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Zusammenfassung

Ein Hauptforschungsschwerpunkt in den Neurowissenschaften liegt in der Berechnung und

Analyse der funktionellen Konnektivität des Gehirns, d. h. der temporalen statistischen Ab-

hängigkeiten (gerichtete Interaktionen) zwischen der an verschiedenen Messpunkten, z. B. an

EEG-Elektroden oder fMRI-Voxeln, elektrophysiologisch oder hämodynamisch aufgenommenen

Hirnaktivität. Die methodischen Entwicklungen dieser Arbeit beziehen sich auf die umfassende

Analyse von Netzwerken, welche die zuvor berechneten funktionellen Konnektivitätsmuster

repräsentieren. Im Allgemeinen sind diese aus der Konnektivitätsanalyse resultierenden Netz-

werke aufgrund ihrer komplizierten Struktur keiner unmittelbaren Interpretation und dem

damit verbundenen Erkenntnisgewinn zugänglich, so dass weiterführende Untersuchungen

mittels Analysekonzepten aus der Netzwerktheorie unumgänglich sind. Einen besonderen

Schwerpunkt der Dissertation mit Hinblick auf die klinischen Daten, deren Auswertung die

Methodenentwicklungen maßgeblich geprägt haben, bildet die Analyse und Informationsex-

traktion von Mengen funktioneller Gehirnnetzwerke, die spezifische Konnektivitätsmuster

unterschiedlicher Probandengruppen widerspiegeln. Mittels gruppenspezifischer Netzwerk-

analysen können relevante Eigenschaften der Konnektivitätsmuster erfasst und quantifiziert

werden und somit schlussendlich interpretatorisch in Relation zu der zugrundeliegenden neu-

ronalen Informationsverarbeitung zwischen Hirnarealen gesetzt werden. Wie in der Arbeit

beschrieben sind solche Analysen und die Extraktion physiologisch relevanter Informationen

mit zahlreichen methodischen Herausforderungen verbunden. In der vorliegenden Arbeit wur-

den in vier Anwendungsstudien funktionelle Gehirnnetzwerke mit unterschiedlichen klinischem

Hintergrund auf verschiedene Weisen, mit Kombinationen von etablierten Techniken und

eigenen methodischen Entwicklungen, untersucht.

• Für die erste dieser Anwendungsstudien, welche in Kapitel 4 vorgestellt wird, werden

die funktionellen Gehirnnetzwerke (EEG, schmerzhafte Stimuli, binäre Netzwerke) von

depressiven Personen und gesunden Probanden mittels eigener Methodenentwicklung in

kleine funktionell relevante Teilnetzwerke (motifs) zerlegt, welche gruppen-spezifische,

innerhalb des EEG-Elektrodenschemas genau lokalisierbare Interaktionsmuster darstel-

len. Mittels dieser speziellen motifs konnten Gruppenunterschiede bei der neuronalen

Prozessierung demonstriert werden.

• Kapitel 5 beschäftigt sich mit der Frage, ob Lithium-Behandlungseffekte in den funk-

tionellen Gehirnnetzwerken (fMRI, Gedächtnisaufgabe, gewichtete kantenvollständige



Netzwerke) von HIV-positiven Probanden mit kognitiver Beeinträchtigung reflektiert

sind. Hierzu wurden die Netzwerke hinsichtlich mikroskopischer und makroskopischer

Eigenschaften untersucht und Behandlungseffekte nachgewiesen.

• In Kapitel 6 wurden räumlich sehr hochaufgelöste, aus tausenden von Knoten beste-

hende funktionelle Gehirnnetzwerke HIV-positiver Probanden (resting state fMRI, binäre

Netzwerke) hinsichtlich einer funktonalen Segmentierung mittels Identifizierung von

module-Struktur (communities) untersucht. In der gleichen Arbeit wurden weiterhin

mittels eigener Methodik für die Generierung von Ground Truth Netzwerken mit be-

kannter module-Struktur umfangreiche Simulationsstudien mit dem Ziel betrieben, Güte

und Erhaltung der module-Struktur zu quantifizieren, um Effekte einer neuen Methode

zur Konnektivitätsbestimmung (lsGCI) zu evaluieren. Es konnte gezeigt werden, dass

die lsGCI-Methode geeignet ist, um räumlich hochaufgelöste Netzwerke zu berechnen,

deren funktionelle Segmentierung mit anatomischen Strukturen übereinstimmt.

• Die letzte in dieser Dissertation vorgestellte Anwendungsstudie (Kapitel 7) verfolgt die

zeitliche Veränderung der module-Struktur und ihre Stimulus-induzierten Veränderungen

(EEG, Balance-Perturbation, gewichtete Netzwerke). Dabei kommt für die Filterung von

Kanten parallel zu einem neuartigen Ansatz zur Bestimmung multipler Schwellenwerte

ein eigenes leistungsfähiges, auf multikriterielle Optimierung beruhendes Verfahren für

die Bestimmung von Schwellenwerten zum Einsatz. Das für die Studie entwickelte auf-

wändige Analyseverfahren beinhaltet neben einer Selektion von geeigneten Zeitpunkten

eine Aggregation von Interaktionsstrukturen zu verschiedenen Zeitpunkten zu Konsen-

susdaten auf Kantenebene und auf module-Struktur-Ebene, sowie eine state-of-the-art

Visualisierung der identifizierten zeitlichen Veränderungen. Die identifizierte zeitvariante

module-Struktur entspricht weitestgehend der erwarteten neuronalen Verarbeitung bei

der Kompensation der Balance-Perturbation.

Die methodischen Herausforderungen dieser unterschiedlichen topologischen Netzwerkanalysen,

aber auch die vielfältigen Möglichkeiten des Gewinns eines tieferen Verständnis der neuronalen

Informationsverarbeitung und somit der Funktionsweise des Gehirns wurden anhand der

erzielten Resultate aufgezeigt.
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Abstract

Current research in computational neuroscience puts great emphasis on the computation and

analysis of the functional connectivity of the brain given by temporal statistical dependencies

(directed interactions) between the neural activities recorded at different sites, e. g. at EEG

electrodes or at fMRI voxels, using either electrophysiological or hemodynamic measuring

techniques. The methodological developments presented in this work are concerned with a

comprehensive analysis of networks that represent functional interaction patterns, so-called

functional brain networks. In general, functional brain networks exhibit intricate interaction

patterns that cannot be directly comprehended or interpreted. To gain a deeper understanding

of these networks and the underlying neurophysiological processes they reflect, analyses with

methods from network science are indispensable. Thereby, the presented methodological

developments were substantially influenced by the data and the investigated clinical research

problems. A resultant distinctive feature of this work on functional network analysis is the

exploration of network samples, which represent the functional connectivity of different groups

of subjects. Using group-specific differential network analysis meaningful characteristics of

connectivity patterns can be extracted, quantified and ultimately be interpreted with respect

to the underlying neural information processing among brain areas. As described in the thesis,

such analyses and the extraction of physiologically relevant information is connected with

various methodological challenges.

In this work four application studies are presented in which functional brain network samples of

different clinical background were analyzed in different ways using combinations of established

approaches and own methodological developments.

• The first of these four application studies is concerned with a sample-specific decom-

position of the functional brain networks (EEG, painful stimuli, binary networks) of

depressed subjects and healthy control subjects into small functionally important and

recurring subnetworks (motifs) using own developments (chapter 4). These motifs repre-

sent group-specific characteristic interaction patterns that can be located exactly within

the EEG electrode layout. By means of these special motifs differences between the

considered groups with respect to neural information processing could be shown.

• In chapter 5 it is investigated whether lithium treatment effects are reflected in the

functional brain networks (fMRI, memory task, weighted edge-complete networks) of
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HIV-positive subjects with diagnosed cognitive impairment. For this, microscopic and

macroscopic structural properties were analyzed and treatment effects were shown.

• For the study presented in chapter 6 spatially highly resolved functional brain networks

(resting state fMRI, binary networks), which consisted of thousands of nodes and

were obtained from brain scans of HIV-positive subjects were explored with regard

to a functional segmentation, as given by identified module (community) structure.

In the same application study, ground truth networks with known module structure

were generated using using own methodological developments. These ground truth

networks formed the basis of a comprehensive simulation study that quantified module

structure quality and preservation in order to evaluate the effects of a novel approach

for the identification of connectivity (lsGCI). Thereby, it could be shown that using the

lsGCI approach spatially highly resolved networks can be computed whose functional

segmentation conforms with anatomical structures.

• The last application study presented in this thesis (chapter 7) tracks the time-evolution

of module structure and its stimulus-induced changes (EEG, balance perturbation,

weighted networks). For the filtering of edges in this analysis task, a newly developed

and powerful own approach for the determination of edge weight thresholds is applied. It

is based on multicriteria optimization and complements another modified approach that

was also applied for the determination of multiple thresholds. The analysis concept that

was developed for this study is complex. Apart from a selection of suitable time steps it

entails an aggregation of interaction patterns at different time steps to generate consensus

data at the level of edges and at the level of module structure, as well as state-of-the-art

visualization of identified changes. The time-variant module structure identified in this

study matches mostly the expected neural processing during the compensation of the

balance perturbation.

The methodological challenges that are present in these different topological analyses, but

also the various opportunities to gain an improved understanding of both, neural information

processing and ultimately the functioning of the brain were highlighted with the achieved

results.
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Chapter 1

Introduction

One important focus of current research in computational neuroscience (CN) lies on the

analysis of connectivity structures of the brain. This reflects the fact that neural infor-

mation processing is based on two complementary operating principles: functional segregation

and integration [1, 2, 3]. Functional segregation means that distinct areas of the brain are

involved in or associated with the execution of specific neural functions and tasks. The precise

communication between a large number of remote brain areas, i. e. functional integration, is

indispensable to guarantee higher order sensory and coherent cognitive functions. During

neural processing both operating principles of the brain, segregation and integration, have

to be balanced and reconciled, which already suggest that brain functions must be related

to complex, networked and dynamic brain structures, which in their entirety are known as

the ‘connectome’1. Accordingly, “the human connectome is a comprehensive map of the

brain’s circuitry, which consists of brain areas, their structural connections and their functional

interactions” [4] or in other words “the brain is a large-scale network, operating at multiple

levels of information processing ranging from neurons, to local circuits, to systems of brain

areas” [5]. The notion of the brain as a network [6] implies that, informally, a network can be

seen as an abstract object that represents the structure of the relationships (edges) between

a set of entities (nodes). The methodological requirements of computational neuroscience

are broad and extremely diverse, and are connected with the analysis of large datasets, data

sharing and multimodal data integration. Thereby, the availability of advanced measurement

technology is the fundamental prerequisite to obtain appropriate data.

1Various international projects were initiated in order to address the associated experimental and method-
ological challenges, e. g. the ‘Human Connectome Project’ (HCP) and the ‘Human Brain Project’ (CONNECT).
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CHAPTER 1. INTRODUCTION

The term ‘structural connections’ (structural connectivity [2, 3]) is primarily associated

with the identification of long range fiber tracts which can be performed on large-scale level

by using diffusion-weighted magnetic resonance imaging (DW-MRI), where diffusion tensor

imaging (DTI) is the most frequently used version of DW-MRI. Functional interactions (func-

tional connectivity [7, 8, 1]) between brain areas cannot be directly measured, i. e. their study

requires sophisticated analysis tools and modeling that uses measured brain activity as input

data to estimate the strength of correlations2. Large-scale brain activity can be measured

by electrophysiological (e. g. electroencephalography (EEG) and magnetoencephalography

(MEG)) and hemodynamic/metabolic techniques (e. g. functional magnetic resonance imaging

(fMRI), near-infrared spectroscopy (NIRS), and positron emission tomography (PET)). These

two groups of functional neuroimaging techniques are characterized by different spatial and

time resolution properties. For example, EEG has a high temporal but a low spatial resolution

and fMRI has a low temporal but a high spatial resolution. Both properties can be combined

by using simultaneous fMRI/EEG recordings which requires considerable measurement and

computational effort, e. g. for artifact rejection.

Computational neuroscience might one day be able to precisely identify the basic principles

that correlate the structural connectivity architecture of the brain with its activity and the

consequent functional connectivity pattern of brain areas. Most likely, new ways of integrating

functional neuroimaging results, including analysis and modeling results, with neuroanatomical

data will have the potential to guide this development. The precondition for it is an integrated

process of computational analysis and modeling, systems analysis, technology development

and appropriate experiments.

Using network science methods, the description of a system and its complexity can be

largely reduced to an account of the interactions between system elements and the emergent and

inherent properties of the connectivity structure [12]. Thereby, network approaches recognize

the important role of connectivity patterns for causing functional differences between network

elements, i. e. nodes or subnetworks [3]. This role of connectivity patterns in conjunction with

the notion of functional segregation introduces one of the main topics of the thesis, namely

the identification of mesoscopic scale network structures, e. g. network modules, which are

related to separated cohesive groups of strongly interacting nodes with a unique functional

meaning. Modules are just one example of interesting information that can be extracted with
2This implies the possibility of temporal correlations of the activity of anatomically unconnected regions

[2], though these regions might be connected by indirect structural paths [3]. Increasing evidence shows that
functional connectivity between all corresponding pairs of recorded time series [9] reflects structural connectivity
[10, 11, 3].
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CHAPTER 1. INTRODUCTION

network science approaches. Consequently, over the last decade or so, network analysis and

the application of network science methods has spread across many fields of scientific research,

in which an increased focus is directed towards gaining an understanding of the organization,

structure, behavior and evolution of complex systems. This is particularly true for research

on functional brain connectivity [13]. Networks as models of complex systems and network

analysis methods can be applied naturally to characterize functional connectivity data [14]

and to describe the dynamic structure of functional interactions between brain areas [15] on

both local and large spatial scales.

For this thesis only functional connectivity estimations obtained from either EEG or fMRI

recordings of brain activity are considered. Thereby, the information about recorded complex

brain activity is contained, or rather hidden, in the functional brain networks (section 1.2)

of this thesis, which have dense and intricate patterns of directed interactions that cannot

be comprehended by visual inspection. The problem of revealing and understanding this

information by an appropriate characterization of the connectivity structure of these networks

can and should be adressed by multi-level network analysis approaches.

For the presentation of the work of this thesis there is a lot of ground to cover. I will begin

with a brief introduction of EEG and fMRI as methods for recording brain activity, followed

by an outline of the functional connectivity estimation methods that were utilized to compute

the networks whose algorithmic analysis is the foundation of this thesis.
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CHAPTER 1. INTRODUCTION

1.1 Recording brain activity

Multichannel EEG [16, 17] signals are point-wise measurements of the massively synchronous

dendritic electrical activity of large neuron populations (pyramidal cells) in the brain using high

conductance electrodes typically placed at different standardized sites on the scalp using i. e. the

10-20 system [18]. The EEG has a high time resolution, but the choice of the measurement

reference, volume conduction effects and artifacts from non-brain sources (e. g. eye movements,

electric heart activity and muscle activity) influence the sensor space signals derived from

the electrodes, which were exclusively used for the functional connectivity estimations of

this thesis. However, signals can also be algorithmically transformed back into the source

space by solving the inverse problem of inferring the unknown distribution and behavior of

electrical current sources from EEG signals that best explain the observed external electrical

field behavior. More in-depth information on this line of research can be found in e. g. [9, 19, 20].

The signals derived from fMRI [21, 22, 11] registrations are indirect measurements of mass

activity of neurons. “The ability to detect changes in brain activity has a biophysical basis in

the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow

increases more than oxygen metabolism when local neural activity increases. These effects

translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation

level dependent (BOLD) effect, when neural activity increases.” [23]. The advantage of the

registration of BOLD signals is that they can be derived from the location of neuronal activity

with high spatial resolution.

1.2 Directed functional connectivity

Functional brain networks represent functional interactions, i. e. statistical dependencies,

between time series of brain activity recorded at different sites. Nodes of functional brain

networks are given by the recording sites (specific EEG electrodes or voxels) and their weighted

edges are given by the connectivity estimate (interaction) for corresponding pairs of recorded

time series of brain activity. Analysis of functional brain network has clinical relevance as

descriptive studies of functional brain networks have offered new insights into basic principles

of brain organization and function [3] and have enabled the assessment of specific abnormalities

even in structurally normal regions [24].
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There are currently two frequently used methodological classes for the computation of directed

functional3 neural interactions [25, 9, 26]: (1) Granger causality (GC) concepts (2) dynamic

causal modeling (DCM). The methodological concepts and network analysis techniques pre-

sented in this thesis were applied to analyze functional network data obtained exclusively by

the first class of connectivity measures. Within this class various approaches are subsumed

by the notion of Granger causality. In dependence on the posed research question and signal

properties of time series data at hand, different directed connectivity measures were used for

the computation of functional brain networks: Granger Causality Index (GCI), large scale

Granger Causality Index (lsGCI), direct directed transfer function (dDTF) and generalized

partial directed coherence (gPDC). Such linear connectivity measures are normally based

on multivariate autoregressive (MVAR) modeling of time series. Functional connectivity

estimation is not within the scope of this thesis, as the functional network data was provided

by other members of my research group. For the sake of completeness of this thesis, the used

connectivity measures are concisely described in appendix B.1.

1.3 Aims of the thesis

The aims of my doctoral thesis cover two main areas: (1) the development of network analysis

approaches and (2) their application to functional connectivity networks (left and center

column of the table in figure 1.1). Even though the methodological solutions have been

tailored for specific applications in functional network analysis they can be generalized for

or readily transfered to other areas of application, i. e. analysis of networks from different

domains. Their universality with respect to the considered complex system is one of the

strengths of network modeling approaches. There are four methodological strands:

1. Testing and adapting of state-of-the-art network analysis methods (right column of the

table in figure 1.1) and combining them to comprehensive analysis concepts for the

envisaged applications.

2. Advancement and development of structural decomposition approaches in from of a

novel approach for the detection of network sample-specific motifs with node labels.

3. Development of an algorithm for the parameterized generation of ground truth networks

with known module structure for the simulation of MVAR time series.
3Friston distinguishes between functional and effective connectivity [1, 7].
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4. Development of analysis concepts for the assessment of network module structure quality

and preservation and for the extraction of dynamic module structure in time-evolving

networks, including novel approaches for network thresholding and visualization of the

module structure of network samples.

The developed concepts and methods contributed to the successful execution of the following

clinically oriented methodological studies (center column of the table in figure 1.1), i. e. the

corresponding analysis tasks were performed by me personally:

• One study was related to the investigation of samples of functional connectivity networks

with respect to differences in topological characteristics. Thereby, the functional networks

were computed from fMRI data. The study involved the pre-processing of network data

and the quantification and interpretation of structural changes in HIV-infected patients

in response to medical treatment (methodological strand 1).

• Analysis of functional connectivity during pain processing in patients with Major De-

pression and healthy subjects (methodological strand 2).

• Two additional studies aimed at evaluating the detrimental effects of a new approach

for large scale functional connectivity estimation (lsGCI) on network edge patterns and

the preservation of underlying module structure. This evaluation involved ground truth

network simulation, the identification of network module structure and the analysis of

the module structure quality in lsGCI functional brain networks. Again, HIV-infected

subjects were enrolled in both studies, which were based on fMRI recordings of brain

activity (methodological strands 1, 3 and 4).

• A not yet completed study aims at the analysis and tracking of dynamic module structure

in time-evolving networks in response to external stimuli. EEG data forms the basis for

this study and its preliminary results (methodological strands 1 and 3).

1.4 Structure of the thesis and integration of own contribu-

tions to network analysis

The following structure for the representation of the methodological approaches and appli-

cation studies was chosen. In part I, chapter 2 (‘Fundamental concepts in complex network

analysis’) the network theory and the methodological concepts required for the work pre-

sented in this thesis are briefly outlined. All reviewed methods for manipulating network
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data and algorithms for assessing fundamental network characteristics are implemented in a

network analysis toolbox. Only those approaches and network characteristics are described

in more detail that are relevant for the application studies, whereas all other implemented

approaches and topological characteristics are only briefly explained with references to the

most relevant literature. Fundamental methods for network analysis were utilized, combined

and complemented by new approaches that are described in part II, chapter 3 (‘Contributions

to network science methods and the multi-level analysis of functional brain networks’). The

developed advanced analysis approaches were tested on simulated networks and applied in

different application studies to real-world network data, which is described in the chapters of

part III (‘Applications and results’). Finally, some concluding remarks and perspectives are

given in part IV (‘Concluding remarks and perspective’) of the thesis.

Depending on the data at hand and the formulated research question, each application

study follows a specific methodological (and experimental) design, thereby utilizing different

compilations of established network analysis approaches and my own methodological develop-

ments. To give a clear overview about how my own methodological developments contribute

to the analysis of functional connectivity data from a network perspective and to highlight the

central themes of my doctoral thesis an illustrative mapping between my own contributions

(left column) and the application studies (center column) is depicted in figure 1.1. Also, the

mapping between fundamental concepts (on the right column) and the application studies, for

which they were utilized, is shown, enabling a clear distinction between my own work and the

established approaches (left vs. right column).
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Own methodological 
developements Application studies Utilization of fundamental 

concepts

Network structure decomposition
• Incorporation of node labels
• Subnetwork significance in network 

samples (analytical, simulation-based, i.e. 
surrogate null model networks)

• Filtering motifs wrt. group differences

Network sample-specific motifs with 
pairwise different node labels

• Study on pain processing in depressed patients
• Different samples of functional networks
• Characteristic interaction patterns wrt. groups

Network sample-specific characterization 
of network topology

• Lithium-induced changes in functional 
connectivity in HIV-infected subjects

Edge weight transformation for path 
length-based measures

• Connection strength to connection length 
(cost) mapping

Multilevel characterization of network 
topology

• Microscopic, mesoscopic, macroscopic 
characteristics

Analysis concept
• Network characteristics of clinical interest
• Data randomization technique for 

surrogate-assisted analysis

Network simulation
• Ground truth networks for benchmarks

Analysis of module structure quality in 
spatially highly resolved functional brain 

networks
• Assessment of network topology alterations 

caused by the lsGCI approach
• Identification of large scale module structure in 

resting state fMRI data

Comprehensive analysis concept
• Selecting, testing and combination of 

diverse methods (information theoretic, 
set-based, topology-based, edit distance-
based)

• The comprehensiveness reaches beyond 
module structure quality analyses (that are 
rarely performed in practice) seen in the 
literature

Cost optimal matching of module affiliation 
labels & fuzzy matching extension

• For module structure analysis and visual 
comparison module labels have to be 
matched across network samples

• Solving assignment problem based on 
module similarity

• Fuzzy matching to prevent low quality 
assignments

Network module structure identification 
algorithms

• Leading eigenvector algorithms, Blondel 
et al., fast greedy modularity optimization, 
random walk algorithm, Infomap, Potts 
spin glass 

Measures for the analysis of module 
structure quality

• Ratio of correctly classified nodes, Rand 
index and adjusted Rand index, variation 
of information and mutual information, 
split-join distance, partition edit distance, 
modularity, performance measure, 
coverage, overall average silhouette 
width, Jaccard distance, Hamming 
distance between adjacency matrices, 
number of disconnected node pairs, 
Cohen’s Kappa coefficient

Analysis of dynamic module structure in 
time evolving networks

• Tracking temporal changes in the module 
structure of EEG-derived functional networks 
to reveal stimulus induced topological 
reconfigurations

Computing network-specific 
 edge weight thresholds using an multi-

objective optimization approach
• Combination of multiple thresholding and 

Pareto optimization of corresponding 
vectors of module structure quality 
characteristics yields an optimal threshold 

Part of all studies
Symmetrization of directed networks

• Application of methods for undirected 
networks

Thresholding of edge-complete weighted 
networks

• Filtering of spurious interactions
• Weighted vs. binary nw analysis

Network simulation
• Null model (surrogate-assisted analysis) 

as essential tool
• Configuration model, MCMC edge 

swapping algorithm

Figure 1.1 – Overview of relations between my own methodological develop-
ments, the applications studies and fundamental network analysis concepts.
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Chapter 2

Fundamental concepts in complex
network analysis

Network science and network analysis received a lot of attention since the seminal

publications of Watts and Strogatz [27], and Barabási and Albert [28]. The resulting

wealth of new developments in this field makes it difficult to give a complete overview of

the topic and the large amount of techniques for dealing with different aspects of network

analysis also makes choosing a proper analysis strategy for given network data a difficult

endeavor. This chapter gives a concise summary of some network theory and those state-of-

the-art preprocessing and analysis techniques that are relevant for my work on functional

brain network analysis. The methods that I used and that are described in this chapter

cover a wide spectrum of network types and their topological features and can be used to

characterize functional brain networks across individuals, groups of individuals, developmental

stages and disease states. Together with my own methodological developments (see also

chapter 3) the state-of-the-art methods and general concepts of this chapter can be beneficially

combined to yield a powerful network analysis pipeline to extract essential information with

clinical relevance from functional brain network data starting with the weighted edge-complete

networks that are the result of the functional connectivity analysis (see also appendix B.1). I

start this theory chapter with an outline of the relevant notation and definitions.

2.1 Notation and definitions

In the following, I present the formal notation and precise meaning of relevant network specific

terms and language used throughout this thesis. These preliminaries will be useful for the
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concise explanation of network science concepts underlying my work, which will be given in

this chapter. Because the functional brain networks analyzed in this thesis are edge-directed,

the focus of the following definitions lies on directed graphs, but I remind the reader that

many of them apply naturally to undirected graphs, too. The chosen notation leans onto the

notations used and presented in the textbooks [29, 30, 31, 32, 33].

The directed, unipartite functional connectivity networks I investigated within the scope

of this thesis exhibit unilateral edges that encode asymmetric relations as they were based on

functional connectivtiy measures that take the direction of interactions into account, i. e. PDC,

gPDC, GCI and lsGCI. These measures are described in section B.1. As represented by the

mathematical concept of a directed graph or digraph D, a functional connectivity network

consist of a non-empty finite set V of N = |V| vertices vk, k = 1, ..., N and a finite set

E of ordered pairs of distinct vertices called arcs or oriented edges e. In the language of

functional brain network analysis, edges can also be called interactions. In social network

concepts, which often yield intuitive and useful analogies for the function of networks from

different domains, edges are called ties. In the context of the analysis of networks, specific

diagrammatic graph representations of systems, it is custom to use the term node instead of

vertex. Functional connectivity networks are unipartite, which means they have only one

type of node. A bipartite or two-mode network by contrast has nodes that are divided into

two nonoverlapping sets and there are no interactions between nodes of the same set. The

nodes of functional brain networks are usually uniquely labeled with the identifier of the

corresponding recording site of brain activity, e. g. the EEG electrode or the voxel location.

An ordered pair (vi, vj) is called an oriented edge that is originating from (outgoing from)

node vi and pointing towards (terminating at) node vj . An oriented edge is denoted by

vi → vj where vi is called the tail (initial node) and vj is called the head (terminal node) of

the edge. An edge is incident to its tail and head nodes and conversely, a node is incident to

the edges connected to it. Node vi and vj are called adjacent if they are directly connected

by an edge. Contrary to a digraph, in an undirected graph G edges are unordered pairs

vi, vj of nodes that have no particular relation structure and direction of interaction, which

results in a lack of orientation for the edges in the graph. Let |Γi| denote the neighborhood

of a node vi, which consists of all nodes that are adjacent to vi. In directed networks the

out- and in-neighborhood can be discerned with respect to the direction of the edges that

connect adjacent nodes to vi. A binary or unweighted (functional connectivity) network is
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represented by its adjacency matrix A of size N ×N , which is a special case of a similarity

matrix and where Aij = 1 if and only if the functional connectivity network contains the

directed edge vi → vj . Accordingly, a reciprocated (mutual) edge is indicated by two entries

in the adjacency matrix Aij = 1 and Aji = 1, and is denoted by vi ↔ vj . The absence of

an edge is indicated by Aij = 0. The adjacency matrix of a functional connectivity network

and other digraphs is an asymmetric matrix. An undirected network has a symmetric

adjacency matrix since Aij = Aji. In situations where both types of adjacency matrices

should be discerned, AD is the notation used for an asymmetric adjacency matrix, whereas

AG denotes a symmetric one. In case of a weighted (functional connectivity) network the

entries in A are real-valued, usually positive numbers indicating the strength of interaction

between a pair of nodes. Measures for weighted networks assume that edge weights are based

on a ratio scale. To better discern the representation of a weighted network, also called a

valued graph, from an unweighted network, the adjacency matrix A is often formally and

conveniently replaced by the edge weight matrix W with real-valued entries Wij . WD and

WG are the notations used for an asymmetric edge weight matrix and a symmetric edge weight

matrix, respectively. Functional brain networks do not contain hyperedges, a generalized

kind of edge that connects more than two nodes (that have a common group membership or

classification). Binary functional connectivity networks do also not contain multiple parallel

edges (vi, vj)1, (vi, vj)2, ..., (vi, vj)m, m ≥ 2 in the same direction. Directed networks can

be transformed to undirected networks by means of performing a symmetrization of the

adjacency matrix or edge weight matrix (see also section 2.2). Whereas in this thesis the

size of a network denotes the number of its nodes, often the term order1 is used for it

instead, with the term size denoting the number of edges.

Functional brain networks are built by abstracting recording sites, single EEG-electrodes or

single fMRI voxels, as labeled nodes and modeling associated directed interactions between

these recording sites by oriented edges. It is crucial that, due to the pairwise different

node labeling, all nodes are different – each node has a unique location in the network and

plays a unique functional role as it represents (the activity of) a unique area of the brain.

A subdigraph or directed subnetwork, respectively, of a directed network D(V, E) is a

directed network Ds(Vs, Es) consisting of subsets Vs ⊂ V and Es ⊂ E of the sets of nodes and

edges of D. This means that a subnetwork is a part of a network. If a subdigraph Ds contains

all edges of its superdigraph D between its nodes, Ds is called an induced subdigraph of
1In the wider context of my work the term ‘order’ is already reserved for the time series analysis of brain

signals, which is the foundation for obtaining functional brain networks.
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D. More precisely, if every edge e ∈ E with both end-nodes in Vs is element of Es, we say that

Ds is induced by V . For undirected networks the analogous terms subgraph or subnetwork

are used. An edge-complete network, or simply, a complete network, is a network that

possesses all possible directed or undirected edges between its nodes, i.e. for every pair vi, vj
of distinct nodes, both oriented edges (vi, vj) and (vj , vi) exist. Two digraphs D1 and D2 are

isomorphic if and only if for any ordering of the nodes of D1 there is an permutation ε of

the nodes of D2, such that their adjacency matrices are equal, i. e. {vk, vm} is an edge of D1 if

and only if {ε(vk), ε(vm)} is an edge of D2.

A walk connecting the initial node v1 to the terminal node vk is an alternating sequence

of nodes and edges, such that each edge connects its preceding (tail) with its succeeding

(head) node: v1, e1, v2, e2, ..., ek−1, vk. If v1 = vk, then the walk is called a closed walk. In

a directed network, a walk in which all edges point in the same direction is also called a

directed-edge sequence that can be closed or open, too. A trail2 is a walk in which all

edges are distinct (but not necessarily all nodes), whereas a path is a walk in which all nodes

are distinct (and therefore all edges, too). If a path has identical start and end nodes, v1 = vk,

then it is called a cycle. A self-loop is a cycle of length one, i. e. an edge whose tail and head

coincide. Functional connectivity networks do not contain self-loops, i. e. Aii = 0, ∀ i ∈ V.

The path length is the sum of the weights of all edges that lie on the path, where in the

special case of binary networks all edge have a weight of one. The distance, also called

graph distance or geodesic distance, δsp(vi, vj) between two nodes vi ∈ V and vj ∈ V of

a finite graph is the minimum length of any path connecting them, i. e. the length of the

shortest path connecting them. The shortest path3 between two nodes is called their graph

geodesic and it can be computed [34, 35] using either a breadth-first traversal algorithm

(unweighted network), Dijkstra’s algorithm (weighted network, non-negative edge weights),

or using the Bellman-Ford algorithm or Johnson’s algorithm for networks with arbitrary

edge weights (but not containing negative cycles). The number of shortest path between

the nodes vi ∈ V and vj ∈ V is denoted by σij . By convention, σii = 1. The number of

shortest paths between vi ∈ V and vj ∈ V on which some node vk ∈ V lies is denoted by σkij .

Pairs of nodes that are not connected by any paths, i. e. nodes that are members of different

isolated parts of the network, have infinite distance. Distances between all pairs of nodes

are stored in the all-pairs shortest path matrix ∆sp(i, j) = δsp(vi, vj), which is symmetric

for undirected networks and asymmetric for directed networks. In a directed or undirected
2also called a directed-edge train [29]
3The path itself, not its length.
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network a node vj is reachable from another node vi, if a directed path or, respectively, an

undirected path from vi to vj exists that is connecting them. Pairs of nodes that are linked by

such paths are said to be connected. A directed network is strongly connected if every

ordered pair of nodes is strongly connected, i.e. mutually reachable, which means there exists

a directed (vi, vj)- and (vj , vi)-path between all pairs of nodes vi and vj . If the orientation

of edges in paths in a directed network is ignored by taking into account strict semipaths

between all pairs of nodes or due to considering a symmetrization variant of the directed

network where all unordered pairs of nodes are accordingly regarded as being connected if they

are reachable by undirected paths, the directed network is said to be weakly connected.

Similarly, an undirected network is connected if every node is reachable from any other

node. In a disconnected network D
 or G
 the set of nodes V is partitioned naturally

into subsets of nodes, which, together with their respective edges, form different connected

subgraphs that are separated from each other as they are not connected by any (reciprocated)

edge and that are called (strongly- or weakly-connected) components. Each node and edge

belongs to exactly one component and nodes of different connected components are mutually

unreachable. If a network is connected, it necessarily consists of only one component. After

determining network components using breadth-first search algorithms, the rows and columns

of an adjacency matrix of a disconnected network can be reordered so that the matrix takes

block diagonal form, in which the components become visible as square blocks of non-zero

elements along the main diagonal (similar to the adjacency matrix plots of networks with

module structure in section 6.1). The associated network components consisting exclusively

of strongly connected node pairs are called strongly connected components. The set of

nodes reachable from a given parent node vi via edge-directed paths, including vi, is called

out-component. All nodes external to the out-component interact with member nodes of the

out-component solely via edges that point towards the out-component. The in-component

is defined in an analog fashion as the set of nodes from which there is a directed path leading

towards a given node vi, which is included in this set. It follows that the strongly connected

component of vi equals the intersection of its in- and out-components.

The connectedness property is important and is controlled for in the functional brain

network analyses presented in this thesis: To yield a more realistic representation of brain

activity, the dichotomized functional networks under study are required to be at least weakly

connected, which means that they are not allowed to fragment into isolated nodes, which are

not incident with any edge, or separate weakly connected components, which are maximal

14



CHAPTER 2. FUNDAMENTAL CONCEPTS IN COMPLEX NETWORK ANALYSIS

subgraphs in which all pairs of nodes are weakly connected. A cut node or articulation

point is a node, whose removal, together with all its incident edges, increases the number of

components of a network. The edge equivalent of a cut node is called a bridge.

2.2 Symmetrization of directed networks

Despite functional connectivity networks being directed it might be useful to symmetrize

their adjacency matrix or their edge weight matrix to assess network characteristics of the

underlying undirected network. This way of proceeding allows to incorporate additional

measures of network topology that are only defined for undirected networks into the analysis.

For example, in the context of module structure identification (see also chapter 6) I found

that edge orientation had limited impact on the quality of the results. Thus, in favor of being

able to make use of different module structure identification algorithms I also worked on

symmetrized versions of the original networks, even though this might entail certain biases

and information loss (see also section 2.8). Ultimately, it all comes down to whether the

direction of relationships is important for the investigated research question. An interesting

application for link reciprocity (see also section 2.7.3) is the assessment of the amount of

interaction asymmetry for determining how close the structure of a binary directed network is

to being essentially undirected. This information can be used to objectively justify the use of

network symmetrization procedures for network analysis.

The asymmetric adjacency matrix of a binary directed network may be symmetrized by

addition with its transpose AG = AD + ATD and subsequently setting any resulting entries

AG ij = 2 to AG ij = 1.

Several basic symmetrization techniques exist for weighted networks. These functions can

be applied to each matrix element of W to generate the undirected network element-wise as
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follows [36]

symmean(W)ij = Wij +Wji

2 (2.1)

symmin(W)ij = min(Wij ,Wji) (2.2)

symmax(W)ij = max(Wij ,Wji) (2.3)

The entries of the symmetrized edge weight matrix W might subsequently be scaled to the

interval [0, 1] with the methods of section 2.4.

2.3 Thresholding edge-complete weighted networks

Generally, the quantification of functional connectivity in recordings of brain activity results

in edge-complete, fully connected weighted networks (see also appendix B.1). While it is

possible to analyze such edge-complete weighted networks directly (see also chapter 5 on

page 96), it is common practice to further preprocess potentially noisy, edge-complete networks

by a thresholding procedure to remove low-weight interactions that are potentially spurious,

i. e. false positive. Working with the resulting non-complete networks circumvents certain

problems that can occur in subsequent analyses, primarily the problem of ill-defined network

measures and restricted combinatorial options for network randomization, which is essential

for surrogate-assisted network analysis ( 2.12 on page 50). These problems are particularly

pronounced in binary networks where all equally sized subsets of nodes exhibit the same

topological interaction pattern. In edge-complete weighted functional connectivity networks

problems of discerning substructures and topological characteristics arise since weights might

be very homogeneously distributed across the edges. Filtering4 and rejecting edges with

sub-threshold weights is not a trivial procedure as it has the potential to introduce serious

biases and confounders into the resulting network topology [37, 12, 15, 38]. Corrections for

these effects do not exist, because the ‘real’ underlying network topology needs to be known

[37], which is clearly not the case for empirical data of brain activity, as determining the

topology and characteristics of functional brain networks is the very objective of the studies.

As a consequence, it is difficult to discriminate between a real effect seen in the data and one
4In principle , network filtering can also be performed on the node level by removing (peripheral) nodes

with certain properties.
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that is caused by the effects of the thresholding procedure5. The severity of such biases is

more pronounced for small networks as those obtained by EEG recordings or region-of-interest

approaches [37]. Thresholding always discards information on interaction patterns which can

obscure underlying structure. An example for this was given in [39], where it was shown for

a weighted toy network that thresholding will never succeed in revealing its true underlying

module structure in its entirety.

Until now there has been no generally accepted criterion for defining thresholds on edge

weights. There are two principle approaches: statistical significance tests [40, 41, 37] and

heuristic thresholding procedures [37, 24, 42]. Tests for statistical differences of edge weights

are computationally expensive and are feasible in practice only for small networks and small

network samples. They are burdened by the arbitrary definition of the type I error and the way

alpha-adjustments for multiple comparisons are performed, if any. The reliance on p-values,

a key element of such statistical tests, is disputed in general [43, 44, 45, 46, 47, 48, 49, 50].

In contrast, heuristic thresholds are chosen somewhat arbitrarily and usually yield a com-

mon cutoff level for all edges or are selected in an attempt to fix arbitrary values of basic

network characteristics, such as node degrees or edge density [37]. Fixing arbitrary network

characteristics, as e. g. in [51] has recently started to lose acceptance. Instead, often several

instances of a network that are obtained by using ranges of thresholds are analyzed. Both

principle thresholding approaches assume that only strong interactions contribute meaningfully

to the organization of network structure. Contrary to this, the role of certain kinds of weak

interactions was recognized as ‘the strength of weak ties’ [52, 53, 54] and the concept of bridges

[55]. Under the assumption that disconnected functional brain networks yield a poor model

of neural processing (cf. [56]), the thresholding in this thesis was constrained by the ensured

connectedness of the resulting networks, i. e. they were not allowed to fragment into separate

connected components or single isolated nodes. This is also circumvents certain problems that

arise for disconnected networks down the network analysis pipeline, e. g. the assessment of

some network characteristics that rely on path lengths and the malfunction of some module

detection algorithms.
5The analysis can be improved and detrimental effects can be reduced by surrogate-assisted analysis and

normalization of network characteristics using a baseline network model (random null model networks or
down-sampled networks with randomly removed edges) as described in section 2.12.
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2.3.1 Testing for statistical differences in edge weights

Edge weights Wij in the functional brain networks of this thesis are quantified by a functional

connectivity measure, i. e. GCI, lsGCI, dDTF or gPDC (see also sections B.1.1, B.1.2 and

B.1.3). To remove subliminal and statistically non-significant interactions from the edge-

complete weighted functional networks each edge weight is related to the distribution of the

connectivity measure when no influence from time series Yi to Yj is present, which corresponds

to the null hypothesis H0 of the associated statistical test. Since the distribution of edge

weights under H0 is usually analytically unknown, a bootstrap approach [57] has to be used

to construct it. Following, I give a brief summary of the procedure outlined in [58], which

was used for the functional networks of this thesis whenever thresholding and dichotomizaton

based on statistical tests was performed.

For the computation of the functional brain networks and their edge weights the param-

eters Ar of a MVAR model (equation B.1) are estimated based on the neural time series

data at hand. To test for statistical differences of the resulting individual edge weights, the

model residuals are calculated with respect to the original time series data and resampled by

random sampling with replacement. To test the influence of the time series Yi on the time

series Yj , the associated entries6 in the autoregressive parameter matrix are set to Ar
ji = 0 for

all r = 1, · · · , p, i. e. all coefficients related to time series Yi causing Yj are set to zero. All

other autoregressive coefficients remain as they were originally estimated. The autoregressive

model under H0 and the resampled model residuals are used to generate bootstrap time series

according to equation B.1. For these time series under H0 a new MVAR model is fitted

to compute a bootstrap replication WH0
ij of Wij under H0 that quantifies the relationship

between Yi and Yj under H0. The entire bootstrap process is repeated a large number of

times for every pairwise interaction Wij separately, which results in high computational costs.

Therefore, the procedure is infeasible for large networks, e. g. the large functional networks of

chapter 6. Finally, for each pairwise interaction the obtained sample of bootstrap replications

WH0
ij is used to either calculate a critical value, given by the (1 − α) quantile, or a p-value

for the hypothesis test. Because it can be argued that the functional interaction structure

of a network has to be considered as a whole and single interactions should not be tested

independently [41], an alpha-adjustment for multiple hypothesis tests is necessary, which can

be performed by e. g. the Holm correction procedure [59] or by controlling the false discovery
6Note the different notation with respect to the order of the indices i and j.
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rate [60]. The p-value for each pairwise interaction Wij is then compared with its adjusted α

value. Edges for which no statistical difference is found are removed from the resulting network.

To statistically threshold functional networks that were generated based on simulated ground

truth networks (see also section 3.4), a similar strategy to estimate the distribution of con-

nectivity measures under H0 can be used [61]. This approach is based on a Monte Carlo

simulation and works directly on the predefined autoregressive parameter matrix Ar (see also

appendix B.2). As before, the coefficients for each tested interaction are set to Ar
ji = 0 prior

to the realization of a new MVAR process, which generates a set of time series under H0 from

which the connectivity measure between time series Yi and Yj is recalculated. This simulation

is repeated to generate a large sample of values of the connectivity measure WH0
ij under H0

for the statistical hypothesis test.

2.3.2 Multiple threshold strategy

To gain robustness against specific edge weight threshold choices, multiple thresholds should

be considered for the analysis of networks and the identification of persistent topological

features [42, 24]. To actually threshold an edge weight matrix, the edge weight corresponding

to a given percentile of all edge weights can be used as threshold parameter τ [62]

Aij =


1 if wij ≥ τ

0 if wij < τ
(2.4)

In practice, whenever statistical tests were not feasible from a time resources point of view the

strategy that was pursued in this thesis consisted of using multiple pre-selected percentiles of

the edge weights as thresholds. Using edge weight percentiles circumvents specifying certain

edge weights directly, but results in a fixed number of retained edges independent of the

underlying edge weight distribution. In practice, a fixed number of edges for all networks in

a network sample might be undesirable, as it potentially masks differences in structure of

some networks. If samples of related networks are analyzed, it might be worthwhile to pool

the edge weights of all individual networks to select a weight as common threshold using a

pre-defined percentile. This results in individual networks with different numbers of retained

edges. Thresholding effects have to be analyzed in an exploratory fashion to justify the choice

of selected edge weight thresholds.
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In section 3.5 on page 74 I present a different method that obtains an ‘optimal’ edge threshold

value for module structure analyses. In a sense, this method accounts for an on average

minimum information loss with respect to the module structure of the resulting thresholded

network and yields non-arbitrary, objective and network-specific thresholds. I applied this

new approach for network data analysis in the study presented in chapter 7 on page 129.

2.4 Comparison of weighted vs. unweighted network analysis

Depending on research objectives, after removing low-weight edges one can either proceed with

the analysis of the non-complete weighted network, which is a form of soft thresholding, or one

can dichotomize all remaining weighted edges by assigning them a weight of 1, which yields non-

complete binary networks and is called hard thresholding [62]. Analysis of weighted networks

has the advantage that the information about the continuous nature of edge weights is preserved

and can consequently be exploited to obtain a more detailed, fine-grained understanding of

the network and the modeled relationship between its entities [63]. On the other hand the

underlying binary network, with limited richness of interaction information, is often easier to

interpret, to analyze and to visualize, using a wealth of available techniques and measures. In

particular, normalization of network characteristics is usually less intricate in binary networks

as compared to weighted ones. Dual approaches combine information from both network types

to discover different forms of latent structure [39], e. g. to account for the situation that the

same binary characteristic corresponds to different weighted counterparts [64, 65].

2.5 Rescaling of edge weights

Narrow ranges of similar edge weights are often found in weighted functional connectivity

networks. For analyses it might be beneficial to resolve a narrow range of edge weights by

mapping them into the entire [0, 1] interval. Such a mapping can be obtained by the following

function [36]

f(wij , β,W) =
(

wij −min(W)
max(W)−min(W)

)β
(2.5)

where β > 0, e. g. β = 1.5 yields a good edge weight resolution for the EEG-derived networks

analyzed in chapter 7. Other functions for the purpose of separating similar edge weights are

given in [62]

f(wij , a, b) = 1
1 + e−a(wij−b)

(2.6)
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f(wij , c) = |wij |c (2.7)

with positive parameters a, b and c. The choice of the parameters a, b and c determines the

sensitivity of the mapping and therefore how good similar edge weights are resolved and how

much the mapping increases the differences between their newly assigned values. Alternatively,

edge weights might be scaled by dividing with the maximum value in the network.

2.6 Transforming edge weights for path length-based indices

In the context of network characteristics that are based on (shortest) path lengths between

nodes the weight of an edge is interpreted as its connection length. Accordingly, a high edge

weight is regarded as a large distance between the nodes connected by the edge. This implies

that the edge has high traversal costs and corresponds to a weak connection between its

nodes, which are too distant from each other to strongly interact. In structural networks,

which describe anatomical connections, network methodologies based on path lengths can be

applied directly and have a clear meaning in terms of neuronal signaling or communication [3].

However, in functional connectivity networks the situation is opposite, as high edge weights

indicate a strong interaction between the connected nodes. Therefore, edge weights have to

be transformed so that high strength interactions become short distances associated with

low edge traversal costs [66]. For it, several transformations were proposed, e. g. subtracting

from the maximum weight plus one or another upper bound, taking the inverse 1/wij or

taking a negative exponential e−wij [63]. Equations 2.6 and 2.7 can also be used to obtain an

connection strength to connection length (cost) mapping. For it, parameter a and c have to

take on negative values, whereas b can be either positive or negative. A potentially good range

for parameter a might be given by −15 < a < −5 and for parameter b it might be 0 < b < 0.6.

Setting parameter c to −0.5 < c < −0.1 might give reasonable results. The transformation

most often used for the work presented in this thesis is given by

d(vi, vj) =
√

2(1− wij) (2.8)

which defines a metric distance between any two nodes vi and vj [67].
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2.7 Comprehensive quantification of network topology

In this section I give a concise but broad overview of network characteristics that taken

together quantify many different structural aspects of a network and yield a good overall

picture of its topology. Thereby, I discern three topological scales: the microscopic, mesoscopic

and macroscopic scale. Although the described measures provide different perspectives on

major features of network architecture, several of them are inevitably interrelated. Due to

the methodological independence of these measures, which can be assessed individually and

separately, the given overview rather takes on the form of a listing. These measures and many

more are part of my network analysis toolbox. Currently, a manuscript is under preparation,

which reports the results for a study in which large scale functional brain networks of HIV

infected patients and healthy controls were analyzed using a multitude of macroscopic scale

characteristics. Subsequently, the network samples were compared and the correlations among

network characteristics and several clinical scores were investigated. Since this study is not

described in this thesis and reviewing every single measure of network topology is beyond the

scope of this thesis, I only state measures that I used for my work on analyzing functional

brain networks. For an extensive overview of network characteristics I refer to review articles

like e. g. [68, 31, 69, 70, 71, 72, 2] and textbooks like e. g. [73, 31, 36, 14].

Contrary to the descriptions typically found in the scientific literature on network science

I emphasize the network types for which measures of network structure, network models or

algorithms are defined, which I belief will add clarification and value to the explanations

and the overview given in this thesis. Thereby, the notation is the following: “BD” and

“BU” denote, respectively, binary directed and binary undirected networks. Consequently, the

abbreviations “WD” and “WU” denote, respectively, weighted directed and weighted undirected

networks. Due to the nature of functional brain networks, which have weighted or binary

directed edges, I focus primarily on presenting WD and BD network characteristics and

related algorithms, if available, despite stating all network types for which definitions and

concepts apply. Otherwise I state the undirected versions, which can be applied to functional

brain networks, too (see also section 2.2). As already described, weighted networks can be

dichotomized to apply binary network measures (see also section 2.3 on page 16).
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2.7.1 Microscopic scale network characteristics

Characteristics on the level of single nodes and edges are located on the microscopic scale

of network structure. A special meaning have node centrality indices that rank nodes by

assigning them a structural centrality value according to different notions of their role, position

and prominence in the network. This concept originated in the work on social networks

and communication [74] and in operations research [75]. Accordingly, nodes that have high

values for many centrality measures are important functional elements of network structure

[66]. They can be thought of as being strategically located at the center of star-like network

configurations, where due to their high degree and short distances to all other nodes they

constitute a major gateway for flow and communication along most of all the shortest paths

in the network. Central nodes can be regarded as able to avoid the control potential of other

nodes that act only as intermediaries of network flow [76]. On the contrary, nodes with low

centrality scores are likely to be on the outer layers of their network where they cannot access

many other nodes. Thus, centrality indices make for an important network analysis tool for

the extraction of information from networks.

To counteract the dependence of a node centrality measure on network size, a linear rescaling

of individual node centrality values to the [0, 1] interval can be performed. Another usual

way of normalizing a node centrality value is by dividing by the maximum possible score in

a network of the same size N or by dividing by the sum of all scores if the distribution of

values is important [63]. To control for the influence of purely mechanistic effects of network

topology, centrality measures can be compared to the ones obtained from randomized network

counterparts (see also section 2.12 on page 50).

Following, I list relevant microscopic scale network characteristics together with their main

references.

The node degreeBD,BU κi of a focal node vi in a binary network equals the number of

adjacent nodes [69, 76]. The node strengthWD,WU ζi in a weighted network equals the

sum of incident edge weights [69]. Therefore, node degree and strength measure a node’s

importance for the network structure in its proximity as given by its interaction activity (many

interactions vs. strong ones). In a binary directed network, due to the added complexity of

considering edge orientation there are four kinds of node degrees, the out-degree κouti , the
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in-degree κini [66], the total degree κtoti and the reciprocal degree κ↔i [77].

Closeness centralityBD,BU,WD,WU captures the centrality of a node with respect to its

independence from intermediaries and with respect to how easily and efficiently it can access

other nodes and their ressources in the network or route flow to them [66, 78, 76, 79, 80].

Betweenness centralityBD,BU,WD,WU measures the number of shortest paths that pass

through a node. Thus, betweenness centrality captures the potential of a node to coordinate,

withhold or distort flow along geodesics between other nodes and other parts of the network

[74, 78, 81, 76, 63]. Different variants of betweenness centrality [63, 82, 66] were developed and

algorithmic aspects were improved to compute betweenness in large and dynamic networks, e.g.

[83, 84, 85, 86, 87]. Betweeness is also analogously defined for edges, which can be exploited

for network community detection.

Nodes centrality can also be assessed by the concept of key player nodes [88] or by classifica-

tion into hub nodes and non-hub nodes [89].

For any node vi the local node-level clustering coefficientBD,BU,WD,WU is given by the ratio

between the number of triangles with vi as center node (and two of its adjacent nodes that

are connected themselves) and the number of triangles that node vi could have formed, given

its number of neighboring nodes [90, 27, 91]. It is a measure of segregation. Nodes with low

clustering coefficient have relatively many missing edges in their neighborhood, which implies

the existence of so-called ‘structural holes’ (cf. [55]). This, in turn, gives the respective nodes

some additional control over the information flow between its mutually unconnected neighbor

nodes [31]. Influential nodes, e. g. hub nodes, have a low node-level clustering coefficient

[91, 92]. Different definitions of the clustering coefficient in weighted networks can be found in

[64, 93, 90, 94]. Clustering in network samples was analyzed in the study presented in chapter 5

The eccentricityBD,BU,WD,WU ε(vi) of a node vi in a connected network is the largest

geodesic distance between vi and any other node [75]. It can be thought of as how far a node

is from the one most distant from it.

A node with an elevated Page RankBD,BU,WD,WU value is structurally and functionally
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important, acting as e. g. a switch and broker of network flow. High Page Rank values result

from either many other nodes being connected to the node, or at least some nodes that

themselves have a high PageRank [95, 96].

2.7.2 Mesoscopic scale network characteristics

Elements of network structure on this topological scale depend both on local and global aspects

of network organization. Network motifs and in particular network modules are indicative of

functional segregation in the brain [2]. Mesoscopic scale topological features might be used

for network-based data reduction techniques that summarize network structure by coarse

graining or focusing only on important substructures [39]. As a major part of my work focussed

on network analysis at the mesoscopic level, I describe these topological feature and their

detection in more detail.

Network motifsBD,WD are statistically overrepresented connection patterns given by small

local connected and induced subnetworks [97]. Motifs are assumed to act as functional mean-

ingful building blocks or as elementary information processing circuits [98] of a network. It

was discovered that individual real-world networks (or classes of networks) possess charac-

teristic combinations of network motifs that might reflect topological constraints related to

the functionality of the represented system and its history of development [99]. Standard

network motif detection in a single directed binary network with unlabeled nodes, which are

indistinguishable from each other, is performed in three fundamental and computationally

expensive subtasks [97]:

1. Solving the subgraph census problem [100] by exhaustively enumerating [101] or sampling

[102, 103] the number of occurrences of each subnetwork induced by a set of k nodes

in the input network. This quantity is affected by the kind of allowed node and edge

overlap, e. g. non-identical counting (arbitrary overlaps) [104, 105]. Even in comparably

small networks, the number of subnetwork occurrences is potentially large due to its

exponential increase with the size of the input network. Moreover, the number of k-node

subnetworks in a network grows very fast with k, which is commonly chosen to be 3 or 4.

2. The second subtask in network motif detection encompasses determining graph iso-

morphism (see also section 2.1) for found subnetworks to group them into topological

equivalence classes and obtaining their counts. It is believed that graph isomorphism
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cannot be solved in polynomial time. Several algorithms for solving graph isomorphism

with miscellaneous performance in practice have been presented [106].

3. The last subtask is assessing statistical significance of subnetwork occurrences. Subnet-

works with a statistical difference in their number of occurrence in the input network as

compared to their number of occurrence in a large set of simulated null model random

networks are deemed motifs (see also sections 2.11.2 and 2.12). Usually, a subnetwork

occurrence is defined to be significant if it occurs a certain multiple of standard deviations

more often in the input network than would be expected in the set of random networks,

which is expressed by the Z-score [104, 102, 107]. Making use of Z-scores for assigning

statistical significance to subnetwork occurrences is flawed by the unsafe assumption

being made that subnetwork occurrences follow a normal distribution [104] and it was

shown that this is not always the case [108]. Statistical significance of subnetwork

occurrences might in general be assessed by computing p-values based on the distribution

of subnetwork occurrences under the null model [101, 109], which corresponds to a

non-parametric evaluation that avoids the problem of making assumptions about a

particular type of distribution.

The centerpiece of the network decompostion into motifs is the third subtask, which is concerned

with uncovering statistical differences in subnetwork occurrences. It is the statistical overrep-

resentation of subnetworks that indicates their putative role as functional meaningful building

blocks or elementary local computational circuits of their network [101, 109, 110, 99, 111, 112].

Indeed, it was shown that motifs can act as elementary computational circuits for information

processing in gene transcription networks [109, 110, 111]. A complicated interplay between

motifs and global network structure seems to exist. On one side, the statistical overrepresenta-

tion of subnetworks might be a consequence of global topological constraints (architectural

type and function of the network) [98, 113]. Conversely, global network structure might be

shaped by the presence of motifs, which stabilize dynamics [98] and thus support robust

stability of the network with regard to small-scale perturbations. A slightly modified variant

of motif detection was used in the context of anatomic brain networks to investigate structural

motifs and the instances of functional motifs contained within them [107]. A somewhat

more specialized variant of motif detection considers topological motif generalizations, larger

subnetworks with a common architectural subpattern as defined based on replications of nodes

in basic subnetworks [114]. Another network fingerprinting method that analyzes smaller

substructures of networks and that can be used for network similarity comparisons is based
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on undirected and directed graphlets [115, 116, 100, 73], which are obtained by a network

decomposition into subnetworks without assigning statistical significance to their counts, and

the corresponding graphlet frequencies and graphlet degree distributions. Motif detection was

generalized to weighted directed networks in [93].

Network modulesBD,BU,WD,WU, also known as communities, are disjoint cohesive groups

of densely connected nodes, which probably share common properties and play similar roles

within a network. The similarity of nodes is reflected in a higher probability of edges between

comember nodes of the same module than between nodes in different modules [70, 117, 118].

In a network module in the strong sense, each node has more intra-module edges than inter-

module edges [119]. Many algorithms for identifying module structure exist (see also section

2.8). Detecting modules in a network with an unknown number of present modules is inherently

subjective, depends on vaguely defined constraints and requires domain knowledge for proper

interpretation [120, 70]. Module structure was detected in the studies presented in chapters 6

and 7.

2.7.3 Macroscopic scale network characteristics

The global network characteristics on the macroscopic scale are usually highly non-trivial

functions of the adjacency matrix. On the macroscopic scale we find network properties

that summarize the network structure in its entirety. Such global network signatures provide

a parsimonious representation of a network’s functional interaction patterns. Macroscopic

network characteristics based on paths between nodes are measures of functional integration as

they indicate costs of routing of information flow within the network [2]. Small-world network

topology, which supports wiring cost efficient complex information processing, is reflected by

a combination of the transitivity measure and the characteristic path length [121]. Following,

I list relevant macroscopic scale network characteristics.

The degree distributionBD,BU or, respectively, the node strength distributionWD,WU

constitutes an elemental characteristic of a network [31, 69] that can be used e. g. to discern

network types (see also section 2.11) or to reveal the existence of network hubs [122]. The

degree distribution is given by the fraction of nodes that have degree k, for all k. Since in

directed networks edge directions have to be taken into account, the in-degree and out-degree

distributions are discerned. Alternatively, a two-dimensional joint distribution of in-degrees
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and out-degrees might be considered [31]. The strength distributions in weighted networks are

defined analogously [69].

Network densityBD,BU, also known as edge density or sparsity, is quantified as the ra-

tio of actual edges to the possible number of edges.

The average node strengthWD,WU measures the strength of interactions nodes receive

or transmit on average, i. e. the average edge weight in the network. For weighted directed

networks, the average in-strength equals the average out-strength, which in turn equals the

average edge weight in the network. Network samples were analyzed with respect to the

average node strength in the study presented in chapter 5.

The network-wide clustering coefficientBD,BU,WD,WU is the average of the microscopic

scale clustering coefficients [27] (see also section 2.7.1). Therefore, it measures the density

of triangles in the entire network, i. e. the tendency of a network to form tightly connected

groups of nodes [90]. The average node-level clustering coefficient may be disproportionately

influenced by nodes with low degree [14] and highly skewed degree distributions [31], a draw-

back that is avoided with the similar transitivity measure.

TransitivityBD,BU,WD,WU denotes the fraction of transitively closed node triplets [72, 65, 31].

It can be interpreted as the global clustering coefficient. In binary directed networks only

so-called non-vacuous triplets (one edge terminating at and another edge originating from the

center node vi: ahi = aij = 1 or aji = aih = 1) are considered and counted (denominator of

the fraction). Only non-vacuous node triplets that are additionally closed in a transitive way

with a directed edge from the first to the third node of the chain are also contributing to the

numerator of the fraction of transitive node triplets. To incorporate edge weights, a triplet

value ω is computed for each non-vacuous triplet centered on node vi [65].

The characteristic path lengthBD,BU,WD,WU denotes the average length of the shortest

paths between all pairs of nodes in the network. It is a measure of the typical separation

between two nodes and therefore of the efficiency and cost of information transmission or spread

of entities on a network, assuming that such processes tend to utilize direct, i. e. shortest, paths

[68, 31, 27]. The characteristic path length is the most commonly used measure of functional
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integration [2]. Weighted network samples were analyzed with respect to the characteristic

path length in the study presented in chapter 5.[]

The efficiency eij in the information transfer between two nodes i and j is defined to be

inversely proportional their shortest path distance ∆sp(i, j) and is given by eij = 1/∆sp(i, j).

The global efficiencyBD,BU,WD,WU is the average efficiency of a network, i. e. the average

inverse shortest path distance between all pairs of nodes [123] (also called the average con-

ductance (inverse resistance) [124]). It is argued that global efficiency is generally better at

capturing so-called small-world properties and the efficiency of parallel information transfer

than the characteristic path length [125, 123].

The local efficiencyBD,BU,WD,WU is the average efficiency of subnetworks consisting of all

nodes adjacent to a node vi, over all nodes [125, 123]. The role of the local efficiency is similar

to the clustering coefficient as it measures for every node vi how efficient the communication

between its neighbors is [123].

The radiusBD,BU,WD,WU is the smallest eccentricity (see also 2.7.1) in the network and

is given by rad = minvk∈V ε(vk) [75]. For directed networks, eccentricites take shortest paths

to and from the respective node into account.

The diameterBD,BU,WD,WU is the maximum eccentricity in the network (i. e. the longest

graph geodesic between any two nodes; see also 2.7.1) and is given by dia = maxvk∈V ε(vk)

[75]. In other words, the diameter is the greatest distance using only shortest paths between

any pair of nodes and describes the interconnectedness of a network.

In addition to the analysis loops of length three given by node triangles, in a directed

network loops of length two and their frequency of occurrence might also be considered [31].

Link reciprocityBD,WD measures the propensity of node pairs to form reciprocated (mutual)

edges and is given by the proportion of reciprocated edges between all pairs of nodes. A

different definition of reciprocity as a correlation coefficient between entries of the adjacency

matrix was proposed in [77]. Networks of the same domain seem to display similar ranges

of reciprocity values [77] and heightened values of reciprocity were observed in functional

networks [126].
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The assortativity coefficientBD,BU,WU [127, 128, 31, 14], essentially a linear correlation

coefficient, measures the level of assortative mixing (homophily) between connected nodes

according to a scalar characteristic in a network, in particular an intrinsic property of the

network nodes as given by node centrality indices like the degree (see also section 2.7.1).

Networks that are assortatively mixed according to some property are sometimes also said to

be stratified by that property. Assortative and disassortative behavior of nodes was found

to have implications for network robustness (resilience) with respect to random failure of

nodes and targeted deletion of most central nodes [129], with degree assortative networks

being robust to targeted removal of nodes, which in some contexts might be a bad thing,

e. g. due to the facilitation of epidemic outbreaks [128]. Networks that are assortative by

degree typically have densely connected cores consisting of high degree nodes, which are

surrounded by a periphery of chains of nodes with low degrees [31, 130, 122], whereas degree

disassortative networks adopt star-like structures [31]. In [129] directed assortativity measures

based on Pearson correlation for all four possible degree-degree correlations were proposed. An

extension of the node degree assortativity coefficient to weighted networks was presented in [64].

CentralizationBD,BU,WD,WU, also known as network centrality, denotes a technique for

defining a macroscopic, network-level scalar centrality quantity based on a comparison of the

difference between the value Cnc(vi) of a particular node centrality measure (see also section

2.7.1) of a structural central node vi and the respective centrality values Cnc(vk), k = 1, ..., N

of all other nodes [76, 131, 72]. Thereby, the centralization may be computed as Cen(Cnc) =∑
k (maxiCnc(vi)− Cnc(vk)).

Functional (and structural) brain networks are assumed to possess small-world network

characteristics, which associate network structure with efficient information processing and

transmission. Small-world-nessBD,BU,WD,WU is a continuous quantitative measure (as op-

posed to a categorical distinction) of the manifestation of small-world characteristics [132]. It

relates the transitivity and the characteristic path length of the investigated network with

the respective quantities obtained from an ensemble of null model networks (see also section

2.11.1). However, in [133] it was argued against the widespread belief that structural brain

networks represent small-worlds (the investigated functional brain networks of this thesis also

usually show only weak small-world characteristics).
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2.8 Network module detection algorithms

Structural analyses of networks often require a network decomposition into functionally self-

contained subnetworks [80] like the ones induced by network modules or other mesoscopic

structures like motifs [134] or connected components defined by the removal of high-degree

nodes [135], high-betweenness nodes [136] or nodes with other particular properties, e. g. [88].

The obtained subunits are not only functionally interesting on their own, using them as the

basis for subsequent anlyses might help to substantially reduce the complexity of the analysis

task. This section is concerned with the algorithmic detection of network modules (see also

section 2.7.2) by means of assigning densely interconnected, cohesive groups of nodes the same

module affiliation. For it, a large number of module detection methods are available, which

utilize different algorithmic strategies to exploit and interpret structural information inherent

to the network data [70]. Therefore, an identified network partition into modules is not

necessarily unique, and consequently different partitions of similar quality and equal legitimacy

might exist. To further fine-tune and optimize the result of a module detection algorithm,

the Kernighan-Lin algorithm [137] might be applied to the obtained network partition [118].

This algorithm attemtps to further increases the quality of the network partition by iteratively

swapping subsets of nodes or single nodes between modules. A commonly used module

structure quality function is called modularity, which quantifies the extent to which edge

densities within modules exceed the densities expected on the basis of chance (see also section

2.10). The lack of comparability of these algorithms makes it hard to decide on the most

suitable one for identifying modules in given network data [70]. Most module detection

algorithms are not deterministic and their results typically depend on specific random seeds,

initial conditions generated at random, random selections made by the algorithm at run time

and the tie-break rules adopted for their execution [138]. Consequently, different runs of an

algorithm might yield different network partitions. If for a given network multiple different

network partitions are returned by an algorithm, my strategy was to always select the highest

quality network partition as measured by the modularity statistic. Depending on available

time and computational resources a consensus clustering of different results can be generated,

which enhances the accuracy of the finally obtained partition (see also section 2.9). Very recent

approaches incorporate metadata on nodes to improve the accuracy of module detection [139].
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(a) Fruchterman–Reingold layout. (b) Kamada–Kawai layout.

(c) Fruchterman–Reingold layout. (d) Kamada–Kawai layout.

Figure 2.1 – Under the right conditions, module structure can be already evident
from network drawings. If the adjacency matrix of a network has a clear intrinsical module
structure, it becomes apparent in network plots where node positions are determined by
force-directed layout algorithms, e. g. Fruchterman–Reingold [140] or Kamada–Kawai [141].
Such layout algorithms place densely interconnected subsets of nodes together using attractive
forces while using repulsive forces to separate weakly interacting nodes (e. g. node pairs that
are connected by long shortest paths). Panels (a) and (b) show two different plots of the
same network without module structure. This network was obtained from the simulated
network with module structure shown in (c) and (d) by adding random interactions (‘noise’).
The color-coded module affiliations of nodes were given by construction.

As a remark, it is often observed empirically, e. g. in [142], that network drawing algorithms

such as force-based layout algorithms, e. g. [140], and force-spring layout based algorithms,

e. g. [141], potentially reveal the existence of module structure to some extent in the visualized

network structure. By way of illustration, figure 2.1 shows how under ideal circumstances

network modules can be identified by visual inspection of different network layouts, which tend

to automatically separate such node groups without depending on a dedicated network module

detection algorithm. Despite the criticism and caution outlined above, identification of module
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structure in brain networks represents an opportunity to gain insights into the functional

segmentation of brain areas during certain recorded states of neural processing. To analyse

functional connectivity network data with respect to their module structure I selected several

algorithms for application that have a good reputation in the network science research commu-

nity and that are based on very different algorithm design strategies. An additional constraint

for the selection of module detection algorithms is yielding interpretable results with respect

to underlying neural mechanisms. Thus, in my work I was focused solely on finding clear-cut

and unambiguous modules, which means I did not take into account hierarchical [143, 92] or

overlapping module structure [144, 145, 146], even though, by their very nature, some of the

selected algorithms are uncovering hierarchies of module structure. While the orientation of

edges might encode potentially useful functional information that should not be discarded, the

effect of edge orientation on module detection accuracy is not a priori obvious and might not

be generalizable from one network data set to another, as an edge in any direction indicates

a potential commonality of nodes by virtue of their interaction. Following this reasoning, I

also applied algorithms designed for undirected networks on symmetrized versions of directed

adjacency matrices or edge weight matrices, in which any directed edge is replaced by an

undirected one (see also section 2.2). Among other lines of research on network topology, from

research on stochastic block modeling (e. g. [147, 148, 149, 150, 151]) it is known that module

structure inferred from weighted networks might reveal latent structures that are qualitatively

distinct from the ones obtained in their dichotomized unweighted counterpart networks [39].

Module structure analyses could be gainfully augmented by analyzing the network at hand

with respect to a (multi)core-periphery structure, as module detection algorithms cannot

discern peripheral nodes from the dense modules to which they are connected [122, 130, 80].

The following concise descriptions only cover the algorithms that were used for this thesis.

The leading eigenvector algorithm of NewmanBU,WU [152, 153] is based on spectral

decomposition of the modularity matrix to express modularity (see also section 2.10) in terms

of eigenvalues and eigenvectors (cf. [147]). It forms the basis for the Leicht-Newman algorithm

described next.

The Leicht-Newman leading eigenvector algorithmBD,WD [154] is a generalization of

the spectral modularity optimization approach for undirected networks [152, 153] to directed

networks. It relies on the so-called modularity matrix B = A− P , where A is the adjacency

33



CHAPTER 2. FUNDAMENTAL CONCEPTS IN COMPLEX NETWORK ANALYSIS

matrix of the network and P contains the probability of each edge in a random network drawn

from the configuration model [155, 156, 157]. The method computes the eigenvector for the

largest positive eigenvalue of the symmetric matrix B +BT . The signs of the elements of this

eigenvector are used to divide the network into two modules and assign module membership

to nodes. In a subsequent heuristical “fine-tuning” step similar to the Kernighan-Lin algo-

rithm [137] nodes are assigned and re-assigned to any of the two modules in an attempt to

further increase the modularity of the network partition. Modules found this way are further

subdivided by repeated bisection as long as modularity can be increased.

The algorithm of Blondel et al. BD,BU,WD,WU, the so-called ‘Louvain algorithm’ [158]

(cf. [159]), is based on iterated greedy local optimization of the network’s modularity char-

acteristic (see also section 2.10). The first iteration of the algorithm assigns one module to

each node and then repeatedly and sequentially identifies for each node the gain in modularity

when removing it from its module and placing it into the module of any of its neighbor nodes.

Subsequently, the displacement that yields the maximum positive gain is then performed and

the possible displacements of the next node are considered. The first iteration comes to an

end when no further modularity improvement is possible by individual node displacements.

The nodes of every identified module are contracted into a single node and their edge weights

are aggregated to build a new network on which further iterations takes place. In these further

iterations the greedy step is repeated and modules are merged until no further improvement

of modularity can be achieved.

The fast greedy modularity optimizationBU algorithm [160] is an optimized version

of the greedy algorithm for optimization of the modularity criterion (see also section 2.10)

that was proposed in [161]. The key idea is, starting with single nodes, to repeatedly choose

and merge a pair of modules that are connected, so that in each merge step the biggest gain

or, if no increase is possible, the smallest decrease in modularity is attained. Consequently,

in each step this algorithm can only exploit local information about the module structure to

base its merges upon. The optimizations are achieved by using efficient data structures for

sparse matrices and by eliminating needless operations on the network’s adjacency matrix

during runtime. This algorithm has the reputation of being fast enough for applying it to very

large networks, however its estimations of the modularity maximum is not as accurate as the

results of other methods [138].
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The random walk algorithm of Pons and LatapyBU [162, 163] detects network modules

using a random walk process along edges to measure distances between nodes. The basic

intuition here is that short random walks are likely to stay for most of the time within a

network module, where the edge patterns are more dense as compared to inter-module regions.

The probabilities for the transition from a node vi to an adjacent node vj are only determined

by the degree of vi and define a transition matrix. Two nodes vi and vj of the same module

have very similar probabilities for a transition to a third node vk. This idea is incorporated

into the distance measure which uses powers of the transition matrix and accounts for module

membership of nodes and thus captures the module structure of the network. The problem of

finding network modules is reduced to a clustering problem by generalizing the node-node

distance to a distance between modules and using it in an agglomerative clustering approach

which computes network partitions. Finally, the partition maximizing a certain quality crite-

rion is selected as the result.

The Potts spin glass algorithmBD,BU,WD,WU reformulates the problem of module detection

as the problem of finding the global ground state configuration of an infinite range spin glass

[164, 165, 166] with the states of the N spins being equivalent to the module labels [167]. The

principle of the spin glass model is that edges should preferably connect nodes of the same

spin state, whereas nodes with different spin states should be disconnected. Respective edges

are energetically rewarded or penalized by the Hamiltonian (cost function) of the spin model,

which is the sum over all interaction energies, which depend on the spin states, i. e. module

affiliations, of the nodes of each considered node pair and the strength of their interaction.

The interaction energy of two nodes is only added if the nodes are in the same spin state. It is

positive (ferromagnetic, aligned interaction) only if the interaction strength of two nodes is

larger than expected under a given null model [118]. If their interactions strength is less than

expected under the null model, the energy is negative (antiferromagnetic, differently oriented

interaction). The equation of Hamiltonian bears a strong resemblance with the expression of

modularity (equ. 2.22) and contains the resolution parameter γ that expresses the relative

contribution from existing and missing edges to the energy (adjusts importance of the null

model term) and allows to tune the number of discovered modules in the minimum energy

partition, thus, enabling the exploration of the hierarchical organization of module structure.

It was shown that finding the spin configuration for which the Hamiltonian is minimal is
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equivalent to maximizing modularity [167]. The ground state of the Hamiltonian is found

using a simulated annealing algorithm [167].

The InfomapBD,BU,WD,WU algorithm [168] finds modular structure with respect to flow

and is based on the idea that the problem of module structure identification can be turned into

an equivalent coding problem7, where a network partition is sought that yields a minimum

description length of a random walk across the network structure, which is given by the ‘map

equation’ objective function [170]. The idea of the ‘map equation’ is using Huffman codes

[171] for an optimal two-level description of the random walk, which is obtained by differently

labeling regular important structures (modules) and insignificant details (nodes in the modules)

that are encountered by it. Whenever the random walk transitions into a different module,

where it likely has a long persistence time, a unique binary codeword will be used for the

encountered module in the description of the random walk. The lengths of Huffman codewords

is derived from the visit rates of the structures, with frequently encountered structures having

short codewords. The nodes that are encountered by the random walk process within a

module also get unique codewords in the description of the random walk, but these are

much shorter than the module codewords and they are reused among different modules to

compress the description. This ‘network map’ resembles somewhat geographic maps where

different cities have mostly unique names, but share a large number of street names. Thus,

finding an optimal code that describes the random walk solves the dual problem of finding the

regularities and important structures of the network. To minimize the ‘map equation’ a certain

number of modules have to be used (the description length associated with transitions among

modules increases with the number of modules, whereas the description length associated

with the movements within modules decreases with the number of modules) and it has to

be determined which nodes belong to which modules. Given a network partition, the ‘map

equation’ yields the lower bound for the description length, without actually generating the

description code. Whereas modularity accounts for the relationships between any two nodes,

the ‘map equation’ accounts for the way local interactions induce a system-wide network flow.

As a result, optimization of these quality functions uncovers different module structures. The

optimization of the map equation may be carried out by combining a greedy search with

a simulated annealing step or by using an adapted variant of the fast greedy modularity
7Minimum description length statistics is concerned with the duality of data compression and extracting

patterns within this data. The more the data can be compressed, the more can be learned about its regularities
[169].
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optimization technique of Blondel et al. (see above) [170].

2.9 Consensus clustering

Consensus clustering is a method for integrating different related network partions into a

single one, while enhancing trends and consistent features in the partition data and removing

or smoothing out noise in the module assignments. Such partitions might be obtained from

different runs of a module detection algorithm or from different network configurations at

different time steps. In this work, consensus clustering is primarily used for dynamic module

structure analysis in small and dense EEG-derived networks (see also chapter 7) as an ap-

proach to simplify the amount of generated network partition data and to extract trends in

the network module structure time course [138]. In essence, a consensus network partition

of snapshot networks in a given time window accounts for the history of the network system

and constitutes a summary of its time-evolving module structure in either the vicinity of

pre-selected isolated time frames corresponding to specific network snapshots or in snapshot

networks of several overlapping time windows that cover the entire network evolution. The

selected time window length, i. e. the number of combined partitions is important. If too

few partitions are combined, their consistent features might not be sufficiently extracted. If,

however, the selected time window is too broad, time-specific meaningful features of network

module structure are also removed by the smoothing associated with the procedure. Therefore,

one should strive for a balanced approach and avoid merging network partitions referring

to a time range that is much broader than the natural time scale of the network evolution.

Identification of a meaningful time scale [172] for the network evolution usually requires prior

knowledge and exploratory data analysis. Snapshot time frames need not be equidistant to

each other and the number of combined snapshot networks, i. e. the width of time windows,

along the network sequence might be chosen to vary.

At the heart of the methodology proposed in [138] is the so-called N ×N symmetric consensus

matrix C , whose entries Cij store the number of partitions in which nodes i and j are comember

nodes of the same module, divided by the number of partitions, which contain both nodes.

As said before, in the context of this thesis nodes in the functional connectivity networks

correspond to brain recording sites and therefore their number remains static over time. The

partitions used for the construction of C are obtained from applying a module detection
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algorithm to a number of snapshot networks8 at different time steps. This module detection

algorithm can be designed to handle either binary or weighted networks. Nodes that often

share the same module affiliation get relatively large entries in the consensus matrix, while

nodes at the boundary of modules that are often misclassified due to interaction noise are

linked by low weights in C . In a subsequent filtering step, all entries Cij with a weight below

a threshold τ are set to zero. Nodes that would become disconnected due to this filtering

keep their largest entry in C . Then a module detection algorithm for weighted networks is

applied to the consensus matrix to obtain a new set of partitions. If the newly obtained set of

partitions is still heterogeneous, a new consensus matrix is constructed from this new set of

partitions and the procedure is iterated. The iterations are stopped if the partitions obtained

from a consensus matrix C are homogeneous, which means that C has a block-diagonal

structure with entries of weight of (almost) 1 for nodes of the same block and entries of weight

of (almost) 0 for nodes of different blocks. The convergence of entries in C usually occurs

after only a few iterations of the procedure.

2.10 Measures for module structure quality assessment

For many applications obtaining a natural partition of the node set into groups of well in-

terconnected nodes provides crucial phenomenological or functional information about the

underlying system (cf. [15]). This suggests the importance of making a precise distinctions

about ‘clear-cut’ high quality or ‘weak’ low quality network partitions. Naturally, the quality

and definiteness of identified network partitions depends on the local topological context of

clustered nodes and single modules given by the spatial distribution of edges, the heterogeneity

of edge density and the technique used to uncover partitions. Module structure quality might

also depend on correlated metadata on nodes, if available, which is not considered here [139].

Different network partitions might be compared with each other, using the module preservation

and quality measures described in this section. Following aspects of module structure quality

might be assessed: Module structure preservation can be quantified with cluster resemblance

measures (ratio of correctly classified nodes, van Dongen metric, Rand index, Jaccard index),

information theoretic measures (variation of information, mutual information), edit distance-

based measures (Hamming distance between adjacency matrices, partition edit distance)

and measures from statistics (Cohen’s Kappa). Module structure quality and definiteness
8To improve module detection results in a single network instance, the described procedure might be applied

to several of its partitions obtained from different runs of one or several module detection algorithms.
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of obtained module structure can be assessed by topological measures (modularity measure,

performance measure, coverage, number of disconnected node pairs) and measures assessing

the clustering validity, i. e. the fit of node–module assignments based on structural similarity

and equivalence of node pairs (overall average silhouette width).

The ratio of correctly classified nodes is obtained by comparing the network partition

yielded by a particular module detection algorithm with another (benchmark) classification of

nodes. It measures the ‘goodness’ of a partition simply by counting misclassified nodes. To

compute this percentage, module labels in the different network partitions have to be matched

(see also chapter 3 section 3.2). This approach causes problems when the number of modules

in both partitions is different, e. g. when modules in one partition might have been separated

into several modules in the other partition. In this case, only one of separated modules can

be matched to their counterpart in the other partition. Consequently, the ratio of correctly

classified nodes will be greatly reduced by virtue of this split, even though a large fractions of

the same node pairs are still clustered together. This situation is handled more robustly by

the Rand index that is described next.

The Rand index [173], one of the most commonly used partition resemblance measures

[174], compares two different partitions PA and PB of the same node set on the basis of

counting and comparing classifications of pairs of nodes in both partitions. Thereby, it does

not make use of topological information, i. e. adjacency information of the network. The Rand

index is given by the number of identically classified comembership and non-comembership of

node pairs normalized by the total number of node pairs

R(PA,PB) = ρ11 + ρ00
ρ11 + ρ00 + ρ01 + ρ10

(2.9)

where ρ11 (true positives) represents the number of node pairs that are comembers in both,

PA and PB, and ρ00 (true negatives) denotes the number of node pairs that are separated

and assigned to different modules in PA and PB. There are two more types of classified

node pairs that represent disagreement. More specifically, the number of pairs of nodes that

are assigned to different modules in PA but are placed in the same module in PB (ρ01, false

positives) and the number of pairs of nodes where the situation is the opposite (ρ10, false

negatives). In practice the Rand index does not necessarily range over the entire [0, 1] interval

and instead often concentrates in a small interval close to 1. Therefore, it might be adjusted
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for chance assignment of modules [175, 176, 174]. The adjusted Rand index is given by

AR(PA,PB) = R(PA,PB)− E[R]
1− E[R] (2.10)

The Rand index is a measure of similarity, which can be easily converted to a measure

of distance between two network partitions by taking the one-complement [173]. This distance

is a metric on the set of all clusterings of a given set of nodes

dR(PA,PB) = 1−R(PA,PB) (2.11)

The Jaccard index is a similarity measure, which compares network partitions and the

extent to which their module assignments overlap. It is based on counting pairs of nodes

in which both partitions agree or disagree in a way similar to the Rand index (see above)

[177, 176]. The Jaccard index is given by

J(PA,PB) = ρ11
ρ11 + ρ01 + ρ10

(2.12)

where, as before for the Rand index, ρ11 denotes the true positives, ρ10 denotes the false

negatives and ρ01 denotes the false positives. The Jaccard index can also be easily transformed

into a distance function (dissimilarity measure) by the one-complement, which measures the

dissimilarity between two network partitions

dJ(PA,PB) = 1− J(PA,PB) (2.13)

Other similarity measures for binary data based on ρ11, ρ00, ρ01, ρ10 can be found in [178].

The variation of information compares two network partitions of N nodes into mod-

ules, PA = {MA
1 , ...,MA

K} and PB = {MB
1 , ...,MB

L}, by measuring the change in their

information content [176]. It is a true metric on the space of network partitions and can

consequently be used to calculate the distance (i.e. dissimilarity) between two partitions of

the same network data or between the module structure of two different but equally sized
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networks (i.e. for comparing members of a functional connectivity network sample). Variation

of information is not using topological information of the input network as it relies only on

module affiliations of nodes, i.e. the information on the subsets of nodes that are grouped

together. Thereby, it does also not depend on the ordering of assigned module affiliation

labels. To derive this network partition distance measure, two quantities are established: the

amount of information with respect to node assignments contained within each partition and

the amount of information one partition has about the other. First, for each partition PA and

PB a discrete random variable is defined that models the module affiliation of a node picked

uniformly at random from the network’s N nodes. The probability mass functions associated

to these random variables are Pr(k) = Nk/N and Pr(l) = Nl/N , giving the probability of

a randomly picked node being member of module MA
k consisting of Nk nodes or module

MB
l consisting of Nl nodes, respectively. The entropy H associated with a network partition

quantifies the uncertainty of node assignments (the uncertainty of the module of a randomly

picked node), that is, the information needed on average to describe the node assignments in

each partition. The entropy of node assignments in partition PA is calculated as

H(PA) = −
K∑
k=1

Pr(k) log Pr(k) (2.14)

The calculation for H(PB) is analog. Pr(k, l) is the joint probability distribution of the two

random variables associated with PA and PB

Pr(k, l) = | M
A
k ∩MB

l |
N

(2.15)

It specifies the probability that a node is at the same time assigned to moduleMA
k in PA and

moduleMB
l in PB. Then, the reduction of uncertainty of node assignments in one partition

due to knowledge about the other partition is given by the mutual information I [179]

between the associated random variables

I(PA,PB) =
K∑
k=1

L∑
l=1

Pr(k, l) log Pr(k, l)
Pr(k)Pr(l) (2.16)

Only if the two network partitions to be compared are equal, the following holds

I(PA,PB) = H(PA) = H(PB) (2.17)

Finally, the normalized variation of information is given by
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VI(PA,PB) = H(PA) +H(PB)− 2I(PA,PB)
log N

(2.18)

The numerator represents the information about PA that is lost and the information about

PB that is gained when partition PA is changed or converted to partition PB . Normalization

by dividing by log N ensures that VI is bounded to the intervall [0, 1] [179].

The van Dongen metric on the space of partitions of the same set of nodes is based

on set matching and is given by [180, 176, 179]

d(PA,PB) = 2N − pn(PA →PB)− pn(PB →PA) (2.19)

Again, PA and PB denote the two partitions to be compared, which consist of a number

of modules k and l, respectively. N denotes the number of nodes in the network and

pn(PA →PB) is the projection number of PA onto PB, which reflects how close PA is to

being a subpartition of PB. The projection number measures the amount of module overlap

in both partitions and is defined as

pn(PA →PB) =
∑
k

MA
k ∈PA

max
l

MB
l ∈PB

| MA
l ∩MB

l | (2.20)

The partition edit distance quantifies topological alterations of intra-module edge patterns.

For each pair of corresponding, matched modules in PA and PB the Levenshtein edit distance

[181, 182] of intra-module edges is computed, which is the cost for their optimal alignment.

For it, the adjacency matrix for each module is vectorized and typecasted to a string in the

alphabet {0, 1}. The Levenshtein distance is the minimum number of insertions, deletions and

substitutions to make both strings equal. Single edit distances for each pair of corresponding

modules are added up to yield the partition edit distance. Alternatively, Kappa coefficients

could be computed to quantify the inter-rater agreement of intra-module edge patterns (see

also section 2.10).

The modularityBD,BU,WD,WU measure [154, 148, 70, 183, 184] quantifies the degree to which

a given network partition into modules is clearly delineated by means of accounting for
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the magnitude of local edge densities. Networks possessing a strong module structure have

statistically surprisingly high intra-module edge densities and low inter-module edge densities,

thus yielding high values of modularity. It is defined as

Q = (fraction of intra-module edges)−

(expected fraction of such edges if placed at random)
(2.21)

For binary undirected networks modularity is given by the following equation

QBU = 1
2|E|

∑
ij

(Aij −
κiκj
2|E| ) δ(ci, cj) (2.22)

where κi denotes the degree of node vi and ci denotes the module of node vi. The Kronecker-δ

function is defined as usual, i. e. it is unity if and only if both arguments are equal and it is

zero otherwise. Thus, QBU quantifies the existence of each edge inside a module by comparing

it with its expected probability in an equivalent null model network, which could be generated

by the configuration model (see also section 2.11.2). Equation 2.22 also states that edges

between large degree nodes are not ‘surprising’ and add only little to the modularity of a

given network partition, with the rationale being that in a modular network edges are not

homogeneously distributed since the density of edges inside modules is higher than expectated

under random edge placement. Modularity for binary directed networks quantifies ‘surprising’

edges with respect to the in-degree and out-degree information of their tail and head nodes,

e. g. edges that fall between pairs of nodes where the tail-node has small out-degree and the

head node has small in-degree. It is defined analogously to equation 2.22 as follows

QBD = 1
|E|

∑
ij

(aij −
κouti κinj
|E|

) δ(ci, cj) (2.23)

Modularity for weighted directed networks can be calculated as [185]

QWD = 1
w

∑
ij

(
wij −

ζouti ζinj
w

)
δ(ci, cj) (2.24)

where w =
∑
ij wij is the total weight of all edges in the network under consideration. The

definition for modularity in weighted undirected networks can be found e. g. in [185, 184].

Since modularity might occasionally have increased values in random networks [179], for
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module structure quality assessment it is a good strategy to not rely on the modularity

characteristic alone. It was also found that modularity optimization, while it works well in

many situations, suffers from a resolution limit [186], which means that a maximum modularity

partition can fail to resolve modules smaller than a certain size. In particular, if the number

of internal edges of an identified module is smaller than about
√

2|E|, then the identified

module might be an artificial merger of two or more sufficiently smaller modules. In the worst

case, if all modules of a network are ‘fuzzy communities’ that maintain a large number of

inter-module edges, the identified supermodule could in principle have a size of the order of

the size of the whole network. Incorporating a resolution parameter into the optimized quality

function is a way to address the resolution limit [167, 118]. Optimization of modularity is a

nondeterministic polynomial-time complete (NP-complete) problem [187] and is therefore

computationally intractable9, i. e. there is no hope for designing an fast and exact algorithm

that computes maximum modularity partitions for all inputs. As a consequence and unless

P = NP, any polynomial-time algorithm has to make use of heuristics. On the other hand,

the result of the NP-completeness of modularity maximization can be seen as a justification

for using approximation algorithms. To overcome these limitations in weighted networks, an

exact procedure for network size reduction that preserves modularity and allows for a more ex-

haustive search of the network partition space by heuristic modularity optimization algorithms

was proposed [185]. In addition to these difficulties, it was found that the modularity function

exhibits degeneracies as it admits an exponential number of distinct high-scoring, near-optimal

solutions and typically lacks a clear global maximum [188]. Consequently, analysis of real-world

network partitions obtained by modularity maximization warrants cautious interpretations

and the output of several runs of an algorithm should be compared if feasible in practice. It

also implies that results of different module structure identification algorithms are not unlikely

to differ from each other. These issues are more pronounced in larger networks and in binary

networks [15]. On the other hand, the exponential number of near-optimal solutions provides

an explanation for the good performance of modularity optimization in practice, despite its

NP-completeness: good partitions are not hard to find, even though the optimal solution

is obscured [188]. A similar behavior is expected for other quality functions and identifica-

tion techniques, too [188, 186]. A local version of the modularity measure was proposed in [189].

The performance measureBU is given by the fraction of node pairs that are correctly
9No polynomial-time algorithm has yet been discovered for an N P-complete problem and also it has not

been proved that no polynomial-time algorithm can exist for any such problem [34].
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‘interpreted’ by an obtained network partition with regard to the network adjacency informa-

tion [70]. It takes into account the node pairs that are assigned the same module and that

also interact via an edge and those node pairs where both nodes are classified to belong to

different modules that are not connected by an edge. For the performance measure only the

presence of an interaction is relevant as it indicates a putative common role of nodes and a

less unlikely common module affiliation. Since edge directions are ignored, directed networks

have to be symmetrized. The performance measure is given by

Per(P) = | {(i, j) ∈ E ,M
(vi) =M(vj)} | + | {(i, j) /∈ E ,M(vi) 6=M(vj)} |

N(N − 1)/2 (2.25)

where M(vk) denotes the module of node vk. In other words, the performance measure

penalizes edges that are ignored by a given network partition, i. e. if both nodes of an edge are

assigned to different modules and it penalizes edges implied by the network partition that are

not present in the network, i. e. if nodes with the same module affiliation are unconnected.

CoverageBD,BU denotes the ratio of the number of intra-module edges by the total number

of edges [70]. The motivation behind it is the following: in an ideal module structure, e. g. if a

network is fully fragmented into isolated connected components with no inter-module edges

linking nodes of different connected components, there would be little ambiguity with respect

to the (non-hierarchical) module structure. In this case all edges are intra-module edges and

the value of coverage is one. Thus, coverage measures the goodness of the obtained network

partition into modules in dependence of the quality of the network’s inherent module structure.

The overall average silhouette widthBD,BU,WD,WU quantifies the disbalance between the

average intra-module dissimilarity of all nodes and their smallest average inter-module dissimi-

larities. It equals the average over all individual silhouette values s(vi) [190] of each node vi,

which measure how well each vi is classified with respect to the network partition at hand. For

it, the average intra-module dissimilarity a(vi) is compared with the minimum of its average

inter-module dissimilarities b(vi) (the average dissimilarity of vi to its second-best module).

In a high quality network partition a(vi) values are small and b(vi) values are high, which

means that node vi is similar to its comember nodes, whereas all other modules consist of

dissimilar nodes. Using an appropriate node dissimilarity measure to compute a(vi) and b(vi)
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the silhouette of a node is given by

s(vi) = b(vi)− a(vi)
max{a(vi), b(vi)}

(2.26)

Consequently, silhouette values close to 1 indicate good module assignments, whereas silhouette

values close to 0 and close to −1 indicate ambiguous module affiliations and misclassification,

respectively. To obtain a characteristic for a network partition in its entirety the overall

average silhouette width is computed. An example silhouette plot is presented in figure 6.5.

To determine node dissimilarity in the absence of spatial embedding of network data and

information on contextual similarity of nodes, a structural equivalence10 measure similar to

ones presented in [191] could be used. Structural equivalence measures consider adjacency

relationships between neighboring nodes, i. e. common neighbors that pairs of nodes share.

This corresponds to a common theme of data clustering, where similarity between objects can

be related to the number of features they share [192]. This notion of similarity between nodes

corresponds also to a well-established result in sociology, that people are increasingly likely to

be friends, the more commonalities they share [193]. One possible dissimilarity measure and

the one I used for this thesis accounts for the direction of edges between shared neighboring

nodes (cf. [70]). It takes on the following form

D(vi, vj) =
√∑
k 6=i,j

[Aik −Ajk]2 + [Aki −Akj ]2 (2.27)

Its suitability depends on the network data and the actual application, due to the way this

measure determines dissimilarity of nodes: Any node vm connected to only either vi or vj
increases the dissimilarity. Any shared neighboring node vm linked by the same kind of edge

to both, node vi and vj doesn’t affect the value of D. However, any shared neighboring

node vm linked by different kinds of edges to vi and vj contributes to a further increase of

dissimilarity. Consequently, D might take on large values for nodes of high degree, even

if they share a large number of neighboring nodes, since high-degree nodes are more likely

to also have a larger number of neighboring nodes they don’t share. In this situation the

resulting dissimilarity value D might be even larger than for some nodes of small degree,

that have only a small overlap of neighboring nodes and at the same time have only few

neighboring nodes they don’t share. Depending on the application this emphasis on the
10Structurally equivalent nodes share the same neighboring nodes to a large extent. Regularly equivalent

nodes do not necessarily have to share neighboring nodes, but their neighboring nodes are themselves similar
[31], therefore two nodes are similar to the extent that their neighbors are similar.
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direction of edges linking neighboring nodes (and not the fact alone that two nodes share a

certain number of neighbors) might be an undesirable trait of the proposed distance measure

D. The similarity/dissimilarity of nodes could also be established by other means, e. g. by the

topological overlap measure [143, 62], m-th order generalized topological overlap measure [194],

Jaccard distance between node neighborhoods Γi and Γj [70], the measure based on regular

equivalence and structural equivalence proposed in [191], correlations between rows or columns

of the adjacency matrix [31, 70], correlations of time-variant node properties (cf. [195]), cosine

similarity of node adjacency vectors [31, 192, 70], the distance of Adamic–Adar [193], ‘most

reliable route’ similarity [196] or measures based on edit distances or the Hamming distance

of node adjacency information [31].

For each module the number of disconnected nodesBD,BU,WD,WU can be interpreted

as a simple measure of fragmentation. Total or median numbers accounting for all modules

can be used for comparing entire partitions.

Cohen’s Kappa coefficientBD,BU [197] can be used as a topological measure of network

module structure similarity by means of quantifying the agreement between edge patterns

given by corresponding adjacency matrix entries.

2.11 Network models

Network models are used in this thesis primarily as null models to contrast regularities in

investigated real-world networks with random network structure in the absence of functional

constraints. However, it was found that network topology might be classified into four different

topological classes [198, 199], which cannot be completely reproduced by the commonly

deployed network models (Erdös–Rényi random networks with uniform edge probability

distribution [200, 201], Barabási–Albert preferential attachment (scale-free, i. e. power-law)

networks [28, 201, 143] and random networks with prescribed degree sequence (see also section

2.11.2)). Of these network models, the random network model with prescribed the degree

sequence is of particular relevance for the analysis of functional brain networks (see also sections

2.11.2 and 2.12). As geometric constraints can give rise to unique subnetwork distributions,

random geometric graphs (edges connect pairs of nodes that are proximal in space [202, 115]

or interactions decay with the distance between nodes [203]) might be used as an analysis tool

for discerning whether the abundance of certain subgraphs is caused by such purely geometric
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constraints or whether they arise due to additional optimizations and characteristics of network

structure design. Small-world networks [27, 204] provide an appealing description of brain

networks due to their inherent incorporation of integration (high clustering coefficient) and

segregation (short characteristic path length) that can be achieved with low wiring costs [124].

These network models are also interesting from the perspective of studying the resistence of

network structure to random failures and targeted attack on nodes [31] (cf. [205, 206]).

2.11.1 Network null models

Null models correspond to a null hypothesis and are used to analyze patterns and test

hypotheses [207]. A null model is broadly defined as a pattern-generating model that is based

on constrained data randomization [208]. For the construction of the null model, certain

aspects of the observed data are preserved while others are randomized and vary stochastically

to create new patterns in the null model data [209, 210, 211, 212, 213, 214, 215, 128]. Network

null models like the network models and random graph models of the previous sections are

important for network analysis to validate results using surrogate-assisted approaches (see also

section 2.12), since identified network characteristics might be the product of random effects

and contingencies in the network structure or are simply caused by mechanistic effects of basic

network properties. Consequently, distinctly nonrandom characteristics of network topology are

linked to functionally important substructures. Therefore, real-world network measures should

be compared with ‘default’ values identified in appropriate null model networks. Thereby, a

network null model is needed to construct a reference system that contrasts such topological

regularity with random effects that also influence the network topology. Particularly, the

effects of any process that created structures with functional relevance in the networks have

to be reversed during the generation of the null model networks. Choosing a suitable null

model that fits given network data is an open problem. In particular, it is difficult to decide

which low-level topological properties of the network data should be captured by the null

model networks while at the same time the connectivity between nodes vary stochastically.

Imposing too many constraints on the null model will reduce its statistical power [122]. Thus,

type II statistical errors are increased. Imposing too few constraints on the randomization

procedure that yields null model networks increases false positive discoveries, i. e. type I errors.

The problem of balancing type I and type II errors is inevitable in null model analysis and

statistical tests in general [207]. Thereby, it is difficult to assess whether a particular null

model sufficiently captures the range of patterns specified or implied by the null hypothesis
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[207]. Consequently, using an inappropriate null model in the statistical test might introduce

a bias in the assignment of statistical significance [216, 217]. The null model widely employed

for network analysis preserves the in-degree and out-degree sequence. To ways for constructing

such null model networks are presented in the following section.

2.11.2 Random networks with prescribed degree sequence

Both degree sequences determine the topology of a directed network by imposing constraints

on potential locations of edges connecting specific pairs of nodes and therefore it ultimately

affects many of the network’s properties. Thus, the in-degree and out-degree sequence is a

basic and important attribute of a directed network which consequently should be accounted

for in the generation of reasonable null model random networks [216, 210, 213]. Incorporation

of the vertex degree sequences into the null model yields a statistical test for significant

subnetwork counts (see also section 2.7.2) with a ‘good’ amount of restrictiveness so that not

too many false positive results nor too many false negative results are expected. The associated

random networks are usually either generated by the configuration model (‘stubs-pairing’)

[155, 157, 218, 219, 220] or by a Markov chain Monte Carlo (MCMC) method (‘edge-switching’)

[213, 101, 157, 214, 221].

The basic idea of the process of drawing networks from the configuration model ensem-

ble is to consider the in-degrees and out-degrees of nodes as ‘stubs’ that have to be randomly

paired by connecting them with directed edges. For it, a node is chosen uniformly and

repeatedly from the set of nodes which have not used up all their outgoing edges and another

one is randomly chosen from the set of nodes that can still accept ingoing edges, both nodes

are linked by an directed edge. This procedure is performed until all nodes have acquired

all of their connections as specified by their degree sequence. In practice, the configuration

model approach suffers from the possible introduction of multiple edges and loops into the

randomly constructed network, thereby creating multigraphs (multiple parallel edges in the

same direction) or pseudographs (multigraph with loops), which provide an undesired model

for functional brain networks, which do not exhibit these properties. Rejections of selected

node pairs that would be required to avoid the addition of degenerating edges are unfortunately

problematic on their own. A sampling bias would be introduced if following the rejection of a

multi-edge an alternative node pair is chosen at random from the set of available nodes with

free ‘stubs’ [219, 214]. This modified strategy would be equivalent to an extended exploration
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of the search space in the neighborhood of non-simple partial directed networks, causing

the final simple network to be drawn non-uniformly from all possible ‘stub’-pairings. The

algorithm might also be modified to reject partial networks upon introducing a degenerate

edge. It then uniformly samples simple networks with prescribed degrees but its acceptance

rate would be too small to apply it to real-world problems [219]. Nevertheless, numerical

experiments have revealed that the modified configuration model algorithm that discards

degenerating edges and instead selects a new node pair can be acceptable in practice despite

of its sampling bias [157]. The non-Markov chain Monte Carlo method ‘go with the winners’

that also constructs networks with prescribed degree sequences generates statistically correct

samples but is too inefficient for generating large null model network ensembles [157, 222].

The Markov chain Monte Carlo method (MCMC) ‘edge-switching’ algorithm rewires an

input network by means of a series of random reconnections of edges. Repeatedly, two di-

rected edges (vk, vm) and (v ′k, v ′m) are selected uniformly at random and their head nodes are

exchanged to yield the edges (vk, v ′m) and (v ′k, vm). If this would generate multiple edges or

loops, the edge switch is not performed and a new pair of edges is randomly selected. These

edge switching attempts are repeated Ω |E| times, where Ω is a (‘mixing’) parameter which has

to be chosen large enough to allow the underlying Markov chain to converge to its stationary

distribution. In the course of this, rejected edge switches, which correspond to the transition

from a network to itself, are also counted. For the selection of Ω values and the number

of randomized network instances I refer to section 3.1.3. With respect to functional brain

networks the resulting randomization disintegrates network structure with functional relevance

that represents the recorded neural processing. The MCMC edge-switching algorithm is

recommended for network motif detection as its application yields a good trade-off between

speed and accuracy (uniform sampling of random graphs) [157].

2.12 Surrogate-assisted network analysis

To assess if observed network characteristics are relevant and reflect true functionally meaningful

properties of the underlying network topology or whether they are caused by random processes

and simple mechanistic effects that stem mainly from very basic topological properties, like

the degree sequence or edge density, surrogate-assisted analysis [223, 224, 132, 209] has to be

performed. Central to surrogate-assisted analysis approaches is the utilization of topological

information obtained from appropriate null model network ensembles (see also section 2.11.1).
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Essentially, surrogate-assisted analysis looks whether null model networks can generate the same

patterns and characteristics that were observed in the empirical networks. After generation

of a large sample of hundreds or thousands of null model adjacency matrices, the patterns

that each of them contains have to be quantified with the network characteristics of interest.

The obtained null model network characteristics can be used in several ways. A common

approach is to normalize the values of real-world network characteristics relative to the null

model ensemble, i. e. by dividing the real-world network characteristics with their mean value

in the null model ensemble [224, 225]. Obviously, this ratio is larger than one if a topological

characteristic is larger and more pronounced in the real-world networks as compared to its

surrogate counterparts. Another approach consists in obtaining the distribution of the network

characteristic under the null model to calculate p-values for assessing statistical significance

(see also section 3.1.3).

Surrogate-assisted analysis might be influenced by network size effects. In particular, simple

randomization schemes for large networks potentially yield null model network ensembles

whose topology will almost always be deviating significantly from the associated real-world

networks, causing the underlying null hypothesis to be rejected regardless of the data [207].
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Chapter 3

Contributions to network science
methods and the multi-level
analysis of functional brain
networks

For the purposes of my research on the analysis of functional network data I developed a

network toolbox in the form of several R packages and additional Matlab code. In this

chapter I present my methodological contributions to the multi-level analysis of functional

brain networks. They are roughly illustrated in figure 1.1, left column, and consist of (1)

development of analysis concepts by combining state-of-the-art methods, (2) complementation

of these concepts by own application-tailored approaches, (3) conduction of the network

analysis parts of application studies and (4) visualization of the results. To provide additional

context for the topics of this chapter, I begin with an overview that relates my methodological

developments to the scientific problems and the processing steps of the application studies,

which are then presented in the following chapters.

Section 3.1, “Motif detection in samples of binary directed networks with pairwise differ-

ent node labels”: The presented method is an extension of classical network motif analysis. It

accounts for the case of network samples and it includes pairwise different node labels into

the definition of a motif. This method was applied in a study of functional brain connectivity

in patients with major depression vs. a healthy control group during neural processing of
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painful electrical stimuli, where characteristic patterns of functional interactions were to be

identified and compared among groups. For this data my analytical approach for assigning

subnetwork significance enables a fast discrimination between functional networks of both

groups, whereas my network randomization-based approach enables a more precise resolution

of sample-specific network motifs. The involved processing steps are illustrated in figure 3.1a

and the corresponding methodological application study is presented in chapter 4 on page 84.

Section 3.2, “Cost optimal matching of module affiliation labels and a fuzzy matching ex-

tension”: Module structure analyses in network samples leads to the problem of matching

module affilition labels of nodes among different network partitions, so that similar modules

will have the same assigned labels (identities). The presented algorithms solve this problem

by exploiting module similarity to perform cost-optimal assignments. They were used in all

studies in which module structure was identified. They are presented in chapters 6 and 7.

A concept that combines state-of-the-art techniques for the network sample-specific analysis

of weighted edge-complete networks was devised. It entails quantification of topological

characteristics with relevance for the clinical research question (weighted clustering coeffi-

cients, average node strength, characteristic path length; see also sections 2.7.1 and 2.7.3)

and surrogate-assisted statistical analysis of the results, which is often not reported in the

literature on network analysis (see also section 2.12). This network analysis concept was used

to investigate whether an expected reconfiguration of functional brain network topology in

response to medical treatment (lithium therapy) took place in HIV-infected subjects with

diagnosed cognitive impairment. The application study is presented in chapter 5 and the

corresponding methodological overview is shown in figure 3.1b.

Section 3.3, “Comprehensive analysis of module structure quality”: A comprehensive module

structure analysis concept was developed that goes beyond the typical analysis schemes re-

ported in the literature. I combined several different popular network module identification

algorithms (e. g. algorithm of Blondel et al. , Infomap, Potts spin glass-based algorithm, leading

eigenvector algorithms) for unweighted networks with many different kinds of measures of

module structure quality, similarity and preservation (e. g. modularity, variation of information,

intra-module edge pattern edit distance, Rand index, ‘split-join’ distance). This analysis

framework was assembled for the purpose of evaluating the effects of the new large scale
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Figure 3.1 – Flow chart of the data processing steps and results for two applica-
tion studies. Data acquisition and connectivity analysis (gray rectangles) were performed
by others. (a) Motif detection in network samples with node labels (chapter 4). (b) Charac-
terization of network sample topology (chapter 5).
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Figure 3.2 – Flow chart of the data processing steps and results for two applica-
tion studies. Data acquisition and connectivity analysis (gray rectangles) were performed
by others. (a) Module structure detection and quality analysis in lsGCI functional brain
networks (chapter 6). (b) Dynamic module structure analysis (chapter 7).
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Granger (lsGCI) approach (see also appendix B.1.1) on network edge patterns. This approach

enables the computation of spatially very highly resolved functional interactions at the cost

of an information loss with respect to the underlying interaction patterns. Thereby, the

general problem of quantifying the effects of edge pattern alterations was shifted to the

quantification of module structure quality and preservation. For this evaluation an extensive

simulation study using ground truth networks with known module structure was performed.

Within this framework, it was my task to design the needed network simulation tools, which

are presented in section 3.4. Furthermore, module structure and the associated functional

segmentation was identified in spatially highly resolved functional brain networks that were

obtained from resting state1 fMRI recordings using the lsGCI approach. The flow chart for

the respective study is shown in figure 3.2a and the study is presented in chapter 6 on page 103.

Section 3.4, “Simulating networks with pre-defined module structure”: The presented al-

gorithm simulates networks with ground truth module structure. The resulting networks

possess a constrained topology so that they can be used for the simulation of MVAR time

series (see also appendix B.2). The parametrization of the simulation allows to tune several

quality characteristics of the module structure. Therefore, the algorithm could also be used

to generate benchmark networks for testing module structure identification algorithms. The

algorithm was used for the study presented in chapter 6 on page 103.

Section 3.5, “Computing edge weight thresholds using a multi-objective optimization approach”:

Defining optimal edge weight thresholds to filter potentially spurious interactions and to

binarize networks is still an open research problem. The presented approach allows to com-

pute thresholds so that the resulting non-complete binary or weighted networks exhibit their

most strongly marked module structure. The algorithm was applied in the application study

presented in chapter 7 on page 129.

Section 3.6, “Extraction and visualization of time evolving module stucture”: For success-

ful dynamic module structure extraction several available methods were combined with my

own approaches. The clinical background of the corresponding application study were EEG

recordings of subjects during a single-leg balancing task on a initially stable surface that

abruptly becomes unstable. From these EEG recordings time-variant connectivity networks
1Studies have shown that, unexpectedly, spontaneous brain activity at rest is not idle or unstructured,

e. g. [226, 227]. Instead, the activity of functionally related brain regions at rest is organized and correlated.
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were computed using time-variant dDTF (see also appendix B.1.3). The execution of cognitive

tasks is associated with time-varying changes of the functional connectivity structure. Thus,

the working hypothesis of this study is that dynamic module structure in functional brain

networks reflects the neural processing during optimization of balance control. The data

analysis concept entails my method for network thresholding (section 3.5), module structure

detection in weighted networks, my cost optimal module label matching approach (section

3.2) and visualization of the results using Sankey diagrams that illustrate the ‘flow’ of nodes

through the modules. The network analysis concept was extensively evaluated and continually

modified to cope with the noisy nature of the data and to reveal their underlying patterns.

The concept-related flow chart is represented in figure 3.2b. The application study is presented

in chapter 7.

In the following sections I describe my network analysis methods in more detail.

3.1 Motif detection in samples of binary directed networks

with pairwise different node labels

Analysis of complex systems is most commonly performed on single network instances of

the investigated system, which can be problematic as isolated instances are usually not rep-

resentative of the system itself. To take account of this situation I present an extension

of the standard approach for network motif detection in single, directed networks without

node labeling to the case of a sample of directed networks with pairwise different node labels.

A network sample is obtained by pooling functional brain networks of a group of related

subjects, e. g. a group of patients with a similar manifestation of a neural disease and similar

medical treatment regime, or a control group (cf. illustration of processing steps in figure

3.1a). All sample element networks consist of the same set of nodes. The involved statistical

tests are adjusted to assign significance to subnetwork counts derived from the entire network

sample. In addition, my methodological extension does not discard but rather preserve the

functionally important topological information associated with the node labels. This network

decomposition procedure can be seen as a way to filter intricate network topology by omitting

less important substructures with the resulting motifs being a distinguishing characteristic to

reveal sample-specific differences in network topology.
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Dealing with samples of directed networks with identical pairwise different node labeling,

given by e. g. EEG recording sites, instead of single networks without such labeling imposes

certain constraints on network motif detection. Given a pairwise different node labeling, two

subnetworks are identical if and only if they consist of the same subset of labeled nodes and if

they share the exact same set of directed edges (with labeled tail and head nodes) as opposed to

only sharing their patterns of interconnections. As a consequence, the problem of determining

graph isomorphism for subnetworks does not have to be addressed and topological equivalence

classes of isomorphic subnetworks do not exist. The situation is completely different for

networks without node labeling, where equivalence classes for isomorphic subnetworks exist

(see also section 2.7.2). The existence of node labeling also means each subnetwork can occur

at most only once in a single sample element network, which affects the statistical analysis

of subnetwork occurrences. It is not possible to assign statistical significance to subnetwork

counts in a single network or in very small samples of networks. Consequently, motif detection

in a sufficiently large sample of networks constitutes not only a novel approach to reveal

common topological characteristics of all sample element networks but is also a necessity.

In order to deal with network samples and to incorporate the information of the node

labeling, i. e. the recording sites, into the network decompostion approach one has to extend

the original notion of network motifs [101, 109] to define the special case of network motifs of

a sample of directed networks with pairwise different node labeling. In this context, network

motifs are defined as small connected subnetworks which differ in their set of edges, as opposed

to differ in their patterns of interconnections only, which appear in their sample of networks

significantly more often than in random networks according to a suitable random graph

model. In this way the node labeling is taken into account that yields not only an advantage

with respect to the computational complexity of motif detection but also has the important

advantage of conserving the positional information of motifs in the network. This positional

information is associated with underlying neural processes and is therefore important for

a subsequent functional interpretation of the results. If node labeling is discarded or not

available, as in standard motif detection, then the only information obtained from motifs

in the absence of localization is about the existence and the type of significant patterns of

directed influences between nodes.

Detecting sample-specific and node labeled network motifs encompasses the following steps.

1. Exhaustive enumeration of subnetworks of a certain size in all sample element networks.
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2. Identifying subnetworks that have a statistically significant occurrences in the network

sample using either a fast analytical approach or an approach based on extensive and

computationally expensive null model network simulations. The analytical approach

save considerable computation time since no random network ensembles have to be

generated and no subnetwork counts have to be obtained from them. The alternative

approach on the other hand yields a more realistic null model than the analytic one.

The following descriptions of the motif detection steps are taken from my publications on

sample-specific network motifs [97, 156].

3.1.1 Exhaustive enumeration of subnetworks

Let D = (D1, . . . ,Dn) be a sample of n node-labeled directed networks Dk = (V , Ek) all

having the same set of nodes V with pairwise different labels and a specific set Ek of directed

edges. Ak denotes the adjacency matrix that represents network Dk. The first step in our

approach is to explicitly enumerate all subnetworks S of a certain size NS ≥ 2 in every network

Dk. Thereby, for each sample network Dk every combination of NS nodes is investigated to

determine whether a connected subnetwork is induced by it in Dk. This exhaustive enumeration

technique is computationally tractable for small to medium sized networks, e. g. the ones

encountered in the computational neuroscience setting of EEG-derived network analysis, where

128-channel caps or 256-channel caps for recording the EEG represent typical upper bounds.

EEG-derived functional brain networks are usually much smaller than these numbers of nodes.

Alternatively, for larger networks and lower edge densities, subnetwork sampling algorithms

can be used instead of exhaustive enumeration (see also section 2.7.2). Subsequently, the

number of occurrences of each induced subnetwork over the entire sample is counted. Based

on these subnetwork counts statistical significance is assigned to subnetworks.

3.1.2 Analytical approach to determine subnetwork significance

To identify subnetworks with statistically significant counts in an investigated network sample,

the counts have to be contrasted with the counts obtained in corresponding random networks,

i. e. in absence of any functional constraints on the network topology. For it, a null model has

to be specified, which entails what ‘randomness’ with respect to edge patterns exactly means.

For a sufficiently large sample of node-labeled binary directed networks a suitable null model

can be derived as follows.
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Let 0 ≤ |Ek| ≤ N(N − 1) be the number of edges of the directed network Dk and let

q = 1
n
· 1
N(N − 1)

n∑
k=1
|Ek| (3.1)

be the normalized mean number of edges of the sample D. Then, the i.i.d. variables A0
ij ,

1 ≤ i 6= j ≤ N , with

P
(
A0
ij = 1

)
= q, (3.2)

P
(
A0
ij = 0

)
= 1− q, (3.3)

describe a random network D0 =
(
V, E0) with a mean number of edges qN(N − 1). It provides

the basis of the null model. Let S be an arbitrary subnetwork with at least NS ≥ 2 nodes of

the set V and ηS edges. Obviously, the subnetwork S can exhibit at most ηSmax = NS(NS − 1)

edges. The count of S in the sample D is considered, where it can occur at most once in a

sample network Dk. Since all sample networks Dk are associated with the same null model,

the count of subnetwork S in the sample D is binomially distributed under the null model

with B (n, qηS · (1− q)ηSmax−ηS ). Finally, all subnetworks of a certain size NS are tested

with respect to a significant overrepresentation in the sample. Thus, an alpha-adjustment

has to be applied. In the present study, generally the Bonferroni–Holm correction [59] with

a multiple significance level of α = 0.05 was adopted for all multiple test procedures to

conservatively control the familywise error rate for all hypotheses at α in the strong sense

instead of controlling the expected proportion of incorrectly rejected null hypotheses (false

discovery rate [60]).

The time complexity of the associated computations is comparably low, since no simulations

of large ensembles of random networks are involved and consequently no subnetwork counts

have to be obtained from them. As a downside, the null model that is used for contrasting

the network data is somewhat simple. This is the starting point of another approach that, in

return for greatly increased computational costs, offers a much more realistic null model for

the investigated network data. It is presented in the following.
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3.1.3 Network randomization-based approach to determine subnetwork sig-
nificance

Similar to classic motif detection in single networks the Markov chain Monte Carlo (MCMC)

network randomization approach that preserves the in-degree and out-degree sequences of an

input network is applied to each network of the investigated network sample (see also sections

2.11.2 and 2.7.2). Determination of suitable randomization parameter values often seems to be

overlooked in the literature on motif detection, where the choice of parameters is usually not

specified or not justified [156]. Contrary to this, the presented randomization-based approach

includes a parameter determination step [156]. In particular, no a-priori bound exists for the

mixing time of the underlying Markov chain [212]. The ‘mixing’ parameter Ω, which determines

the number of edge swap attempts as Ω · |E|, has to be chosen to ensure sufficiently uniform

generation (sampling) of every directed network with prescribed in-degree and out-degree

sequences. Often values of Ω around 100 are described in the literature. Also, the choice of

the size of the random network ensemble, given by the number of random realizations b∗ for

every sample element network, is important. On one hand it should be as small as possible to

save computational resources, and on the other hand the random network ensemble has to

be large enough to ensure that the distribution of relative subnetwork frequencies in these

random networks is likely to differ only within sufficiently small bounds from a distribution

obtained by generating a larger number of realizations. Often just 100 or 1000 random network

realizations were reported, but sometimes up to 10000 random networks were used, but not

much justification was given for any choice [156]. Here, both quantities are determined more

accurately with regard to the investigated network sample data.

For large network samples it is unfeasible from a computational cost point of view to

determine Ω for each sample element network separately. Thus, one sample element network is

identified that is representative of all other analyzed networks of its sample with respect to the

property preserved during randomization, namely the in-degree and out-degree sequence. One

way to identify the representative network is to calculate the mean in-degree and out-degree

sequence of the network sample and to select the network whose degree sequences have minimal

distance to it, according to the maximum norm. With the representative network a large

range of Ω values is analyzed with respect to their effect on uniform network sampling by the

MCMC edge-switching algorithm. The idea is to use the exact chi-squared goodness-of-fit test

to investigate the evidence against the null hypothesis of a uniform generation of networks for

the preselected Ω values. For it, the number of all networks with the degree sequence of the
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representative networks needs to be known. This number cannot be calculated analytically,

hence, it has to be obtained by simulations. Due to the time complexity of the simulations

and the large number of network instances with a given degree sequence, often only an

approximation, i. e. a good lower bound, of the number of networks with the degree sequence

of the representative network can be obtained. To obtain this lower bound and to perform the

chi-squared goodness-of-fit test, a large number of randomized instances of the representative

network have to be generated using the edge-switching algorithm with different values of Ω.

The results of the independent simulations are then pooled together, since for different Ω

the MCMC algorithm is likely to sample networks with prescribed degree sequences from

different regions in the network configuration space. After detecting and removing all duplicate

networks from the generated union set, a lower bound for the number of networks with the

same degree sequences as the representative network is given by the cardinality of the resulting

set of unique networks. The sampling distribution of the corresponding test statistic under H0

is determined by means of Monte Carlo simulations. The smallest Ω for which the test statistic

falls below the (1− α)-quantile is selected. Otherwise, if it exceeds the (1− α)-quantile for

all Ω the edge-switching algorithm does not uniformly sample networks with the same given

prescribed degree sequences for any Ω. In this case, one has to use the Ω for the randomization

for which the test statistic is minimal. In addition to identifying the value of the ‘mixing’

parameter Ω, the number of random realizations b∗ for all sample element networks required

for a reliable detection of motifs is determined. This procedure starts by generating an upper

bound B of bootstrap network samples using the MCMC edge-switching algorithm, where

each bootstrap network sample consists of one randomized instance of each input sample

element network. Based on these bootstrap network samples, a reference distribution RiB of

relative subnetwork frequencies is calculated by enumeration of all interesting node-labeled

directed subnetworks Si. The reference distribution is then compared to distributions Rib
obtained in the same way from lower numbers b of bootstrap network samples. Rib is accepted

to be sufficiently close to RiB if it holds δb = maxi
∣∣Rib −RiB∣∣ < ε for an arbitrary fixed ε > 0.

Finally, b∗ is defined by b∗ = minb(∀k ≥ b : δk < ε). By implication, if no such b∗ exists

the upper bound B of bootstrap network samples was chosen too low and more bootstrap

networks have to be generated to augment the set of randomized networks and to increase B.

Statistical significance is assigned to subnetwork counts that have been obtained from the

input network sample using the b∗ random realizations of every sample element network’s
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degree sequences. Relative subnetwork frequencies in each of the b∗ bootstrap network samples

were already obtained in the preceding step for the computation of distributions Rib. Relative

subnetwork frequencies are used to compute p-values for the corresponding subnetwork counts

in the input network sample. As for the analytical approach presented in section 3.1.2 various

subnetworks are tested with respect to a significant overrepresentation in the sample, which

makes an alpha-adjustment necessary. Again, the conservative Bonferroni–Holm correction [59]

with a multiple significance level of α = 0.05 might be applied. Subnetworks with statistically

significant counts in the input network sample are network sample-specific motifs with pairwise

different node labels, i. e. locatable characeristic topological patterns of the network sample.

3.1.4 Filtering motifs

Depending on the number of different investigated network samples, their cardinality and

the size of the networks they contain, a large number of subnetworks are enumerated, some

of which are potential motifs. A simple data reduction technique is needed to reduce the

number of subgraphs to be evaluated. For example, one might focus the further evaluation on

3-node node subnetworks that occur in at least one of the investigated network samples at

least a given minimum number of times, because these subnetworks would represent the most

promising candidates for network motifs. Typically, such a restriction would dramatically

decrease the number of 3-node subnetworks from several thousands to just a few hundred

that have to be further analyzed with respect to an overrepresentation in the input network

samples by comparison with their counts or their probability in null model network ensembles

[156].

It is also advised to filter identified motifs so that only ‘interesting’ motifs are finally

interpreted. Filtering motifs might be achieved by considering only those motifs whose

occurrence is either sample-specific or which occur often in most samples of functional

connectivity networks.

3.2 Cost optimal matching of module affiliation labels and a

fuzzy matching extension

A problem often encountered when working with network modules in different networks of a

network sample consists in dealing with mismatched module labels. Due to the randomized

nature of network module detection algorithms, different module labels might be assigned
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to similar or identical modules across distinct networks, which complicates analyses and

graphical representation of module structure and its changes. An example of such a situation is

illustrated in figure 3.3. Module labels had to be matched in the application studies presented

in chapters 6 and 7. The corresponding methodological overview of both studies is shown in

figures 3.2a and 3.2b.

Following, I present three module label matching algorithms that are based on the clas-

sical two-dimensional (n:n)–assignment problem with quadratic cost matrix2 [228] and the

unbalanced assignment problem with rectangular cost matrix, where two sets of entities with

different cardinality have to be matched in a cost optimal way [229, 230]. In both assign-

ment problems an injective, one-to-one assignment of “workers” (i.e. modules in one network

partition PA) to “tasks” (i.e. modules in another network partition PB) with minimal sum

of assigned costs is sought. Thus, for the unbalanced assignment problem, the number of

matchings is determined by the smaller set of either “workers” or “tasks”. A schematic overview

of assignment problems can be found in a publication I had co-authored [231].

Formally, this kind of considered assignment problem is given by a set W containing p

elements, a set T containing q elements, with p ≤ q and a p× q cost matrix C where C(i, j)

is the cost of assigning element i of W to element j of T [229, 230]. An assignment can be

interpreted as a permutation of a p-element subset of T , such that element i ofW gets assigned

the ith element of that permutation. To solve the assigment problem, the objective is to
2The classical assignment problem is mathematically identical to the weighted bipartite matching problem

from graph theory.
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(a)

(b)

(c)

(d)

Figure 3.3 – Example of the module label matching problem. A typical situation is
illustrated using three different fMRI-based networks of a network sample for which module
structure was identified (see also chapter 6). (a) Unmatched, originally obtained module
affiliations of nodes (voxels) are projected to their respective fMRI slice voxel mask. Modules
with a large overlap in voxel locations have different assigned module labels (colors) among
the three networks (frontal and occipital regions). For subsequent module structure analysis
and to improve the visual representation a matching of module labels across the three
networks has to be performed. With the methods described in this section, module label
matching can be accomplished automatically with little computational costs even for large
network samples. (b) Unmatched module affiliations in the corresponding network layouts.
(c) Matched module affiliations shown using the voxel mask. The matching was performed
using fuzzy matching with a threshold of 0.15. (d) Matched module affiliations shown in the
corresponding network layouts.
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minimize
p∑
i=1

q∑
j=1

C(i, j)xij (3.4)

subject to constraints
p∑
i=1

xij ≤ 1, (j = 1, . . . , q) (3.5)

q∑
j=1

xij = 1, (i = 1, . . . , p) (3.6)

xij ∈ {0, 1}, (∀ i, j) (3.7)

In equation (3.7) xij is an indicator variable for the assignment of element Wi to element Tj .

Each element of W is assigned to exactly one element of T (equ. 3.6). Each element of T is

assigned to at most one element of W , i.e. each “task” cannot be assigned to more than one

“worker” (equ. 3.5).

A function for solving these two kinds of assignment problems is part of my R packages

that constitute my network analysis toolbox. The resulting linear programs are solved using

an R interface to the popular mixed integer linear programming solver lpSolve [232].

I developed the following algorithms to compute cost optimal module label matchings across

networks of a network sample. As primary input parameter they accept a matrix of node

module affiliations for at least two different networks with the same number of nodes.

The first step in the procedures is selecting the network partition with the maximum

number of modules as a reference against which the module affiliations of all other networks

are being matched separately. Then all pairs of modules of the reference partition and each

non-reference partition are compared systematically to compute a cost matrix C for every

single reference partition—non-reference partition comparison. The entries of C contain the

costs of matching all pairwise combinations of reference network modules and the modules of

the respective non-reference partition. In detail, this cost matrix C is defined as the difference

between the number of network nodes and the cardinality of the intersection of member nodes
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of each considered module pair3. Consequently, the costs for matching a reference network

module label to a pair of reference—non-reference network modules are decreasing with an

increasingly larger overlap of module member nodes. Using this cost matrix, the assignment

problem is solved. According to the solution obtained, module labels of each non-reference

network partition are changed to the assigned module labels of the reference network partition.

Despite the cost optimal nature of this module label matching algorithm, in practice sit-

uations can and do arise in which the used module detection algorithm returns conflicting

module labels for different networks that cannot be plausibly matched. After making good low-

cost assignments, the matching algorithm ultimately has to assign the remaining non-reference

modules to the remaining modules of the reference partition even though their member node

sets are very different. A further complication arises if the number of modules differs between

the reference partition and a non-reference partition or between different non-reference parti-

tions. Since in this situation not all modules can be matched, modules of different partitions

automatically appear to be merged, splitted or non-existent and the resulting module label

matching across such a network sample cannot be unequivocal. Since nodes in functional

brain networks are associated with unique identity labels (e. g. EEG electrode identifiers or

voxel positions), module structure of several networks should be interpreted with respect to

the spatial information of nodes and their location in the network, while the colors associated

to the modules are acting merely as a guide. By way of illustration, figure 3.4 (a) shows an

example situation where module labels in three different network partitions are difficult to

match. In this figure the module label matching results of the cost optimal matching algorithm

described above is shown in figure 3.4 (b). Panel (c) shows the results for an improved version

of the label matching algorithm, which is described below.

Two further improvements of the cost optimal module label matching algorithm were imple-

mented. The first improvement concerns the handling of low-quality assignments. In a sort

of ‘fuzzy’ matching extension, a non-reference network module is compared to the reference

network module to which it is assigned by the standard approach. If their similarity is below a

(user-defined) matching threshold θ, the label of the corresponding reference network module

is not assigned and instead, under the assumption of the novelty of the module and its

composition of nodes, a new label (and thus a new color), which is not already in use in the
3An equally good choice for the cost function would be the Jaccard distance (section 2.10 on page 40), which

can be seen as a normalized version of the cost function described in the text (cf. [172]).
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(a) Original node module affiliations.

(b) Cost-optimized matching of module labels.

(c) Cost-optimized label matching subject to module similarity constraints.

Figure 3.4 – Module label matchings obtained by two different algorithms. Three
different network instances of the same size (|V| = 9, presented as EEG electrodes) with very
different, constructed module affiliations are shown. The first network, which was partitioned
into four modules, was automatically selected as the reference for matching module labels.
The module affiliations of the reference partition are not changed. (a) The conflicting original,
unmatched module labels, as they could have been returned by a module detection algorithm.
(b) Results of the cost optimal label matching algorithm that solves the assignment problem
and strictly applies the resulting label matches. For the 2nd network, the module is
correctly changed to the one, since for this choice the overlap of member nodes (3 nodes)
is the largest (the overlap with is only 2 nodes). The label matching for the 3rd network is
also algorithmically correct, but it is ambiguous and implausible. The original module
could have been equally well matched to the reference module and the original module to
either the or reference module. (c) Results of the “fuzzy” label matching algorithm that
solves the assignment problem, but actually assigns reference module labels to non-reference
network modules only if the matched module pairs have at least a minimum user-specified
similarity to each other. Implausible, low-similarity matchings of spatially distinct modules
are not performed and instead new module labels are assigned. Consequently, the original

module of the 2nd network becomes and the original module of the 3rd network
becomes . Although being dissimilar to all reference modules, the original module of
the 3rd network does not get assigned a new identity, because this module label is already
unique among all three networks.
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network sample, is allocated. The new color might be selected in a way that similar modules,

e. g. two related modules that occured as the result of a splitting event of a larger module,

are assigned similar colors, i. e. by adjusting the hue or opacity. If on the other hand their

similarity exceeds the matching threshold θ, the non-reference network module gets assigned

the label of the matching reference network module, as before. The similarity of a pair of

modules and their member nodes might be measured in terms of the relative overlap of module

member nodes [233]. This is calculated using the Jaccard coefficient (section 2.10 on page 40)

which can be reformulated for dealing with sets as

J(Mi,Mk) = |VMi ∩ VMk
|

|VMi ∪ VMk
|

(3.8)

Clearly, the parameter θ has a big influence on the results of this matching strategy, as

a trade-off between eliminating poorly fitting matches and an excessively colored, diffuse

module structure has to be made, in particular if large network samples are considered.

Illustrative module label matching results of the improved cost optimal matching algorithm

are shown in figure 3.4 (c).

Another improvement of the module label matching strategy is concerned with an addi-

tional matching of the low quality assignments that were identified by the ‘fuzzy’ matching

approach. As explained above, these low quality assignments were too dissimilar to any

reference network module and as a result they were not actually matched to any reference

module, but were assigned a completely new label instead. Since modules of non-reference

network partitions are matched separately to the module structure of the reference partition,

it is possible that modules with very similar member node composition got assigned different

unique labels across the network sample. Thus, the problem that the second improvement

solves consists in a re-matching of these unmatched modules (that got new labels) across the

non-reference partitions by pairwise comparisons of module similarity, using equ. 3.8 as before,

in an attempt to further reduce the number of unique labels in the network sample, which

improves subsequent module structure analyses.

The presented module label matching algorithms have internal logic for dealing with certain

special cases that might occur, for example module labels are not consecutive integers starting
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with 1 (i.e. input module labels are allowed to have gaps), all input module affiliations consist

of the same module label, or each network’s community affiliation vector has only one module

label. The fuzzy matching algorithms also contains code for intelligently managing the reuse

of already existing module labels for non-matchable modules in special cases. Further im-

provements of the module label matchings might be obtained by a more sophisticated strategy

for selecting the reference network partition, as the choice of the reference partition plays a

role for generating plausible module label assignments across different networks.

3.3 Comprehensive analysis of module structure quality

The development of a data analysis concept that is specific to the context of the data is

in many cases not possible without the use and integration of established and time-proven

concepts and methods, i. e. a sophisticated application-tailored combination and modification

of established methods often creates innovations. Following this line of thought, I extend

the frequently used somewhat simple analyses of identified module structure quality and

similarity by combining a vast number of measures of different scope: module quality and

resemblance measures based on exploiting features of network topology in association with

measures comparing the module membership assignments of nodes and information theoretic

measures (e. g. modularity, variation of information, intra-module edge pattern edit distance,

Rand index, ‘split-join’ distance). This concept enables the comparative analysis of network

module structure quality and preservation. This strategy proved to be useful for evaluating a

new Granger Causality approach of my institute (lsGCI, see also appendix B.1.1) that makes it

possible to compute directed interactions in spatially very high-resolved fMRI brain recordings.

The network-based analysis of the effects of lsGCI on connectivity patterns and the resulting

recoverability of module structure is the main topic of chapter 6 on page 103. The selected

measures, which were used in combination for pairwise comparisons of network partitions of

ground truth networks and corresponding lsGCI networks are listed and described in section

2.10. The flow chart for the corresponding application studies is shown in figure 3.2a.

3.4 Simulating networks with pre-defined module structure

The following algorithm simulates unsymmetrical binary random adjacency matrices with

edge patterns that link nodes to form a pre-defined non-overlapping module structure, where

the module structure quality and definiteness is adjusted by several parameter settings. The
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corresponding edge-directed ground truth networks can be used as benchmark to evaluate the

performance of community detection algorithms or to control whether network visualization

methods are able to separate single modules in the layout of the network structure. In one

application study (chapter 6, cf. overview in figure 3.2a) simulated ground truth networks

with pre-defined module structure were used for the analysis of the adverse effects the lsGCI

approach (see also appendix B.1.1) has on network topology and how the associated alterations

of edge patterns impact the recoverability of module structure. The data basis for this analysis

was a set of realized first order MVAR processes that were simulated on the basis of constructed

ground truth networks (see also appendix B.2).

Each edge-directed ground truth network consists of a specified number of N nodes, where N

is a multiple of 25. The generated networks can be partitioned naturally into non-overlapping

modules restricted to consist between 10 to 15 nodes each. The number of modules scales

with the network size, so that for every increase of 25 nodes two additional modules are build

into the network topology. Thereby, the size of each module is chosen randomly, such that the

sum of all module sizes equals N . Nodes are selected and accordingly assigned membership

to the modules. Pairs of nodes are then linked by edges placed uniformly at random under

constraints that define the module structure, using separate probabilities for intra-module

edges (“internal”, pint) and inter-module edges (“external”, pext) that have to be specified as

parameters of the algorithm. Clearly, the larger the ratio pint/pext > 1, the more pronounced is

the network module structure. Optionally, the algorithm allows to specify global restrictions on

the column sums (in-degrees) of the generated adjacency matrix. Incorporating this constraint

in the network simulation might become necessary due to technical reasons in the case of

using the generated adjacency matrices for MVAR time series simulation as described in B.2.

For each node the network size determines its number of possible inter-module interaction

partners. Thus, if the column sums are constrained, the probability of directed inter-module

edges pext depends on the network size so that the constraint on the column sums holds

true: To account for outlier nodes that have an above average number of intra-module and

inter-module edges that would violate the column sum constraint, each node is allowed to

have, on average, three edges to and from nodes of different modules. Consequently, the

algorithm sets the probability of directed inter-module edges to pext = 3/(N − 15). Outlier

nodes are likely to occur in synthetic networks with large N , and networks of size N >= 500

can already be difficult to generate otherwise. Moreover, additional conditions on minimum
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intra-module (κinint, κoutint ) and maximum inter-module (κinext, κoutext) in- and out-degrees have to

hold true so that the resulting module structure is more clear-cut, while the modules remain

connected. By means of specifying these four parameters, nodes are bound to maintain a given

minimum number of edges to and from member nodes of their own module, while their number

of interactions with nodes of other modules must not exceed a maximum number of edges in

each of both directions. Clearly, the constraints on internal and external degrees do not entail

a determination of specific connection patterns between nodes. To make the computations

involved much more tractable, the network simulation problem is being split into simulating

intra-module edge patterns that satisfy the constraints on intra-module node degrees separately

from the simulation of eligible inter-module edges. In each of the two parts of the simulation,

edge patterns are constructed a module at a time. Only if the constraints on the node degrees

hold, the algorithm proceeds with generating the next module’s intra-module or, respectively,

inter-module edge patterns. Otherwise, the algorithm keeps on restarting the simulation of the

current module’s edge patterns until an upper bound of iterations (e.g. 10, 000) is reached and

the algorithm terminates without success. If the simulation of intra-module and inter-module

edges eventually succeeds, their corresponding adjacency matrices are combined to yield a

ground truth network as the algorithm’s output.

The computational costs of the simulation increase strongly with network size N , as the

aforementioned constraints, which strongly limit the space of allowed network configurations,

become increasingly harder to satisfy. In fact, during the simulation a large number of attempts

to generate a network under the given topological constraints have to be discarded and the

process has to be started all over again. Finally, the adjacency matrices of both separate

simulations are then combined to yield a network with ground truth module structure. If

potential additional contraints on column sums are satisfied, the algorithm terminates and

returns the network. Unfortunately, in many cases the deployment of long compute times to

construct a network having a correct degree sequence is in vain and the process has to be

repeated, as the network will have (a few) columns for which the column sum constraint will be

unsatisfied. In particular for large values of N , I found that setting all input paramter values

of the algorithm is not straightforward, as their values have to be balanced in a delicate way

to make the conjunction of all topological constraints and the column sum constraint satisfiable.

It is straightforward to extend the algorithm and to devise a second variant of this al-

gorithm that slightly varies the parameters pint, pext, κinint, κoutint , κinext and κoutext to yield a
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greater diversification of the resulting networks. In detail, the user-specified probabilities

for internal and external edges might be changed by drawing from normal distributions, e.g.

pint = N (pint, 0.032) and pext = N (pext, 0.0012), respectively. Also, similar to LFR benchmark

graphs [234] a power law distribution could be used instead. Similarly, the user-specified

minimum intra-module and maximum inter-module node degrees are changed by drawing from

normal distributions with the mean being the user-specified parameter value and a certain

variance, e.g. 0.452. Of course, the empirically-derived parameterization of these probability

distributions doesn’t have to be fixed, as the variances constitute additional input parameters

of the simulation algorithm.

Depending on the size of the generated networks, the satisfaction of the maximum col-

umn sum constraint for all nodes, as required for the autoregressive parameters of the MVAR

time series simulation (see also B.2 on page 150), requires careful fine-tuning of all other

network simulation parameters to a narrow range of combined values, which results in ground

truth networks with a topology that potentially makes uncovering their module structure

challenging. Example ground truth networks are shown in figures 6.2a and 6.7a.

As already explained, the presented algorithm was specifically designed to account for

the requirements of MVAR time series simulation while still incorporating many parameters

that define the notion of module structure, i. e. it is possible to tune the resulting module

structure in many different ways. Therefore, it is similarly powerful as the LFR benchmark

and more powerful than the classic and commonly used planted l-partition model [235], which

constructs l modules of identical size using a fixed probability for intra-module edges and a

fixed probability for inter-module edges.

3.5 Computing edge weight thresholds using a multi-objective

optimization approach

Thresholding edges of a network is a common processing step in the network analysis pipeline

to remove spurious interactions, to yield edge non-complete networks and to dichotomize

weighted networks for the application of binary network analysis techniques. The difficulties

and challenges of defining edge weight thresholds were already outlined in section 2.3 on

page 16. Here I describe a novel approach that I developed for the analysis of module structure

in samples of time-evolving EEG-derived functional networks (cf. overview in figure 3.2b), for
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which statistical significance tests (see also section 2.3.1) are not computationally feasible and

determining a global edge weight threshold for all networks turned out to be too inaccurate for

individual networks so that no clear and stable module structure could be uncovered. While

the following descriptions focus on the optimization of binary network module structure, the

presented approach can be used in an analog fashion for obtaining optimal thresholds with

respect to the inherent module structure of weighted edge non-complete networks.

The novel approach takes a weighted input network and computes a global network-specific

edge weight threshold for which the resulting binary (or weighted) edge non-complete network

has Pareto optimal module structure. A specified range of edge weight percentiles is consid-

ered and the corresponding edge weights are computed [236]. They serve as a threshold to

dichotomize the weighted input network. The calculations described in the following are only

performed for those resulting binary networks that are at least weakly connected. Several

topological characteristics of the resulting networks are evaluated. These networks characteris-

tics mainly give information on the network’s module structure quality (cf. 3.3 on page 71).

In particular, the modularity measure, performance measure, coverage, maximum Page Rank

and small-world-ness are computed. For it, the maximum modularity partition is found by

comparing the results of several module detection algorithms (walkTrap BU, infoMap BD,

fastGreedy BU, Louvain BD and leadingEigenvector BD, cf. 2.8 on page 31). This analysis is

repeated for each specified edge weight percentile yielding vectors containing the values of each

of the five considered network characteristics. Thereby, each network characteristic represents

an independent objective that has to be optimized. The goal of multi-objective optimization

(Pareto optimization) [237] is to find solution vectors that represent a reasonable trade-off

among different, conflicting objective functions that are optimized simultaneously. In general,

for nontrivial multi-objective optimization problems the existence of a single unique solution

that would yield an optimal value for each objective simultaneously cannot be expected. Hence,

for real-world problems, the objectives are usually at least partly conflicting. A unique vector

of different objectives is called nondominated or Pareto optimal if none of its components

(objective function values) can be further improved without deteriorating the value of at

least one of its other components. That is, there exists no other possible solution point for

which all objectives have clearly better values, i. e. at least one of the objectives has to be

improved in value, while all other objectives are at least as good. Such a nondominated

point (nondominated feasible solution, i. e. nondominated vector of objectives) is an ‘efficient
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solution’ [238] of the multi-objective optimization problem. Since the vectors of objective

function values cannot be naturally ordered in the objective space (they can only be partially

ordered), multi-objective optimization problems are in a sense ill-defined, hence all Pareto

optimal solution points can be considered as equally acceptable. That means each Pareto

optimal solution represents a different instance of the unavoidable trade-offs. Therefore, the

set of Pareto optimal vectors consists of ‘compromise solutions’ from which a final solution

has to be sorted out by a human decision maker4 with problem domain expertise [239]. The

set of Pareto optimal solutions is called a Pareto front. Scalarized problems in which the

optimization of multiple objectives is transformed to a single objective optimization problem

[238] are not considered here.

Thus, a multi-objective optimization problem has the following form [237]

minimize {f1(x), f2(x), . . . , fk(x)} (3.9)

subject to x ∈ S

The k (k ≥ 2) objective functions (criteria) fi : S → R quantify the values of the network

characteristics of interest. The decision variable vector x = (x1, x2, . . . , xn)T belongs to the

non-empty feasible region set S, which is the set of alternatives (feasible solutions) of the

decision problem [238]. For the problem of computing good edge weight thresholds the decision

variables are the individual edge weight percentile values or, respectively, the thresholded

binary networks that correspond to these percentiles. In this context, one has finitely many

and explicitely given alternatives. Note that multi-objective optimization problems are usually

formulated as simultaneous minimization problems, whereas in the context of this thesis the

selected network characteristics need to be maximized. Multiplication of the objectives with

−1 easily converts the maximization problem to yield an equivalent minimization problem.

The dimension k of the criterion space Rk is given by the number of objective functions

f = (f1, . . . , fk). Depicting f(x), the feasible set in criterion space, can help identify nondomi-

nated, Pareto optimal points [238], an example of which is given in figures 3.5a and 3.5b. For

computing edge weight thresholds, no ranking of the objectives is employed, even though it

would be a reasonable choice, for example, to rank modularity values higher than the values

of other characteristics. Such a ranking yields a weak definition of order of vectors in criterion

space.
4The decision maker might be algorithmically supported by methods of multicriteria decision aid (MCDA).
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The above given informal definition of Pareto optimality can be stated more precisely. A

decision variable vector x∗ ∈ S is (globally) Pareto optimal if there does not exist another

decision variable vector x ∈ S such that fi(x) ≤ fi(x∗), ∀ i = 1, . . . , k and fj(x) < fj(x∗)

for at least one index j. x∗ is called efficient point. An objective function vector (outcome)

f∗ = (f∗1 , . . . , f∗k )T with f∗i = fi(x∗) is Pareto optimal if its corresponding decision variable

vector is Pareto optimal. f∗ is called nondominated point.

The objective values of feasible solutions in S are not known in advance and have to be

enumerated. For this reason all considered network characteristics are computed for all consid-

ered edge weight percentiles as described above. The sign of the components of the resulting

(objective function) vectors are interchanged to handle the situation that the underlying

multicriteria optimization problem is formulated in terms of a maximization problem. The

Pareto front is computed based on pairwise comparisons and nondominant sorting [240]. To

obtain a consensus, single most representative solution the centroid of the set of nondominated

objective vectors (points of the Pareto front) is computed. Finally, the nondominated point

with minimum Euclidean distance to the centroid vector is considered as the best compromise

and is returned.

Preliminary results obtained from network sequences indicate an improved module detection,

which yields more clear-cut module structures due to the network-specific edge weight thresh-

olds computed by the Pareto optimization approach. An example is shown in figures 3.5c -

3.5e. Pareto optimal thresholds have a clear meaning with respect to the obtained binary

network structure – these thresholds guarantee that the underlying binary network module

structure is most pronounced with respect to the evaluated module structure characteristics

(objectives). With regard to other network properties, the possibility that bias is introduced

cannot be ruled out. For a discussion of thresholding biases I refer to section 2.3 on page 16.

A strength and advantage of the presented method for computing edge weight thresholds is its

specificity to the structure of individual networks of a network sample. It might replace the

commonly used approach of explicit verification of several distinct thresholds applied to the

entire network sample at once.

For my work in network module tracking in EEG-derived functional networks (see also
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Figure 3.5 – Pareto front of module structure quality objective vectors for dif-
ferent edge weight percentile decision variables (and module structure in corre-
sponding thresholded networks). Edge weight threshold analysis was performed for an
EEG-derived functional network (dDTF interactions) [241] using the novel multicriteria
optimization method. The range of evaluated edge weight percentiles was 0.5, 0.51, . . . , 0.99.
Large percentile values starting with 0.86 were excluded by the algorithm as the underlying
binary network starts to fragment into isolated components. (a) - (b) For each remaining
percentile a sphere depicts the corresponding vector of objective values: modularity, perfor-
mance index and coverage. The red spheres indicate the Pareto front, which consists of the
nondominated objective function values that represent the set of optimal trade-offs between
network module structure quality characteristics. Finally, the nondominated objective func-
tion vector with lowest Euclidean distance to the centroid of the Pareto front was found. It
corresponded to an edge weight percentile of 0.85 and an edge weight threshold of 0.069. (c)
Network module structure of the weighted network where edges were thinned out using the
optimal Pareto front threshold (given by the 85% percentile). (d) Network module structure
of the weighted network where edges were thinned out using a Pareto front threshold (0.060,
given by the 81% percentile). (e) Network module structure of the weighted network where
edges were thinned out using an arbitrary threshold (0.055, given by the 77% percentile).
For the actual network data, with the optimal threshold one finds the split of the green
module into a red and green submodule (c). This split is not visible with the other Pareto
front threshold (d). With the arbitrary threshold the resulting module structure has lower
quality and appears more fragmented (e). Module structure was detected with the algorithm
of Blondel et al. for edge-weighted directed networks.
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chapter 7) I also developed and applied another edge filtering approach for network module

detection, which is different from standard global thresholding. This approach aims to reverse

construct the network and shows some promising first results, too. For it, the algorithm first

sorts all edges in decreasing order with respect to their weight. Then, in this order edges

are placed back to their original position in the initially empty original node set – the edge

with largest weight is placed first, then comes the edge with the second largest weight and

so on. This process stops once the constructed network is weakly connected. The resulting

network represents the backbone of the strongest interactions of the original network. Note

that this procedure does usually not correspond to constructing a maximum spanning tree, as

the backbone network likely contains cycles. Depending on the specific spatial distribution of

edge weights in the network at hand, it is not unreasonable to expect the strongest connections

of the network being primarily situated inside modules. In practice, however, this must not

always be the case.

I included an Rcpp [242] function to compute the Pareto front for explicit feasible sets

based on nondominated sorting in my utility R package of the network analysis toolbox. The

function that implements the presented method for computing edge weight thresholds is part

of another one of my R packages for network analysis, as is a function that uses multicriteria

optimization in a similar fashion to find network-specific module detection algorithms that

yield the highest quality network partitions. To perform module detection in thresholded

weighted networks, a different implementation of the above described method exists, which

Pareto-optimizes weighted network module structure characteristics instead of binary ones.

Also, the weighted edge backbone function is implemented in my network analysis toolbox.

3.6 Extraction and visualization of time evolving module stuc-

ture

In many neuroscience settings, longitudinal network data can be extracted naturally from

brain recordings. Identification of structural features in time-variant sequences of networks

adds another layer of analysis for studying brain processes. This section deals with the

problem of extracting information on time-variant module structure in samples of longitudinal

networks, i. e. samples of snapshot network sequences. A snapshot network refers to the

network corresponding to a particular time step. The analysis concept presented in this section

is specifically tailord towards samples of small and high edge density EEG-derived functional
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network sequences, in which consistent time-variant module structure identification poses

additional challenges.

The work presented in this section does not aim at a direct modeling of module struc-

ture dynamics in a sequence of snapshot networks, rather, the aim is to uncover the module

structure hidden within the intricate topology of the snapshot network sequence, to visualize

this complex information and in this way to direct it to an interpretation with regard to

underlying brain activity. The dynamics of module structure changes that have to be identi-

fied and visualized is given by the ‘life cycle’ of individual modules that is briefly described

in appendix B.4. Sankey diagrams (alluvial diagrams) [159] represent a suitable means to

visualize the time evolution of module structure. In Sankey diagrams the time-varying module

memberships of nodes is displayed in the form of different amounts of node flows (ribbons)

between modules at different time steps. Example Sankey diagrams can be found in figures

7.2b and 7.2d. This graphical representation gives a good overview over long-term trends

in the module affiliations of nodes and it shows time steps with large fluctuations and rapid

reconfigurations of module structure. Sankey diagrams help to discern persistent, interesting

modules from short-lived noisy ones. In addition to the Sankey diagrams, network plots using

the EEG electrode layout delineates the spatial location of modules and their affiliated nodes.

To color-code the module representation in the Sankey diagrams, module structure has to be

matched between the considered time steps, for which I use the algorithms presented in section

3.2. This matching inherently accounts for the time evolution of module structure, i. e. the

similarity of modules at different time steps with respect to shared member nodes. Now that

the setting and the desired outcome of the analysis concept is clearly defined I describe the

pipelining of all network processing and analysis techniques required to achieve the aims.

The descriptions of the methodology follow the flow chart depicted in figure 3.2b. This

concept was successfully applied to EEG data in the application study described in chapter 7.

Once a sequence of weighted directed edge-complete networks is obtained and a time grid for

investigating snapshot networks is defined, two separate analysis approaches for identification

of time-variant module structure can be applied, each offering a different perspective on the

time evolution of network modules. The difference between both analysis approaches is given

by the way of thresholding the snapshot network sequence.

The first analysis approach is shown on the left branch of the flow chart in figure 3.2b.
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It combines empirical multiple thresholding with a pooling of all available snapshot networks

so that the edge weight thresholds corresponding to the predefined percentiles are deter-

mined with respect to the distribution of all available edge weights at all time steps (see

also section 2.3.2). Extraction of time evolving module structure is performed separately

for each obtained threshold. Crucially, the snapshot networks at each considered time step

are not soft thresholded (see also section 2.4) directly. Rather, the predefined time grid is

used to center a time window on each considered time step and to compute a consensus

network for each centered time window. In the process, a consensus network aggregates the

connectivity structure of each considered snapshot network and the surrounding networks in its

temporal neighborhood. Thereby, for each snapshot network on the time grid a given number

of snapshot networks directly preceding it and directly succeeding it in the network sequence

are selected to compute a consensus network. The consensus network is given by the median

interaction strength of each individual edge of all networks within the time window. This

processing step incorporates connectivity information in the vicinity of a given time step into

the module structure identification and in the same time it reduces the influence of random

fluctuations of interaction strengths. The consensus networks at each time step in the time

grid are used for subsequent thresholding and module structure identification. The already

obtained thresholds are then applied to soft threshold each considered consensus snapshot

network, which results in weighted directed networks with different edge densities. This way

of thresholding and aggregating connectivity information potentially makes it possible to

reveal more detailed differences in the connectivity structure of individual time grid snapshot

networks. The rationale behind it is that for many experimental settings where a stimulus

effect is considered a global increase of interaction strengths with time can be expected as a

result of the processing of the stimulus. Therefore, snapshot networks that appear early in

the network sequence are more extensively thresholded and their interaction ‘noise’ is more

strongly suppressed as compared to time grid snapshot networks that appear later in the

network sequence. The sequence of module structure reconfigurations that is obtained by the

subsequently performed module detection will most likely reflect clearer, more stable changes

and less fluctuations between time steps. Standard multiple thresholding (see also section

2.3.2) on the contrary would result in less clear module structure detection results. Since

this way of global threshold computation potentially yields disconnected networks I advise to

assign all disconnected (isolated) nodes the same separate module affiliation, which is contrary

to the default output of most module detection algorithms, which would assign these nodes
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to different separate modules. As disconnected nodes are normally being excluded from the

interpretation of the results this step greatly reduces visual clutter from the presentation of

the results. In summary, the first approach is focused on revealing module structure in single

snapshot networks with respect to the respective connectivity structure and the changing

strength of interactions over the entire network sequence.

The second analysis approach, which is shown on the right branch of the flow chart in

figure 3.2b is based on my Pareto optimization approach for computing specific thresholds

for each snapshot network (see also section 3.5). While it is possible to compute a consensus

network in a time window surrounding each considered time grid snapshot network, a consenus

module structure may be computed instead (see also chapter 2 section 2.9). Thereby, the

considered time grid snapshot networks and all surrounding networks within the time window

are soft thresholded individually using Pareto optimal thresholds. Using a weighted network

module detection algorithm, the considered snapshot network and all its surrounding networks

are partitioned into modules. The information of these separate module structures is combined

and enhanced by the consensus clustering procedure, which outputs the final module structure

at each considered time step. The second analysis approach reveals module structure in single

snapshot networks with respect to only the connectivity structure at the given time step.

After obtaining either a network partition of each consensus snapshot network or a consensus

clustering of each snapshot network, my module matching algorithms presented in section 3.2

relate the changing modules at each time step to each other. I note that it would be also

possible to use consensus clustering in combination with the global edge weight thresholds of

the first analysis approach. Alternatively, consensus networks can be computed if the Pareto

optimal thesholding is applied. The main point is that some form of aggregation and smooting

of connectivity information of networks in the temporal vicinity of each considered time step,

including the network at the time step, is likely to improve the results of module detection as

it reduces a possible high temporal variation of the identified module affiliations. However,

the presented workflow and the combinations of edge thresholding and connectivity structure

aggregation yielded the most clear and robust results for the application study in chapter

7. Stability of the obtained network partition of each snapshot network could be further

investigated with perturbation analysis [179, 243].
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Chapter 4

Network sample-specific detection
of motifs with pairwise-different
node labels

This chapter deals with the filtering, description and comparison of the intricate topology

of samples of node-labeled binary directed networks, which were obtained from EEG

recordings during the neural processing of painful intracutaneous electrical stimuli in patients

with major depression (MD) and healthy controls. For this task I applied both of my approaches

for network sample-specific motif detection that are presented in section 3.1. The results

of this study were reported in two different publications [97, 156]. The data generated by

this EEG experiment [244] is scientifically interesting by virtue of the not well understood

intertwined relationship between pain processing and depression.

In this respect, it is known that chronic pain and major depression are correlated since

depression is a common comorbidity of chronic pain and often chronic pain is an additional

symptom of depressed patients [245, 246]. It has been confirmed by some studies that thresh-

olds for acute painful stimulation are lower in depressed patients than in healthy controls

[247, 248], whereas other studies found the opposite, namely increased thresholds in depressed

patients [249, 250, 251, 245, 252]. The physiological basis for pain perception, pain processing

and the sensitivity to painful stimuli of depressed patients remains unclear. It is hypothesized

that in depressed patients the processing of painful stimuli in the so-called neuromatrix of

pain [253] and consequently the functional connectivity might be altered [250].
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Analysis of the intricate wiring patterns found in the functional pain processing network

samples by visual inspection and by way of qualitative description seems impossible. The

aim of the two studies is to extract insightful, clinically relevant but not readily accessible

information about elementary directed interaction patterns, i. e. motifs (see also chapter 3,

section 3.1), in both groups that can subsequently be used for group comparisons. Such a

network decomposition into motifs provides a means to simplify network structure analysis

by focussing only on functionally important substructures of the network. Unification of this

information for all networks of each investigated network sample is promising to shed light on

the basic neural activity which occurs during the processing of painful stimuli in patients with

major depression and in the healthy controls. In general, the new approach offers new ways

for studying structure–function relationships and design principles of network samples.

4.1 Data description

The following description of the major points of the EEG data acquisition and connectivity

analysis is taken mostly verbatim from my publication [97]. Data and connectivity analysis

were first described in [244].

4.1.1 Subjects and connectivity analysis

Eighteen patients (10 women, 8 men) with major depression (mean age ± standard deviation:

38.9± 15.5 years) and 18 sex- and age-matched healthy control subjects (39.3± 14.8 years)

participated in this study. The procedure was approved by the Ethics Committee of the

Friedrich Schiller University (reference number 2282–04/08). Major depression was established

by a staff psychiatrist according to DSM IV criteria using a structured interview. All subjects

were right-handed. Nine patients were treated with antidepressive medication (5 patients

received selective serotonin reuptake inhibitors SSRI; 4 patients norepinephrine and serotonin

reuptake inhibitors NaSRI) while the remaining participants did not receive any medication.

All subjects were electrically stimulated intracutaneously at the tip of the middle fingers of

both the right and the left hand. Stimuli consisted of a bipolar rectangular pulse of 10ms

duration. Participants were requested to rate each electrical stimulus on a scale ranging from 0

to 6 [254, 255]. The pain threshold was defined as the intensity yielding a sensation described

as a sharp painful pinprick, corresponding to a rating of ‘3’.

The EEG was recorded continuously during the electrical stimulation from 60 electrodes,

referenced to Cz, using a standard EEG cap based on an extended 10-20 system. Finally,
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nine electrodes F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4 (re–referenced to linked ears) that are

situated above some of the important regions of pain processing, attention, and depression

(frontal, central, and parietal brain regions) were used. In order to compare the pre- and

post-stimulus condition, signal sections of 700 ms duration were extracted pre (700ms before

onset to the onset of stimulus, i.e. -700ms to 0ms) as well as post stimulus onset (from stimulus

onset to 700ms after stimulus onset, i.e. 0ms to 700ms). To assess the functional connectivity

between the nine electrodes, the generalized partial directed coherence (gPDC) (see also

section B.1.2) was applied. Binary functional brain networks were obtained by thresholding

using significantly increased gPDC values and subsequent dichotomization of remaining edges.

Statistical significance was assessed using the bootstrap method described in section 2.3.1 and

Holm multiple test correction with a multiple significance level of α = 0.05.

Connectivity analysis was complicated by the fact that during the Bootstrap procedure

not all MVAR processes under H0 could be realized due to MVAR parameter sets yielding

non-stationary processes, so that many networks are partially unobserved. As a consequence,

traditional analysis (listwise deletion of networks with missing values) would discard a huge

amount of useful information of the data. Since there is no superior approach concerning all

possible missing data mechanisms, a reasonable imputation strategy according to the specific

data set has to be chosen. Because it seems implausible that observed variables contain useful

information to predict missing values (i. e. data is missing at random), we performed extreme

case imputation: First, all missing directed edges are imputed as no interactions, while in the

second data set they are treated as interactions. Both data sets are analyzed independently,

and only subnetworks that are significant in both cases are considered as motifs. This is a

conservative approach to deal with the problem of missing values, and it keeps the effect of

the imputations on topological pattern selection as small as possible.

4.1.2 Samples of functional connectivity networks

Due to the nature of the EEG data, the connectivity analysis and the clinical question eight

different samples of unweighted directed functional connectivity networks have to be considered:

They are defined by all combinations of the group assignment (MD – patients suffering from

major depression vs. HC – healthy control subjects), the stimulated side (left vs. right) as

well as the time window with respect to the stimulus conditions (pre – time window before

noxious stimulation vs. post – time window directly following the stimulation, i. e. including

the processing of the noxious stimulus). The nomenclature is: MD-pre-left, MD-pre-right,
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Figure 4.1 – Functional networks of a healthy subject, pre- and post-stimulus.
The network is shown within the EEG-electrode layout (top) and as a circle layout (bottom),
which yields a clearer representation of the interaction patterns. The pre-stimulus network is
shown in column (a), whereas the post-stimulus network is shown in column (b).

MD-post-left, MD-post-right, HC-pre-left, and so forth. The sample size for the MD-post-right

sample is fifteen, whereas the sample size is sixteen for all other samples.

These functional connectivity networks have a small size, each consisting of the same set of

nine nodes that are pairwise differently labeled with associated EEG-electrode identifiers. For

our approach to network motif detection in network samples it is crucial that, due to the node

labeling, all nodes are different. As shown in figures 4.1 and 4.2 these functional connectivity

networks exhibit dense and intricate patterns of directed interactions.

4.2 Results and discussion

Both methods to detect motifs, i. e. locatable characteristic topological patterns, were applied

to each of the eight network samples separately. Because of the spatial information associated

with the node labels, it makes sense to look even for 2-node motifs in order to find significant

interactions between two areas covered by the EEG electrode scheme. Furthermore, char-
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Figure 4.2 – Functional networks of a patient with MD, pre- and post-stimulus.
The network is shown within the EEG-electrode layout (top) and as a circle layout (bottom),
which yields a clearer representation of the interaction patterns. The pre-stimulus network is
shown in column (a), whereas the post-stimulus network is shown in column (b).

acteristic interaction patterns given by 3-node motifs were detected. Motifs of a larger size

were not detected, because clinical interpretation of neural processing patterns represented by

2-node motifs and 3-node motifs is already difficult. Hence, detecting larger motifs does not

seem to contribute much to the qualitative knowledge about functional connectivity patterns

in the investigated groups. However, from a theoretical point of view the detection of larger

motifs is straightforward given that sufficiently large samples are available.

As a result of dismissing interactions that are by definition less important, the large amount

of information contained in the intricate directed interactions of the investigated network

samples was reduced to only the characteristic interaction patterns. These were used for

subsequent interpretation with respect to the underlying neural information processing.
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4.2.1 Results obtained with the analytical approach for assigning subnet-
work significance

For the sake of keeping the presentation of results concise I omit the recapitulation of the

results obtained with the analytical approach and refer instead to my publication, where a

detailed account of the results and an assessment of their clinical relevance can be found [97].

The results of the randomization-based approach, which are presented in the following section

can be seen as a prime example of the utitlity of motif detection for the analysis of functional

brain networks. Moreover, despite its more accurate null model for subnetwork significance

assessment, the results of the randomization-based approach are consistent to a large degree

with the ones obtained with the fast but less accurate analytical approach.

4.2.2 Results obtained with the randomization-based approach for assign-
ing subnetwork significance

A detailed account of the results can be found in my publication [156]. Prior to generating the

null model network ensembles for each of the eight network samples, the simulation parameters

Ω (‘mixing’ parameter that determines the number of edge swaps) and b∗ (number of random

realizations for every sample element network) were determined as described in chapter 3,

section 3.1.3. To cope with the immense computational overhead, the ‘mixing’ parameter Ω

was determined for all eight network samples at once. Thereby, the representative network

needed for the determination of the parameter Ω was an element of the ‘HC-post-left’ sample.

Random realizations of the representative network were generated using the MCMC edge-

switching algorithm with different values of Ω and the independent results were then pooled

together to yield a total of 190,400,001 networks. In this set we found 101,996,824 pairwise

different networks with the given prescribed degree sequence. According to detailed statistical

considerations given in [156], for the analyzed network data the edge-switching algorithm

seems to sample networks with a non-uniform distribution for every Ω. Because no particular

value of Ω could be identified with the test statistic of the exact chi-squared goodness-of-fit

test the lowest value of Ω was selected for which the test statistic was minimal. As it turned

out this was Ω = 120. According to the procedure outlined in chapter 3, section 3.1.3 the

required number of random realizations for every sample element network in all network

samples was b∗ = 7500. This number reflects a conservative choice, since for most investigated

network samples 7000 realizations would have been sufficient to achieve convergence of relative

subnetwork frequencies.
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Figure 4.3 – Motifs of size 2. The motifs were detected in the eight functional network
samples with the randomization-based approach. The occurrence of a 2-node motif in an
network sample is indicated by filled areas. These motifs represent characteristic directed
interaction patterns of brain activity recorded at three different EEG electrodes that occur
before and during the processing of painful electrical stimuli.

The detected motifs of size 2 shown in figure 4.3 reveal several interesting points. MD patients

show slightly more motifs of size 2 than HC subjects. However, 8 out of 12 motifs in MD

and 8 out of 9 motifs in HC are similar with respect to the motif and the time period when

it occurs. Overall this demonstrates that motifs of size 2 show strong communalities in

processing between the groups. This shows that the method allows the identification of robust

connections. One of these functional connections, Fz↔ F4, is present for all time windows for

both sites of stimulation. This motif was also seen in the results of the analytical approach

(section 4.2.1). It is likely that this connection represents a part of the background activity or

attentional processes which are independent of group (MD, HC), time period (pre, post), or

site of stimulation (left, right). Other motifs, e. g. F3↔ Fz, are primarily found in association

with the stimulation of the right hand. So this processing contralateral to the stimulation site

might represent processes of preparing to and analyzing the nociceptive input. Interestingly,

this motif is the only 2-node motif in HC that is also not present in MD. It occurs during the

pre-stimulus period prior to the left hand stimulation in HC. This activity might represent a

preparation in advance of the hand stimulation, e. g. the process of distributing attentional

resources. The lack of the F3↔ Fz motif in MD fits with additional motifs in MD which do
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Figure 4.4 – Motifs of size 3. The motifs were detected in the eight functional network
samples with the randomization-based approach. The occurrence of a 3-node motif in an
network sample is indicated by filled areas. These motifs represent characteristic directed
interaction patterns of brain activity recorded at three different EEG electrodes that occur
before and during the processing of painful electrical stimuli.
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not appear in HC. Similarly to previous results presented in section 4.2.1 all these additional

motifs are located in the right hemisphere or midline. This might reflect the role of the right

hemisphere in the processing of emotions and mood in MD patients [250, 256, 248, 257, 258].

Similarly to motifs of size 2, motifs of size 3 (figure 4.4) are also more often identified

in MD than in HC subjects. However, the exact communalities are far less expressed for

the motifs of size 3 (5 of 18 in MD; 5 of 13 in HC) compared to size 2 (8 of 12 in MD; 8

of 9 in HC). The results seem to indicate that some motifs in HC are replaced by different

motifs in MD. For example, motifs 2 and 3 in HC seem to be replaced by motifs 1 and 2 in

MD (including the communality of motif 2 for the processing after stimulation of the right

hand). Interestingly, when comparing these motifs between groups, the principle difference

lies in stronger activation of the right frontal areas in MD patients. This finding might

be interpreted as agreeing with theories on the role of the prefrontal cortex (PFC) in the

processing of emotions [256]. The left PFC has been demonstrated to be involved preferentially

in processing associated with approach-related, appetitive goals, while the right PFC is more

strongly involved in the processing of behavioral inhibition and withdrawal [259, 260]. This

theory opens possible interpretations on pathophysiological mechanisms for MD, namely a

hypoactivity of the left PFC or a hyperactivity of the right PFC [256]. Our data clearly points

to a hyperactivity of the right PFC in our patients. Our data is also consistent with findings

indicating the additional recruitment of prefrontal areas by MD patients [261]. While there

are nearly as many motifs of size 3 in MD patients during the pre-stimulus period as in the

HC subjects, a clear difference can be found in the pre-stimulus period with respect to the

site that will become stimulated. Seven out of the 8 motifs of size 3 in MD patients were

found before stimulation of the right hand, only one motif was found before stimulation of the

left hand. In contrast, in the HC subjects we found 4 motifs of size 3 before stimulation of

the right hand and 3 motifs before stimulation of the left hand. Obviously, there is a clear

preponderance of motifs before stimulation of the right hand in MD patients. One reason for

this preponderance might lie in the contralateral organization of somatosensory information

processing. Thus it might be more demanding for MD patients to recruit resources for the

analysis of the left hand stimulation because the resources had to be redistributed from the

more active right to the left hemisphere. In line with this interpretation, most of the motifs

active during the preparation to stimulation of the right hand in MD patients include directed

information flow to or within the left hemisphere (i. e. motifs 1, 7, 9, 11 and 12). Another
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somewhat surprising finding is that there are slightly more motifs in the post-stimulus period

found in MD patients. It was previously found that MD patients compared to HC exhibit

higher pain thresholds to external stimulation including electrical stimulation [245, 249], lower

sensitivity to C-fiber activation [252], and/or lower sensitivity to experimental nociceptive

stimulation [249, 262]. However, it should be mentioned that the stimulation was performed

with stimuli that were adjusted for subjective pain ratings (i. e. moderately painful in both

groups). This might be the reason that there is no obvious difference in the number of motifs

found in MD vs. HC subjects. Nevertheless, there are clear differences with respect to the

motifs themselves.

Thus, there exists an interesting phenomenon regarding differences in motif composition

between the MD and HC group after stimulation. It seems that the connectivity due to

stimulation shows an opposite direction compared to the pre-stimulus connectivity. With

regard to left-hand and right-hand stimulation, MD showed an equal number of motifs (5),

whereas the HC showed more motifs after right-hand stimulation (6) and only one after

left-hand stimulation. This might again represent the nature of stimulation with a preferred

contralateral processing of the information. So the noxious stimulation of the right hand will

primarily (or, at least, more quickly) activate the left hemisphere, but nociceptive processing

will activate behavioral inhibition and withdrawal. Thereby a need exists to transfer the

information from the left hemisphere to the right and to activate the right PFC due to the

noxious stimulation in the HC subjects. Indications for such a transfer might be seen in motifs

2, 4, or 8. In our MD subjects, there is already a clear preponderance of right hemisphere

activation, as discussed in the previous paragraph. This might indicate that activation of

the right PFC in MD to the same degree as in the HC, does not occur because it is already

activated.

4.2.3 Discussion

An in depth discussion of my approaches for motif detection in network samples in the light of

the pain processing functional network samples, motif detection in general and the strengths

and limitations of such topological network decomposition approaches can be found in my

publications [97, 156]. Here I revisit only a few of the most important points.

I applied both of my methods for motif detection in network samples with pairwise different

node labels to the same functional network data. Since both approaches rely on different null

models for contrasting the subnetwork counts obtained from the network samples they are
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expected to identify –and in fact they do identify– non-identical, but overlapping sets of motifs.

For the identified 2-node motifs the agreement is larger than for the 3-node motifs. Thereby,

the randomization-based approach seems to be able to better discriminate variations in edge

patterns for the same set of nodes, which might be explained by the fact that the design of the

underlying null model incorporates more topological information of the input network sample.

It has to be noted that the two presented studies focused on motifs at the sensor level,

which means that the current view on anatomical locations of motifs might only serve as a

cautious hint with reference to anatomical sources.

The null model widely employed in motif detection preserves the in-degree and out-degree

sequences of the input network, which is a basic property on the node level that ultimately

affects many other properties of the network. For the assignment of subnetwork significance

based on simulated null model networks I used the MCMC edge-switching alorithm (see also

section 2.11.2) and applied new techniques for the determination of randomization parameters

Ω and b∗. To the best of my knowledge, methods to determine these central parameters were

never published before and in the literature on motif detection their choice is usually either

not stated or not justified. Since the edge-switching algorithm is applied a large number of

times to each sample element network of each of the eight network samples a very large data

set of randomized networks was generated. These simulations are very time-consuming with

compute times in the range of weeks. Also the subsequent counting of subnetwork appearances

in the obtained random ensemble is costly. On the other hand my analytical statistical test is

computed much faster, taking only seconds, but comes at the cost of simpler assumptions being

made for the null model which accounts for the mean number of edges of the input network

sample. Referring to the randomization-based approach, it seems that for small values of Ω the

network most often yielded from the randomization process was the input network itself. This

is expected, because for smaller values of Ω the MCMC edge-switching algorithm can cover only

a small part of the network configuration space. Thus, in general it might be a good strategy

to use the last generated network as input for subsequent randomizations instead of always

using the investigated real-world network as input for the MCMC edge-switching algorithm.

However, for motif detection one is not primarily interested in the particular instances of

sampled random networks. Rather, the uniform sampling of networks with precribed degree

sequences is an desirable property of the MCMC edge-switching algorithm. In this regard, at

least for the investigated network data, the MCMC edge-switching algorithm did not seem

to uniformly sample networks with the prescribed degree sequences of the representative
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network. The extent of compensating effects given by the choice of the number of random

realizations per input network is currently unknown. Thus, the null model random networks

generated with the parameter values obtained by my determination techniques might still be

‘good enough’. The difficulties arising from determining the value of the ‘mixing’ parameter Ω

illustrate that one must not simply select an arbitrary value for it (as seems to be the case for

most of the literature).

The design of a suitable null model formalizes a particular null hypothesis and defines

the notion of randomness [208]. It is crucial for distinguishing regular topological effects from

contingencies in the structure of network samples (cf. [113, 263, 264]) and thus is crucial for

obtaining valid results [216]. At the present time there is no established theoretical background

for choosing null models that fit to given network data and thus it is not clear which network

properties might be incorporated into a good null model. Some progress was recently made in

[209], where the problem of selecting the right base properties for null model networks was

explored. Clearly, motif detection would miss any functional meaningful subnetworks that

appear only infrequently. Conversely, subnetworks that appear with a statistically significant

frequency are not necessarily important for the structure and functioning of their network.

Whereas experimental validation of motifs in functional brain network seems to be beyond

reach in the foreseeable future, isolated network motifs have been tested experimentally for

their regulatory functions as recurring circuits in bacteria and yeast transcription networks

[134, 265]. These experimental studies confirmed theoretical predictions and could assign

specific modes of molecular information processing to distinct motifs in these networks, thereby

demonstrating that some network motifs indeed appear to be building blocks of transcription

networks. Yet despite some potential limitations on assigning information processing roles

to motifs in functional brain networks both novel approaches for motif detection in network

samples might be seen as tools that simplify the topology of all member networks in a network

sample by thinning out interactions that are not characteristic for the network sample, thereby

yielding a compact description of recurring important topological elements contained in the

network sample. Finally, after this simplification step network samples can be compared with

respect to their characteristic interaction patterns, which was as yet not attainable.
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Network sample-specific
characterization of network
topology

Network structure quantification can be utilized to discriminate functional brain net-

work samples and to evaluate them with respect to therapeutical treatment or other

effects that can be assumed to be reflected in the topology of sample element networks. Such

a description of network structure can be obtained on all three topological scales presented

in chapter 2, section 2.7, that is to say the microscopic, mesoscopic and macroscopic scale.

Quantification of network topology considerably contributes to the understanding of a network

and it complements network decomposition approaches like motif dection, which was presented

in the preceding chapter. If applied to functional brain network samples, the resulting charac-

terization of all sample element networks might be the basis for deriving qualitative information

about underlying recorded brain processes and their alterations in different investigated groups.

Following I present the network analysis results of an application study [266] where weighted

edge-complete functional networks of cognitively impaired HIV-infected patients were investi-

gated. For this work information obtained from structural and functional imaging data was

combined to quantify the effects of lithium treatment-induced changes in brain microstructure

on gPDC-derived functional connectivity patterns.
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5.1 Data description

The following description of the fMRI data and the connectivity analysis is a concise recapitu-

lation of the main facts. Detailed information may be found in a publication I co-authored

[266].

5.1.1 Subjects and connectivity analysis

A cohort of seven HIV-infected individuals (4 male, age range 43–52 years, mean = 45.5) with

diagnosed cognitive impairment was enrolled in a 10-week, open-label lithium study [267]

at the University of Rochester. The study was reviewed and approved by the Institutional

Review Board at the University of Rochester Medical Center and all subjects signed a written

informed consent prior to undergoing study procedures. The open-label trial study design

did not include a control group. Subjects were instructed to begin taking lithium carbonate

300 mg PO at approximate 12-h intervals. Neuroimaging was performed before and after

lithium treatment, with a period of 10 weeks between the recordings. A series of BOLD EPI

scans (GRE EPI sequence, TR/TE = 2000/30ms) was acquired while participants performed

a working memory task. The task was based on Garavan et al. [268] and consisted of sequences

of large and small squares presented visually for 1500 ms each and intermixed with 100 ms

fixation trials. Each sequence of squares was considered a condition and labeled ‘1-switch’,

‘2-switch’ or ‘3-switch’ based on how many times the size of the squares changed during the

sequence. Participants were required to retain separate counts of small and large squares in

memory and report it at end of the sequence. Each imaging run consisted of 15 randomly

presented conditions, five of each ‘switch’ type. During each visit (pre or post treatment),

participants performed three imaging runs, with the order of sequence presentation changing

from run to run to avoid practice effects. The diffusion tensor imaging (DTI) results from

[267] were used to select the regions of interest (ROI) for the connectivity analysis of this

study. The following seven areas were selected as ROIs for the connectivity analysis: right

cerebellum, right putamen, right medial frontal gyrus, right and left frontal orbital cortex,

right lateral occipital cortex and right subcallosal cortex. The degree of directed information

transfer between the seven nodes (ROIs) of the fMRI-based network was quantified by means

of time-variant gPDC based on time-variant multivariate autoregressive (tvMVAR) processes

(see also appendix B.1.2).
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5.1.2 Samples of functional connectivity networks

Due to the way the vast amount of connectivity data was pooled together 600 functional

connectivity networks were analyzed: For each HIV-infected patient in each of the three

repeated measurements (runs), the three ‘switch’ conditions were repeated five times each,

resulting in 45 functional connectivity networks for each one of the two treatment conditions.

This results in 315 networks representing the functional connectivity patterns in all seven

patients prior lithium treatment. Since for patients five and six only two instead of three runs

from the post treatment visit were available for analysis, the number of functional connectivity

networks in the post-lithium treatment condition was just 285. Connectivity patterns were

represented as weighted edge-complete directed networks with seven labeled nodes representing

ROIs and edge weights defined by the corresponding aggregated gPDC values. All networks

of each of the two treatment conditions constitute a network sample. Example networks of

both network samples are shown in figure 5.1.

5.2 Analysis of the network samples

The aim of the study was to investigate the network samples with respect to expected differences

in the pre-treatment vs. post-treatment global connectivity structure. Contrary to the common

approach to analyze thresholded binary networks (see also section 2.3) in this study I extracted

topological features from the unaltered weighted directed edge-complete networks. This strategy

enables to circumvent information loss and the threshold-dependency, i. e. the complications

that arise from analyzing different samples of binary networks obtained from dichotomizations

of the gPDC data for different, yet arbitrarily defined thresholds. Due to the investigated

clinical question and its specific interpretation I primarily analyzed the global increase in

interaction strength (average node strength), which is associated with positive effects of

lithium treatment on brain function of the investigated patient group. Other topological

characteristics were also investigated, including the characteristic path length and weighted

clustering coefficients (see also section 2.7). To meaningfully calculate the characteristic path

length, connection strengths given by gPDC values were mapped to connection costs using

equation 2.8 as suggested in [67]. The obtained network characteristics were further analyzed

using surrogate-assisted network analysis (see also section 2.12) so that mechanistic and

stochastic effects can be segregated from the influence that nontrivial topological properties

have on the assessed measures. With this additional information changes in functional brain
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(a)

(b)

Figure 5.1 – Pre-treatment and post-treatment functional connectivity structure
of three different subjects. Randomly selected weighted edge-complete networks of three
subjects, pre- (a) and post-lithium (b) treatment in the same experimental condition. The
weakest interactions are not shown. The following subjects and condition are depicted:
subject 1, run 1, switch 1, block 1 — subject 3, run 1, switch 3, block 4 — subject 7, run
3, switch 3, block 15. Detailed information about the experiments may be found in [266].
It can be seen that the interaction strength tends to increase after lithium treatment. The
nodes correspond to the following ROIs: 1 – right cerebellum, 2 – right putamen, 3 – right
medial frontal gyrus, 4 – left orbital gyrus, 5 – right orbital gyrus, 6 – right lateral occipital
cortex and 7 – right subcallosal gyrus.

network characteristics can be reported more conclusively. Thereby, for each functional brain

network the observed network characteristics were normalized by dividing them with their

mean value in a sample of 1000 surrogate null model networks with random topologies. This

normalization rules out biasing effects that stem mainly from very basic topological properties,

like the collection of edge weights and accounts for the degree of influence that nontrivial and

nonrandom topological properties have on the measures. Additionally, statistical differences

between values of unnormalized network characteristics in each sample of functional brain

networks and their average values in their surrogate network ensembles were identified with

the paired two-sided Wilcoxon signed rank test [269] and a significance level of α = 0.05. A

fully connected, edge-complete network is combinatorially very constrained with respect to

randomization procedures, i. e. edges cannot be rewired. As surrogates I used an ensemble
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of random networks that preserve the weights of the edge-complete (i. e. fully connected)

weighted functional brain networks by means of global edge weight permutations (random

shuffling of edge weights) as described in [94].

5.3 Results and discussion

Following I present the main results of this study. A detailed description of the results may be

found in [266] and its supplement.

The main finding of this study is the increase in interaction strength (average node strength)

after lithium treatment (p = 4.7·10−7). Such a lithium treatment effect has never been reported

before. A global lithium effect on the characteristic path length was also found, which was

decreased due to the lithium treatment (p < 10−7). Raw values of all seven weighted clustering

coefficients were significantly increased in the post-lithium treatment condition (p < 10−4).

These findings were obtained using linear mixed models [270] (this statistical analysis was

performed by coworkers of my institute). An additional perspective on the network analysis

results, in particular the weighted clustering coefficient, was obtained by surrogate-assisted

analysis. For some individual weighted clustering coefficients statistical differences between

the functional brain networks of both network samples and their randomized surrogate coun-

terparts were found. These weighted clustering coefficients had both, statistically significantly

increased and decreased values. Since high values of clustering coefficients are commonly

associated with good local information processing capabilities, this result hints at non-trivial

effects of lithium treatment on brain function. The results are represented in figure 5.2. To

summarize both statistical analyses, the weighted clustering coefficients of all nodes were

statistically significantly increased post lithium treatment and for at least some of the nodes it

cannot be entirely ruled out that this increase can be explained, at least in part, by nontrivial

local changes in the underlying networks. However, since the effect sizes were small one

should refrain from emphasizing the increase in weighted node clustering too strongly in the

interpretation of the results. To give an idea of typical effect sizes, I state the statistical results

of the surrogate-assisted analysis of weighted clustering coefficients for the post-treatment

network sample. As can be seen in figure 5.2, ROIs 3, 6, 7 have increased weighted clustering

coefficients compared to the respective randomized surrogate network ensembles. According

to the paired two-sided Wilcoxon signed rank test this increase is statistically significant,

with p-values p < 10−16, p = 1.33 · 10−12 and p < 10−16, respectively. For these nodes the
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median values (and interquartile range) of the normalized weighted clustering coefficients

were 1.070 (0.142), 1.062 (0.163) and 1.060 (0.157), respectively. No statistical differences

were found for the weighted clustering coefficients of ROI 2 (p = 0.868; 0.997 (0.145)) and

ROI 4 (p = 0.985; 0.998 (0.195)). The weighted clustering coefficients of ROI 1 (p < 10−16;

0.914 (0.164)) and ROI 5 (p = 4.46 · 10−6; 0.967 (0.165)) were decreased in the functional

brain networks as compared to the surrogate networks. For the pre-treatment network sample,

the situation of the effect sizes is similar. Contrary to the situation for the weighted clustering

coefficients, the value of the characteristic path length was not changed in the surrogate

network ensembles. The reason for it is the edge-completeness of the analyzed functional

brain networks and the fact that edge weights obtained after the necessary strength–to–cost

transformation are homogenous enough so that the direct connections between node pairs are

always the shortest ones. Since the collection of edge weights is preserved in the surrogate

networks, the characteristic path length does not change. This illustrates a drawback of not

filtering out low weight edges prior to the network analysis. In addition, there is the possibility

for biasing effects that spurious interactions might have on the results.

(a) (b)

Figure 5.2 – Network sample-specific changes of the weighted clustering coeffi-
cient pre- and post-lithium treatment. While all weighted clustering coefficients were
significantly increased after lithium treatment, surrogate-assisted network analysis, as a
supplemental statistics layer with different emphasis, indicates that for some nodes this
increase is likely caused solely by mechanistic effects of the global increase in interaction
strength and cannot be associated to any additional non-random topological changes. Thus,
surrogate-assisted analysis gives a more detailed picture of the network characteristics in the
pre-treatment (a) and post-treatment network sample (b). nodes had significantly larger
clustering coefficients in the functional brain network sample than in the surrogate networks.
For nodes there was no statistical difference in clustering coefficients between the real and
surrogate networks. nodes had significantly decreased clustering coefficients as compared
to the surrogate networks. Functionally relevant clustering is increased after treatment, as
node 7 and node 2 are improved with respect to their local clustering. However, all effect
sizes were small. The nodes correspond to the following ROIs: 1 – right cerebellum, 2 – right
putamen, 3 – right medial frontal gyrus, 4 – left orbital gyrus, 5 – right orbital gyrus, 6 –
right lateral occipital cortex and 7 – right subcallosal gyrus.
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The found global increase of interaction strengths might be indicative of a positive over-

all effect of lithium treatment on cognitive performance [271] of HIV-infected patients with

cognitive impairment. A decrease of the characteristic path length post treatment could be

associated with the benefit of lithium treatment in restoring or building efficient connections

for information transfer between nodes in the underlying brain network. It seems that lithium

treatment of HIV-infected individuals induces changes in brain microstructure (as assessed

by DTI) that are associated with improved performance related features of brain functional

network connectivity (as assessed by fMRI). Considering the results of surrogate-assisted

analysis, it remains largely unresolved to which extent the changes in the characteristic path

length and weighted clustering coefficients are a direct byproduct of the global increase in edge

weights post-lithium treatment or if additional functionally relevant effects on the network

topology are at work, too.

102



Chapter 6

Analysis of module structure
quality in large scale functional
brain networks

Sets of strongly interconnected nodes called network modules (see also chapter 2, section

2.7.2), or communities represent a defining topological feature of many network data

sets [70, 148]. They indicate relatively independent indivisible and cohesive substructures of a

network that play an important role in the organization of network structure. Typically, the

subnetworks induced by network modules are characterized by a larger number of internal

interactions and stronger internal interaction patterns that allow for more information flow

between affiliated vertices as compared to interactions between these subnetworks. Network

module structure might be associated with specific domains of behavior and cognition [3] and

plays a role in human learning [15] and the organization of human brain structural connectivity

[272]. Thus, obtaining a functional segmentation of a brain network node set yields a picture

of brain activity at a specific instant of time. Network module detection at the outset is

inherently connected with two uncertainties: It is usually a priori not clear which module

detection algorithm is suited to partition the network data at hand, i.e. how good its detection

strategy fits the network topology and the underlying processes it encodes. After having

uncovered a network partition, its quality with respect to topological information remains to

be determined, as well as its compatibility with the specific concept and notion the user has

about network modules. However, prior to obtaining a functional segmentation in the form of

identified module structure in functional brain networks the underlying cognitive processes
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and the information flow among and within spatially distinct regions of the brain has to be

quantified [3]. High dimensional data, such as fMRI recodings, in combination with a low

temporal resolution imposes computational limits on classical Granger Causality analyses with

respect to obtaining a representation of functional interactions in the brain at a large and

highly resolved scale.

The work described in this chapter was published in two publications about a new ap-

proach, the large scale Granger Causality Index (lsGCI) (see also appendix B.1.1) that much

improves the quantification of directed information transfer in very high-dimensional systems

and that is less restricted by dimensionality of the underlying time series than other approaches.

The preservation of a high spatial data dimensionality that is possible with this new large

scale Granger Causality Index (lsGCI) may result in the computation of unprecedentedly

large functional brain networks, representing functional connectivity patterns consisting of

several thousands of nodes connected by millions of edges. This approach was developed by

my colleagues at the institute. To evaluate the practical effect of the lsGCI approach I applied

several state-of-the-art module detection algorithms to lsGCI-derived functional networks

computed from time series that were realized on the basis of ground truth network data,

for which I devised a simulation algorithm (see also chapter 3, section 3.4). Subsequently, I

analyzed module structure quality using the analysis strategy outlined in chapter 3, section

3.3 to examine the tradeoff between computing increasingly higher dimensional functional

connectivity networks and the loss of topological information caused by the approach. Finally,

lsGCI-derived spatially highly resolved functional networks obtained from fMRI brain scans

were investigated with respect to their module structure (functional segmentation). For ob-

taining a visualization of a subject’s functional segmentation, the network module affiliations

of all voxels can by directly projected back onto the neuroimaging data slices that were used

for the lsGCI computations. The first of these two publications, which will be referred to as

study I [61], is basically a feasibility analysis that demonstrates the usefulness of the large

scale Granger Causality Index. The data used for this study was one instance of a ground

truth network model (|V| = 50, see also 3.4 on page 71) and clinical data in the form of a

functional brain network computed from one slice of an fMRI scan (|V| = 1031). The other

study, referred to as study II [273], builts upon the results of the first study and enhanced our

methodology towards a representation of almost full-brain fMRI functional interactions. For

the analyses involved in this study, a sample of 100 simulated ground truth networks of size
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|V| = 100 and several fMRI-based functional brain networks of size between |V| = [5723, 6007]

were used.

6.1 Study I - Data description

The following concise description of the first study and the involved data analysis is taken

from my publication, where a detailed account of the application study may be found [61].

6.1.1 Subjects and connectivity analysis

Data from one male healthy subject was used in the first study, which was conducted as a proof

of principle study to investigate whether our proposed techniques for analyzing functional

brain connectivity at the large spatial scale yields useful results. The acquisition was approved

by the Ethics Committee of the University of Rochester Medical Center (reference number

RSRB00042912), and the individual gave his written consent. Resting state [11, 227] (EPI-

BOLD) fMRI images were acquired. Each volume consisted of 30 axial slices with an in-plane

resolution of 4 mm x 4 mm. The inter-slice distance was 4mm. During the scan, the subject

was instructed to stay still and keep eyes closed. To aid in localization and registration of

functional data, a high-resolution T1-weighted MPRAGE sequence was acquired. 192 slices

were acquired in the sagittal direction with an in-plane resolution of 1 mm x 1 mm and a

slice thickness of 1 mm. Functional MRI data was then preprocessed using FSL v4.1.9. Data

volumes were motion corrected, brain extracted, temporally filtered with a high-pass filter

of cut-off frequency 0.005 Hz, and normalized to MNI152 brain atlas. To demonstrate the

value of the lsGCI methodology for obtaining functional segmentations of brain connectivity

data, we used one slice (slice number 10) for network module structure identification, which

contained N = 1031 voxels associated to the brain. The MVAR model order was set to 6.

The weighted directed lsGCI-derived networks were binarized using edge weight percentiles

(see also chapter 2, section 2.3.2) that were defined in advance as thresholds (40th, 60th and

80th percentile of lsGCI values). All binary directed networks remained weakly connected

after thresholding. This is important, because network fragmentation causes problems for

some module detection algorithms and would not represent a good model of (functional) brain

connectivity from a neurophysiological point of view.

105



CHAPTER 6. ANALYSIS OF MODULE STRUCTURE QUALITY IN LARGE SCALE FUNCTIONAL BRAIN
NETWORKS

6.1.2 Synthetic networks with ground truth module structure

To investigate the reliability of the lsGCI approach, i. e. to investigate the effect of dimension

reduction on network module structure and for comparing the lsGCI approach with the

conventional Granger Causality Index I simulated an artificial data set consisting of binary

directed ground truth (ad hoc) networks with known, pre-defined module structure (see also

chapter 3, section 3.4). The module structure’s degree of definiteness depends on the chosen

parameterization and should be identifiable by module detection algorithms. The algorithm

and the chosen parameterization used in study I [61] to simulate such networks differs slightly

from the one used in study II, which is described in the next section. For the analysis, one

generated network instance was used to realize different time series as input to the lsGCI

approach and subsequent functional network computation. The size of the simulated ground

truth network was D = 50. Given a predefined number of modules and their sizes (two modules

of size 12, two modules of size 13), nodes are selected and accordingly assigned membership to

non-overlapping modules. The edges connecting these nodes in the ground truth networks are

placed randomly under constraints that define a notion of module structure, as designated by

the simulation algorithm outlined in section 3.4, the variant that does not vary the network

generation parameters for each generated network. The chosen parameterization was pint = 0.7,

pext = 0.02, κinint = κoutint = 6 and κinext = κoutext = 4.

Stationary first order multivariate autoregressive processes (Nt = 1000 and Nt = 3000)

were simulated on the basis of the resulting adjacency matrix A, the details of which can

be found in the appendix B.2 on page 150. Interactions between components of these time

series were identified with the lsGCI approach and used to construct edge-complete and

edge-weighted functional connectivity networks. To dichotomize and to remove spurious edge

weights given by lsGCI values, statistical significance of lsGCI values was determined using a

Monte Carlo method (see also chapter 2, section 2.3.1), which estimates the distribution of

lsGCI values under the null hypothesis of no directed interactions between respective nodes

vi and vj . An analytical distribution under H0 [274] was used for the dichotomization of

synthetic networks based on the classical GCI. These statistical analyses were performed with

a type-I error of 1% adjusted for multiple comparisons.
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6.2 Study II - Data description

The following concise description of the data used in the second study is taken from my

publication, where a detailed account of the application study may be found [273].

6.2.1 Subjects and connectivity analysis

Five HIV positive subjects (four males, one female; mean age: 41 years; age range: 28-53

years) participated in this study. The study was approved by the Ethics Committee of the

University of Rochester Medical Center (reference number RSRB00042912). Brain scans

of the subjects were acquired at the Rochester Center for Brain Imaging. High resolution

structural imaging was performed using T1-weighted magnetization-prepared rapid gradient

echo sequence (MPRAGE). Resting state fMRI scans were acquired using a gradient spin

echo sequence. Four independent runs were recorded for each subject, where the acquisition

of each run lasted 6 minutes with 250 volumes each. A total of 25 slices, each 5 mm thick,

was acquired for each volume. During acquisition, the subject was asked to lie still with

closed eyes. The first 10 volumes were deleted to allow the signal to reach equilibrium.

The volumes were then subjected to slice timing and motion correction as well as brain

extraction. Linear detrending was performed by high pass filtering (0.01 Hz). These were

then registered to the standard MNI152 template (2 mm isotropic). For subsequent anal-

yses, time series from ventricles were masked out using the standard ventricle mask based

on the MNI152 template available in FSL [275]. All preprocessing steps were carried out

using FEAT (FMRI Expert Analysis Tool), which is part of FSL and its respective subroutines.

Connectivity analysis of clinical data was limited to every third voxel, in sagittal, frontal

and transverse direction, still resulting in |V| = 5723 to |V| = 6007 voxel time series to be

processed. The MVAR model order was set to 5. The lsGCI approach utilizes an embedded

dimension reduction during the MVAR modeling process. In the studies described in this

chapter the Principal Component Analysis was applied, introducing a parameter, the variance

explanation, into the lsGCI approach. The amount of variance explanation was variably

chosen between 80% and 90%. The weighted directed lsGCI-derived networks were binarized

using edge weight percentiles (see also chapter 2, section 2.3.2) that were defined in advance

as thresholds (90th, 95th and 98th percentile of lsGCI values). Relatively high thresholds were

chosen to preferentially obtain networks with a reduced fixed edge density [37]. All binary
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directed networks remained weakly connected after thresholding.

6.2.2 Synthetic networks with ground truth module structure

For the simulation of edge-directed networks with ground truth module structure I used

my algorithm described in chapter 3, section 3.4 on page 71 with the following parameter

settings: 100 different instances of ground truth networks were generated for each network size

|V| ∈ {100, 200, ..., 800}. These numbers of nodes were chosen to obtain networks that can be

still processed with standard GCI methods for the purpose of quantitative comparisons. The

generating algorithm scales the number of modules with the network size, so that for every

increase of 100 nodes eight additional clusters of nodes are simulated. All column sums in the

simulated adjacency matrices were restricted to be at most fifteen (an explanation for it is

given in appendix B.2). The probability for intra-module edges in both directions between

pairs of nodes was given by pint = 0.5, whereas the probability of directed inter-module edges

depends on the network size so that the constraint on the column sums holds true. This

probability was given by pext = 3/(N − 15). Underlying this probability for each node vi is

the conservative assumption that vi has on average only 3 in-going connections1 from at least

N−15 possible nodes outside the module of vi, with 15 being the maximum size of any module.

The minimum intra-module (“internal”) in- and out-degree and the maximum inter-module

(“external”) in- and out-degree of all nodes were set to kinint = koutint = kinext = koutext = 4. An

example of a ground truth network is shown in figures 6.6 (a) and 6.7 (a).

Similar to study I, for each network size |V| ∈ {100, 200, · · · , 800} stationary first order

multivariate autoregressive processes with 1000 temporal samples each were simulated on

the basis of the adjacency matrices of 100 instances of ground truth networks (see also ap-

pendix B.2 on page 150). Interactions between components of these time series were identified

with the lsGCI approach and used to construct edge-complete and edge-weighted functional

connectivity networks. These networks were dichotomized using network-specific thresholds

that were chosen so that the resulting binary networks had maximum similarity to their

associated ground truth network according to a maximum Cohen’s kappa [197, 276]. Results

are presented for ground truth networks of size |V| = 100.
1It was found that with increasing network size too many outlier nodes with either more than 4 inter-module

edges or with in-degree (column sum) larger than 15 were generated, which causes frequent restarts of the
simulation. This problem is slightly more pronounced for nodes whose module size is smaller than 15, since
they potentially can make slightly more interactions with external nodes.
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6.3 Module structure quality analysis for the assessment of

network topology alterations

As mentioned above, the analysis of the extent to which the dimension reduction step of

the lsGCI procedure negatively affects edge patterns —the interaction structure between

the recorded time series of brain activity— and degrades the recoverability (preservation),

definiteness and quality of network modules was based on samples of simulated networks with

ground truth module structure and the corresponding realized multivariate time series, which

comprise the ground truth connectivity patterns. Network module structure was detected in

the resulting samples of lsGCI-derived networks and, for comparisons, in GCI-derived networks.

For it, different module detection algorithms for binary directed and binary undirected (i.e.

symmetrized) networks were used. They are described in section 2.8 on page 31. The effect of

varying degrees of lsGCI dimension reduction on the quality, definiteness and recoverability of

network module structure was assessed by contrasting detected network partitions of (ls)GCI-

derived networks with the detected and known module affiliation of nodes in the ground

truth network using several network structure characteristics. The structural and information

theoretic measures that were used for the quantification of network module structure are

described in section 2.10 on page 38.

6.3.1 Results of study I

In study I [61] network partitions were identified with the algorithm of Blondel et al. for

directed networks (see also section 2.8). Tables 6.1, 6.3, 6.2 and 6.4 show the results of the

involved comparisons. Thereby, module recoverability in the networks identified by (ls)GCI

approaches was quantified by the following measures: ratio of correctly classified nodes with

regard to their known module membership classification, normalized variation of information

as a partition distance and normalized mutual information between two network partitions.

Additional information to these measures of network partition similarity was obtained by

assessing the quality of the partitions to distinguish “clear-cut” from “weak” network partitions.

The following quality measures were evaluated: modularity measure, performance, coverage

and overall average silhouette width.

As expected, for time series length Nt = 1000 the impact of dimension reduction on network

topology is noticeable, but remains manageable as the assessed module structure characteristics
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are reduced in comparison to the ground truth network, yet they are not conflicting with the

presence of a marked network module structure (tables 6.1 and 6.2). It can be seen in panels (d)

and (e) in figures 6.1 and 6.2 that intra-module and inter-module edge patterns are thinned out

(false negatives) as compared to the ground truth network. Still, for Nt = 1000 and different

degrees of dimension reduction the recoverability of ground truth nework modules is acceptable,

with up to 98% correctly identified module affiliations of nodes, which is a larger rate than for

the GCI network and it explains the only moderately reduced similarity of obtained network

partitions with a low variation of information (partition distance) and sufficiently large mutual

information between lsGCI and ground truth network partitions. Surprisingly, certain levels

of variance explanation seem to yield networks in which the preservation of module structure

is particularly good, even better than for the classical GCI. Modularity values, that measure

the quality of module structure inherent in the network, are already high. It can be seen that

higher modularity values do not always translate to a higher ratio of correctly classified nodes.

This means that topological alterations result in a new, slightly different module structure as

compared to the ground truth network. Overall average silhouette width values were somewhat

low, indicating that nodes were either not always placed in their best fitting module with

respect to their dissimilariy with comember nodes or that due to edge pattern alterations the

differences betweenn the average dissimilarity of nodes to comember nodes and to nodes of

other modules were not marked enough. There might also be a bias introduced by the choice

of the node dissimilariy measure and perhaps another such measure could have been used (see

the discussion in chapter 2, section 2.10).

Table 6.1 – Network partitioning: module quality assessment (study I, |V| = 50,
Nt = 1000). Network module structure definiteness can be quantified and compared using
several measures that account for module membership assignments of nodes and how this
classification is backed up by topological properties of identified, putative modules. For
lsGCI-derived networks, the degree of variance explanation is stated.

Network Modularity Performance Coverage Avg. silhouette

ground truth 0.651 0.942 0.903 0.395

GCI 0.529 0.890 0.731 0.090
lsGCI 93% 0.478 0.725 0.839 0.090
lsGCI 86% 0.555 0.842 0.818 0.103
lsGCI 78% 0.441 0.900 0.602 0.059
lsGCI 69% 0.482 0.831 0.737 0.070

For Nt = 3000 the quality of (ls)GCI network module structure is similar to the ground
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Table 6.2 – Network partitioning: module recoverability assessment (study I,
|V| = 50, Nt = 1000). The effect of the lsGCI dimension reduction step on recoverability
of ground truth network module structure can be quantified using several measures that
account for the similarity of identified network partitions in (ls)GCI networks and the ground
truth network. For lsGCI-derived networks, the degree of variance explanation is stated.

Network Correctl. class. nodes Variation of inf. Mutual inf.

GCI 0.800 0.116 0.852
lsGCI 93% 0.760 0.089 0.857
lsGCI 86% 0.940 0.073 0.897
lsGCI 78% 0.640 0.169 0.807
lsGCI 69% 0.980 0.036 0.949

truth network (table 6.3), with the performance measure being slightly smaller as compared

to the case of the shorter time series. High performance and coverage values indicate that

the identified module structure fits the network topology of the lsGCI-derived networks with

respect to large numbers of node pairs of the same module being connected by edges and only

comparatively few edges falling between nodes of different modules. In the case of Nt = 3000

all characteristics that quantify the recoverability of module affiliations of all nodes take on

their optimal value for all analyzed (ls)GCI-derived networks, which means that the ground

truth module affiliations of all nodes could be fully recovered (table 6.4). The expected positive

effect of longer time series on the reproducibility of network topology by lsGCI and GCI

approaches was thus observed in the data. Contrary to the case of Nt = 1000, for Nt = 3000

it can be seen in figure 6.1b, 6.1c and figure 6.2b 6.2c that there are spurious, false positive

interactions between nodes of different modules, given by increased numbers of inter-module

edges, while intra-module interactions remained largely stable as compared to the ground

truth network.

To further evaluate the effect of the embedded dimension reduction step on binary edge

patterns beyond visual inspection (figures 6.1 and 6.2) we considered Cohen’s kappa (figure

6.3) for measuring the agreement between a ground truth adjacency matrix (figure 6.1a) and

corresponding adjacency matrices identified by lsGCI and classical GCI approaches (figure

6.1b - 6.1e). As before, in the case of the longer time series, Nt = 3000, the agreement with the

ground truth is substantial up to very good. For Nt = 1000, the agreement may be considered

as moderate for the GCI-derived network and lsGCI-derived networks for which the variance

explanation was at least 78%.
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Table 6.3 – Network partitioning: module quality assessment (study I, |V| = 50,
Nt = 3000). Network module structure definiteness can be quantified and compared using
several measures that account for module membership assignments of nodes and how this
classification is backed up by topological properties of identified, putative modules. For
lsGCI-derived networks, the degree of variance explanation is stated.

Network Modularity Performance Coverage Avg. silhouette

ground truth 0.651 0.942 0.903 0.395

GCI 0.593 0.915 0.845 0.332
lsGCI 92% 0.572 0.898 0.824 0.258
lsGCI 84% 0.571 0.898 0.824 0.237
lsGCI 75% 0.591 0.899 0.844 0.218
lsGCI 66% 0.588 0.887 0.839 0.202

Table 6.4 – Network partitioning: module recoverability assessment (study I,
|V| = 50, Nt = 3000). The effect of the lsGCI dimension reduction step on recoverability
of ground truth network module structure can be quantified using several measures that
account for the similarity of identified network partitions in (ls)GCI networks and the ground
truth network. For lsGCI-derived networks, the degree of variance explanation is stated.

Network Correctl. class. nodes Variation of inf. Mutual inf.

GCI 1 0 1
lsGCI 92% 1 0 1
lsGCI 84% 1 0 1
lsGCI 75% 1 0 1
lsGCI 66% 1 0 1
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(a)

(b) (c)

(d) (e)

Figure 6.1 – Edge pattern alterations in the adjacency matrices of GCI and lsGCI
networks in comparison to the ground truth network (study I). Networks (b) - (e)
are based on the simulated network with ground truth module structure (a). Interactions are
color-coded with respect to the module affiliation of their nodes as detected by the algorithm
of Blondel et al. (“Louvain”). Inter-module edges that represent interactions between nodes
of different modules are shown in black. (a) ground truth network (|V| = 50, ground truth
module affiliations were recovered 100%), (b) GCI computed network (Nt = 3000), (c) lsGCI
computed network (Nt = 3000, 84% variance explanation), (d) GCI computed network
(Nt = 1000), (e) lsGCI computed network (Nt = 1000, 86% variance explanation). The four
network modules are visible as blocks of dense edge patterns centered on the main diagonal
of the adjacency matrices. As expected, the preservation of ground truth edge patterns
depends on time series length and degree of dimension reduction. However, even though
edge patterns are altered and intra-module edges are thinned out, the module structure is
still apparent in all cases.
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(a)

(b) (c)

(d) (e)

Figure 6.2 – Network layouts for the adjacency matrix images of figure 6.1 (study
I). Two-dimensional node configurations were computed for the ground truth network using
the algorithm of Kamada and Kawai [141]. Thereby obtained node coordinates were applied
to the layout of all other networks. Nodes are color-coded with respect to their module
affiliations (cf. figure 6.1) as detected by the algorithm of Blondel et al. (“Louvain”). (a)
ground truth network (|V| = 50, ground truth module affiliations were recovered 100%),
(b) GCI computed network (Nt = 3000), (c) lsGCI computed network (Nt = 3000, 84%
variance explanation), (d) GCI computed network (Nt = 1000), (e) lsGCI computed network
(Nt = 1000, 86% variance explanation). The four network modules are visible as regions with
high density of interactions. It can be seen again that the preservation of ground truth edge
patterns and ground truth module structure depends on time series length and degree of
dimension reduction. Modules display higher interaction densities in all cases and can be
recovered to a large degree (cf. tables 6.2 and 6.4).
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Figure 6.3 – Assessment of edge pattern alterations in terms of Cohen’s kappa
(study I). The agreement between edge patterns of a ground truth adjacency matrix and
corresponding adjacency matrices identified by lsGCI and classical GCI approaches indicates
the amount of edge pattern alterations caused by the lsGCI dimension reduction step. The
ratios at the abscissa denote the proportion of retained components. As expected, the
agreement of adjacency matrix entries depends on time series length and degree of dimension
reduction. In particular for the case of the longer time series and lower degrees of dimension
reduction the agreement ranges between high and adequate.

(a) (b) (c)

Figure 6.4 – Pairwise adjacency relationship-based node distances (study I). (a)
Ground truth network (N = 50). Clear network module structure is reflected in small
distances between comember nodes and large distances between nodes of different modules.
(b) lsGCI network (Nt = 1000). Degradation of module structure is apparant by larger
distances between nodes of the same modules and less pronounced differences in distances
between nodes of flanking modules. (c) lsGCI network (Nt = 3000). With increasing length of
simulated time series the module dissimilarities become similar to the ground truth network,
hinting at an increasingly more clear-cut module structure that resembles the one of the
ground truth networks, although inter-module node distances are reduced. These findings
are consistent with the silhouettes calculated for the same data (cf. figure 6.5).
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(a) (b)

(c)

Figure 6.5 – Silhouettes of identified
module structure (study I). The four
silhouettes in each plot show which nodes
are qualitatively fitting well into their as-
signed modules, which nodes are not show-
ing a strong association with their module
and are merely lying in between different
modules and which ones are misclassified.
Narrow and negative silhouettes are indi-
cating the degree of artificial clustering of
nodes to define modules. The adjacency re-
lationship node distance measure of section
2.10 is used for calculating the silhouette
widths of single nodes. (a) Ground truth
network (|V| = 50). (b) lsGCI network
(|V| = 50, Nt = 1000, 86%). (c) lsGCI
network (|V| = 50, Nt = 3000, 84%). The
silhouette plot reveals the influence of di-
mension reduction and the length of under-
lying time series on the quality and recover-
ability of the four ground network modules.
A relatively weak module structure that is
less pronounced than the one of the ground
truth networks is apparent in (b) for short
time series length (cf. figure 6.4). Also note
the different module sizes and the different
average silhouette widths s(i) of modules.
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The effect of dimension reduction on node degree sequences can be quantified by means

of the L1-metric (Manhattan distance) separately for in-degrees and out-degrees. Using the

ground truth network of study I for comparison the degree sequences were found to be altered

profoundly. The L1 distance for Nt = 1000 and lsGCI-computed networks was in the range of

268 (93% variance explanation) to 287 (69% variance explanation), whereas for the respective

GCI-computed networks it was 253. The L1 distance for Nt = 3000 and lsGCI-computed

networks was in the range of 66 (92% variance explanation) to 153 (66% variance explanation),

whereas for the respective GCI-computed networks it was just 33. Again, it can be seen that

the influence of different degree of dimension reduction on alterations of network topology are

smaller than the effect of the chosen time series length.

In summary, the module preservation is very good, and the influence of the dimension

reduction on module recoverability and module quality is much lower than one might as-

sume by comparing edge patterns only (figure 6.3) or comparing graphical representations of

adjacency matrices (figure 6.1).

6.3.2 Results of study II

In study II [273] network partitions were identified with the following algorithms:

1. Algorithm of Leicht and Newman [154] (“leading eigenvector”, BD networks)

2. Algorithm of Blondel et al. [158] (“Louvain”, BD networks)

3. Random walk algorithm of Pons and Latapy [162, 163] (BU networks)

4. Greedy algorithm of Clauset et al. [160] (BU networks)

5. Algorithm of Newman [152, 153] (“leading eigenvector”, BU networks)

6. Potts spin glass based algorithm of Reichardt and Bornholdt [167] (BU networks)

7. Algorithm of Blondel et al. [158] (“Louvain”, BU networks)

8. Algorithm of Rosvall and Bergstrom [168] (“Infomap”, BD networks).

The results of the algorithm of Rosvall and Bergstrom were excluded, because for the investi-

gated fMRI data, uncovered network partitions frequently consisted of one module only. All

algorithms are described in chapter 2, section 2.8.
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Edge pattern alterations caused by different degrees of dimension reduction and their ef-

fect on module structure can be seen in the adjacency matrix plots in figure 6.6. The

corresponding network layouts are shown in figure 6.7. Again, network module structure

is directly recognizable in the images of the adjacency matrices as diagonal blocks of dense

edge patterns. Due to dimension reduction, a number of intra-module edges are lost, whereas

spurious, false positive interactions between nodes of different modules are gained. As expected,

the preservation of ground truth edge patterns depends on the degree of dimension reduction.

Similar to the case of the smaller ground truth networks of study I, with respect to the edge

pattern alterations, an intermediate range of variance explanations seems to yield the best

results. Large deviations from ground truth module structure can be seen for dimension

reductions with high variance explanations (figure 6.6e and to some extent also evident from

figure 6.6d). In the case of 100% explained variance (which corresponds to the classical GCI)

two ground truth modules are fused into one module, inter-module edges connect original

ground truth comember nodes of the same module, while at the same time some ground truth

non-comember nodes are linked by intra-module edges. For dimension reductions within a

range of lower variance explanations the situation is not very different and similar assertions

hold true (figure 6.6b). Figure 6.7 shows edge pattern alterations from the perspective of

two-dimensional network layouts.

For a more objective assessment, edge pattern alterations in ground truth network ensembles

were quantified with several measures that combine information on network topology with the

classification of nodes, or measures that compare node partitions directly (see also chapter 2,

section 2.10). The various network characteristics that were evaluated cover many different

aspects of network module structure and give a coherent picture of ground truth network and

lsGCI network topology. Despite the information loss inflicted by the dimension reduction

step and its associated edge pattern alterations, we found that the module recoverability as

well as the quality of the identified network partitions was still good in the lsGCI networks,

as compared to their respective ground truth networks, even when considerably reduced.

This is particularly true for the range of explained variance that is of practical relevance.

In this analysis the recoverability of module structure was investigated with the following

characteristics that quantify the similarity between the detected partitions of the ground truth

networks and the ones detected in lsGCI-computed networks: the ratio of correctly classified
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nodes, Rand index and adjusted Rand index, normalized variation of information, normalized

mutual information and split-join distance. Network module structure quality was assessed

with the following characteristics: partition edit distance, modularity, performance measure,

coverage and overall average silhouette width. The boxplots in the appendix, figures B.1 -

B.11 show the results of the analysis of the effects of dimension reduction on ground truth

network module structure. Notably, for most considered module identification algorithms, we

found that the percentage of correctly classified nodes in all lsGCI networks was adequately

high, even though a reduction in comparison to the ground truth networks was noticeable.

Depending on the module detection algorithm used and the amount of explained variance,

the median percentage of correctly classified nodes for lsGCI networks was between 47% and

87.5%, whereas for the the ground truth networks it was in the range between 77% and 100%.

The results for the ratio of correctly classified nodes are presented in figure B.1. As explained

in section 2.10 on page 39, the ratio of correctly classified nodes potentially yields a distorted

picture of the module detection results if the number of identified modules does not coincide

with the number of modules in the ground truth network. The Rand index mitigates against

this effect. It measures the similarity of the module structure detected in the ground truth

networks with the one in the lsGCI networks. The boxplots in figure B.2 show that a large

fraction of node pairs are either clustered together or are separated into different clusters in an

identical fashion in the ground truth networks and lsGCI networks. Depending on the module

detection algorithm used and the amount of variance explanation the median Rand index is in

the range between 0.76 and 0.96, which is close to its maximum. For the chance-adjusted Rand

index (figure B.3) the interquartile ranges are increased and mean values are much smaller.

Like the ratio of correctly classified nodes and the Rand index, variation of information (figure

B.4), mutual information (figureB.5) and split-join distance (figure B.6) are measures that

depend only on the classifications of nodes in the two network partitions that are compared

with each other. The results show that their values were still in line with the recoverability of

node module affiliations, which means that the lsGCI networks were sufficiently similar to

their ground truth networks from the perspective of module identification.

To further contrast the module structure of the ground truth networks with the one of the

lsGCI networks I consider network characteristics that take into account features of network

topology, as well as the module affiliations of nodes. Such characteristics can be expected

to yield a particularly accurate picture of the degree to which the lsGCI network structure

was impaired by the dimension reduction step of the lsGCI computation. The (partition)
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edit distance of intra-module edges (figure B.7) was relatively high, reflecting the changes

of intra-module edges patterns in the lsGCI networks. I found that the values of network

characteristics like modularity (figure B.8), performance measure (figure B.9) and coverage

(figure B.10) were noticeably reduced in comparison to the ground truth networks. Using the

example of coverage values, it can be seen that a negative influence of increasing degrees of

dimension reduction on module structure exists (as shown in the boxplots from panels (E) to

(B)), but over entire network samples this influence turned out to be smaller than expected.

This confirmes the initial findings obtained from inspecting the adjacency matrix plots. The

overall average silhouette width values (figure B.11) were surprisingly low. This can be in

part attributed to the somewhat short time series length (Nt = 1000). As shown in study

I, silhouette values greatly improved for Nt = 3000. In addition, due to stricter constraints

on the synthetic ground truth network model the ground truth module structure was less

pronounced as compared to study I. For the ground truth network data of study II the node

dissimlarity measure might not have been appropriate (see the discussion in section 2.10 on

page 45).

6.4 Application of the lsGCI approach to functional resting

state MRI data — detecting large scale module structure

In both studies [61, 273] clinical data was analyzed in addition to simulated ground truth

networks. Thereby, lsGCI-derived functional networks were analyzed that describe interaction

pattens in spatially highly resolved fMRI data with |V| > Nt that cannot be handled by

classical GCI approaches. Network module structure in dichotomized networks was detected

using different community detection algorithms. Thereby, best results were frequently obtained

with the algorithm of Blondel et al. for directed binary networks (see also section 2.8). The

integer module affiliations of nodes that were returned by the detection algorithms were

matched optimally to ensure best possible comparability across data sets (see also chapter 3,

section 3.2) and mapped to unique colors and projected to the fMRI slice voxel masks. The

resulting images yield a visualization of functional segmentation in the fMRI recordings.

6.4.1 Results of study I

As can be seen in figure 6.8 that depicts one fMRI slice with projected module structure, the

affiliation of spatially distributed voxels to modules did not occur unsystematically. Therefore,
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(a)

(b) (c)

(d) (e)

Figure 6.6 – Edge pattern alterations in the adjacency matrices of (ls)GCI com-
puted networks with different degrees of dimension reduction in comparison to
an exemplar ground truth network (study II). For all networks |V| = 100. Networks
(b)-(e) (Nt = 1000) are based on the network (a). Interactions are color-coded with respect
to the module affiliation of their nodes (Potts spin glass algorithm [167]). Inter-module edges
are shown in black. (a) ground truth network, (b) lsGCI computed network, 70% variance
explanation, (c) lsGCI computed network, 80% variance explanation, (d) lsGCI computed
network, 90% variance explanation, (e) GCI computed network, 100% variance explanation.
Network modules are visible as blocks of dense edge patterns. In (b)-(e) inter-module edges
are increased and intra-module edges are thinned out. As expected, the preservation of
ground truth edge patterns depends on the degree of dimension reduction. For some of
the (ls)GCI networks module structure alterations are visible by inter-module interactions
between ground truth comember nodes (black pixels in colored blocks) and intra-module
interactions between ground truth non-comember nodes (colored pixels outside blocks).
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(a)

(b) (c)

(d) (e)

Figure 6.7 – Network layouts for the adjacency matrix images of figure 6.6 (study
II). For the ground truth network the node configuration on the plane was found by the
graphopt force-directed network layout algorithm [277]. To improve visual clarity (retain
separation of modules) these node coordinates were used for networks (b)-(e), too. Nodes
are color-coded with respect to their module affiliations (Potts spin glass algorithm [167],
cf. figure 6.6). All networks have size |V| = 100. Time series length for the lsGCI computed
networks was Nt = 1000. (a) ground truth network, 100% correctly classified nodes (CCN),
(b) lsGCI computed network, 70% variance explanation, 89% CCN, (c) lsGCI computed
network, 80% variance explanation, 89% CCN, (d) lsGCI computed network, 90% variance
explanation, 97% CCN, (e) GCI computed network, 100% variance explanation, 88% CCN.
Network modules are visible as regions with a high density of interactions. The preservation
of ground truth edge patterns and module structure depends on the degree of dimension
reduction. In all cases modules can be recovered to a large degree (cf. figures B.1 to B.11).
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similar to the situation of the simulated data set used in study I, it seems that the effect of

the embedded dimension reduction on the module structure is small enough so that module

affiliations can be recovered. Module structure identification results seem to be more robust

with respect to variations of network dichotomization thresholds than expected, although

the network topology is directly affected. Most likely this can be attributed to intra- and

inter-module edges being similarly influenced by threshold alterations. Also, it is remarkable

that the dimension reduction with the highest variance explanation does not necessarily result

in the most pronounced segmentation. This effect was already described for artificial data

[278] and can be observed here again. Variance explanations of around 80% were found to

result in similar identified module structures (figure 6.8).

6.4.2 Results of study II

Even more conclusive are the findings of study II. In this study five functional networks

of high spatial resolution that cover multivariate interactions in several slices of fMRI data

were analyzed. An example functional segmentation for the entire functional network sample

is given in figure 6.9, which shows the projection of identified module affiliations onto the

original fMRI voxel masks. Remarkably, for all subjects the ‘voxel modules’ closely followed

the conventional classification of the lobes of the brain and the arrangement of voxels with

the same color (nodes with the same module affiliation) was almost symmetric with respect

to the left and right hemispheres of the brain. The module structure projections of all five

analyzed subjects displayed a demarcation of the area of the precentral gyrus (primary motor

cortex) and postcentral gyrus (primary sensory cortex) to the frontal lobe and parietal lobe,

respectively. This module (colored in red) was particularly prominent in the images for subjects

E and C. In summary it can be stated, that the resulting module structure (derived based on

functional connectivity patterns) is very alike to anatomical structures for all five analyzed

subjects.

6.5 Discussion

In both studies network module structure was detected in synthetic networks and in real-world

functional networks that represent the interaction structure in spatially high-resolution fMRI

recordings. The synthetic networks were used to evaluate the feasibility and utility of the

new lsGCI approach for calculating multivariate interactions in high-dimensional time series

data, such as functional neuroimaging data, and for obtaining an informative functional
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Figure 6.8 – Functional segmentation of one resting state fMRI slice (study I).
Network module structure was identified in binary directed networks computed for various
degrees of dimension reduction and threshold levels using the algorithm of Blondel et al. for
directed networks. The ventricular system of the brain was not excluded from the fMRI
voxel mask. The columns represents module structure of lsGCI networks with different
levels of variance explanation (from left to right, 90%, 85% and 80% variance explanation).
The rows show segmentation in dependence on different threshold levels used for network
dichotomization (a: 80th, b: 60th and c: 40th percentile of lsGCI value distribution). For all
thresholds, dichotomized networks consisted of one connected component. Module identities
are color-coded. Despite cost-optimal matching of the node’s module affiliations, there
are few differences across networks due to the individual network partitions being unique.
Thus, module location information has to be additionally considered for interpretation of the
network sample.

segmentation of the resulting large scale binary directed networks. For this evaluation, the

definiteness and quality of identified modules was quantified using a comprehensive analysis

concept. The results of both studies indicate the existence of a range of appropriate levels of

dimension reduction and network dichotomization thresholds, which preserve main features of

network module structure in the resulting high-dimensional lsGCI functional networks, despite

profound alterations of in-degree and out-degree sequences of nodes. This is of particular

interest when the detection of functional similar, strongly interacting nodes (voxels in the case

of fMRI data) and tracing changes of entire regions with similar connectivity characteristics

(functionally segmented brain areas in the case of fMRI data) is the primary objective. For it,

unfortunately, the interpretation of module structure projected back to fMRI slices is difficult,

as it depends on prior physiological knowledge, definiteness and localization of identified
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Figure 6.9 – Functional segmentation of virtually full brain resting state fMRI
voxel interactions of five different subjects (study II). Network module structure
was identified in binary directed networks computed with 85% variance explanation and
dichotomized with the 95th percentile of the edge weight distribution as threshold for binary
connections. All dichotomized networks consisted of one connected component. The algorithm
of Blondel et al. for directed networks was used to obtain a functional segmentation of strongly
interacting nodes. Module identities are color-coded. Despite cost-optimal matching of the
node’s module affiliations, there are few differences across networks due to the fact that
individual network partitions are unique. Module location information has to be considered
for interpretation of the network sample. As reference, one fMRI volume is shown bottom
right (registered to the standard MNI152 template).

modules.

Like all other functional networks considered in this thesis, the investigated networks were

initially edge-weighted and edge-complete. As a result, the biases and problems described in

section 2.3 on page 16 affect the analysis and its results. For the two presented studies the

strategy to analyze binary network instances obtained for a range of pre-defined percentiles of

the edge weights as thresholds seems to give a good overview of the data and the robustness

of its features with respect to the thresholding influence. It turned out that the choice of the

global threshold parameter had a stronger influence on uncovered module affiliations than

the choice of explained variance of the lsGCI computation. For appropriate percentages of
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Figure 6.10 – Images of a binary directed lsGCI network of a HIV infected patient (study
II). Variance explanation after dimension reduction was 85%. The threshold for the dichotomization of
the complete edge-weighted lsGCI network was the 95th percentile of the edge weights. The resulting
network is connected and represents functional interactions between recorded voxel time series. Module
structure was detected using the algorithm of Blondel et al. (‘Louvain’). (a) Presentation of the original,
unsorted adjacency matrix. The shown lsGCI network consists of 5,779 nodes (voxels) and 1,669,842
edges (voxel interactions). Black pixels indicate inter-module edges. Intra-module edges are color-coded
with respect to module identity. (b) A 2D network layout of the unfiltered lsGCI network further reveals
the high complexity of its interaction patterns. To compute this layout a metric multidimensional
scaling algorithm (MDS) [279, 178] was applied to the shortest path matrix, which is used to define
dissimilarities between nodes. Nodes are colored according to their module affiliation. (c) Image of a
reordered version of the original adjaceny matrix in which comember nodes of each module are occupying
subsequent positions in the rows and columns. Consequently, the interactions of comember nodes are
centered around the main diagonal of the adjacency matrix and network module structure becomes
apparent by the (color-coded) block-diagonal structure of pairwise interactions. It can be seen that the
lsGCI network has a large number of inter-module interactions, which represents a demanding situation
for module detection algorithms. (d) A filtered version of the original lsGCI network. Network filtering
improves visual clarity and allows to show relevant structures. This particular network filtering retained
all nodes, all intra-module edges and edges with largest betweenness values (99.5th percentile threshold)
that are linking modules. Again, the MDS algorithm was used to compute node configurations in
two-dimensional Euclidean space.
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explained variance it seems that intra-module edges and inter-module edges are altered by the

dimension reduction step in a balanced way, so that information about the original module

structure is preserved to a large degree. However, in study II for different reasonable settings

of variance explanation and dichotomization threshold, visual assessment did not reveal large

differences for the classification of the lobes of the brain given by identified module structure.

Due to the lack of an available ground truth for real-world data, evaluation of the results is

mainly based on plausibility arguments. In the case of our analyzed data, this plausibility was

provided by a similarity between identified network modules and anatomical lobe classification.

In study II [273] several algorithms for module structure identification (see also section 2.8

on page 31) were applied to the data. The quality of the results was varied and depended

directly on the used algorithm. Frequently, the ‘leading eigenvector’ algorithms of Leicht

& Newman [154] and Newman [152, 153], the ‘Louvain’ algorithm of Blondel et al. [158] for

directed and undirected networks and the ‘Potts spin glass’ algorithm [167] yielded clearly

outlined network modules for our data. Although these four algorithms utilize structural

information differently to identify node partitions into modules, they all yield plausible and

comparable network partitions. On the other hand, some of the applied algorithms (random

walk algorithm of Pons and Latapy, ‘Infomap’, greedy algorithm of Clauset) identified either

only one module or only an implausible module structure consisting of a large number of

small modules that were split and scattered across their network. This demonstrates the

value of exploratory data analysis using different methods. One of the last remarks in this

discussion section concerns the color coding of network module structure accross a set of

networks. It is clearly desirable that modules with similar topological properties, composition

or location are color-matched. However, as explained in section 3.2 on page 64 this objective

cannot be achieved if modules occupying specific areas in one network are disaggregated into

several smaller modules in another network. To correctly interpret the functional segmentation

obtained by identified modules, spatial information, i. e. the location of modules in the brain

should be considered in addition to the color codes. In fact, the spatial arrangement of modules

contains more information than the color coding alone.

The finding that the module structure identified based on lsGCI functional connectivity

patterns resembles anatomical structures, as seen in particular in the spatially high-resolution

functional networks of study II, constitutes an encouraging result that might offer new perspec-

tives for future research on applications that trace functional segmentation dynamics, i. e. the
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changing composition of strongly interacting areas of the brain. Revealing such changes of

functional segmentation over time and at a spatially large scale as the underlying functional

connectivity patterns change in response to stimuli, medical treatment or as an accompanying

symptom of disease certainly will lead to an improvement of our understanding of brain

function.

In this context, the next chapter deals with the last application study that is presented in

this thesis, in which a novel concept for dynamic module structure extraction in time-evolving

EEG-derived networks is introduced.
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Chapter 7

Extraction of dynamic module
structure in time-evolving networks

Information on the temporal evolution of functional brain network structure is assumed

to give insights into time-variant neural processing and the dynamics of brain function.

Sequences of consecutive snapshot networks, i. e. longitudinal networks, can be computed from

the functional interactions of the brain recordings at selected time steps. As already mentioned,

module structure constitutes an intuitive characterization of network organization, as it gives

information about strongly interacting group of nodes. This information enables and facilitates

an interpretation of underlying brain activity based on the functional connectivity data. In this

regard it was shown that module structure in functional brain networks can be associated with

cognitive performance and plays a role in human learning [15]. Therefore, dynamic module1

structure is identified and analyzed in this application study to gain a better understanding

of the time-variant changes2 of the functional connectivity data in response to the execution

of cognitive tasks. For each individual time step and its corresponding snapshot network

[281, 172] a network partition can be computed, which represents the functional organization

of network nodes, i. e. brain regions, in several distinct functionally segmented modules. Then,

the network structure reconfigurations and the resulting dynamics in the module structure

from time step to time step reflect how functional interactions between brain regions are
1Motifs are another mesoscopic structural feature that can be tracked over time, too [126].
2Network dynamics in general can be displayed on many levels. For example, qualitatively different nodes

can be gained or lost, like bridging nodes [55] that mediate connections between different areas of the network
and that have access to non-redundant information. Nodes can affect network topology by acquiring edges at
different rates due to their intrinsic capacity, fitness and ageing [280, 281]. On the level of edges, new edges can
introduce triadic closures that close structural holes, introduce important weak ties [52, 53, 54] or reciprocity of
interactions.
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redistributed in the course of the neural processing. In particular, module structure changes

in response to stimuli and during solving cognitive tasks promises to be informative and to

improve the understanding of normal and pathological brain function. Also, investigating

the inverse situation is interesting, where the aim is to use the topological information of

the network sequence to identify certain events in the time evolution, i. e. the time a certain

stimulus sets in and is processed. Thus, analysis of sequences of time varying networks offers

new perspectives on brain function and can reveal information that remains largely absent from

the analysis of static, single network representations of functional interactions between brain

regions. At present, network science applications are just beginning to see a shift from static

network representations of systems to embrace the dynamic nature of interaction patterns

in many real-world networked systems that constantly evolve over time. Contrary to the

static version of the problem of identifying network modules, detecting and tracking network

modules in series of network snapshots is still mostly uncommon in present research and is only

recently being considered for network analysis [70, 282, 172, 281]. In particular in the field of

computational neuroscience analysis of time-variant networks seems to be the next logical step,

as brain recordings naturally have a temporal aspect and timestamped (functional) network

data can commonly be made available.

Given the usually intricate and dense interaction structure, identification of network module

structure in functional networks obtained from EEG data is a challenge in itself. Sophisticated

pre-processing of network data is essential to uncover patterns in the otherwise inaccessible

network structure that usually features high interaction density ‘noise’. A main concern is the

interpretability of obtained results with respect to neural information processing across the

considered time steps. In chapter 3 section 3.6 I present a network data processing strategy

that is capable to solve these problems, which I demonstrate by applying it to a sequence of

snapshot networks that represent brain activity before and during the compensation of a major

balance perturbation. It is known that motor activities that sustain balance are predominantly

controlled by neural circuits in the spinal cord, the brainstem and the cerebellum. Strong

evidence suggests additional contributions are made by the cerebral cortex [283, 284, 285]. The

compensatory reactions of the cerebral cortex in response to a sudden and unpredicted balance

perturbation to regain postural stability and to avoid a fall is currently only imprecisely un-

derstood [241]. Improving the understanding of cortical balance control and the identification

of activated cortical regions and cortical adaptation effects in the context of balance recovery
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is a topic of ongoing research and constitutes the background of the experiments on which the

application study of this chapter is based.

7.1 Data description

Following, I state the main facts about the data used in this study. The experiment and the

data acquisition is described in detail in [241].

7.1.1 Subjects and connectivity analysis

EEG data was recorded from 37 healthy male subjects, (mean (SD) age: 24.7 (3) years; body

weight: 77.3 (8.1) kg). The recording was obtained from 32 electrodes according to the 10-10

international system. The electrical reference was located at FCz and the ground electrode was

located at AFz. The experiment on which the study is based consisted in ten trials of transient

unpredictable balance perturbations using a passively oscillating platform. Each perturbation

trial, lasting 30 s in total, started immediately after the subjects positioned themselves on

their dominant leg in the center of the platform. The task for the subjects during which the

EEG was recorded consisted in balancing on this platform and keeping platform oscillations to

a minimum after sudden perturbation, while having their hands at the iliac crest and focusing

on a fixation cross at eye level. The platform was laterally deflected by 2.2 cm and fixed

by an anchor in this position. In each trial the investigator randomly released the anchor,

which induced a medial movement of the supportive platform. The perturbation onset was

determined as the time point following anchor release at which the platform motion exceeded

its mean oscillation level in medial-lateral or anterior-posterior direction during the last 5 s

prior to anchor release by five standard deviations.

Next, I state the main features of the functional connectivity analysis, which was performed by

members of my group. The multi-trial EEG data was fitted using the general linear Kalman

filter in order to obtain time-variant MVAR model parameters (see also appendix B.1). The

connectivity analysis based on the tvMVAR parameters was performed by means of direct

DTF (dDTF) (see also appendix B.1.3). The dDTF was chosen because of its good frequency

resolution that was able to clearly separate the specific frequency bands of interest, the theta

and alpha band. This translates into frequency selective networks that can describe the

connectivity related to different oscillations. For group analysis, the dDTF time-frequency

maps are averaged over all subjects. The resulting dDTF interactions are in a narrow range
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of very low values, which makes module detection in the weighted functional brain networks

challenging. Therefore, using equ. 2.5 a rescaling of the values was performed to enhance the

values of the strong interactions (see also section 2.5).

7.1.2 Samples of functional connectivity networks

For each subject 800 snapshot networks were available. For group analysis, the dDTF time-

frequency maps of each interaction are averaged over all subjects. Such a map represents the

strength of an directed interaction among two electrodes at each frequency bin and at each point

in time. From these time-frequency maps, we extract the median value of a specific frequency

band of interest at each time step to obtain weighted directed edge-complete functional brain

networks. Thereby, the theta (5 Hz to 7 Hz) and alpha (9 Hz to 11 Hz) band were selected,

because in these frequency bands the strongest activity was observed. Consequently, two

sequences of snapshot networks were obtained for the entire group of subjects, one for the theta

band and one for the alpha band. The time grid was defined with respect to time-frequency

analysis results, i. e. with respect to characteristic amplitude changes in the time-frequency

maps. Thereby, seven time steps and corresponding snapshot networks were preselected: 2 s,

3 s, 4 s, 5 s, 6 s, 7 s and 7.8 s. The last time step was determined by the width of the consensus

data aggregation time window (see also section 3.6 on page 79). In the preprocessed EEG

data, the stimulus occured at 3 s. Due to heavy artifact contamination four electrodes, that

acted solely as sources of interactions (Fp1, Fp2, P7, P8) were excluded resulting in networks

with 28 nodes. These nodes had minor influence on the tvMVAR model when comparing with

a reduced model (that excludes these electrodes) but a strong influence on the detection of

network modules. The resulting EEG recording sites used in this study are shown in figure

7.1.

7.2 Analysis of the network samples

The analysis concept outlined in chapter 3 section 3.6 was utilized to analyse the two network

samples given by the group averaged connectivity in the theta and the alpha frequency bands.

A global threshold based on pooling all 800 snapshot networks was computed using the 90th

percentile. To aggregate and smooth connectivity information in the vicinity of investigated

snapshot networks at preselected time steps, a time window length of 41 networks corresponding

to 400 ms was selected in an exploratory fashion. This means, for each investigated snapshot

network the connectivity information of 20 networks directly preceding it and 20 networks
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directly succeeding it in the network sequence is combined with the investigated snapshot

network itself to yield either a consensus network or a consensus partition, depending on the

analysis strategy. Module structure in these aggregated interaction patterns at the predefined

time steps was identified using the algorithm of Blondel et al. for weighted directed networks

(see also section 2.8).

Figure 7.1 – EEG electrode positions.

7.3 Results and discussion

The main results of the application study can be summarized as follows. The global threshold

computation using pooled edge weights of all 800 available networks leads to an identified

module structure evolution that is associated with the temporal evolution of interaction

strengths. In doing so, deviations from this overall information on interaction strengths are

highlighted. By contrast, Pareto optimized network-specific thresholds take the temporal

reconfiguration of connectivity structure at each considered time step into account. Therefore,

by using different threshold definitions, different perspectives on the module structure dynamics

are given. As expected, after the stimulus onset, i. e. after the transition to a more demanding

balancing task, module structure starts to constantly reconfigure in both frequency bands, with

no dramatic changes being observed between any two subsequent time steps. In particular,

in the theta frequency band network sequence the module structures between 5 s and 8 s

(2 s to 5 s after stimulus onset) remains relatively stable in spite of an increasing number
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of threshold-exceeding interactions strengths (figure 7.2). The general localization and the

time-evolution of the modules mostly corresponds to the expected neural processing for the

balancing task.

In the theta band network sequence obtained by the global threshold an increase in laterality

can be observed following the stimulus onset (figure 7.2a), whereas laterality is a consistent

property of the module structure for the Pareto optimal thresholds (figure 7.2c). It is known

that balancing tasks are associated with significant activation of the fronto-central and centro-

parietal cortical regions. Specifically, when balance tasks became more challenging a significant

increase in cortical theta activity was observed in the aforementioned regions [286]. The

localization of the modules of the theta network (figure 7.2) demonstrate that these regions are

involved in information processing during balancing on the unstable surface, i. e. after stimulus

onset. In particular, the central electrodes C1, Cz, C2 and the centro-parietal electrodes CP1,

CPz and CP2 (cf. EEG electrode layout in figure 7.1) act as the core of these modules for

both thresholding approaches. Thereby, for both thresholding approaches the centrally located

theta network module around CPz (module 4, ) is already established after the stimulus

onset and remains stable until the end of the analyzed period. The somatotopic representation

of the feet and legs comprises the medial part of the primary motor cortex M1 (Cz) and that of

the neck and trunk comprises the more lateral parts (C1, C2). Coinciding with the beginning

of interactions related to M1, a frontal module (module 2, , electrodes FC1, FCz, FC2, Fz,

F4) evolves over the supplementary motor area (medial part) and the premotor area (lateral

part, area extrapyramidales). Associated functions are e. g. motor sequencing and planning as

well as movement initiation and inhibition [287]. The corresponding alluvial diagram (figure

7.2b) shows that the module around CPz (module 4, ) shows the highest degree of dynamics

during balancing on the unstable surface. The application of the Pareto-optimal threshold to

the theta band network sequence yields stable central modules around CPz, Cz (module 4, )

and a widespread module which covers frontal and occipital regions (module 2, ) (figure 7.2c).

The main feature that stands out is the stability of the central module and of the modules,

which are associated with the temporal lobes of the cortex (module 1, and module 3, ).

Laterality of module structure is less pronounced in the alpha band network sequence

(figure 7.3) as compared to the theta networks, where it is again more prominent in the

Pareto thresholded networks (figure 7.3a). In the alpha networks, the occipital nodes O1 and

O2 (cf. EEG electrode layout in figure 7.1) act as a source of interactions, which propagate

predominantly in the directions from occipital to parietal and to centro-parietal areas. In the
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alpha band network sequence for the global thresholding it can be seen that two occipital

modules do already exist pre stimulus (figure 7.3a). These two occipital modules cannot be

seen in the theta band, wheras in the alpha band they unite and the fusion module continues

to exist after the ‘alpha drop’ at 4 s (reduced number and strengths of interactions). The

alpha network for the global threshold (figure 7.3a) is characterized by strong interactions

between the occipital electrodes (O1, Oz, O2, primary visual cortex) during the less demanding

balancing task before the stimulus onset. The interaction strengths, the number of interactions

to other electrodes and the number of modules slowly increases after the stimulus onset,

i. e. the module structure gradually expands from occipital to frontal electrodes until the entire

network is involved in the processing of the stimulus. The Pareto-optimal threshold reveals the

existence of a large module (module 4, ), which covers a high percentage of all network nodes,

including the occipital region (figure 7.3c). Starting with the stimulus onset this module is

constantly contracting, which can be seen in the corresponding Sankey diagram (figure 7.3d).

This could mean that at later time steps the visual control has lost some of its relevance for the

balancing task. Particularly notable is the co-existence of lateral and central modules which

encompass large parts of the ventral and dorsal pathways of visual information processing

[288, 289, 290], where the main direction of interactions is clearly from the occipital to the

temporo-parietal cortical areas. This finding indicates that both the ventral and the dorsal

visual system might be involved the optimization of balancing control [291]. Such an inter-

pretation is supported by the results based on the application of the Pareto-optimal threshold.

The results demonstrate the usefulness of the proposed module tracking approach, which can

also be directly applied to functional brain networks obtained with different recording modali-

ties, e. g. fMRI, or to longitudinal networks from entirely different domains. Information about

dynamic module structure can be complemented with an analysis of time-variant network

characteristics considering all investigated and aggregated time step networks. The quality

and stability of resulting dynamic network modules and the amount of volatility between

time steps, i. e. the amount of short-lived module structure changes are depending on the

choice of investigated time steps and the time step window size. In addition to the proposed

workflow (see also chapter 3 section 3.6), the stability of the module structure under minor

perturbations of the network data could be analyzed [292, 179, 243], e. g. by using the module

structure quality characteristics presented in chapter 2 section 2.10. This information could

be beneficially used to complement the selection of investigated time steps, which was based
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(a) Global threshold (90th percentile)
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(b) Pareto optimal thresholds

Figure 7.2 – Dynamic module structure of the theta band networks. The spatial
location of module structure changes is shown in the network plots according to the EEG
electrode layout, whereas the dynamics, i. e. the flow of node membership, are shown in the
Sankey diagrams. Thus, changes of information processing in the brain can be identified
from its spatio-temporal module structure changes. Results for the global threshold (90th
percentile, consensus networks) are shown in (a). Results for the Pareto optimal thresholds
(with consensus clustering) are shown in (b).
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(a) Global threshold (90th percentile)
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(b) Pareto optimal thresholds

Figure 7.3 – Dynamic module structure of the alpha band networks. The spatial
location of module structure changes is shown in the network plots according to the EEG
electrode layout, whereas the dynamics, i. e. the flow of node membership, are shown in the
Sankey diagrams. Thus, changes of information processing in the brain can be identified
from its spatio-temporal module structure changes. Results for the global threshold (90th
percentile, consensus networks) are shown in (a). Results for the Pareto optimal thresholds
(with consensus clustering) are shown in (b).

137



CHAPTER 7. EXTRACTION OF DYNAMIC MODULE STRUCTURE IN TIME-EVOLVING NETWORKS

on time-frequency analysis results. Such a perturbation analysis might be used to devise a

method for automatic time step selection. In a line of thought related to the perturbation

analysis a bootstrap [57] method was proposed to identify significantly clustered module

cores in weighted directed networks that might be tracked from time step to time step [159].

Tracking significantly clustered module cores is supposed to distinguish real trends in the

time evolution of the module structure from noisy data and random fluctuations that act to

insignificantly associate some nodes to their modules. The utility of this otherwise powerful

approach for EEG-derived noisy functional networks is unclear, because a too large number of

nodes from the already small networks might be found to be non-significantly clustered and

excluded from the module tracking. Dynamic module structure might also be identified in the

framework of multislice or multilayer networks [293], where the network configuration at each

time step corresponds to one slice and multiple slices (adjacency matrices) are coupled by edges

that connect each node with itself in neighboring slices [294, 295]. Despite the significantly

increased computational costs for the optimization of the associated multislice modularity as

compared to standard modularity optimization, this approach or related approaches might

represent a potentially interesting future avenue of research. Finally, in the experimental set-

tings typical for computational neuroscience in which group data is analyzed, sets of individual

time-varying network sequences have to be analyzed if one does not want to consider grand

mean networks of a network sample, as was done in this study. This potentially generates a

large amount of information that has to be dealt with, in particular high temporal variations

of identified module affiliations. The complexity of the results would further increased if

potentially interesting overlapping module structure is considered, where individual nodes can

be members of more than one module. Thus, taking all these considerations into account, it

can be said that the proposed workflow strives a good balance between extracting important

information about the brain activity and strongly interacting cohesive brain regions in the form

of network modules on one side and on the other side speed of computation and simplification

of analysis results, which have to remain interpretable.

138



Part IV

Concluding remarks and
perspective
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Chapter 8

Conclusions and future research
directions

This thesis investigated cognitive processes and brain function on the basis of functional

connectivity analysis from a network perspective. The inherent network structure of

functional connectivity patterns naturally suggests the role of network analysis approaches as

one of the most suitable ways of gaining an improved understanding of functional connectivity.

In dependence on the research aims and the experimental background of the network data,

various adapted preprocessing techniques and analysis methods were used to extract relevant

information from the investigated network samples. The topology of the sample element

networks encodes the different ways information is transferred and processed among and

within neural structures of the brain. This suggests the importance of functional connectivity

analysis for gaining an deeper understanding of cognitive processes and brain function. The

methodological developments described in this thesis, although being generally applicable

to networks from different domains, were tailored towards the analysis of functional brain

networks and in particular samples of such networks. These network samples can basically be

analyzed on three different topological scales with respect to the level of topological details

considered for the analysis: the microscopic scale, mesoscopic scale and macroscopic scale. For

the work presented in this thesis, network characteristics of all three topological scales were

covered. With the clinical research questions for each application study in mind, a particular

focus was put on the mesoscopic scale of network topology, which is typically accessed by

network decompositions into functionally important recurring or unique substructures, like

building block subnetworks (motifs) or important node sets (e. g. modules). If longitudinal
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network data for the sample element networks is available, time-variant analysis is promising

to yield additional valuable information about the underlying recorded neural processing,

e. g. reconfiguration of connectivtiy patterns in response to a stimulus. In this regard, one of

the presented application studies taps into the potential of time-variant network analysis by

extracting dynamic module structure and revealing stimulus-dependent information about

the neural processing that would otherwise not have been available. In this work I described

several new methodological developments whose main ideas and potential improvements are:

• Motif detection in samples of binary directed networks with pairwise different node labels.

This approach makes it possible to detect functionally relevant small subnetworks that

occur significantly often within a network sample. Such subnetworks, i. e. motifs, are

deemed as characteristic interaction patterns. I demonstrated that they can be used

for interpretations of network function and to distinguish groups of networks. Possible

improvements of this approach relate to the involved network null models. Open questions

remain with respect to the design of null model networks that fit given network data. In

particular, the analytical calculation of subnetwork significance has to be improved.

• Cost optimal matching of module affiliation labels and a fuzzy matching extension. To

analyse different network partitions, e. g. the partitions of sample element networks, and

to improve the visual representation of module structure the module affiliation labels

of nodes have to be matched. This problem seems to be overlooked in the literature,

supposedly because analysis of single networks is still predominant in research. A few

further improvements seem currently conceivable. One of them has to do with the

handling of special cases with respect to the selection of the reference network partition.

For example, it is possible that the reference network has particularly many modules

and a poor module structure quality, resulting in bad (albeit cost optimal) matchings.

In such a case, another reference network should be selected. Currently, it is possible to

manually exclude networks from the matching process. In this regard, an algorithmic

approach for the quantification of the quality of the matchings would be desirable. This

could pave the way for selecting optimal subsets of partitions to be matched that could

further improve the quality of the whole matching.

• Comprehensive analysis strategies. Analysis of network data usually requires suitable

combinations of diverse techniques for preprocessing the data, network type conversions

and the actual characterization of network structure. Consequently, for all application
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studies several established preprocessing techniques and analysis approaches were in-

tegrated with my own developments to yield an application-specific analysis workflow.

Most likely in some cases different workflows and combinations of approaches could have

been successfully used, too. Future methodological developments should be incorporated

into existing workflows.

• Simulating networks with pre-defined module structure. The presented algorithm enables

the simulation of directed benchmark networks with known module structure for a range

of different parameter settings, which define different aspects of the resulting module

structure. Networks that had been generated with this algorithm were used for testing of

module detection algorithms and for MVAR time series generation to evaluate a method

for functional connectivity computation (lsGCI). In the future, this algorithm should be

extended to generate weighted directed networks with ground truth module structure.

• Computing edge weight thresholds using a multi-objective optimization approach. This

approach allows to compute objective thresholds for filtering edges so that the resulting

non-complete binary or weighted networks exhibit their most strongly marked module

structure. For it, a multi-objective optimization of module structure quality vectors

obtained at different global threshold levels is performed. Defining optimal edge weight

thresholds is still an open research problem, as is the case for the quantification of

thresholding-induced biases on the resulting network topology. However, with respect to

the underlying module structure, this approach might represent a step into the right

direction. Finding ways for obtaining local thresholds for individual regions inside a

network would likely further improve the situation.

With the help of these approaches several network samples were investigated in four major

studies of different clinical background. It seems that one of the most limiting factors with

regard to the applicability of network science approaches for functional brain network analysis

lies in the ability to correctly interpret the findings with respect to the observed neural

processing, for which additional knowledge about neurophysiological processes is essential.

This illustrates the central problem of neuroscience that often there is no good way to evaluate

a theory or a model [296]. Functional connectivity measures offer only a limited view on the

underlying neurophysiology and networks constitute only models that approximate a real

system. For the case of networks derived from EEG sensor space data, another source of

inaccuracy is given by the presence of noise and volume conduction effects, i. e. the fact that
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the exact neural signal sources are not known, as the recorded brain activity is a superposition

of different source activities, which limits interpretations of functional connectivity patterns

[297]. Consequently, much work remains in the area of relating functional network analysis

results to cognition and neural information processing [3]. On the part of network approaches,

major future advancements for the investigation of time-variant networks and network samples

in the form of multilayer network [293] modeling and analysis can be anticipated. The network

analysis approaches presented in this thesis can principally be applied for the analysis of

network from different domains. This generality with respect to the investigated system is

a great advantage of thesse methods. Natural examples of networks from other domains

are social networks, which represent social contacts among individuals or social groups, or

metabolic networks. Metabolic networks represent directed metabolic pathways in two ways.

The first one is given by modeling the metabolites as nodes and the enzymes as edges that

connect nodes if the enzyme catalyzes their conversion. The second way of representation is

given by modeling the enzymes as nodes that are connected by directed edges if the product

of one enzymatic reaction forms the substrate for the other enzyme. However, other metabolic

network representations and analysis approaches than the structural ones covered in this

thesis seem to have received more attention. Examples are the stoichiometry constraint-based

analysis framework [298] and metabolic models, e. g. elementary flux pattern analysis for the

prediction of novel biochemical pathways [299].

Overall, despite some inevitable limitations I think the appeal and the utility of network

analysis techniques for revealing features of functional connectivity and monitoring their alter-

ations in health and disease, in different neurophysiological states and during different modes

of neural processing became apparent in this thesis. Representing functional connectivity

as networks and trying to gain a deeper understanding of brain function by analyzing these

networks with suitable approaches likely constitutes the currently most powerful and most

elegant way of accessing brain activity.
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[...] to all those who work come moments
of beauty unseen by the rest of the world.

— Norman Maclean
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Appendix B

Supplemental information for
functional brain network analysis

B.1 Methods for functional brain network identification

This section gives a review of the functional connectivity estimation methods that were used

to compute the networks whose algorithmic analysis is the foundation of this thesis.

B.1.1 Granger Causality Index and large scale Granger Causality Index

The concept of Granger Causality encompasses various approaches for the investigation of

directed interrelations between time series. A popular Granger Causality [300] approach is

based on the principle of mutual predictability, i. e. the notion that a process variable affects

another process variable, if the knowledge of the former variable helps improving predictions

of the latter variable [301]. More specifically, an univariate time series Yi (e. g. the recording

at a specific EEG electrode or one specific fMRI voxel time series) is said to Granger-cause

another univariate time series Yj of the same multivariate process if the knowledge of the past

of Yi leads to a significant improvement in the prediction of Yj . Therefore, Granger causality

measures directional (unreciprocal) dependencies between the pair of time series Yi and Yj and

can be applied to identify directed functional connectivity in neural time series data [8] where

it can be interpreted as the existence of some underlying information flow from the brain

area corresponding to time series Yi to the brain area related to Yj [58]. Linear multivariate

autoregressive (MVAR) time series models, which gives a quantification of prediction errors,

are most commonly used for the identification of Granger causality. A p-th order |V|-variate
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autoregressive model is formally given by

Y (n) =
p∑
r=1

Ar · Y (n− r) + E(n), n = p+ 1, · · · ,Nt (B.1)

with state vectors Y (n) ∈ R|V| for Nt available temporal samples, AR model parameter

matrices Ar ∈ R|V|×|V| and a zero mean uncorrelated noise process E(n) ∈ R|V|.

Given an observed multivariate time series (y(n))n=1,...,Nt
, which consists of all |V| observed

univariate time series (yk(n))n=1,...,Nt
, in practice the model order p may be determined ac-

cording to the procedure outlined in [302], which consists of applying the general AIC criterion

[303] for the calculation of p and subsequent fine-tuning to match the AR-related, parametric

spectrum with the Fourier power spectrum. To estimate the AR parameters the MVAR model

is fitted to the observed time series (y(n))n=1,...,Nt
subject to minimizing the sum of squared

model residuals [301]. This yields an estimated multivariate time series (ŷ(n))n=1,...,Nt
and

corresponding model residuals given by ê(n) = ŷ(n)− y(n). For the case of a time-variant

MVAR process [302], where the value of the autoregressive coefficients Ar(n) depends on n,

the model parameters can be estimated e. g. by a Kalman filter approach [304].

To quantify the influence of the obscured time series yi on the time series yj the MVAR model

is also fitted to a restricted time series
(
yi−(n)

)
n=1,...,Nt

obtained by excluding all data on yi,

which yields restricted model residuals êi−(n). With the covariance matrices C = cov(ê) and

Ci− = cov(êi−), a Granger Causality Index (GCI) that quantifies the directed influence from

yi to yj is defined by

γi→j = ln
(
Ci−j

)
− ln (Cj) , (B.2)

where Ci−j and Cj denote the j-th diagonal entry of Ci− and C, i. e. the variance of the

model residuals associated with yj in the modified and in the original system. GCI takes on

nonnegative values.

Due to a limited availability of temporal samples and the resulting problem of estimation

equations in MVAR model fitting becomming under-determined, classical multivariate Granger

Causality analyses, as described above, are commonly restricted to spatially low-dimensional

data, which requires a pre-selection or aggregation of time series as a preprocessing step [273].

With this, only a reduced amount of the available spatially distributed information can ulti-
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mately be exploited. Even approaches that are geared towards reducing spatial dimensionality

by a suitable coordinate transformation, such as principal component analysis (PCA) [305] or

independent component analysis (ICA) [306] do not constitute a fully adequate replacement

for unfavorable time series subset pre-selection or time series aggregation approaches, because

identified interactions between a few principal or independent components cannot be readily

transferred back into the original high-dimensional space, which severely limits the interpreta-

tion of functional connectivity.

With the large scale Granger Causality (lsGCI) index [278, 61, 273] spatially high-dimensional

data is incorporated into the connectivity analysis. This is achieved by an embedded PCA

data dimension reduction step, which is followed by standard Granger Causality connectivity

analysis, i. e. the MVAR model parameter estimation, is based on low dimensional time series

that were obtained by PCA. Subsequently, the estimated low dimensional MVAR model is

projected back into the original high dimensional space by an orthogonal transformation.

The back projected model is then used to calculate residuals with respect to the original

high-dimensional time series for defining pairwise standard GCI interactions between network

nodes. The preservation of high spatial data dimensionality may result in functional networks

that consist of several thousand nodes that are connected by millions of edges, yielding a

representation of brain connectivity phenomena that span many spatially distinct brain regions.

B.1.2 Partial directed coherence (PDC) and generalized PDC

Partial directed coherence (PDC) [307] can be seen as a frequency domain counterpart of

Granger Causality, which works in the time domain, and has become a very prominent tool

for the quantification of functional connectivity in EEG recordings [58]. It yields a linear

frequency-selective quantifier of the multivariate relationship between simultaneously observed

time series [308]. The PDC can be derived based on Fourier transformed MVAR parameters.

With a |V|-dimensional identity matrix I the AR parameter matrix is given by

A(f) = I−
p∑
r=1

Ar · e−2πfr
√
−1 (B.3)
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The PDC, which quantifies the degree of connectivity, i. e. the relative interaction strength,

from Yi to Yj at a normalized frequency f , is defined as follows

πi→j(f) = Aji(f)√∑|V|
d=1 |Adi(f)|2

(B.4)

Thus, πi→j(f) accounts for the ratio of the coupling strength of the interaction of Yi with

regard to Yj and the coupling strengths of all interactions of Yi. The PDC takes on values in

the [0, 1] interval [307].

The generalized PDC (gPDC) is an extension of the PDC that can be suitably applied

in the presence of unbalanced predictive modeling errors if signal amplitudes differ to a large

extent as it is more robust in estimating imprecisions associated with finite time series samples

[308]. It is given by

π
(g)
i→j(f) =

1
σj

Aji(f)√∑|V|
d=1

1
σ2

d
|Adi(f)|2

(B.5)

where σ2
d refers to the variance of the d-th MVAR model residual. Weighting the AR coefficients

with the variances of the model residuals E (MVAR prediction errors at frequency f) reduces

the influence of particular signal amplitude amplifications.

B.1.3 Direct directed transfer function (dDTF)

A modification of the directed transfer function (DTF) was proposed in [309]. The so-called

direct DTF (dDTF) is a measure to estimate direct causal relations between signals using the

transfer matrix of the system in the frequency domain. The method combines information

from the partial coherence function with information about the direction of influence. One

advantage of the dDTF is that the resulting time-frequency maps have a good frequency

resolution so that specific frequency bands can be separated with high accuracy. As a drawback,

(d)DTF is susceptible to the influence of indirect interactions.
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B.2 Simulation of MVAR time series that mirror ground truth

network connectivity patterns

Publications [61] and [273], which I coauthored, rely on extensive simulation studies, in

which lsGCI (see also section B.1.1) connectivity analysis was performed and validated on

multivariate time series that comprise a known network module structure. Here I briefly

describe the simulation of such time series based on simulated ground truth networks.

The multivariate time series corresponding to each ground truth network and comprising their

connectivity structure were realized on the basis of first order |V|-variate autoregressive models

formally given by equation B.1. Thereby, the number of available temporal samples was kept

constant with Nt = 1000 [273]. The corresponding AR matrices A1 of equation B.1 were

separately defined for each ground truth adjacency matrix as follows: if there is no connection

from node vj to node vi, the corresponding AR parameter coefficient A1
ij was set to zero

(note the different order of indices as compared to the notation typically used for adjacency

matrices). Otherwise, it is A1
ij = φ · (0.99/η) where φ is selected uniform at random from

{−1, 1} and η is the maximum in-degree of all nodes. This scaling ensures the stationarity of

the resulting multivariate process [301]. The maximum column sums of all adjacency matrices

were restricted to be at most fifteen, which yields η ≤ 15 (see also section 3.4 on page 71).

Thus, this column sum constraint ensures similar coupling strengths for all dimensions |V|. As

a consequence, the process of generating ground truth networks was inevitably controlled by

the requirements of the autoregressive parameters A1
ij , which directly depend on η. Since the

column sum constraint needs to be satisfied for all nodes, adjustment of the other network

simulation parameters to a narrow range of values was required (see also section 3.4 on page 71,

Simulating networks with pre-defined module structure). The added noise terms E(n) are

zero mean normally distributed random numbers with an identity covariance matrix.
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B.3 Supplemental module structure recoverability and quality

analysis results

The following boxplots give a detailed overview of the module structure recoverability and

quality analysis results for the second study presented in chapter 6.

Figure B.1 – Ratio of correctly classified nodes: Evaluation of module recover-
ability in ground truth and (ls)GCI networks (study II). N = 100, Ns = 1000. The
following algorithms for network module identification were used: (1) “leading eigenvector” BD,
(2) “Louvain” BD, (3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of
Clauset et al. BU, (5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU.
(A) ground truth network, (B-D) lsGCI network with variance explanations from 70%-90%,
(E) GCI network. Taken from [273].
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Figure B.2 – Rand index: Evaluation of module recoverability in ground truth
and (ls)GCI networks (study II). N = 100, Ns = 1000. The following algorithms for
network module identification were used: (1) “leading eigenvector” BD, (2) “Louvain” BD, (3)
Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of Clauset et al. BU, (5)
“leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU. (A-C) lsGCI network
with variance explanations from 70%-90%, (D) GCI network. Taken from [273].
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Figure B.3 – Adjusted Rand index: Evaluation of module recoverability in
ground truth and (ls)GCI networks (study II). N = 100, Ns = 1000. The fol-
lowing algorithms for network module identification were used: (1) “leading eigenvector” BD,
(2) “Louvain” BD, (3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of
Clauset et al. BU, (5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU.
(A-C) lsGCI network with variance explanations from 70%-90%, (D) GCI network. Taken
from [273].
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Figure B.4 – Variation of information: Evaluation of module recoverability in
ground truth and (ls)GCI networks (study II). N = 100, Ns = 1000. The following
algorithms for network module identification were used: (1) “leading eigenvector” BD, (2)
“Louvain” BD, (3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of
Clauset et al. BU, (5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU.
(A-C) lsGCI network with variance explanations from 70%-90%, (D) GCI network. Taken
from [273].
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Figure B.5 – Mutual information: Evaluation of module recoverability in ground
truth and (ls)GCI networks (study II). N = 100, Ns = 1000. The following algorithms
for network module identification were used: (1) “leading eigenvector” BD, (2) “Louvain” BD,
(3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of Clauset et al. BU,
(5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU. (A-C) lsGCI
network with variance explanations from 70%-90%, (D) GCI network. Taken from [273].
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Figure B.6 – Split-join distance: Evaluation of module recoverability in ground
truth and (ls)GCI networks (study II). N = 100, Ns = 1000. The following algorithms
for network module identification were used: (1) “leading eigenvector” BD, (2) “Louvain” BD,
(3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of Clauset et al. BU,
(5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU. (A-C) lsGCI
network with variance explanations from 70%-90%, (D) GCI network. Taken from [273].
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Figure B.7 – Partition edit distance: Evaluation of module structure quality in
ground truth and (ls)GCI networks (study II). N = 100, Ns = 1000. The following
algorithms for network module identification were used: (1) “leading eigenvector” BD, (2)
“Louvain” BD, (3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of
Clauset et al. BU, (5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU.
(A-C) lsGCI network with variance explanations from 70%-90%, (D) GCI network. Taken
from [273].
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Figure B.8 –Modularity: Evaluation of module structure quality in ground truth
and (ls)GCI networks (study II). N = 100, Ns = 1000. The following algorithms for
network module identification were used: (1) “leading eigenvector” BD, (2) “Louvain” BD,
(3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of Clauset et al. BU,
(5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU. (A) ground truth
network, (B-D) lsGCI network with variance explanations from 70%-90%, (E) GCI network.
Taken from [273].
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Figure B.9 – Performance: Evaluation of module structure quality in ground
truth and (ls)GCI networks (study II). N = 100, Ns = 1000. The following algorithms
for network module identification were used: (1) “leading eigenvector” BD, (2) “Louvain” BD,
(3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of Clauset et al. BU,
(5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU. (A) ground truth
network, (B-D) lsGCI network with variance explanations from 70%-90%, (E) GCI network.
Taken from [273].
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Figure B.10 – Coverage: Evaluation of module structure quality in ground truth
and (ls)GCI networks (study II). N = 100, Ns = 1000. The following algorithms for
network module identification were used: (1) “leading eigenvector” BD, (2) “Louvain” BD,
(3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of Clauset et al. BU,
(5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU. (A) ground truth
network, (B-D) lsGCI network with variance explanations from 70%-90%, (E) GCI network.
Taken from [273].
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Figure B.11 – Overall average silhouette width: Evaluation of module structure
quality in ground truth and (ls)GCI networks (study II). N = 100, Ns = 1000. The
following algorithms for network module identification were used: (1) “leading eigenvector” BD,
(2) “Louvain” BD, (3) Random walk algorithm of Pons & Latapy BU, (4) greedy algorithm of
Clauset et al. BU, (5) “leading eigenvector” BU, (6) “Potts spin glass” BU, (7) “Louvain” BU.
(A) ground truth network, (B-D) lsGCI network with variance explanations from 70%-90%,
(E) GCI network. Taken from [273].
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B.4 Time evolution of module structure

As networks change over time, so do the network modules they contain. The ‘life cycle’ of

modules1, the topic of this chapter, is given by formation events, growth processes, contraction

processes, mergers, splitting events, continuation events and dissolution events [233]. A

module formation event is being observed if a module k emerged at time n,Mn
k , for which no

corresponding (similar) module exists at time n− 1 (or, if also non-subsequent time steps are

considered, at any previous time step). During module growth or contraction, the module gains

or loses a considerable amount of member nodes. Mergers of modules occur between successive

time steps if at least a minimum percentage K of nodes of k previously separated modules

Mn−1
1 , . . . ,Mn−1

k have aggregated and are fused together to form a new moduleMn
m [281]. In

a splitting event, the opposite situation appears, since from on time step to another, a module

Mn−1
m is fragmenting into different smaller detached modules Mn

1 , . . . ,Mn
k if a sufficiently

large percentage of its nodes are members of the new separated modules. Module splits signify

that a considerable fraction of interactions between comember nodes is lost between two

succesive time steps. A mathematical treatment of the conditions for merging and splitting

events may be found in [281]. A continuation event is present if a module observed at one

time step n − 1 remains largely unchanged at the following time step n with respect to its

node composition (Mn−1
k =Mn

k , VMn−1
k
∼VMn

k
) so that both observations of the module can

be trivially matched one-to-one. A module dissolution event occurs if a given module has not

been observed from one time step n− 1 to another time step n (or, in a different notion, if

also non-subsequent time steps are considered, for at least d consecutive time steps [172]). If

also non-subsequent time points are considered for the module tracking analysis, it is possible

to classify modules as intermittent if they are not found during all observed time points. To

discern the intermittence of module existence from a dissolution event, a maximum number of

time steps in which an intermittent module is required to reoccur has to be defined.

1A more fine-grained analysis, which adopts a node-centric perspective to consider and track the dynamic
interactions between nodes and the influence individual nodes have on dynamic network modules, is possible,
too. For it, several node related indices and node activity functions were proposed in [281].
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Index

NP-complete, 44

p-value, 17

‘map equation’, 36

anatomical connectivity, see brain connectivity

assignment problem, 64

assortativity, 30

average clustering coefficient, see Macroso-

scopic scale network characteristics

average node strength, see Macrososcopic scale

network characteristics

balancing task, 129

benchmark networks, 57

betweenness centrality, see microscopic scale

network characteristics

binarization, 16, 74

bipartite network, 11

Blondel et al. algorithm, 34

bootstrap, 18, 86, 138

brain connectivity

anatomical connectivity, 3

effective connectivity, 5

functional connectivity, 3, 5

structural connectivity, 3

bridge, 15

centralization, see Macrososcopic scale net-

work characteristics

characteristic path length, see Macrososcopic

scale network characteristics

closeness centrality, see microscopic scale net-

work characteristics

clustering, 45

clustering coefficient, see microscopic scale net-

work characteristics

coding problem, 36

cognitive impairment, 97

Cohen’s Kappa coefficient, see module struc-

ture analysis

complete network, 13

component, 14

in-component, 14

out-component, 14

weakly connected component, 14

configuration model, 49

connected, 14

disconnected, 14

reachable, 14

strongly connected, 14

weakly connected, 14

consensus clustering, 37

consensus partition, 37

coverage, see module structure analysis

critical value, 18
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cut node, 15

cycle, 13

data compression, 36

dDTF, see direct directed transfer function

degree distribution, see Macrososcopic scale

network characteristics

diameter, see Macrososcopic scale network

characteristics

dichotomization, 16, 74

differential network analysis, 79, 84, 96, 129

diffusion tensor imaging, 97

direct directed transfer function, 149

directed network, 11, 15

disconnected, 14

distance, 13

DTI, see diffusion tensor imaging

eccentricity, see microscopic scale network char-

acteristics

edge backbone network, 79

edge weight dichotomization, 16, 74

edge weight transformation, 21

edge-complete network, 16

EEG study, 84

effective connectivity, see brain connectivity

evolving module structure, 129

fMRI, 97, 104, 105, 107

functional connectivity, see brain connectivity,

see brain connectivity

functional connectivity estimation, 5

functional connectivity network, 11

functional integration, 2

functional motif, 26

functional segmentation, 103

functional segregation, 2

fuzzy community, 44

GCI, see Granger Causality Index

generalized partial directed coherence, see gPDC,

148

geodesic path, 28

global, 27

global efficiency, see Macrososcopic scale net-

work characteristics

gPDC, 85, 96, see generalized partial directed

coherence

grand mean network, 132

Granger Causality Index, 146

graph drawing, 32

graph geodesic, 13

graph isomorphism, 13

graphlet, 27

ground truth, 71

ground truth network, 104, 106, 108

hard thresholding, see thresholding, 20

heuristic, 44

HIV, 96, 97

Holm correction, 86

ICA, see independent component analysis

imputation, 86

in-component, 14

independent component analysis, 148

induced network, 12

Infomap algorithm, 36

interaction strength, 12

Jaccard distance, 40
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Jaccard index, see module structure analysis

label matching, 64

large scale Granger Causality Index, 146

leading eigenvector algorithm, 33

linear programming, 64

link reciprocity, see macroscopic scale network

characteristics

lithium, 96

lithium treatment, 97

local clustering coefficient, see microscopic

scale network characteristics

local efficiency, see Macrososcopic scale net-

work characteristics

longitudinal network, 79, 129

Louvain algorithm, 34

lsGCI, 104, see large scale Granger Causality

Index

macroscopic scale network characteristics

average clustering coefficient, 28

average node strength, 28

centralization, 30

characteristic path length, 28

degree distribution, 27

diameter, 29

global efficiency, 29

link reciprocity, 29

local efficiency, 29

network centrality, 30

network density, 28

node degree assortativity, 30

radius, 29

small-world-ness, 30

sparsity, 28

transitivity, 28

maximum spanning tree, 79

MCMC edge-switching algorithm, 50

mesoscopic scale network characteristics

network motif, 25

microscopic scale network characteristics

betweenness centrality, 24

closeness centrality, 24

clustering coefficient, 24

eccentricity, 24

local clustering coefficient, 24

node degree, 23

node strength, 23

PageRank, 24

modularity, 34, see module structure analysis

modularity optimization, 34

module, 31

module detection, 31, 103

module detection algorithm, 117

Module structure

dynamic module structure, 79

module structure, 64, 71

module structure analysis

Cohen’s Kappa coefficient, 47

coverage, 45

Jaccard index, 40

modularity, 42

mutual information, 41

number of disconnected nodes, 47

overall average silhouette width, 45

partition edit distance, 42

performance measure, 44

Rand index, 39
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ratio correctl. class. nodes, 39

van Dongen metric, 42

variation of information, 40

module structure quality, 103

module tracking, 129

Monte Carlo method, 106

Monte Carlo simulation, 19, 63

motif generalization, 26

multi-objective optimization, 74

multicriteria optimization, 74, 79

multilayer network, 138

multiple thresholding, see thresholding, 19

multisclice modularity, 138

multivariate autoregressive process, 18

mutual information, see module structure anal-

ysis

MVAR, 18, 150

network centrality, see Macrososcopic scale

network characteristics

network community, 117

network density, see Macrososcopic scale net-

work characteristics

network layout, 32

network model

random geometric graphs, 47

scale-free network, 47

small-world network, 47

network module, 27, 103, 117

network motif, see mesoscopic scale network

characteristics

sample-specific network motif, 58, 84

network null model

null model, 48, 95

network sample, 96

network simulation, see simulation, see simu-

lation

network structure quantification, 96

network type transformation, 22

neuroimaging, 97

node degree, see microscopic scale network

characteristics

node degree assortativity, see Macrososcopic

scale network characteristics

node strength, see microscopic scale network

characteristics

null modelseenetwork null model, 48, 95

number of disconnected nodes, see module

structure analysis

objective function, 36, 42

optimization, 44

overall average silhouette width, see module

structure analysis

PageRank, see microscopic scale network char-

acteristics

Pareto front, 74, 79

Pareto optimum, 74

partial directed coherence, 148

partition edit distance, see module structure

analysis

path, 13

path length, 13

PCA, see principal component analysis

PDC, see partial directed coherence

performance measure, see module structure

analysis

prefrontal cortex, 92
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prescribed degree sequence, 47

principal component analysis, 148

radius, see Macrososcopic scale network char-

acteristics

Rand distance, 40

Rand index, see module structure analysis

random geometric graphs, see network model

random network, 50

random walk, 35, 36

ratio correctl. class. nodes, see module struc-

ture analysis

Rcpp, 79

residual, 146

residual resampling, 18

resolution limit, 44

resolution parameter, 35

resting state, 105, 107

sample-specific network motif, 58, 84

scale-free network, see network model

self-loop, 13

shortest path, 13

simulation, 71

network simulation, 106, 108

time series simulation, 150

small-world network, see network model

small-world-ness, see Macrososcopic scale net-

work characteristics

snapshot network, 79, 132

soft thresholding, see thresholding, 20

sparsity, see Macrososcopic scale network char-

acteristics

spectral graph clustering, 33

spin glass model, 35

statistical power, 48

statistical test, see thresholding, 18

stochastic block model, 33

stratified network, 30

structural connectivity, see brain connectivity

structural motif, 26

subdigraph, 12

subgraph, 12

subnetwork, 12

surrogate-assisted analysis, 50, 98

symmetrization, 12, 15

thresholding, 16, 74

hard thresholding, 20

multiple thresholding, 19

soft thresholding, 20

statistical test, 18

tie, 11

time series, 146, 150

time series simulation, see simulation

time-variant network, 129

trail, 13

transitivity, see Macrososcopic scale network

characteristics

two-mode network, 11

undirected network, 11, 15

van Dongen metric, see module structure anal-

ysis

variation of information, see module structure

analysis

walk, 13

weighted network, 21
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