable

for extracting local information such as the Higgs mass (∼ curvature of the potential at

φ̄0,R = v), although the outer structure may not be displayed correctly.
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Fig. 5.15.: Higgs-boson mass as a function of the UV cutoff for various bare potentials. The filled
circles are obtained by solving the full PDE system. These match perfectly with the
Higgs masses computed within the polynomial expansion (2.22) of the scalar potential
for the class of φ̄4-type bare potentials (black, conventional “lower bound” λ̄2,Λ = 0)
as well as generalized bare potentials for the case where the effective potential is stable
for Λ & 104GeV (red, λ̄2,Λ = −0.1, λ̄3,Λ = 3) or develops a metastability (orange,
λ̄2,Λ = −0.15, λ̄3,Λ = 3).

Full potential flows

Let us start with a closer look at the behavior of the full flow for the class of the φ̄4 bare

potentials. Obviously, the polynomial truncation lacks in describing the asymptotic behavior

of the potential which can be seen in Fig. 5.16. This is not surprising since the flow equations

suggest the asymptotic behavior to be that of the UV potential ∼ φ̄4 because fluctuations for

large field amplitudes are suppressed. By contrast, the asymptotic behavior of the polynomial

expansion is fixed by construction to the highest power of the field which is taken into

account in the truncation, ∼ φ̄2Np . These higher order couplings are generated during the

RG flow, even if the bare potential is of φ̄4 type. Therefore, considering only terms up to

φ̄4, (accidentally) displays the asymptotic behavior best.

Naively, the polynomial truncation up to sixth order in φ̄ seems to suggest an instability;

however, the inflection point is beyond the radius of convergence of the polynomial expan-

sion around the Fermi scale. This radius of convergence is approximately of the order of

the curvature around the electroweak minimum [53]. For large field values the polynomial

expansion behaves like an asymptotic series with alternating signs between the coefficients.

Incidentally, an alternating series is also obtained from the polynomial expansion of the

mean-field effective potential. As long as the φ̄4 class of bare potentials is considered, no

hint for an in-/metastability can be found within the radius of convergence of the polyno-

mial expansion. This is confirmed by the fully stable potential obtained from the global

pseudo-spectral flow.

We observe that the mean-field potential agrees quite well with the results for the full

potential, for small as well as for larger field values, see green dashed curve in Fig. 5.16.

The fluctuations of the bosons appear to play a minor role in this parameter regime near
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For potentials with a single minimum, we have seen in Sec. 5.1 that convexity of the

running potential sets in rather late in RG time, i.e., convexity is driven by the very deep

IR modes which are often no longer relevant for the IR observables. For instance in the

examples above, we have stopped the flow at scales kIR ∼ 10 . . . 100GeV, where the IR Fermi

scale observables have already settled to their physical values. Still, for these values of k, the

approach to convexity has not fully set in yet. Whereas this demonstrates that convexity

is not important for the static observables, it is an interesting question as to whether the

approach to convexity can be important for estimates of the tunneling rate between two

different minima. The relevance of this question becomes obvious from the fact that any

tunneling barrier in a convex potential is (naively) exactly zero by construction.

With only one minimum at the Fermi scale, the onset of convexity follows along the

lines of Sec. 5.1. However, in comparison to purely bosonic models, fermionic fluctuations

delay convexity since they enter the flow equation with an opposite sign, cf. the last term

in Eq. (2.40). Thus, bosonic fluctuations have to exceed the fermionic fluctuations first.

As convexity also introduces nonanalyticities, its onset becomes numerically first visible in

higher derivatives. Therefore, we consider the first derivative of the potential u′ in the

following. In the case of a single minimum, the balancing between bosons and fermions

also implies that the onset of convexity becomes more pronounced if the boson coupling

λ̄2,k is enhanced relative to the fermion coupling h̄k. In terms of physical parameters, this

implies that convexity should become more prominent for larger Higgs-to-top mass ratios.

In Fig. 5.18, we plot u′ for three different ratios m̄H/m̄t. The flow has been stopped at a
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Fig. 5.18.: The approach to convexity of the potential is faster if the ratio between bosonic
and fermionic coupling m̄H/m̄t increases (from green/top to blue/bottom: m̄H/m̄t =
0.23, 0.66, 1.12). Here, the first derivative of the potential as a function of the renor-
malized dimensionful field invariant is depicted. All potentials exhibit a minimum (i.e.,
u′ = 0) at φ̄R = 246GeV (ρ̄R=30258GeV2). The approach to convexity becomes mani-
fest by a characteristic flattening of the inner region and u′ approaching u′ → −1. We
have chosen Λ = 103GeV and m̄H = 39.7GeV for the green/top curve stopping the flow
at kIR = 33.4GeV, and Λ = 106GeV and m̄H = 113.6GeV for the orange/middle curve
stopping at kIR = 80GeV. The blue curve is added for illustration; here Λ = 6.5 ·104GeV,
v = 246GeV, m̄t = 426.3GeV, m̄H = 476.6GeV, and kIR = 264.5GeV, such that the curve
is not tuned to the physical top mass in terms of the renormalization conditions (5.26).
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5. Solving functional flow equations via pseudo-spectral methods

However, for decreasing scale k the bosonic fluctuations win out over the fermionic ones and

convexity sets in as well, similar to Fig. 5.18. We emphasize that the approach to convexity

appears to set in at different scales for small and large field amplitudes.

In the present example, convexity affects the tunnel barrier at scales k which are more

than an order of magnitude smaller than the field amplitude of the barrier and the outer

minimum. A calculation of the tunnel rate which is dominated by the latter scales hence

is expected to be only weakly influenced by the approach to convexity. As a general rule,

we conclude that the standard recipes for calculations of the tunnel rate [298, 299] remain

unaffected as long as the fermion fluctuations dominate the renormalization of the potential.

Whether or not this is the case at the relevant scales of interest will in general depend on the

details of the scale-dependent potential and thus also on the details of the bare potential.

As soon as the bosonic fluctuations become important, the approach to convexity has also

to be accounted for in estimates of the tunneling rate.

In the FRG context, a proposal for this has been worked out for scalar models in [300].

A formalism that can also systematically deal with further radiative effects in the resulting

inhomogeneous instanton background on top of a radiatively generated potential has recently

been developed with the help of a self-consistent functional scheme based on the 2PI effective

action [301, 302].

We would like to emphasize the necessity of a simultaneous consistent treatment of the

renormalization flow of the potential together with the fluctuation contributions in a tunnel-

rate calculation – even if the bare potential was known exactly. Of course, unknown higher

dimensional operators then further add to the indeterminacy of the vacuum decay rate [59,

303–306]. For instance, the influence of gravity-induced higher dimensional operators has

been studied in [307–310].

5.3.6. Quantum phase diagram of the Higgs-Yukawa model

Can the outer global minimum be used to define the electroweak vacuum? If the occurrence

of metastability is rather generic in presence of higher-dimensional operators, could it be

possible to fix physical parameters with respect to the global minimum as the Fermi scale?

In order to address these questions, we now reconsider the model from a more general

viewpoint.

So far, we have fixed the model with the help of the renormalization conditions (5.26)

applied to the first or innermost minimum. Instead, let us now start from a fixed UV

cutoff Λ with some bare potential bounded from below and read off the IR phases from

the effective potential at some IR scale k where all modes have decoupled (apart from

the approach to convexity). We are most interested in this quantum phase diagram as a

function of the (super-)renormalizable operators ∼ m̄2
Λφ̄

2 and ∼ λ̄2,Λφ̄
4, as the electroweak

precision data tells us that the standard model is sufficiently close to the Gaussian fixed
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5.3. Flows of the Higgs potential in a Yukawa model

point, where perturbation theory based on these operators works very well. In other words,

higher-dimensional operators do not take a momentarily measurable influence on collider

data.

In the language of critical phenomena, the standard model appears to be close to a second-

order quantum phase transition that effectively allows to push the UV cutoff to large values

(compared to collider scales). The natural candidate in the standard model is the electroweak

(quantum) phase transition represented by the order-disorder phase transition of discrete

chiral symmetry in our simple model. It is, in fact, straightforward to verify by means of

perturbation theory, mean-field theory or the functional RG that this phase transition is of

second order for φ̄4 type bare potentials in the stable regime. The “control parameter” for

the quantum phase transition is the bare mass term m̄2
Λ.

In the following, we perform this investigation for the class of generalized bare potentials.

For this, we fix λ̄3,Λ = 1 as a representative of a higher-dimensional operator that induces

absolute stability. We expect the following results to hold also for other polynomial operators

that ensure absolute stability for large field amplitudes. For technical simplicity, we keep

the Yukawa coupling h̄2
k ∼ O(1) fixed and also neglect the anomalous dimensions, as both

do not induce qualitative differences. Still, we keep the full bosonic fluctuation contribution

to the flow of the potential.

Choosing λ̄2,Λ negative but with a small absolute value, the potential will still show only

one minimum and the phase transition as a function of m̄2
Λ still is of second order as for the

φ̄4-class, cf. left-hand side of Fig. 5.20. Increasing the absolute value of a negative λ̄2,Λ a bit,

and starting with a large value of m̄2
Λ, the sufficiently negative λ̄2,Λ may seed a local higher

minimum at large field amplitudes. Nevertheless, the system is in the symmetric phase with

the global minimum at φ̄0 = 0 (upper left part of Fig. 5.20). On the left-hand side of this

figure, we do not further distinguish between the existence or nonexistence of a further local

outer minimum; potentials with a local outer minimum shown here only represent possible

examples.

Decreasing m̄2
Λ, we indeed observe a second-order phase transition to a broken phase driven

by fermion fluctuations where the order parameter φ̄0 = v is switched on continuously, cf.

white region in Fig. 5.20. A local higher minimum at larger field amplitudes may arise by

decreasing m̄2
Λ or persists if it already existed. It is this second-order phase transition which

can serve to define a “continuum limit” essentially establishing cutoff independence.

Decreasing m̄2
Λ further, first leads to a lowering of the outer minimum such that the inner

minimum becomes metastable (dotted region). The phase transition between the two cases

is of first order (dashed lines). For even smaller mass parameters m̄2
Λ, the inner minimum

vanishes discontinuously while the outer remains (gray-shaded region in Fig. 5.20). We also

classify this discontinuous change of the system as a first-order transition, even though it

would not correspond to a thermal phase transition. On both sides of the lower dashed line,

the system is dominated by the global minimum in the thermodynamic limit.
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For instance, the transition marked by the gray thick arrow is a first-order broken-to-broken

transition. This is likely to correspond to an equivalent transition first observed in lattice

simulations of a similar chiral model [55].

We emphasize that the phase portraits determined here correspond to quantum phase

transitions with control parameters corresponding to parameters of the bare action. This is

a priori unrelated to the nature of finite temperature phase transitions in the same model,

even though a relation might be established dynamically because of a thermal decoupling of

the fermions. For recent lattice studies, see [57, 311].

5.4. Conclusions

We have shown that pseudo-spectral methods are not only a powerful tool for solving fixed-

point equations but also flow equations of bosonic as well as fermionic models. We first

discussed flows of the O(N) model in three dimensions, for N = 1, 4 and in the large N

limit. In all cases, we could achieve a highly stable and precise flow. We showed that our

method can accomplish the time integration to machine precision, and always stays very

close to the analytical solution exactly known in the large N limit. The error in this case

is dominated by the condition of the differential equation. Even for numerically challenging

tasks, as resolving the convexity of the effective potential in the IR, the flow was traceable

for 5 orders of magnitude for N = 4, and about 2 orders of magnitude for N = 1. Between

the first multicritical fixed point and the Wilson-Fisher fixed point in d = 2.4, we have found

a separatrix. For the flow along the separatrix, we have integrated out almost 13 orders of

magnitude at high precision. It would be interesting to investigate if there exists a separatrix

connecting more than two (multi-)critical fixed points.

As a second model, we treated a set of ❩2-symmetric bounded potentials in quantum

mechanics. Whereas it was sufficient to consider the flows on a finite field range for the

unbounded potentials from above, bounded potentials need to be resolved globally for a

numerically stable flow. This is more challenging but technically interesting to probe the

capabilities of pseudo-spectral methods. For the three potentials that we discussed, we

extracted the energies of the ground state and first excited state in the LPA truncation to

satisfying accuracy, even though one might have expected from analytical arguments that the

determination of the first excited state energy was not possible from the effective potential

alone. It is worth mentioning that the nonanalyticity of the nonanalytical potential poses

no problem to our method, in contrast to expansions in powers of the field.

In the second part of this chapter, we have investigated the RG flow of the Higgs potential

in a Yukawa model. Within the mean-field calculation and the RG flow of the full potential,

we have resolved both scales, k and φ̄, of the potential. This allows us to overcome the

limitations of conventional approximation schemes, relying on identifications such as k = φ̄,

or implicit perturbative limits Λ → ∞. In case of metastabilities, we demonstrated that the
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5. Solving functional flow equations via pseudo-spectral methods

distinction of both scales is necessary for a clear analysis. Metastabilities are not primarily

induced by fermion fluctuations, but have to be seeded by suitable properties of the bare

potential. In particular, instabilities cannot occur if a well-defined bare action is restricted

to contain only renormalizable operators. Upon the inclusion of suitable higher-dimensional

operators, metastabilities generically occur for small Higgs masses and large cutoffs – at least

within the class of simple polynomial bare potentials studied here.

The pseudo-spectral methods facilitate to resolve both the flow of one minimum and two

competing minima taking all fermionic as well as bosonic fluctuations within LPA′ into

account. We have confirmed earlier results from local flows around the Fermi minimum

to high accuracy, such as, for instance, the relaxation of the perturbative lower bound on

the Higgs mass. On the other hand, the pseudo-spectral flow also reveals the limitations

of the local flow in metastable regimes as competing minima turn out to be beyond the

radius of convergence of local flows. In the small-Higgs-mass regime, the full functional flow

demonstrated the usefulness of the mean-field approximation. However, mean field is not a

suitable approximation to resolve the approach to convexity. For estimates of the tunnel rate,

the influence of convexity is an intriguing question. As convexity is driven by the bosonic

fluctuations of the deep IR modes, it clearly affects the tunnel rate in purely bosonic models.

Employing pseudo-spectral methods, we have shown that convexity, by contrast, does not

play a role for these estimates in our example since fermions still control the renormalization

of the potential at the characteristic scales. Finally, we have investigated the quantum

phase diagram of the model as a function of microscopic couplings of the perturbatively

renormalizable operators. We have identified and characterized the “phase transitions”,

and argued that the Fermi VEV is necessarily the one driven by fermionic fluctuations and

cannot be the outermost one seeded by the bare potential. We have found a broken-to-broken

transition which likely was already observed in lattice simulations.

To conclude, we emphasize that a full determination of consistency bounds for the IR

observables of the standard model as a function of the cutoff Λ as the scale of maximum UV

extension has not yet been completed. On the one hand, for a quantitatively precise picture,

all interactions of the standard model have to be taken into account. For an approach in this

direction in the framework of the FRG, see [58, 59]. On the other hand, there is no reason

to restrict only to polynomial ansätze for the bare action. The mapping of a wide range of

bare actions to the IR observables would have to be computed within the RG, technically

corresponding to an extremization problem in an infinite-dimensional space. The capability

of handling global flows and extending the current studies to nonpolynomial interactions is

a necessary prerequisite for this.
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6. Conclusions

This work has addressed questions relevant for various physical systems. New results were

provided for the critical behavior of O(N) models and Yukawa models, condensed matter

systems featuring multicritical behavior, flows in multicritical O(N) symmetric systems and

of bounded potentials in quantum mechanics, the vacuum (meta-)stability in particle physics,

and tunneling phenomena in fermionic systems. Technically, our studies rely on the powerful

combination of the functional renormalization group (FRG) and the expansion of the effective

potential by pseudo-spectral methods. The topics of this work are only a few examples of a

big class of problems that cannot be considered by perturbative means or local expansions

of the potential.

It was shown that pseudo-spectral methods are well-suited for solving functional fixed-

point equations and flows since they are very flexible, have superior convergence properties

and provide highly accurate results. In Chap. 4, we have applied these methods to fixed-

point equations. In the first part, we have computed global scale invariant solutions for the

O(N) model in d = 3 and below and for the simple Yukawa model in d = 3 to high precision.

As the nonlinear equations usually give rise to a bundle of local solutions, information about

the global existence is of particular interest. Also in cases where polynomial expansions

cannot be trusted, e.g., for the multicritical potentials which arise for fractional dimensions

in the O(N) model or the small Nf regime of the simple Yukawa model, we obtained fixed-

point solutions. We emphasize, although expansions in Chebyshev polynomials seem to be

nothing more than a reordering of terms of a Taylor series at first sight, there is a significant

difference: To compute the expansion coefficients, only the information at one point is

relevant for a Taylor expansion, whereas nonlocal information at a special set of collocation

points is needed for a pseudo-spectral expansion.

The second part of Chap. 4 was dedicated to a detailed study of the phase diagram of the

O(N) ⊕ O(M) model as a function of the dimension d. Little was known before about the

stability trading between the fixed points, especially for the case 2 < d ≤ 3 with N = M .

Employing pseudo-spectral methods, we gained access to the low dimensional case where

Taylor-expansion results get unreliable and other techniques highly inefficient. Besides the

isotropic fixed point (IFP) with symmetry enhancement, the decoupled fixed point (DFP)

and the biconical fixed point (BFP), two additional fixed points take part in the stability

trading mechanism for d < 3. These fixed points can be derived from an accidental symmetry

at N = M = 1 in the local potential approximation, which is however slightly broken if the
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anomalous dimensions are taken into account. Still, whether fulfilled or slightly broken, it

has direct consequences for the stability trading close to N = M = 1. Depending on the

dimension, several mechanisms occur. Whereas for d ≈ 3, stability between the DFP and

IFP is traded via one fixed point, the BFP, we found that different fixed points interact

with the IFP and DFP separately for smaller d. Whether this symmetry is retained in a

higher derivative expansion is crucial in order to understand how the overall picture changes

quantitatively. This is left for future work.

Furthermore, we have found regions in the parameter space N = M and d with two

simultaneously stable multicritical fixed points. In every case, each was found in a separate

region ∆ < 0, ∆ > 0 and ∆ = 0. We have conjectured that the sign of ∆ at the extremum

or saddle point (at nontrivial (κφ, κχ)) decides about what universality class is realized

in the low-energy physics. However, in order to prove this and to understand if there is an

appropriate macroscopic quantity corresponding to ∆, functional flows have to be considered.

This would be possible with a generalization of our computations done in Chap. 5 to more

than one order parameter.

To our knowledge, this is the first bosonic model in which coexisting stable fixed points

were found. To clarify the situation for the case N = M = 1 in d = 2, the quantitative

reliability needs to be investigated in further studies by increasing the order of the derivative

expansion. It would be interesting if the coexisting stability region of the IFP and DFP

remained. In this case, the system is supposed to show tetracritical or Berezinskii-Kosterlitz-

Thouless type behavior. It would be fascinating to see how such situations show up within

experiments.

With our numerical method, we are now able to study the case of the anisotropic anti-

ferromagnet (N = 1 and M = 2) in detail. Furthermore, it would be interesting to know if

there exist two-field generalizations of multicritical fixed points in the sense of Sec. 4.1 like

the BFP which cannot be inferred from the single-field model. This could be also addressed

with our method in the future.

In Chap. 5, we have considered functional flows of the FRG. In our examples, we have

seen that a resolution on a finite domain is sufficient if quantum fluctuations are suppressed

for large field values. However, the cases of the bounded potentials in quantum mechanics

showed that the computation of global flows is also possible with pseudo-spectral methods

and essential if fluctuations occur on the entire domain of definition. The high accuracy of

our numerical method was discussed using examples of the large N flow and the flow between

two criticalities over a wide range of scales in the O(N) model.

For both, bounded and unbounded potentials, convexity sets in in the deep infrared but

in different ways. Although challenging, with means of pseudo-spectral methods, we have

observed the approach to convexity over many orders of magnitude, which was particularly

demonstrated for unbounded potentials. In the case of bounded potentials in quantum

mechanics, it seems at first sight to be impossible to read off the energy of the first excited
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state due to convexity arguments. However, we have obtained reliable estimates from the

flow on intermediate scales.

The last section was devoted to a detailed study of the Higgs-Yukawa model. First, we have

discussed the origin of the appearing metastability in the standard model using perturbative

techniques which shows up as an instability in the simplified model. Resolving both scales,

the energy scale and the scalar field, the in-/metastability can be traced back to an ill-defined

microscopic theory which occurs if the scale of the maximal ultraviolet (UV) extension is sent

to infinity while the infrared (IR) behavior is kept fixed to the physical masses within our toy

model. Thus, metastabilities cannot be induced by fermionic fluctuations and are seeded by

the bare potential which was discussed using the example of taking a higher field operator into

account. For the considered class of microscopic potentials, the full functional flows showed

good agreement with the mean-field results, in particular for the case of stable potentials.

For metastable potentials, minor differences occurred originating from the scale dependent

wave function renormalizations. We have confirmed the relaxation of the perturbative lower

Higgs-mass bound which was already seen by means of polynomial expansions. Still, open

questions remain. Any UV boundary condition could be taken as a microscopic theory, as

the underlying theory is unknown. It would be therefore interesting to also consider other

shapes of the UV potential beyond polynomial ansätze and to investigate their impact on the

Higgs-mass bounds. From these considerations, conclusions for the maximal UV extension

of the standard model could be drawn.

Furthermore, we have studied the phase diagram in dependence on the perturbatively

renormalizable operators taking higher dimensional field operators into account. We argued

that the Fermi scale corresponds to the innermost nontrivial minimum driven by fermionic

fluctuations and cannot be identified with the outer (global) minimum. We have found a

first-order broken-to-broken transition which is likely to correspond to a transition observed

in lattice simulations.

Tunneling phenomena are a difficult problem in theoretical physics. Quantum field theory

in nonequilibrium is very intricate. Hence, estimates for the tunneling rate are derived from

static quantities. However, as the approach to convexity can be hardly disentangled from

the tunneling modes, especially in bosonic models, a semiclassical approach is employed. In

the Higgs-Yukawa model, we have seen that convexity does not have any effect for these

estimates, in contrast to bosonic models, as the fermionic fluctuations exceed the bosonic

modes over a wide range of scales.

In this work, we have put forward a numerical method which has already been successfully

applied to various topics in physics, but is only little used in the context of quantum field

theory, especially within the FRG. Our studies of several physical systems have revealed that

pseudo-spectral methods definitely add to the assortment of methods commonly used in the

FRG.
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Appendix A.

Threshold functions

The regulator functions can be rewritten in terms of dimensionless shape functions,

Rφ,k(p) = Zφ,kp
2rφ,k(p

2) and Rψ,k(p) = −Zψ,k/prψ,k(p2), (A.1)

for the bosonic and fermionic modes, respectively. For the linear optimized regulator, the

shape functions are

ropt
φ,k =

(

k2

p2
− 1

)

Θ(k2 − p2) and ropt
ψ,k =

(

√

k2

p2
− 1

)

Θ(k2 − p2). (A.2)

The specific choice of the regulator only takes part in the threshold functions. These are

single momentum integrals which have to be computed for the flow originating from the

one-loop structure of the Wetterich equation (2.13). They read

l
(B/F)d
0 (ω; ηφ/ψ) =

1

4vd
k−d

∫

ddp

(2π)d
∂̃t log

(

Pφ/ψ + ωk2
)

, (A.3)

l(B/F)d
n (ω; ηφ/ψ) = − 1

4vd
k2n−d

∫

ddp

(2π)d
∂̃t
(

Pφ/ψ + ωk2
)−n

, (A.4)

l(FB)d
n1,n2

(ωψ, ωφ; ηψ, ηφ) = − 1

4vd
k2(n1+n2)−d

∫

ddp

(2π)d
∂̃t
(

Pψ + ωψk
2
)−n1

(

Pφ + ωφk
2
)−n2 ,

(A.5)

l
(B)d
R,0 (ωφ, ωχ, ωφχ; ηφ, ηχ) =

1

4vd
k−d

∫

ddp

(2π)d
∂̃t log

[(

Pφ + ωφk
2
) (

Pχ + ωχk
2
)

− ωφχk
4
]

,

(A.6)

m
(B)d
2 (ω; ηφ) = − 1

4vd
k6−d

∫

ddp

(2π)d
p2∂̃t

(∂p2Pφ)
2

P 2
φ

(

Pφ + ωk2
)−2

, (A.7)

m
(B)d
4 (ω; ηφ) = − 1

4vd
k6−d

∫

ddp

(2π)d
p2∂̃t (∂p2Pφ)

2 (Pφ + ωk2
)−4

, (A.8)

m
(F)d
2 (ω; ηψ) = − 1

4vd
k6−d

∫

ddp

(2π)d
p2∂̃t (∂p2Pψ)2 (Pψ + ωk2

)−4
, (A.9)
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m
(F)d
4 (ω; ηψ) = − 1

4vd
k4−d

∫

ddp

(2π)d
p4∂̃t

[

∂p2

1 + rψ,k
(Pψ + ωk2)

]2

, (A.10)

m
(FB)d
1,2 (ωψ, ωφ; ηψ, ηφ) = − 1

4vd
k4−d

∫

ddp

(2π)d
p2∂̃t

[

1 + rψ,k
Pψ + ωψk2

∂p2Pφ
(Pφ + ωφk2)2

]

. (A.11)

We have used the definitions v−1
d := 2d+1πd/2Γ(d/2), and

Pφ := p2(1 + rφ,k), Pψ := p2(1 + rψ,k)
2. (A.12)

The derivative operator ∂̃t only acts on the scale dependency of the regulator,

∂̃t :=
∑

Φ=φ,χ,ψ

∫

d(q2)
∂t (ZΦ,krΦ,k(q2))

ZΦ,k

δ

δrΦ,k(q2)
. (A.13)

In order to perform the momentum integration, the substitution p2 7→ x, where

∫

ddp

(2π)d
= 2vd

∫

dx xd/2−1, (A.14)

is employed. Inserting the linear optimized regulator (A.2), the loop integrals yield

l
(B)d
0 (ω; ηφ) =

2

d

(

1 − ηφ
d+ 2

)

1

1 + ω
, (A.15)

l(B)d
n (ω; ηφ) =

2

d

(

1 − ηφ
d+ 2

)

n

(1 + ω)n+1
, (A.16)

l
(F)d
0 (ω; ηψ) =

2

d

(

1 − ηψ
d+ 1

)

1

1 + ω
, (A.17)

l(F)d
n (ω; ηψ) =

2

d

(

1 − ηψ
d+ 1

)

n

(1 + ω)n+1
, (A.18)

l(FB)d
n1,n2

(ωψ, ωφ; ηψ, ηφ) =
2

d

[(

1 − ηψ
d+ 1

)

n1

1 + ωψ
+

(

1 − ηφ
d+ 2

)

n2

1 + ωφ

]

×

× 1

(1 + ωψ)n1(1 + ωφ)n2
, (A.19)

l
(B)d
R,0 (ωφ, ωψ, ωφψ; ηφ, ηχ) =

2

d

(

1 − ηχ

d+2

)

(1 + ωφ) +
(

1 − ηφ

d+2

)

(1 + ωχ)

(1 + ωφ)(1 + ωχ) − ωφχ
, (A.20)

m
(B)d
2 (ω; ηφ) =

1

(1 + ω)2
, (A.21)

m
(B)d
4 (ω; ηφ) =

1

(1 + ω)4
, (A.22)

m
(F)d
2 (ω; ηψ) =

1

(1 + ω)4
, (A.23)

m
(F)d
4 (ω; ηψ) =

1

(1 + ωψ)4
+

1 − ηψ
d− 2

1

(1 + ω)3
−
(

1 − ηψ
2d− 4

+
1

4

)

1

(1 + ω)2
, (A.24)

m
(FB)d
1,2 (ωψ, ωφ; ηψ, ηφ) =

(

1 − ηφ
d+ 1

)

1

(1 + ωψ)(1 + ωφ)2
. (A.25)
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Appendix B.

Expansions via rational Chebyshev

functions

In Sec. 3.3, we give a possible way, Eq. (3.17), to compactify the effective average potential.

However, we actually use a slightly different approach in Sec. 4.1. Instead of applying the

field compactification on the compactified first derivative of the potential, u′/ρα, in the

outermost domain, we employ the rational Chebyshev functions,

Rn(x) = Tn

(

x− L

x+ L

)

, (B.1)

as a suitable orthogonal function set. Note that the compactification of the argument,

xcomp =
x− L

x+ L
, (B.2)

which maps Mcomp : [0,∞) → [−1, 1], is similar to the field compactification of Eq. (3.17)

where the mapping to the domain of definition of the Chebyshev polynomials, Mlin : [0, 1] →
[−1, 1], is understood implicitly. Both approaches, (3.17) and the expansion via rational

Chebyshev functions, differ only in the considered argument, xcomp for the former and x for

the latter. Hence, most of the expansion properties using the basis set {Rn(x)}Np

n=0 can be

derived from those employing Chebyshev polynomials. In particular, the convergence on the

whole domain [0,∞) is ensured by the convergence of Chebyshev expansions on [−1, 1].

The orthogonality condition reads

∫ ∞

0

Rn(x)Rm(x)
dx

(x+ 1)
√
x

=



















0, n 6= m

π, n = m = 0

π/2, n = m 6= 0.

(B.3)

Suitable sets of collocation points can be derived from the application of M−1
comp on the

grid points Eqs. (3.6)-(3.8). The Clenshaw algorithm can be applied also for this basis set

inserting xcomp instead of x. Similar to the Chebyshev polynomials, the derivative of the
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Appendix B. Expansions via rational Chebyshev functions

potential can be computed via a recursive algorithm for the coefficients,

a′
Np+1 =

Np

4
aNp

,

a′
Np

=
Np − 1

4
aNp−1 −NpaNp

,

a′
Np−1 =

Np − 2

4
aNp−2 − (Np − 1)aNp−1 +

7Np

4
aNp

, (B.4)

a′
i =

i− 1

4
ai−1 − 3i

4
ai +

3(i+ 1)

4
ai+1 − i+ 2

4
ai+2 − a′

i+1,

a′
0 =

1

4
(a1 − a2) − 1

2
a′

1,

and dividing all coefficients a′
i by L. Np denotes the order of the expansion of the potential.

Employing Chebyshev polynomials, the derivative is a sum over Np − 1 coefficients since the

order of the polynomials is reduced by one. By contrast, Np + 1 coefficients are generated

in the case of rational Chebyshev functions as the inner derivative ∂x(x − L)/(x + L) has

to be regarded within the expansion as well. For practical applications, it turned out to be

numerically more stable to drop the last two coefficients.
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Appendix C.

Rotated solutions with two order

parameters

This chapter deals with the π/4 rotational symmetry of the flow equation (2.48) of the

O(N) ⊕ O(M) model. More details on the occurrence of the two rotated counterparts

of the decoupled fixed point (DFP) and biconical fixed point (BFP) in Sec. 4.2 and their

corresponding critical exponents are given.

For N = M , the system gives rise to an exchange symmetry under φ ↔ χ. We find

solutions exhibiting this symmetry as well as solutions which do not, e.g., the decoupled

Gaussian fixed points (DGFPs). Such solutions emerge in pairs which transform into each

other under φ ↔ χ. Thus, the complete spectrum of solutions is invariant under the exchange

symmetry.

Let us set ηφ, ηχ = 0 and specialize to N = M = 1. We assume that u∗(ρφ, ρχ) is a solution

of Eq. (2.48). Inserting the π/4-rotation (4.16) of u∗(ρφ, ρχ),

ũ∗(ρφ, ρχ) = u∗

(

ρφ + ρχ − 2
√
ρφρχ

2
,
ρφ + ρχ + 2

√
ρφρχ

2

)

, (C.1)

into Eq. (2.48), it becomes clear that ũ∗(ρφ, ρχ) also satisfies the fixed-point equation. As

the isotropic fixed point (IFP) is invariant under such a transformation, it is rotated into

itself. For the BFP and the DFP, the transformation (4.16) turns a tetracritical fixed point

with ∆ > 0 into a bicritical one ∆ < 0 resulting in two distinct solutions.

Let us take a closer look at those solutions which do not respect the exchange symmetry,

i.e., u∗(ρφ, ρχ) 6= u∗(ρχ, ρφ). Here, ũ∗(ρφ, ρχ) denotes the formal rotation of u∗(ρφ, ρχ). For

any solution of Eq. (2.48), the first derivatives ∂φu∗(ρφ, ρχ) and ∂χu∗(ρφ, ρχ) have to vanish

at the boundaries φ = 0 and χ = 0, respectively. This is required by the Z2 reflection

symmetry in φ and χ. For any smooth solution which is symmetric under a reflection in

φ/χ, the derivative must vanish at φ/χ = 0. Rotations of solutions which do not respect the

φ ↔ χ exchange symmetry violate that boundary condition: For the rotated function ũ, the
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Appendix C. Rotated solutions with two order parameters

boundary condition, using (C.1), becomes

∂φũ(ρφ, ρχ)|ρφ=0 =

√

ρχ
2

[

∂yu(x, y) − ∂xu(x, y)
]

|x=ρχ/2,y=ρχ/2

!
=0. (C.2)

The exchange symmetry of u∗(ρφ, ρχ) would imply that

∂ρφ
u∗(ρφ, ρχ)|ρφ=ρχ = ∂ρχu∗(ρφ, ρχ)|ρφ=ρχ . (C.3)

Using this condition in (C.2) allows us to conclude that

∂φũ(ρφ, ρχ) = 0, (C.4)

if and only if u preserves the exchange symmetry. Thus, ũ∗(ρφ, ρχ) cannot be a solution of

(2.48), unless the original solution u(ρφ, ρχ) satisfies the exchange symmetry. By contrast,

rotating the linear combination u∗(ρφ, ρχ) + u∗(ρχ, ρφ) gives a solution.

Now, let us assume that u∗(ρφ, ρχ) is invariant under φ ↔ χ. From the considerations

above, one can infer that the eigenvalue spectra of u∗(ρφ, ρχ) and its rotated counterpart

ũ∗(ρφ, ρχ) are related to each other. The linearized equation describing small perturbations

around the fixed point reads

− θ δu =
∑

i,j=0

∂(∂tu)

∂u(i,j)

∣

∣

∣

∣

u=u∗

δu(i,j), (C.5)

where δu is the eigenperturbation and θ the critical exponent, cf. Eq. (2.23). As Eq. (2.48)

preserves the π/4 rotational symmetry and Eq. (C.5) is linear in δu, it preserves that sym-

metry as well. According to the line of argument for the fixed-point solutions, only those

eigenperturbations δu that preserve the φ ↔ χ symmetry are also eigenperturbations of the

rotated solution ũ, cf. Tab. 4.2. The rotation of an eigenperturbation not exhibiting φ ↔ χ

exchange symmetry are not a solution of (C.5).

We emphasize that the decoupled fixed points are an exceptional case. For the decoupled

solutions, some of the eigenvalues are degenerate. The corresponding eigenperturbations

separately break the exchange symmetry. However, the linear combination of both eigendi-

rections results in a φ ↔ χ invariant perturbation. Thus, the corresponding critical exponent

is also contained in the spectra of the rotated fixed points, cf. Tab. 4.2.

Let us now take the anomalous dimensions (2.52) and (2.53) into account. They are

evaluated at the global minimum for tetracritical fixed-point potentials. For bicritical fixed

points, ηφ is evaluated at the minimum in field direction ρφ and ηχ in field direction ρχ. Thus,

we evaluate ηφ at the point (κφ 6= 0, κχ = 0), and analogously, ηχ at the point (κφ = 0, κχ 6=
0). Tab. 4.3 shows that the anomalous dimensions are not invariant under the rotation (4.16).
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In fact, the difference between the anomalous dimensions of u∗(ρφ, ρχ) and ũ∗(ρφ, ρχ) may

be large. Thus, the π/4 rotational symmetry is broken in LPA′. Note that this could change

in a more extensive truncation, where a field-dependent wave function renormalization is

taken into account. However, that does not affect the existence of ũ∗(ρφ, ρχ). Moreover,

those critical exponents that are exactly equal for the solution u and its rotation ũ in LPA,

are still close to each other in LPA′, cf. Tab. 4.3.

Now, we consider general values of N = M . Besides the radial mode, the Goldstone modes

additionally contribute to the flow (2.48). It can be easily seen that they violate the π/4

rotational symmetry

1

1 + ũ
(1,0)
∗

+
1

1 + ũ
(0,1)
∗

→
2ρ′

φ

(

1 + u
(1,0)
∗

)

− 2ρ′
χ

(

1 + u
(0,1)
∗

)

ρ′
φ

(

1 + u
(1,0)
∗

)2

− ρ′
χ

(

1 + u
(0,1)
∗

)2 , (C.6)

where ρ′
φ = (ρφ+ρχ−2

√
ρφρχ)/2 and ρ′

χ = (ρφ+ρχ+2
√
ρφρχ)/2. This is already clear since

the radial part contains derivatives with respect to both fields whereas the Goldstone terms

are fully decoupled. The transformation (4.16) generally couples both sectors. Similar to

the LPA′ case, for small deviations from N = M = 1, the symmetry is only broken slightly.

Hence, we observe that ũ∗(ρφ, ρχ) may still exist for larger and smaller N = M . Moreover,

for N = M far away from N = M = 1, ũ∗(ρφ, ρχ) may become fully independent from

u∗(ρφ, ρχ).
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Appendix D.

One-loop effective action in quantum

mechanics

In Sec. 5.2.4, we consider the one-loop approximation for the effective potential. In what

follows, some details on its derivation shall be given. For this purpose, we stick to the

quantum mechanical case which corresponds to one dimensional quantum field theory. From

(2.16), we know

U1−loop
eff = Ucl +

1

2
Tr ln

(−∂2 + ∂2
xUcl

−∂2

)

, (D.1)

taking a proper normalization of the potential into account. For the presentation of the

logarithm, we use Frullani’s formula with the proper time parameter T and obtain

U1−loop
eff = Ucl − 1

2Ω

∫ ∞

0

dT

T

(

e−T∂2
xUcl −1

)

Tr eT∂
2

, (D.2)

where Ω is the volume of the space. In momentum space, the trace can be easily evaluated.

Thus, we are left with

U1−loop
eff = Ucl − 1

4
√
π

∫ ∞

0

dT

T 3/2

(

e−T∂2
xUcl −1

)

. (D.3)

The second term is convergent and reveals the one-loop contribution
√

∂2
xUcl/2 to the classical

potential. Note that for the evaluation of the integral, ∂2
xUcl > 0 was required. Therefore,

the one-loop effective action only provides meaningful results for small x in the case of the

bounded potentials (5.4) - (5.6).
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Appendix E.

Computation of the single-scale potential

In Sec. 5.3.2, we argue that the single-scale potential can be obtained from the beta function

of the φ̄4 coupling. Here, we sketch its computation in terms of Eq. (2.16) and show that

both derivations lead to the same result. The bare potential is given by Eq. (5.27). As in

Sec. 5.3.2 only fermionic fluctuations are taken into account, we are solely concerned with

the computation of the fermion determinant in

U1−loop
eff = UΛ − 1

Ω
ln det (i/∂ + ih̄φ̄), (E.1)

where Ω is the spacetime volume. For this purpose, we also drop the scale dependence of

the Yukawa coupling h̄. Note that i/∂ + ih̄φ̄ is isospectral to −i/∂ + ih̄φ̄, hence

U1−loop
eff = UΛ − 1

2Ω
ln

(

det (−∂2 + h̄2φ̄2)

det (−∂2)

)

, (E.2)

with a proper normalization of the potential. The trace over momentum space and all Dirac

indices yields

U1−loop
eff = UΛ − 2

∫

Λ

d4p

(2π)4
ln

(

1 +
h̄2φ̄2

p2

)

, (E.3)

where only the momenta p2 < Λ2 are integrated out. The solution can be given analytically,

U1−loop
eff = UΛ − Λ2h̄2φ̄2

16π2
+

1

16π2

[

h̄4φ̄4 ln

(

1 +
Λ2

h̄2φ̄2

)

− Λ4 ln

(

1 +
h̄2φ̄2

Λ2

)]

. (E.4)

For large UV cutoffs Λ, we obtain

U1−loop
eff ≈

(

m̄2
Λ

2
− Λ2h̄2

8π2

)

φ̄2 +

(

λ̄Λ

8
+
h̄4

2
+

h̄4

16π2
ln

(

Λ2

h̄2φ̄2

))

φ̄4. (E.5)

The Λ divergences are swallowed by proper renormalization conditions for the φ̄2 term,

m̄2
µ =

m̄2
Λ

2
− Λ2h̄2

8π2
, (E.6)
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for the φ̄4 term at the scale φ̄ = µ,

λ̄µ =
λ̄Λ

8
+
h̄4

2
+

h̄4

16π2
ln

(

Λ2

h̄2µ2

)

. (E.7)

Inserting these into (E.5), provides the single-scale potential as it is given by (5.30).
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Appendix F.

Computation of the scale dependent

fermion determinant

Sec. 5.3.3 deals with the mean-field Higgs-Yukawa potential. For its computation, the

fermion determinant has to be evaluated. Our starting point is formula (2.16), where we

have implicitly sent Λ → ∞. However, this limit is not necessarily well-defined. Hence, a

proper regularization scheme must be employed for evaluating the (super-)trace. We use the

linear optimized regulator. In order to keep both scales Λ and k, we re-derive the one-loop

effective average action by integrating its flow from Λ to k,

Γ1−loop
k = S − 1

2
STr ln

(

S(2) +RΛ

S(2) +Rk

)

. (F.1)

The super trace provides an additional minus sign for the fermionic fluctuations. From this,

the mean-field potential can be determined to be

UMF
k = UΛ +

1

Ω
ln

(

det (i/∂ +Rψ,Λ + ih̄φ̄)

det (i/∂ +Rψ,k + ih̄φ̄)

)

, (F.2)

where Ω is the spacetime volume and the scale dependence of the Yukawa coupling is ne-

glected. As det (i/∂ +Rψ,k/Λ + ih̄φ̄) = det (−i/∂ +Rψ,k/Λ + ih̄φ̄), the mean-field potential can

be rewritten

UMF
k = UΛ +

1

2Ω
ln

(

det (p2(1 + rψ,Λ)2 + h̄2φ̄2)

det (p2(1 + rψ,k)2 + h̄2φ̄2)

)

(F.3)

= UΛ +
1

2Ω
Tr ln

(

p2(1 + rψ,Λ)2 + h̄2φ̄2

p2(1 + rψ,k)2 + h̄2φ̄2

)

, (F.4)

where we have switched to the representation in momentum space. Note that the trace also

runs over the four Dirac indices. Inserting the linear optimized regulator (2.15) and solving
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the momentum integral,

UMF
k = UΛ + 2

∫

d4p

(2π)4
ln

(

p2(1 + rψ,Λ)2 + h̄2φ̄2

p2(1 + rψ,k)2 + h̄2φ̄2

)

, (F.5)

which can be done analytically, leads to (5.34).
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