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Chapter 1

Introduction and overview

1.1 Introduction

1.1.1 Production process planning

Production planning systems are a core element of modern manufacturing companies. For
the future production in a given planning horizon they address the following issues (cf.
Domschke et al., 1997):

• production program planning, i.e. decisions on the product mix in line with the
general corporate objectives,

• deployment of input factors such as raw materials or staff,

• production process planning, i.e. planning and control of the manufacturing process.

The different components can be subdivided into strategic, tactical, and operational pro-
duction planning tasks in dependence on their time horizon. Especially long-term planning
is a very complex scenario where experience values as well as stochastic forecasts are taken
into account and an interdisciplinary collaboration for the process of decision making is
required. These decisions might also have a big impact on downstream processes and there-
fore the sole application of mathematical methods might not be sufficient for satisfactory
results. In contrast, operational plans can often be handled very well by the applica-
tion of exact and heuristic solution procedures as the corresponding problems might be
well-defined with a deterministic data base. For the productivity of the manufacturing
system, scheduling plays a crucial role, where the efficient distribution of the workload is
determined. Trends like mass customization ensure, that often a single-unit and small-
series manufacturing of individual products has to be performed in the context of mass
production. As the determination of the optimal workload distribution is not trivial in
such cases, the application of mathematical methods becomes relevant.

In general, the workload distribution among different entities is a common problem that
arises in various practical areas such as machine scheduling, parallel computing, bin pack-
ing, or often just as a sub-problem in a more complex environment. Consequently, the
workload can be described by a set of items, tasks or jobs which have to be assigned to
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entities such as bins, processors or machines. Although these topics do not look similar at
first glance, they do all seek for a productive system with a uniform utilization and wear
of all entities.

The variety of existing problems differs with respect to the configuration of the work-
load and the entities as well as the target that is aimed for. In some scenarios the number
of required entities might be fixed (e.g. the number of machines in a manufacturing sys-
tem), while in other ones the number of used entities shall be minimized (e.g. the number
of bins in order to transport a set of certain goods). Simultaneously, it might be the goal
to distribute the whole workload in a system or to maximize the amount of assignable
workload because of certain restrictions, like time-constraints, which do not allow for an
assignment of all workload pieces.
From a theoretical point of view, these prerequisites can be modeled in a mathematical
sense by defining entities and workload pieces as fixed parameters, or as variables so that
the number of entities or workload pieces is minimized or maximized in order to reach a
certain goal.

1.1.2 Typical objectives for workload balancing

Turning back to production process planning, a well-known representative for workload
distribution is given by the identical parallel machine scheduling problem (cf., e.g. Mc-
Naughton, 1959, Blazewicz, 1987, Lawler et al., 1993, Moktotoff, 2001). Despite its rel-
atively simple problem inherent structure it is one of the most studied combinatorial
optimization problems in the last 50 years with respect to heuristic solution approaches
(cf., e.g. Graham, 1966, Coffman et al., 1978, Frangioni et al., 2004, Paletta and Ruiz-
Torres, 2015) which are advantageous in cases with a limited planning time. But also
for the time-consuming task of determining an optimal assignment of the workload, some
exact solution procedures have been proposed (cf., e.g. Rothkopf, 1966, Dell’Amico and
Martello, 1995, Dell’Amico et al., 2008, Walter and Lawrinenko, 2016).

For the identical parallel machine scheduling problem, the number of jobs n and machines
m is fixed and one can think of several meaningful workload oriented objective functions
that are connected to different areas for a practical applicability. The certainly most fa-
mous target is the minimization of the makespan, which is known as the P ||Cmax-problem
in literature (cf. Graham et al., 1979). The makespan simply denotes the workload of the
machine with the latest completion time Cmax = max {C1, . . . , Ci, . . . Cm} – where Ci de-
notes the completion time of machine i – and it is directly associated with the productivity
of a manufacturing system, as a shorter production period allows for an earlier execution
of follow-up tasks.

The counterpart of P ||Cmax is given, when the goal is changed such that the workload
of the least loaded machine shall be maximized. The so called machine covering problem
P ||Cmin (cf., e.g. Woeginger, 1997, Haouari and Jemmali, 2008a, Walter et al., 2016) is by
far less studied but also has a lot of practical relevance. The problem was originally de-
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scribed for spare part assignments (cf. Friesen and Deuermeyer, 1981) and another possible
application is the fair allocation of investment projects to different geographical regions
(cf. Haouari and Jemmali, 2008a). This clearly indicates, that scheduling problems are
capable of handling a wide and diversified area of real world problems with a similar prob-
lem inherent structure.

For both presented criteria only the value of a single production entity is regarded in
the objective function. This might lead to schedules where the workload is in general
poorly balanced and therefore, e.g. an unequal wear of machines occurs. To account for
this issue, specified workload balancing criteria can be applied instead. A straightforward
criterion is given when the difference or the ratio between the Cmax and Cmin machines is
minimized (cf. Karmarkar and Karp, 1982, Coffman and Langston, 1984) and therefore the
completion time of all machines is implicitly considered. A more direct measure is given
by the least squares method, where

∑m
i=1 (Ci − µ)2 is minimized and µ denotes the mean

completion time µ =
∑m

i=1 Ci/m of all machines (cf., e.g. Chandra and Wong, 1975, Alon
et al., 1998, Walter and Lawrinenko, 2014, Schwerdfeger and Walter, 2016). Although
this problem variant typically requires a high computational effort for the determination
of good quality solutions, it is certainly the most suited measure for workload balancing.

When the problem definition is changed such that the number of utilized entities with
capacity C shall be minimized for the distribution of the entire workload, the well-known
bin-packing problem is obtained. A profound literature overview on the topic is given
in Delorme et al. (2016). The problem is also a dual of P ||Cmax. This basically means
that bin packing instances can also be represented as equivalent P ||Cmax instances, by
transforming the bin capacity C into an equal maximal time span for the manufacturing
process, where the task is to decide if m machines are sufficient for the processing of the
entire workload. This connection can reciprocally be used to obtain stronger solution pro-
cedures and relaxations for both problems.
In the same manner, the bin covering problem is a dual of the machine covering problem
P ||Cmin. Here, the goal is to maximize the number of covered entities with capacity C
for the distribution of the entire workload. This problem variant typically arises when
certain goods with individual weights, e.g. tomatoes on the vine, shall be packed in such
a way that the number of packages with a weight of at least C is maximized. Taking all
together, the mentioned topics in this chapter indicate for the variety of possible practical
applications of rather simple structured problems.

1.1.3 Context of the doctoral thesis

Scheduling problems are one of the most studied fields in Operations Research. There is
a multitude of problem variants that can be subdivided in dependence on the machine
environment, job characteristics and the objective function. The doctoral thesis on hand
mainly focuses on problems with identical parallel machines where no further restrictions,
like release or due dates, for a possible assignment of jobs are given. Despite the large
amount of publications for these problem types, there is surprisingly still a lot of potential
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for further research studies. For some problem variants there is a lack of publications with
respect to exact solution procedures. But also for the improvement of existing procedures,
e.g. by the addition of further dominance criteria, there is still some potential. The anal-
ysis of problem inherent structures is also pretty promising, since the existing knowledge
is mostly restricted to simple ideas, e.g. based on symmetrical reflections. Because of these
insights, the definition of novel bounding techniques is also a substantial research field.

1.1.4 Contribution of the doctoral thesis

For the just mentioned topics several rather technical results are obtained in the doctoral
thesis. We give insights to solution patterns and properties of several combinatorial op-
timization problems and show that despite the simple structure a lot information can be
derived. The main result of the thesis is a characterization of potentially optimal schedules
for P ||Cmax as well as P ||Cmin which works independently of the actual processing times
of the jobs. The idea is to identify schedules that have the potential to become uniquely
optimal when a certain setting of processing times is given. The approach is based on ideas
similar to the concept of inverse optimization and also applicable for many other related
problems, like workload balancing, bin packing or bin covering. We also show, that the
approach can be transformed to dominance criteria that can e.g. be used in branch-and-
bound algorithms. The advanced hardware technologies that came out in the recent years
are also beneficial for the implementation of such complex structured ideas as an increased
amount of information can be handled in a reasonable amount of time. Therefore, many
parts of the work have a focus on the performance of enumeration approaches.

Furthermore, we propose several bounding techniques based on different methodologi-
cal approaches. For example, new upper bounds for P ||Cmin are derived, that are based
on the solution of the corresponding bin covering problem. The analysis of solution struc-
tures and the incorporation of proven methods like lifting strategies (cf. Haouari et al.,
2006) or column generation also lead to several new bounds for P ||Cmin, ki-Partitioning
and the minimum cardinality bin covering (MCBCP).

Based on the aforementioned analysis we are able to propose several effective solution
methods which is clearly demonstrated by the computational results in the respective
chapters. We also define some benchmark data sets that allow for a thorough and diver-
sified analysis of practically relevant instances. Finally, a comparison between solution
approaches for machine scheduling in the Operations Research and Artificial Intelligence
communities is also a substantial part of the work, where the usage of the composite
knowledge of both communities for future research projects is discussed.

As our methodological approaches are designed such that an increased efficiency of ex-
act and heuristic solution methods shall be achieved, we see an impact on the solvability
of practically relevant instances for workload distribution. However, as we derived param-
eter settings that are challenging in general, we think there is still a lot of potential for
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further improvements by the definition of tailored solution methods. The given insights
into structural patterns of potentially optimal solutions are also a potential prerequisite
for further researches with respect to solution properties and a consequent design of novel
algorithms. As we revealed some novel bounding techniques and solution methods based
on the connection between similarly structured problems, a deepening examination of
dualities might also be a fruitful approach for further research projects.

1.1.5 Structure of the thesis

The doctoral thesis consists of six papers which correspond to the six following chapters.
In Chapter 2 a literature overview on the most relevant workload related criteria for iden-
tical parallel machine scheduling and number partitioning in general is given. In Chapter
3–5 three specific criteria for machine scheduling, namely P ||Cmax, P ||Cmin, P ||NSSWD,
are theoretically analyzed. In Chapter 6 a representative for number partitioning is also
treated from a rather theoretical point of view. Finally, the work is concluded with a
variant of bin-covering which is a dual of the P ||Cmin problem with respect to bounding
techniques (cf. Chapter 7) and a summary of the thesis as well as an outlook on possible
future researches in Chapter 8.

Five of the six papers are currently submitted to peer-reviewed journals (see Table 1.1).
Three articles have been accepted for publication or have already been published in
three different journals, where two of them are rank A (according to the ranking VHB-
JOURQUAL3 of "Verband der Hochschullehrer für Betriebswirtschaft e.V.") and one is
rank B. The article "Effective solution space limitation for the identical parallel machine
scheduling problem" is currently prepared to be resubmitted after an extensive reorgani-
zation of the paper content. The two remaining articles are both currently "submitted"
and one of them is already "under-review".
The own contribution for each paper is subdivided into single-authored, leading ("feder-
führend") and considerable ("maßgeblich"). For the determination of the own contribution
a concrete breakdown for the six papers is displayed in Table 1.2 where information on
the participation with respect to the following subjects are assessed:

• research/methodological concept, i.e. the determination of the research scope, which
basically includes the definition of research questions and goals as well as basic ideas
for their implementation,

• literature research/review, i.e. the classification of the problem and the validation of
the currently existing literature on a certain topic,

• theoretical analysis and results, i.e. technical results for bounding, solution struc-
tures, worst-case behavior etc.,

• design/generation of solution methods, i.e. the concrete design of solution procedure
components,

• programming, i.e. the efficient programmatic implementation,

• experimental studies, i.e. the selection of a suited data set, criteria for the evaluation
as well as comparison with results from literature.
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Authors contribution Journal VHB

1. A survey on the identical parallel machine scheduling problem – Bounding techniques, approxi-
mation results, and solution approaches

co-authors: none single-
authored

submitted – European Journal of
Operational Research

A

2. Effective solution space limitation for the identical parallel machine scheduling problem

co-authors: R. Walter considerable rework – Working Paper –

3. Improved approaches to the exact solution of the machine covering problem

co-authors: R. Walter, M. Wirth considerable Online first – Journal of Schedul-
ing, DOI: 10.1007/s10951-016-
0477-x

A

4. A note on minimizing the normalized sum of squared deviations on m parallel processors

co-authors: R. Walter considerable published – Computers & In-
dustrial Engineering 75, 257-259,
2014

B

5. Reduction criteria, upper bounds, and a dynamic programming based heuristic for the ki-
partitioning problem

co-authors: S. Schwerdfeger, R. Walter leading under review – Journal of Schedul-
ing

A

6. Lower bounds and algorithms for the minimum cardinality bin covering problem

co-authors: R. Walter considerable published – European Journal of
Operational Research 256, 392–
403, 2017

A

Table 1.1: Overview of the accomplished research projects

paper res./method. literature theoretical solution programm- experimental
concept res./review analysis methods ing study

1 3 3 – – – –
2 2 2 2 2 2 2
3 1 1 1 1 2 3
4 1 1 2 – 2 2
5 3 2 2 3 3 3
6 2 1 2 2 3 2

Table 1.2: Contributions to the papers of the doctoral thesis, broken down by topics: 1 –
under proportional , 2 – proportional, 3 – over proportional
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1.2 Overview on the six papers

1.2.1 The overview article

Title: A survey on the identical parallel machine scheduling problem – Bounding tech-
niques, approximation results, and solution approaches

Motivation and research questions: Although there has been a considerable amount of
literature for the identical parallel machine problem in the recent years, no survey on
the topic has been given for almost two decades. Therefore, as an up-to-date overview
is mandatory, literature for the famous P ||Cmax problem as well as for closely related
problems such as P ||Cmin, workload balancing or P ||

∑
wjCj is reviewed.

In the Artificial Intelligence community the identical parallel machine problem is typ-
ically known as multi-way number partitioning. However, the relationship to literature
of the Operations Research community is rather loose as Artificial Intelligence papers are
only seldom mentioned there and vice versa. Because of that, we analyze the potential of
the composite knowledge for potential future research projects.

Contribution: In the article, an overview of the most relevant literature for the iden-
tical parallel machine problem with respect to bounding techniques as well as heuristic
and exact solution methods is given. In this context, we distinguish between Operations
Research and Artificial Intelligence publications and give a characterization of the main
contributions from the respective papers.

Results: Based on the proposed characterization of the literature, it can be seen that
the scope and content of research projects changed within last decades. Until the early
90s publications are mostly related to simple structured heuristics and their worst-case be-
havior. Later, more sophisticated algorithms like meta-heuristics or branching approaches
became popular. Also, the amount of researched problem variants increased over time
and therefore a larger amount of real-world problems could be modeled. Finally, some
research gaps were revealed, as we showed that for some problem variants there is a lack
of substantial distributions. Even for well studied problem variants like P ||Cmax the large
amount of papers in the last years indicates for further research potentials.

1.2.2 The article on structural patterns of P ||Cmax optimal solu-
tions

Title: Effective solution space limitation for the identical parallel machine scheduling
problem

Motivation and research questions: Despite the large amount of literature for the P ||Cmax

problem, there is not much knowledge about properties of optimal solutions. Because
of that, it is not surprising that the existing exact solution procedures from literature
(cf. Dell’Amico and Martello, 1995, Mokotoff, 2004, Dell’Amico et al., 2008, Haouari and
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Jemmali, 2008b) are only capable of handling small- and medium-sized instances. The
existing knowledge on optimal solutions mostly exploits information about symmetric re-
flections and the possible number of assignable jobs on each machine. Therefore, it is our
goal to give new and enhanced insights into properties of optimal solution and to propose
a competitive branch-and-bound algorithm.

Problem formulation: For a given set M = {M1, . . . ,Mm} of m ≥ 2 identical parallel
machines and a set J = {J1, . . . , Jn} of n > m independent jobs with positive processing
times t1, t2, . . . , tn, the goal is to assign each job to exactly one machine such that the
latest machine completion time Cmax = max{C1, . . . , Ci, . . . , Cm} – where Ci is the sum
of processing times of jobs assigned to Mi – is minimized.

Contribution: Based on an approach similar to inverse optimization, we identify prop-
erties of potentially makespan optimal solutions that are also universally valid for other
similar scheduling problems. The idea here is to identify schedules with certain structures,
that have the potential to become (uniquely) makespan-optimal independently of the ac-
tual job processing times. The concept of potentially makespan-optimal schedules is at
first described for the case of m = 2 machines and afterwards extended for an arbitrary
number of machines. Then we show, that our analysis of potentially makespan optimal
schedules allows for a definition of an effective dominance rule that can e.g. be used as an
addon for existing branch-and-bound algorithms. The so-called "path-related" dominance
rule is also extended by incorporating information about the maximum number of jobs on
each machine as well as processing times of the jobs.

Results: In the computational study the effectiveness of the dominance rules is analyzed
by an incorporation into a straightforward depth-first branch-and-bound algorithm with
a strategy for heuristic diving. For a large and diversified set of instances the approach
turns out to have a huge benefit in the limitation of the enumeration tree, especially when
ratio n to m is not greater than 3. Therefore we gave a considerable contribution on the
general solvability of P ||Cmax, since problem instances with a higher n to m are mostly
easily solvable, even by simple heuristics.

1.2.3 The article on the exact solution of the P ||Cmin problem

Title: Improved approaches to the exact solution of the machine covering problem

Motivation and research questions: In contrast to the substantial body of literature on
P ||Cmax, the amount of studies on its counterpart P ||Cmin is rather sparse. The few ex-
isting papers mostly deal with approximation algorithms and only one of them proposes
an exact solution procedure (cf. Haouari and Jemmali, 2008a), which is only capable of
solving small- to medium-sized instances. Hence, there is still an obvious need for further
research projects on topics such as bounding techniques and exact solution procedures.
Similar to P ||Cmax, there is also not much knowledge about structural pattern of optimal
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solutions. So the question arises, if the concept of "path-related" dominance rules can also
be successfully applied to the machine covering problem.

Problem formulation: For a given set M = {M1, . . . ,Mm} of m ≥ 2 identical parallel
machines and a set J = {J1, . . . , Jn} of n > m independent jobs with positive processing
times t1, t2, . . . , tn, the goal is to assign each job to exactly one machine such that the
earliest machine completion time Cmin = min{C1, . . . , Cm} is maximized.

Contribution: We propose some novel bounding techniques based on two different ideas.
Firstly, an upper bound that exploits the solution structure of P ||Cmin and incorporates
the machines with the minimum and maximum number of assignable jobs is proposed.
Secondly, several upper bounds based on the closely connected bin covering problem are
derived, where the goal is to cover as many bins with capacity C as possible by the as-
signment of n items. Also a bin packing based constructive heuristic is adapted in order
to obtain an additional feasible lower bound for P ||Cmin. Furthermore, a branch-and-
bound algorithm with a symmetry-breaking branching scheme and enhanced version of
the "path-related" dominance rule is introduced. Its effectiveness is analyzed in a com-
prehensive computational study.

Results: We analyze the performance of our new bounding techniques and of the branch-
and-bound algorithm on different benchmark data sets (cf. França et al., 1994, Frangioni
et al., 2004). The new upper and lower bounds turn out to be quite successful, especially
the bin covering based upper bounds often perform better than the bounds from the pre-
vious literature. Analogously to P ||Cmax, the performance of branch-and-bound strongly
correlates with the effectiveness of the path-related dominance rules and strong results
are obtained for rather small n to m ratios. Because of that, we see a huge benefit with
respect to the solvability of practically relevant instances.

1.2.4 The note on a wrong result for workload balancing

Title: A note on minimizing the normalized sum of squared workload deviations on m
parallel processors

Motivation and research questions: The problem of workload balancing is one of the
most common tasks in scheduling theory. As a representative for workload balancing the
normalized sum of squared workload deviations (NSSWD) criterion has been introduced
by Ho et al. (2009). The authors proposed an algorithm that is based on the coherence
of NSSWD to the makespan minimization problem P ||Cmax. However, their assumptions
are questionable.

Problem formulation: For a given set M = {M1, . . . ,Mm} of m ≥ 2 identical parallel
machines and a set J = {J1, . . . , Jn} of n > m independent jobs with positive process-
ing times t1, t2, . . . , tn, the goal is to assign each job to exactly one machine such that
1
µ

√∑m
i=1 (Ci − µ)2 is minimized with µ =

∑n
j=1 tj/m. Consequently, the problem repre-
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sents a normalized variant of the least squares method.

Contribution: We provide a counter-example for m ≥ 2 on a wrong result in Ho et
al. (2009) who claimed that a NSSWD optimal schedule is necessarily a P ||Cmax optimal
schedule as well. We also explain the incorrectness of their proof. In a computational
study we give an overview on P ||Cmax as well as NSSWD optimal schedules and analyze
empirically the correlation between both criteria.

Results: Our results reveal that the P ||Cmax criterion is a good approximation for NSSWD
when the ratio n to m is rather small. However, there are also some parameter settings
where a P ||Cmax optimal solution is not a good candidate solution for workload balancing.
Consequently, solution approaches that are based on the P ||Cmax criterion are not neces-
sarily suited for NSSWD as well. However as our computational results reveal, NSSWD
optimal solutions have generally a very good performance for the P ||Cmax criterion.

1.2.5 The article on technical results for the ki-partitioning prob-
lem

Title: Reduction criteria, upper bounds, and a dynamic programming based heuristic for
the ki-partitioning problem

Motivation and research questions: Partitioning problems are a widely studied research
topic, especially in the Artificial Intelligence community. However, for the ki-partitioning
problem with respect to machine covering there has only been one publication until now
(cf. He et al., 2003), where solely an approximation algorithm is proposed. However, as the
problem has practical relevance (e.g. for flexible manufacturing systems or the fair alloca-
tion of investment projects to different regions) and can be utilized because of its duality
to makespan-related partitioning variants, some additional theoretical insights seem to
be interesting. Also, no specific techniques for upper bounding have been proposed yet.
Finally, as there is no established test bed for the problem we recognize the need for a
suited benchmark data set.

Problem formulation: For a given set M = {M1, . . . ,Mm} of m ≥ 2 identical parallel ma-
chines with associated machine-dependent cardinality limits ki and a set J = {J1, . . . , Jn}
of n > m independent jobs with positive processing times t1, t2, . . . , tn the goal is to assign
each job to exactly one machine such that Cmin = min{C1, . . . , Cm} is maximized and the
number of assigned jobs to each machine Mi is not greater than ki.

Contribution: Several preprocessing methods are introduced, that are capable of reduc-
ing the solution space by tightening the cardinality limits and removing jobs as well as
machines without changing the value of the optimal solution. Besides the definition of
new upper bounds we also extend the concept of lifting which allows for the calculation of
upper bounds on a subset of jobs and machines that are also valid for the entire instance.
For the approximate solution we define two modified LPT variants and a subset-sum based
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improvement heuristic based on an efficient dynamic programming approach.

Results: We analyze the performance of our preprocessing methods, upper bounds and
heuristic procedures in a computational study on a novel set of instances for 2106 different
parameter settings. The preprocessing methods helped to reduce the solution space for
around 12% of the instances, and the enhanced lifting concept was able to tighten the best
known upper bound for over 60% of the relevant instances. In general, the results of our
computational tests attest for the efficiency of our proposed methods and we were able to
simplify most of the problem instances. Overall, we were able to verify an optimal solution
for around 70% of the instances with an average computation time of less than one second.
Because of the fact, that the machine covering problem is a "dual" of P ||Cmax, we see the
potential for a possible applicability of the technical results to other similar problems.

1.2.6 The article on solution approaches for the minimum cardi-
nality bin covering problem

Title: Lower bounds and algorithms for the minimum cardinality bin covering problem

Motivation and research questions: The so called minimum cardinality bin covering prob-
lem (MCBCP) is a natural variant of the bin covering problem and has received only little
attention in literature yet, although it has some connections to real world problems. As a
possible application, we think of the transportation or disposal of m different liquids that
cannot be mixed, which is known as the liquid loading problem (cf. Christofides et al.,
1979). If C volume units of each liquid shall be transported, the goal is to use the fewest
possible number of available tanks with an individual size wj. The MCBCP belongs to
the class of mixed integer packing covering problems and can be formulated as a cover-
ing integer problem with generalized multiplicity constraints. For this class of problems
only a few approximation algorithms have been published which cannot always guaran-
tee a feasible solution. Due to this reason, there is an obvious need for suited heuristic
and exact solution procedures. To assess the quality of the solution procedures the defini-
tion of strong lower bound techniques is an important task that is considered in the paper.

Problem formulation: For a given set B = {B1, . . . , Bm} of m ≥ 2 bins with identi-
cal capacity C and a set J = {J1, . . . , Jn} of n > m independent items with weights
w1, w2, . . . , wn, the goal is to cover all m bins by an assignment of the fewest possible
number of items.

Contribution: Besides the classification of the problem with respect to the existing litera-
ture, also some insights to structural patterns are given. We propose several lower bounds,
e.g. based on column generation or the solution structure of MCBCP. For approximate
solutions we propose several constructive heuristics as well as an improvement heuristic
based on the iterative solution of subset sum problems. Also, a depth-first branch-and-
bound algorithm with straightforward dominance criteria and local bounding is developed.
Finally, we evaluate the performance of our solution approaches by a comparison with the
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results of the commercial solver Gurobi in a comprehensive computational study on a di-
versified data set.

Results: We derive some results on worst-case performances of our lower bounds. The
combined application of our heuristics and the elaborate lower bounding techniques turned
out to be quite successful as we were able to verify an optimal solution for about 96% of
the instances. In general, our approach significantly outperforms Gurobi for all regarded
parameter settings with respect to the computation time and the number of optimally
solved instances. Based on our computational study we can conclude, that hard instances
mostly occur, when the bin capacity is rather small compared to the average item size
and just a few items can be assigned to each bin on average. As we are the first who deal
with exact solution approaches for the MCBCP, we see a huge impact on the solvability
of practically relevant instances. Results: We derive some results on worst-case perfor-
mances of our lower bounds. The combined application of our heuristics and the elaborate
lower bounding techniques turned out to be quite successful as we were able to verify an
optimal solution for about 96% of the instances. In general, our approach significantly
outperforms Gurobi for all regarded parameter settings with respect to the computation
time and the number of optimally solved instances. Based on our computational study
we can conclude, that hard instances mostly occur, when the bin capacity is rather small
compared to the average item size and just a few items can be assigned to each bin on
average. As we are the first who deal with exact solution approaches for the MCBCP, we
see a huge impact on the solvability of practically relevant instances.
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Chapter 2

A survey on the identical parallel
machine scheduling problem –
Bounding techniques, approximation
results, and solution approaches

Summary

Meanwhile, almost two decades elapsed since the last review dealing with the problem of
identical parallel machine scheduling has been published. Therefore we provide an up-
to-date survey on the most relevant literature. Besides the famous P ||Cmax problem we
also review literature for closely related problems such as P ||Cmin, workload balancing or
P ||

∑
wjCj and present their main contribution. We also give an insight into the relevant

literature contributed by the Artificial Intelligence community, where the problem is typ-
ically known as number partitioning.

2.1 Introduction

In this Chapter we consider the identical parallel machine scheduling problem where a
given set J = {J1, . . . , Jn} of n independent jobs with processing times t1, t2, . . . , tn has
to be assigned to a set M = {M1, . . . ,Mm} of m ≥ 2 identical parallel machines so
that a given objective function has to be optimized without further restrictions regarding
machine as well as job availabilities. Due to the structure of the identical machines only
completion time related measures are meaningful.
The certainly most famous measure in the offline case, is the makespan minimization
with the goal of determining a schedule where the maximum completion time Cmax =
max{C1, . . . , Ci, . . . , Cm} of all machines has to be minimized and where Ci denotes the
completion time of machine i. Another closely related problem arises when the objective
is changed so that the minimal completion time Cmin = min{C1, . . . , Cm} of all machines
is maximized. Using the three-field notation of Graham et al. (1979) the problems can
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also be denoted by P ||Cmax and P ||Cmin resp. which are well-known abbreviations in
literature.

A lot of technical results have been published for the identical parallel machine problem
in general, but also connections to real-world problems have been revealed. For P ||Cmax

we think of production lines where several machines with the same speed have to perform
a certain amount of jobs (cf. Mokotoff, 2001), as well as multiprocessor computers where
tasks should be assigned efficiently in order to minimize the overall cpu-time. The machine
covering problem P ||Cmin was originally described in the context of spare part assignments
(cf. Friesen and Deuermeyer, 1981) and a further possible application is given by the fair
regional allocation of investments (cf. Haouari and Jemmali, 2008a).

Since the spread of the machine completion times is limited by the two aforementioned
problems, they are already related to workload balancing in a wider sense. However, there
are also more specified measures. Two further objective functions consider the machines
with the highest and lowest workload and aim for a minimization of C∆ = Cmax − Cmin

and Cmax/Cmin resp. To balance the workload between the whole set of machines, a
family of criteria is given by the minimization of the p-norm of the completion times,
i.e. Lp = (

∑m
i=1 C

p
i )

1/p. As a representative for p = 2, Ho et al. (2009) proposed the mini-
mization of the normalized sum of squared workload deviations (NSSWD). The problem
of balancing out a schedule occurs when tasks should be distributed among workers in
order to avoid unequal treatments (cf. Cossari et al., 2013) and in manufacturing indus-
tries where a balanced schedule is important to reduce idle times and work-in-progress (cf.
Ouazene et al., 2014).

For all of the above-mentioned objective functions the constraint system is equivalent,
since the universal task is to schedule all available jobs among the m machines without
regarding their sequence. The resulting constraint system is given by

n∑
j=1

tjxij ≥ Ci i = 1, . . . ,m (2.1)

m∑
i=1

xij ≤ 1 j = 1, . . . , n (2.2)

xij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n (2.3)
Ci ≥ 0 i = 1, . . . ,m (2.4)

where (2.1) sets the workload Ci of each machine, (2.2) ensures that each job j is scheduled
to exactly one machine i and (2.3), (2.4) set the domains of the variables.

Some other criteria that are based on the sequencing of the jobs are given by the min-
imization of the total weighted completion time P ||

∑
wjCj as well as the minimization

of the job completion times P ||
∑

Cj and the squared job completion times P ||
∑

C2
j .

Here, the order of the jobs on each machine plays a crucial role for the determination
of the solution quality and therefore also a different constraint system is required to ob-
tain the sequencing on the machines. For a practical application of these problems, the
optimization of queues can be named.

Although the different criteria already cover a broadly diversified area of real-world ap-
plications, they might also occur as a subproblem in more complex structured problems.
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For example, Tang et al. (2006) investigated a hybrid flowshop problem where a relaxed
problem with Lagrangian multipliers equals identical parallel machine scheduling.
The theoretical foundation for identical parallel machine scheduling is given through the
topic of (multi-way) number partitioning, where the goal is to partition a set {a1, a2, . . . , an}
of positive integers into m different sets {A1, . . . ,Am} with respect to a certain objective
function. While parallel machine scheduling is the commonly used term in Operations
Research (OR) literature, number partitioning is more related to the Artificial Intelligence
(AI) community. Nevertheless, as both problems are equivalent, an overview on the com-
bined literature is meaningful.

The remainder of the Chapter is built up as follows. In Section 2.2, an in-depth liter-
ature review on the different objective functions for identical parallel machine scheduling
is given. In Section 2.3, we also give a literature review on number partitioning. Finally,
in Section 2.4, a summary of the Chapter content is given.

To evaluate the performance of bounds as well as heuristics, the worst-case performance
ratio is a commonly used method. In dependence on the objective function (minimization
or maximization) we distinguish between two different cases: For a minimization problem
γ1, let OPT (I) denote the optimal solution for an instance I and A(I) the solution when
an arbitrary approximation algorithm A is used. Then, the worst-case performance ratio
is defined as the smallest real number Rγ1(A) ≥ 1 such that Rγ1(A) ≤ A(I)/OPT (I) holds
for all possible instances I. For a lower bound L, analogously Rγ1

(A) ≥ L(I)/OPT (I)
is defined with Rγ1

(A) ≤ 1. For a maximization problem γ2, the definition is basically
identical, however Rγ2 ≤ 1 and Rγ2

≥ 1 hold. Formally, we have

Rγ(A) = sup
I

{A(I)/OPT (I)} (2.5)

Rγ(A) = inf
I
{L(I)/OPT (I)} (2.6)

2.2 Identical parallel machine scheduling

When the case of two machines is considered, the minimization of Cmax simultaneously
leads to a maximization of Cmin and therefore also to a minimization of the difference
between Cmax and Cmin as well as the ratio of the workload of both machines. Because
of that, these objective functions are equivalent for m = 2. Also the subset sum problem
(SSP) is an equivalent problem formulation form = 2. Here, the goal is to identify a subset
A1 such that the sum of the processing times is as close to

∑n
j=1 tj/2 as possible. Therefore,

since Martello and Toth (1984) showed that SSP is solvable in pseudo-polynomial time, the
same result holds for the aforementioned machine scheduling problems. However, even for
m = 2, literature for these criteria is well justified, since, e.g. worst-case and probabilistic
results obviously still do very well depend on the underlying measure. Based on the
two machine case it is readily verified that machine completion time related problems
(Cmax, Cmin and workload balancing) are NP-hard in the strong sense by a straightforward
reduction from partition (cf., Garey and Johnson, 1979). For the generalized case m > 2
the above-mentioned criteria are not longer equivalent.
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2.2.1 Makespan minimization

In this section an in-depth literature review on the topic of makespan minimization without
further restrictive job characteristics is given. As already mentioned, P ||Cmax is by far
the most studied among all completion time related criteria. The problem was originally
introduced by McNaughton (1959) and since then a substantial body of literature has been
released, which is mainly concerned with approximation algorithms, bounding techniques
and heuristics but also a few publications with respect to exact solution procedures can
be found. Some surveys were also published on the topic of parallel machine scheduling
problems (cf. Blazewicz , 1987, Cheng and Sin, 1990, Lawler et al. 1993, and Moktotoff,
2001). However, as the last survey is more than 15 years old and a lot of new solution
approaches have been proposed since then, an up-to-date report on the latest developments
will be given here.

Some of the presented works utilize the coherence between P ||Cmax and the bin packing
problem where each job j is transformed into an item of size tj and it is checked if the
set of items can be packed into at most m bins of size C. If this is the case, a feasible
schedule for P ||Cmax with Cmax = C can be derived. The coherence can also be used
for the definition of lower and upper bounds. For a detailed literature overview on bin
packing and cutting stock we refer to Delorme et al. (2016).

2.2.1.1 Lower bound strategies

The first simple bounds L0 and L1 for the P ||Cmax problem were originally described by
McNaughton (1959). The idea behind L0 =

∑n
j=1 tj/m is based on the optimal solu-

tion of the LP-relaxation where the indivisibility property of the jobs is neglected. He
also proposed an improved version L1 = max {L0,maxj {tj}} regarding the fact that the
longest job must be assigned to exactly one machine. Later, Dell’Amico and Martello
(1995) proved the worst-case behavior RCmax

(L0) = 0 and RCmax
(L1) = 1

2
for the re-

spective bounds and also described an enhanced variant L2 = max {L1, tm + tm+1} with
RCmax

(L2) = 2
3
. The idea here is to consider a partial instance where the n − m − 1

smallest jobs are eliminated and it can easily be seen that the makespan is at least as
large as tm + tm+1. Dell’Amico and Martello (1995) also developed some bounds based
on the solution structure by realizing that there is at least one machine that processes
v =

⌈
n
m

⌉
or more jobs, leading to Lv =

∑n
j=n−v+1 tj. Furthermore, another bound Lν

is based on the minimum and maximum number of jobs that can be assigned to each
machine. Because of its complex structure, we refer to Dell’Amico and Martello (1995)
for a detailed description of the bound.

Hochbaum and Shmoys (1987) were the first who used the duality to the bin packing
problem for the construction of a lower bound by defining LHS = max

{
L1,max

{
L + 1 :

Bγ(L) > m
}}

where Bγ(L) is the number of bins with capacity C = L used by an
approximation algorithm for jobs with tj > L

5
. Dell’Amico and Martello (1995) also

proposed a bin packing oriented lower bound L3 with time complexity O(n2 logU), where
U is an upper bound and the jobs are characterized with respect to their size in relationship
to the bin capacity C and pairwise incompatible jobs can be identified as a consequence.

The most recent publications for lower bounds stem from Haouari et al. (2006) as well
as Haouari and Jemmali (2008b). Here, a lifting procedure is presented where bounds are
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calculated for specific partial instances Jk
n with the λk(n) = k

⌊
n
m

⌋
+min

{
k, n−

⌊
n
m

⌋
m
}

largest jobs and k machines that are also valid for the entire instance. The determination
of the partial instances is based on the idea, that there exists a subset of k machines that
have to carry out at least λk(n) jobs. Haouari and Jemmali (2008b) also introduced a
procedure that tries to tighten a lower bound L by solving a specific subset sum-problem.

2.2.1.2 Constructive heuristics

Most of the early publications are related to constructive heuristics and their worst-case
behavior. Graham (1966) analyzed the worst-case performance of List Scheduling (LS), an
algorithm where for an arbitrarily sorted list of jobs each of it is successively assigned to
the machine with the current lowest completion time, and proved that RCmax(LS) = 2− 1

m

holds. Later, Graham (1969) proved the worst-case performance of RCmax(LPT) = 4
3
− 1

3m

for the well-known LPT rule which is a specified version of LS, where the jobs are sorted
by non-increasing processing times. LS has a time complexity of O(n logm), while for
the LPT rule the time complexity is O(n log n + n logm) in case of an arbitrarily sorted
initial job list. Another worst-case result for LPT was presented by Bruno et al. (1974)
with RCmax(LPT) = 1 + m−1

mk
where k denotes the number of jobs on the makespan ma-

chine. Besides the analysis of worst-case results for LS and LPT, the probabilistic study
of average-case results gained some attention. Coffman and Gilbert (1985) analyzed the
expected competitive ratio CLS

max

C∗
max

of list scheduling for the case, that the processing times
are independently drawn from a uniform distribution in [0, 1]. With respect to LPT, Frenk
and Rinnooy Kan (1986, 1987) proposed results for the asymptotic behavior of the heuris-
tic. They showed that under mild conditions on the probability distribution, the absolute
error CLPT

max − C∗
max converges to 0 almost surely and also gave results for the speed of

convergence for uniformly and exponentially distributed processing times.

Coffman et al. (1978) proposed another constructive heuristic, the so called Multifit
(MF) algorithm with time complexity O(n log n+kn logm). Here, through a binary search
procedure with k iterations the smallest value for a fixed makespan C is determined such
that the application of the bin packing algorithm First Fit Decreasing (FFD) generates a
solution not greater than m. They also proved a worst-case performance of 8

7
for m = 2, 15

13

for m = 3 and 20
17

for m = 4, . . . , 7 and a general performance in dependence on the number
of binary-search iterations k with RCmax(MF) = 1.22OPT + 1

2k
. Friesen (1984) tightened

the bound by showing that RCmax(MF) = 1.2OPT+ 1
2k

holds and also introduced a family
of instances for m ≥ 13 where a ratio of 13

11
was established. Later, Yue (1990) proved that

RCmax(MF) = 13
11

indeed holds for an arbitrary m.
A modified version of Multifit, denoted as MFI, with the same time complexity was

introduced by Friesen and Langston (1986) where FFD is refined by splitting the job list,
in the case when it is not able to find a feasible solution. They also showed, that an
improved worst-case performance of RCmax(MFI) = 72

61
can be achieved, which is tight for

m ≥ 12. Although Multifit got a better worst-case performance compared to LPT, the
average behavior of the two algorithms is often vice versa. Motivated by this, Lee and
Massey (1988) designed the so called Combine method which takes the LPT schedule as an
input for the Multifit binary-search procedure, and still runs in O(n log n+kn logm). For
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m = 2 they proved a worst-case performance of 10
9
which is strictly better than the ones of

Multifit and LPT. Another similar composite algorithm is due to Gupta and Ruiz-Torres
(2001) who proposed the so called Listfit algorithm. Here the Multifit approach is applied
to a combination of sub-lists that are gained from different LS schedules. The algorithm
has a time complexity of O(n2 log n+ n2k logm) and a worst-case ratio equal to Multifit.
However, a superior average performance was shown in an empirical evaluation.

Another constructive heuristic based on a different approach is due to Paletta and
Pietramala (2007). In their MPS algorithm, at first an initial set of disjoint partial solu-
tions is constructed by a partition of the job list into z families of subsets with certain
properties. Afterwards these partial solutions are iteratively combined until a feasible
solution is obtained. The algorithm has a time complexity of O(n log n + nm) and a
worst-case performance of RCmax(MPS) = O( z+1

z
− 1

mz
). By changing the procedures that

are used to build up the partial solutions as well as to combine them, modified versions of
MPS were presented by Gualtieri et al. (2008), Gualtieri et al. (2009) and Chiaselotti et al.
(2010), each of them runs in O(n log n). The latest publication concerning constructive
heuristics stems from Paletta and Ruiz-Torres (2015) and consists of two procedures. At
first, a modified version of MPS is applied to construct a feasible solution. Afterwards the
so called Many Times Multifit (MTMF) procedure attempts to tighten the initial solution
by iteratively using a bin packing based procedure on different job sets. Their Partial So-
lutions and Multifit (PSMF) algorithm has a time complexity of O(tn2) – where t denotes
the number of iterations in the MTMF procedure – and a worst-case performance equal
to Multifit.

2.2.1.3 Improvement heuristics and local search approaches

In addition to the long list of constructive heuristics there are also many publications
related to improvement methods based on local search techniques that mostly differ in
the definition of their neighborhoods and the determination of initial solutions. Finn and
Horowitz (1979) proposed a simple job exchange algorithm (IC) with time complexity
O(n logm) and RCmax(IC) = 2− 2

m+1
, where the goal is to even out the machines with the

highest and lowest completion time of a randomly generated schedule by swapping jobs,
until no further improvements can be achieved. Langston (1982) improved the algorithm
by using the LPT rule for the assignment of the 2m longest jobs in the initial schedule
and also proved that the worst-case performance of his algorithm ICII is equal to the one
of LPT. In França et al. (1994) a 3-phase algorithm consisting of a construction phase
and two improvement phases with job reassignments and interchanges was introduced.
Additionally, the authors designed a set of benchmark instances with uniform distributed
processing times and showed, that their approach outperforms the ones of Finn and Hor-
rowitz (1979) as well as Langston (1982).

Ho and Wong (1995) proposed a method, where for several machine pairs the cor-
responding P2||Cmax sub-problems are solved by a lexicographic search algorithm on a
binary search tree, in order to even out the machine pairs. In Riera et al. (1996) two
further algorithms were introduced, where the LPT schedule is improved by application of
several job interchange procedures. In their experimental study they show, that their al-
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gorithms are in general superior to Multifit. Fatemi-Ghomi and Jolai-Ghazvini (1998) also
published a local search algorithm. Here, the goal is to minimize the gap |Ci1 − Ci2 | for
different machine pairs (i1, i2) by exchanging jobs as long as improvements are realizable.
The approach is applied for four initial schedules that are obtained by the application of
different List Scheduling rules.

A more sophisticated local search idea with larger neighborhood definitions was de-
scribed by Frangioni et al. (2004). Here, job allocations are cyclically changed between r
machines on a basis of an improvement graph. The concept is applied for different families
of heuristics like label correcting and bottleneck path. To evaluate the potential of their
heuristics, the authors also introduced further benchmark instances which are besides the
ones of França et al. (1994) the default data sets even today. Alvim and Ribeiro (2004)
described a bin packing oriented algorithm, where after a construction phase a binary
search procedure is applied, including a redistribution step and an improvement step in
order to construct a feasible solution for a prefixed C value. A further iterated local search
algorithm where an approximate dynamic programming method is used to find cyclic ex-
changes between several machines was described by Tang and Luo (2006). The procedure
is based on the concept of Frangioni et al. (2004) but differs in the definition of the cyclic
exchange neighborhoods.

A method that is based on the exact solution of the pseudo-polynomial two-machine
case was proposed by Haouari et al. (2006). More precisely, their Multi-Start Subset Sum
(MSS) heuristic generates multiple randomized LPT schedules and tries to improve each
of them by solving the P2||Cmax problem for different machine pairs as long as a reduced
makespan is realizable. The procedure is closely related to the one introduced in Ho and
Wong (1995), but differs with respect to the time complexity for the solution of P2||Cmax

and the number of initial schedules. Another heuristic that is based on the combination
of partial solutions was proposed by Paletta and Vocaturo (2011). After constructing an
initial solution in a similar manner to Paletta and Pietramala (2007) they use local search
techniques where single jobs or sets of jobs are changed between different machine pairs
(i1, i2).

2.2.1.4 Meta heuristics

In contrast to the long history of constructive as well as improvement heuristics, the
tendency for an application of meta approaches became just popular in the recent two
decades. Hübscher and Glover (1994) were the first who proposed a tabu search algorithm
with respect to makespan minimization. Their algorithm is based on an efficient candidate
list for local moves, a dynamic tabu list to allow for both intensification and diversifica-
tion, and an influential diversification scheme that reassigns a small amount of large jobs
when the solution quality is not sufficient for a certain amount of iterations. A few years
later, Thesen (1998) studied the design of tabu search for multiprocessor scheduling by
analyzing the composition of different elements such as the tabu list, local search tech-
niques as well as list management strategies. Especially a random blocking of the tabu
list and greedy local search methods turned out to be effective. As a representative for
evolutionary algorithms Min and Cheng (1999) applied a genetic algorithm to P ||Cmax by
defining a fitness function based on a transformed objective function, two-point crossovers
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and one-digit mutations. Later, Lee et al. (2006) presented a straightforward simulated
annealing approach, where the initial schedule is obtained by application of the LPT rule
and solutions are transformed by job interchanges between the makespan machine and
the remaining machines. Here, the acceptance probability for new solutions depends on a
temperature parameter and on the gap between the previous and current makespan.

The latest publications with respect to meta heuristics for P ||Cmax are based on evo-
lutionary approaches. Dell’Amico et al. (2008) presented a scatter search algorithm where
a reference set consisting of high quality and diversified solutions is generated and after-
wards subsets of these solutions are iteratively combined in order to generate new solutions.
Also several improvement methods based on local search techniques are used to tighten the
combined solutions. Kashan and Karimi (2009) proposed a particle swarm optimization
algorithm where possible solutions are represented as particles and multiple new operators
for their velocities and positions are introduced. They also hybridize their algorithm with
a local search algorithm to allow for a faster convergence. A hybrid dynamic harmony
search algorithm was presented in Chen et al. (2012) where an encoding scheme based
on list scheduling is given that converts the continuous harmonies to integer assignments.
The harmony memory is partitioned into sub-harmonies which are capable of exchanging
information with each other. Also improvement processes as well as local search tech-
niques are applied to guide the algorithm. Finally, Davidović et al. (2012) described a bee
colony optimization algorithm, which is a representative of stochastic swarm optimization
and is based on the natural behavior of bees. The algorithm simultaneously builds up sev-
eral solutions by a stochastic procedure and dismisses bad partial solutions with a certain
probability in dependence on their quality.

2.2.1.5 Exact solution procedures

The first publication related to exact solution procedures stems from Rothkopf (1966) who
showed that the problem is exactly solvable via dynamic programming in O(nUm) where
U is an upper bound on the optimal solution. Therefore the algorithm is only capable of
solving instances with a rather small number of machines. The first branch-and-bound
algorithm for P ||Cmax was introduced by Dell’Amico and Martello (1995) who used a
depth-first enumeration tree and also included some novel dominance criteria as well as new
lower and upper bounding techniques that are used for global and local bounding. Later,
Mokotoff (2004) presented a cutting plane algorithm where valid inequalities are identi-
fied and iteratively added to the ILP model until the solution of the corresponding LP-
relaxation is integer. However, Dell’Amico and Martello (2005) showed that their branch-
and-bound algorithm clearly outperforms the approach of Mokotoff (2004) on a diversified
set of instances. More recent publications for the exact solution stem from Haouari and
Jemmali (2008b), who embedded lifting based lower bounds (cf. Sect. 2.2.1.1) into a new
symmetry-breaking depth-first branching scheme and from Dell’Amico et al. (2008), where
a combination of a bin packing oriented binary-search and branch-and-price is used. The
latest approach stems from Walter and Lawrinenko (2016), who presented an in-depth
analysis about structural patterns of potentially optimal solutions based on a concept
that is similar to inverse optimization and derived symmetry-breaking dominance criteria
for a depth-first branch-and-bound algorithm. In most of the publications for the exact
solution of P ||Cmax, especially instances with a ratio n

m
∈ [2, 4] turned out to be quite
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difficult to solve with respect to computation times, while instances with a higher ratio n
to m can often already be solved by simple global bounding procedures.

2.2.2 Machine covering

In contrast to the substantial body of publications on P ||Cmax the literature for P ||Cmin is
rather sparse. As already mentioned the problem was first described by Friesen and Deuer-
meyer (1981) and its theoretical aspects were first analyzed by Deuermeyer et al. (1982)
who showed that the LPT rule has a worst-case performance of RCmin

(LPT ) = 3
4
that

is asymptotically tight. The result was afterwards tightened by Csirik et al. (1992) who
proved a worst-case performance of RCmin

(LPT ) = 3m−1
4m−2

in dependence on m. About two
decades later Walter (2013) analyzed the performance of a restricted version of LPT that
is called RLPT, where iteratively subsets of jobs are assigned to distinct machines, and
proved that CLPT

min ≥ CRLPT
min holds.

Besides the analysis of the LPT rule, further publications deal with other approximate
procedures as well as the description of branch-and-bound algorithms. Woeginger (1997)
presented a polynomial time approximation scheme (PTAS) that guarantees a worst-case
error of 1 + ε and has a time complexity of O(cεn logm) where cε represents a constant
in dependence on the error rate ε. The first approach towards the exact solution of
P ||Cmin stems from Haouari and Jemmali (2008a) who introduced new upper bounds,
two heuristic procedures as well as a branch-and-bound scheme with symmetry breaking
components. Another branch-and-bound procedure was introduced by Walter et al. (2016)
who developed new upper bounds based on solution structures as well as on the duality to
the bin covering problem and developed a depth-first enumeration tree with several novel
dominance criteria.

Besides the duality of P ||Cmin and bin covering with respect to bounding techniques
and solution approaches, there is also an equivalent coherence between P ||Cmin and the
minimum cardinality bin covering problem (MCBCP). The goal of MCBCP is to minimize
the number of packed items with weights wj (j = 1, . . . , n) such that the load ofm identical
bins is at least equal to their capacity C. To exploit the link between the two problems, the
idea is to set tj = wj for all j as well as C = UCmin

where UCmin
is an upper bound UCmin

for P ||Cmin and to check if the n existing items are sufficient to cover the m bins. If not,
UCmin

− 1 represents a feasible upper bound for P ||Cmin. For an overview on MCBCP we
refer to Walter and Lawrinenko (2017) who also introduced lower bounds for the problem
which might lead to improved upper bounds for P ||Cmin.

2.2.3 Workload balancing

Although the two aforementioned criteria are already related to workload balancing in a
wider sense, criteria where the workloads of two or more machines are explicitly considered
in the objective function, are more appropriate for an assessment of balancing. For the min-
imization of the difference between the most and least loaded machine C∆ = Cmax −Cmin

there is only one publication available, that proposes solution approaches (cf. Karmarkar
and Karp, 1982). However, their approach is more related to the AI community and will
therefore be reviewed within Sect. 2.3. A second paper for P ||C∆ stems from Ouazene et
al. (2014) who introduced a new mixed integer linear programming formulation. They also
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performed a computational study to show that in general a makespan optimal schedule is
not suited when one is seeking for a balanced schedule.

For the closely related problem where the goal is to minimize the ratio Cmax

Cmin
the lit-

erature is also relatively sparse. It was first mentioned by Coffman and Langston (1984)
and motivated by the fact that for P ||C∆ no meaningful worst-case results can be derived.
They analyzed the worst-case performance of LPT and showed that RCmax/Cmin

(LPT ) = 7
5

is tight for allm. For a 3-partitioning variant of the problem, where exactly three jobs have
to be assigned to each machine, Kellerer and Woeginger (1993a) analyzed the worst-case
performance of LPT with respect to the ratio of the largest to the smallest item β = t1

tn
.

They showed that RCmax/Cmin
(LPT ) = 4β+5

2β+7
is tight for 1 ≤ β ≤ 4.

The certainly most suited measurements for workload balancing are obtained, when
all machines are taken into account in the objective function, instead of just regarding
the machines with minimum and maximum completion time. Therefore the minimization
of the p-norm of the completion times Lp = (

∑m
i=1 C

p
i )

1/p is a meaningful approach to
seek for a balanced schedule if suited p values are chosen. Note, that for p = ∞ the
minimization of the makespan is obtained (cf. Sect. 2.2.1) and for p = 2 the problem
is a non-normalized variant of the least squares method where

∑m
i=1 (Ci − µ)2 with µ =∑m

i=1 Ci/m is minimized.
Chandra and Wong (1975) analyzed the worst-case performance of the LPT rule in

dependence on p and showed that it is generally bounded by 3
2
. Polynomial time approx-

imation schemes for the Lp-norm were proposed by Alon et al. (1998) and Epstein and
Skall (2004). Although the algorithm of Epstein and Skall (2004) was originally designed
for uniformly related machines, they showed that it is also capable of handling identical
machines. For the case of ideal sets, where Ci = Cj ∀i �= j holds in an optimal solution,
Goldberg and Shapiro (2000) analyzed a class of algorithms that are relaxing the LPT
rule and derived a worst-case of 4

3
for Lp.

The problem of minimizing
∑m

i=1 C
2
i was first treated by Chandra and Wong (1975)

who analyzed the worst-case performance of LPT, and derived R∑m
i=1 C

2
i
(LPT) = 25

24
. Af-

terwards Leung and Wei (1995) slightly improved the worst-case behavior in cases where
m mod 5 �= 0. For m = 2 Koulamas and Kyparisis (2008) presented a delayed LPT
heuristic where the five biggest jobs are optimally assigned and afterwards the standard
LPT routine is applied to the remaining jobs. The algorithm has a worst-case performance
of 50

49
and a time complexity of O (n log n+ c) where c is a constant that describes the time

needed for the optimal assignment of the first five jobs. Recently, Walter (2015) analyzed
the coherence between P2||Cmax and P2||

∑m
i=1 C

2
i and derived properties that allow for

a transfer of worst-case ratios between both problems. Worst-case bounds for L2 were
obtained by Goldberg and Shapiro (1999), who showed that in the case of ideal sets the
LPT-rule has a worst-case performance of 37

36
.

Ho et al. (2009) introduced a new workload balancing criterion, the so called Normal-
ized Sum of Squared Workload Deviations (NSSWD) where 1

µ
(
∑m

i=1 (Ci − µ)2)1/2 has to be
minimized. They also discussed some properties of the problem and introduced a heuristic
algorithm that is based on the repeated solution of sub-problems with two machines with
respect to the makespan criterion. Later, Ouazene et al. (2014) showed that the NSSWD
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criterion is equivalent to
∑m

i=1 C
2
i as

m∑
i=1

(Ci − µ)2 =
m∑
i=1

(
C2

i − 2Ciµ+ µ2
)
=

m∑
i=1

C2
i − 2µ

n∑
j=1

pj +mµ2 =
m∑
i=1

C2
i −mµ2 (2.7)

holds.
Consequently, NSSWD just represents a normalized variant of

∑m
i=1 C

2
i and is there-

fore a representative of the L2-norm. Cossari et al. (2012) proposed an algorithm for
P ||NSSWD with two phases, where at first partial solutions are merged until a feasible
solution is achieved and afterwards an improvement phase is performed where different
local search techniques are applied. Later, Walter and Lawrinenko (2014) corrected a
wrong result of Ho et al. (2009), who claimed that an optimal P ||NSSWD optimal sched-
ule is always an optimal P ||Cmax schedule, too. The most recent publication that treats
algorithmic methods for P ||NSSWD stems from Schwerdfeger and Walter (2016), where
a subset sum based procedure is proposed that exactly solves the case with m = 3. The
idea is afterwards extended to a local search approach for m ≥ 4.

Another workload balancing criterion was proposed by Rajakumar et al. (2004) and
denoted as the Relative Percentage of Imbalance (RPI) which is defined as RPI =
1
m

∑m
i=1 (Cmax − Ci) /Cmax. However, as Ho et al. (2009) showed, the measure is equiva-

lent to the minimization of the makespan in case of identical machines, as it converts to
RPI = 1− µ

Cmax
and therefore just represents a normalized variant of Cmax with values in

[0, 1].
Cossari et al. (2013) proposed a local search algorithm based on shifts and swaps of

one or two jobs between two machines and evaluated its performance for three further
workload balancing measures, namely the standard deviation σ =

√
1
m

∑m
i=1 (Ci − µ)2

that is equivalent to NSSWD, the mean deviation δ1 = 1
m

∑m
i=1 |Ci − µ|, and the mean

difference δ2 = 1
m(m−1)

∑m
i1=1

∑m
i2=1 |Ci1 − Ci2 |. The normalized variants of the criteria are

given through

σnorm =
σ

µ
√
m− 1

=
NSSWD√
m(m− 1)

, δnorm1 =
mδ1

2(m− 1)µ
, δnorm2 =

δ2
2µ

(2.8)

We refer the interested reader to Kumar and Shanker (2001), who analyzed and compared
nine different balancing criteria based on imbalance measures.

2.2.4 Job completion time based criteria

Job completion time based criteria are of concern when not only the assignment of the
jobs to the machines plays a role (as it is the case within Sect. 2.2.1 – 2.2.3) but also
their sequence on the machines. In this context it is important to note, that for the
corresponding optimization problems regarding minimization of the sum of job completion
times P ||

∑
Cj, the sum of squared job completion times P ||

∑
C2

j as well as the sum
of the weighted job completion times P ||

∑
wjCj with wj ∈ R≥0 the basic notation is

different compared to the other objective functions in Sect. 2.2.1–2.2.3. So far, Ci denoted
the completion time of machine i, however to remain consistent with the literature, the
completion time Cj of job j will now be referenced by its index j.
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Conway et al. (1967) showed that P ||
∑

Cj is solvable in polynomial time by a general-
ization of the shortest processing time rule (GSPT), where the jobs are sorted and labeled
in ascending order t1 ≤ t2 ≤ . . . ≤ tn and assigned to the first available machine and in a
tie-break situation the lowest-indexed machine is chosen. However, the same result does
not hold for the other two problems.

The complexity of P ||
∑

C2
j remained open quite long. Eventually, Cheng and Liu

(2004) settled the complexity and showed that the problem is strongly NP-hard. They
also analyzed the asymptotic behavior of the SPT rule and showed that the error rate
converges in probability to zero when the processing times are uniformly distributed in
[0, 1]. Further approximation results with respect to the GSPT rule were presented by
Della Croce and Koulamas (2012) who showed that the worst-case ratio is between

√
5+2√
5+1

and
√
6+2√
6+1

for m = 2 and not less than
√
m+4+2√
m+4+1

for arbitrary m values.
For the problem of minimizing the weighted completion time

∑
wjCj a significantly

higher number of papers has been published. The first work stems from Eastman et
al. (1964) who developed a lower bound for the problem that was later enhanced by
Webster (1992). The complexity of P ||

∑
wjCj was finally settled by Bruno et al. (1974)

who showed that the problem is strongly NP-hard for m ≥ 2. Baker and Merten (1973)
analyzed the problem from a rather technical point of view by providing properties of
(near) optimal solutions. They also illustrated the performance of different heuristics in a
computational study. Sahni (1976) proposed a polynomial time approximation scheme for
fixed m values with time complexity O(n(n

2

ε
)m−1) where a schedule not worse than 1 + ε

times the optimal solution is obtained.
Kawaguchi and Kyan (1986) analyzed the performance of the shortest weighted process-

ing time rule (WSPT), a variant of list scheduling for the case where the items are sorted
by non-decreasing wj

tj
values and derived a worst-case performance of 1

2
(1 +

√
2) ≈ 1, 207.

Later, Schulz (1996) presented a simple constructive heuristic that uses linear program-
ming relaxations and has a worst-case performance of (3− 1

m
)/(1− 1

n+1
), which is generally

worse than the result for WSPT. Skutella and Woeginger (2000) were the first who pre-
sented a PTAS independently from m for P ||

∑
wjCj. The algorithm is based on the

observation that the partitioning of jobs in dependence on their ratios tj
wj

guarantees a
good overall performance.

With respect to the exact solution of the problem there has also been some research
work. The first branch-and-bound algorithm was described by Elmaghraby and Park
(1974) who gave some insights into properties of optimal solutions and proposed a depth-
first search based on the lower bound of Eastman et al. (1964). Barnes and Brennan (1977)
enhanced the approach by presenting new structural insights as well as an entrapment rule
that allows for an elimination of non-optimal branches.

A different branching approach with an enhanced lower bound was presented by Sarin
et al. (1988). The idea behind their branching scheme is to avoid symmetric solutions by
predefining solution permutations which allow for a reduced branching tree. A backward
dynamic programming algorithm which is polynomial in the sum of the job weights T =∑

tj was proposed by Lee and Uzsoy (1992). The algorithm exploits the fact, that in
an optimal solution the jobs on each machine are always sequenced in the WSPT order.
Another branch-and-bound algorithm stems from Belouadah and Potts (1994). They
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also proposed a new ILP formulation based on time intervals and derived a Lagrangian
relaxation of the machine capacity constraints. Azizoglu and Kirca (1999) introduced a
branch-and-bound algorithm based on a new lower bound and dominance criteria based
on structural patterns of optimal solutions. The last algorithm for the exact solution of
P ||

∑
wjCj stems from van den Akker et al. (1999) who proposed a binary branch-and-

bound algorithm. They also introduced a column generation approach on the set covering
formulation of the problem and showed in a computational study that it leads to strong
lower bounds. Another interesting problem variant was analyzed by Xu and Nagi (2013),
who proposed a column generation procedure for a problem formulation that combines
Cmax and

∑
wjCj.

2.2.5 Classification of the scheduling literature

The following Table 2.1 summarizes the relevant literature on identical parallel machine
problems. Each row belongs to a specific paper, gives the α|β|γ-notation of the problem(s)
under consideration, and its main contribution(s) with respect to the classification below.
Although we carefully investigated the literature, we do not claim the table to be complete
and to contain every single publication and every single aspect of its contributions.
general:
AN probabilistic analysis
CG column generation approaches
DA benchmark data set generation
LU bound computation (lower (upper) bounds for maximization (min.) problems)
MA mathematical model
SU survey
TC theoretical characteristics of the solution space
WC worst-case analysis of bounds and/or approximation algorithms
exact solution:
BB branch-and-bound
BP branch-and-price
CP cutting plane algorithm
DP dynamic programming
EN enumeration approach
IW iterative weakening
heuristic solution:
BS beam search approach
CH constructive heuristic
HS harmony search
GA genetic algorithm (including scatter search and memetic algorithms)
GR greedy randomized adaptive search procedure
IH improvement heuristic (including local search approaches)
PA population based approach (including bee colony and particle swarm)
PT polynomial time approximation scheme
SA simulated annealing
TS tabu search
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publication notation main contribution
Alon et al. (1998) P || (

∑
Cp

i )
1/p PT

Alvim and Ribeiro (2004) P ||Cmax IH
Azizoglu and Kirca (1999) P ||

∑
wjCj BB, LU, TC

Baker and Merten (1973) P ||
∑

wjCj TC
Barnes and Brennan (1977) P ||

∑
wjCj BB, TC

Belouadah and Potts (1994) P ||
∑

wjCj BB, LU, MA, TC
Blazewicz (1987) P ||Cmax SU
Bruno et al. (1974) P ||Cmax, P ||

∑
wjCj WC

Chandra and Wong (1975) P || (
∑

Cp
i )

1/p, P ||
∑

C2
i WC

Chen et al. (2012) P ||Cmax HS
Cheng and Liu (2004) P ||

∑
C2

j AN, TC
Cheng and Sin (1990) P ||Cmax SU
Chiaselotti et al. (2010) P ||Cmax CH
Coffman and Gilbert (1985) P ||Cmax/Cmin AN
Coffman and Langston (1984) P ||Cmax/Cmin WC
Coffman et al. (1978) P ||Cmax IH, WC
Conway et al. (1967) P ||

∑
Cj TC

Cossari et al. (2012) P ||NSSWD IH
Cossari et al. (2013) P ||σnorm, P ||δnorm1 , P ||δnorm2 IH
Csirik et al. (1992) P ||Cmin WC
Davidović et al. (2012) P ||Cmax PA
Dell’Amico and Martello (1995) P ||Cmax BB, LU, TC, WC
Dell’Amico and Martello (2005) P ||Cmax BB
Dell’Amico et al. (2008) P ||Cmax BP, CG, GA
Della Croce and Koulamas (2012) P ||

∑
C2

j WC
Deuermeyer et al. (1982) P ||Cmin WC
Eastman et al. (1964) P ||

∑
wjCj LU

Elmaghraby and Park (1974) P ||
∑

wjCj BB, TC
Epstein and Skall (2004) P || (

∑
Cp

i )
1/p PT

França et al. (1994) P ||Cmax DA, IH
F.-Ghomi and J.-Ghazvini (1998) P ||Cmax IH
Finn and Horowitz (1979) P ||Cmax IH, WC
Frangioni et al. (2004) P ||Cmax DA, IH
Frenk and Rinnooy Kan (1986) P ||Cmax AN
Frenk and Rinnooy Kan (1987) P ||Cmax AN
Friesen (1984) P ||Cmax WC
Friesen and Langston (1986) P ||Cmax CH, WC
Goldberg and Shapiro (1999) P || (

∑
C2

i )
1/2 WC

Goldberg and Shapiro (2000) P || (
∑

Cp
i )

1/p CH, WC
Graham (1966) P ||Cmax WC
Graham (1969) P ||Cmax HC, WC
Gualtieri et al. (2008) P ||Cmax CH
Gualtieri et al. (2009) P ||Cmax CH
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Gupta and Ruiz-Torres (2001) P ||Cmax CH, WC
Haouari and Jemmali (2008a) P ||Cmin BB, IH, LU, TC
Haouari and Jemmali (2008b) P ||Cmax BB, IH, TC
Haouari et al. (2006) P ||Cmax IH, LU, TC
Ho and Wong (1995) P ||Cmax IH
Ho et al. (2009) P ||NSSWD IH
Hochbaum and Shmoys (1987) P ||Cmax LU
Hübscher and Glover (1994) P ||Cmax TS
Kashan and Karimi (2009) P ||Cmax PA
Kawaguchi and Kyan (1986) P ||

∑
wjCj WC

Kellerer and Woeginger (1993a) P |k = 3|Cmax/Cmin WC
Koulamas and Kyparisis (2008) P2||

∑
C2

i CH, WC
Langston (1982) P ||Cmax IH, WC
Lawler et al. (1993) P ||Cmax SU
Lee and Massey (1988) P ||Cmax CH, WC
Lee and Uzsoy (1992) P ||

∑
wjCj DP

Lee et al. (2006) P ||Cmax SA
Leung and Wei (1995) P ||

∑
C2

i WC
McNaughton (1959) P ||Cmax LU, TC
Min and Cheng (1999) P ||Cmax GA
Mokotoff (2001) P ||Cmax SU
Mokotoff (2004) P ||Cmax CP, MA
Ouazene et al. (2014) P ||NSSWD, P ||C∆ MA, TC
Paletta and Pietramala (2007) P ||Cmax CH, WC
Paletta and Ruiz-Torres (2015) P ||Cmax CH, WC
Paletta and Vocaturo (2011) P ||Cmax IH
Riera et al. (1996) P ||Cmax IH
Rothkopf (1966) P ||Cmax DP
Sahni (1976) P ||

∑
wjCj PT

Sarin et al. (1988) P ||
∑

wjCj BB, LU
Schulz (1996) P ||

∑
wjCj CH, WC

Schwerdfeger and Walter (2016) P ||NSSWD IH
Skutella and Woeginger (2000) P ||

∑
wjCj PT

Tang and Luo (2006) P ||Cmax IH
Thesen (1998) P ||Cmax TS
van den Akker et al. (1999) P ||

∑
wjCj BB, CG, LU

Walter (2013) P ||Cmin TC
Walter (2015) P2||

∑
C2

i WC
Walter and Lawrinenko (2014) P ||NSSWD TC
Walter and Lawrinenko (2016) P ||Cmax BB, TC
Walter et al. (2016) P ||Cmin BB, LU, TC
Webster (1992) P ||

∑
wjCj LU

Woeginger (1997) P ||Cmin PT
Yue (1990) P ||Cmax WC

Table 2.1: Literature on identical machine scheduling problems
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2.3 Number partitioning

In the AI community the task of assigning n integers aj of a set S to m subsets S1, . . . , Sm

with S = ∪̇i=1,...,mSi in order to minimize the largest subset sum or to balance the subset
sums are usually known as multi-way number partitioning and balanced multi-way number
partitioning resp. Therefore, number partitioning is a kind of theoretical foundation,
while the equivalent problem of parallel machine scheduling represents a possible practical
application. However, as both communities have an individual research scope, a thorough
review of the literature in the AI community for number partitioning will be given now.

2.3.1 Two-way number partitioning

Two-way number number partitioning describes the case of parallel machine scheduling
with m = 2 which is also equivalent to the subset sum problem. The first noticeable
algorithm for two-way number partitioning stems from Horowitz and Sahni (1974) who
introduced a heuristics procedure where the integers are divided into two randomly gener-
ated subsets of size n

2
each and the goal is to find combined subset sums of the two halves

that are as close to
∑n

j=1 aj/2 as possible. The runtime of their algorithm is O(n2n/2) since
it requires a sorted list of subsets. Schroeppel and Shamir (1981) improved the algorithm
with respect to the memory usage by handling the subsets in a sorted order by the usage
of a min-heap.

Karmarkar and Karp (1982) proposed the so called Differencing Method that laid the
foundation for many further researches on the topics of two-way, multi-way and balanced
multi-way number partitioning. Their algorithm is based on the idea, that a solution can
be obtained by an iterative replacement of the two largest remaining integers, say ai and
aj, by their difference |ai − aj| in the original list of integers. They also extended this idea
for an arbitrary number of subsets by combining partial solutions. The time complexity
of the Karmarkar-Karp algorithm is O(n log n).

Their approach was later extended by Korf (1998) to an exact solution procedure for
two-way number partitioning. Here, a binary search tree is used to allow for the con-
dition that the two largest remaining integers can also be assigned to different subsets.
Korf (1998) also extended a greedy-based heuristic to an exact solution procedure (called
Complete Greedy Algorithm) by applying a binary search tree and introducing several
dominance criteria. Both algorithms have a time complexity of O(2n) due to the structure
of the binary search tree.

Since the early 90s several meta heuristic approaches have been published for two-way
number partitioning. Johnson et al. (1991) proposed a simulated annealing algorithm for
two-way number partitioning and described the difficulty of finding a suitable neighbor-
hood definition. Based on these results, Ruml et al. (1996) analyzed the impact of encod-
ing schemes and search techniques such as simulated annealing or genetic algorithms and
concluded, that the choice of a suited encoding scheme is crucial for the search efficacy.
Argüello et al. (1996) introduced two randomized versions of the Differencing Method of

28



Karmarkar and Karp (1982) by applying the Greedy Randomized Adaptive Search Proce-
dure (GRASP) methodology. The first algorithm performs the differencing operation on
random integers, while the second algorithm applies differencing on a subset of S first and
afterwards on the remaining integers.

Later, Berretta et al. (2004) developed recombination approaches that aim for weight-
matching and are used as operators within a memetic algorithm. Alidaee et al. (2005)
showed that two-way number partitioning as well as balanced multi-way number parti-
tioning can also be modeled as unconstrained quadratic binary programs and applied a
tabu search algorithm for the modified formulation. The latest paper stems from Pedroso
and Kubo (2010) who proposed a depth-first branch-and-bound algorithm and a breadth-
first beam search heuristic, which uses a diving method based on the Differencing Method,
enabling a quick identification of feasible solutions.

For the case that the ai values are real numbers drawn from a uniform distribution
instead of being integer, several probabilistic analyses with respect to the optimal difference
between both sets were made, e.g. by Karmarkar et al. (1986), Lueker (1987), Tsai (1992),
and Yakir (1996). For the case that the integers are distributed in the range

{
1, . . . , 2kn

}
,

the analysis of phase transition received a lot of attention. Phase transition basically
describes the phenomenon that there is a drastic change with respect to the required time
for the determination of an optimal solution for a certain k value, as the probability of
perfect partitions (i. e. C1 = C2) tends to zero. For the analysis of the phase transition
we refer, e.g. to Korf (1998), Gent and Walsh (1998), and Mertens (1998, 2006).

2.3.1.1 Multi-way number partitioning

For multi-way number partitioning with the goal of minimizing the largest subset sum,
Michiels et al. (2007) analyzed the worst-cast performance of the Differencing Method of
Karmarkar and Karp (1982) and showed that for m ≥ 3 it is bounded between 4

3
− 1

3(m−1)

and 4
3
− 1

3m
. Korf (2009) proposed an exact recursive binary tree algorithm, where at each

node of the tree the inclusion or exclusion of an integer to a certain number of subsets
is performed. Subproblems with two remaining subsets are solved with the extended
Karmarkar and Karp algorithm. In Korf (2011) the approach was improved by replacing
the binary tree with an extended version of the Schroeppel and Shamir algorithm that
allows for a more effective search of the solution space. A different branch-and-bound
approach was presented in Moffitt (2013). Here, all possible sets of integers are sequentially
generated that may be assigned to S1 while the remaining integers are assigned by a binary
search tree to the remainingm−1 subsets. The algorithm uses the principle of weakest-link
optimally, what basically means that a suboptimal solution for m − 1 sets may still lead
to a global optimal solution if C1 ≥ max {C2, . . . , Cm} holds. The most recent publication
on the exact solution of multi-way number partitioning stems from Schreiber and Korf
(2014). Their cached iterative weakening algorithm iteratively increases a given lower
bound L until an optimal solution is found with C∗ = L. To allow for an efficient search
of the solution space, possible sets of integers in a certain range [L,U ] are only generated
once in a preprocessing step. For the generation of feasible solutions, these sets of integers
are consecutively considered in an increasing cardinality order.
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2.3.2 Balanced multi-way number partitioning

For the balanced multi-way number partitioning problem the relevant literature distin-
guishes between two different objectives, (i) minimizing the difference between the maxi-
mum and minimum subset and (ii) minimizing the largest subset where the cardinality of
each subset either is

⌈
n
m

⌉
or

⌊
n
m

⌋
(cf. Zhang et al, 2011). In case that n

m
is integer, the

problem variant is equivalent to k-partitioning where exactly k = n
m

numbers have to be
assigned to each subset. While the practical applicability of (i) was already discussed in
the context of workload balancing (cf. Sect. 2.2.3), problems of type (ii) occur, e.g. in the
field of flexible manufacturing systems (cf. Dell’Amico et al., 2006) where each unit of the
system is only able to perform a certain amount of different operations, because of spe-
cific tool magazines with a limited capacity. Especially in literature about problems with
cardinality constraints, there are not always clear borders between Operations Research
and Artificial Intelligence.

Tasi (1995) proposed a modified version of the Karmarkar and Karp heuristic where it is
ensured that each subset receives either

⌈
n
m

⌉
or

⌊
n
m

⌋
integers. With respect to (ii), Michiels

et al. (2012) analyzed the worst-case behavior of the Karmarkar and Karp heuristic in
dependence on k and m. For any fixed k they showed that the worst-case ratio is between
2−

∑k−1
i=0

i!
k!

and 2− 1
k−1

. In dependence on m they proved a worst-case ratio of 2− 1
m
.

For the k-partitioning variant, Babel et al. (1998) introduced several lower bound ar-
guments as well as approximation algorithms and analyzed their worst-case performance.
Further publications on this problem stem from Dell’Amico and Martello (2001), where
lower bounds and corresponding worst-case analyses are regarded and from Dell’Amico et
al. (2004), where among others a scatter search approach and a branch-and-bound algo-
rithm are introduced. The latest paper for balanced multi-way number partitioning stems
from Zhang et al. (2011) who developed two heuristic algorithms which are able to solve
instances with an odd cardinality limit and a skewed data set respectively. For k = 3
Kellerer and Kotov (1999) developed a 7

6
-approximation algorithm, where selected large

integers are assigned to different subsets and a binary search procedure is applied for the
assignment of the remaining integers.

Another similar problem variant is given, when each subset has an individual cardinal-
ity limit ki. The first contribution to this problem stems from Dell’Amico et al. (2006) who
developed several lower bounds, e.g. based on column generation, as well as reduction cri-
teria and heuristic solution procedures such as scatter search. Further publications are due
to Zhang et al. (2009) and Kellerer and Kotov (2011) who both dealt with approximation
algorithms.

When analogous to P ||Cmin the objective function is changed such that the smallest
subset shall be maximized, two further articles are available. He et al. (2003) intro-
duced constructive heuristics for k-partitioning as well as ki-partitioning and analyzed
their worst-case performances. For ki-partitioning, Lawrinenko et al. (2016) introduced
several lower bounds, preprocessing and lifting strategies as well as heuristic solution
methods such as a dynamic programming based improvement procedure.
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2.3.3 Classification of the number partitioning literature

In the same vein as the overview on the most relevant OR papers in Sect. 2.2.5 a classifi-
cation for the number partitioning literature is given in Table 2.2. As there is no unified
classification scheme available, like the α|β|γ-notation for scheduling problems, we use the
following abbreviations for the corresponding problem formulations.
2WNP/MWNP two-way/multi-way number partitioning problem
BMNP balanced multi-way number partitioning problem
k-PP/ki-PP k/ki-partitioning problem

publication notation main contribution
Alidaee et al. (2005) 2WNP, BMNP MA, TS
Argüello et al. (1996) 2WNP GR
Babel et al. (1998) k-PP CH, LU
Berretta et al. (2004) 2WNP GA
Dell’Amico and Martello (2001) k-PP LU, WC
Dell’Amico et al. (2004) k-PP BB, CH, GA
Dell’Amico et al. (2006) ki-PP CG, CH, GA, LU
Gent and Walsh (1998) 2WNP TC
He et al. (2003) k/ki-PP CH, WC
Horowitz and Sahni (1974) 2WNP CH
Johnson et al. (1991) 2WNP SA
Karmarkar and Karp (1982) 2WNP, BMNP CH
Karmarkar et al. (1986) 2WNP AN
Kellerer and Kotov (1999) k-PP CH, WC
Kellerer and Kotov (2011) ki-PP CH, WC
Korf (1998) 2WNP EN, TC
Korf (2009) MWNP BB
Korf (2011) MWNP BB
Lawrinenko et al. (2016) ki-PP CH, IH, LU, TC
Lueker (1987) 2WNP AN
Mertens (1998) 2WNP TC
Mertens (2006) 2WNP TC
Michiels et al. (2007) MWNP WC
Michiels et al. (2012) BMNP WC
Moffitt (2013) MWNP BB
Pedroso and Kubo (2010) 2WNP BB, BS
Ruml et al. (1996) 2WNP TC
Schreiber and Korf (2014) MWNP IW
Schroeppel and Shamir (1981) 2WNP CH
Tasi (1995) BMNP CH
Tsai (1992) 2WNP AN
Yakir (1996) 2WNP AN
Zhang et al. (2009) ki-PP CH, WC
Zhang et al. (2011) k-P CH

Table 2.2: Literature on number partitioning problems
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2.4 Conclusion

In this Chapter an overview on the most relevant literature with respect to bounding
techniques, approximation ratios, as well as solution procedures for identical parallel ma-
chine scheduling and number partitioning has been provided. The last survey on the topic
was published over 15 years ago, so a complete overview of the latest developments is
mandatory because a lot of progress has been made since then, especially on the field of
meta heuristics. In this context, we also reviewed the literature for less studied objective
functions such as the machine covering problem P ||Cmin or ki-partitioning and gave a
sketch of their practical applicability and their correlation to other similarly structured
optimization problems. Also an overview on the literature for number partitioning has
been provided, which is the common term for identical parallel machine scheduling in the
AI community.

Although identical parallel machine scheduling and number partitioning are two terms
for the same topic, the relationship between both respective communities is surprisingly
rather loose, as AI literature is only seldom mentioned in OR papers and vice versa. Also
the research questions of both communities are not always identical. In OR, solution pro-
cedures are typically theoretically analyzed with respect to their worst-case performance,
while the probabilistic behavior is more often investigated in the AI community. For the
identification of hard instances, OR papers typically analyze parameter settings with re-
spect to the number of jobs and machines, while AI papers have a stronger focus on the
influence of the size of input data and the number of bits required to store them. Bridg-
ing the gap between both communities and using the mutual knowledge appears to be a
promising approach in future research projects, since it allows for a wider scope on the
topic.
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Chapter 3

Effective solution space limitation for
the identical parallel machine
scheduling problem

Summary

For the classical makespan minimization problem on identical parallel machines, we iden-
tify universally valid characteristics of optimal schedules. Based on these novel structural
insights we derive several strong dominance criteria.
Implemented in a branch-and-bound algorithm these criteria have proved to be effective
in limiting the solution space, particularly in the case of small ratios of the number of jobs
to the number of machines.

3.1 Introduction

In this Chapter we are concerned with the following fundamental scheduling problem.
Given a set M = {M1, . . . ,Mm} of m ≥ 2 identical parallel machines and a set J =
{J1, . . . , Jn} of n > m independent jobs with positive processing times t1, t2, . . . , tn, the
task consists in a non-preemptive assignment of the jobs to the machines so that the latest
machine completion time (also called makespan) Cmax = max{C1, . . . , Cm} – where Ci is
the sum of processing times of jobs assigned to Mi – is minimized. Using the three-field
notation of Graham et al. (1979) this problem is abbreviated as P ||Cmax.

Problem P ||Cmax is well-known to be NP-hard in the strong sense (see Garey and
Johnson, 1979) and it constitutes one of the very basic problems in scheduling theory which
has received (and still receives) a lot of attention from researchers as well as practitioners.
As a result, numerous publications – primarily on approximation algorithms and (meta-
)heuristic approaches – appeared. Here, substantial contributions during the last years
stem from Alvim and Ribeiro (2004), Frangioni et al. (2004), Dell’Amico et al. (2008),
Paletta and Vocaturo (2011), and Davidović et al. (2012), to name but a few. However,
contributions to exact solution procedures (cf. Dell’Amico and Martello, 1995; Mokotoff,
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2004; Dell’Amico et al., 2008; Haouari and Jemmali, 2008b) are quite rare and, so far,
only little is known about structural patterns of optimal solutions (cf. Dell’Amico and
Martello, 1995).

Both of the last-mentioned issues are addressed by the present Chapter which is com-
posed of a theoretical part (Sections 3.2 and 3.3) and an algorithmic part (Sections 3.4 and
3.5). In the theoretical part we (i) provide a thorough investigation of the underlying solu-
tion space resulting in the identification of novel structural patterns of makespan-optimal
schedules (cf. Section 3.2) and (ii) derive new dominance criteria based on the previous
results (cf. Section 3.3). In the subsequent algorithmic part we (i) elaborate on how the
new insights can be efficiently implemented in a branch-and-bound algorithm (cf. Section
3.4) and (ii) present results of a comprehensive experimental study on a set of difficult
benchmark instances (cf. Section 3.5). Finally, Section 3.6 concludes the Chapter with
some ideas for future research.

In the remainder of the Chapter we presuppose the jobs to be labeled so that t1 ≥ t2 ≥
. . . ≥ tn.

3.2 Theoretical study of the solution space

This section contains a profound theoretical study of the underlying solution space and
focuses on the derivation of necessary conditions for makespan-optimal solutions. For this
purpose, we developed an approach that resembles the idea of inverse optimization (cf.,
e.g., Ahuja and Orlin, 2001).

3.2.1 A symmetry-breaking solution representation

In order to avoid symmetric solutions resulting from a simple renumbering of the machines,
we use a schedule representation that we call non-permuted, meaning that a schedule
S ∈ {1, 2, . . . ,m}n – where S(j) = i indicates that job j is assigned to machine i – fulfills
the following two conditions:

1. S(1) = 1

2. S(j) ∈
{
1, . . . ,min{m, 1 + max1≤k≤j−1 S(k)}

}
for all j = 2, . . . , n.

In other words, in a non-permuted schedule it never occurs that a job is assigned to
a machine i2 as long as there exists an empty machine i1 with i1 < i2. Obviously, any
schedule that does not fulfill the two conditions can be transformed into a non-permuted
one by simply renumbering the machines. As a consequence, only non-permuted schedules
will be considered in the remainder of the Chapter.

3.2.2 Potential optimality

In order to obtain insights into structural patterns of optimal schedules, we developed the
following approach. Unlike the usual approach where one is seeking an optimal schedule to
a given P ||Cmax-instance, we consider arbitrary schedules and ask whether we can select
processing times so that the respective schedule becomes (uniquely) makespan-optimal.
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If possible, the respective schedule is said to be potentially (unique) makespan-optimal,
otherwise the schedule can never become (uniquely) makespan-optimal and is therefore
said to be non-potentially (unique) makespan-optimal. Obviously, in a mathematical sense,
the set of potentially unique optimal schedules S∗∗ is a subset of the set of potentially
optimal schedules S∗ which is itself a subset of the set of all solutions S, i.e., in general
we have S∗∗ ⊂ S∗ ⊂ S. Furthermore, the set of non-potentially unique makespan-optimal
schedules S̄∗∗ is the relative complement of S∗∗ in S, i.e., S̄∗∗ = S \S∗∗. Thus, a complete
characterization of S̄∗∗ directly implies a complete characterization of S∗∗. As will be seen
next, we focus on characterizing S̄∗∗ instead of directly characterizing S∗∗ as this turned
out to be more viable. We start with an analysis of the two machine case upon which,
later on, the analysis of the generalized case of m ≥ 3 machines will build substantially.

3.2.2.1 The two machine case

In a first step, we introduce an alternative method to illustrate schedules. Usually, Gantt
charts are the means of choice to display which job is assigned to which machine and at
which time the processing of a job starts and ends. However, as the concept of poten-
tial optimality does not base on processing times but rather on information concerning
the current number of jobs assigned to each machine, we propose the following simple
illustration of schedules called path-representation. Associated with this kind of represen-
tation is the definition of the corresponding path PS to a schedule S. To put it simply,
the corresponding path PS to a schedule S is a string of length n+1 where the j-th entry
(j = 1, . . . , n) represents the difference between the number of jobs assigned to machine
1 and machine 2 in S after the assignment of the first j jobs. Note that these are the j
longest ones because we presuppose the jobs to be sorted in non-increasing order of their
processing times. Further, we set PS(0) = 0 representing initially empty machines. In a
graphical illustration of a path, the entries are linearly connected (see Example 3.2.1).

Example 3.2.1
Consider the following three schedules S1 = (1, 2, 2, 1, 2, 1), S2 = (1, 1, 2, 2, 1, 2), S3 =
(1, 1, 1, 1, 2, 2) and their corresponding paths presented below.

j

PS1(j)

1 2 3 4 5 6−1

1

Figure 3.1: Path PS1

j

PS2(j)

1 2 3 4 5 6−1

1
2

Figure 3.2: Path PS2

j

PS3(j)

1 2 3 4 5 6−1

1
2
3
4

Figure 3.3: Path PS3

It is readily verified that S1 constitutes a potentially unique makespan-optimal sched-
ule, e.g., for the vector of processing times T1 = (9, 6, 5, 3, 2, 1), while S2 is indeed po-
tentially makespan-optimal but not potentially unique makespan-optimal (consider T2 =
(3, 3, 3, 3, 2, 2) for which, among others, S1 and S2 are optimal). For reasons of compari-
son, S3 serves as an example for a non-potentially makespan-optimal solution.
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Before we proceed, we want to remark that the path representation is neither based
on explicit values of the processing times nor does it provide information about them.
Requiring the jobs to be sorted in non-increasing order of their processing times, it is just
a catchy way to illustrate non-permuted schedules.

For the theoretical study of structural patterns of optimal P2||Cmax-schedules, the set

SNEG(n) =
{
S |PS(j) < 0 for some j ∈ {3, . . . , n}

}

plays a crucial role. Schedules belonging to SNEG(n) are said to fulfill the (two-machine)
path-condition. If no further specification is needed, we use SNEG instead of SNEG(n).

Theorem 3.2.2
Let S be a schedule which is no element of SNEG(n). Then, S is a non-potentially unique
makespan-optimal schedule.

Proof
Consider a schedule S /∈ SNEG and let J1(S) = {a1, . . . , ar} and J2(S) = {b1, . . . , bs}
denote the set of job-indices that are assigned to machine 1 and 2, respectively. Note that
r ≥ s and r + s = n holds. Furthermore, w.l.o.g. assume that 1 = a1 < a2 < . . . < ar and
b1 < . . . < bs. Since S /∈ SNEG, we can conclude

a1 < b1, a2 < b2, . . . , as < bs.

Thus, the makespan of S is Cmax(S) =
∑r

k=1 tak .
In order to prove that S is a non-potentially unique makespan-optimal solution, we

construct a schedule S̄ that is “not longer” than S, i.e., Cmax(S̄) ≤ Cmax(S), for any
feasible instance. We distinguish two cases according to the number of jobs assigned to
machine 2 in S.

1. s < 2.
Consider a schedule S̄ which is obtained from S by shifting job a2 to machine 2.
Obviously, this cannot increase the makespan.

2. s ≥ 2.
Consider a schedule S̄ which is obtained from S by swapping the jobs as and bs, i.e.,
J1(S̄) = {a1, . . . , as−1, as+1, . . . , ar, bs} and J2(S̄) = {b1, . . . , bs−1, as}. Then, for the
makespan of schedule S̄ we get

Cmax(S̄) = max
{ s−1∑

k=1

tak + tbs +
r∑

k=s+1

tak ,
s−1∑
k=1

tbk + tas

}
.

Provided that Cmax(S̄) =
∑s−1

k=1 tak + tbs +
∑r

k=s+1 tak , we can conclude

s−1∑
k=1

tak + tbs +
r∑

k=s+1

tak ≤
r∑

k=1

tak = Cmax(S).
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In the other case, i.e., Cmax(S̄) =
∑s−1

k=1 tbk + tas , we can conclude

s−1∑
k=1

tbk + tas ≤
s−1∑
k=1

tak + tas =
s∑

k=1

tak ≤
r∑

k=1

tak = Cmax(S).

Thus, we have that Cmax(S̄) ≤ Cmax(S).

This completes the proof of the theorem as in either case a schedule S̄ exists which is not
longer than S (for any feasible instance of P2||Cmax). �

Note that the constructed schedule S̄ itself is not required to be an element of SNEG.
However, it is quite obvious that an iterative application of the shifting- (cf. Case 1) and/or
the swapping-operation (cf. Case 2) will turn a given schedule S /∈ SNEG into a schedule
S ′ that is actually an element of SNEG. We call the whole process the two-machine path-
modification. Clearly, during this process – which is illustrated in Example 3.2.3– the
makespan cannot increase.

Example 3.2.3
Assume n = 8, m = 2 and consider the following vector of processing times T = (20, 18, 15,
12, 10, 10, 8, 5, 2). The initial schedule S = (1, 1, 2, 1, 1, 2, 1, 2, 1) is transformed to S̄ =
(1, 1, 2, 2, 1, 2, 1, 1, 1) in a first step and then into a potentially unique makespan-optimal
schedule S′ = (1, 1, 2, 2, 2, 1, 1, 1, 1).

j

PS(j)

1 2 3 4 5 6 7 8 9−1

1
2
3

j

PS̄(j)

1 2 3 4 5 6 7 8 9−1

1
2
3

j

PS′(j)

1 2 3 4 5 6 7 8 9−1

1
2
3

J1(S) = J2(S) =
{1, 2,4, 5, 7, 9} {3, 6,8}
C1(S) = 70 C2(S) = 30

Figure 3.4: Schedule S

J1(S̄) = J2(S̄) =
{1, 2,5, 7, 8, 9} {3, 4,6}
C1(S̄) = 63 C2(S̄) = 37

Figure 3.5: Schedule S̄

J1(S
′) = J2(S

′) =
{1, 2, 6, 7, 8, 9} {3, 4, 5}
C1(S

′) = 63 C2(S
′) = 37

Figure 3.6: Schedule S ′

For the sequel it is useful to record two important properties of the swapping-operation:

• The s− 1 longest jobs on machine 1 are not affected by any swap.

• After each swap – turning a schedule S /∈ SNEG into another schedule S̄ – the entries
in the corresponding paths interrelate as follows:

PS̄(j) =




PS(j), if j = 1, . . . , as − 1,

PS(j)− 2, if j = as, . . . , bs − 1,

PS(j), if j = bs, . . . , n.

As a consequence, a modified schedule S ′ fulfills the path-condition at position 2s− 1 for
which exactly (PS(2s− 1) + 1)/2 swaps are required.
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3.2.2.2 The generalized case

At first, we briefly explain how we make use of the path-representation in the generalized
case. As we now have more than two machines, it seems natural to represent a schedule S
via a set of

(
m
2

)
paths. This set contains for each pair (i1, i2) of machines (1 ≤ i1 < i2 ≤ m)

the corresponding path P
(i1,i2)
S . The paths are defined as in the previous subsection, i.e.,

P
(i1,i2)
S (j) represents the difference between the number of jobs assigned to i1 and i2 in S

after the assignment of the j longest of the n jobs.

Example 3.2.4
Assume n = 9, m = 3 and consider the schedule S = (1, 2, 1, 2, 2, 3, 1, 1, 3). The corre-
sponding paths to the three machine-pairs are illustrated below.

j

P
(1,2)
S (j)

1 2 3 4 5 6 7 8 9−1

1
2
3

Figure 3.7: Path P
(1,2)
S

j

P
(1,3)
S (j)

1 2 3 4 5 6 7 8 9−1

1
2
3

Figure 3.8: Path P
(1,3)
S

j

P
(2,3)
S (j)

1 2 3 4 5 6 7 8 9−1

1
2
3

Figure 3.9: Path P
(2,3)
S

Note that besides up- and downward moves, now horizontal moves appear as well in
the graphical illustration of the corresponding paths.

Next, the definition of the set SNEG(n) is extended to the set SNEGX(n,m) as follows:

SNEGX(n,m) =
{
S | for each pair (i1, i2) there exists either a j ∈ {3, . . . , n} so that P

(i1,i2)
S (j) < 0,

or 0 < j1 ≤ j2 < n so that P
(i1,i2)
S (j) = 1 for j = j1, . . . , j2 and P

(i1,i2)
S (j) = 0 else

}
.

Note that SNEGX(n,m) contains all non-permuted schedules of n jobs on m machines
where (i) each machine processes at least one job and (ii) each corresponding path has
at least one negative entry if the graphical illustration of the path has less than n − 2
horizontal moves. We say that such schedules fulfill the path-conditions. Again, we write
SNEGX for short. Then, our main theorem reads as follows.

Theorem 3.2.5
Let S be a schedule which is no element of SNEGX(n,m) (m ≥ 3). Then, S is a non-
potentially unique makespan-optimal schedule. Moreover, every schedule S /∈ SNEGX(n,m)
can be turned into a schedule that is an element of SNEGX(n,m) by successive application
of the two-machine path-modification.

Lemma 3.2.6
Let 1 ≤ i1 < i2 < i3 ≤ m and consider a schedule S where P

(i1,i2)
S fulfills its path-condition

while P
(i1,i3)
S does not. Then, application of the two-machine path-modification to P

(i1,i3)
S

preserves the fulfillment of the path-condition of (i1, i2).
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Lemma 3.2.7
Let 1 ≤ i1 < i2 < i3 ≤ m and consider a schedule S where both P

(i1,i2)
S and P

(i1,i3)
S

fulfill their path-condition while P
(i2,i3)
S does not. Then, application of the two-machine

path-modification to P
(i2,i3)
S preserves the fulfillment of the path-condition of (i1, i2) and

(i1, i3).

The respective proofs of the two lemmata are to be found in the Appendix as they are
rather technical.

Proof of Theorem 3.2.5
The first part of the proof is trivial. Since S is no element of SNEGX(n,m), there ex-
ists a pair of machines – say (i1, i2) – whose corresponding path does not fulfill the
path-condition. According to Theorem 3.2.2, after application of the two-machine path-
modification to the pair (i1, i2) the respective path very well fulfills its path-condition
without increasing the maximum completion time of i1 and i2. Moreover, as the path-
modification does not affect any jobs on the remaining m− 2 machines, the makespan of
the transformed schedule cannot be greater than the makespan of S. Hence, S cannot be
potentially unique makespan-optimal.

The second part can be proved with the help of the two lemmata 3.2.6 and 3.2.7. At
first, we consider the path P

(1,2)
S . In case that P (1,2)

S does not fulfill its path-condition, we
apply the two-machine path-modification (cf. end of Section 3.2.2.1). Afterwards, we iter-
atively apply the two-machine path-modification to the paths P (1,3)

S , . . . , P
(1,m)
S . According

to Lemma 3.2.6, this yields that each path P
(1,i)
S (i = 2, . . . ,m) fulfills its path-condition.

Now, with regards to non-permuted schedule, a renumbering of the machines might be
necessary. Then, we apply the two-machine path-modification to P

(2,3)
S . Since both P

(1,2)
S

and P
(1,3)
S already fulfill their path-condition, Lemma 3.2.7 ensures that the fulfillment is

preserved during the modification of P (2,3)
S . Next, we iteratively apply the two-machine

path-modification to the paths P (2,4)
S , . . . , P

(2,m)
S . According to the two lemmata, we now

obtain that not only the paths P
(1,i)
S (i = 2, . . . ,m) fulfill their path-condition but also

the paths P
(2,i)
S (i = 3, . . . ,m). Again, a renumbering of the machines might be re-

quired. The whole process can be repeated until finally the path P
(m−1,m)
S also fulfills its

path-condition. As a consequence of the specific iterative application of the two-machine
path-modifications, the initial schedule S /∈ SNEGX(n,m) is transformed into a schedule
that is very well an element of SNEGX(n,m). �

To bring it back to the beginning of Section 3.2.2 where we aimed at a complete
characterization of S∗∗, we can record that S∗∗ ⊆ SNEGX . Though we do not have a
mathematical proof of the identity of the two sets yet, we strongly conjecture that identity
indeed holds as indicated by the results of preliminary experimental studies on small
(n,m)-constellations.
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3.3 Dominance criteria derived from potential optimal-
ity

In this section we deal with how to make use of the new structural insights in a branching
based solution procedure. As will be seen next, our findings of the previous section admit
a straightforward translation into new dominance criteria which we subsume under the
term path-related criteria. By means of these new criteria we want to guide the search
towards solutions in SNEGX since this set is known to contain at least one optimal solution
(cf. Theorem 3.2.5).

3.3.1 Basic dominance criterion

The purpose of the basic criterion is to decide at early stages whether it is possible to
complete a partial solution such that it is an element of SNEGX . To answer this question, we
identify all machine-pairs which do currently not fulfill their path-condition and determine
the minimum number of required jobs on the respective machines.

More formally, assume the k longest jobs to be already assigned representing a partial
solution S̃ and let PF

(i1,i2)

S̃
(k) ∈ {0, 1} indicate for each pair of machines (i1, i2) whether

its path-condition is currently fulfilled (PF
(i1,i2)

S̃
(k) = 1) or not (PF

(i1,i2)

S̃
(k) = 0). In

accordance with the definition of SNEGX , a pair (i1, i2) currently fulfills its path-condition
if either the corresponding partial path has actually reached the negative sector so far
(i.e., the path-condition is fulfilled for sure) or each of the two machines processes exactly
one of the first k jobs (i.e., the path-condition is fulfilled up to this point).
Concentrating on the pairs where PF

(i1,i2)

S̃
(k) = 0, two cases have to be distinguished

according to the current number of jobs assigned to i1.

1. Mi1 processes at most one of the first k jobs.
In this case it is sufficient to assign one job to i2 in order to fulfill the respective
path-condition.

2. Mi1 processes at least two of the first k jobs.

In this case at least P (i1,i2)

S̃
(k) + 1 jobs still have to be assigned to i2 to ensure that

the (i1, i2)-path contains a negative entry.

As each pair (i1, i2) with fixed i2 ∈ {2, . . . ,m} has to fulfill the path-condition,

vi2(k) = max
i1=1,...,i2−1

PF
(i1,i2)

S̃
(k)=0

{
P

(i1,i2)

S̃
(k)

}
+ δi2(k) (3.1)

gives the minimum number of jobs that still have to be assigned to machine i2. Clearly, if
PF

(i1,i2)

S̃
(k) = 1 holds for all i1 = 1, . . . , i2−1, then vi2(k) = 0. The additional δi2(k)-term

corresponds to the aforementioned two cases. More detailed, δi2(k) = 0 iff Case 1 holds
for all machines 1 ≤ i1 < i2. Otherwise, if at least one machine i1 < i2 processes more
than one job (cf. Case 2) then δi2(k) = 1.
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Then, by assigning the next vm(k) jobs to machine m, the following vm−1(k) jobs to
machine m − 1 and so on until machine 2 finally receives its v2(k) required jobs, all

(
m
2

)
path-conditions are satisfied. In case that the minimum number of required jobs exceeds
the number of remaining jobs, i.e.,

m∑
i2=2

vi2(k) > n− k (3.2)

the current partial solution can be excluded from further search. An example is provided
at the end of Section 3.3.

3.3.2 Further improvements

In a first step, we try to increase the minimum number of required jobs. For this purpose,
we take a deeper look at pairs of machines where at most one job is currently assigned to
each machine. Let (i1, i2) be such a pair. Then, according to Section 3.3.1, vi2(k) is either
zero (as the pair currently fulfills its path-condition) or one (since it suffices to assign one
job to i2). As will be shown next, in some cases it is possible to increase vi2(k) by 1. The
increase depends on the minimum number m′ of machines that have to process at least
two jobs so that the makespan of the corresponding schedule is not greater than a given
upper bound U . To compute m′, consider the ratios

qi =
TSum − iU

m− i
(i = 0, 1, . . . ,m− 1) (3.3)

where TSum =
∑n

i=1 ti. Starting with i = 0, q0 represents the average machine completion
time. Hence, if q0 > t1 it is quite obvious that at least one machine has to process more
than one job. Then, assuming that this machine’s completion time equals U – which is
a valid simplification – we consider q1 that represents the minimum average load of the
remaining m − 1 machines. Clearly, in case that q1 > t1, we can conclude that one of
the remaining m− 1 machines has to process at least two jobs as well. This procedure is
repeated as long as qi > t1 for the first time. In case U > t1, a straightforward calculation
yields

qi > t1 ⇐⇒ i <
TSum −mt1

U − t1
(3.4)

by which

m′ =

⌈
TSum −mt1

U − t1

⌉
(3.5)

follows. Let i′(k) denote the lowest index of a machine to which currently at least two jobs
are assigned, then we can immediately conclude that each machine i > i′(k) has to process
at least two jobs as well to fulfill the path-conditions. These are in total m − i′(k) + 1
machines. Clearly, in case that m′ > m−i′(k)+1, the machines i = m−m′+1, . . . , i′(k)−1
also have to process at least two jobs so that the respective vi(k)-values can be increased
by one.

Secondly, by incorporation of the processing times we intend to decide whether it is
possible to assign the required number of jobs

∑m
i=1 vi(k) to the respective machines so
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that no machine runs longer than U − 1. As this problem is NP-hard in the strong sense
(by reduction from 3-Partition (cf. Garey and Johnson, 1979)), we rather solve a relaxed
version (where jobs may be assigned to more than one machine) as described next. Assume
that 1 ≤ p ≤ m machines still require at least one job and let I = {i1, i2, . . . , ip} be the
set of the corresponding machines, i.e., vi(k) > 0 for all i ∈ I. Then, for each i ∈ I we
determine the longest job ji that can be assigned to i in combination with the vi(k) − 1
shortest jobs so that i finishes not later U − 1. More formally,

ji = min
{
j ∈ {k + 1, . . . , n} | Ck

i + tj +

vi(k)−2∑
l=0

tn−l ≤ U − 1
}

(3.6)

where Ck
i is the current completion time of i after the assignment of the first k jobs. Note

that (i) an assignment of a job j ∈ {k+1, . . . , ji − 1} to machine i cannot improve U and
thus will not lead to a new incumbent solution and (ii) the current partial solution can be
fathomed if Ck

i +
∑vi(k)−2

l=0 tn−l already exceeds U − 1.
Further, let π be a permutation of the machines in I which sorts the jobs ji in order of
non-increasing indices. Clearly, in case that n − jπ(1) + 1 < vπ(1)(k), the current solution
cannot be completed in such a way that all path-conditions are satisfied and the makespan
is less than U . In the other case, i.e., n−jπ(1)+1 ≥ vπ(1)(k), we check whether n−jπ(2)+1
is smaller than vπ(1)(k) + vπ(2)(k). If this is the case, the partial solution can be fathomed
using the same argument as before. Otherwise, the iterative procedure is repeated by
successively adding the next machine according to π and checking for n − jπ(3) + 1 <∑3

b=1 vπ(b)(k), n− jπ(4) + 1 <
∑4

b=1 vπ(b)(k) and so on. In case that one of the inequalities
n − jπ(p′) + 1 <

∑p′

b=1 vπ(b)(k) (p′ = 1, . . . , p) is fulfilled, the current solution can be
fathomed.

Example 3.3.1
Assume n = 11, m = 5 and consider the following vector of processing times T =
(187, 162, 140, 127, 119, 108, 101, 71, 62, 50, 25) for which U = 237 constitutes a valid upper
bound (by application of the LPT-rule). Furthermore, let k = 6 and assume the partial
schedule S̃ = (1, 2, 3, 4, 5, 4). Table 3.1 provides the entries of all paths at position 6.
The superscript � indicates that the path-condition of the respective pair of machines is
currently not fulfilled.

P
(i1,i2)

S̃
(6) 2 3 4 5

1 0 0 -1 0
2 - 0 -1 0
3 - - -1 0
4 - - - 1�

Table 3.1: Entries of all paths at position k = 6

Then, we have vi(6) = 0 for i = 1, . . . , 4 while v5(6) = 1 + δ5(6) = 1 + 1 = 2. Since
n − k = 5 > 2 =

∑5
i=1 vi(6), the current partial schedule cannot be fathomed according

to the basic criterion. However, we can increase v1(6), v2(6), and v3(6) by one because
m′ = �1152−5·187

237−187
� = 5 and i′(6) = 4. Nevertheless, S̃ still cannot be fathomed. At last, we
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incorporate the processing times of the five unassigned jobs. Here, we have I = {1, 2, 3, 5},
j1 = 11, j2 = j3 = j5 = 8, and the fourth iteration yields n− j5 + 1 = 4 < 5 =

∑
i∈I vi(6).

Thus, it is not realizable to complete S̃ in such a way that all path-conditions are fulfilled
and the makespan is less than U .

3.4 A branch-and-bound algorithm

This section contains a concise description of the proposed branch-and-bound algorithm.
The computation of bounds is similar to the one in Haouari and Jemmali (2008b) and the
branching scheme is adopted from Dell’Amico and Martello (1995). The most distinctive
and innovative component of our algorithm is certainly represented by the path-related
dominance criteria.

3.4.1 Lower bounds

We implemented two lower bounds referred to as L2 and L3 in Dell’Amico and Martello
(1995). The first one, L2 = max {�

∑n
i=1 ti/m� , t1, tm + tm+1}, is a rather simple one ob-

tained from relaxations of P ||Cmax. The second one, L3 = max
{
C+1 : ∃t ≤ C/2 for which

Bα(C, t) > m or Bβ(C, t) > m
}
, utilizes the strong coherence between P ||Cmax and the

bin packing problem (BPP). In its core, L3 consists of two lower bounds Bα(C, t) and
Bβ(C, t) for BPP. For any further details we refer to Dell’Amico and Martello (1995).

In order to enhance lower bounds, we implemented a lifting procedure as described by
Haouari et al. (2006). Roughly speaking, with this procedure lower bounds for specific
partial instances are determined which are also valid for the entire instance. The lifted
version of a bound L is denoted by L̃. Finally, we also implemented a procedure proposed
by Haouari and Jemmali (2008b) that tries to tighten a lower bound L by solving a specific
subset-sum-problem (SSP). The tightened version is denoted by LSSP . Again, we refer to
the literature.

We shall remark that existing literature provides a few more lower bounds (cf., e.g.,
Fekete and Schepers, 2001, and Webster, 1996). However, we abstain from implementing
them here because our focus is on an effective limitation of the solution space (i.e., an
effective exploration of the branching tree) rather than on bounding techniques.

3.4.2 Upper bounds

We implemented three procedures, namely the LPT-rule (cf. Graham, 1969), the Multifit-
algorithm (cf. Coffman et al., 1978), and an iterated local search improvement heuristic
based on Haouari et al. (2006) and Haouari and Jemmali (2008b), to obtain upper bounds
U1, U2, and U3, respectively. For further details we refer to the literature.

3.4.3 Application of the bounds

At the root node, the bounds are computed in the following order. At first, we determine
L2 as well as U1. In case L2 = U1, an optimal solution is obtained. Otherwise, we compute
L3. If L3 < U1, we compute U2 and if L3 < U2, we additionally determine U3. If there is
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still a gap between L3 and U3, the lifted bound L̃3 is computed. LSSP is only determined
in case that L̃3 < U3.

To obtain local bounds without consuming too much time, only L3 is computed at
every branched node. For details concerning this computation we refer to Dell’Amico and
Martello (1995). Furthermore, we determine U1 for partial solutions in which at least m
jobs have already been assigned and no more than 2m jobs remain unassigned.

3.4.4 The branching scheme

In case that the global lower bound LG = LSSP is smaller than the global upper bound
UG = U3, the branching process starts. We perform a depth-first search where at each level
of the branching-tree the job with the longest processing time amongst all unassigned jobs
is chosen. So, at level k, the current node generates at mostm son-nodes by assigning job k
to those machinesMi that fulfill Ck−1

i +tk < UG where Ck−1
i denotes the current completion

time of machine i after the assignment of the k − 1 longest jobs. The corresponding
machines are selected according to increasing current completion times. Note that selecting
the job with the longest remaining processing time at each level of the tree is well-suited
for a straightforward application of the path-related dominance criteria.

A new incumbent solution is determined whenever job n is assigned during the branch-
ing process or the application of the LPT-rule at level k ≥ max{m+1, n− 2m+1} yields
a better solution. In this case UG is updated. Finally, identifying an optimal solution
immediately stops the branching process.

3.4.5 Dominance criteria

In case that a current partial solution at level k cannot be fathomed due to the computation
of the local lower bound and not all machine-pairs fulfill their path-condition for sure,
we apply the path-related dominance criteria derived in Section 3.3. At first, the basic
criterion (cf. Section 3.3.1) is applied which consumes O(m) provided that all relevant
information on the paths at level k − 1 is available. If the number of remaining jobs is
sufficiently large, we compute m′ (cf. Section 3.3.2) and update the respective vi(k)-values.
If necessary, we incorporate the processing times as explained at the end of Section 3.3.2)
which can be implemented to run in O(mn) time. If the current solution still cannot be
fathomed, the corresponding node is branched.

The branching process itself can be limited according to four dominance criteria that
have originally been introduced by Dell’Amico and Martello (1995). However, in order to
apply these criteria along with the new path-related ones, they require some modifications.
For sake of readability, all technical details on the issue of compatibility are deferred to
the Appendix A.3.

3.5 Computational study

We have coded the algorithm described within Section 3.4 in Java 7.2 language and exper-
imentally tested its performance on various difficult sets of P ||Cmax-instances as reported
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by Haouari and Jemmali (2008b) and Dell’Amico et al. (2008). Our computational exper-
iments were performed on an Intel Core i7-2600 and 8GB RAM while running Windows
7 Professional SP 1 (64-bit). The maximal computation time per instance was set to 900
seconds and our algorithm was run as a single process/thread.

3.5.1 Performance on Dell’Amico and Martello’s instances

In the first experiment, we have run our algorithm (denoted by WL) on the following five
problem classes originally proposed by Dell’Amico and Martello (1995):

• Class 1: discrete uniform distribution in [1, 100]

• Class 2: discrete uniform distribution in [20, 100]

• Class 3: discrete uniform distribution in [50, 100]

• Class 4: cut-off normal distribution with µ = 100 and σ = 50

• Class 5: cut-off normal distribution with µ = 100 and σ = 20

According to the results stated in the paper by Haouari and Jemmali (2008b), with their
algorithm (denoted by HJ) branching was required for only 77 out of 1900 instances.
Since we basically use the same bounds, there is no need to reconsider all of their investi-
gated constellations. Instead, we restricted our study to the difficult (n,m)-constellations
(10, 3), (10, 5), (25, 10), (25, 15), (50, 15) and the respective classes where branching was re-
quired by HJ. Like Haouari and Jemmali (2008b), for each constellation we randomly
generated 10 independent instances resulting in a total of 160 instances. A summary of
the results is provided in Table 3.2. In this table we document the mean CPU time in
seconds (labeled as “Time”) as well as the mean number of explored nodes (“NN”). More-
over, the number of unsolved instances if greater than 0 is given in brackets. The results
of algorithm HJ are taken from Haouari and Jemmali (2008b). Their algorithm was coded
in Microsoft Visual C++ and ran on a Pentium IV 3.2GHz with 1GB RAM. The time
limit for HJ was set to 1200 seconds.

Before we proceed, we shall remark that a fair comparison of computation times pre-
sented within the sections 3.5.1–3.5.3 appears to be impossible for the following two rea-
sons. Firstly, the algorithms have been coded in different programming languages and
secondly, the computer experiments have been carried out on different hardware. Never-
theless, for sake of completeness, we still present computation times.

As can be seen from the entries in Table 3.2, except for the (50, 15)-constellation where
algorithm HJ performed better than WL on instances of class 4 and 5 (5 unsolved instances
on the side of HJ compared to 9 on the side of WL), the performance of WL is strictly
superior to HJ’s one in terms of both NN and Time. The dominance of WL is particularly
impressive for the constellations (25, 10) and (25, 15) where we were able to remarkably
reduce the number of explored nodes (fractions of less than 1/150, 000 were achieved)
accompanied by a considerable reduction in the mean CPU time. However, noticeable
benefit of the path-related dominance criteria seems to be limited to constellations where
the fraction of n to m is not greater than about 2.5.
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HJ WL
n m Class Time NN Time NN

10 3

1 0.094 150 0.000 6
2 0.093 127 0.000 7
3 0.097 142 0.001 15
4 0.093 131 0.001 22
5 0.101 136 0.000 12

10 5
2 0.156 174 0.000 3
4 0.172 225 0.001 2

25 10

1 36.828 4,750,793 0.034 172
2 121.328 14,814,146 0.076 646
3 3.648 383,810 0.088 658
4 12.816 1,434,262 0.068 760
5 11.005 1,124,031 0.094 837

25 15 2 12.177 1,082,607 0.001 7

50 15
1 0.891 149 0.339 35,549
4 0.891 (3) 218 40.535 (4) 2,756,219
5 0.277 (2) 1 0.034 (5) 1

Table 3.2: Results on difficult instances from Dell’Amico and Martello (1995)

3.5.2 Performance on benchmark instances

In a second experiment, we investigated WL’s performance on difficult instances included
in the benchmark sets proposed by França et al. (1994) as well as Frangioni et al. (2004).
The former set consists of uniform instances while the latter one consists of non-uniform
instances. For a detailed description, we refer to the literature. All instances can be
downloaded from http://www.or.deis.unibo.it/research.html.

Table 3.3 reports on the results obtained by WL in comparison to the ones documented
by Haouari and Jemmali (2008b) for algorithm HJ. The experiments were carried out on a
total of 70 instances that belong to 7 combinations (n,m, Interval, Uniform/Non-Uniform)
for which at least one of the 10 instances per combination could not be solved at the root
node by HJ. In addition to the mean CPU time and the mean number of nodes, we also
document the mean relative deviation in% (labeled as “Gap”) between the makespan of the
best solution found byWL and the optimal makespan. Averages are taken over all unsolved
instances per combination. Numbers in brackets give the corresponding maximum relative
deviation. An optimal solution for each instance of the benchmark set is provided also on
http://www.or.deis.unibo.it/research.html.

HJ WL
n m Interval Time NN Time NN Gap

Uniform

50 25 [1, 102] 0.295 (2) 1 0.020 29 – (–)
50 25 [1, 103] 0.669 (2) 1 0.187 3,483 – (–)

100 25 [1, 103] 1.278 14,364 0.057 (9) 1 0.079 (0.158)
50 10 [1, 104] 146.411 (3) 23,607,013 – (10) – 0.005 (0.008)
50 25 [1, 104] 0.369 (1) 1 0.816 66,306 – (–)

100 25 [1, 104] – (10) – – (10) – 0.036 (0.055)
Non-Uniform 100 25 [1, 104] 246.803 (3) 10,399,656 – (10) – 0.011 (0.013)

Table 3.3: Results on difficult benchmark instances

Obviously, the performance of our algorithm WL depends strongly on the ratio n/m.
While WL easily solved all 30 instances where n/m = 2, only 1 of the remaining 40
instances with ratio 4 and 5 has been solved. Thus, WL failed to solve 39 of 70 in-
stances though relative deviations are negligible (mean values are less than 0.08% each).
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In contrast, due to tighter global bounds, HJ failed to solve only 21 instances. However,
while there are only 16 unsolved instances with ratio 4 and 5, there are also 5 unsolved
instances with ratio 2. These are exactly the five (50, 25)-instances that required branch-
ing in Haouari and Jemmali (2008b). To sum up, the conclusions drawn from the study
presented in Section 3.5.1 also apply to the study on difficult benchmark instances.

In addition to Table 3.3, we compared the performances of WL and another algorithm
(denoted by DIMM) developed by Dell’Amico et al. (2008). So far, DIMM is considered
to be state-of-the-art because this algorithm solved all 780 instances of the benchmark set.
Coded in C language, DIMM requires at most 750 seconds per instance on a Pentium IV
3GHz. Profiting from very tight upper bounds generated by a scatter search procedure,
DIMM already solved 758 out of the 780 instances at the root node. For the remaining
22 instances (19 uniform and 3 non-uniform ones), we explicitly evaluate the performance
of our algorithm WL. Among these 22 instances, there are 4, 14, and 4 instances where
the ratio of n to m is 2, 4, and 5, respectively. All but one of them belong to the 7
combinations studied in Table 3.3. As can be seen from Table 3.4, WL is superior to
DIMM in solving 3 of the 4 instances with ratio 2 and performs equally well on the fourth
one, i.e., the constellation (10, 5) which was not included in Table 3.3. Unsurprisingly, WL
was not able to solve the remaining 18 instances within the time limit. However, again,
relative deviations are negligible (about 0.026% on average over the 18 instances and a
maximum of about 0.055%).

DIMM WL
n m Interval No. Time Time

Uniform

50 25 [1, 102] 3 30.08 0.14
50 25 [1, 103] 3 30.02 1.06
10 5 [1, 104] 6 0.02 0.03
50 25 [1, 104] 1 30.03 8.16

Table 3.4: Detailed results on difficult benchmark instances where n/m=2

3.5.3 Performance on Haouari and Jemmali’s instances

In a third experiment, we have run our algorithm on a problem class where the ratio of n
to m is 2.5 and the processing times are drawn from the discrete uniform distribution on
[n/5, n/2]. This class has been proposed by Haouari and Jemmali (2008b) with the aim
of generating difficult instances. We selected six representative values of n and randomly
generated 20 instances for each leading to a total number of 120 instances. Table 3.5
provides a comparison of our results obtained for algorithm WL and the ones reported in
Haouari and Jemmali (2008b) for algorithm HJ.

Obviously, in terms of the number of solved instances, WL is clearly superior to HJ.
While our algorithm succeeded solving 109 out of 120 instances, HJ only solved 91 in-
stances. Interestingly, except for the (20, 8)-constellation, HJ failed to solve at least four
instances for each of the larger constellations. Moreover, whenever branching was required
for an instance with 30, 40, or 50 jobs, HJ was not successful in finding an optimal solu-
tion. In contrast, WL easily solved all instances where n ≤ 50 and 19 out of 20 instances
for constellation (60, 24) although several of these 100 instances had to be branched.

47



HJ WL
n m Time NN Time NN
20 8 2.445 456,470 0.001 21
30 12 0.551 (5) 1 0.038 25,593
40 16 0.867 (4) 1 0.060 98,602
50 20 1.200 (8) 1 4.516 8,086,028
60 24 76.031 (5) 9,609,214 34.734 (1) 41,241,961
80 32 5.000 (7) 403,164 118.113 (10) 46,367,371

Table 3.5: Results on Haouari and Jemmali’s instances

3.5.4 Performance on further instances

Finally, in a fourth experiment, we explicitly studied the contribution of the path-related
dominance criteria. For this purpose, we implemented a close variant of WL (denoted by
WL’). Except for not using the path-related dominance criteria in WL’, both algorithms
are identical. We have run them on a large set of randomly generated instances according
to the 5 classes as described within Section 3.5.1. This time, we generated 100 instances
for each class and each of the five investigated (n,m)-constellations resulting in a total
of 2500 instances. Due to results of the previous subsections, we restricted the fourth
experiment to rather small-sized instances in terms of both n and n/m. The results are
summarized in Table 3.6.

WL’ WL
Class n m Time NN Time NN

1

20 8 0.002 64 0.002 48
20 10 0.001 6 0.001 6
25 10 0.008 1,830 0.007 583
30 12 0.038 11,215 0.022 2,069
30 15 0.003 38 0.003 25

2

20 8 0.005 828 0.004 241
20 10 0.002 30 0.001 10
25 10 0.132 63,667 0.032 5,977
30 12 1.159 381,301 0.126 17,649
30 15 0.038 14,454 0.004 56

3

20 8 0.014 4,372 0.003 189
20 10 0.000 1 0.000 1
25 10 0.227 77,262 0.008 822
30 12 6.867 1,939,090 0.049 5,758
30 15 0.000 1 0.000 1

4

20 8 0.005 1,020 0.005 465
20 10 0.002 50 0.002 18
25 10 0.084 37,061 0.037 7,174
30 12 0.559 147,630 0.375 59,037
30 15 0.037 11,997 0.007 410

5

20 8 0.028 10,753 0.005 553
20 10 0.043 22,053 0.000 4
25 10 1.223 428,673 0.033 4,857
30 12 45.105 (1) 11,378,741 0.391 50,799
30 15 10.242 (4) 4,265,014 0.001 9

Table 3.6: Results on the effectiveness of the path-related dominance criteria for n/m ∈
{2, 2.5}

Obviously, the results reveal that both algorithms perform very well in terms of number
of solved instances. While WL quickly solved all 2500 instances, its variant WL’ failed to
solve 5 instances which is still a very good result. However, comparing the mean CPU times
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and the mean number of explored nodes, WL is clearly superior to WL’ as for all (n,m)-
constellations and classes T ime(WL) ≤ T ime(WL′) and NN(WL) ≤ NN(WL′) hold. In
fact, in almost all cases we have T ime(WL) < Time(WL′) and NN(WL) � NN(WL′).
The most remarkable improvements were obtained in class 5 for the two constellations
where n/m = 2. Here, WL was able to reduce the number of explored nodes by up to six
orders of magnitude and the mean CPU time by up to four orders of magnitude. All in
all, the results impressively show that the path-related dominance criteria effectively limit
the solution space for small ratios of n to m. Studying larger ratios in the context of the
fourth experiment is not meaningful because most likely either both algorithms will solve
a given instance at the root node or both will fail to find/verify an optimal solution within
the time limit of 900 seconds.

3.5.5 General remarks

To summarize the results from our computational study on difficult P ||Cmax-instances, we
can state that the performance of our proposed branch-and-bound algorithm WL depends
strongly on the ratio of the number of jobs n to the number of machines m. While WL
performs very well on instances where n/m ≤ 2.5, its performance on instances with
intermediate ratios of n to m deteriorates. In our first three experiments (see sections
3.5.1–3.5.3) we primarily compared the performance of the algorithms WL and HJ on
a total of 350 instances – 230 instances with n/m ≤ 2.5 and 120 instances with 2.5 <
n/m ≤ 5. While WL solved almost all instances (219 of 230) with n/m ≤ 2.5, only 72
of the remaining 120 could be solved. In contrast, HJ solved only 196 of 230 instances
with n/m ≤ 2.5 but 99 of the remaining 120 ones. However, most of those 99 instances
were already solved at the root node because in HJ slightly tighter lower bounds are
implemented than in WL.

One explanation for WL’s superiority in solving instances with small ratios of n to m is
the effectiveness of the novel path-related dominance criteria in limiting the solution space.
In case of small n/m-values, the number of schedules which fulfill the path-conditions is
comparatively small. Hence, the size of the branching tree is limited effectively and the tree
can be searched efficiently using a branching scheme that bases upon job-assignments in
non-increasing order of processing times as required by the path-related dominance criteria.
However, the benefit of the path-related dominance criteria decreases with increasing ratio
n/m which is due to an increased number of schedules that fulfill the path-conditions.

3.6 Conclusions

The Chapter addressed the classical makespan minimization problem on identical parallel
machines for which we identified new structural patterns of optimal solutions. Later, we
transferred these insights into novel path-related dominance criteria and implemented them
in a branch-and-bound algorithm whose performance has been examined in an extensive
computational study on benchmark instances from the literature. As one main result we
can record that our procedure performs extremely well on instances where the ratio of n to
m is not greater than 2.5. For those instances, application of the path-related criteria leads
to an effective limitation of the solution space and our approach is superior to existing
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procedures by Dell’Amico et al. (2008) and Haouari and Jemmali (2008b). However, for
larger ratios the benefit of the new criteria decreases and results obtained by the other
two procedures are in general at least as good as ours.

Based on the output of our study, we see several fruitful paths for future research. At
first, it would be interesting to examine the impact of the path-related dominance criteria
on solving similarly structured optimization problems since the results of our theoretical
study do not only apply to P ||Cmax. Specifically, we think of related scheduling problems
(e.g., P ||Cmin), the classical bin packing problem as well as the multiple knapsack problem.

Another encouraging direction is to explicitly consider job processing times at the
determination of optimal solution properties instead of using only information on their
order. The intention is to further restrict the set of potentially optimal solutions for
certain (n,m)-constellations and distributions of processing times. We expect this techni-
cally challenging extension to result in even more effective dominance criteria. Moreover,
it would be interesting to investigate whether the novel dominance criteria can also be
effectively used in branching schemes that differ from the one implemented here.

Finally, it might be interesting to incorporate the new dominance criteria into a MIP
formulation of P ||Cmax and to analyze whether MIP solvers benefit from the new model
formulation.
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Chapter 4

Improved approaches to the exact
solution of the machine covering
problem

Summary

For the basic problem of scheduling a set of n independent jobs on a set of m identi-
cal parallel machines with the objective of maximizing the minimum machine completion
time – also referred to as machine covering – we propose a new exact branch-and-bound
algorithm. Its most distinctive components are a different symmetry-breaking solution
representation, enhanced lower and upper bounds, and effective novel dominance crite-
ria derived from structural patterns of optimal schedules. Results of a comprehensive
computational study conducted on benchmark instances attest to the effectiveness of our
approach, particularly for small ratios of n to m.

4.1 Introduction

One of the most fundamental and well studied NP-hard problems in the field of machine
scheduling is the makespan minimization on identical parallel machines where a set of
n independent jobs J= {J1, . . . , Jn} with positive processing times t1, . . . , tn has to be
assigned to m identical parallel machines M = {M1, . . . ,Mm} so that the latest machine
completion time is minimized. A related and in some sense dual but by far not as well
studied NP-hard problem is obtained when the objective is changed from minimizing the
makespan Cmax to maximizing the minimum completion time Cmin = min{C1, . . . , Cm}
– without introducing idle times – where Ci is the sum of processing times of all jobs
assigned to Mi. While the former problem (which is denoted by P ||Cmax using the three-
field notation of Graham et al. (1979)) is a kind of packing problems, the latter problem
(abbreviated as P ||Cmin), which is the subject of this Chapter, belongs to the class of
covering problems and therefore is also referred to as the machine covering problem. It
has been first described by Friesen and Deuermeyer (1981) in the context of spare parts

51



assignments to machines that undergo repeated repair. As another application of P ||Cmin,
Haouari and Jemmali (2008a) mentioned (fair) regional allocations of investments.

Although both problems basically intend to balance the workload among a given set of
resources, P ||Cmin has received less attention than its much more prominent counterpart
P ||Cmax. To the best of our knowledge, the rather scarce literature on P ||Cmin is limited
to a few studies on approximation algorithms and their worst-case ratios and up to now
only one exact solution procedure has been proposed. For the well-known longest process-
ing time rule (LPT), Deuermeyer et al. (1982) showed that the minimum completion time
CLPT

min of the LPT-schedule is never less than 3/4 times the optimal minimum completion
time C∗

min. Ten years later, Csirik et al. (1992) tightened this performance bound by
proving that CLPT

min /C∗
min ≥ (3m− 1)/(4m− 2) is fulfilled for any fixed m. In this context,

Walter (2013) recently examined the performance relationship between the LPT-rule and
a restricted version of it – known as RLPT – and he proved that CLPT

min ≥ CRLPT
min . Fur-

ther publications are concerned with a polynomial-time approximation scheme (PTAS)
(cf. Woeginger, 1997) and on-line as well as semi-on-line versions of P ||Cmin (cf., e.g.,
Azar and Epstein, 1998, He and Tan, 2002, Luo and Sun, 2005, Ebenlendr et al., 2006,
Cai, 2007, Tan and Wu, 2007, Epstein et al., 2011). The sole publication devoted to exact
solution procedures is due to Haouari and Jemmali (2008a). The main features of their
branch-and-bound algorithm are tight lower and upper bounds and a symmetry-breaking
solution structure. However, except for small-sized instances, computational results re-
vealed that their algorithm fails to (quickly) solve instances where the ratio of n to m
ranges between two and about three.

To overcome this drawback, we approach the machine covering problem from a similar
perspective as done by Walter and Lawrinenko (2014) for the dual problem P ||Cmax. In
their very recent contribution, the authors present structural properties of (potentially)
makespan-optimal schedules. These properties are then transformed into problem-specific
dominance criteria and implemented in a tailored branch-and-bound algorithm that per-
forms very well on instances with small n/m-values.

Motivated by Walter and Lawrinenko’s results, in this Chapter we propose a tailored
branch-and-bound algorithm for problem P ||Cmin. Our contribution differs substantially
from the contribution by Walter and Lawrinenko (2014) in the following respects: (i)
we show that their central result on makespan-optimal schedules also applies to problem
P ||Cmin, (ii) we extend their basic dominance criterion by several novel P ||Cmin-specific
dominance criteria derived from properties of optimal P ||Cmin-schedules, and (iii) we de-
velop new upper bounds on C∗

min. Some of these bounds are derived from the solution
structure, while others exploit the coherence between P ||Cmin and the bin covering prob-
lem (BCP). The latter problem consists in packing a set of indivisible items into as many
bins as possible so that the total weight of each bin equals at least C. To the best of our
knowledge, this coherence has not been mentioned before in the literature.

The Chapter is organized as follows. In the technical part we describe properties
of Cmin-optimal schedules (cf. Sect. 4.2) and translate them into novel P ||Cmin-specific
dominance criteria (cf. Sect. 4.3). In the algorithmic part, we provide a concise description
of the proposed branch-and-bound algorithm (Sect. 4.4) and we evaluate its performance
on different sets of benchmark instances (cf. Sect. 4.5). The Chapter concludes with a
short summary and some interesting ideas for future research in Sect. 4.6.
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For economy of notation, we usually identify both machines and jobs by their index.
Moreover, w.l.o.g, we assume the jobs to be indexed so that t1 ≥ . . . ≥ tn. In addition, to
avoid trivial instances we presuppose n > m ≥ 2.

4.2 Theoretical background

In this section, we derive structural properties of Cmin-optimal schedules, which will be
transformed later into problem-specific dominance criteria.

4.2.1 Solution representation and illustration

Throughout this Chapter, we assume schedules to be non-permuted. According to Walter
and Lawrinenko (2014), a schedule S ∈ {1, 2, . . . ,m}n – where S(j) = i means that job
j is assigned to machine i – is said to be non-permuted if S fulfills the following two
conditions:
(i) S(1) = 1

(ii) S(j) ∈
{
1, . . . ,min{m, 1 + max1≤k≤j−1 S(k)}

}
for all j = 2, . . . , n.

Note that due to this representation, symmetric reflections obtained by a simple renum-
bering of the machines are avoided.

Furthermore, instead of using Gantt charts we adopt the illustration of schedules as
sets of paths which has also been introduced by Walter and Lawrinenko (2014). More
precisely, a schedule S is represented by

(
m
2

)
paths P

(i1,i2)
S – one for each pair (i1, i2) of

machines (1 ≤ i1 < i2 ≤ m). Each path is a string of length n + 1 where the j-th entry
(j = 1, . . . , n) represents the difference between the number of jobs assigned to i1 and i2
in S after the assignment of the j longest jobs. Additionally, to allow for initially empty
machines we set P

(i1,i2)
S (0) = 0 for all pairs. In a graphical illustration, the entries of a

path are linearly connected (see Ex. 4.2.1).

Example 4.2.1
Let n = 4, m = 3, and consider the non-permuted schedule S = (1, 2, 2, 3). The corre-
sponding paths P

(1,2)
S = (0, 1, 0,−1,−1), P (1,3)

S = (0, 1, 1, 1, 0), and P
(2,3)
S = (0, 0, 1, 2, 1)

are illustrated below.

j

P
(1,2)
S (j)

1 2 3 4−1

1

2

j

P
(1,3)
S (j)

1 2 3 4−1

1

2

j

P
(2,3)
S (j)

1 2 3 4−1

1

2

4.2.2 Potential optimality

The concept of potential optimality has recently been proposed by Walter and Lawrinenko
(2014) and originates from the question: “Are there certain general patterns in the struc-
ture of schedules that cannot lead to optimal solutions?”. Admittedly, at first glance this
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approach appears to be a bit unusual as actually we intend to derive properties of op-
timal solutions. However, by identifying properties of solutions that can never become
(uniquely) optimal we also implicitly gain insights into the structure of solutions that
have the potential to become (uniquely) optimal – which are therefore called potentially
(unique) optimal.

At this point, we want to mention that the concept of potential optimality is to some
extent related with the concept of inverse optimization (for a review, see Ahuja and Or-
lin, 2001, as well as Heuberger, 2004) where unknown exact values of some adjustable
parameters, e.g., processing times, should be determined within given boundaries in such
a way that a pre-specified solution becomes optimal and the deviation between the deter-
mined and the given values of the parameters is minimal. Although inverse optimization
has attracted many researchers in different areas of combinatorial optimization during the
last two decades, applications to scheduling problems (e.g., see Koulamas, 2005, as well
as Brucker and Shakhlevich, 2009 and 2011) are still rather rare. Our approach – which
differs slightly from the basic idea of inverse optimization in that we intend to identify a
preferably large set of solutions for which we cannot select processing times so that any
of these solutions becomes uniquely P ||Cmin-optimal – constitutes another contribution in
this field.

As will be seen next (cf. Theorem 4.2.2), solutions contained in the set S play a crucial
role in the context of potentially unique optimal P ||Cmin-schedules. The set S is formally
defined as

S =
{
S : for each pair (i1, i2) there exists either a j ∈ {3, . . . , n} so that P (i1,i2)

S (j) < 0,

or 0 < j1 ≤ j2 < n so that P (i1,i2)
S (j) = 1 for j = j1, . . . , j2 and P

(i1,i2)
S (j) = 0 else

}

and contains all schedules where each machine processes at least one job and each path
of a pair of machines that processes more than two jobs in total has at least one negative
entry. We say that schedules in S fulfill the path-conditions or, equivalently, all

(
m
2

)
paths

fulfill their respective path-condition.
Revisiting the schedule S = (1, 2, 2, 3) introduced in Example 4.2.1, we readily see that
S is no element of S although no machine remains empty and the paths P (1,2)

S and P
(1,3)
S

fulfill their path-condition. However, the path P
(2,3)
S does not fulfill its path-condition as

it has no negative entry although the two machines process more than two jobs in total.
Our main theorem on potential optimality reads as follows.

Theorem 4.2.2
Let S be a schedule which is no element of S. Then, S is not a potentially unique Cmin-
optimal solution.

Proof
Consider an arbitrary schedule S which is no element of S. Then, there exists a pair
of machines – say (i1, i2) – whose corresponding path does not fulfill the path-condition.
These two machines and the respective set of jobs currently assigned to them constitute a
solution to the machine covering problem on two identical parallel machines. Since machine
covering and makespan minimization on two identical parallel machines are equivalent, we
can apply a result by Walter and Lawrinenko (2014). They proved that with their so

54



called two-machine path-modification a two-machine schedule which does not fulfill its
path-condition can be turned into a schedule whose respective path does fulfill its path-
condition without increasing the maximum completion time of i1 and i2. Note that the
latter is equivalent to the fact that the minimum completion time of i1 and i2 does not
decrease during the modification of the given schedule.

As the two-machine path-modification does not affect any jobs on the remaining m−2
machines, the minimum completion time of the transformed schedule cannot be smaller
than the minimum completion time of S. Hence, S cannot be potentially unique Cmin-
optimal. �

Summarizing the result of Theorem 4.2.2, we know that every instance of the problem
P ||Cmin has an optimal solution where all corresponding

(
m
2

)
paths fulfill their path-

condition.
In what follows, we will make use of the previous result and deduce several P ||Cmin-specific
dominance criteria – subsumed under the term path-related dominance criteria – which
will later on prove to be effective in guiding the search of a tailored branch-and-bound
algorithm towards schedules which are elements of S.

4.3 Dominance criteria based on potential optimality

For a better understanding, we start with a brief repetition of the basic dominance criterion
developed byWalter and Lawrinenko (2014). All other dominance criteria presented within
this section are novel and P ||Cmin-specific.

4.3.1 The basic criterion

Given a partial solution S̃ where the k longest jobs have already been assigned, the basic
criterion is readily obtained from the characterization of potentially unique optimal sched-
ules (cf. Theorem 4.2.2). Recalling that each pair (i1, i2) of machines 1 ≤ i1 < i2 ≤ m has
to fulfill its path-condition, for each i2 ∈ {m,m − 1, . . . , 2} we simply have to count the
minimum number of jobs vki2 that still have to be assigned to i2 so that all paths fulfill
their path-condition. According to Walter and Lawrinenko (2014), vki2 can be computed
as

vki2 = max
i1=1,...,i2−1

PF
(i1,i2)

S̃
(k)=0

{
P

(i1,i2)

S̃
(k)

}
+ γk

i2
, (4.1)

where PF
(i1,i2)

S̃
(k) = 0 indicates that the pair (i1, i2) does currently not fulfill its path-

condition and γk
i2

is a correction term that is either 0 (iff all machines i1 < i2 process
at most one of the first k jobs) or 1 (iff at least one machine i1 < i2 processes more
than one job), respectively. Clearly, vki2 is set to 0 if all pairs (i1, i2) currently fulfill their
path-condition. Then, the basic criterion reads as follows.
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Criterion 4.3.1
If

m∑
i=1

vki > n− k (4.2)

for some k < n, then the current partial solution can be fathomed.

With regard to the next section, we define vk1 = 0 for all k > 1.

4.3.2 Further improvements

Up to now, the basic dominance criterion 4.3.1 does not consider any machine completion
times and therefore offers the potential for some improvements. Clearly, in a new incum-
bent solution each machine completion time has to be at least as large as L + 1 where L
is the best known minimum completion time so far. Based on this information, at first
we will show how some of the demands vki can be tightened and secondly we will check
whether the current partial solution admits the possibility to become the new incumbent.

Recalling that we consider a partial solution where the k longest jobs have already
been assigned, we let LOW k denote the set of machines with current completion time Ck

i

at most L, i.e. LOW k = {i : Ck
i ≤ L}, and δki = L + 1 − Ck

i for i ∈ LOW k denotes the
gap between L+ 1 and Ck

i (see Figure 4.1).

C1 C2

C3 C4

L+ 1
δ3 δ4

M1 M2 M3 M4

Figure 4.1: Illustration of δi

In other words, to improve on the currently best solution (i.e. the incumbent), machine
i ∈ LOW k has to run at least δki units of time longer than now. Thus, at least

lki = min
{
β ∈ {1, . . . , n− k} :

β∑
j=1

tk+j ≥ δki

}
(4.3)

jobs still have to be assigned to i ∈ LOW k in order to finally yield Ci > L. If no such β
exists, then it is impossible to complete the current partial solution in such a way that a
new incumbent solution is obtained. In this case, we set lki = ∞. Eventually, the number
of required jobs can be updated:

v̄ki =

{
max{vki , lki } if i ∈ LOW k

vki else.
(4.4)

Hence, a tighter version of Criterion 4.3.1 reads as follows.
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Criterion 4.3.2
If

m∑
i=1

v̄ki > n− k (4.5)

for some k < n, then the current partial solution can be fathomed.

After having updated the number of required jobs, we will incorporate the processing
times of the remaining jobs and derive further criteria. Therefore, we let T k

rem =
∑n

j=k+1 tj
denote the total remaining processing time and we define ∆k =

∑
i∈LOWk δki . Then, it is

easy to observe that there is no need to further consider a partial solution if T k
rem < ∆k.

In this case, it is not realizable to assign the remaining jobs to the machines in LOW k

so that finally Ci > L is fulfilled for all i ∈ LOW k, i.e., no matter how we complete the
current partial solution, we cannot obtain a new incumbent solution.

In what follows, we are concerned with tightening the inequality T k
rem < ∆k, i.e., we

want to identify (at low computational costs) a feasible value Rk > 0 so that the current
solution can already be excluded from further searching whenever

T k
rem −Rk < ∆k (4.6)

is fulfilled. For this purpose, in a first step we take a look at those machines which already
run longer than L but require at least one more job to fulfill the path-conditions. We
summarize these machines in the set PATHk = {i : Ck

i > L and vki > 0} and define

V k
PATH =

∑
i∈PATHk

vki (4.7)

which gives the number of required jobs added over all i ∈ PATHk. Then, we readily
observe that at least V k

PATH of the remaining n− k jobs cannot be used to fill the gaps on
the machines in LOW k or, equivalently, no more than n − k − V k

PATH jobs are available
for being assigned to the machines in LOW k. Hence, we can conclude that Rk is at least
as large as the sum of the V k

PATH shortest processing times, i.e. Rk =
∑V k

PATH
j=1 tn−j+1, and

(4.6) appears as follows.

Criterion 4.3.3
If

T k
rem −

V k
PATH∑
j=1

tn−j+1 < ∆k (4.8)

for some k < n, then the current partial solution can be fathomed.

To shorten notation, in the remainder of this section, we set n′ := n−V k
PATH . Moreover,

for sake of readability and since we always consider a partial solution after the assignment
of the k longest jobs, we will omit the upper index k.

We will now show that there is still some potential to further increase the value of
R. So far, we do not adequately take into account that the jobs are indivisible. Since
preemption is not allowed, the processing of a job cannot be interrupted and continued
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on another machine. Therefore, in contrast to our current criteria, if it is not realizable
to select some of the remaining n′− k jobs so that a machine i ∈ LOW finishes exactly at
time L+1, then the time difference (or surplus) Ci− (L+1) on machine i cannot be used
to increase the completion time of other machines in LOW . Recalling that each machine
i ∈ LOW requires at least v̄i more jobs to fulfill its path-conditions and to allow for a
new incumbent, we simply check whether the sum of the v̄i shortest available jobs, i.e.,
n′, . . . , n′ − v̄i + 1, already exceeds the gap δi on that machine. If this is the case, then R
can be further increased as follows. For each i ∈ LOW we compute

si = max{Ci +

v̄i∑
j=1

tn′−j+1 − (L+ 1), 0} (4.9)

which we call the individual surplus on machine i and

S =
∑

i∈LOW

si (4.10)

which represents a lower bound on the cumulative surplus caused by the machines i ∈
LOW . Then, it is obvious that in any complete solution, R will be at least as large as∑V k

PATH
j=1 tn−j+1 + S.

At this point, we shall remark that (4.9) (and (4.10)) still assume the VPATH overall
shortest jobs to be assigned to the machines in PATH. This assumption is correct because
of the following trivial lemma which we state without giving a proof.

Lemma 4.3.4
If it is possible to fill all gaps on the machines in LOW using at most z ≤ n′ − k of the
jobs k + 1, . . . , n, then it is possible to fill all gaps on these machines using the z longest
jobs k + 1, . . . , k + z.

As mentioned above, the calculation of the individual surplus si for each i ∈ LOW
(cf. Equation (4.9)) is a basic approach because the shortest available jobs are supposed to
be repeatedly assignable to each machine in LOW . Clearly, this constitutes an essential
simplification since in a feasible schedule each job has to be assigned to one machine.
Taking this into account, for the subset of machines LOW1 := {i ∈ LOW : li = 1} we
will now propose an alternative approach to calculate a lower bound on the cumulative
surplus caused by these machines. As will be seen, the restriction to the subset LOW1 of
LOW ensures the alternative cumulative surplus to be easily and fast computable. The
approach builds on the fact that in total (at least) |LOW1| jobs have to be assigned to
the machines in LOW1 and, since li = 1 for all i ∈ LOW1, it might be sufficient to assign
a single job to each machine i ∈ LOW1 to fill the gaps. So, we can take the |LOW1|
shortest available jobs, i.e. n′, . . . , n′ − |LOW1| + 1, and – assuming that each of which
is assigned to exactly one machine in LOW1 – we can calculate a lower bound on the
cumulative surplus caused by the machines in LOW1 as follows. Let

s′i(j) = max{Ci + tj − (L+ 1), 0} for i ∈ LOW1 (4.11)

denote the (single) surplus generated by assigning job j to machine i ∈ LOW1 (see also
Figure 4.2), the following lemma is readily verified.
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C1 C2

C3 C4

L+ 1
s′3(j)

j
δ4

M1 M2 M3 M4

Figure 4.2: Illustration of s′i(j)

Lemma 4.3.5
Consider two jobs j1, j2 with tj1 ≥ tj2 and two machines i1, i2 ∈ LOW1 with Ci1 ≥ Ci2.
Then, s′i1(j2) + s′i2(j1) ≤ s′i1(j1) + s′i2(j2).

Proof
If s′i1(j2) = 0, then s′i1(j2) + s′i2(j1) = s′i2(j1) ≤ s′i1(j1) ≤ s′i1(j1) + s′i2(j2) since Ci2 + tj1 −
(L+ 1) ≤ Ci1 + tj1 − (L+ 1).
If s′i2(j1) = 0, then s′i1(j2) + s′i2(j1) = s′i1(j2) ≤ s′i1(j1) ≤ s′i1(j1) + s′i2(j2) since Ci1 + tj2 −
(L+ 1) ≤ Ci1 + tj1 − (L+ 1).
Now, assume that Ci1 + tj2 > L+ 1 and Ci2 + tj1 > L+ 1. Then,

s′i1(j2) + s′i2(j1) = Ci1 + tj2 − (L+ 1) + Ci2 + tj1 − (L+ 1)

= Ci1 + tj1 − (L+ 1) + Ci2 + tj2 − (L+ 1) ≤ s′i1(j1) + s′i2(j2).

�

According to Lemma 4.3.5, assigning the longer job to the machine with the larger gap
in LOW1 and the shorter job to the machine with the smaller gap results in a smaller
cumulative surplus (on these two machines) than the other way round. Clearly, this
pairwise consideration can easily be extended to all machines in LOW1 as summarized in
the following corollary.

Corollary 4.3.6
Assume the machines in LOW1 to be sorted according to non-increasing gaps. Then, the
smallest cumulative surplus caused by the machines in LOW1 is obtained by assigning the
|LOW1| shortest available jobs in non-decreasing order of processing times to the machines
in LOW1.

Proof
The corollary can easily be proved by contradiction. At first, observe that considering any
|LOW1| jobs out of k+ 1, . . . , n′ cannot yield a smaller cumulative surplus than selecting
the |LOW1| shortest ones because the surpluses are monotonically increasing in increasing
processing times.
Now, assume that the smallest cumulative surplus is not achieved by the assignment
described in Corollary 4.3.6. Then, there must exist a pair of machines (and jobs) where
the machine with the larger gap is assigned the job with the shorter processing time
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and the machine with the smaller gap is assigned the job with the longer processing time.
According to Lemma 4.3.5, swapping these two jobs results in a smaller cumulative surplus,
which is a contradiction. �

Formally, we can summarize Corollary 4.3.6 as follows: Let π be a permutation of the
machines in LOW1 so that Cπ(1) ≥ Cπ(2) ≥ . . . ≥ Cπ(|LOW1|), then the smallest cumulative
surplus S1′ is obtained by assigning job n′ − i+ 1 to machine π(i) for i = 1, . . . , |LOW1|,
i.e.

S1′ =

|LOW1|∑
i=1

s′π(i)(n
′ − i+ 1). (4.12)

Note that again Lemma 4.3.4 is taken as granted in the computation of the cumulative
surplus S1′ on the machines in LOW1.

Altogether, we have developed two different approaches to calculate a lower bound on
the cumulative surplus caused by the machines in LOW1, namely S1 :=

∑
i∈LOW1 si and

S1′. It is readily verified that neither S1 dominates S1′ (think of cases where v̄i = li = 1
for all i ∈ LOW1) nor S1′ dominates S1. Hence, a lower bound on the cumulative surplus
caused by all machines in LOW is given by

S̄ =
∑

i∈LOW\LOW1

si +max{S1, S1′} = S − S1 + max{S1, S1′}. (4.13)

Consequently, we can further increase R by S̄ and (4.6) results in the following criterion
that is tighter than Criterion 4.3.3.

Criterion 4.3.7
If

Trem −
VPATH∑
j=1

tn′+j − S̄ < ∆ (4.14)

then the current partial solution can be fathomed.

Summarizing the results developed within this subsection, we can record the fol-
lowing. Given a partial solution where the k longest jobs have already been assigned,
in order to obtain a new incumbent solution that fulfills the path-conditions at least
R =

∑VPATH

j=1 tn′+j + S̄ units of the total remaining processing time Trem cannot be used
effectively to fill the gaps on the machines in LOW – no matter how the remaining n− k
jobs will be assigned.

Example 4.3.8
By means of the following example, we briefly illustrate the functionality of the four pro-
posed dominance criteria. Assume n = 12, m = 5, and the vector of processing times
T = (95, 93, 87, 86, 66, 63, 62, 55, 45, 25, 10, 6) for which a lower and an upper bound value
of L = 130 and U = 136 can be determined (cf. Sect. 4.4), respectively. Furthermore, let
S̃ = (1, 2, 3, 4, 5, 5, 3, 4) be the current partial schedule where the k = 8 longest jobs have
already been assigned and Trem =

∑12
j=9 tj = 45 + 25 + 10 + 6 = 86.

Table 4.1 contains the current machine completion times Ci and the gaps δi. The num-
bers of required jobs according to Criteria 4.3.1 and 4.3.2 are given in Table 4.2. Since
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n − k = 4 jobs still have to be assigned, the current partial schedule cannot be fathomed
on the basis of the first two criteria.
From Tables 4.1 and 4.2 we get LOW = LOW1 = {1, 2, 5}, PATH = {4}, and VPATH = 1
so that in a first step R is equal to t12 = 6. Since Trem − R = 86− 6 is not smaller than
∆ = 36 + 38 + 2 = 76, we cannot fathom the current partial solution yet (cf. Criterion
4.3.3).
Table 4.3 contains the results of the two alternative surplus computations for the machines
in LOW1. According to Criterion 4.3.7, the current partial solution can be fathomed
because Trem − 6− S̄ = 86− 6− 15 = 65 < 76.

Mi 1 2 3 4 5
Ci 95 93 149 141 129
δi 36 38 - - 2

Table 4.1: Completion times
and gaps

Mi 1 2 3 4 5
∑

vi 0 0 0 1 0 1
li 1 1 – – 1 3
v̄i 1 1 0 1 1 4

Table 4.2: Numbers of required
jobs

Mi 1 2 5
∑

si 0 0 8 8
s′i 0 7 8 15

Table 4.3: Surpluses

4.4 A branch-and-bound algorithm

This section elaborates on the details of the developed branch-and-bound algorithm.

4.4.1 Upper bounds

4.4.1.1 A trivial bound and its worst-case ratio

Let Tsum =
∑n

j=1 tj, then U0 =
⌊
Tsum

m

⌋
represents the simplest upper bound on the optimal

minimum machine completion time C∗
min (cf. Haouari and Jemmali, 2008a). It is readily

verified that the worst-case performance of U0 can be arbitrarily bad. For instance, assume
n = m + 1 and consider the processing times t1 = K � 1 and tj = 1 for j = 2, . . . , n.
Then, U0 = �K/m� + 1, whereas C∗

min = 1 so that the ratio U0/C
∗
min approaches infinity

as K grows.
However, based on the following two observations the performance of U0 can be dras-

tically improved. Firstly, note that in case n = m + k (k ∈ {1, . . . ,m − 1}) at least
m − k machines will process exactly one job in any optimal solution. Thus, the mini-
mum of tm−k and � 1

k

∑n
j=m−k+1 tj� is a valid upper bound on C∗

min. Secondly, note that
any job whose processing time is greater than or equal to U0 can be eliminated so that
� 1
m−|J ′|

∑
j∈J\J ′ tj� where J ′ = {j : tj ≥ U0} constitutes a valid upper bound on C∗

min.
Note that |J ′| ≤ m− 1. Moreover, note that the aforementioned elimination can possibly
be repeated up to m− 1 times in an iterative manner.

As a result of the previous observations, we can reduce any given instance I to Ĩ in
such a way that (i) the number of remaining jobs is at least twice the number of remaining
machines and (ii) the longest (remaining) processing time is smaller than U0(Ĩ). Then, we
can prove that U0(Ĩ) is never more than 2− 1/m times the optimal minimum completion
time.
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Theorem 4.4.1
Let I be an instance of P ||Cmin which fulfills both n ≥ 2m and t1 < U0(I). Then,

U0(I)

C∗
min(I)

≤ 2− 1

m
(4.15)

for all instances I and this bound is asymptotically tight for any fixed m ≥ 2.

Proof
We prove the theorem by contradiction. Assume that U0(I)/C

∗
min(I) > 2− 1/m. This is

equivalent to C∗
min(I) < U0(I)/(2−1/m) ≤ Tsum/(2m−1). So, in an optimal schedule, the

completion time of at least one machine, say i1, is less than Tsum/(2m−1). Consequently,
there exists at least another machine, say i2, whose completion time Ci2 is at least (Tsum−
Tsum/(2m − 1))/(m − 1) = 2Tsum/(2m − 1) > Tsum/m > t1. Thus, i2 processes at least
two jobs among which the shortest job’s processing time is at most �Ci2/2�. Shifting this
job from i2 to i1 yields a better schedule because the completion time of i2 is still greater
than or equal to Tsum/(2m− 1). This is a contradiction.

To verify that the bound is asymptotically tight for any fixed m ≥ 2, consider n = 2m
jobs with processing times t1 = . . . = tn−1 = K � 1 and tn = 1. Then, C∗

min = K + 1
whereas U0 = (2− 1/m)K + 1/m. Hence, the ratio of U0 to C∗

min approaches 2− 1/m as
K grows. �

4.4.1.2 Improvements derived from P ||Cmax

Following Haouari and Jemmali (2008a), an upper bound on C∗
min can be derived from a

known lower bound LCmax on the optimal makespan by computation of

U1 =

⌊
Tsum − LCmax

m− 1

⌋
. (4.16)

To obtain a good lower bound on the optimal makespan, we implemented an enhanced
version (due to Haouari and Jemmali, 2008a) of the bound L3 by Dell’Amico and Martello
(1995). For further details, we refer the reader to the literature.

4.4.1.3 Lifting procedure and further enhancement

Haouari and Jemmali (2008a) proposed two procedures to tighten upper bounds for
P ||Cmin. The first one is a lifting procedure that bases upon the fact that in any fea-
sible schedule there exists at least a set of l machines (1 ≤ l ≤ m) that process at most

µl(n) = l�n/m�+max{0, n−m(�n/m�+ 1) + l} (4.17)
jobs (cf. Haouari and Jemmali, 2008a). Then, a lifted bound can be obtained by applying
an upper bound procedure on the partial instance restricted to l machines and the µl(n)
longest jobs.

The second procedure (cf. Haouari and Jemmali, 2008a) aims at enhancing a given
upper bound value U by solving a specific subset sum problem (SSP) that checks whether
there exists a subset of J whose processing times sum up to exactly U . If no such subset
exists, the smallest realizable sum (denoted by USSP ) of processing times that does not
exceed U constitutes an upper bound.
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4.4.1.4 Improvements derived from bin covering

To the best of our knowledge, we are the first to describe the coherence between P ||Cmin

and the bin covering problem (BCP) in order to improve upper bounds on C∗
min. The idea

is to transform a given P ||Cmin-instance into a BCP-instance where (i) jobs and processing
times correspond to items and weights, respectively, and (ii) the capacity C of the bins is
set to the best known upper bound on the minimum completion time. Then, a procedure
is applied to determine an upper bound on the maximum number of bins that can be
covered. If this number is at most m− 1, then the optimal minimum completion time of
the corresponding P ||Cmin-instance is at most C − 1.

In our implementation, we used four BCP-upper bounds (U0 from Peeters and De-
graeve, 2006, as well as U1, U2, and U3 from Labbé et al., 1995, including their reduction
criteria 1 and 2) and an improvement procedure (see Theorem 5 in Labbé et al., 1995).
Again, we refrain from reporting any further details on these bounding techniques but
refer the interested reader to the literature.

4.4.1.5 Bounds derived from the solution structure

Assume that a lower bound L on C∗
min is given (cf. Sect. 4.4.2). Then, in order to generate

a new incumbent solution, i.e. Cmin > L, we can deduce that at least

jmin = min{k : t1 + . . .+ tk > L} (4.18)

and at most
jmax = max{k : tn−k+1 + . . .+ tn ≤ C̄} (4.19)

jobs have to be assigned to each machine and C̄ is defined as

C̄ = max
{
C :

⌊Tsum − C

m− 1

⌋
> L

}
. (4.20)

Note that if a machine’s completion time is greater than C̄ it is impossible that each of
the remaining m− 1 machines runs longer than L.
When the special case jmax = jmin+1 occurs, an immediate upper bound is obtained after
determining the number of machines mmin (mmax) on which exactly jmin (jmax) jobs are
processed each. It is readily verified that mmin = jmax ·m− n and mmax = n− jmin ·m.
The resulting upper bound is

U(L) = min
{⌊ 1

mmin

jmin·mmin∑
j=1

tj

⌋
,
⌊ 1

mmax

jmax·mmax∑
j=1

tj

⌋}
. (4.21)

In case jmax = 2, note that an optimal solution is readily obtained by assigning job j
(j = 1, . . . ,m) to machine j and job m+ k (k = 1, . . . , n−m) to machine m− k + 1.
If jmax > jmin+1 we propose the following strategy. Firstly, if �(Tsum−t1−. . .−tjmin

)/(m−
1)� ≤ L, it is impossible to obtain a new incumbent by assigning the longest jmin jobs to
the same machine. In general, a new incumbent can only be obtained at all if none of the
machines runs longer than C̃ := max

{
C > L :

⌊
Tsum−C
m−1

⌋
> L

}
. Thus, if there exists no

jmin-element subset of J whose cumulative processing time falls into the interval [L+1, C̃]
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we can increase jmin.
Instead of checking each subset individually, we solve the following binary program (re-
quiring pseudo-polynomial time) for a possible increase of jmin:

Minimize j̃min =
n∑

j=1

xj (4.22)

subject to

L+ 1 ≤
n∑

j=1

tjxj ≤ C̃ (4.23)

xj ∈ {0, 1} ∀j = 1, . . . , n. (4.24)

In case that now jmax = j̃min + 1, an immediate upper bound can be determined as
described above.
Secondly, we consider restricted instances with l (l = m − 1,m − 2, . . . , 2) machines and
the longest µl out of all n jobs where µl is determined according to Eq. (4.17). Then,
for each l, we compute a (restricted) Cmin-lower bound Ll by application of the LPT-rule
and we take the maximum of L and Ll (note that the optimal restricted Cmin-value is at
least as large as C∗

min and thus L) to determine jmin(l) (cf. Eq. (4.18)) as well as jmax(l)
(cf. Eq. (4.19)). In case jmax(l) = jmin(l) + 1, we obtain an upper bound U(Ll) according
to Eq. (4.21).

4.4.2 Lower bounds

We implemented three construction procedures as well as an improvement procedure. The
first constructive algorithm is the prominent longest processing time (LPT)-rule due to
Graham (1969). As a second procedure, we implemented a randomized LPT-version due to
Haouari and Jemmali (2008a) that randomly decides in each iteration whether the longest
or the second longest unassigned job is assigned to the next machine available. Our third
procedure is an adaptation of a construction heuristic – referred to as Multi-Subset (MS)
(cf. Alvim et al. (2004)) – and consists of two phases. In the first phase, the machines are
considered one by one. For each machine, a subset of the yet unassigned jobs is determined
(by solving a subset sum problem) so that the longest unassigned job is contained and the
sum of the respective processing times is closest to – without exceeding – a given target
value T . If not all jobs are assigned after phase 1, the second phase completes the partial
solution by assigning the remaining jobs according to the LPT-rule. We used two different
values for T , namely T = UBbest and T = LBbest+1 where UBbest and LBbest are the best
known upper and lower bound value so far, respectively. The better of the two solutions
produced by MS is chosen as the MS-solution.

The implemented improvement heuristic – referred to as Multi-Start Local Search
(MSLS) – is also due to Haouari and Jemmali (2008a). Starting with an initial solution,
the procedure attempts to balance the workloads of the machines by iteratively solving
a sequence of specific P2||Cmin-instances. For further details we refer to Haouari and
Jemmali (2008a).
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4.4.3 Application of the bounds

At the root node, the bounds are computed in the following order (as long as no optimal
solution has been verified). Presupposing a (possibly preprocessed) instance where n ≥
2m, at first we determine U0 and we apply the LPT-rule yielding a global lower bound value
LG. Secondly, we make use of the lifting and enhancement procedure (see Sect. 4.4.1.3),
i.e. for l = m,m− 1, . . . , 2 we compute U1 restricted to l machines and the µl longest jobs
and afterward we solve for each l the corresponding SSP. Thirdly, we iteratively apply
the bounding techniques derived from bin covering (see Sect. 4.4.1.4) as long as at least
one of them leads to an improved global upper bound UG. In a fourth step, we try to
further improve LG by application of (i) MS and (ii) MSLS (see Sect. 4.4.2). The latter is
applied to the LPT-solution, the MS-solution as well as to 25 randomized LPT-solutions.
Lastly, we apply our upper bounds derived from the solution structure as derived within
Sect. 4.4.1.5.

At each node in the tree, we pursue the following two ideas to obtain local upper
bounds. Firstly, we adopt the rationale behind U0 as follows. In the current partial
solution we replace each currently unassigned job j (j = k + 1, . . . , n) by tj jobs of length
1 and apply the LPT-rule to assign the T k

rem jobs of length 1 to the current partial solution.
Clearly, the resulting minimum completion time constitutes a local upper bound which we
denote by Umod

0 .
Secondly, we partition M into two subsets MUB− = {Mi ∈ M : Ck

i < UBloc} and
MUB+ = M \ MUB− where UBloc denotes the best known local upper bound for the
considered node. Note that UBloc is the minimum of Umod

0 and the parent node’s upper
bound value. Then, we compute the following modified variant Umod

1 of U1:

Umod
1 =

⌊
Tsum −

∑
i∈MUB+

Ck
i − L3

|MUB− | − 1

⌋
. (4.25)

Here, L3 is computed for a transformed instance restricted to (i) the machines in MUB− ,
(ii) the n− k remaining jobs, and (iii) |MUB− | fictitious jobs having processing times Ck

i

(i ∈ MUB−).
To possibly improve on the lower bound, we apply the LPT-rule to partial solutions

for which at least m jobs have already been assigned and no more than 2m jobs remain
unassigned.

4.4.4 The branching scheme

We implemented a depth-first branching scheme which has originally been proposed by
Dell’Amico and Martello (1995) in the context of solving P ||Cmax. We decided on this
scheme as it allows for a straightforward incorporation of the path-related dominance
criteria. It is different from the one developed by Haouari and Jemmali (2008a) and works
as follows. At level k, the current node generates at most m son-nodes by sequentially
assigning job k, i.e. the longest unassigned job, to each machine Mi that fulfills both
Ck−1

i < UBloc and |Mi| < jmax. The corresponding machines are selected according to
increasing current completion times.
Clearly, each new incumbent solution updates the global lower bound. As soon as an
optimal solution has been identified, the branching process stops immediately.
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4.4.5 Dominance criteria

In case that a current partial solution at level k cannot be fathomed due to the computation
of the local upper bounds and not each pair of machines currently fulfills its path-condition,
we apply the path-related dominance criteria in the same order as they are introduced in
Sect. 4.3.

Furthermore, we apply the following criterion derived from Sect. 4.4.1.5.

Criterion 4.4.2
If |Mi| + v̄ki > jmax for some i ∈ {1, . . . ,m}, then the current partial solution can be
fathomed.

The branching process itself can be limited according to four dominance criteria that
have originally been introduced by Dell’Amico and Martello (1995). In Walter and
Lawrinenko (2014) it is shown, how these four criteria have to be modified in order to
be compatible with the path-related criteria. For further details we refer to the literature.

4.5 Computational study

We have coded the algorithm described within Sect. 4.4 in C++ using the Visual C++ 2010
compiler and experimentally tested its performance on (i) various difficult sets of P ||Cmin-
instances as reported by Haouari and Jemmali (2008a) and (ii) a large set of instances from
the literature. Our computational experiments were performed on a personal computer
with an Intel Core i7-2600 processor and 8GB RAM while running Windows 7 Professional
SP 1 (64-bit). The maximal computation time per instance was set to 600 seconds.

4.5.1 Performance on Dell’Amico and Martello’s instances

In a first experiment, we have run our algorithm (denoted by WWL) on the following five
problem classes originally proposed by Dell’Amico and Martello (1995):

• Class 1: discrete uniform distribution on [1, 100]

• Class 2: discrete uniform distribution on [20, 100]

• Class 3: discrete uniform distribution on [50, 100]

• Class 4: cut-off normal distribution with µ = 100 and σ = 50

• Class 5: cut-off normal distribution with µ = 100 and σ = 20

According to the results stated in the paper by Haouari and Jemmali (2008a), with their
algorithm (denoted by HJ) branching was required for only 166 out of 2,050 instances.
Since our global bounds are in general at least as strong as theirs, there is no need to
reconsider all of their investigated constellations. Instead, we restricted our study to the
difficult (n,m)-constellations (10, 3), (10, 5), (25, 10), (25, 15), (50, 15) where branching was
required by HJ. Like Haouari and Jemmali (2008a), for each constellation we randomly
generated 10 independent instances resulting in a total of 250 instances. A summary of the
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results is provided in Table 4.4. In this table we document the mean CPU time in seconds
(labeled as “Time”) as well as the mean number of explored nodes (“NN”). Moreover, the
number of unsolved instances if greater than 0 is given in brackets. The results of algorithm
HJ are taken from Haouari and Jemmali (2008a). Their algorithm was coded in Visual
C++ 6.0 and ran on a Pentium IV 3.2GHz with 3GB RAM. The time limit for HJ was
set to 800 seconds.
Additionally, in Table 4.4, we report on the performance of the new upper and lower
bound techniques (cf. columns labeled as “UBimpr” and “LBMS”) introduced within the
sections 4.4.1.4, 4.4.1.5, and 4.4.2. Concerning the new upper bounds, the column labeled
as “#” gives the number of instances where the new upper bounds improved on the best
upper bound obtained by the existing procedures (cf. Sections 4.4.1.1–4.4.1.3). Numbers
in brackets indicate for how many instances (if less than 10) the application of at least
one of the two new upper bounding techniques has been needed. The columns labeled as
“avg” and “max” give the average and maximum relative deviation (in %) between the best
existing upper bound and the best new upper bound. Concerning the new lower bound, the
column labeled as “#” gives the number of instances where Multi-Subset (MS) generates
the best lower bound value. Numbers in brackets indicate for how many instances (if less
than 10) the application of MS has been needed. For those cases, the columns labeled
as “avg” and “max” give the average and maximum relative deviation (in %) between the
best lower bound value and the value produced by MS.

HJ WWL
UBimpr LBMS

n m Class Time NN Time NN # avg max # avg max
10 3 1 0.001 90 0.016 21 0 0 0 4 2.307 5.645

2 0.001 137 0.010 13 1 0.054 0.543 4 1.627 2.183
3 0.002 48 0.020 16 0 0 0 3 1.161 3.309
4 0.002 215 0.011 6 2 0.095 0.610 5 1.342 2.215
5 0.002 100 0.012 30 0 0 0 3 1.265 2.652

10 5 1 0.002 128 0.010 3 5 (9) 3.179 13.084 4 (5) 0.323 1.613
2 0.002 152 0.009 3 9 5.573 12.598 1 (3) 10.149 19.200
3 <0.001 188 0.015 2 9 1.868 3.472 0 (1) 4.138 4.138
4 0.003 150 0.009 2 9 2.939 8.938 0 (1) 7.292 7.292
5 0.002 140 0.009 5 8 7.093 18.239 1 (4) 4.968 10.329

25 10 1 85.000 19,649,828 0.115 3,534 0 0 0 0 3.300 5.185
2 129.000 (1) 31,675,367 0.083 1,965 5 0.325 0.704 0 5.226 8.725
3 1.380 235,178 0.027 34 3 0.340 1.143 0 3.308 5.650
4 19.625 4,294,945 0.018 13 5 1.001 3.196 0 1.830 3.644
5 38.675 10,014,760 1.599 53,203 5 0.708 3.968 0 5.412 8.696

25 15 1 128.000 (1) 24,572,119 0.019 26 1 (5) 0.606 3.030 1 (5) 10.868 28.000
2 1.900 268,948 0.009 4 1 (1) 5.952 5.952 0 (1) 2.500 2.500
3 0.006 42 0.023 1 0 (0) – – 0 (0) – –
4 77.878 14,537,221 0.009 1 0 (0) – – 0 (0) – –
5 0.005 48 0.010 22 0 (1) 0 0 0 (1) 1.515 1.515

50 15 1 0.003 17 4.050 (1) 95,149 0 0 0 0 6.963 12.500
2 0.001 21 0.015 (1) 1 0 0 0 1 3.021 6.283
3 0.001 (2) 1 104.883 (6) 2,740,736 0 0 0 0 4.740 6.996
4 20.335 4,498,587 93.392 (2) 1,961,145 0 0 0 0 5.683 6.548
5 0.001 (2) 1 94.611 (4) 2,146,798 0 0 0 0 5.883 15.805

Table 4.4: Results on difficult instances generated according to Dell’Amico and Martello
(1995)

As can be seen from the entries in Table 4.4, except for constellation (50, 15) where
algorithm HJ performed generally better than WWL, the opposite is true for each of the
four other constellations. Here, our algorithm is strictly superior to algorithm HJ in terms
of NN. Moreover, WWL was able to quickly solve all 200 instances while algorithm HJ
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failed to solve two of them. The dominance of WWL is particularly impressive for the
constellations (25, 10) and (25, 15) where the average number of generated nodes and the
computation time were reduced to fractions of up to 1/14, 500, 000 and 1/8, 650, respec-
tively. However, the benefit of the dominance criteria (cf. Sect. 4.3) seems to be limited to
constellations where n/m ≤ 2.5. These observations comply with the findings in Walter
and Lawrinenko (2014) for problem P ||Cmax.

The performance of the new bounding techniques can be summarized as follows. Start-
ing with the upper bounds, application of the new techniques has been required for 206 out
of 250 instances and improvements were achieved for 63 of them (mostly due to the bounds
derived from BCP). While the overall average relative improvement is about 1.153%, max-
imum relative improvements of up to almost 19% were obtained (cf. constellation (10, 5),
Class 5). The new upper bounding techniques performed remarkably well at constellation
(10, 5) where upper bounds could be tightened for 40 (of 49) instances.
With regard to the new lower bound, application of the MS-heuristic has been required for
171 out of 250 instances (note that for the remaining 79 instances the LPT-solution had
already been identified as an optimal solution). For 27 of the 171 instances, MS generated
the best lower bound or, in other words, the MSLS-heuristic was not able to improve
the MS-solution. All in all, our proposed construction heuristic MS performed quite well
yielding a deviation from the MSLS-value of less than 3.5% on average.

4.5.2 Performance on Haouari and Jemmali’s instances

In the second experiment, we have run our algorithm on a class of problems where
the processing times are drawn from a discrete uniform distribution on [1, n] as pro-
posed by Haouari and Jemmali (2008a). Again, we restricted our study to those (n,m)-
constellations where not all of the 10 generated instances in Haouari and Jemmali (2008a)
had been solved at the root node by their algorithm. This time, these are the three
constellations (10, 5), (25, 10), and (25, 15). For each of them we randomly generated 10
instances. Table 4.5 provides a comparison of our results with the ones reported in Haouari
and Jemmali (2008a).

HJ WWL
UBimpr LBMS

n m Time NN Time NN # avg max # avg max
10 5 <0.001 101 0.013 1 0 (0) – – 0 (0) – –
25 10 21.165 3,954,509 0.017 169 0 (6) 0 0 1 (6) 4.163 6.250
25 15 73.786 12,301,985 0.014 15 1 (4) 1.191 4.762 1 (3) 9.450 13.636

Table 4.5: Results on instances generated according to Haouari and Jemmali (2008a)

Obviously, our findings of the first experiment also apply to the results obtained for
the second experiment (see Table 4.5) which reveal a clear dominance of our algorithm for
the constellations (25, 10) and (25, 15). Compared to algorithm HJ, our approach reduced
the average number of generated nodes and the computation time to fractions of up to
1/820, 000 and 1/5, 270, respectively.
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4.5.3 Performance on benchmark instances

In a third experiment, we investigated WWL’s performance on 780 benchmark instances
originally proposed by França et al. (1994) as well as Frangioni et al. (2004) for problem
P ||Cmax. While the former set consists of 390 uniform instances, the latter contains 390
non-uniform instances. For a detailed description, we refer to the literature. All instances
can be downloaded from http://www.or.deis.unibo.it/ research.html. To the best of our
knowledge, we are the first to use this established benchmark set in the context of P ||Cmin.

Table 4.6 reports on the results obtained by our algorithm. In addition to the mean
CPU time and the mean number of nodes, this time we also document the average as
well as maximum relative deviation in % (labeled as “Gap” and “maxGap”, respectively)
between the best upper bound value and the best lower bound value computed at the root
node. Averages are taken over all 10 instances per triple (n,m, Interval).

Uniform Non-Uniform
n m Interval Time NN Gap maxGap Time NN Gap maxGap
10 5 [1, 102] 0.011 5 0.820 5.747 0.015 1 0 0

[1, 103] 0.009 5 0.681 6.570 0.010 1 0 0
[1, 104] 0.034 7 2.643 9.320 0.010 1 0 0

50 5 [1, 102] 0.009 1 0 0 – (10) – 3.078 3.807
[1, 103] 0.017 1 0 0 – (10) – 3.561 4.224
[1, 104] 0.125 1 0 0 – (10) – 3.605 4.274

10 [1, 102] 0.012 1 0 0 – (10) – 13.826 17.085
[1, 103] 0.016 (5) 1 0.021 0.044 – (10) – 14.397 17.485
[1, 104] – (10) – 0.016 0.025 – (10) – 14.471 17.561

25 [1, 102] 0.192 3,881 3.280 10.000 0.009 1 0 0
[1, 103] 3.124 (3) 29,326 5.292 16.404 0.021 1 0 0
[1, 104] 25.984 (5) 17,577 4.850 10.069 0.103 1 0 0

100 5 [1, 102] 0.009 1 0 0 0.017 1 0 0
[1, 103] 0.033 1 0 0 0.117 (1) 1 0.001 0.005
[1, 104] 0.182 1 0 0 2.236 1 0 0

10 [1, 102] 0.012 1 0 0 – (10) – 3.460 4.566
[1, 103] 0.037 1 0 0 – (10) – 3.813 4.813
[1, 104] 0.335 1 0 0 – (10) – 3.859 4.856

25 [1, 102] 0.015 1 0 0 0.035 (6) 1 12.560 22.923
[1, 103] – (10) – 0.075 0.112 – (10) – 21.047 23.617
[1, 104] – (10) – 0.051 0.087 – (10) – 21.127 23.741

500 5 [1, 102] 0.006 1 0 0 0.085 1 0 0
[1, 103] 0.334 1 0 0 0.567 1 0 0
[1, 104] 2.679 1 0 0 5.293 1 0 0

10 [1, 102] 0.019 1 0 0 0.127 1 0 0
[1, 103] 0.395 1 0 0 0.787 1 0 0
[1, 104] 2.418 1 0 0 4.989 1 0 0

25 [1, 102] 0.058 1 0 0 0.114 1 0 0
[1, 103] 0.443 1 0 0 1.076 1 0 0
[1, 104] 3.027 1 0 0 7.302 1 0 0

1000 5 [1, 102] 0.008 1 0 0 0.304 1 0 0
[1, 103] 0.434 1 0 0 1.825 1 0 0
[1, 104] 9.559 1 0 0 19.402 1 0 0

10 [1, 102] 0.011 1 0 0 0.220 1 0 0
[1, 103] 1.044 1 0 0 1.798 1 0 0
[1, 104] 8.543 1 0 0 17.481 1 0 0

25 [1, 102] 0.063 1 0 0 0.373 1 0 0
[1, 103] 1.630 1 0 0 3.568 1 0 0
[1, 104] 8.857 1 0 0 24.293 1 0 0

Table 4.6: Results on benchmark instances

The results indicate that WWL’s performance on the uniform instances is better than
its performance on the non-uniform instances. While 347 of 390 uniform instances have
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been solved optimally, only 273 of 390 non-uniform instances have been solved optimally
resulting in a total number of 620 solved benchmark instances within the time limit of
600 seconds per instance. The unsolved uniform instances belong to the three (n,m)-
constellations (50, 10), (50, 25), and (100, 25) and the intervals [1, 103] and [1, 104]. In
contrast, all but one of the unsolved instances of the non-uniform set belong to the four
(n,m)-constellations (50, 5), (50, 10), (100, 10), and (100, 25) and all three intervals. Tak-
ing a look at the entries in the columns Gap and maxGap of the unsolved instances, we
record considerably smaller values for the uniform than for the non-uniform instances.
For the latter, we observed average and maximum deviations of up to 21.1% and 23.7%,
respectively. This indicates that non-uniform instances seem to be more difficult to solve
than uniform instances.

To allow for future comparisons, we document detailed results on the best found ob-
jective function value as well as the best found upper bound value for each of the 780
instances in Appendix B.

4.6 Conclusions

The present Chapter addressed the machine covering problem P ||Cmin and its exact so-
lution. We identified structural properties of optimal schedules from which we deduced
the so called path-related dominance criteria. Representing the key characteristic of the
proposed branch-and-bound algorithm, these novel criteria proved to be effective in lim-
iting the search space – particularly in the case of rather small ratios of n to m. For
those constellations our approach is superior to the one presented in Haouari and Jemmali
(2008a).

For future research on P ||Cmin we suggest three interesting directions with regard to ex-
act as well as heuristic procedures. Firstly, a quite promising advancement of our branch-
and-bound algorithm might consist in the implementation of a sophisticated branching
scheme that (even) more directly exploits the structural properties of potentially (unique)
optimal solutions and thus enforces the generation of respective (partial) solutions. Sec-
ondly, we encourage the development of an innovative dynamic programming (DP) formu-
lation of P ||Cmin that makes use of the structural properties identified in this Chapter to
trim the state space of the DP aiming at a possible improvement on the time complexity
or the space requirements of the sole PTAS existing so far. Thirdly, due to the expo-
nential nature of exactly solving the machine covering problem, efficient (meta-) heuristic
approaches such as Tabu search or population-based algorithms are still needed to tackle
large-sized instances. Here, it is conceivable to punish the non-fulfillment of the path-
conditions by adequately reducing the fitness value of such solutions.
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Chapter 5

A note on minimizing the normalized
sum of squared workload deviations on
m parallel processors

Summary

In this note we provide a counter-example to a central result by Ho et al. (2009) who
proved that a schedule which minimizes the normalized sum of squared workload devia-
tions is necessarily a makespan-optimal one. We explain why their proof is incorrect and
present some computational results revealing the difference between workload balancing
and makespan minimization.

5.1 Introduction

Given a set J of n independent jobs with positive integer processing times tj (j = 1, . . . , n)
and a set M of m identical parallel machines, the workload balancing problem introduced
by Ho et al. (2009) consists in assigning each job to a machine so that the normalized
sum of squared workload deviations (denoted as NSSWD) is minimized. More formally,
the performance measure NSSWD is defined as [

∑m
i=1(Ci − µ)2]1/2/µ where Ci denotes

the completion time of machine i and µ is the average machine completion time, i.e.,
µ =

∑m
i=1 Ci/m.

Ho et al. (2009) discussed some properties of the NSSWD measure and settled the
complexity of the problem. Based on their result that “a non makespan-optimal schedule
can be improved in terms of NSSWD by reduction in its maximum machine completion
time” (cf. Proposition 3), Ho et al. (2009) concluded that (i) “a NSSWD-optimal schedule is
necessarily a makespan-optimal schedule” (cf. Proposition 4) and (ii) problem P ||NSSWD
is NP-hard. Furthermore, to solve problem P ||NSSWD, Ho et al. (2009) proposed an
algorithm – called Workload Balancing (WB) – that builds on existing procedures for
makespan minimization.
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5.2 A counter-example and corrected results

Clearly, in case of m = 2 machines, the above-mentioned result (cf. Proposition 4 in
Ho et al., 2009) is correct as minimizing NSSWD is equivalent to makespan-minimization.
However, in the general case of m ≥ 3 machines the equivalence of the two criteria does not
hold any longer. Additionally, in contrast to Proposition 4, NSSWD-optimality does not
imply makespan-optimality as demonstrated by the following counter-example consisting
of three machines and six jobs with processing times t1 = 18, t2 = 13, t3 = 11, t4 = 9,
t5 = 8, and t6 = 7. The corresponding optimal solutions – which are unique for each of
the two criteria – are illustrated in Fig. 5.1. While the makespan of the NSSWD-optimal
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Cmax-optimal schedule

18 7
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Figure 5.1: A counter-example for m = 3 machines.

schedule is 25, the optimal makespan is 24. Conversely, the makespan-optimal solution’s
NSSWD-value is about 0.2227 while the optimal NSSWD-value is about 0.1701. Using this
counter-example, one readily obtains a counter-example for any fixed number of machines
m ≥ 4 by adding m− 3 jobs of length 22 each.

Next, we briefly explain why the proof of Proposition 3 in Ho et al. (2009) is incomplete
and thus incorrect. In their proof, the authors merely showed that the NSSWD-value of a
non makespan-optimal schedule S decreases if S is modified to S ′ where (i) the makespan
of S ′ is smaller than the makespan of S and (ii) the modification affects exactly two
machines while all other machine completion times remain unchanged. Indeed, this part
is correct. However, as can be seen from the right-hand side of Fig. 5.1, in some situations
a reduction in the makespan is only achievable if more than two machines are involved in
the modification. This is the crucial point which had not been regarded by Ho et al. (2009).
We shall also remark that the mistake seems to be unrecognized in a proceeding work by
Cossari et al. (2012) who also claimed that NSSWD-optimality implies Cmax-optimality.

As a consequence of the incorrectness of Proposition 3 and 4, one cannot conclude
that problem P ||NSSWD is NP-hard because problem P ||Cmax is NP-hard. However,
P ||NSSWD is indeed NP-hard as can be shown by a straightforward reduction from
Partition which is well-known to be NP-complete (cf. Garey and Johnson, 1979).

5.3 Computational study

As Ho et al. (2009) claimed a positive correlation between the NSSWD and the makespan
criterion, they proposed a heuristic algorithm which bases upon existing algorithms for
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makespan minimization. In light of the presented counter-example it is questionable
whether their approach is meaningful. Addressing this issue, we conducted some ex-
periments of the following kind. For a given instance we determined all NSSWD-optimal
solutions as well as all makespan-optimal solutions (except for permutations of the ma-
chines) via complete enumeration. In case that at least one NSSWD-optimal solution
is not makespan-optimal, we computed the relative deviation between the makespan of a
NSSWD-optimal solution and the optimal makespan averaged over all NSSWD-optimal so-
lutions. Furthermore, in case that at least one makespan-optimal solution is not NSSWD-
optimal, we computed the respective average deviation from the optimal NSSWD value
(analogous to the former case).

Due to the exponential nature of our computational study, we merely tested a few
rather small (m,n)-constellations (cf. Tab. 5.1 and 5.2) in order to obtain reliable results.
Depending on m and n we randomly generated 10a independent instances. The processing
times are drawn from a discrete uniform distribution on [1, d]. The parameter a ranges be-
tween 2 and 6 and six different d-values are studied, namely d = 50, 100, 300, 500, 1000, 10000
(cf. Tab. 5.1 and 5.2).

The following two tables summarize the results of our computational study. Tab. 5.1

d 50 100 300 500 1000 10000
m n a
3 6 6 0.52 (2.39) 0.64 (1.98) 0.75 (1.75) 0.77 (1.67) 0.79 (1.64) 0.80 (1.61)

7 6 0.83 (1.84) 1.19 (1.45) 1.53 (1.17) 1.58 (1.12) 1.65 (1.08) 1.71 (1.05)
8 6 0.97 (1.36) 1.73 (1.01) 2.48 (0.75) 2.69 (0.71) 2.84 (0.67) 2.98 (0.64)
9 5 0.82 (1.04) 1.95 (0.72) 3.54 (0.50) 3.95 (0.45) 4.31 (0.41) 4.66 (0.39)
10 5 0.41 (0.84) 1.59 (0.54) 3.99 (0.32) 4.93 (0.29) 5.56 (0.25) 6.29 (0.23)
11 4 0.12 (0.67) 0.82 (0.45) 3.48 (0.21) 4.98 (0.18) 6.04 (0.16) 8.33 (0.13)
12 4 0.02 (0.59) 0.23 (0.28) 2.88 (0.15) 4.20 (0.13) 6.57 (0.10) 9.36 (0.08)
13 3 0.00 (0.00) 0.00 (0.00) 1.60 (0.11) 3.20 (0.10) 5.00 (0.06) 11.80 (0.04)
14 3 0.00 (0.00) 0.00 (0.00) 0.20 (0.13) 0.90 (0.07) 3.70 (0.05) 10.20 (0.02)
15 3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.30 (0.04) 2.90 (0.03) 12.00 (0.01)
16 2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 3.00 (0.03) 13.00 (0.01)

4 7 6 0.38 (2.49) 0.50 (2.05) 0.57 (1.75) 0.59 (1.71) 0.59 (1.66) 0.63 (1.58)
8 5 1.20 (2.41) 1.51 (1.93) 1.79 (1.63) 1.88 (1.61) 1.87 (1.54) 1.97 (1.52)
9 5 1.70 (1.97) 2.36 (1.50) 2.93 (1.26) 3.08 (1.17) 3.24 (1.15) 3.37 (1.12)
10 4 1.96 (1.50) 3.05 (1.15) 4.45 (0.83) 4.97 (0.79) 4.79 (0.78) 5.06 (0.71)
11 3 2.00 (0.99) 3.60 (0.89) 5.70 (0.50) 7.50 (0.52) 7.40 (0.49) 8.40 (0.54)
12 3 1.30 (0.70) 3.90 (0.64) 5.90 (0.37) 9.70 (0.32) 9.70 (0.37) 11.00 (0.31)
13 2 0.00 (0.00) 4.00 (0.37) 9.00 (0.32) 13.00 (0.23) 7.00 (0.44) 12.00 (0.11)

5 8 5 0.26 (2.52) 0.32 (2.00) 0.35 (1.82) 0.35 (1.74) 0.34 (1.63) 0.42 (1.60)
9 4 0.85 (2.26) 1.21 (1.91) 1.29 (1.81) 1.27 (1.54) 1.47 (1.51) 1.52 (1.41)
10 4 1.92 (2.37) 2.15 (1.95) 2.59 (1.67) 2.87 (1.49) 2.95 (1.47) 3.17 (1.44)
11 3 1.80 (1.70) 3.80 (1.64) 4.00 (1.16) 5.00 (1.22) 4.00 (1.33) 4.60 (1.23)
12 2 3.00 (1.49) 2.00 (1.18) 6.00 (1.30) 2.00 (1.69) 6.00 (1.03) 8.00 (0.42)

Table 5.1: Results for NSSWD-optimal schedules concerning the makespan criterion (in
%)

concerns NSSWD-optimal solutions with respect to their performance for the makespan
criterion. The first entry in each table cell provides the rate of instances where not
all NSSWD-optimal solutions are makespan-optimal. For those instances, the entries in
brackets give the average relative deviations from the optimal makespan. In short, our
results reveal that NSSWD-optimal solutions perform generally very well with respect to
the makespan criterion in terms of relative deviations (cf. entries in brackets in Tab. 5.1)
although we identified constellations where the probability that not all NSSWD-optimal
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solutions are makespan-optimal is larger than 10%.
Tab. 5.2 concerns makespan-optimal solutions with respect to their performance for

the NSSWD criterion. Following the layout of Tab. 5.1, the first entry in each table
cell provides the rate of instances where not all makespan-optimal solutions are NSSWD-
optimal. For those instances, the entries in brackets give the average relative deviations
from the optimal NSSWD value. As can be seen from Tab. 5.2, the first entry in each table

d 50 100 300 500 1000 10000
m n a
3 6 6 57.68 (21.64) 58.94 (19.58) 59.67 (18.27) 59.82 (17.99) 59.92 (17.79) 60.09 (17.59)

7 6 57.02 (25.13) 58.26 (22.03) 59.02 (20.00) 59.23 (19.58) 59.38 (19.27) 59.46 (19.01)
8 6 54.58 (29.29) 55.90 (24.64) 56.33 (21.54) 56.53 (20.93) 56.71 (20.45) 56.78 (19.99)
9 5 51.82 (34.43) 53.11 (27.73) 53.46 (22.99) 53.33 (21.96) 53.71 (21.17) 53.31 (20.48)
10 5 48.28 (39.62) 51.22 (31.74) 50.34 (24.64) 50.48 (22.98) 50.55 (21.71) 50.11 (20.64)
11 4 42.88 (44.21) 48.28 (37.50) 47.66 (27.56) 47.58 (24.48) 47.04 (22.46) 46.63 (20.25)
12 4 36.90 (47.61) 44.06 (42.82) 47.36 (31.48) 46.80 (26.95) 45.44 (23.57) 43.50 (20.75)
13 3 34.90 (49.15) 39.60 (48.46) 43.90 (37.78) 47.30 (31.19) 45.90 (25.83) 43.50 (20.89)
14 3 34.00 (49.62) 35.10 (48.56) 42.90 (42.96) 45.10 (37.08) 44.20 (29.45) 39.60 (21.05)
15 3 33.10 (50.49) 34.90 (50.74) 37.90 (45.21) 43.80 (42.00) 42.10 (36.88) 38.70 (20.88)
16 2 32.00 (50.26) 31.00 (50.43) 35.00 (47.86) 39.00 (45.53) 46.00 (37.54) 35.00 (22.93)

4 7 6 80.87 (26.75) 82.00 (24.93) 82.73 (23.75) 82.92 (23.49) 82.93 (23.30) 83.13 (23.17)
8 5 82.14 (29.83) 83.22 (27.33) 84.23 (25.67) 84.07 (25.38) 84.34 (25.11) 84.50 (24.85)
9 5 81.16 (34.41) 82.55 (30.73) 83.37 (28.15) 83.59 (27.67) 83.50 (27.31) 83.73 (27.08)
10 4 79.27 (39.37) 80.32 (33.48) 80.94 (29.87) 81.47 (28.85) 81.17 (28.48) 80.60 (28.06)
11 3 75.90 (43.56) 79.30 (35.38) 80.40 (32.30) 79.00 (31.10) 78.90 (29.45) 79.80 (27.19)
12 3 70.00 (49.99) 73.80 (40.40) 75.50 (32.60) 76.80 (31.92) 76.00 (28.85) 72.30 (27.71)
13 2 67.00 (53.79) 78.00 (41.19) 70.00 (40.13) 72.00 (27.61) 81.00 (24.35) 74.00 (25.47)

5 8 5 89.94 (33.94) 90.56 (32.24) 90.87 (31.10) 90.91 (30.95) 90.80 (30.65) 90.84 (30.48)
9 4 92.02 (34.30) 93.07 (32.19) 92.83 (30.49) 92.93 (30.47) 93.09 (30.27) 92.82 (30.34)
10 4 92.80 (37.77) 93.43 (34.97) 93.75 (32.79) 93.69 (32.62) 93.48 (32.30) 93.98 (31.97)
11 3 92.60 (43.63) 93.20 (39.43) 93.40 (34.78) 93.60 (36.06) 92.90 (34.94) 94.80 (35.95)
12 2 95.00 (49.71) 93.00 (40.95) 91.00 (37.14) 88.00 (38.85) 90.00 (39.88) 92.00 (38.47)

Table 5.2: Results for makespan-optimal schedules concerning the NSSWD criterion (in
%)

cell is considerably larger compared to those in Tab. 5.1, i.e., with high probability (in some
cases about 95%) not all makespan-optimal solutions are NSSWD-optimal. Regarding the
entries in brackets, at least for small ratios of n tom we believe that any makespan-optimal
schedule is not necessarily “a good candidate to be close to an optimal or near-optimal
NSSWD solution” as stated in Ho et al. (2009). Nevertheless, we suppose that generally
at least one of the makespan-optimal solutions performs moderately well for the NSSWD
criterion.
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Chapter 6

Reduction criteria, upper bounds, and a
dynamic programming based heuristic
for the ki-partitioning problem

Summary

This Chapter addresses the ki-partitioning problem that asks for an assignment of n jobs to
m parallel machines so that the minimum machine completion time is maximized and the
number of jobs on each machine does not exceed a machine-dependent cardinality limit ki
(i = 1, . . . ,m). We propose different preprocessing as well as lifting procedures and derive
several upper bound arguments. Furthermore, we introduce suited construction heuristics
as well as an effective dynamic programming based improvement procedure. Results of a
comprehensive computational study on a large set of randomly generated instances indi-
cate that our algorithm quickly finds (near-)optimal solutions.

6.1 Introduction

6.1.1 Problem definition

In this Chapter we investigate the ki-partitioning problem where we are given a set M of
m ≥ 2 parallel machines, each having an associated machine-dependent cardinality limit
ki (i = 1, . . . ,m) on the maximal number of jobs that can be processed by machine i,
and a set J of n jobs (m < n ≤

∑m
i=1 ki) with positive integer processing times tj ∈ N

(j = 1, . . . , n). Let Ci denote the completion time of machine i (i = 1, . . . ,m), which is
simply defined as the sum of the processing times of all jobs assigned to i, the objective
is to find an assignment (or schedule) that maximizes the minimum machine completion
time Cmin = min {C1, . . . , Cm} without exceeding the cardinality limits. Without loss of
generality, we assume the jobs and the machines to be labeled so that t1 ≥ t2 ≥ . . . ≥
tn > 0 and 0 < k1 ≤ k2 ≤ . . . ≤ km, respectively.

Introducing binary variables xij which take the value 1 if job j is assigned to machine i
and 0 otherwise, a straightforward formulation of the ki-partitioning problem as an integer
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linear program consisting of objective function (6.1) subject to (6.2)–(6.5) is provided
below.

Maximize Cmin (6.1)

s.t.
n∑

j=1

tj · xij ≥ Cmin i = 1, . . . ,m (6.2)

m∑
i=1

xij = 1 j = 1, . . . , n (6.3)

n∑
j=1

xij ≤ ki i = 1, . . . ,m (6.4)

xij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n (6.5)

Objective function (6.1) maximizes the minimum machine completion time Cmin, which
is determined by inequalities (6.2). Constraints (6.3) ensure that each job is assigned to
exactly one machine and constraints (6.4) represent the machine-dependent cardinality
limits. Finally, the domains of the binary variables are set by (6.5).

Obviously, the ki-partitioning problem is a generalization of the classical machine cov-
ering problem P ||Cmin which is obtained by dropping constraints (6.4) or, equivalently, by
setting ki = n for all i (i.e. (6.4) become redundant). Since problem P ||Cmin is well-known
to be NP-hard (cf. Haouari and Jemmali, 2008a), its generalized version with a limited
number of jobs per machine is NP-hard, too.

As mentioned by Dell’Amico et al. (2006), a possible application of the ki-partitioning
problem arises for instance in the context of flexible manufacturing systems. Here, n is the
number of different types of operations, tj represents the total time required to execute all
operations of type j (which have to be assigned to the same cell), m is the number of cells,
and ki represents the capacity of the specific tool magazine of cell i, i.e. ki restricts the
number of types of operations cell i can perform. Another possible application arises in
the context of fairly distributing investment projects among different regions (cf. Haouari
and Jemmali, 2008a). Here, the task is to allocate n projects with individual revenues tj
to m regions so that the minimal total revenue of the regions is maximized. If we assume
the regions to have individual (staff) capacities to manage and administrate the allocated
projects, ki represents the maximum number of projects that can be handled by region i.

6.1.2 Literature Review

To the best of the authors’ knowledge, specific literature on parallel machine scheduling
problems with (machine-dependent) cardinality limits is rather rare. In particular, so far
there exists only one contribution to the ki-partitioning problem with the objective of
maximizing the minimum completion time. The contribution stems from He et al. (2003)
who proposed an approximation algorithm (dubbed HARMONIC2) and studied its worst-
case ratio. He et al. (2003) also treated the case where the cardinality limits of the
machines are identical, i.e. ki = k for all i = 1, . . . ,m. The corresponding problem is called
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k-partitioning. Chen et al. (2002) analyzed the worst-case performance of a modified LPT
algorithm for 3-partitioning and a variant called Kernel 3-partitioning.

When the objective of maximizing the minimum completion time is altered into the
more popular minimization of the maximum completion time (i.e. the makespan), we no-
ticed just three contributions that address machine-dependent cardinality limits ki. The
first one is due to Dell’Amico et al. (2006) who provided reduction criteria, lower bound
procedures, and a scatter search algorithm. In the second contribution, Zhang et al. (2009)
used an extension of Jain’s Iterative Rounding Method to obtain a polynomial time 3-
approximation algorithm. The third contribution stems from Kellerer and Kotov (2011)
who presented an elementary 3/2-approximation algorithm whose running time is linear
in n.
Considering machine-independent cardinality limits, i.e. ki = k (i = 1, . . . ,m), a few more
papers exist. In their extensive study on the NP-hard k-partitioning problem, Babel et
al. (1998) derived different lower bound arguments and introduced several approximation
algorithms along with their worst-case behaviors. Dell’Amico and Martello (2001) devel-
oped further lower bound procedures and investigated their worst-case performances. In
a follow-up paper, Dell’Amico and Martello (2004) introduced heuristic and metaheuristic
solution procedures such as a scatter search algorithm and they compared their compu-
tational performances with a branch-and-bound algorithm. In the special case k = 3,
Kellerer and Woeginger (1993b) analyzed the worst-case performance of a modified ver-
sion of the LPT algorithm and Kellerer and Kotov (1999) introduced a 7/6-approximation
algorithm. The complexity of Kernel 3-partitioning and the worst-case performance of a
modified LPT algorithm have been examined by Chen et al. (1996). Besides, Woeginger
(2005) established the existence of a fully polynomial time approximation scheme (FP-
TAS) for the special case m = 2.
Regarding the balanced variant of the identical parallel machine scheduling problem with
minimum makespan objective, i.e. where each ki either equals �n/m� or �n/m�, Tsai
(1992) developed a heuristic algorithm for the case m = 2 and analyzed its asymptotic
behavior. Tsai proved that the absolute difference between the optimal makespan and the
heuristic makespan is bounded by O(log n/n2), almost surely, when the processing times
are independently drawn from a uniform distribution on [0, 1]. Also for m = 2, Mertens
(1999) proposed a complete anytime algorithm. Michiels et al. (2012) investigated the
worst-case performance of Karmarkar and Karp’s Differencing Method. They proved that
the performance ratio is precisely 2− 1/m for any fixed m ≥ 2. When k is given instead
of m, they showed that 2 −

∑k−1
i=0 i!/k! is a lower bound and 2 − 1/(k − 1) is an upper

bound on the performance ratio for any fixed k. By means of a novel approach in which
the ratios are explicitly calculated using mixed integer linear programming, Michiels et
al. (2012) also proved that their lower bound is tight for k ≤ 7.

Returning to the objective of maximizing the minimum completion time, we finish our
literature review with a selection of substantial contributions to the problem version where
no cardinality limits are present, i.e. P ||Cmin. Problem P ||Cmin has been first mentioned
in Friesen and Deuermeyer (1981) and Deuermeyer et al. (1982) derived a bound on the
worst-case performance of the LPT algorithm. Later, Csirik et al. (1992) tightened this
bound. Woeginger (1997) presented a polynomial-time approximation scheme (PTAS),
and Haouari and Jemmali (2008a) provided an exact branch and bound algorithm along
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with tight upper and lower bound procedures. Recently, Walter (2013) examined the
performance relationship between the LPT algorithm and its restricted version RLPT
and Walter et al. (2016) developed improved approaches to the exact solution of P ||Cmin

including novel dominance rules and new upper bound procedures.

6.1.3 Contribution and Chapter structure

Motivated by the research gap in the field of upper and lower bound procedures for the
ki-partitioning problem where Cmin is to be maximized, in this Chapter we provide new
theoretical insights into the problem and propose different approaches towards its efficient
solution. Our first major contribution concerns the cardinality limits for which we present
procedures to tighten them. Here, we do not only focus on the explicitly given upper
limits but also on the derivation of tight (implicit) lower cardinality limits. Secondly, we
derive several upper bound arguments and two lifting procedures to tighten the bounds.
Eventually, suited solution algorithms – such as fast LPT-based construction heuristics,
an exact dynamic programming approach to solve the two-machine case, and a well-
performing local search improvement algorithm for multiple machines – constitute the
third part of our contribution.

The remainder of the Chapter is organized as follows. In Section 6.2, we present
methods to preprocess a given problem instance. Lifting as well as upper bound procedures
are developed in Section 6.3. Then, Section 6.4 introduces tailor-made construction and
improvement heuristics, whose computational performance is tested in a comprehensive
computational study (Section 6.5). Finally, Section 6.6 concludes the Chapter with a brief
summary and ideas for future research.

6.2 Preprocessing

Preprocessing is a proved means to reduce the size of a problem instance, and thus the
solution space, often resulting in tighter bounds and an enhanced performance of algo-
rithms in terms of solution quality and/or computation time. In this section, we provide
two different approaches to preprocess instances of the ki-partitioning problem. While
the first one aims at tightening the cardinality limits of the machines (Section 6.2.1), the
second one intends to reduce the dimension of the problem by eliminating machines and
jobs in advance (Section 6.2.2).

6.2.1 Tightening the cardinality limits

As the sum of the cardinality limits
∑m

i=1 ki can be greater than the number of jobs n
(cf. Section 6.1), there is basically some potential to tighten the explicitly given upper
limits ki on the maximal number of jobs that can be processed by machine i. At the
same time, lower limits li on the minimal number of jobs that have to be processed by
machine i in any feasible schedule can be derived. Clearly, since we assume that n > m,
in an optimal solution none of the machines will remain empty, i.e. we are implicitly given
lower limits li = 1 (i = 1, . . . ,m). In what follows, we show how to make use of the
upper cardinality limits to tighten the lower cardinality limits and vice versa. Later on, in
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Section 6.3 and 6.4, the enhanced cardinality limits will not only help us to establish tight
upper bounds on the optimal objective value but also to generate high-quality solutions.

To shorten notation, for 1 ≤ i1 ≤ i2 ≤ n we define

Ki1,i2 = min

{
i2∑

s=i1

ks, n−
i1−1∑
s=1

ls −
m∑

s=i2+1

ls

}
,

Li1,i2 = max

{
i2∑

s=i1

ls, n−
i1−1∑
s=1

ks −
m∑

s=i2+1

ks

} (6.6)

and set Ki1,i2 = Li1,i2 = 0 in case i1 > i2. It is readily verified that Ki1,i2 represents the
maximum number of jobs that can be processed by the machine-subset {i1, . . . , i2}: While
the first term (

∑i2
s=i1

ks) is due to their individual upper cardinality limits, the second
term takes into account that the remaining machines have to process at least

∑i1−1
s=1 ls +∑m

s=i2+1 ls jobs in order to satisfy their lower limits. Using a similar argument reveals that
Li1,i2 gives the minimum number of jobs that have to be processed on {i1, . . . , i2}.

Having in mind that in each feasible solution at most Ki,m jobs will be assigned to
the last m− i+ 1 machines, there exists at least one machine in {i, . . . ,m} which cannot
process more than �Ki,m/(m− i+ 1)� jobs. Moreover, since at most Ki,q (i ≤ q ≤ m)
jobs will be assigned to q − i + 1 machines {i, . . . , q}, there exists at least one machine
among them which cannot process more than �Ki,q/(q − i+ 1)� jobs. As a consequence,
we obtain the following decreased upper cardinality limits

ki = min
q=i,...,m

{⌊
Ki,q

q − i+ 1

⌋}
, i = 1, . . . ,m. (6.7)

Note that if Ki,q <
∑q

s=i ks for at least one q ∈ {i, . . . ,m}, then the upper limit of
machine i can be decreased according to (6.7). In particular, for the first machine we
receive k1 ≤ �n/m� which is already quite clear from the fact that not every machine can
process more than �n/m� jobs.

Analogously, since the i − q + 1 machines {q, . . . , i} process at least Lq,i jobs, there
will be at least one machine among them which processes at least �Lq,i/(i− q + 1)� jobs.
Thus, increased lower cardinality limits are

li = max
q=1,...,i

{⌈
Lq,i

i− q + 1

⌉}
, i = 1, . . . ,m. (6.8)

Another option to increase the lower and to decrease the upper cardinality limits,
respectively, is described in Walter et al. (2016). Given a valid lower bound LB (see
Section 6.4) on the optimal minimum completion time C∗

min, any improving solution has
to process at least l̄

l̄ = argmin
h=1,...,n

{
h∑

j=1

tj > LB

}
(6.9)

jobs on each machine, i.e li = max
{
li, l̄

}
(i = 1, . . . ,m). On the other hand, in an

improving solution no machine can process more than

k̄ = argmax
h=1,...,n

{
n∑

j=n−h+1

tj ≤ C̄

}
(6.10)
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jobs, i.e. ki = min
{
ki, k̄

}
(i = 1, . . . ,m), where

C̄ = argmax
C∈N

{⌊∑n
j=1 tj − C

m− 1

⌋
> LB

}
.

Note that if a machine’s completion time exceeds C̄, then it is not possible that each of
the remaining m− 1 machines runs longer than LB.

Taking into account that a job will not be processed by more than one machine, an
enhanced version of (6.9) is

l̄i = argmin
h=1,...,n−i+1

{
h+i−1∑
j=i

tj > LB

}
(6.11)

and we obtain li = max
{
li, l̄i

}
(i = 1, . . . ,m). The idea of disregarding the largest i − 1

jobs when computing enhanced li-values bases upon the lifting procedure as described in
Section 6.3.1 (see proof of Theorem 6.3.1). Analogously,

k̄m−i+1 = argmax
h=1,...,n−i+1

{
n−i+1∑

j=n−h−i+2

tj ≤ C̄

}
(6.12)

leads to tightened ki-values by setting km−i+1 = min
{
km−i+1, k̄m−i+1

}
(i = 1, . . . ,m).

Note that if L1,m > n or K1,m < n after application of (6.9)–(6.12), then we immediately
obtain that LB equals the optimal objective value.

Remark 6.2.1
Assuming that the machines are sorted according to non-decreasing ki-values and initial-
izing the lower limits with li = 1, application of (6.7)–(6.12) will maintain the order of
the machines, i.e. we still have k1 ≤ . . . ≤ km and l1 ≤ . . . ≤ lm.

6.2.2 Reduction Criteria

Reduction criteria play a crucial role when it comes to reduce a problem’s size (or dimen-
sion) and thus the solution space. We start with a straightforward reduction criterion that
has already been stated in Dell’Amico et al. (2006).

Criterion 6.2.2
If k1 = . . . = kh′ = 1 < kh′+1, then there exists an optimal solution in which job 1 is
processed by machine 1, job 2 by machine 2,. . . , and job h′ by machine h′.

Our other two criteria exploit the lower cardinality limits and require a valid upper
bound (denoted by UB) on C∗

min. Further details on how to compute upper bounds are
to be found in Section 6.3.

Criterion 6.2.3
If the sum of the smallest lm processing times is greater than or equal to UB, then there ex-
ists an optimal solution in which machine m solely processes the jobs {n− lm + 1, . . . , n}.
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Clearly, if the condition stated in Criterion 6.2.3 is met, we can reduce the dimension
of the problem to m− 1 machines and n− lm jobs by fixing the assignment of the shortest
lm jobs to machine m in advance. Afterward, we can check if Criterion 6.2.3 also applies
to the reduced problem. If this is the case, the problem’s dimension reduces further. This
process can be iterated until the condition is no longer fulfilled.
There are two minor drawbacks of the latter approach. First, within each iteration only
a single machine is considered and second, the process immediately stops as soon as the
condition stated in Criterion 6.2.3 is not fulfilled any longer. So, if for instance the sum
of the smallest lm processing times is already smaller than UB, then the criterion cannot
be applied at all. To overcome these shortcomings, we propose an enhanced iterative
reduction procedure as depicted in Figure 6.1. In iteration i, we consider the i machines
with the largest lower cardinality limits simultaneously. According to their lower limits,
these machines have to process at least Lm−i+1,m jobs in total. Selecting the shortest
Lm−i+1,m jobs, we compute a lower bound (e.g. by application of one of our procedures
introduced in Section 6.4) on C∗

min for the corresponding partial problem (denoted by
PP ({m− i+ 1, . . . ,m} , {n− Lm−i+1,m + 1, . . . , n})). All in all, the procedure seeks the
largest i so that the respective lower bound is at least as large as UB. Then, clearly,
we can feasibly reduce the dimension of the problem by removing the machines m,m −
1, . . . ,m − i + 1 and the shortest Lm−i+1,m jobs. A similar reduction procedure for the
“dual” ki-partitioning problem with makespan objective is used in Dell’Amico et al. (2006).

1. i := 1; lsum := lm; ĩ := 0; j̃ := 0

2. while i < m

3. if LB(PP ({m− i+ 1, . . . ,m} , {n− Lm−i+1,m + 1, . . . , n})) ≥ UB
4. ĩ := i; j̃ := Lm−i+1,m

5. end
6. i := i+ 1; lsum := lsum + lm−i+1

7. end
8. Remove machines

{
m− ĩ+ 1, . . . ,m

}
and jobs

{
n− j̃ + 1, . . . , n

}

Figure 6.1: Reduction procedure 1

For problem P ||Cmin, Walter et al. (2016) used another trivial reduction criterion which
removes a machine and a job if the corresponding processing time is already greater than
or equal to UB. Taking the cardinality constraints into account leads us to the following
enhanced version of their criterion.

Criterion 6.2.4
If the sum of the largest processing time t1 and the smallest l1−1 processing times is greater
than or equal to UB, then there exists an optimal solution in which the first machine solely
processes the jobs {1, n− l1 + 2, . . . , n}.

The correctness of Criterion 6.2.4 is readily verified. As the longest job has to be
processed by any machine and all lower cardinality limits are greater than or equal to l1,
the machine that processes job 1 has to process at least l1− 1 other jobs as well. Thus, its
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completion time will be at least as large as t1 +
∑l1−1

i=1 tn−i+1. Clearly, if the completion
time is already greater than or equal to UB, then it is not meaningful to assign any other
jobs than the shortest l1−1 ones to the machine which processes job 1. As a consequence,
the dimension of the problem can be reduced by one machine and l1 jobs.
It is quite obvious, that Criterion 6.2.4 can also be repeatedly applied in a straightforward
manner. However, this raises the same issues as with Criterion 6.2.3 so that here, too, we
propose an enhanced iterative procedure as shown in Figure 6.2. This time, in iteration i,
we simultaneously consider the first imachines, i.e. the ones with the smallest li-values, the
i largest jobs, and the L1,i−i shortest jobs. For the corresponding partial problem (denoted
by PP ({1, . . . , i} , {1, . . . , i, n− L1,i + i+ 1, . . . , n})) a lower bound on C∗

min is determined.
The procedure seeks the largest i so that the respective lower bound is greater than or
equal to UB and removes the machines 1, . . . , i and the jobs 1, . . . , i, n−L1,i+ i+1, . . . , n.

1. i := 1; lsum := l1; ĩ := 0; j̃ := 0

2. while i < m

3. if LB(PP ({1, . . . , i} , {1, . . . , i, n− L1,i + i+ 1, . . . , n})) ≥ UB
4. ĩ := i; j̃ := L1,i

5. end
6. i := i+ 1; lsum := lsum + li
7. end
8. Remove machines

{
1, . . . , ĩ

}
and jobs

{
1, . . . , ĩ, n− j̃ + ĩ+ 1, . . . , n

}

Figure 6.2: Reduction procedure 2

6.3 Bounding the optimal objective value

In this section we are concerned with methods to bound the optimal objective value of
the ki-partitioning problem from above. Specifically, we introduce two lifting procedures
(Section 6.3.1) and derive several upper bound arguments (Section 6.3.2). The lifting
procedures are used to tighten the upper bounds which in turn help us to benchmark our
heuristics (see Section 6.4) when optimal solutions are not available.

6.3.1 Lifting procedures

The basic rationale behind lifting is to identify partial problem instances PP (M,J) of
a given instance (M,J ) where M ⊆ M, J ⊆ J , and the optimal objective value of
PP (M,J) is greater than or equal to the optimal value of the given (initial) instance.
Then, by application of upper bound procedures to PP (M,J) we also obtain upper bounds
on the optimal value of the initial instance. Clearly, the more (non-trivial) partial problems
we identify, the more likely we obtain a tighter upper bound for the initial instance. For
this purpose, we next describe two specific approaches (cf. Corollary 6.3.2 and 6.3.3) to
determine a set P(M,J ) of partial problem instances PP (M,J) satisfying the previously
mentioned properties.
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The first one uses the fact that the i longest jobs (i ≤ m − 1) cannot be assigned to
more than i machines and the remaining jobs will be assigned to at least m− i machines.
For the computation of a feasible upper bound, the remaining jobs can be assumed to be
assigned to the m − i machines with the largest upper cardinality limits. Formally, we
obtain the following theorem.

Theorem 6.3.1
For all i = 1, . . . ,m, the partial instance PP ({i, . . . ,m} , {i, . . . , i+Ki,m − 1}) is an ele-
ment of P(M,J ).

Proof
Since a job cannot be split among different machines, in any feasible schedule the longest
i− 1 jobs will be assigned to at most i− 1 machines. Hence, there exist at least m− i+1
machines which do not process any of the first i−1 jobs. The maximum number of jobs that
can be assigned to m− i+ 1 machines is Ki,m which is obviously obtained by considering
the last m − i + 1 machines. Thus, the objective value of the optimal assignment of the
job-set {i, . . . , i+Ki,m−1} to the machine-set {i, i+1, . . . ,m} constitutes an upper bound
for the initial problem, i.e. PP ({i, . . . ,m} , {i, . . . , i+Ki,m − 1}) ∈ P(M,J ). �

A generalization of Theorem 6.3.1 is provided by the next corollary.

Corollary 6.3.2
For all pairs (i1, i2) where 1 ≤ i1 ≤ i2 ≤ m, the partial instance
PP ({i1, . . . , i2} , {i1, . . . , i1 +Ki1,i2 − 1}) is an element of P(M,J ).

Proof
Clearly, the machine-set {i1, . . . , i2} can process at most Ki1,i2 jobs in total. According to
Theorem 6.3.1, there exists an optimal solution in which none of the jobs 1, . . . , i1 − 1 is
assigned to a machine whose index is greater than i1 − 1. So, the Ki1,i2 longest remaining
jobs that can be processed on {i1, . . . , i2} are {i1, . . . , i1 +Ki1,i2 − 1}. Optimally assigning
this job-set to the machine-set {i1, . . . , i2} yields an upper bound on the objective value
of the initial instance, i.e. PP ({i1, . . . , i2} , {i1, . . . , i1 +Ki1,i2 − 1}) ∈ P(M,J ). �

Our second lifting procedure is based on the following result by Haouari and Jemmali
(2008a) which proved to be effective in lifting P ||Cmin-upper bounds: In any feasible
P ||Cmin-schedule there exists at least a set of i machines (i = 1, . . . ,m) on which in total
at most

µi(n,m) = i �n/m�+max {0, n−m(�n/m�+ 1) + i} (6.13)

jobs are processed. Equation (6.13) is readily obtained when a “cardinality-balanced”
schedule is considered in which the numbers of jobs assigned to the machines are as
equal as possible, i.e. each machine processes either �n/m� or �n/m� jobs. However, as
such a schedule might not be realizable when cardinality limits have to be taken into
account, there is some potential to tighten Equation (6.13). In that regard, observe that
when the first i− 1 machines process their maximal number of K1,i−1 jobs and the upper
cardinality limit ki of the next machine is smaller than or equal to the average number of
jobs �n−K1,i−1

m−(i−1)
� on the remaining machines i, . . . ,m, then the first imachines can process at

mostK1,i jobs instead of µi(n,m). It is not difficult to see thatK1,i is smaller than (or equal
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to) µi(n,m). We let ρ denote the maximum machine index so that the aforementioned
inequality is fulfilled, i.e.

ρ = argmax
i=1,...,m

{
ki ≤

⌊
n−K1,i−1

m− (i− 1)

⌋}
. (6.14)

Note that ρ is well-defined: For any instance of the ki-PP we have ρ ≥ 1 because k1 ≤
�n/m�. Then, given k = (k1, . . . , km), in any feasible schedule there exists at least a set
of i machines (1 ≤ i ≤ m) on which in total at most

µ̄i(n,m, k) =

{
K1,i , if i ≤ ρ

K1,ρ + µi−ρ(n−K1,ρ,m− ρ) , otherwise
(6.15)

jobs are processed. This is a tighter version of Equation (6.13), i.e. µ̄i(n,m, k) ≤ µi(n,m)
for all n,m, k, and i. Considering the first i machines and the longest µ̄i(n,m, k) jobs
directly yields the following corollary.

Corollary 6.3.3
For all i = 1, . . . ,m, the partial instance PP ({1, . . . , i} , {1, . . . , µ̄i(n,m, k)}) is an element
of P(M,J ).

Note that for i ≤ q the partial instances considered in Corollary 6.3.3 are identical
with the ones in Corollary 6.3.2 for i1 = 1 and i2 = i.

In sum, we have identified O(m2) partial instances (cf. Corollary 6.3.2 and 6.3.3)
whose optimal objective values represent upper bounds on the optimal objective value of
the given instance. However, as each partial instance itself represents an instance of the ki-
partitioning problem we can combine the two lifting procedures, meaning Corollary 6.3.2
can also be applied to each partial instance obtained from Corollary 6.3.3 and vice versa.
This way, O(m3) partial instances are received. Preliminary tests revealed that application
of Corollary 6.3.3 to each partial instance obtained from Corollary 6.3.2 performs slightly
better than the other way around.
Before we proceed to the development of upper bound procedures we want to emphasize
once again that it is not necessary to optimally solve the identified partial instances.
Instead, application of upper bound procedures to the partial instances is sufficient to
potentially tighten the upper bound on C∗

min of the initial instance.

6.3.2 Upper bound procedures

We also derive several upper bound arguments. At first note that any upper bound for
P ||Cmin (cf., e.g., Haouari and Jemmali, 2008a, and Walter et al., 2016) is also valid for our
ki-partitioning problem. However, as these bounds disregard the cardinality constraints,
we will not only consider bounds adapted from P ||Cmin but mainly introduce new upper
bounds that explicitly take into account the additional constraints on the minimum as
well as maximum number of jobs that can be assigned to each machine. In what follows,
we present all of our upper bounds in their most general form, i.e. their computation does
not require the application of our preprocessing procedures (see Section 6.2) in advance.
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We begin with two simple bounds. The first one is an immediate consequence of
Criterion 6.2.2 (see Section 6.2.2). Recalling that a machine whose upper cardinality limit
equals 1 should process the overall longest available job,

UB0 = th′ (6.16)

where h′ = argmaxi=1,...,m{ki = 1} constitutes a trivial upper bound. Note also that UB0

is the optimal objective if there exists a feasible, but not necessarily optimal, assignment
of the remaining jobs to the remaining machines so that each of these machines runs at
least as long as UB0.

Solving the continuous relaxation of P ||Cmin (i.e. (6.1)–(6.3) and (6.5) replaced by
0 ≤ xij ≤ 1 for i = 1, . . . ,m and j = 1, . . . , n) yields the second straightforward upper
bound:

UB1 =

⌊∑n
j=1 tj

m

⌋
. (6.17)

Since UB1 is easy to compute, application of our two lifting procedures (cf. Section 6.3.1) is
to be recommended. If both procedures are combined as described at the end of Subsection
6.3.1, then the resulting lifted bound is

ŨB1 = min
1≤i1≤i2≤m

{
min

i=1,...,i2−i1+1

{⌊∑i1+µ̄i(Ki1,i2
,i2−i1+1,k)−1

j=i1
tj

i

⌋}}
. (6.18)

Note that ŨB1 ≤ UB1 and, if Criterion 6.2.2 is not applied in advance, we also have that
ŨB1 ≤ UB0.
At this point, we shall remark that one can also solve the continuous relaxation of the
ki-partitioning problem instead of its unconstrained version P ||Cmin. However, in order
to obtain a (lifted) upper bound from the solution of the continuous relaxation it turned
out to be sufficient to consider the unconstrained problem which is not only easier to solve
but usually also yields the same bound.

We continue with the development of a more complex upper bound. Let M ⊂ M and
J ⊂ J denote a subset of the machines and jobs, respectively, the next bound bases on
the following observation. If the mean completion time of the partial problem PP (M,J)
is less than or equal to a valid lower bound LB (cf. Section 6.4) on the optimal objective
value C∗

min, then the mean completion time of the residual problem PP (M\M,J \ J) is
greater than or equal to C∗

min and, thus, provides an upper bound UB, i.e.
∑

j∈J tj

|M |
≤ LB ≤ C∗

min ⇒ C∗
min ≤

∑
j∈J\J tj

m− |M |
= UB. (6.19)

To obtain a tight bound, the determination of M and J is crucial. For this purpose we

85



suggest to solve the following variant of a subset sum problem for each i ∈ {1, . . . ,m− 1}:

Minimize Zi =
n∑

j=1

tj · xi
j (6.20)

s.t.
n∑

j=1

tj · xi
j ≥ i · LB (6.21)

n∑
j=1

xi
j ≤ µ̄i(n,m, k) (6.22)

xi
j ∈ {0, 1} j = 1, . . . , n. (6.23)

Clearly, problem (6.20)–(6.23) is weakly NP-hard. It determines a subset of the jobs
whose sum of processing times is minimal (cf. (6.20)) subject to the constraints that the
respective sum is not smaller than i times a given lower bound LB (cf. (6.21)) and the
subset must not contain more than µ̄i(n,m, k) jobs (cf. (6.22)). Then,

UB2 = min
i=1,...,m−1

{⌊∑n
j=1 tj − Z∗

i

m− i

⌋}
(6.24)

constitutes an upper bound on C∗
min because of the following facts: As LB is a valid lower

bound on C∗
min, in an optimal schedule each machine runs at least as long as LB. In

particular, the cumulative completion time of the i machines that process in total at most
µ̄i(n,m, k) jobs is at least as large as i ·LB. Recall from Corollary 6.3.3 that there always
exists such a subset of the machines. The optimal objective value Z∗

i of problem (6.20)–
(6.23) gives the smallest realizable cumulative completion time of the i machines. Hence,
the cumulative completion time of the remaining m− i machines is at most

∑n
j=1 tj −Z∗

i ,
i.e. the average completion of these machines is at most �(

∑n
j=1 tj −Z∗

i )/(m− i)� so that
UB2 ≥ C∗

min. Clearly, the better the LB the better UB2. We refer to Section 6.4 for the
computation of lower bounds.
Since solving each of the m − 1 problems (6.20)–(6.23) requires pseudo-polynomial time,
we abstained from applying our combined lifting approach to UB2. In our experiments
(see Section 6.5) we used Gurobi 6.0.3 to solve (6.20)–(6.23).

Our next upper bound is a generalization of UB0. Let r1 ≥ 1 denote the index of the
last machine whose upper cardinality limit equals k1, i.e. r1 = argmaxh=1,...,m {kh = k1}.
Then,

UB3 =

{∑k1−1
j=1 tj + tK1,r1

, if K1,r1 = r1 · k1,∑k1−1
j=1 tj , if K1,r1 < r1 · k1

(6.25)

constitutes an upper bound. The correctness of UB3 is readily verified. At first recall that
K1,r1 ≤ r1 · k1 (cf. (6.6)) and PP ({1, . . . , r1} , {1, . . . , K1,r1}) ∈ P(M,J ) (cf. Corollary
6.3.2). In case K1,r1 = r1 · k1, the shortest of these jobs, i.e. job K1,r1 , must be assigned to
one of the first r1 machines. Thus, its assignment to a machine together with the k1 − 1
longest jobs yields a valid upper bound. In the other case, i.e. K1,r1 < r1 · k1, there exists
at least one machine which processes less than k1 jobs.

Since UB3 is easy to compute we suggest to lift this bound according to Corollary
6.3.2. Let ri = argmaxh=i,...,m {kh = ki} for (i = 1, . . . ,m), then by considering the partial
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instances PP ({i, . . . , ri}, {i, . . . , i + Ki,ri − 1}) for (i = 1, . . . ,m) we arrive at the lifted
upper bound ŨB3 = mini=1,...,m {UB3(i)} where

UB3(i) =

{∑i+ki−2
j=i tj + ti+Ki,ri

−1 , if Ki,ri = (ri − i+ 1) · ki,∑i+ki−2
j=i tj , if Ki,ri < (ri − i+ 1) · ki.

(6.26)

It is readily verified that no other partial instances resulting from application of our lifting
procedures (cf. Corollary 6.3.2 and 6.3.3) are able to further improve ŨB3.

Our last upper bound exploits the fact that the well-known LPT algorithm is optimal
when ki ≤ 2 for all i = 1, . . . ,m (cf. also Dell’Amico and Martello, 1995). So, let r and
r̄ denote the index of the first and last machine whose upper cardinality limit equals 2,
i.e. r = min{i ∈ {1, . . . ,m} : ki = 2} and r̄ = max{i ∈ {r, . . . ,m} : ki = 2}, respectively.
If r exists, then

UB4 =

{
minj=r,...,r̄ {tj + t2r̄−j+1} , if Kr,r̄ = 2(r̄ − r + 1)

min
{
minj=r,...,2r̄−K1,r̄{tj},minj=2r̄−K1,r̄+1,...,r̄{tj + t2r̄−j+1}

}
, if Kr,r̄ < 2(r̄ − r + 1)

(6.27)
represents an upper bound which is derived from the (partial) instance PP ({r, . . . , r̄}, {r,
. . . , K1,r̄}). It is not difficult to see that, this time, the consideration of other partial
instances resulting from Section 6.3.1 will not yield a tighter version of UB4.

In case that the best upper bound (denoted by U∗) is given by ŨB1 or UB2 there is
potential for further improvement. Both ŨB1 and UB2 are grounded on averaged machine
completion times, but this does not necessarily mean that a machine can indeed finish
exactly at that time. Therefore, we apply the following enhancement procedure (due to
Haouari and Jemmali, 2008a) which computes the largest sum of processing times that is
less than or equal to U∗ by solving the subset problem (6.28)–(6.30):

Maximize UB5 =
n∑

j=1

tj · xj (6.28)

s.t.
n∑

j=1

tj · xj ≤ U∗ (6.29)

xj ∈ {0, 1} j = 1, . . . , n. (6.30)

Clearly, we have C∗
min ≤ UB5 ≤ U∗.

We finish this section with an example to illustrate the application of the adjustment
procedures (6.7)–(6.8) and the lifting procedures (cf. Corollary 6.3.2 and 6.3.3). The effect
of combining our two lifting procedures will be clarified as well.

Example 6.3.4
Given n = 10 jobs with processing times p = (201, 102, 99, 86, 82, 79, 74, 73, 65, 64) and
m = 5 machines with upper cardinality limits k = (3, 5, 5, 5, 5) and implicit lower limits
l = (1, 1, 1, 1, 1). At first, we apply (6.7) to tighten the upper limits:

k1 = min

{⌊
K1,5

5

⌋
,

⌊
K1,4

4

⌋
,

⌊
K1,3

3

⌋
,

⌊
K1,2

2

⌋
,

⌊
K1,1

1

⌋}
= min

{⌊
10

5

⌋
, . . . ,

⌊
3

1

⌋}
= 2,

k2 = min

{⌊
9

4

⌋
,

⌊
8

3

⌋
,

⌊
7

2

⌋
,

⌊
5

1

⌋}
= 2, k3 = 2, k4 = 3, k5 = 5.
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The enhanced upper limits k = (2, 2, 2, 3, 5) are now used to improve the lower limits
according to (6.8):

l1 =

⌈
L1,1

1

⌉
=

⌈
1

1

⌉
= 1, l2 = max

{⌈
L1,2

2

⌉
,

⌈
L2,2

1

⌉}
= max

{⌈
2

2

⌉
,

⌈
1

1

⌉}
= 1,

l3 = max

{⌈
3

3

⌉
,

⌈
2

2

⌉
,

⌈
1

1

⌉}
= 1, l4 = max

{⌈
5

4

⌉
,

⌈
3

3

⌉
,

⌈
2

2

⌉
,

⌈
1

1

⌉}
= 2, l5 = 2.

It is readily verified that a repeated application of (6.7) using the enhanced lower limits
l = (1, 1, 1, 2, 2) cannot further reduce the upper limits.

Computation of the upper bounds UB1 and UB3 yields

UB1 =

⌊
925

5

⌋
= 185 and UB3 = t1 + t6 = 201 + 79 = 280.

Next, we reveal the effect of our lifting procedures. With regards to UB1 we first apply
Corollary 6.3.2 and 6.3.3 individually. The respective lifted bounds are denoted by ŨB

1

1 =

min1≤i1≤i2≤5{UB1
1(i1, i2)} and ŨB

2

1 = mini=1,...,5{UB2
1(i)} where

UB1
1(i1, i2) =

⌊∑i1+Ki1,i2
−1

j=i1
tj

i2 − i1 + 1

⌋
, UB2

1(i) =

⌊∑µ̄i(n,m,k)
j=1 tj

i

⌋
.

Afterward, we briefly present the result of the combined lifting approach (cf. last paragraph
of Section 6.3.1). Table 6.1 provides detailed information on the bounds ŨB

1

1, ŨB
2

1, and
ŨB3. Regarding ŨB

2

1, we have ρ = 3 since k4 > �4/2� (cf. (6.14)). As can be seen,

i1 i2 Ki1,i2 UB1
1 i1 i2 Ki1,i2 UB1

1 i1 i2 Ki1,i2 UB1
1 i µ̄i UB2

1 i ri UB3

1 1 2 303 2 2 2 201 3 4 5 210 1 2 303 1 3 280
2 4 244 3 4 184 5 8 207 2 4 244 2 3 184
3 6 216 4 7 198 4 4 3 247 3 6 216 3 3 185
4 8 199 5 9 181 5 7 261 4 8 199 4 4 247
5 10 185 3 3 2 185 5 5 5 373 5 10 185 5 5 373

Table 6.1: Upper bounds UB1
1(i1, i2), UB2

1(i), and UB3(i)

we obtain ŨB
1

1 = 181, ŨB
2

1 = 185, and ŨB3 = 184. Up to this point, ŨB
1

1 is the best
upper bound. However, when we combine our two lifting procedures as done in (6.18) we
finally receive ŨB1 = 174 which is due to the application of Corollary 6.3.3 to the partial
instance PP ({2, . . . , 5}, {2, . . . , 10}). Regarding this partial instance, it is readily verified
that ŨB

2

1 = min{201, 184, 174, 181} = 174.

6.4 Algorithms

This section is concerned with the development of lower bounds for the ki-partitioning
problem. Specifically, we introduce two LPT-based construction algorithms (Section 6.4.1)
and a dynamic programming based improvement heuristic (Section 6.4.2).
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6.4.1 Construction heuristics

To construct initial solutions, we propose two modified LPT algorithms that adequately
take the cardinality constraints into account. The two algorithms differ in the way they
incorporate the upper and lower limits. While our first variant (dubbed LPT1) primarily
concentrates on the upper limits, the second variant (dubbed LPT2) focuses on the lower
limits first and observes the upper limits subsequently. Let ni denote the current number
of jobs assigned to machine i, a brief description of our two variants is given below.

LPT1: As long as the number of unassigned jobs, i.e. n−
∑m

i=1 ni, is greater than the
total number of jobs that are still required to satisfy all lower limits, i.e.

∑m
i=1 max{li −

ni, 0}, LPT1 successively assigns the longest remaining job to the machine with the current
shortest completion time among all i where ni < ki. Ties are broken in favor of the machine
that has the largest difference li − ni. Once n −

∑m
i=1 ni =

∑m
i=1 max{li − ni, 0}, LPT1

successively assigns the longest remaining job to the machine with the current shortest
completion time among all i where ni < li until no job remains unassigned. Now, ties are
broken in favor of the machine that has the smallest difference li − ni.

LPT2: As long as not all lower limits are satisfied, LPT2 successively assigns the
longest remaining job to the machine with the current shortest completion time among all
i where ni < li. This time, ties are broken in favor of the machine that has the smallest
lower limit li. Once ni = li for all i, LPT2 successively assigns the longest remaining job
to the machine with the current shortest completion time among all i where ni < ki until
no job remains unassigned. Now, ties are broken in favor of the machine that has the
smallest difference ki − ni.

6.4.2 A subset sum based improvement heuristic

To improve on the quality of a given solution we propose an iterative approach whose
underlying idea is related to the multi-start local search method used in Haouari and
Jemmali (2008a) which has proved to be effective for the unconstrained problem version
P ||Cmin. Assuming the machines to be sorted according to non-decreasing completion
times, i.e. C1 ≤ . . . ≤ Cm, their method iteratively selects pairs of machines (1, h) for
h = m, . . . , 2 and solves the resulting P2||Cmin instance to optimality. Each P2||Cmin

instance is reformulated as a subset sum problem as follows:

Maximize
∑
j∈J

tj · zj (6.31)

s.t.
∑
j∈J

tj · zj ≤
⌊∑

j∈J

tj/2

⌋
(6.32)

zj ∈ {0, 1} ∀j ∈ J (6.33)

where J = J1 ∪ Jh is the union of jobs that are assigned either to machine 1 or h in the
current solution and zj (j ∈ J) are binary variables that take the value 1 if j is assigned
to machine 1 and 0 otherwise. Once a better value for C1 is identified, the machines are
resorted and the next iteration begins. If C1 could not be increased after considering all
m−1 pairs, then the procedure stops. For further details we refer to Haouari and Jemmali
(2008a).
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In the subset sum formulation (6.31)–(6.33) for the unconstrained version, one can
assume without loss of generality that machine 1 is the one whose completion is not
greater than the one of machine h. However, the situation is different when cardinality
constraints have to be taken into account. Here, it is not sufficient to simply add the
constraint

max{l1, |J | − kh} ≤
∑
j∈J

zj ≤ min{k1, |J | − lh} (6.34)

to (6.31)–(6.33) and to solve the model because we can no longer assume the completion
time of machine 1 to be smaller than or equal to machine’s h completion time (cf. Example
6.4.1). Therefore, it is necessary to solve a second model as well where the constraint

max{lh, |J | − k1} ≤
∑
j∈J

zj ≤ min{kh, |J | − l1} (6.35)

is added to (6.31)–(6.33) instead of constraint (6.34) so that this second model, now, forces
the completion time of machine h to be not greater than the one of machine 1. It the
second model it is important to note that zj takes the value 1 if j is assigned to machine
h and 0 otherwise.

Example 6.4.1
Consider n = 5 jobs with processing times p = (13, 11, 7, 5, 3) and m = 2 machines with
upper and lower cardinality limits k = l = (2, 3).

i ki Ji Ci

1 2 {2,3} 18
2 3 {1,4,5} 21

Table 6.2: Solution w.r.t. (6.31)–(6.33)
+ (6.34)

i ki Ji Ci

1 2 {1,3} 20
2 3 {2,4,5} 19

Table 6.3: Solution w.r.t (6.31)–(6.33) +
(6.35)

6.4.2.1 Procedure ki-DP for solving the case m = 2

To avoid solving two subset sum problems for each pair of machines, we propose the fol-
lowing model (6.36)–(6.40) which optimally solves ki-partitioning problems on two parallel
machines by minimizing the absolute difference ∆ between the completion time

∑
j∈J tj ·zj

of machine 1 and the average completion time
∑

j∈J tj/2 of the two machines 1 and h
(cf. (6.36)–(6.38)) while observing the machine’s cardinality limits (cf. (6.39)).

Minimize ∆ (6.36)

s.t.
∑
j∈J

tj · zj ≤
∑
j∈J

tj/2 + ∆ (6.37)

∑
j∈J

tj · zj ≥
∑
j∈J

tj/2−∆ (6.38)

max {l1, |J | − kh} ≤
∑
j∈J

zj ≤ min {k1, |J | − lh} (6.39)

zj ∈ {0, 1} ∀j ∈ J (6.40)
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Clearly, problem (6.36)–(6.40) is NP-hard in the ordinary sense as well. Hence, we de-
veloped a generic dynamic programming procedure (dubbed ki-DP) to exactly solve ki-
partitioning problems on two machines. The input of the procedure is summarized in Table
6.4. Furthermore, we define a 2-dimensional binary array S of size (n+1)× (C+1) which

n Positive integer representing the number of jobs in the two machine problem
p Array of size n where p[j] is a positive integer representing the j-th shortest

processing time (i.e., the times are sorted in non-decreasing order)
C Positive integer representing the maximum allowable completion time of the first

machine
k Positive integer representing the maximum allowable number of jobs on the first

machine (cf. also right-hand side of (6.39))
l Positive integer representing the minimum allowable number of jobs on the first

machine (cf. also left-hand side of (6.39))

Table 6.4: Input of ki-DP

stores the recursively determined information on the first machine’s realizable completion
times – depending on how many of the shortest jobs are considered – without exceeding
the maximum allowable number of jobs on that machine (cf. Figure 6.3). More precisely,
S[j, c] = 1 (0 ≤ j ≤ n, 0 ≤ c ≤ C) if there exists a subset of the first j jobs (i.e. the shortest
ones) so that the subset sum – which represents the completion time of the first machine
– equals c and the subset contains at most k elements; otherwise S[j, c] = 0. Moreover,
associated with each array element [j, c] of S are (i) a binary array S ′

j,c of length k + 1
where S ′

j,c[k
′] = 1 (0 ≤ k′ ≤ k) if there exists a subset of the first j jobs so that the subset

sum equals c and the subset contains exactly k′ elements; otherwise S ′
j,c[k

′] = 0, and (ii)
an array Pj,c of length k+1 where Pj,c[k

′] (0 ≤ k′ ≤ k) stores the preceding c-value in case
that S′

j,c[k
′] = 1; otherwise Pj,c[k

′] = −1. The arrays S ′
j,c and Pj,c are required to observe

the cardinality limits and for backtracking, respectively.
The initialization of the arrays is as follows:

S[0, 0] = 1; S[0, c] = 0 (c = 1, . . . , C)

S ′
0,0[0] = 1; S ′

0,0[k
′] = 0 (k′ = 1, . . . , k); S ′

0,c[k
′] = 0 (k′ = 0, . . . , k)

P0,c[k
′] = −1 (c = 0, . . . , C; k′ = 0, . . . , k).

Figure 6.3 provides the pseudo code of ki-DP and the recursion formulas to fill S as well
as S ′

j,c and Pj,c for each element [j, c] of S. As can be seen, the respective arrays are
filled within three nested loops using conditional statements. The outer loop iterates over
the elements p[j] of the array of processing times, the intermediate loop iterates over
the allowable completion times c, and the inner loop iterates for each pair (j, c) over the
allowable number of jobs k′. In case c < p[j] (see 03.–07.), S[j, c] = S[j − 1, c] and all
entries in the associated S ′

j,c- and P ′
j,c-arrays are copied from the previous row as well. In

the other case, i.e. c ≥ p[j], it is checked which c-values can be realized – without exceeding
the maximum allowable number of addends (or jobs) k – when the integer (or processing
time) p[j] becomes available in addition to p[1], . . . , p[j − 1] (08.–26.). If c can be realized
using p[j] (09.–19.), S[j, c] is set to one (11.) and the entries in the associated arrays S ′

j,c
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01. for j = 1 : n
02. for c = 0 : C
03. if c < p[j]
04. S[j, c] = S[j − 1, c]
05. for k′ = 0 : k
06. S ′

j,c[k
′] = S ′

j−1,c[k
′]; Pj,c[k

′] = Pj−1,c[k
′]

07. end
08. else
09. if S[j − 1, c− p[j]] == 1 and S ′

j−1,c−p[j][k
′] == 1 (for

10. at least one k′ ∈ {0, . . . , k − 1})
11. S[j, c] = 1
12. S ′

j,c[0] = S ′
j−1,c[0]; Pj,c[0] = Pj−1,c[0]

13. for k′ = 1 : k
14. if S ′

j−1,c−p[j][k
′ − 1] == 1 and S ′

j−1,c[k
′] == 0

15. S ′
j,c[k

′] = 1; Pj,c[k
′] = c− p[j]

16. else
17. S ′

j,c[k
′] = S ′

j−1,c[k
′]; Pj,c[k

′] = Pj−1,c[k
′]

18. end
19. end
20. else
21. S[j, c] = S[j − 1, c]
22. for k′ = 0 : k
23. S ′

j,c[k
′] = S ′

j−1,c[k
′]; Pj,c[k

′] = Pj−1,c[k
′]

24. end
25. end
26. end
27. end
28. end

Figure 6.3: Dynamic programming procedure ki-DP

and P ′
j,c are determined by checking (13.–19.) how many jobs are required to realize c

when p[j] is used. Only if c is realized for the first time using exactly k′ (k′ = 1, . . . , k)
out of the shortest j jobs, the respective entry in S ′

j,c[k
′] is set to one and P ′

j,c[k
′] = c−p[j]

(14.–15.). For all other k′, the entries in S ′
j,c and P ′

j,c are copied from the previous row
(16.–18.). The same is done if c cannot be realized using p[j] (see 20.–25.). After filling
the last row of S and the associated arrays S ′

n,c and P ′
n,c for all c = 0, . . . , C, the optimal

objective value c∗ is represented by that column which fulfills S[n, c∗] = 1, S ′
n,c∗ [k

′] = 1 for

at least one k′ ∈ {l, l + 1, . . . , k}, and
∣∣∣c∗ −∑n

j=1 p[j]/2
∣∣∣ is minimal. The corresponding

solution is obtained by backtracking through the P ′-arrays.

6.4.2.2 Procedure ki-LS for solving the general case

We use the ki-DP procedure within our iterative local search algorithm (dubbed ki-LS) to
generate high-quality solutions for the ki-partitioning problem on an arbitrary (but fixed)
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number m of machines. Given a feasible solution, each iteration of ki-LS begins with rela-
beling the machines so that C1 ≤ . . . ≤ Cm. Then, we successively consider the machine
pair (1, h) for h = m, . . . , 2 and solve the corresponding two machine problem (6.36)–(6.40)
via ki-DP (where n = |J | (J = J1 ∪ Jh), k = min {k1, |J | − lh}, l = max {l1, |J | − kh},
and C = Ch). If C1 <

∑
j∈J tj · zj < Ch, then we adopt the new assignment of the

jobs in J , i.e. the current solution (to the m-machine problem) is modified by setting
J1 := {j ∈ J : zj = 1}, Jh := J \ J1, and Ci :=

∑
j∈Ji tj for i = 1, h. Afterward, the

next iteration starts. Otherwise, h is decremented by one. The procedure is stopped if no
improvement has been achieved within an iteration, i.e. after sequentially considering all
m− 1 machine pairs (1, h) (h = m,m− 1, . . . , 2).

6.5 Computational study

This section elaborates on the details of our computational study where we examine the
effectiveness of our preprocessing procedures, the tightness of our upper bound procedures,
and the performance of the developed heuristic algorithms. As there is no established test
bed available we, first, describe how our test instances have been generated (Section 6.5.1).
Then, we specify in which order the developed methods for preprocessing, bounding, and
solving a given instance are executed (Section 6.5.2). Finally, we computationally examine
the performance of our solution approaches and report on the relevant results in Section
6.5.3.

6.5.1 Instance generation

In order to generate test instances for our ki-partitioning problem, we adopted the gen-
eration scheme used in Dell’Amico et al. (2006) who studied the “dual” problem version,
i.e. ki-partitioning with minimum makespan objective. Assuming n/m ≥ 2, we consider 26
pairs of n ∈ {10, 25, 50, 100, 200} and m ∈ {3, 4, 5, 10, 20, 40, 50}. For each of these pairs
we investigate 81 different combinations of 9 processing time classes (dubbed Tj) and 9 car-
dinality classes (dubbed Ki). For each quadruple (n,m, Tj, Ki) 10 independent instances
have been randomly generated resulting in a total number of 21060 (= 26 × 81 × 10)
instances.

Regarding the classes Tj, the processing times are independently drawn from a discrete
uniform distribution on {tmin, . . . , tmax} for classes T1–T3, an exponential distribution with
parameter λ for classes T4–T6 (disregarding non-positive values), and a normal distribution
with mean µ and standard deviation σ for classes T7–T9 (disregarding non-positive values),
respectively. Table 6.5 lists the corresponding parameter values. Turning to the classes
Ki, the upper cardinality limits are independently drawn from a uniform distribution on
{kmin, . . . , kmax} for classes K1–K6 while they are generated according to Figure 6.4 for
classes K7–K9. The respective parameter values are given in Table 6.6. Instances where∑m

i=1 ki < n have been discarded and replaced by new ones. For further information on
the cardinality classes we refer to Dell’Amico et al. (2006).
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tmin tmax λ µ σ
T1 10 1,000 T4 1/25 T7 100 33
T2 200 1,000 T5 1/50 T8 100 66
T3 500 1,000 T6 1/100 T9 100 100

Table 6.5: Parameters used for the processing time classes (cf. Dell’Amico and Martello,
2001, Dell’Amico et al., 2006)

kmin kmax kmin kmax δ
K1 �n/m� − 1 �n/m� K4 �n/m� �n/m�+ 1 K7 1
K2 �n/m� − 1 �n/m�+ 1 K5 �n/m� �n/m�+ 2 K8 3/2
K3 �n/m� − 2 �n/m�+ 2 K6 �n/m� �n/m�+ 3 K9 2

Table 6.6: Parameters used for the cardinality classes (cf. Dell’Amico et al., 2006)

6.5.2 Execution scheme

The order in which we executed the developed preprocessing, bounding, and solution
methods is provided by Figure 6.5. As can be seen, a great deal of effort is put into the
preprocessing and bounding step (see Phase 1). With the intention to reduce the problem’s
size and to obtain strong upper bounds as well as a good initial solution, we iteratively
apply the methods from Section 6.2, 6.3, and 6.4.1. Our improvement procedure ki-LS is
only applied if the reduced problem contains more than one machine and if there is still
a gap between the current best upper and lower bound value U∗ and L∗ (see Phase 2).
After application of ki-LS, we compute the upper bound UB2 (see 26.). The respective
subset sum problems (cf. (6.20)–(6.23)) are solved with the help of Gurobi (version 6.0.3).
Finally, we calculate UB5 in case that the current best upper bound is neither given by
ŨB3 nor UB4 (27.–29.; cf. also paragraph on UB5 within Section 6.3.2).

All of our methods have been implemented in C++ using the Visual C++ 2010 com-
piler and the tests have been carried out on a personal computer with an Intel Core i7-2600
processor, 8GB RAM, and Windows 7 Professional SP1 (64 bit).

6.5.3 Experimental results

This section reports on the results of our computational tests. Table 6.7 lists the 12
relevant performance criteria. The first group of criteria (#Ph1, #Red, %melim, %nelim)
focuses on the performance of the preprocessing and reduction procedures (see Tables 6.8
and 6.9). The second group (%GAP, MAX, #OPT, TIME) allows for a general assessment
of the overall performance of our bounding and solution methods (see Tables 6.10 and 6.11)
while the third group (%BESTi, %OPTi, #ImpLift, #<ŨB1) is meant to provide a clear
picture on the effectiveness of our bounding and lifting procedures (see Tables 6.12–6.15).

We start with evaluating the performance of Phase 1 (cf. Figure 6.5, steps 01.–22.).
The values of the respective performance criteria (cf. first group in Table 6.7) are provided
by Table 6.8 (broken down by the processing time classes) and Table 6.9 (broken down by
the cardinality classes). The column #Ph1 gives the number of instances that have already
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1. Sumk = �δn� − 2m
2. for i = 1 : m− 1
3. r = random number from uniform distribution on {0, . . . , �Sumk/2�}
4. ki = 2 + r
5. Sumk = Sumk − r
6. end
7. km = 2 + Sumk

Figure 6.4: Cardinality generation method for classes K7–K9

(cf. Dell’Amico et al., 2006)

Criteria Description
#Ph1 Number of instances solved in Phase 1 (cf. Figure 6.5, steps 01.–22.)
#Red Number of instances where the problem size could be reduced

%melim Average relative number of eliminated machines (in %)
%nelim Average relative number of eliminated jobs (in %)
%GAP Average relative gap (U∗ − L∗)/U∗ between U∗ and L∗ (in %)
MAX Maximum relative gap between U∗ and L∗ (in %)

#OPT Number of optimally solved instances (i.e. U∗=L∗)
TIME Average computation time required by ki-LS (in seconds)

%BESTi Relative number of instances where UBi = U∗ (in %)
%OPTi Relative number of instances where UBi = L∗ (in %)

#ImpLift Number of instances where ŨBi < UBi

#<ŨB1 Number of instances where UBi < ŨB1 (or ŨBi < ŨB1)

Table 6.7: Performance criteria

#Ph1 #Red %melim %nelim

T1 138 137 1.63 1.27
T2 212 114 1.59 1.54
T3 232 130 2.36 2.26
T4 208 125 1.93 1.86
T5 182 251 2.30 2.03
T6 177 376 3.55 3.16
T7 1266 331 4.43 4.20
T8 921 435 5.80 4.97
T9 601 544 7.01 5.74

Avg/Tot 3937 2443 3.40 3.00

Table 6.8: Performance of the reduction pro-
cedures – processing time classes

0

#Ph1 #Red %melim %nelim

K1 557 122 1.11 0.82
K2 464 276 3.41 2.00
K3 569 536 6.46 3.73
K4 563 183 1.73 0.86
K5 594 165 1.51 0.71
K6 594 158 1.41 0.65
K7 207 374 6.01 8.55
K8 166 331 4.80 5.33
K9 223 298 4.15 4.39

Avg/Tot 3937 2443 3.40 3.00

Table 6.9: Performance of the reduction pro-
cedures – cardinality classes

been solved within Phase 1 and, thus, allows for an overall assessment of the effectiveness
of Phase 1. The column #Red displays the number of instances for which the size could be
reduced successfully by application of our reduction criteria (i.e. Criterion 6.2.2 as well as
reduction procedures 1&2). In conjunction with the two other criteria %melim and %nelim,
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Phase 1: Preprocessing, bounding, and solution generation
01. Apply Criterion 6.2.2; set U∗ = min{∞,UB0}
02. Apply LPT1, LPT2; set L∗ = max {Cmin(LPT1), Cmin(LPT2)}
03. if U∗ > L∗

04. repeat
05. repeat
06. Apply (6.7), (6.8), (6.11), and (6.12)
07. until all ki and li remain unchanged
08. Apply Criterion 6.2.2
09. Determine UB1, UB3, UB4; set U∗ = min {U∗,UB1,UB3,UB4}
10. if U∗ > L∗

11. Apply LPT1, LPT2; set L∗ = max {L∗, Cmin(LPT1), Cmin(LPT2)}
12. Determine ŨB1, ŨB3; set U∗ = min

{
U∗, ŨB1, ŨB3

}

13. if U∗ > L∗

14. Apply reduction procedures 1&2 (cf. Figures 6.1, 6.2)
15. else
16. Return //optimal solution found
17. end
18. else
19. Return //optimal solution found
20. end
21. until no more machines and jobs can be eliminated
22. end

Phase 2: Solution improvement and upper bound enhancement
23. if m > 1 and U∗ > L∗

24. Apply ki-LS to the better of the two solutions obtained from LPT1 and LPT2
25. Set L∗ = Cmin(ki-LS)
26. Determine UB2; set U∗ = min {U∗,UB2}
27. if U∗ < min{ŨB3,UB4}
28. Determine UB5; set U∗ = UB5

29. end
30. end

Figure 6.5: Execution scheme

#Red allows to judge the performance of the reduction criteria.
As can be seen from the #Ph1-column, we are able to optimally solve 3937 out of the

21060 instances (i.e. almost 19%) already within Phase 1. It is worth noting that for 416
out of the 3937 instances our algorithm has already terminated after step 02. (cf. Figure
6.5) because the inequality UB0 ≥ L∗ was fulfilled. Most of these 416 instances belong to
the classes K2 and K3 and satisfy ki < �n/m� for all i.
Phase 1 turned out to be particularly effective when the processing times are drawn from
one of the three normal distributions (i.e. T7–T9). Here, 2788 out of the 7020 corresponding
instances (i.e. almost 40%) are optimally solved within Phase 1. Regarding the cardinality
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classes, K7–K9 appear to be the more difficult ones for our reduction procedures as here
only 596 (i.e. less than 9%) instances have been solved to optimality at Phase 1.

Taking a look at the other three columns, we can state that at least one of our reduction
procedures is able to successfully decrease m and/or n for 2443 instances and the overall
reduction of m and n is about 3.40% and 3.00% on average, respectively. We shall also
remark that m = 2 holds for 217 of the 2443 reduced instances. Due to the nature
of our ki-DP, these instances have later been optimally solved in Phase 2. The largest
entries in the columns %melim and %nelim are to be found in Table 6.9 (see classes K7–
K9). Although the number of instances solved at Phase 1 is rather small for K7–K9, the
average numbers of eliminated machines and jobs are ranging between 4.15% and 8.55%.
This striking behavior seems to be due to the fact that the cardinality limits are more
diverse when they are generated according to K7–K9 (cf. Figure 6.4). So, on the one hand,
the elimination of machines and/or jobs in advance is fostered but, on the other hand, it
is more difficult to optimally solve such instances without application of more elaborate
upper and lower bound procedures as done in Phase 2.

The overall performance of our algorithmic approach and, in particular, Phase 2 is
evaluated next. The respective results for each of the 26 parameter settings (n,m) are
summarized in the Tables 6.10 and 6.11 – again broken down by the processing time
and cardinality classes, respectively. Analogous to the results reported in Dell’Amico et
al. (2006), we noticed that our results are very similar for the related classes T1–T3, T4–T6,
T7–T9, K1–K3, K4–K6, and K7–K9, respectively. Therefore, we abstain from providing
the results for each individual processing time and cardinality class. Instead, we group
the classes accordingly so that each entry in Table 6.10 and 6.11 corresponds to 270
(= 3× 9× 10) instances.

Out of the 17123 instances that remained unsolved after Phase 1, our subset sum based
heuristic ki-LS improved the best LPT-solution 15921 times and UB5 tightened the best
upper bound 696 times so that we were able to solve another 10743 instances within Phase
2. More precisely, subtracting out the number of instances that have already been solved
at Phase 1, we optimally solved 4077 out of the remaining 6438 instances of class T1–T3,
4158 out of 6453 instances of class T4–T6, and 2508 out of 4232 instances of class T7–T9.
Regarding the cardinality classes, we optimally solved 3272 out of the remaining 5430
instances of class K1–K3, 2944 out of 5269 instances of class K4–K6, and 4527 out of 6424
instances of class K7–K9. So, the success of Phase 2 in solving an instance is more sensi-
tive to the cardinality class than the processing times as here the share of solved instances
ranges between 55.87% and 70.47% while it ranges only between 59.26% and 64.44% for
the processing time classes.
Considering both phases together, we see from the last row in Table 6.10 that we were
able to solve significantly more instances with normally distributed processing times (5296
out of 7020) than with exponentially and uniformly distributed times (4725 and 4659),
respectively, and at the same time less computation time was required (0.03 s on average
compared to 0.26 s and 2.53 s) by ki-LS. On the downside, the overall relative gap between
U∗ and L∗ averages 0.70% for the classes T7–T9 and is therefore greater than the respective
average gap (0.61% and 0.39%) for the two other groups of processing time classes. Re-
garding the cardinality classes, the last row in Table 6.11 reveals that we identified more
optimal solutions (5123 out of 7020 compared to 4862 and 4695) when the cardinality lim-
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T1–T3 T4–T6 T7–T9

n m %GAP MAX #OPT TIME %GAP MAX #OPT TIME %GAP MAX #OPT TIME
10 3 0.81 8.65 90 0.01 1.12 11.17 63 0.00 1.36 8.67 142 0.00
10 4 2.22 24.14 109 0.01 2.66 25.36 66 0.00 2.36 22.41 138 0.00
10 5 0.88 18.64 233 0.00 1.80 17.24 188 0.00 2.50 26.67 158 0.00
25 3 0.01 0.20 212 0.12 0.04 1.28 216 0.01 0.16 4.69 223 0.00
25 4 0.04 5.55 172 0.07 0.09 4.56 205 0.01 0.34 16.04 218 0.00
25 5 0.07 1.45 99 0.06 0.12 1.70 162 0.01 0.55 12.27 190 0.00
25 10 1.92 14.56 107 0.03 2.74 9.97 46 0.00 1.64 10.26 119 0.00
50 3 0.01 1.05 200 0.62 0.04 5.77 210 0.06 0.04 1.47 237 0.01
50 4 0.01 1.21 209 0.34 0.02 0.60 216 0.03 0.04 3.90 248 0.00
50 5 0.01 0.09 209 0.29 0.05 4.27 220 0.03 0.18 8.49 232 0.00
50 10 0.07 1.32 119 0.15 0.25 6.02 187 0.02 0.53 8.93 200 0.00
50 20 1.64 8.06 113 0.08 2.52 9.03 50 0.01 1.47 7.41 125 0.00
100 3 0.01 2.14 224 3.74 0.01 0.78 218 0.67 0.03 3.16 246 0.05
100 4 0.01 0.79 220 1.49 0.02 3.28 221 0.22 0.04 2.87 240 0.02
100 5 0.00 0.02 235 1.35 0.02 1.29 211 0.16 0.06 2.84 244 0.02
100 10 0.01 0.21 222 0.71 0.02 1.45 235 0.07 0.89 17.94 212 0.01
100 20 0.04 1.81 142 0.64 0.10 6.38 218 0.07 1.00 10.53 192 0.01
100 40 1.59 7.13 112 0.27 2.46 9.51 66 0.03 1.87 9.26 107 0.00
100 50 0.76 8.94 226 0.03 1.57 11.22 155 0.01 1.95 10.11 125 0.00
200 3 0.00 0.47 203 33.31 0.00 0.15 217 1.95 0.03 3.71 251 0.26
200 4 0.01 1.04 219 6.16 0.00 0.04 225 1.01 0.02 1.39 254 0.10
200 5 0.00 0.01 230 4.91 0.01 0.85 217 0.76 0.05 2.96 244 0.10
200 10 0.00 0.01 239 2.39 0.01 0.09 238 0.32 0.11 7.23 242 0.04
200 20 0.00 0.15 231 2.96 0.01 0.46 239 0.42 0.41 11.58 236 0.03
200 40 0.04 2.12 161 3.42 0.05 4.15 243 0.35 0.19 6.73 246 0.03
200 50 0.05 1.28 123 3.72 0.17 4.55 193 0.41 0.26 4.88 227 0.03
Avg/Tot 0.39 24.14 4659 2.57 0.61 25.36 4725 0.26 0.70 26.67 5296 0.03

Table 6.10: Overall performance of U∗ and L∗ – processing time classes

its were generated according to K7–K9 instead of K1–K3 or K4–K6 although our reduction
procedures were not that effective for the classes K7–K9 (cf. Table 6.9). Altogether, by
means of U∗=L∗, we were able to identify optimal solutions for 14680 out of the 21060
test instances (i.e. almost 70%) and the overall relative gap averaged about 0.57%. While
configurations with n/m > 5 turned out to be rather simple to solve (we found optimal
solutions for 9440 out of the corresponding 11340 instances, i.e. more than 83%), the case
n/m = 2.5 appears to be particularly difficult as we were able to solve only 1154 out of
the corresponding 3240 instances (i.e. less than 36%) and the relative gap between U∗ and
L∗ averaged about 2.09%. The greatest relative gaps of up to 27% were also recorded for
instances with a small ratio of n to m. The conspicuous behavior of our algorithm on such
instances is not that surprising. Haouari and Jemmali (2008a) and Walter et al. (2016)
also report on similar observations.

Looking at the computational effort of our algorithm, we see that ki-LS requires less
time when processing times are small and/or the ratio of n to m is small. These cases
typically result in smaller values of C (cf. Section 6.4.2) which itself strongly impacts the
time requirement of ki-LS’s sub-routine ki-DP. Clearly, the smaller C, the faster ki-DP
determines a solution. Consequently, the computation time of ki-LS is higher for the
processing time classes T1–T3 which generate larger processing times on average than the
other time classes. Furthermore, the computation time increases when (i) n increases and
m is fixed and (ii) n and m increase and n/m is fixed. In both cases the number of pairs
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K1–K3 K4–K6 K7–K9

n m %GAP MAX #OPT TIME %GAP MAX #OPT TIME %GAP MAX #OPT TIME
10 3 1.12 9.03 94 0.00 1.00 8.21 77 0.00 1.17 11.17 124 0.00
10 4 2.39 23.20 113 0.00 2.51 25.36 98 0.00 2.35 24.14 102 0.00
10 5 0.87 13.68 224 0.00 2.68 26.67 160 0.00 1.62 20.00 195 0.00
25 3 0.05 1.35 211 0.05 0.03 1.27 216 0.04 0.12 4.69 224 0.04
25 4 0.04 1.22 205 0.03 0.05 1.38 201 0.02 0.39 16.04 189 0.03
25 5 0.18 1.75 137 0.02 0.09 2.38 142 0.02 0.47 12.27 172 0.02
25 10 1.83 9.97 120 0.01 2.22 14.56 73 0.01 2.24 9.52 79 0.01
50 3 0.02 0.49 209 0.24 0.02 0.55 205 0.24 0.06 5.77 233 0.20
50 4 0.02 0.70 219 0.12 0.01 0.54 217 0.11 0.04 3.90 237 0.14
50 5 0.02 0.85 211 0.11 0.01 0.44 225 0.09 0.20 8.49 225 0.12
50 10 0.15 3.23 138 0.06 0.04 0.56 181 0.04 0.65 8.93 187 0.07
50 20 1.57 7.41 124 0.02 1.99 6.80 80 0.03 2.08 9.03 84 0.04
100 3 0.01 0.35 228 1.55 0.00 0.06 231 1.52 0.05 3.16 229 1.39
100 4 0.01 0.33 224 0.51 0.00 0.09 230 0.50 0.06 3.28 227 0.72
100 5 0.01 0.24 215 0.48 0.00 0.12 235 0.41 0.07 2.84 240 0.65
100 10 0.03 1.03 221 0.20 0.01 0.25 225 0.15 0.87 17.94 223 0.44
100 20 0.10 2.76 160 0.13 0.03 1.61 191 0.07 1.00 10.53 201 0.51
100 40 1.46 8.48 124 0.06 2.03 9.51 82 0.09 2.43 9.26 79 0.15
100 50 0.48 6.25 230 0.01 2.08 11.22 115 0.02 1.71 10.11 161 0.02
200 3 0.00 0.14 217 12.65 0.00 0.03 219 12.41 0.03 3.71 235 10.46
200 4 0.00 0.16 225 2.15 0.00 0.03 229 1.87 0.03 1.39 244 3.25
200 5 0.00 0.24 227 1.71 0.00 0.05 229 1.41 0.05 2.96 235 2.65
200 10 0.01 0.47 232 0.70 0.00 0.05 242 0.57 0.10 7.23 245 1.47
200 20 0.01 0.89 236 0.37 0.01 0.22 230 0.25 0.40 11.58 240 2.78
200 40 0.10 4.15 179 0.36 0.03 1.79 214 0.13 0.15 6.73 257 3.31
200 50 0.26 4.55 139 0.42 0.08 2.22 148 0.18 0.14 4.88 256 3.56
Avg/Tot 0.41 23.20 4862 0.84 0.57 26.67 4695 0.78 0.71 24.14 5123 1.23

Table 6.11: Overall performance of U∗ and L∗ – cardinality classes

of machines that has to be investigated within the local search part is increasing.

%BESTi %OPTi
UB1 ŨB1 UB2 UB3 ŨB3 UB4 UB1 ŨB1 UB2 UB3 ŨB3 UB4

T1 82.95 85.26 39.91 13.59 20.04 9.66 44.27 46.54 24.23 13.50 19.87 9.53
T2 78.68 82.74 36.71 16.15 26.15 14.23 45.38 49.23 23.08 15.77 24.87 13.16
T3 67.31 74.36 34.79 20.94 39.79 26.88 48.03 55.00 23.29 20.85 39.62 26.79
T4 78.85 87.95 41.97 15.38 32.01 19.02 53.68 61.58 30.38 15.04 29.06 16.24
T5 85.90 90.81 47.65 11.20 20.56 10.56 52.35 56.75 32.01 10.85 19.27 9.57
T6 85.85 90.38 47.65 10.09 18.29 9.10 51.15 55.60 30.56 9.66 17.48 8.59
T7 78.63 98.38 54.83 5.09 11.24 6.50 61.71 81.20 44.40 4.53 9.96 5.68
T8 80.38 96.92 52.82 5.34 11.24 6.41 55.94 72.05 38.76 4.87 9.74 5.30
T9 81.88 94.57 54.66 4.32 10.00 6.45 51.45 63.68 36.28 4.10 9.06 5.68

Avg 80.05 89.04 45.66 11.34 21.04 12.09 51.55 60.18 31.44 11.02 19.88 11.17

Table 6.12: Performance of the upper bound procedures – processing time classes

In the last part of our computational study, we carefully evaluate the effectiveness of
our upper bound as well as lifting procedures. The respective results are presented in the
Tables 6.12 – 6.15. The first two tables provide for each of our upper bounds (except UB0

and UB5) the relative number of instances for which the respective bound is equal to U∗

and L∗, respectively. The last two tables display the impact of the lifting procedures by
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%BESTi %OPTi
UB1 ŨB1 UB2 UB3 ŨB3 UB4 UB1 ŨB1 UB2 UB3 ŨB3 UB4

K1 82.65 89.79 56.41 1.62 9.02 10.04 53.89 60.90 39.40 1.58 8.68 9.70
K2 87.48 93.46 57.14 0.81 3.21 3.21 53.42 59.27 40.26 0.73 2.48 2.48
K3 87.18 92.82 49.83 2.61 5.09 3.03 51.97 57.31 36.62 2.48 4.66 2.74
K4 85.13 92.56 59.96 1.75 5.00 5.43 55.13 62.31 42.31 1.67 4.27 4.74
K5 85.34 92.65 62.01 1.07 5.17 5.68 56.75 63.85 45.30 0.94 4.79 5.30
K6 85.68 92.86 60.09 1.37 5.21 5.64 55.38 62.26 42.52 1.28 4.62 5.04
K7 63.29 78.80 13.55 36.41 63.42 32.09 44.49 59.06 6.79 35.51 60.21 29.66
K8 70.98 83.55 23.16 31.20 50.56 22.95 46.54 58.59 12.22 30.64 48.63 21.50
K9 72.69 84.87 28.85 25.26 42.65 20.73 46.41 58.08 17.56 24.36 40.60 19.40
Avg 80.05 89.04 45.66 11.34 21.04 12.09 51.55 60.18 31.44 11.02 19.88 11.17

Table 6.13: Performance of the upper bound procedures – cardinality classes

#ImpLift #<ŨB1

UB1 UB3 UB2 ŨB3 UB4

T1 146 947 10 169 169
T2 211 929 12 239 236
T3 381 933 13 460 459
T4 363 1335 1 222 221
T5 216 1455 2 131 131
T6 200 1528 11 112 112
T7 486 1845 2 30 30
T8 430 1822 2 47 47
T9 357 1815 10 66 66

Tot 2790 12609 63 1476 1471

Table 6.14: Performance of the lifting proce-
dures and improvement of ŨB1 – processing
time classes

0

#ImpLift #<ŨB1

UB1 UB3 UB2 ŨB3 UB4

K1 282 1936 7 163 162
K2 168 1617 4 45 45
K3 152 1175 5 38 37
K4 217 1749 6 88 88
K5 221 1638 3 88 88
K6 208 1532 4 95 95
K7 632 1059 12 406 404
K8 472 958 14 287 287
K9 438 945 8 266 265
Tot 2790 12609 63 1476 1471

Table 6.15: Performance of the lifting proce-
dures and improvement of ŨB1 – cardinality
classes

counting (i) the number of instances where ŨBi < UBi (for i ∈ {1, 3}) and (ii) also the
number of instances where UBi < ŨB1 (for i ∈ {2, 4}) and ŨB3 < ŨB1.

To allow for a fair comparison of the different upper bounds, we slightly modified the
execution scheme in that we did not abort the algorithm as soon as an optimal solution
is found but applied each upper bound except of UB0 and UB5 since UB0 can only be
calculated in special cases and UB0 is also dominated by ŨB1. Determining UB5 is also
not meaningful since naturally U∗ = UB5 holds.

As can be seen from Tables 6.12 and 6.13, the rather simple LP-based bound UB1

and its lifted version ŨB1 are outperforming the other bounds. In terms of numbers,
we observed that ŨB1 = U∗ for 89.04% of the 21060 problem-instances and ŨB1 = L∗

for 60.18%. Considering the other, more specialized bounds and their performance with
respect to the different cardinality classes it is interesting to note that UB2 performs quite
well for the classes K1–K6 and rather poor for K7–K9 whereas the opposite is the case
with the three other bounds. Obviously, the poor quality of UB3 and UB4 for K1–K6 is
caused by the distribution of the ki-values. Furthermore, Tables 6.12 and 6.13 already
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reveal the significant improvement of UB1 and UB3 by application of the combined lifting
procedures. From the last two Tables 6.14 and 6.15 we see that lifting UB1 improves
the bound for a total of 2790 out of 21060 instances (i.e. 13.25%) while lifting UB3 even
improves its non-lifted version for a remarkable number of 12609 instances (i.e. 59.87%)
so that application of the lifting procedures is well justified.
Although ŨB1 equals the best upper bound in almost 90%, the last two tables reveal that
there exist some instances (about 7%) where ŨB3 and/or UB4 yield a better upper bound.
Most of these instances belong to the class T3 and K7, respectively. So, application of
these two bounds is also justified whereas we found that it is not beneficial to also apply
UB2 since it cannot improve on the best upper bound value in about 99.7% although UB2

equals the best bound in about 45%.

6.6 Conclusion

The present Chapter treats the ki-partitioning problem with the objective of maximizing
the minimum completion time subject to machine-dependent upper cardinality limits ki
on the maximum number of jobs that can be assigned to machine i. To tackle this problem
we developed powerful preprocessing procedures which proved to be able to reduce the
problem’s size by eliminating machines and jobs in advance. One of our preprocessing
steps is to exploit the implicitly given lower cardinality limits li in order to enhance the
upper limits. We also derived several upper bound arguments and proposed effective lifting
procedures which often led to even tighter bounds in our experiments. When it comes to
generating high-quality solutions to the ki-partitioning problem, we designed a powerful
subset sum based improvement procedure ki-LS whose core is built by our exact dynamic
programming procedure ki-DP that optimally solves the two-machine case. Computational
tests on a large set of randomly generated instances attest to the efficacy of our solution
methods: reductions were obtained for about 12% of the instances, the lifting procedures
helped to tighten the best upper bound in about 62% of the cases, and the overall relative
gap between the best upper and the best lower bound averages 0.57% while we optimally
solved at least 70% of the instances within less than one second of computation time on
average.

We see the following directions for future research. From a theoretical point of view,
analyzing the worst case behavior of our upper bound procedures as well as the two LPT-
based construction heuristics constitutes a challenging task. From an algorithmic point of
view, we believe that further improvements in the quality of the generated solutions can
be obtained by tailor-made metaheuristics or sophisticated exact algorithms. Moreover,
we suggest two ideas that potentially result in even tighter bounds. The first one is to
enhance the lifting procedures by explicitly using the information provided by the gaps
ki − li between the upper and lower cardinality limits. The second idea is to combine the
preprocessing and lifting procedures by applying the reduction criteria not only to the
given problem instance but also to the derived partial instances.
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Chapter 7

Lower bounds and algorithms for the
minimum cardinality bin covering
problem

Summary

This Chapter introduces the minimum cardinality bin covering problem where we are
given m identical bins with capacity C and n indivisible items with integer weights wj

(j = 1, . . . , n). The objective is to minimize the number of items packed into the m bins
so that the total weight of each bin is at least equal to C. We discuss reduction crite-
ria, derive several lower bound arguments and propose construction heuristics as well as
a powerful subset sum-based improvement algorithm that is even optimal when m = 2.
Moreover, we present a tailored branch-and-bound method which is able to solve instances
with up to 20 bins and several hundreds of items within a reasonable amount of time. In
a comprehensive computational study on a wide range of randomly generated instances,
our algorithmic approach proved to be much more effective than a commercial solver.

7.1 Introduction

7.1.1 Problem definition

In this article we address the minimum cardinality bin covering problem (MCBCP) which
consists in determining the least number of items necessary to fill (or cover) m bins. More
precisely, given m ≥ 2 identical bins of capacity C ∈ N and a set J of n indivisible
items with integer weights wj ∈ N (j = 1, . . . , n) the objective is to minimize the number
of items packed into the m bins so that the total weight of each bin equals at least C.
Introducing binary variables xij which take the value 1 if item j is packed into bin i and
0 otherwise, a straightforward formulation of the MCBCP as an integer linear program
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(ILP) consisting of objective function (7.1) subject to (7.2)–(7.4) is provided below.

Minimize z =
m∑
i=1

n∑
j=1

xij (7.1)

subject to

n∑
j=1

wjxij ≥ C i = 1, . . . ,m (7.2)

m∑
i=1

xij ≤ 1 j = 1, . . . , n (7.3)

xij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n (7.4)

Objective function (7.1) minimizes the number of items necessary to fill all m bins. Con-
straints (7.2) ensure that each bin is filled and constraints (7.3) guarantee that each item
is assigned to at most one bin. Finally, the domains of the binary variables are set by
(7.4). By reduction from 3-Partition (cf. Garey and Johnson, 1979) it is readily verified
that MCBCP is NP-hard. Throughout the Chapter, we assume the items to be labeled
in such a way that w1 ≥ w2 ≥ . . . ≥ wn > 0. Moreover, for economy of notation, we often
identify items by their index.

As a possible application of MCBCP, consider the disposal or transportation of m
different liquids (e.g., chemicals) that cannot be mixed. If at least C volume units of each
liquid have to be transported and we are given n tanks of various sizes, the MCBCP is
to load the m liquids into the fewest number of tanks. Clearly, the less tanks are used
the more convenient the handling and the less organizational effort. Note that here, the
“liquids” correspond to bins and the “tanks” (and their sizes) correspond to the items (and
their weights). For the closely related liquid loading problem we refer to Christofides et
al. (1979).

7.1.2 Related work

Problem MCBCP can be seen as the dual version of the maximum cardinality bin packing
problem (MCBPP) which consists in determining the maximum number of indivisible items
that can be packed into the m bins so that the total weight of each bin does not exceed
C. The MCBPP has been widely studied in terms of upper bounds and exact solution
procedures (Labbé et al., 2003, Peeters and Degraeve, 2006), worst-case performance of
heuristics (Coffman et al., 1978, Coffman and Leung, 1979, Langston, 1984), probabilistic
analyses (Bruno and Downey, 1985, Foster and Vohra, 1989, Rhee and Talagrand, 1993),
meta heuristics (Loh et al., 2009), and innovative applications (Vijayakumar et al., 2013).
In contrast to the variety of publications on MCBPP, to the best of our knowledge we are
the first to study its dual version MCBCP which has recently been mentioned for the first
time by Coffman et al. (2013) as a natural variant of the bin covering problem (BCP).

The BCP itself has been introduced by Assmann et al. (1984) as the dual version of
the classical one-dimensional bin packing problem. So far, related work on variants of the
BCP stem from, e.g., Fukunaga and Korf (2007) who considered the problem of minimizing
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the total cost of the used items to cover m variable sized bins, Csirik et al. (2010) who
examined the online and two semi-online versions of the problem of minimizing the total
weight of the items used to cover m bins, Epstein et al. (2010) who investigated a class
constrained bin covering problem where each item has a color associated with it and the
goal is to cover as many bins as possible subject to the constraint that the total number
of distinct colors in each bin has to be at least l, and Epstein et al. (2013) who studied the
cardinality constrained bin covering problem which consists in maximizing the number of
covered bins subject to the constraint that each bin must contain at least k items.

Returning to the MCBCP and its ILP formulation, it becomes obvious that MCBCP
belongs to the class of mixed packing covering integer programs which are formally defined
as:

Minimize z = cTx (7.5)

subject to

Ax ≥ a (7.6)
Bx ≤ b (7.7)
x ≤ d (7.8)
x ∈ ZN

≥0 (7.9)

where A ∈ RM×N
≥0 , B ∈ RR×N

≥0 , a ∈ RM
>0, b ∈ RR

≥0, c ∈ RN
≥0, and d ∈ RN

>0 (cf. Kolliopoulos
and Young, 2005). The constraints (7.6), (7.7), and (7.8) are called covering, packing, and
multiplicity (or capacity) constraints, respectively. Note that the multiplicity constraints
can also be modeled by adding (at most) N rows to B – one for each constraint xj ≤ dj(<
∞). This equivalent notation appeared in Kolliopoulos and Young (2001) under the name
Covering Integer Problems (CIP) with generalized multiplicity constraints. However, it is
also important to note that a packing constraint cannot be multiplied by −1 in order to be
turned into a covering constraint because the problem definition presupposes non-negative
data.
Setting M = m, R = n, N = mn, a = (C, . . . , C) (M elements), b = (1, . . . , 1) (R
elements), c = d = (1, . . . , 1) (N elements), and

aīj̄ :=

{
wj for ī = 1, . . . ,m and j̄ = (̄i− 1)n+ j (j ∈ {1, . . . , n})
0 else,

bk̄j̄ :=

{
1 for k̄ = 1, . . . , n and j̄ = k̄, n+ k̄, . . . , (m− 1)n+ k̄

0 else

as well as x = (x11, . . . , x1n, x21, . . . , x2n, . . . , xm1, . . . , xmn) it is readily verified that MCBCP
is a representative of mixed packing covering integer problems. Note that in our case the
multiplicity constraints (7.8) are redundant.

A special case of CIPs with generalized multiplicity constraints is obtained when B is
the N × N -identity matrix, i.e. when no packing constraints are existent. This problem
version (i.e. (7.5), (7.6), (7.8), and (7.9)) is called CIP with multiplicity constraints and
has been studied by, e.g., Dobson (1982), Kolliopoulos and Young (2001), and Kolliopoulos
(2003). When no multiplicity constraints are considered at all (i.e. (7.5),(7.6), and (7.9))
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we speak of the classical CIP (see, e.g., Srinivasan, 1999). At this point it is important to
note that due to the presence of the constraints (7.3) we cannot formulate the MCBCP
either as a CIP or as a CIP with multiplicity constraints.

With regards to algorithms for solving CIPs with generalized multiplicity constraints
(and thus the MCBCP), to the best of our knowledge, merely three approximation algo-
rithms are to be found in the literature for which, however, only analytical results are avail-
able but no computational ones. The first algorithm stems from Kolliopoulos and Young
(2001) and is based on “finely” rounding a fractional optimal solution. The authors showed
that for any ε > 0, an integral solution x̂ of cost O (max{1, 1/ε2}(1 + (logM)/W )) times
the optimum of the linear programming relaxation can be obtained in deterministic poly-
nomial time which satisfies Ax̂ ≥ a and (Bx̂)r ≤

⌈
(1+ε)br+O (min{ε2, 1}βrW/(logM))

⌉
for all r = 1, . . . , R where βr is the sum of coefficients at the r-th row of B and W is
defined as min{ai/Ai,j | Ai,j > 0, i = 1, . . . ,M, j = 1, . . . , N}. So, obviously, the solution
returned by this algorithm cannot guarantee to meet all packing constraints. Note that
we have βr = n for all r and W = C/w1 in the MCBCP.
The other two methods are bi-criteria approximation algorithms and presented in Kol-
liopoulos and Young (2005). According to the authors, for any ε ∈ (0, 1], the second
algorithm finds a solution x̂ of cost O (1 + ln(1 + α)/ε2) times the optimum, satisfying
Ax̂ ≥ a, Bx̂ ≤ (1 + ε)b + β, and x̂ ≤ d where β = (β1, . . . , βR) and α is the maximum
number of covering constraints that any variable appears in. Note that we have α = 1 in
the MCBCP. Again, this algorithm cannot guarantee that its returned solution meets the
packing constraints. The same applies as well to the third one which, indeed, has a better
(asymptotic) cost guarantee but even violates the multiplicity constraints. Therefore, we
omit any further algorithmic details and refer to Kolliopoulos and Young (2005).

In contrast to the scarce literature on CIPs with generalized multiplicity constraints
there exists a considerable body of literature on CIPs/CIPs with multiplicity constraints
and several specific variants thereof which, for instance, differ in restrictions on the do-
mains of the input data. However, as our MCBCP cannot be formulated as a CIP (with
multiplicity constraints), we abstain from reviewing algorithms for solving CIPs (with
multiplicity constraints).

Summarizing, as can be seen from the aforementioned analytical results, the three
algorithms introduced in Kolliopoulos and Young (2001) and Kolliopoulos and Young
(2005) are only appropriate when B has small row sums or when no packing constraints
have to be taken into account. Since neither is the case with MCBCP, application of the
existing methods can yield solutions where the packing constraints are violated by a large
factor. Hence, there is an obvious need for suited solution procedures.

7.1.3 Contribution and Chapter structure

It is the intention of this Chapter to provide the required algorithms that are capable of
generating feasible and high-quality solutions within short computation times. Therefore,
we propose suited construction heuristics, a highly effective subset sum-based improvement
algorithm that is even optimal when m = 2, and we also present an exact branch-and-
bound method for which we develop tight lower bound procedures and specific dominance
criteria. Our exact method is able to solve instances with up to 20 bins and several hun-
dreds of items within a reasonable amount of time and clearly outperforms a commercial
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solver.
The remainder of the Chapter is organized as follows. In Section 7.2, we describe

reduction criteria and in Section 7.3 we derive several lower bound arguments. Then,
Section 7.4 introduces tailor-made construction and improvement heuristics as well as a
branch-and-bound algorithm, whose performances are tested and compared with the one
of a commercial solver in a comprehensive computational study (Section 7.5). Finally,
Section 7.6 concludes the Chapter.

7.2 Reduction criteria

In this section, we describe ideas to preprocess a given instance and to reduce its size or
dimension. Without loss of generality, we assume all weights to be strictly smaller than
C, i.e., wj < C (j = 1, . . . , n), because any item with wj ≥ C already covers (or fills) an
empty bin and thus can be assigned alone to a bin. A direct consequence of which is that
in any feasible solution each bin contains at least two items. Moreover, note that if z∗ is
the optimal objective function value of a given instance of MCBCP, then there exists an
optimal solution which contains the z∗ largest items, i.e. the first z∗ items in the sorted
list (or, equivalently, the list’s prefix of length z∗).

Within our preprocessing step, we check at first (in pseudo-polynomial time) whether
there exists a subset J ′ ⊆ J so that

∑
j∈J ′ wj = C. If no such subset exists, then C

can feasibly be increased to the smallest realizable sum of weights that is greater than the
original bin capacity. This will potentially lead to tighter lower bounds. Afterward, we
apply the following two reduction criteria which have originally been proposed by Labbé
et al. (1995) for the classical bin covering problem. As will be briefly shown next, they
also apply to the MCBCP.

Criterion 7.2.1
If wk + wl = C for some k and l, then there exists an optimal solution in which a bin
contains only the two items k and l.

Proof
We distinguish three cases.

1. Consider an optimal solution which contains neither k nor l.
Clearly, in this case each bin must contain exactly two items. Thus, there exists also
an optimal solution in which a bin contains the two items k and l.

2. Consider an optimal solution which contains only one of the two items.
Without loss of generality, assume that k is contained. Let Sk denote the set of items
in the same bin as k. Then, the cardinality of Sk must be one. Hence, interchanging
the respective item in Sk and l yields another optimal solution.

3. Consider an optimal solution which contains both of the two items in different bins.
Let Sk and Sl denote the set of items in the same bin as k and l, respectively. Then,
interchanging Sk and l yields a solution with the same objective function value.

�
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Criterion 7.2.2
Let k be the maximum index so that w1 +

∑n
j=k wj ≥ C. If w1 +wk ≥ C, then there exists

an optimal solution in which a bin contains only the two items 1 and k.

Proof
Note that there exists an optimal solution containing item 1. Let S1 denote the set of items
in the same bin as item 1. If k /∈ S1, then S1 must contain one of the items 2, . . . , k − 1.
Interchanging S1 and k results in an equivalent solution. �

In what follows, we assume that all reduction criteria have been applied and the re-
maining items are numbered from 1 to n.

7.3 Lower bound procedures

We also derive several lower bound arguments which help us to benchmark our heuristic
solution algorithms (see Section 7.4.1 and 7.4.2) and to reduce the enumeration effort for
our exact algorithm (see Section 7.4.3).

7.3.1 Combinatorial bounds

An immediate lower bound on the optimal number of items z∗ is

L0 = 2m (7.10)

which follows directly from wj < C for all j. Clearly, an improved version of L0 is

L′
0 = αm (7.11)

where α = min{k :
∑k

j=1 wj ≥ C} represents the minimum number of items that are
required to cover a single bin.

Another straightforward lower bound (denoted by L1) is obtained by solving the con-
tinuous relaxation of (7.1)–(7.4) (where (7.4) is replaced by 0 ≤ xij ≤ 1 for i = 1, . . . ,m
and j = 1, . . . , n) and rounding up the respective objective value. It is easy to observe
that equality

L1 = min{k :
k∑

j=1

wj ≥ mC} (7.12)

holds. Thus, L1 can be computed in O(n) time assuming presorted items.
Before we proceed with the development of other combinatorial lower bounds, we

briefly consider the worst-case performance of the bound max{L′
0, L1}. As will be revealed

by the following example, the worst-case performance is arbitrarily bad, i.e. the ratio
max{L′

0, L1}/z∗ can be arbitrarily close to zero for any fixed number of bins m ≥ 2.

Example 7.3.1
Let K be a positive integer. Consider the following family of instances: w1 = . . . = wm+1 =
Km, wm+2 = . . . = wn = 1 (n sufficiently large), and C = K(m + 1). Then, it is readily
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verified that max{L′
0, L1} = max{2m,m + 1} = 2m and z∗ = m + 1 + (m − 1)K. Thus,

the ratio
max{L′

0, L1}
z∗

=
2m

m+ 1 + (m− 1)K
=

2m

(K + 1)m− (K − 1)
=

2

(K − 1)(1− 1/m) + 2

converges to zero when K tends to infinity.

From the previous Example 7.3.1 we see that an arbitrarily large ratio q of the largest
to the smallest item weight, i.e. q = w1/wn, can result in an arbitrarily bad worst-case
performance of L1. Basically, as may be imagined, the performance of the lower bound L1

strongly depends on the ratio q, i.e. the smaller q the better the worst-case performance.
The next proposition establishes a relation between q and L1/z

∗ and provides a lower
bound on the worst-case performance of L1 depending on q.

Proposition 7.3.2
Let q = �w1/wn�, then L1/z

∗ > 1/(1 + q).

Proof
The proof is quite simple. Consider the “continuous” solution obtained by packing items
in non-increasing order of weights and allow them to be split between two bins. We can
use this solution to construct a feasible solution to the binary program as follows. At first,
each split-item is assigned to the lower-indexed bin that already contains one part of the
respective item. Afterward, at most m − 1 bins are uncovered, i.e., their total weight is
less than C. However, we also know that the total weight of each uncovered bin is not less
than C − w1. Then, since w1/wn ≤ q, it suffices to assign (at most) q additional items to
each uncovered bin so that the total weight of each bin is at least C. Thus, the minimum
number of items necessary to cover the m bins is not greater than L1 + (m− 1)q and we
obtain the estimation:

L1

z∗
≥ L1

L1 + (m− 1)q
=

1

1 + m−1
L1

q
>

1

1 + q
.

�

We believe that the previous analysis can be tightened in order to obtain even stronger
bounds on the worst-case performance of L1 depending on the value of q. However, this is
not within the scope of this Chapter but might be a topic for future research. Instead, we
focus on another aspect that influences the performance of L1. Assume that h items are of
weight ≥ C/2. In case that h ∈ {m+1, . . . , 2m− 1} there is some potential to tighten L1

since any two of the first h items already cover a bin. More precisely, the respective total
weight in any such bin will be strictly greater than C (recall that the reduction criteria
are assumed to be applied beforehand). Contrary to the assumption underlying L1 the
resulting excess cannot be used to fill other bins. Hence, we obtain the tightened bound

L′
1 = min{k :

k∑
j=1

wj ≥ mC + E}

where

E :=

{∑h
j=2m−h+1 wj − (h−m)C if h ∈ {m+ 1, . . . , 2m− 1}

0 else
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and h := max{j : wj ≥ C/2}.
Next, we present a generalization of L1 which can be computed in O(n) time as well.

Theorem 7.3.3
Let Q(i) = min{k :

∑k
j=1 wj ≥ iC}. Then, L2(i) = Q(i)+ (m− i)�Q(i)/i� is a valid lower

bound on z∗ for i = 1, . . . ,m.

Proof
Note that Q(i) is a lower bound on the number of required items to cover i bins. Therefore,
in any feasible solution, Q(i) constitutes a lower bound on the number of items packed
into the i covered bins that contain the least items. Each of the remaining (m − i) bins
will then contain at least �Q(i)/i� items and the claim follows. �

Clearly,
L2 = max

i=1,...,m
L2(i) (7.13)

is a valid lower bound on z∗ and it is readily verified that L2 is dominating L1 since
L2 ≥ L2(m) = Q(m) = L1. Although L2 dominates L1, its worst-case performance is not
better than the one of L1, i.e., the ratio L2/z

∗ can be arbitrarily close to zero for any fixed
m ≥ 2. Considering the same family of instances as in Example 7.3.1, we readily obtain
L2(i) = i + 1 + 2(m− i) = 2m + 1− i. Thus, L2 = 2m and the ratio L2/z

∗ converges to
zero when K tends to infinity (cf. Example 7.3.1).

A third bound is given by the next theorem.

Theorem 7.3.4
Let p(i) = min{p :

∑i+p
h=i wh ≥ C} + 1 and P (i) =

∑i
h=1 p(h) for i = 1, . . . ,m. Then,

L3(i) = P (i) + Li
2, where Li

2 denotes the L2-bound for the reduced problem-instance on
m− i bins and the set of items i+ 1, . . . , n, is a valid lower bound on z∗ for i = 1, . . . ,m.

Proof
Without loss of generality, assume the bins to be sorted (and labeled) in such a way
that the largest item in bin i is at least as large as the largest item in bin i + 1 for all
i = 1, . . . ,m − 1. Then, clearly, the largest item in bin i cannot be larger than wi. So,
to cover bin i, at least p(i) items are required. Hence, to cover the first i bins, at least
p(1) + . . .+ p(i) = P (i) items are necessary. The remaining m− i bins require at least Li

2

items to be covered. �

Consequently,
L3 = max

i=1,...,m
L3(i) (7.14)

is a valid lower bound on z∗ and can be computed in O(mn) time.
Using once again the family of instances described in Example 7.3.1 it is readily verified

that the worst-case performance of L3 is arbitrarily bad, i.e., the ratio of L3/z
∗ can be

arbitrarily close to zero for any fixed m ≥ 2. By hand calculation we obtain L3(i) =
2i + 2(m − i) = 2m for all i = 1, . . . ,m since P (i) = 2i and Li

2 = 2(m − i). Note that
Li
2(̄i) = 2(m− i) + 1− ī for ī = 1, . . . ,m− i and all i = 1, . . . ,m− 1. All in all, we obtain

L3 = 2m and the ratio L3/z
∗ converges to zero when K tends to infinity.

The following small example briefly shows that neither L2 dominates L3 nor L3 domi-
nates L2.
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Example 7.3.5
At first we treat the case L2 > L3. Let C = 12, m ≥ 2 fix, n = 2(m − 1) + 8, and
assume the following weights: w1 = . . . = w2(m−1) = 6, w2(m−1)+1 = w2(m−1)+2 = 3, and
w2(m−1)+3 = . . . = w2(m−1)+8 = 1. Then, L2 = L2(m) = 2(m − 1) + 8 while it is readily
verified by hand calculation that L3 = L3(1) = 2(m− 1) + 3.

Now, we consider the reverse case, i.e., L3 > L2. Again, let C = 12 and m ≥ 2 fix but
this time we take n = 3(m − 2) + 8 items having the following weights: w1 = 9, w2 = 7,
w3 = . . . = w3(m−2)+4 = 4, and w3(m−2)+5 = . . . = w3(m−2)+8 = 1. Then, we readily obtain
L3 ≥ L3(m) = 3(m− 1) + 2 > 3(m− 1) + 1 = L2(m) = L2.

We want to remark that the family of instances which leads to the poor worst-case
performance of the developed lower bounds L0, L1, L2, and L3 is rather hypothetical. As
will be demonstrated within Section 7.5.2, on randomly generated instances our combina-
torial lower bounds are quite strong. Nevertheless, in the remainder of this section we are
concerned with two other ideas to enhance the combinatorial bounds.

7.3.2 An enhanced lower bound based on bin covering

Next, we briefly describe how we can apply established upper bounds for the bin covering
problem (BCP) in order to tighten a given lower bound value on z∗. The approach bases
on the following matter of fact: If an upper bound UBCP on the number of bins that can
be covered by the L largest items is smaller than m, then L+ 1 is a feasible lower bound
value for MCBCP. Thus, starting with the L := max{L2, L3} largest items we seek for
the smallest number LBCP ∈ {L, . . . , n} so that the corresponding UBCP -value for the
items 1, . . . , LBCP is greater or equal to m. Then, LBCP is a feasible lower bound on z∗.
In order to obtain preferably tight UBCP -values, we implemented all relevant bounding
procedures presented in Labbé et al. (1995) and Peeters and Degraeve (2006). For a
detailed description of these bounds we refer to the respective literature.

7.3.3 Column generation lower bound

To possibly obtain even tighter bounds, we propose another approach based on column
generation which, however, requires non-polynomial time and is based on a modified linear
programming formulation using patterns. A pattern is a combination of items that can
cover a bin. More formal, let W ′ = {w′

1, . . . , w
′
n′} denote the set of all pairwise different

item weights and bj (j = 1, . . . , n′) the number of items of weight w′
j in J , a pattern p is

described by an integer array (a1p, . . . , an′p) where ajp gives the number of items of weight
w′

j that are used in pattern p and satisfies

n′∑
j=1

ajpw
′
j ≥ C (7.15)

ajp ∈ Z≥0. (7.16)

We call a pattern minimal when using one item less results in a violation of (7.15). In
what follows we only consider minimal patterns.
Let P denote the set of all minimal patterns and introduce integer variables xp (p ∈ P ) that
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count how often pattern p is used in a feasible solution, the pattern-based MCBCP-model
reads as follows

Minimize z =
∑
p∈P

n′∑
j=1

ajpxp (7.17)

subject to
∑
p∈P

xp ≥ m (7.18)

∑
p∈P

ajpxp ≤ bj j = 1, . . . , n′ (7.19)

xp ∈ Z≥0 p ∈ P. (7.20)

As the number of feasible minimal patterns is exponential in n′, it is prohibitive to enu-
merate all of them in advance. Instead, column generation techniques are often applied
to solve problems such as the pattern-based MCBCP-model. We refer to Lübbecke and
Desrosiers (2005) for a survey on selected topics in column generation.
Next, we briefly describe the basic technique for the pattern-based MCBCP and explain
how to obtain a lower bound on the minimum number of items required to cover all m
bins. First, we define the continuous relaxation of (7.17)–(7.20) – which is obtained by
replacing (7.20) with xp ≥ 0 for all p ∈ P – and we heuristically initialize the model with
a reduced set of patterns P ′ ⊆ P that provides a feasible solution. This results in the
linear optimization problem

Minimize zLP =
∑
p∈P ′

n′∑
j=1

ajpxp (7.21)

subject to
∑
p∈P ′

xp ≥ m (7.22)

∑
p∈P ′

ajpxp ≤ bj j = 1, . . . , n′ (7.23)

xp ≥ 0 p ∈ P ′ (7.24)

which is also called the restricted master problem (RMP). After a solution to the RMP
has been determined, let λ be the dual variable associated with constraint (7.22) and πj

be the dual variable associated with the j-th constraint of (7.23). To decide whether the
solution is also optimal for P ′ = P or whether there exits a pattern p̄ ∈ P \ P ′ which
could reduce the objective value of the RMP (pricing problem), we compute the reduced
costs c̄p̄ = −λ +

∑n′

j=1 ajp̄(1 + πj) (p̄ ∈ P \ P ′). Instead of explicitly pricing all candidate
patterns p̄ ∈ P \ P ′, we implicitly search for a pattern whose reduced costs are negative.
For this purpose, we formulate and solve the following bounded knapsack problem that
determines the pattern with the smallest reduced costs (slave problem (SP)):
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Minimize zSP =
n′∑
j=1

(1 + πj)vj (7.25)

subject to

n′∑
j=1

w′
jvj ≥ C (7.26)

vj ≤ bj j = 1, . . . , n′ (7.27)
vj ∈ Z≥0 j = 1, . . . , n′. (7.28)

Note that the profits in SP correspond to the dual variables πj, and vj counts the number
of times an item of weight w′

j is used. Let v∗ = (v∗1, . . . , v
∗
n′) be the optimal solution to the

slave problem. If zSP (v∗) < λ, the pattern v∗ has negative reduced costs and is inserted
into P ′, i.e. (1, v∗1, . . . , v∗n′) is added as a new column to the RMP and the RMP is re-solved.
The whole process is repeated until zSP ≥ λ, i.e. there exists no additional pattern that
could further reduce the objective value of the RMP. Thus, the current solution is optimal
for the continuous relaxation of the pattern-based MCBCP-model (7.17)–(7.20) and its
rounded-up objective value �zLP � constitutes another lower bound on z∗. In the sequel,
this bound is denoted by LCG.

7.4 Algorithms

7.4.1 Construction heuristics

In the following, we propose three intuitive, simple heuristic algorithms to construct fea-
sible solutions for MCBCP. All of them intend to avoid adding a large item to an almost
covered bin which is also common to several construction heuristics for BCP (cf., e.g.,
Assmann et al., 1984, Csirik et al., 1999). Some of the BCP-heuristics – such as the Sim-
ple or the Improved simple heuristic developed by Csirik et al. (1999) – fill one or more
(very) small items into an almost covered bin until the bin is covered. This clarifies why
a direct application of BCP-heuristics to MCBCP might result in solutions with a rather
poor quality. Therefore, to account for using preferably few items to cover a given number
of bins, we suggest the three following procedures: First Fit Decreasing with parameter
r ∈ [1, 2) (abbreviated FFDr), Best Fit Decreasing with parameter r ∈ [1, 2) (abbreviated
BFDr), and Lowest Fit Decreasing (LFD). FFDr as well as LFD have already been men-
tioned in Assmann et al. (1984) – however in the context of BCP. In what follows, we
describe how we apply them to MCBCP.

We start with a description of FFDr. While there are not allm bins covered, FFDr puts
the largest unpacked item into the first uncovered bin whose current level is not greater
than rC − w̃ where w̃ denotes the weight of the largest unpacked item. If all uncovered
bins’ levels are greater than rC − w̃, put the item into the bin with the minimum level.

The second procedure, BFDr, is a slight modification of FFDr and works as follows.
While there are not all m bins covered, BFDr puts the largest unpacked item into that
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uncovered bin whose current level is as small as possible among all bins with a current
level ranging between C − w̃ and rC − w̃. If no such bin exists, then the item is packed
into the bin with the overall minimum level.

Finally, the third procedure LFD differs from the other two in that it always puts
the largest unpacked item into the bin with the minimum level until all m bins are cov-
ered. Assuming the items to be sorted in non-increasing order of their weights, the time
complexity of each of the three procedures is O(n logm).

7.4.2 A subset sum-based improvement heuristic

In order to improve solutions generated by our construction heuristics, we propose an
improvement heuristic (dubbed SSH) that iteratively solves subset sum problems (cf. also
Haouari and Jemmali, 2008a). Given a feasible solution, we, first, remove the overall
smallest packed item. Note that the corresponding bin will be no longer covered. After-
ward, we sort (and renumber) the bins so that C1 ≥ . . . ≥ Cm (Ci denotes the level of bin
i which is simply the sum of the items’ weights contained in i) and we try to transform the
currently infeasible solution into a feasible one that requires exactly one item less than the
previous solution by re-assigning the packed items. For this purpose, we iteratively solve
specific subset sum problems as follows. Starting with i = 1, we consider the bins i and m
(for i = 1, . . . , k where k = max {i : Ci > C}) and solve a subset sum problem according
to (7.29)–(7.31) on the respective set of items J(i,m) := Ji ∪ Jm where Ji′ denotes the set
of items contained in bin i′.

Minimize zi =
∑

j∈J(i,m)

wjxj (7.29)

subject to
∑

j∈J(i,m)

wjxj ≥ C (7.30)

xj ∈ {0, 1} j ∈ J(i,m) (7.31)

If zi = Ci, i.e. considering only the two bins i and m it is impossible to increase the
load of m without lowering the load of i below C, we increment i by one (unless i = k)
and proceed with solving the respective subset sum problem for the next pair of bins.
Otherwise, we set Ji =

{
j ∈ J(i,m) : xj = 1

}
, Jm =

{
j ∈ J(i,m) : xj = 0

}
, we resort the

bins again according to non-increasing levels, redetermine k, and proceed with the pair of
bins (1,m). In the special case Cm ≥ C, which means that an improved feasible solution
(and thus an improved upper bound) has been found that requires exactly one item less
than before, we additionally remove the smallest of the remaining packed items before the
bins are resorted in order to check if further improvements are realizable.

Algorithm SSH either terminates if zk = Ck (after checking the pair of bins (k,m)) or
a maximal number it of subset sum problems has been solved. Basically, good choices for
the value of the parameter it depend on both, the number of bins m and the absolute gap
between the best objective value generated by our construction heuristics and the best
known lower bound. However, in our computational study (see Section 7.5), we simply
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used it = 50 (in case of m ≤ 30) and it = 100 (in case of m = 50) which turned out
to be sufficiently large to yield strong upper bounds for almost all of the generated test
problems. Moreover, we implemented a straightforward dynamic programming procedure
to solve the respective subset sum problems.

We shall also remark that in case m = 2 our SSH-procedure turns into an exact
algorithm when no limit on the maximal number it of iterations (or subset sum problems
to be solved) is imposed. The proof is straightforward and therefore omitted.

7.4.3 Exact procedure

Next, we propose a tailored branch-and-bound algorithm for MCBCP whose branching
strategy builds upon the one presented by Labbé et al. (1995) for the BCP. Our algorithm
works as follows. At the root node, the given MCBCP-instance is preprocessed and the
reduction criteria are applied (cf. Section 7.2). If the number of bins reduces to zero or
one, then an optimal solution is already found or can readily be obtained by adding the
largest unpacked items until the one remaining bin is finally covered. In all other cases
where the number of bins is at least two in the reduced instance, we proceed with the
application of FFDr, BFDr as well as LFD in order to obtain an upper bound U . Then,
we calculate the trivial lower bounds L0, L

′
0, L1 (and possibly L′

1) followed by application
of SSH to improve on U . We take the best among the three constructed solutions as the
initial one for SSH. Finally, we successively determine the remaining lower bounds L2, L3,
LBCP , and LCG. To solve the RMPs and SPs within the column generation based lower
bound procedure (see Sect. 7.3.3) we used Gurobi 6.0.3. Our algorithm immediately stops
as soon as one of our lower bounds is equal to U , i.e. an optimal solution has already been
identified at the root node. Otherwise, the branching process is initiated.

In quest of an optimal solution, we perform a depth-first search where at each level of
the branching-tree the largest unpacked item is sequentially packed into at most m bins.
More precisely, at level k, the current node generates at most m son-nodes by sequentially
packing item k to each of the non-empty uncovered bins and – if still existent – to the
lowest indexed empty bin. The order in which item k is packed into the bins depends on
the ratio wk/C. If wk/C ≥ θ, then the possible bins are selected in order of increasing
levels. Otherwise, the possible bins are selected in order of decreasing levels.

To obtain a local lower bound, at each node in the tree we compute L2 and L3 for
a modified instance. The set of items in the modified instance consists of all currently
unpacked items and for each non-empty uncovered bin a fictive item is added whose weight
is equal to the sum of the item weights in the respective bin. The number of bins in the
modified instance is m− m̄ where m̄ denotes the number of bins that are already covered
in the partial solution that corresponds to the current node. Clearly, if L′ is the value of a
lower bound for the modified instance, then L′ + k−m′ is a feasible local lower bound for
the original instance where the largest k items have already been assigned and the current
number of non-empty uncovered bins is m′. In case that L′ + k − m′ ≥ U , the current
partial solution is fathomed.

To further reduce the enumeration effort and to avoid symmetric reflections, we im-
plemented the following straightforward dominance criteria:

• If at least two uncovered bins have the same current level, then only one of them is
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considered for the assignment of the current item.

• Let C̃i denote the current level of bin i and Ĩ =
{
i : C − wk ≤ C̃i < C

}
. If |Ĩ| > 1,

then the current item k is assigned only to the bin i ∈ Ĩ with lowest level.

• If wk = wk−1 and item k − 1 has been assigned to bin i′, then, depending on the
ratio wk/C, item k is either assigned only to those bins i where C̃i ≥ C̃i′ − wk−1

(case wk/C ≥ θ) or C̃i ≤ C̃i′ − wk−1 (case wk/C < θ).

• Let z be the best known objective function value. If after the assignment of the
largest z−m+ i (i = 0, . . . ,m− 1) items less than i+1 bins are covered, the partial
solution can be fathomed.

We conducted some preliminary tests in order to experimentally determine the best
values for the parameters

• r out of the set {1.50, 1.20, 1.15, 1.10, 1.05, 1.03, 1.01, 1.005, 1.001} and

• θ out of the set {0, 0.05, 0.1, 0.15, 0.2, . . . , 0.6}.

Based on the outcome of the tests we decided on r = 1.005 for FFD, r = 1.01 for BFD,
and θ = 0.4.

7.5 Computational study

This section elaborates on our computational tests where we examine the overall per-
formance of our branch-and-bound algorithm (cf. Section 7.4.3) including the reduction
criteria from Section 7.2, the lower bound arguments derived in Section 7.3, and the
heuristics developed in Section 7.4.1 and 7.4.2.

7.5.1 Instance generation

As there is no established test bed available for MCBCP, we randomly generated test
instances that comprise a wide range of settings, i.e. small-, medium-, and large-sized
instances as well as various item weights drawn from different probability distributions.
The test cases are classified according to three parameters: (i) number of bins m, (ii) bin
capacity C, and (iii) probability distribution d from which the item weights are indepen-
dently drawn. We investigated the following 7× 8× 6 = 336 different combinations of the
three parameters:

(i) m ∈ {2, 5, 10, 15, 20, 30, 50}

(ii) C ∈ {100, 120, 150, 200, 300, 500, 750, 1000}

(iii) d:

• discrete uniform distribution in (1) [1, 99] and (2) [20, 99]

• cut-off normal distribution with (3) µ = 25, σ = 10 and (4) µ = 50, σ = 25
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• Weibull distribution with (5) k = 1.5, λ = 50 and (6) k = 2.5 and λ = 75.

For each triple (m,C, d), 20 independent instances were randomly generated, i.e. we receive
a total number of 6720 instances for our computational study. With regards to d, the
parameters of the respective probability distributions have been chosen in such a way that
for most of the 336 (m,C, d)-triples the average item weight is not too small, i.e. not
smaller than about C/10. In a preliminary study we observed that, typically, instances
with a small average item weight – which implies that many items are necessary to cover
a bin – are quite easy to solve (even by means of simple heuristics).

To guarantee the existence of a feasible solution to each test instance, the item weights
have been generated in m + 1 iterations. Within each iteration we independently draw
random numbers wj (> 0) from the respective probability distribution until the condition∑

wj ≥ C is met. Note that m iterations would already be sufficient to ensure a feasible
solution but we decided to generate the item weights in m + 1 rounds just to make sure
that not almost all items will be needed to cover the m bins and to increase the solution
space.

We have implemented our algorithms in C++ using the Visual C++ 2010 compiler. All
tests have been carried out on a personal computer with an Intel Core i7-2600 processor,
8GB RAM, and Windows 7 Professional SP1 (64 bit). The maximal computation time
per instance was set to 300 seconds.

7.5.2 Results

In what follows, we provide detailed results on the computational performance of our
solution approach and we also compare them with those of a commercial solver. In order
to assess the overall effectiveness of our reduction criteria as well as our lower and upper
bound procedures, as a first performance criterion we recorded for each (m,C, d)-triple
the number of instances that have already been solved at the root node.

The respective results are contained in Table 7.1 where we also give the maximum
absolute gap between the best upper bound (denoted by U) and the best lower bound
(denoted by L) at the root node if greater than 0 (cf. numbers in brackets). The entries in
Table 7.1 clearly indicate that the effort spent at the root to preprocess a given instance
and to compute lower as well as upper bounds is very well justified as we have already
solved 6465 out of 6720 test instances, i.e. about 96.2%, at the root node. In other words,
only 255 instances remained unsolved at the root node and required branching. As can
be seen from Table 7.1, these 255 instances are spread over 74 of the 336 (m,C, d)-triples
among which (50, 100, 3) is the triple with the fewest number of instances solved at the
root node with only 7 closely followed by (30, 100, 3) and (30, 150, 5) with 8 each. In
contrast, the 262 triples for which all 5240 instances were solved at the root node include
among others all triples where m = 2 (recall that SSH optimally solves such instances
when it is sufficiently large) and all triples where C ∈ {500, 750, 1000}. It is not surprising
that all instances with large-sized bins, i.e. C ≥ 500, have already been solved at the
root node. According to the distributions of the item weights, these instances require on
average about 10 or even more items per bin and are, therefore, rather simple (cf. remark
within Section 7.5.1).
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d m C Total
100 120 150 200 300 500 750 1000

1 2 20 20 20 20 20 20 20 20 160
5 20 20 20 20 19 (1) 20 20 20 159 (1)

10 20 20 19 (1) 20 19 (1) 20 20 20 158 (1)
15 20 20 18 (2) 18 (1) 20 20 20 20 156 (2)
20 20 20 18 (1) 18 (1) 20 20 20 20 156 (1)
30 20 20 17 (2) 18 (5) 20 20 20 20 155 (5)
50 20 20 17 (2) 14 (2) 20 20 20 20 151 (2)

Total 140 140 129 (2) 128 (5) 138 (1) 140 140 140 1095 (5)
2 2 20 20 20 20 20 20 20 20 160

5 20 20 20 20 20 20 20 20 160
10 20 20 20 19 (1) 19 (1) 20 20 20 158 (1)
15 20 20 19 (1) 17 (1) 20 20 20 20 156 (1)
20 20 19 (1) 19 (1) 20 20 20 20 20 158 (1)
30 20 20 18 (1) 20 20 20 20 20 158 (1)
50 20 20 19 (1) 17 (3) 20 20 20 20 156 (3)

Total 140 139 (1) 135 (1) 133 (3) 139 (1) 140 140 140 1106 (3)
3 2 20 20 20 20 20 20 20 20 160

5 16 (1) 14 (1) 18 (1) 20 20 20 20 20 148 (1)
10 17 (1) 19 (1) 20 20 20 20 20 20 156 (1)
15 11 (3) 19 (1) 20 20 20 20 20 20 150 (3)
20 14 (3) 20 20 20 20 20 20 20 154 (3)
30 8 (6) 19 (1) 20 20 20 20 20 20 147 (6)
50 7 (8) 19 (1) 20 20 20 20 20 20 146 (8)

Total 93 (8) 130 (1) 138 (1) 140 140 140 140 140 1061 (8)
4 2 20 20 20 20 20 20 20 20 160

5 20 20 20 19 (1) 18 (1) 20 20 20 157 (1)
10 20 20 19 (1) 15 (3) 20 20 20 20 154 (3)
15 20 20 19 (1) 13 (1) 20 20 20 20 152 (1)
20 20 18 (1) 19 (1) 16 (2) 20 20 20 20 153 (2)
30 20 18 (1) 20 15 (4) 20 20 20 20 153 (4)
50 20 20 20 11 (4) 20 20 20 20 151 (4)

Total 140 136 (1) 137 (1) 109 (4) 138 (1) 140 140 140 1080 (4)
5 2 20 20 20 20 20 20 20 20 160

5 20 20 20 20 17 (1) 20 20 20 157 (1)
10 20 19 (1) 15 (4) 11 (1) 20 20 20 20 145 (4)
15 20 18 (2) 15 (1) 14 (1) 19 (1) 20 20 20 146 (2)
20 17 (1) 18 (3) 12 (2) 12 (1) 20 20 20 20 139 (3)
30 19 (1) 16 (3) 8 (3) 15 (4) 20 20 20 20 138 (4)
50 19 (1) 18 (5) 11 (4) 12 (3) 20 20 20 20 140 (5)

Total 135 (1) 129 (5) 101 (4) 104 (4) 136 (1) 140 140 140 1025 (5)
6 2 20 20 20 20 20 20 20 20 160

5 20 20 20 20 16 (1) 20 20 20 156 (1)
10 20 20 20 19 (1) 18 (1) 20 20 20 157 (1)
15 20 20 20 19 (1) 16 (1) 20 20 20 155 (1)
20 20 20 19 (1) 17 (1) 18 (1) 20 20 20 154 (1)
30 20 20 19 (1) 20 20 20 20 20 159 (1)
50 20 20 20 17 (3) 20 20 20 20 157 (3)

Total 140 140 138 (1) 132 (3) 128 (1) 140 140 140 1098 (3)

Table 7.1: Number of instances solved at the root node (in brackets: maximum absolute
gap between U and L if greater than 0)

As can also be seen from Table 7.1, the maximal absolute gap between U and L was
8 (see again triple (50, 100, 3)). However, Table 7.2 reveals that such a huge gap occurred
very rarely. More precisely, only for 19 out of the 6720 instances we observed a gap that
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was greater than 3. If the gap is greater than 0 at all, then, in most cases the gap is
just 1. Table 7.2 gives a concise summary of the frequency distribution of the absolute
gap between U and L at the root node. The overall ratio U/L averaged about 1.0012
(considering all 6720 instances) and about 1.0316 (considering only the 255 instances
where U > L), respectively.

U −L 0 1 2 3 4 5 6 7 8 ≥ 9
# 6465 181 26 29 8 5 1 2 3 0

Table 7.2: Frequency distribution of the gap between U and L at the root node

The overall performance of our branch-and-bound algorithm is assessed by the next per-
formance criteria: average total computation time in seconds (see Table 7.3) and average
number of generated branch-and-bound nodes (see Table 7.4). For each (m,C, d)-triple,
averages are taken over all instances that were optimally solved within the given runtime
of 300 seconds. Note that this introduces a bias in cases where not all 20 instances have
been solved. Therefore, if greater than zero, we also provide the number of instances that
remained unsolved (cf. numbers in brackets in Table 7.3). Complementing the other two
criteria (time and nodes), the number of unsolved instances (US) is a meaningful indicator
of the difficulty of finding an optimal solution.
Looking at the average computation times we see that, except for a few triples, optimal
solutions are usually identified within a few milliseconds. Clearly, the short computation
times are also a result of our fast and powerful bounding techniques (cf. also Table 7.1).
Average times of more than 10 seconds occur only for the six triples (30, 150, 5), (15, 200, 5),
(20, 150, 5), (20, 200, 1), (15, 200, 4), and (20, 150, 4). However, this does not automatically
mean that these triples are the most difficult ones. Consider, e.g., the triples (50, 100, 3)
and (30, 100, 3) where the average computation time is only 3 milliseconds each, but 13
and 12 instances remained unsolved, respectively.
Recalling that 255 out of 6720 instances required branching, our branch-and-bound al-
gorithm was able to solve 127 of them within the given runtime. Broken down by the
three parameters that characterize our instances, we recorded that small-sized instances
with up to 10 bins are easy to solve via branching. Here, all 55 instances that required
branching have been successfully solved by our branch-and-bound algorithm. When the
number of bins increases, it is not surprising that instances become more difficult: while
still 56 out of the 91 branched instances were optimally solved for m ∈ {15, 20}, only
16 out of the 109 branched instances for m ∈ {30, 50} were optimally solved. Regarding
the bin capacity C, the most difficult instances occurred when C = 100 and C = 200
where we found optimal solutions only for 15 out of the 52 and 37 out of the 94 branched
instances, respectively. With respect to the third parameter d, our algorithm was able to
solve 22 of the 39 “uniform” instances that remained unsolved at the root note, 39 of the
99 Gaussian-based instances, and 66 of the 117 Weibull-based instances.

Taking a brief look at the average number of generated branch-and-bound nodes (see
Table 7.4), it is not surprising that the results are interrelated with the ones presented in
the first two tables. While most of the solved instances required no branching, obvious
peaks in the average number of generated nodes can be recognized for the seven triples
(30, 150, 5), (20, 150, 5), (20, 150, 4), (30, 120, 5), (15, 200, 5), (15, 200, 4), and (20, 200, 1)
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d m C Avg. (US)
100 120 150 200 300 500 750 1000

1 2 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
5 0.002 0.002 0.005 0.001 0.021 0.002 0.002 0.002 0.005
10 0.002 0.003 0.016 0.002 0.041 0.002 0.002 0.002 0.009
15 0.002 0.002 0.684 0.660 0.002 0.002 0.002 0.003 0.170
20 0.002 0.002 0.543 11.941 (1) 0.003 0.002 0.003 0.003 1.497 (1)
30 0.002 0.001 6.754 (1) 0.003 (2) 0.002 0.003 0.003 0.003 0.819 (3)
50 0.001 0.001 0.359 (3) 0.002 (6) 0.003 0.004 0.004 0.004 0.043 (9)

Avg. (US) 0.001 0.002 1.172 (4) 1.834 (9) 0.011 0.002 0.003 0.003 0.364 (13)
2 2 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001

5 0.002 0.002 0.003 0.001 0.001 0.002 0.002 0.002 0.002
10 0.001 0.002 0.012 0.018 3.337 0.002 0.002 0.002 0.422
15 0.001 0.005 0.016 0.725 0.003 0.002 0.002 0.002 0.095
20 0.001 0.006 0.290 0.002 0.002 0.002 0.002 0.003 0.039
30 0.001 0.001 0.442 0.001 0.003 0.002 0.003 0.003 0.057
50 0.001 0.001 0.157 (1) 0.002 (3) 0.004 0.004 0.004 0.004 0.022 (4)

Avg. (US) 0.001 0.003 0.132 (1) 0.109 (3) 0.479 0.002 0.002 0.003 0.091 (4)
3 2 0.002 0.002 0.001 0.002 0.002 0.002 0.003 0.003 0.002

5 0.016 0.026 0.021 0.002 0.002 0.003 0.003 0.003 0.010
10 0.417 0.008 0.002 0.002 0.003 0.004 0.003 0.033 0.055
15 1.383 (6) 3.711 0.002 0.002 0.003 0.003 0.003 0.004 0.610 (6)
20 0.002 (6) 0.000 0.002 0.003 0.004 0.003 0.005 0.004 0.003 (6)
30 0.003 (12) 0.002 (1) 0.002 0.002 0.003 0.003 0.004 0.004 0.003 (13)
50 0.003 (13) 0.002 (1) 0.003 0.002 0.003 0.004 0.005 0.006 0.003 (14)

Avg. (US) 0.273 (37) 0.544 (2) 0.005 0.002 0.003 0.003 0.004 0.004 0.098 (39)
4 2 0.001 0.000 0.001 0.002 0.001 0.002 0.002 0.003 0.001

5 0.001 0.000 0.002 0.007 0.056 0.002 0.002 0.003 0.009
10 0.001 0.002 0.033 2.334 0.003 0.003 0.003 0.003 0.298
15 0.001 0.004 0.016 11.020 (4) 0.004 0.003 0.003 0.003 1.135 (4)
20 0.001 0.020 10.862 4.956 (3) 0.003 0.004 0.004 0.003 1.925 (3)
30 0.001 0.017 0.016 0.003 (5) 0.002 0.002 0.003 0.004 0.006 (5)
50 0.002 0.012 0.059 0.003 (9) 0.004 0.003 0.004 0.005 0.012 (9)

Avg. (US) 0.001 0.008 1.570 2.584 (21) 0.011 0.003 0.003 0.003 0.483 (21)
5 2 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001

5 0.002 0.002 0.006 0.018 0.080 0.002 0.002 0.002 0.014
10 0.005 0.015 0.079 2.142 0.002 0.002 0.002 0.002 0.281
15 0.003 0.015 1.464 13.845 (1) 0.002 (1) 0.002 0.002 0.002 1.853 (2)
20 0.057 0.043 13.616 (2) 5.801 (6) 0.000 0.002 0.002 0.002 2.161 (8)
30 0.010 3.495 34.927 (10) 0.249 (5) 0.003 0.003 0.004 0.003 2.920 (15)
50 0.024 0.037 (1) 0.034 (9) 0.003 (8) 0.003 0.004 0.004 0.004 0.013 (18)

Avg. (US) 0.015 0.519 (1) 5.258 (21) 3.261 (20) 0.013 (1) 0.002 0.002 0.002 1.016 (43)
6 2 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001

5 0.002 0.002 0.003 0.003 0.013 0.002 0.002 0.002 0.003
10 0.001 0.001 0.004 0.007 0.061 0.002 0.002 0.002 0.010
15 0.002 0.002 0.003 0.044 0.381 (2) 0.002 0.002 0.002 0.050 (2)
20 0.002 0.002 0.004 6.437 (1) 0.002 (2) 0.002 0.002 0.002 0.781 (3)
30 0.002 0.001 0.017 0.349 0.002 0.002 0.003 0.003 0.048
50 0.001 0.001 0.017 0.146 (3) 0.003 0.004 0.004 0.004 0.020 (3)

Avg. (US) 0.001 0.001 0.007 0.977 (4) 0.063 (4) 0.002 0.002 0.002 0.129 (8)

Table 7.3: Average computation time in seconds (in brackets: number of unsolved instances
if greater than 0)

where the averages are each about 106 or even greater. Once again, we want to emphasize
that there are some other triples as well for which quite difficult instances exist (cf., e.g.,
the triples (50, 100, 3) and (30, 100, 3) where 7 and 8 instances were solved at the root node
and the other 13 and 12 instances remained unsolved after the time limit, respectively).

To summarize the computational results reported in Tables 7.1–7.4, one of our major
findings is that instances where the average number of items per bin ranges between 3
and about 5 are much more difficult to solve than instances where on average 10 or even
more items are necessary to cover a bin. This observation is well in line with what is
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known for related problems such as the classical one-dimensional bin packing problem, its
dual version or even parallel machine scheduling problems where instances with about 3
items/jobs per bin/machine are considered to be particularly difficult (cf., e.g., Fleszar
and Charalambous, 2011, Labbé et al., 1995, Haouari and Jemmali, 2008a).

To complement the data in Table 7.1 and to provide a clearer picture of the effect and
usefulness of the developed reduction criteria, lower and upper bound procedures (“initial
bounds”, USSH , L2/L3, LBCP , LCG) as well as the implemented item-oriented depth-first
branching scheme, for each of these components we also count the number of instances
that were solved after their computation/execution. Table 7.5 contains the overall results
(cf. row labeled as Total) and three blocks where the total results are broken down by the
distribution of the item weights d, the number of bins m, and the bin capacity C. Before
we discuss the main results it is important to note that the entries in Table 7.5 strongly
depend on the order in which the individual components are applied (see beginning of
Section 7.4.3 for the implemented order to which the order of the columns in Table 7.5
correspond from left to right).

As can be seen from Table 7.5, 185 instances have already been solved by application
of our reduction criteria (cf. Section 7.2). Unsurprisingly, all but one of them belong
to triples where m = 2. The results also indicate that the reduction criteria are more
powerful for small-sized bins (C ≤ 150) and when the average number of items per bin
is about 2–3. Apart from the pure number of instances that have already been solved by
application of the reduction criteria, we observed that the criteria helped to reduce the
solution space for a total number of 2080 instances.
Continuing with the influence of the initial bounds – by which we subsume the application
of the three construction heuristics FFDr, BFDr, and LFD and the computation of the
trivial lower bounds L0, L′

0, L1, and L′
1 – we see that 2219 instances were solved after

their computation. Many of them belong to triples where m ∈ {2, 5} or C ≤ 200 so that
the initial bounds appear to be sufficiently strong to solve rather small-sized instances.
The application of our improvement heuristic SSH turned out to be very successful. With
its help we were not only able to improve the upper bound value for 4155 out of the
remaining 4316 instances, but also to verify – in conjunction with the trivial lower bounds
– optimal solutions for 3385 of them. It is interesting to see that among the 3385 instances
there are all 2092 instances with C ≥ 500 that remained unsolved thus far. Thus, not only
SSH works well on instances with large-sized bins but also our initial lower bounds.
After application of SSH only 931 instances remained unsolved. By means of our more
elaborate lower bound procedures we were able to solve 676 of them. More precisely, 390
instances have been solved after computing the lower bounds L2 and L3, 41 instances
via the bin covering based lower bound, and 245 via the computationally more expensive
column generation lower bound. This justifies their application at the root node in addition
to the trivial lower bounds. In particular, we believe the column generation bound to be
very strong because we also observed that LCG equals z∗ for every solved instance that
required branching, i.e. all these instances have the integer round-up property (IRUP). We
refer to Baum and Trotter (1981) who introduced this notation and to Scheithauer and
Terno (1995) who defined the modified integer round-up property (MIRUP). Nevertheless,
due to the computational complexity of the column generation bound, it would not be
reasonable to refrain from applying the simpler and faster combinatorial lower bounds in
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d m C Avg.
100 120 150 200 300 500 750 1000

1 2 1 1 1 1 1 1 1 1 1
5 1 1 1 1 4 1 1 1 1
10 1 1 25 1 2631 1 1 1 333
15 1 1 125854 38611 1 1 1 1 20559
20 1 1 63889 983713 1 1 1 1 125588
30 1 1 814871 1 1 1 1 1 98616
50 1 1 1 1 1 1 1 1 1

Avg. 1 1 141750 148571 377 1 1 1 35045
2 2 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1
10 1 1 1 297 344816 1 1 1 43140
15 1 1 253 61099 1 1 1 1 7670
20 1 126 22942 1 1 1 1 1 2884
30 1 1 38017 1 1 1 1 1 4753
50 1 1 1 1 1 1 1 1 1

Avg. 1 19 8808 8964 49260 1 1 1 8380
3 2 1 1 1 1 1 1 1 1 1

5 24 108 1889 1 1 1 1 1 253
10 87362 1087 1 1 1 1 1 1 11057
15 102107 419247 1 1 1 1 1 1 63731
20 1 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1
50 1 1 1 1 1 1 1 1 1

Avg. 30847 60934 271 1 1 1 1 1 10754
4 2 1 1 1 1 1 1 1 1 1

5 1 1 1 2 138 1 1 1 18
10 1 1 3915 533242 1 1 1 1 67145
15 1 1 135 1108408 1 1 1 1 113701
20 1 9475 1507045 319076 1 1 1 1 227737
30 1 1727 1 1 1 1 1 1 224
50 1 1 1 1 1 1 1 1 1

Avg. 1 1601 215871 284233 21 1 1 1 58483
5 2 1 1 1 1 1 1 1 1 1

5 1 1 1 1 10933 1 1 1 1368
10 1 3 3096 242612 1 1 1 1 30714
15 1 572 129130 1180434 1 1 1 1 158370
20 8788 3589 2312674 617179 1 1 1 1 332344
30 5 1307884 7807694 1 1 1 1 1 718861
50 1194 1623 1 1 1 1 1 1 386

Avg. 1427 189006 1028148 299342 1574 1 1 1 171738
6 2 1 1 1 1 1 1 1 1 1

5 1 1 1 1 5 1 1 1 1
10 1 1 1 37 2228 1 1 1 284
15 1 1 1 1720 19686 1 1 1 2461
20 1 1 37 498940 1 1 1 1 60387
30 1 1 301 1 1 1 1 1 39
50 1 1 1 1 1 1 1 1 1

Avg. 1 1 49 69964 2934 1 1 1 8922

Table 7.4: Average number of generated branch-and-bound nodes
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Reduction Initial USSH L2/L3 LBCP LCG B&B B&B
Criteria Bounds solved unsolved

Total 185 2219 3385 390 41 245 127 128
(2.8%) (33.0%) (50.4%) (5.8%) (0.6%) (3.6%) (1.9%) (1.9%)

d 1 28 474 493 28 16 56 12 13
2 44 496 475 31 11 49 10 4
3 0 191 858 7 2 3 20 39
4 30 368 538 105 5 34 19 21
5 25 256 550 118 5 71 52 43
6 58 434 471 101 2 32 14 8

m 2 184 622 129 19 5 1 0 0
5 1 418 437 49 14 18 23 0

10 0 285 537 61 3 42 32 0
15 0 248 551 64 2 50 31 14
20 0 224 574 64 6 46 25 21
30 0 215 578 70 9 38 14 36
50 0 207 579 63 2 50 2 57

C 100 81 605 61 29 1 11 15 37
120 70 527 102 74 2 39 23 3
150 30 212 150 206 22 158 36 26
200 4 307 304 80 15 36 37 57
300 0 140 676 1 1 1 16 5
500 0 130 710 0 0 0 0 0
750 0 147 693 0 0 0 0 0
1000 0 151 689 0 0 0 0 0

Table 7.5: Number of instances solved at the root node (by reduction criteria or
lower/upper bound procedures) or by branch-and-bound and number of unsolved instances

advance.
Lastly, we examined the performance of a commercial solver when applied to the

MCBCP as formulated by (7.1)–(7.4). We decided for Gurobi to serve as the benchmark
for our algorithm since Gurobi is the state-of-the-art solver in mathematical programming.
In this last part of our computational study, we compare the performance of Gurobi and
our algorithm (labeled as B&B) with respect to the two criteria number of solved instances
and average computation time. The corresponding results are presented in a compact way
in Table 7.6 that consists of three horizontal blocks – one for each of our three parameters
d, m, and C. We remark that, for each of the two solution approaches, we averaged the
computation time only over those instances that have been solved before reaching the
time limit of 300 seconds. Moreover, Gurobi was allowed to use all four cores in parallel
whereas our algorithm ran as a single thread. The results in Table 7.6 clearly indicate that
our algorithm is superior to the commercial solver Gurobi for all investigated parameter
settings. Considering the number of unsolved instances, Gurobi was not able to solve a
total number of 1494 instances within the given time limit whereas only 128 instances
remained unsolved after application of our exact branch-and-bound algorithm. Again, the
number of bins m has a significant influence on the performance of the solver. Both, the
average computation time as well as the number of unsolved instances strictly increases
when m increases. In particular, instances with more than 10 bins already appear to be
very hard to solve for Gurobi. Regarding the bin capacity C, we observe obvious peaks
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in the number of unsolved instances when C ∈ {200, 300, 500} while the distribution d
of the item weights seems to have only a mild influence on Gurobi’s performance. All in
all, Gurobi often required more than 10 seconds on average to solve an instance while our
branch-and-bound algorithm never required more than about 1.4 seconds on average.

d 1 2 3 4 5 6
Gurobi Time 12.999 9.222 14.984 15.768 19.103 8.981

US 270 197 243 261 279 244
B&B Time 0.364 0.091 0.098 0.483 1.016 0.129

US 13 4 39 21 43 8
m 2 5 10 15 20 30 50

Gurobi Time 0.003 0.395 12.940 14.584 16.711 27.465 47.006
US 0 0 68 213 307 386 520

B&B Time 0.002 0.007 0.179 0.649 1.063 0.617 0.019
US 0 0 0 14 21 36 57
C 100 120 150 200 300 500 750 1000

Gurobi Time 3.816 6.628 13.988 15.502 18.410 15.011 19.992 18.273
US 60 80 164 224 382 283 161 140

B&B Time 0.039 0.178 1.259 1.388 0.097 0.003 0.003 0.003
US 37 3 26 57 5 0 0 0

Table 7.6: Comparison between Gurobi and our B&B-algorithm

7.6 Conclusions

The Chapter introduced the minimum cardinality bin covering problem (MCBCP) which
is a variant of the bin covering problem (BCP) and can be seen as the dual of the maxi-
mum cardinality bin packing problem. We introduced several combinatorial lower bounds,
analyzed their worst-case performance, and derived enhanced bounding techniques. Fur-
thermore, we proposed three construction heuristics, a powerful subset sum-based im-
provement heuristic as well as an exact branch-and-bound procedure. The computational
performance of our approach on a large set of 6720 randomly generated instances is con-
vincing. On the one hand, due to our powerful bounding techniques, we are able to solve
the vast majority of instances already at the root node. On the other hand, if branching is
required, then our exact algorithm often identifies an optimal solution within a reasonable
amount of time when the number of bins is not too large.

With regards to future research on MCBCP we identify the following interesting topics.
In order to quickly find high-quality or even optimal solutions for instances with many
small-sized bins and, on average, rather large items in relation to the bin capacity, fast and
efficient meta heuristics are required and the implementation of a bin-oriented branching
scheme might be beneficial as well. Furthermore, at least from a theoretical point of view,
the development of combinatorial lower bounds with a provable worst-case performance
greater than 0 and the analysis of the worst-case performance of the construction heuristics
presented in Section 7.4.1 seem to be challenging tasks. Concerning the pattern-based
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formulation of the MCBCP and the column generation lower bound we see three particular
research directions: a continuing study on the IRUP/MIRUP conjecture, the development
of an enhanced and accelerated column generation procedure, e.g. based on dual cuts
(cf. Valério de Carvalho, 2005), and the transformation of a fractional RMP-solution into
a feasible integer solution, e.g. via rounding and repair heuristics. Eventually, similar as
Friesen and Langston (1987) did for the bin packing problem, studying other variants of
the BCP with respect to the optimal number of items packed seems to be also interesting
and might lead to further insights.
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Chapter 8

Conclusion of the thesis

In the present doctoral thesis an overview on short-term planning tasks for workload distri-
bution, that are related to machine scheduling, multiprocessor scheduling and bin-realted
problems was given. To be more precise, we analyzed several variants of the identical
parallel machine scheduling problem as well as a specific bin covering problem from a
rather technical point of view. We described the importance of researches on these top-
ics by identifying research gaps and by showing the practical relevance of such problem
variants, which received only little attention, yet. We introduced the minimum cardi-
nality bin covering problem which is a "dual" of P ||Cmin and demonstrated that it has
significant practical relevance as it can be transformed into the liquid loading problem
(cf. Christofides et al., 1979). The considered problems cover a large share of short-time
planning tasks as they can be used to measure the efficiency as well as the balance of a
system.

In order to give a basic overview, first a detailed problem description as well as a com-
prehensive review on the existing literature is given for each of the considered optimization
problems. Based on this, we are able to describe the necessity for further researches with
regards to issues such as structural patterns, bounding and solution approaches.

The main contribution of the thesis is the so called "path-concept", which enables us
to characterize potentially (uniquely) optimal schedules, e.g. for P ||Cmax and P ||Cmin (cf.
Chapter 3 and 4) but also for other similarly structured discrete optimization problems.
Based on a concept similar to inverse optimization, we identified a subset of all possible
mn schedules with certain properties, so that they have the potential to become (uniquely)
optimal independently from the actual processing times of the jobs. Based on this knowl-
edge, a shrunken solution space and therefore a reduced complexity can be achieved. As
the modern hardware technologies are really beneficial for the implementation of complex
structured ideas and for the handling of an increasing amount of information, we decided
to transform the concept into several dominance criteria for depth-first branch-and-bound
algorithms and intensively analyzed their performance within Chapters 3 and 4. The
approach turned out to perform very well, especially when the ratio of n to m is rather
small.

For future research on structural patterns we see a lot of potential, as the "path-
concept" might also have an impact on many other similarly structured problems and has
still some potential for extensions by incorporating more problem specific data. Although
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the concept in its basic form is designed for depth-first enumeration trees, where jobs are
assigned in non-increasing order with respect to their processing times, it is also applicable
to other search strategies.

With respect to the analysis of structural patterns, also several preprocessing and lift-
ing methods were proposed (cf. Chapter 6) which are capable of reducing the solution
space, e.g. by removing jobs as well as machines without changing the optimal solution. It
might be a fruitful approach to combine some of these methods as well as to apply them
to the "dual" problem P ||Cmin.

Besides the analysis of solution patterns and the implementation of state-of-the-art
branch-and-bound procedures, the definition of novel strategies for the determination of
bounds as well as heuristics (cf. Chapter 4, 6 and 7) is another core element of the thesis.
The proposed bounding strategies are based on different methodological approaches like
column generation, the duality to other problems or theoretical characteristics of the re-
spective problems. For the design of constructive as well as improvement heuristics we also
decided for a diversified proceeding, by adapting existing and by defining new methods,
e.g. based on dynamic programming. The impact of both, lower and upper bounds, is
shown by the results of the respective computational studies.

To allow for a comprehensive analysis of practically relevant instances, we also defined
benchmark data-sets for ki-partitioning and MCBCP which might be a prerequisite for
further researches on these topics. Finally, the thesis gave an overview on the coherence
between machine scheduling problems and bin-covering as well as bin-packing (cf. Chapter
2 – 7). As it turned out, a sophisticated exploitation of "dualities" leads to tight lower
and upper bounds.

In general we can conclude, that despite its simple problem inherent structure, the
analysis of the identical parallel machine scheduling problem is still well justified. Although
the scope of research projects changed within the last decades towards the definition of
meta-heuristics (cf. Chapter 2), we think that the knowledge on structural patterns is still
very limited and a profound analysis of solution properties might therefore be an essential
prerequisite for the determination of novel, strong solution approaches.
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Appendix A

Appendix for Effective solution space
limitation for the identical parallel
machine scheduling problem

A.1 Proof of Lemma 3.2.6

At first, recall that with the two-machine path-modification of P (i1,i3)
S upward moves can

only be shifted backwards. In regard of P (i1,i2)
S , swapping the jobs k on i1 and l on i3

implies that:

P
(i1,i2)

S̄
(j) =




P
(i1,i2)
S (j), if j = 1, . . . , k − 1,

P
(i1,i2)
S (j)− 1, if j = k, . . . , l − 1,

P
(i1,i2)
S (j), if j = l, . . . , n.

As this interrelation holds for each single swap during the (i1, i3)-path-modification, it
follows immediately that the fulfillment of the path-condition of (i1, i2) cannot be violated.
Indeed, the corresponding (i1, i2)-path of the resulting schedule may now take negative
values even earlier. �

A.2 Proof of Lemma 3.2.7

Assume that the number of jobs assigned to the machines i1, i2 and i3 are r, s and q,
respectively. Furthermore, let ar, bs and cq denote the corresponding indices of the last
job assigned to each of the three machines. Additionally, by bk we denote the job with the
k-th smallest index on machine i2 in S. Then, we distinguish two cases for q.

1. q = 1.
Due to the assumptions on the three considered paths, in this case we have that
r = 1 and s > 1. According to Sect. 3.2.2.1 this implies that we need one shift and
at most one swap during the path-modification of (i2, i3). Clearly, as the number of
jobs assigned to machine i2 is still at least one and the number of jobs assigned to i3
is two after the modification of the (i2, i3)-path, both the resulting (i1, i2)-path and
the (i1, i3)-path fulfill their path-condition.
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2. q > 1.
Clearly, this implies s ≥ q since P

(i2,i3)
S (j) ≥ 0 for all j = 1, . . . , n. Let j1 denote

the first position where P
(i1,i2)
S takes a negative value. Analogously, define j2 as the

first position where P
(i1,i3)
S takes a negative value. It is readily verified that j1 ≤ bq.

Furthermore, we can conclude j1 < j2 since P
(i1,i2)
S (j) ≤ P

(i1,i3)
S (j) for all positions

j = 1, . . . , n. Recall from Sect. 3.2.2.1 that the path-modification of P
(i2,i3)
S will

result in a schedule S̄ where the q − 1 longest jobs on machine i2, i.e., b1, . . . , bq−1,
are the same as in schedule S. Moreover, note that job cq is then assigned to machine
i2. Then, two subcases depending on the relation between j1 and bq can occur.

(a) j1 ≤ bq−1.
This case is trivial because b1, . . . , bq−1 remain the q − 1 longest jobs on i2.
Thus, we have that P

(i1,i2)

S̄
(j) = P

(i1,i2)
S (j) for j ≤ bq−1 and, in particular,

P
(i1,i2)

S̄
(j1) = −1.

(b) j1 = bq.
First, note that this subcase implies j2 = cq and we can further conclude that
exactly q−1 jobs on machine i1 in S have an index no greater than cq−1. As the
path-modification of P (i2,i3)

S swaps at least the jobs bq and cq while not affecting
the assignment of the jobs b1, . . . , bq−1, the indices of at least q jobs on machine i2
in S̄ are not greater than cq. Thus, we have that P

(i1,i2)

S̄
(cq) ≤ P

(i1,i3)
S (cq) = −1.

Finally, for both subcases it is readily verified that P
(i1,i3)

S̄
(j) ≤ P

(i1,i3)
S (j) for all

j = 1, . . . , n as (i) jobs on machine i1 were not affected and (ii) some downward
moves occur earlier than before. �

A.3 Compatibility issues of dominance criteria

Criterion A.3.1
If job k + 1 is the next one to be assigned and there are l machines with equal current
completion time Ck

i1
= . . . = Ck

il
, then, only the machine with smallest index has to be

considered for the assignment of k + 1.

As long as the machines are empty, i.e., Ck
i1
= . . . = Ck

il
= 0, the criterion is in line with

the non-permuted schedule representation (cf. Sect. 3.2.1) and can be applied without any
modification. However, in case that Ck

i1
= . . . = Ck

il
> 0 an adaptation is required. Assume

i1 < . . . < il and let L = (il, il−1, . . . , i1) be a sorted list of the respective machine-indices.
Then, we distinguish two sub-cases. In case that all path-conditions are already fulfilled,
it suffices to assign job k + 1 to the first machine in L. In the other case, we successively
and separately assign job k + 1 to each of the machines in L (starting from left to right)
as long as at least one node in the corresponding sub-tree is fathomed by the path-related
dominance criteria.
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Criterion A.3.2
If two consecutive jobs k + 1 and k + 2 have the same processing time, and job k + 1 is
assigned to Mi, only machines j fulfilling Ck

j ≥ Ck
i have to be considered for the assignment

of job k + 2.

This criterion is compatible in its original version with the path-related criteria as will
be shown in the following. Assume (i) the next h jobs k + 1, k + 2, . . . , k + h to have
equal processing times and (ii) hi ∈ {0, 1, . . . , h} of them will be assigned to machine i
(i = 1, . . . ,m). Note that hi only denotes the number of jobs but not which jobs are
exactly meant. Then, the idea is to show that for any fixed m-tuple (h1, . . . , hm) the
respective assignment of these h jobs to the m machines according to Crit. A.3.2 induces a
maximal number of machine-pairs that fulfill their path-condition compared to any feasible
(partial) schedule that can be obtained by assigning hi jobs out of k + 1, . . . , k + h to Mi

(i = 1, . . . ,m). In other words, if a pair P (i1,i2)
S does currently not fulfill its path-condition

by application of Crit. A.3.2 after the assignment of the first k+h jobs, the path-condition
would not be fulfilled by any other schedule with respect to (h1, . . . , hm).
So, let i1 and i2 (i1 < i2) be two arbitrary machines for which the respective path-condition
is currently not fulfilled for sure and where hi1 , hi2 > 0 (all other cases are trivial). Then,
we distinguish the following two main cases:

1. Ck
i1

= Ck
i2
: If the machines are still empty, Crit. A.3.1 is applied in its original

version. Otherwise, i1 does not receive a job as long as the path-condition is not
fulfilled.

2. Ck
i1
> Ck

i2
: We distinguish two sub-cases depending on hi2 :

(a) hi2 > P
(i1,i2)
S (k): According to Crit. A.3.2, machine i1 cannot receive one of

its hi1 jobs until the current completion time of i2 is at least as large as the
completion time of i1 or all hi2 jobs are assigned to i2. In either case, the
corresponding path-condition will be fulfilled for sure.

(b) hi2 ≤ P
(i1,i2)
S (k): Here, the fulfillment of the respective path-condition cannot

be achieved after the assignment of the first k + h jobs independently from
Crit. A.3.2.

Obviously, for any fixed m-tuple (h1, . . . , hm) it suffices to separately consider the pairs
(i1, i2) since any job-assignment to another machine i /∈ {i1, i2} results in horizontal moves
of the (i1, i2)-path and thus the previous argumentation remains valid.

Criterion A.3.3
If at level k+1 the number of remaining jobs n−k is less than m, only the n−k machines
with smallest current completion times Ck

i have to be considered for the assignment of job
k + 1.

This criterion requires just a slight modification. Instead of considering only the n− k
machines with smallest current completion times, we also consider all machines with equal
or longer running completion time that do currently not fulfill all their path-conditions for
sure.
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Criterion A.3.4
At level n − 2, only two possible assignments have to be considered in order to optimally
complete the partial schedule:

(i) At each level, the jobs n− 2, n− 1, and n are assigned to the machine with smallest
current completion time.

(ii) At level n − 2, job n − 2 is assigned to the machine with second smallest current
completion time, and the jobs n− 1 and n are assigned to the machine with smallest
completion time at level n− 2.

As it is certainly not meaningful to fathom an almost complete partial schedule, we
apply Crit. A.3.4 in its original version and neglect at this point the demand for solutions
that fulfill all path-conditions.
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Appendix B

Appendix for Improved approaches to
the exact solution of the machine
covering problem

Tables B.1 and B.2 contain detailed results for each of the 390 uniform and 390 non-uniform
benchmark instances, respectively. Each row corresponds to a triple (n,m, Interval) and
each column to one of the 10 instances per triple. For each instance we record the best
found objective function value (labeled as “Best”) as well as the best found upper bound
value (labeled as “UB”). Bold entries indicate optimal values.
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No.
n m Interval 0 1 2 3 4 5 6 7 8 9
10 5 [

1, 102
] Best 87 75 101 100 68 95 93 89 100 85

UB 92 76 101 100 68 95 93 90 100 85
[
1, 103

] Best 1149 898 844 1046 631 805 545 1066 1112 939
UB 1149 957 846 1046 631 805 545 1066 1112 939

[
1, 104

] Best 11493 10634 8813 6763 9454 8970 9943 10016 9968 10223
UB 11493 10634 8813 6823 9454 9806 9943 10016 10878 10948

50 5 [
1, 102

] Best 514 559 451 571 539 496 540 535 471 497
UB 514 559 451 571 539 496 540 535 471 497

[
1, 103

] Best 4950 5810 4624 4854 4409 5072 5148 5007 5485 5334
UB 4950 5810 4624 4854 4409 5072 5148 5007 5485 5334

[
1, 104

] Best 55927 53504 50056 45688 55528 51621 45106 41226 51986 42169
UB 55927 53504 50056 45688 55528 51621 45106 41226 51986 42169

10 [
1, 102

] Best 241 226 209 271 251 276 256 229 234 234
UB 241 226 209 271 251 276 256 229 234 234

[
1, 103

] Best 2546 2308 2497 2176 2612 2403 2417 2795 2283 2456
UB 2547 2309 2498 2176 2612 2404 2417 2795 2284 2456

[
1, 104

] Best 26660 26227 23667 27758 27202 25289 23383 25476 32262 26701
UB 26661 26233 23673 27764 27204 25295 23387 25478 32265 26706

25 [
1, 102

] Best 97 96 95 99 99 100 94 86 93 100
UB 102 97 99 99 99 110 94 86 94 107

[
1, 103

] Best 863 997 953 989 951 907 921 940 942 908
UB 899 1073 977 999 1107 929 938 1059 950 936

[
1, 104

] Best 10355 9013 7807 7390 9311 9802 8267 9856 8819 9079
UB 11004 9306 7884 7483 9572 10789 8537 10674 9361 9298

100 5 [
1, 102

] Best 921 951 972 1050 1008 1082 1044 976 1063 1004
UB 921 951 972 1050 1008 1082 1044 976 1063 1004

[
1, 103

] Best 10472 10858 10028 10236 9070 9234 10537 10133 10270 9001
UB 10472 10858 10028 10236 9070 9234 10537 10133 10270 9001

[
1, 104

] Best 105081 91044 91927 96921 91927 96925 98933 106194 110073 105081
UB 105081 91044 91927 96921 91927 96925 98933 106194 110073 105081

10 [
1, 102

] Best 545 441 507 492 517 529 515 514 493 460
UB 545 441 507 492 517 529 515 514 493 460

[
1, 103

] Best 5335 5416 5011 5005 5183 4722 4984 5034 5503 5016
UB 5335 5416 5011 5005 5183 4722 4984 5034 5503 5016

[
1, 104

] Best 46655 46158 52285 51413 52540 56580 45522 52421 48460 53151
UB 46655 46158 52285 51413 52540 56580 45522 52421 48460 53151

25 [
1, 102

] Best 194 194 198 199 190 218 193 213 204 202
UB 194 194 198 199 190 218 193 213 204 202

[
1, 103

] Best 2089 1934 1940 1950 1790 2125 2192 1877 1894 2195
UB 2091 1935 1941 1952 1792 2127 2193 1878 1895 2197

[
1, 104

] Best 21161 17181 21561 20830 20557 20682 20014 19260 20591 19111
UB 21168 17196 21571 20841 20567 20694 20020 19271 20597 19123

500 5 [
1, 102

] Best 5106 4970 5085 4887 4925 5220 5152 4840 4917 5004
UB 5106 4970 5085 4887 4925 5220 5152 4840 4917 5004

[
1, 103

] Best 49375 49881 49375 52902 51401 52852 49558 50613 47180 48867
UB 49375 49881 49375 52902 51401 52852 49558 50613 47180 48867

[
1, 104

] Best 504251 500430 513001 485975 501999 492923 508864 488853 494248 505127
UB 504251 500430 513001 485975 501999 492923 508864 488853 494248 505127

10 [
1, 102

] Best 2519 2450 2537 2392 2504 2541 2533 2512 2568 2543
UB 2519 2450 2537 2392 2504 2541 2533 2512 2568 2543

[
1, 103

] Best 24921 24640 24255 24218 25308 25086 24206 25992 25876 24875
UB 24921 24640 24255 24218 25308 25086 24206 25992 25876 24875

[
1, 104

] Best 265229 263643 256023 244038 249160 261390 239883 257333 241659 254780
UB 265229 263643 256023 244038 249160 261390 239883 257333 241659 254780

25 [
1, 102

] Best 1015 950 997 994 1012 974 990 999 952 987
UB 1015 950 997 994 1012 974 990 999 952 987

[
1, 103

] Best 9628 9924 10107 9988 10224 10474 10227 9729 10128 9683
UB 9628 9924 10107 9988 10224 10474 10227 9729 10128 9683

[
1, 104

] Best 99712 101630 96835 96084 96221 102001 102493 100419 99712 97049
UB 99712 101630 96835 96084 96221 102001 102493 100419 99712 97049

1000 5 [
1, 102

] Best 9989 10262 10072 10105 9903 9782 10048 9860 10064 9826
UB 9989 10262 10072 10105 9903 9782 10048 9860 10064 9826

[
1, 103

] Best 102391 98203 98085 101873 99749 100072 98725 99387 101817 99329
UB 102391 98203 98085 101873 99749 100072 98725 99387 101817 99329

[
1, 104

] Best 1001418 993453 1012868 1011507 988262 968878 996506 1006553 999716 1012238
UB 1001418 993453 1012868 1011507 988262 968878 996506 1006553 999716 1012238

10 [
1, 102

] Best 4836 5020 5109 4925 5118 4884 4954 5152 4854 4885
UB 4836 5020 5109 4925 5118 4884 4954 5152 4854 4885

[
1, 103

] Best 50317 48373 48582 50546 50555 49107 49300 50101 50232 49954
UB 50317 48373 48582 50546 50555 49107 49300 50101 50232 49954

[
1, 104

] Best 495462 482122 494773 502895 483590 488311 492996 511505 506910 512238
UB 495462 482122 494773 502895 483590 488311 492996 511505 506910 512238

25 [
1, 102

] Best 2024 1930 2026 2023 2007 1958 2032 1965 2024 2047
UB 2024 1930 2026 2023 2007 1958 2032 1965 2024 2047

[
1, 103

] Best 20305 20100 19821 20462 19360 20021 20556 20319 20122 19119
UB 20305 20100 19821 20462 19360 20021 20556 20319 20122 19119

[
1, 104

] Best 202497 198820 205820 202422 197545 203788 195468 201132 202464 200507
UB 202497 198820 205820 202422 197545 203788 195468 201132 202464 200507

Table B.1: Detailed results on all 390 uniform instances
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No.
n m Interval 0 1 2 3 4 5 6 7 8 9
10 5 [

1, 102
] Best 100 115 103 104 110 113 102 119 113 107

UB 100 115 103 104 110 113 102 119 113 107
[
1, 103

] Best 992 1135 1030 1035 1093 1121 1006 1187 1124 1066
UB 992 1135 1030 1035 1093 1121 1006 1187 1124 1066

[
1, 104

] Best 9913 11335 10290 10351 10921 11204 10055 11862 11230 10653
UB 9913 11335 10290 10351 10921 11204 10055 11862 11230 10653

50 5 [
1, 102

] Best 902 912 905 893 898 901 906 901 909 914
UB 935 931 931 927 925 932 935 931 941 931

[
1, 103

] Best 8984 9068 9004 8901 8942 8987 9032 8956 9051 9100
UB 9348 9307 9316 9277 9265 9328 9348 9312 9406 9321

[
1, 104

] Best 89811 90647 90001 88978 89389 89836 90290 89511 90473 90953
UB 93483 93084 93162 92781 92647 93283 93477 93118 94053 93214

10 [
1, 102

] Best 398 413 410 412 419 405 414 410 410 402
UB 466 465 468 468 465 463 469 465 464 465

[
1, 103

] Best 3969 4103 4084 4102 4181 4034 4120 4084 4082 4005
UB 4663 4660 4677 4678 4654 4638 4691 4654 4649 4660

[
1, 104

] Best 39661 41002 40811 40991 41800 40314 41176 40820 40796 40026
UB 46626 46602 46776 46777 46548 46382 46907 46547 46495 46604

25 [
1, 102

] Best 104 117 105 108 101 103 109 113 118 119
UB 104 117 105 108 101 103 109 113 118 119

[
1, 103

] Best 1039 1162 1044 1076 1006 1028 1085 1125 1176 1183
UB 1039 1162 1044 1076 1006 1028 1085 1125 1176 1183

[
1, 104

] Best 10378 11614 10432 10751 10054 10266 10843 11244 11750 11825
UB 10378 11614 10432 10751 10054 10266 10843 11244 11750 11825

100 5 [
1, 102

] Best 1873 1861 1863 1864 1873 1870 1862 1869 1867 1866
UB 1873 1861 1863 1864 1873 1870 1862 1869 1867 1866

[
1, 103

] Best 18718 18616 18641 18654 18727 18700 18625 18690 18667 18656
UB 18718 18616 18641 18654 18728 18700 18625 18690 18667 18656

[
1, 104

] Best 187165 186177 186406 186542 187273 187000 186260 186915 186668 186557
UB 187165 186177 186406 186542 187273 187000 186260 186915 186668 186557

10 [
1, 102

] Best 911 898 908 904 910 901 898 905 896 895
UB 934 933 936 930 934 933 939 936 930 933

[
1, 103

] Best 9081 8959 9039 9010 9078 8963 8955 9016 8937 8925
UB 9339 9338 9356 9304 9344 9329 9386 9360 9301 9333

[
1, 104

] Best 90767 89548 90354 90068 90754 89582 89513 90114 89331 89213
UB 93390 93386 93568 93040 93441 93293 93860 93596 93016 93328

25 [
1, 102

] Best 304 312 303 312 305 318 314 306 313 301
UB 373 312 370 374 371 370 314 306 313 370

[
1, 103

] Best 3030 3111 3022 3110 3042 3169 3136 3047 3127 3002
UB 3730 3734 3706 3739 3721 3703 3741 3734 3748 3711

[
1, 104

] Best 30288 31091 30209 31086 30410 31671 31345 30454 31260 29995
UB 37310 37338 37071 37398 37216 37043 37416 37343 37481 37116

500 5 [
1, 102

] Best 9406 9419 9398 9400 9380 9407 9380 9395 9371 9391
UB 9406 9419 9398 9400 9380 9407 9380 9395 9371 9391

[
1, 103

] Best 94044 94178 93985 94003 93820 94064 93822 93937 93761 93884
UB 94044 94178 93985 94003 93820 94064 93822 93937 93761 93884

[
1, 104

] Best 940444 941762 939851 940029 938230 940641 938208 939385 937623 938833
UB 940444 941762 939851 940029 938230 940641 938208 939385 937623 938833

10 [
1, 102

] Best 4702 4698 4685 4700 4695 4705 4703 4706 4694 4705
UB 4702 4698 4685 4700 4695 4705 4703 4706 4694 4705

[
1, 103

] Best 47012 46979 46863 46998 46953 47061 47022 47055 46943 47060
UB 47012 46979 46863 46998 46953 47061 47022 47055 46943 47060

[
1, 104

] Best 470117 469780 468636 469993 469537 470608 470225 470546 469430 470592
UB 470117 469780 468636 469993 469537 470608 470225 470546 469430 470592

25 [
1, 102

] Best 1877 1877 1875 1878 1881 1881 1880 1883 1883 1878
UB 1877 1877 1875 1878 1881 1881 1880 1883 1883 1878

[
1, 103

] Best 18775 18769 18755 18782 18810 18805 18804 18824 18830 18783
UB 18775 18769 18755 18782 18810 18805 18804 18824 18830 18783

[
1, 104

] Best 187751 187692 187560 187824 188102 188060 188047 188245 188291 187832
UB 187751 187692 187560 187824 188102 188060 188047 188245 188291 187832

1000 5 [
1, 102

] Best 18801 18804 18801 18821 18812 18824 18807 18818 18820 18805
UB 18801 18804 18801 18821 18812 18824 18807 18818 18820 18805

[
1, 103

] Best 188043 188038 188013 188211 188106 188206 188081 188167 188169 188061
UB 188043 188038 188013 188211 188106 188206 188081 188167 188169 188061

[
1, 104

] Best 1880395 1880345 1880141 1882117 1881050 1882024 1880834 1881686 1881697 1880627
UB 1880395 1880345 1880141 1882117 1881050 1882024 1880834 1881686 1881697 1880627

10 [
1, 102

] Best 9409 9421 9402 9396 9408 9404 9388 9408 9398 9406
UB 9409 9421 9402 9396 9408 9404 9388 9408 9398 9406

[
1, 103

] Best 94087 94190 94012 93957 94091 94041 93926 94081 93993 94061
UB 94087 94190 94012 93957 94091 94041 93926 94081 93993 94061

[
1, 104

] Best 940881 941899 940139 939562 940924 940407 939260 940806 939921 940600
UB 940881 941899 940139 939562 940924 940407 939260 940806 939921 940600

25 [
1, 102

] Best 3766 3758 3762 3766 3759 3766 3764 3759 3760 3762
UB 3766 3758 3762 3766 3759 3766 3764 3759 3760 3762

[
1, 103

] Best 37655 37585 37631 37660 37595 37658 37645 37598 37603 37622
UB 37655 37585 37631 37660 37595 37658 37645 37598 37603 37622

[
1, 104

] Best 376546 375852 376315 376605 375956 376584 376449 375988 376037 376224
UB 376546 375852 376315 376605 375956 376584 376449 375988 376037 376224

Table B.2: Detailed results on all 390 non-uniform instances

134



Appendix C

German summary

In modernen Industrieunternehmen stellt die Produktionsplanung ein Kernelement dar,
um die Performance eines Produktionssystems messbar machen zu können und mögliche
Optimierungspotentiale in Bezug auf Effizienzgewinne aufzuzeigen. Die Planungsebenen
lassen sich hierbei in Abhängigkeit ihrer zeitlichen Reichweite in strategische, taktische
und operative Komponenten aufteilen (siehe Domschke et al., 1997). Vor allem Entschei-
dungen mit einem langfristigen Horizont sind in der Regel sehr komplex, da diese von
einer dynamisch veränderlichen Umwelt und vielen weiteren stochastischen Einflüssen ab-
hängig sind und einen weitreichenden Einfluss auf nachgelagerte Planungsebenen haben.
Im Gegensatz dazu sind operative Aufgaben durch ihre häufig deterministische Datenbasis
sehr gut durch die Anwendung von Methoden des Operations Research handhabbar.

Die vorliegende Dissertation zum Thema "Identische Parallel-Maschinen-Probleme: Struk-
tureigenschaften, Schrankenberechnung and Lösungsmöglichkeiten" hat theoretische Anal-
ysen und Lösungsmethoden für einen Teilbereich der operativen Produktionsprozesspla-
nung zum Inhalt. Es werden Probleme zur Verteilung von Arbeitslasten auf einer Menge
von identischen Entitäten betrachtet. Probleme dieser Art treten typischerweise im Bere-
ich der Maschinenbelegung (engl. Scheduling) auf, wo Aufträge mit individueller Laufzeit
auf parallele, identische Maschinen zugeordnet werden. Vor allem im Kontext von Mass
Customization sind häufig Problemstellungen aufzufinden, wo vergleichsweise geringe Men-
gen von individualisierten Produkten im Zuge einer Massenproduktion hergestellt werden.
Die Vielzahl der möglichen Problemvarianten unterscheidet sich hinsichtlich der Definition
und Ausgestaltung von Aufträgen und Maschinen sowie in Bezug auf die konkrete Ziel-
stellung. So existieren sowohl Szenarien, in denen die Anzahl der verwendeten Maschinen
fixiert ist, als auch andere in denen diese Anzahl minimiert werden soll. Simultan dazu
kann das Ziel darin bestehen, die komplette Arbeitslast zu verteilen oder aufgrund von
zusätzlichen Restriktionen die Anzahl der eingeplanten Aufträge zu maximieren.

Der bekannteste Vertreter auf dem Gebiet der identischen, parallelen Maschinen ist das
Problem der Makespan-Minimierung P ||Cmax, wobei n Aufträge auf m Maschinen zu
verteilen sind. Die zugrunde liegende Zielstellung, den spätesten Fertigstellungszeitpunkt
Cmax = max {C1, . . . , Ci, . . . Cm} aller Maschinen zu minimieren, wobei Ci den Fertigstel-
lungszeitpunkt von Maschine i bezeichnet, korreliert dabei unmittelbar mit der Effizienz
eines Produktionssystems. Trotz seiner relativ einfachen Struktur, ist es eines der meist-
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beforschten kombinatorischen Optimierungsproblem der letzten 50 Jahre (siehe z.B. Mc-
Naughton, 1959, Blazewicz, 1987, Lawler et al., 1993, Dell’Amico und Martello, 1995,
Moktotoff, 2001, Walter und Lawrinenko, 2016). Das Gegenstück zu P ||Cmax, zu welchem
jedoch deutlich weniger wissenschaftliche Veröffentlichungen existieren (siehe z.B. Woeg-
inger, 1997, Haouari und Jemmali, 2008a, Walter et al., 2016), bildet das sogenannte
Machine-Covering Problem P ||Cmin bei welchem die Aufgabenstellung darin besteht, den
frühesten Fertigstellungszeitpunkt Cmin = min {C1, . . . , Ci, . . . Cm} aller Maschinen zu
maximieren. Probleme dieser Art treten beispielsweise im Zuge der fairen Aufteilung von
Investitionsprojekten auf verschiedene Regionen auf (siehe Haouari und Jemmali, 2008b).

Für die beiden genannten Problemstellungen geht lediglich der Fertigstellungszeitpunkt
einer einzigen Maschine in die Zielfunktion ein. Wenn jedoch zum Zwecke einer gleich-
mäßigen Abnutzung eine Ausbalancierung der Maschinen angestrebt wird, so ist die Betra-
chtung von alternativen Zielfunktionen sinnvoll. Ein einfaches Kriterium ist beispielsweise
durch die Minimierung zwischen Cmax und Cmin Maschine gegeben (siehe Karmarkar
und Karp, 1982, Coffman und Langston, 1984). Eine explizite Einbeziehung aller Fer-
tigstellungszeitpunkte ist durch die Methode der kleinsten Quadrate gegeben, in welcher∑m

i=1 (Ci − µ)2 minimiert wird und µ =
∑m

i=1 Ci/m den Mittelwert der Fertigstellungszeit-
punkte darstellt (siehe z.B. Chandra und Wong, 1975, Alon et al., 1998, Walter und
Lawrinenko, 2014, Schwerdfeger und Walter, 2016).

Wenn die Definition der Arbeitslastverteilung dahingehend geändert wird, dass die Anzahl
der eingesetzen Entitäten optimiert werden soll, so resultieren weitere bekannte kombina-
torische Optimierungsprobleme. Als ein typischer Vertreter lässt sich das Bin-Packing
Problem benennen, bei welchem die Zielsetzung darin besteht, n Gegenstände auf eine
möglichst geringe Anzahl von Behälter mit Kapazität C zu verteilen. Eine umfassende
Literaturübersicht für das Bin-Packing Problem ist beispielsweise in Delorme et al. (2016)
zu finden. Bin-Packing ist außerdem dual zum P ||Cmax-Problem was bedeutet, dass Bin-
Packing Instanzen zu äquivalenten P ||Cmax Instanzen transformiert werden können, indem
die Bin-Kapazität C zu einer äquivalenten maximalen Produktionsdauer C transformiert
wird. Hierbei besteht die Aufgabenstellung dann darin zu entscheiden, ob m Maschinen
ausreichen um die komplette Arbeitslast unter dieser Beschränkung zu verteilen. Dieser
Zusammenhang kann beispielsweise dazu genutzt werden um schärfere Schranken und
bessere Lösungsmethoden für beide Problemvarianten zu definieren. In einer ähnlichen
Weise ist das Bin-Covering Problem dual zu P ||Cmin. Hierbei besteht bei der Verteilung
der Gegenstände die Aufgabe darin, für möglichst viele Behälter die Mindestkapazität C
zu decken. Probleme dieser Art treten bei der Verpackung von Gütern mit individuellen
Gewichten auf, wobei Pakete mit einem bestimmten Mindestgewicht resultieren sollen
(z.B. bei Rispentomaten).

Begründet auf der Tatsache, dass seit fast 20 Jahren kein Survey mehr zum identischen
Parallel-Maschinen-Problem veröffentlicht wurde, wird in Kapitel 2 der Arbeit eine um-
fassende Literaturübersicht bezüglich Schrankenberechnungen sowie heuristischen und ex-
akten Lösungsverfahren vorgenommen. Dabei wird auf bekannte Probleme wie P ||Cmax,
Workload Balancing und P ||

∑
wjCj eingegangen (Kapitel 2.2). Zudem werden Veröf-
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fentlichungen aus der Artificial Intelligence Community analysiert, wo Probleme dieser
Art typischerweise als Number Partitioning bezeichnet werden (siehe z.B. Korf, 1998,
Mertens, 2006, Moffitt, 2013). Die Forschungsaspekte der Bereiche Operations Research
und Artificial Intelligence werden anschließend tabellarisch gegenübergestellt, wobei auf
die individuellen Schwerpunkte eingegangen wird.

Die in der Arbeit betrachteten Optimierungsprobleme besitzen prinzipiell eine sehr ein-
fache mathematische Struktur, dennoch ist in der Regel nur sehr wenig über Eigenschaften
optimaler Lösungen bekannt. In Kapitel 3 der Arbeit wird deshalb das sogenannte Pfad-
Konzept erläutert, durch welches universell gültige Eigenschaften von optimalen Lösun-
gen identifiziert werden. Basierend auf einem Konzept der inversen Optimierung liegt die
Idee hierbei darin begründet, unabhängig von den konkreten Auftragsdauern eine Un-
termenge aller möglichen Maschinenbelegungspläne zu ermitteln, in welcher mindestens
eine optimale Lösung liegt. Das Pfad-Konzept wird in diesem Kapitel für das P ||Cmax-
Problem definiert, kann jedoch auch für viele ähnlich strukturierte kombinatorische Opti-
mierungsprobleme angewendet werden. Zunächst wird das Optimalitätsprinzip in Kapitel
3.2.2.1 für den Zwei-Maschinen-Fall erläutert und dann in Kapitel 3.2.2.2 für den generellen
Fall (m ≥ 3) überführt. Anschließend erfolgt die Transformation des Pfad-Konzeptes in
eine Reihe von Dominanzkriterien (Kapitel 3.3), deren Effektivität in einem Branch-and-
Bound Algorithmus untersucht werden (Kapitel 3.4 und 3.5). Dabei stellt sich heraus,
das vor allem für Instanzen mit einem Quotienten n

m
< 3 der Lösungsaufwand durch das

Pfad-Konzept stark reduziert werden kann. Abschließend erfolgt ein Vergleich mit den
exakten Lösungsverfahren von Dell’Amico und Martello (1995), Dell’Amico et al. (2008)
und Haouari und Jemmali (2008b).

In Kapitel 4 der Arbeit wird eine theoretische Analyse des Machine-Covering Problems
P ||Cmin durchgeführt. Dazu werden in Kapitel 4.2 zunächst das Pfad-Konzept und dessen
Anwendbarkeit für die Problemstellung erläutert. Anschließend werden neue Dominanzkri-
terien vorgestellt, die das Pfad-Konzept um die Komponente der Auftragsdauern erweit-
ern (Kapitel 4.3). Daraufhin werden neue Methoden zur Berechnung von unteren und
oberen Schranken präsentiert, die beispielsweise den Zusammenhang zum Bin-Covering
Problem ausnutzen (Kapitel 4.4.1.4), aber zum anderen auch auf Lösungs- und Struk-
tureigenschaften von P ||Cmin beruhen (Kapitel 4.4.1.5). Simultan zu P ||Cmax werden die
gewonnenen Erkenntnisse dann in einem Branch-and-Bound Verfahren empirisch unter-
sucht (Kapitel 4.5). Vor allem die Bin-Covering basierten oberen Schranken zeigen dabei
eine hohe Effizienz. In Bezug auf den Schwierigkeitsgrad von Instanzen ergeben sich ähn-
liche Resultate wie beim zuvor betrachteten P ||Cmax-Problem.

Der ThemenbereichWorkload-Balancing wird im darauffolgenden Kapitel untersucht. Hier-
bei wird auf den Zusammenhang zwischen optimalen Lösungen für P ||Cmax und P ||NSSWD
eingegangen, wobei das NSSWD-Kriterium eine normierte Variante der kleinsten Quadrate
Methode darstellt. Der Aufhänger dieses Kapitel ist ein falsches Resultat aus Ho et
al. (2009), welche behaupten dass ein NSSWD-optimaler Maschinenbelegungsplan stets
auch Cmax optimal ist. Es erfolgt eine Erläuterung für die Inkorrektheit dieses Resultates.
Zudem wird ein Gegenbeweis in Form einer Beispielinstanz für beliebige m Werte einge-
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führt (Kapitel 5.1). Eine vertiefende Untersuchung der Korrelation beider Zielfunktion
erfolgt anschließend in Kapitel 5.2. Dabei stellt sich heraus, dass P ||NSSWD optimale
Schedules generell auch gut für P ||Cmax geeignet sind. Das umgekehrte Resultat gilt
allerdings nicht zwangsläufig.

In Kapitel 6 wird eine weitere Variante des Machine-Covering Problems betrachtet. Hier-
bei wird die Anzahl der möglichen Aufträge auf jeder Maschine durch einen individu-
ellen Höchstwert ki beschränkt. Das sogenannte ki-Partitioning Problem tritt beispiel-
sweise im Bereich flexibler Fertigungszellen auf. In Kapitel 6.2 werden Reduktionskriterien
vorgestellt, welche dazu genutzt werden können, um den Lösungsraum einzuschränken in
dem Kardinalitäten verschärft, sowie Maschinen und Aufträge entfernt werden ohne dabei
die optimale Lösung zu verändern. Auch die Definition von neuartigen oberen Schranken
(Kapitel 6.3) sowie heuristischer Eröffnungs- und Verbesserungsverfahren (Kapitel 6.4)
ist ein wesentlicher Beitrag dieses Abschnittes. Abschließend wird die Performance der
vorgestellten Prozeduren in einer neuartigen experimentellen Studie untersucht. Die gene-
rell geringen Abstände zwischen unteren und oberen Schranken lassen dabei auf eine hohe
Effizienz der vorgestellten Prozeduren schließen.

In Kapitel 7 wird eine duale Problemvariante für P ||Cmin vorgestellt. Beim sogenan-
nten Minimum-Cardinality Bin-Covering (MCBCP) Problem besteht die Aufgabenstellung
darin, m Behälter mit Kapazität C durch die Zuweisung von einer möglichsten geringen
Anzahl von Gegenständen zu decken. Das Problem tritt beispielsweise beim Transport
von verschiedenen Chemikalien, welche nicht gemischt werden dürfen, auf. Neben einer
umfangreichen Literatureinordnung (Kapitel 7.1) werden technische Resultate in Form
von Reduktionskriterien (Kapitel 7.2) und unteren Schranken (Kapitel 7.3) hergeleitet.
Zudem werden heuristische Eröffnungsverfahren für das MCBCP adaptiert (Kapitel 7.4.1)
und es wird eine Subset-Sum basierte Verbesserungsheuristik eingeführt (Kapitel 7.4.2).
Basierend auf den vorher eingeführten Komponenten wird anschließend ein Branch-and-
Bound Algorithmus definiert (Kapitel 7.4.3). Eine hohe Effizienz der vorgestellten Meth-
oden wird in der abschließenden experimentellen Studie (Kapitel 7.5) aufgezeigt. Es kön-
nen hierbei über 96% der Instanzen durch die Kombination aus Reduktionskriterien und
Schrankenberechnung optimal gelöst werden. Zudem wird die Überlegenheit des Branch-
and-Bound Verfahrens gegenüber dem Standardsolver Gurobi offensichtlich. Abschließend
werden in Kapitel 8 die wesentlichen Resultate zusammengefasst und basierend auf beste-
henden Forschungslücken, mögliche Ansätze für weitere Forschungspotentiale dargestellt.
Durch die Generierung von neuartigen Lösungsmethoden in Kombination mit der Analyse
von Lösungsstrukturen und der Definition von effizienten Schranken, wird in dieser Disser-
tation ein wesentlicher Beitrag zur Lösung von praxisrelevanten Instanzen für verschiedene
kombinatorische Problemstellungen geleistet.
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