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Zusammenfassung

Ein Hauptforschungsschwerpunkt in den Neurowissenschaften liegt in der Berechnung und
Analyse der funktionellen Konnektivitdt des Gehirns, d. h. der temporalen statistischen Ab-
héngigkeiten (gerichtete Interaktionen) zwischen der an verschiedenen Messpunkten, z. B. an
EEG-Elektroden oder fMRI-Voxeln, elektrophysiologisch oder himodynamisch aufgenommenen
Hirnaktivitat. Die methodischen Entwicklungen dieser Arbeit beziehen sich auf die umfassende
Analyse von Netzwerken, welche die zuvor berechneten funktionellen Konnektivitdtsmuster
reprasentieren. Im Allgemeinen sind diese aus der Konnektivitdtsanalyse resultierenden Netz-
werke aufgrund ihrer komplizierten Struktur keiner unmittelbaren Interpretation und dem
damit verbundenen Erkenntnisgewinn zugénglich, so dass weiterfithrende Untersuchungen
mittels Analysekonzepten aus der Netzwerktheorie unumgénglich sind. Einen besonderen
Schwerpunkt der Dissertation mit Hinblick auf die klinischen Daten, deren Auswertung die
Methodenentwicklungen mafgeblich gepragt haben, bildet die Analyse und Informationsex-
traktion von Mengen funktioneller Gehirnnetzwerke, die spezifische Konnektivitdtsmuster
unterschiedlicher Probandengruppen widerspiegeln. Mittels gruppenspezifischer Netzwerk-
analysen konnen relevante Eigenschaften der Konnektivitdtsmuster erfasst und quantifiziert
werden und somit schlussendlich interpretatorisch in Relation zu der zugrundeliegenden neu-
ronalen Informationsverarbeitung zwischen Hirnarealen gesetzt werden. Wie in der Arbeit
beschrieben sind solche Analysen und die Extraktion physiologisch relevanter Informationen
mit zahlreichen methodischen Herausforderungen verbunden. In der vorliegenden Arbeit wur-
den in vier Anwendungsstudien funktionelle Gehirnnetzwerke mit unterschiedlichen klinischem
Hintergrund auf verschiedene Weisen, mit Kombinationen von etablierten Techniken und

eigenen methodischen Entwicklungen, untersucht.

e Fiir die erste dieser Anwendungsstudien, welche in Kapitel 4 vorgestellt wird, werden
die funktionellen Gehirnnetzwerke (EEG, schmerzhafte Stimuli, bindre Netzwerke) von
depressiven Personen und gesunden Probanden mittels eigener Methodenentwicklung in
kleine funktionell relevante Teilnetzwerke (motifs) zerlegt, welche gruppen-spezifische,
innerhalb des EEG-Elektrodenschemas genau lokalisierbare Interaktionsmuster darstel-
len. Mittels dieser speziellen motifs konnten Gruppenunterschiede bei der neuronalen

Prozessierung demonstriert werden.

e Kapitel 5 beschéftigt sich mit der Frage, ob Lithium-Behandlungseffekte in den funk-
tionellen Gehirnnetzwerken (fMRI, Gedéachtnisaufgabe, gewichtete kantenvollstindige



Netzwerke) von HIV-positiven Probanden mit kognitiver Beeintriachtigung reflektiert
sind. Hierzu wurden die Netzwerke hinsichtlich mikroskopischer und makroskopischer

Eigenschaften untersucht und Behandlungseffekte nachgewiesen.

e In Kapitel 6 wurden rdumlich sehr hochaufgeloste, aus tausenden von Knoten beste-
hende funktionelle Gehirnnetzwerke HIV-positiver Probanden (resting state fMRI, binére
Netzwerke) hinsichtlich einer funktonalen Segmentierung mittels Identifizierung von
module-Struktur (communities) untersucht. In der gleichen Arbeit wurden weiterhin
mittels eigener Methodik fiir die Generierung von Ground Truth Netzwerken mit be-
kannter module-Struktur umfangreiche Simulationsstudien mit dem Ziel betrieben, Giite
und Erhaltung der module-Struktur zu quantifizieren, um Effekte einer neuen Methode
zur Konnektivitatsbestimmung (1sGCI) zu evaluieren. Es konnte gezeigt werden, dass
die 1sGCI-Methode geeignet ist, um rdaumlich hochaufgeloste Netzwerke zu berechnen,

deren funktionelle Segmentierung mit anatomischen Strukturen iibereinstimmt.

e Die letzte in dieser Dissertation vorgestellte Anwendungsstudie (Kapitel 7) verfolgt die
zeitliche Verdnderung der module-Struktur und ihre Stimulus-induzierten Verdnderungen
(EEG, Balance-Perturbation, gewichtete Netzwerke). Dabei kommt fiir die Filterung von
Kanten parallel zu einem neuartigen Ansatz zur Bestimmung multipler Schwellenwerte
ein eigenes leistungsfahiges, auf multikriterielle Optimierung beruhendes Verfahren fiir
die Bestimmung von Schwellenwerten zum Einsatz. Das fiir die Studie entwickelte auf-
wandige Analyseverfahren beinhaltet neben einer Selektion von geeigneten Zeitpunkten
eine Aggregation von Interaktionsstrukturen zu verschiedenen Zeitpunkten zu Konsen-
susdaten auf Kantenebene und auf module-Struktur-Ebene, sowie eine state-of-the-art
Visualisierung der identifizierten zeitlichen Verédnderungen. Die identifizierte zeitvariante
module-Struktur entspricht weitestgehend der erwarteten neuronalen Verarbeitung bei

der Kompensation der Balance-Perturbation.

Die methodischen Herausforderungen dieser unterschiedlichen topologischen Netzwerkanalysen,
aber auch die vielfdltigen Moglichkeiten des Gewinns eines tieferen Verstdndnis der neuronalen
Informationsverarbeitung und somit der Funktionsweise des Gehirns wurden anhand der

erzielten Resultate aufgezeigt.
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Abstract

Current research in computational neuroscience puts great emphasis on the computation and
analysis of the functional connectivity of the brain given by temporal statistical dependencies
(directed interactions) between the neural activities recorded at different sites, e.g. at EEG
electrodes or at fMRI voxels, using either electrophysiological or hemodynamic measuring
techniques. The methodological developments presented in this work are concerned with a
comprehensive analysis of networks that represent functional interaction patterns, so-called
functional brain networks. In general, functional brain networks exhibit intricate interaction
patterns that cannot be directly comprehended or interpreted. To gain a deeper understanding
of these networks and the underlying neurophysiological processes they reflect, analyses with
methods from network science are indispensable. Thereby, the presented methodological
developments were substantially influenced by the data and the investigated clinical research
problems. A resultant distinctive feature of this work on functional network analysis is the
exploration of network samples, which represent the functional connectivity of different groups
of subjects. Using group-specific differential network analysis meaningful characteristics of
connectivity patterns can be extracted, quantified and ultimately be interpreted with respect
to the underlying neural information processing among brain areas. As described in the thesis,
such analyses and the extraction of physiologically relevant information is connected with

various methodological challenges.

In this work four application studies are presented in which functional brain network samples of
different clinical background were analyzed in different ways using combinations of established

approaches and own methodological developments.

e The first of these four application studies is concerned with a sample-specific decom-
position of the functional brain networks (EEG, painful stimuli, binary networks) of
depressed subjects and healthy control subjects into small functionally important and
recurring subnetworks (motifs) using own developments (chapter 4). These motifs repre-
sent group-specific characteristic interaction patterns that can be located exactly within
the EEG electrode layout. By means of these special motifs differences between the

considered groups with respect to neural information processing could be shown.

e In chapter 5 it is investigated whether lithium treatment effects are reflected in the

functional brain networks (fMRI, memory task, weighted edge-complete networks) of
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HIV-positive subjects with diagnosed cognitive impairment. For this, microscopic and

macroscopic structural properties were analyzed and treatment effects were shown.

For the study presented in chapter 6 spatially highly resolved functional brain networks
(resting state fMRI, binary networks), which consisted of thousands of nodes and
were obtained from brain scans of HIV-positive subjects were explored with regard
to a functional segmentation, as given by identified module (community) structure.
In the same application study, ground truth networks with known module structure
were generated using using own methodological developments. These ground truth
networks formed the basis of a comprehensive simulation study that quantified module
structure quality and preservation in order to evaluate the effects of a novel approach
for the identification of connectivity (IsGCI). Thereby, it could be shown that using the
IsGCI approach spatially highly resolved networks can be computed whose functional

segmentation conforms with anatomical structures.

The last application study presented in this thesis (chapter 7) tracks the time-evolution
of module structure and its stimulus-induced changes (EEG, balance perturbation,
weighted networks). For the filtering of edges in this analysis task, a newly developed
and powerful own approach for the determination of edge weight thresholds is applied. It
is based on multicriteria optimization and complements another modified approach that
was also applied for the determination of multiple thresholds. The analysis concept that
was developed for this study is complex. Apart from a selection of suitable time steps it
entails an aggregation of interaction patterns at different time steps to generate consensus
data at the level of edges and at the level of module structure, as well as state-of-the-art
visualization of identified changes. The time-variant module structure identified in this
study matches mostly the expected neural processing during the compensation of the

balance perturbation.

The methodological challenges that are present in these different topological analyses, but

also the various opportunities to gain an improved understanding of both, neural information

processing and ultimately the functioning of the brain were highlighted with the achieved

results.
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Part 1

Introduction and prior art



Chapter 1

Introduction

NE important focus of current research in computational neuroscience (CN) lies on the
O analysis of connectivity structures of the brain. This reflects the fact that neural infor-
mation processing is based on two complementary operating principles: functional segregation
and integration [1, 2, 3]. Functional segregation means that distinct areas of the brain are
involved in or associated with the execution of specific neural functions and tasks. The precise
communication between a large number of remote brain areas, i.e. functional integration, is
indispensable to guarantee higher order sensory and coherent cognitive functions. During
neural processing both operating principles of the brain, segregation and integration, have
to be balanced and reconciled, which already suggest that brain functions must be related
to complex, networked and dynamic brain structures, which in their entirety are known as

1. Accordingly, “the human connectome is a comprehensive map of the

the ‘connectome’
brain’s circuitry, which consists of brain areas, their structural connections and their functional
interactions” [4] or in other words “the brain is a large-scale network, operating at multiple
levels of information processing ranging from neurons, to local circuits, to systems of brain
areas” [5]. The notion of the brain as a network [6] implies that, informally, a network can be
seen as an abstract object that represents the structure of the relationships (edges) between
a set of entities (nodes). The methodological requirements of computational neuroscience
are broad and extremely diverse, and are connected with the analysis of large datasets, data

sharing and multimodal data integration. Thereby, the availability of advanced measurement

technology is the fundamental prerequisite to obtain appropriate data.

Various international projects were initiated in order to address the associated experimental and method-
ological challenges, e. g. the ‘Human Connectome Project’ (HCP) and the ‘Human Brain Project’ (CONNECT).
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The term ‘structural connections’ (structural connectivity [2, 3]) is primarily associated
with the identification of long range fiber tracts which can be performed on large-scale level
by using diffusion-weighted magnetic resonance imaging (DW-MRI), where diffusion tensor
imaging (DTI) is the most frequently used version of DW-MRI. Functional interactions (func-
tional connectivity [7, 8, 1]) between brain areas cannot be directly measured, i.e. their study
requires sophisticated analysis tools and modeling that uses measured brain activity as input
data to estimate the strength of correlations?. Large-scale brain activity can be measured
by electrophysiological (e.g. electroencephalography (EEG) and magnetoencephalography
(MEG)) and hemodynamic/metabolic techniques (e. g. functional magnetic resonance imaging
(fMRI), near-infrared spectroscopy (NIRS), and positron emission tomography (PET)). These
two groups of functional neuroimaging techniques are characterized by different spatial and
time resolution properties. For example, EEG has a high temporal but a low spatial resolution
and fMRI has a low temporal but a high spatial resolution. Both properties can be combined
by using simultaneous fMRI/EEG recordings which requires considerable measurement and
computational effort, e. g. for artifact rejection.

Computational neuroscience might one day be able to precisely identify the basic principles
that correlate the structural connectivity architecture of the brain with its activity and the
consequent functional connectivity pattern of brain areas. Most likely, new ways of integrating
functional neuroimaging results, including analysis and modeling results, with neuroanatomical
data will have the potential to guide this development. The precondition for it is an integrated
process of computational analysis and modeling, systems analysis, technology development
and appropriate experiments.

Using network science methods, the description of a system and its complexity can be
largely reduced to an account of the interactions between system elements and the emergent and
inherent properties of the connectivity structure [12]. Thereby, network approaches recognize
the important role of connectivity patterns for causing functional differences between network
elements, i.e. nodes or subnetworks [3]. This role of connectivity patterns in conjunction with
the notion of functional segregation introduces one of the main topics of the thesis, namely
the identification of mesoscopic scale network structures, e. g. network modules, which are
related to separated cohesive groups of strongly interacting nodes with a unique functional

meaning. Modules are just one example of interesting information that can be extracted with

2This implies the possibility of temporal correlations of the activity of anatomically unconnected regions
[2], though these regions might be connected by indirect structural paths [3]. Increasing evidence shows that
functional connectivity between all corresponding pairs of recorded time series [9] reflects structural connectivity
[10, 11, 3].
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network science approaches. Consequently, over the last decade or so, network analysis and
the application of network science methods has spread across many fields of scientific research,
in which an increased focus is directed towards gaining an understanding of the organization,
structure, behavior and evolution of complex systems. This is particularly true for research
on functional brain connectivity [13]. Networks as models of complex systems and network
analysis methods can be applied naturally to characterize functional connectivity data [14]
and to describe the dynamic structure of functional interactions between brain areas [15] on

both local and large spatial scales.

For this thesis only functional connectivity estimations obtained from either EEG or fMRI
recordings of brain activity are considered. Thereby, the information about recorded complex
brain activity is contained, or rather hidden, in the functional brain networks (section 1.2)
of this thesis, which have dense and intricate patterns of directed interactions that cannot
be comprehended by visual inspection. The problem of revealing and understanding this
information by an appropriate characterization of the connectivity structure of these networks
can and should be adressed by multi-level network analysis approaches.

For the presentation of the work of this thesis there is a lot of ground to cover. I will begin
with a brief introduction of EEG and fMRI as methods for recording brain activity, followed
by an outline of the functional connectivity estimation methods that were utilized to compute

the networks whose algorithmic analysis is the foundation of this thesis.
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1.1 Recording brain activity

Multichannel EEG [16, 17| signals are point-wise measurements of the massively synchronous
dendritic electrical activity of large neuron populations (pyramidal cells) in the brain using high
conductance electrodes typically placed at different standardized sites on the scalp using i. e. the
10-20 system [18]. The EEG has a high time resolution, but the choice of the measurement
reference, volume conduction effects and artifacts from non-brain sources (e. g. eye movements,
electric heart activity and muscle activity) influence the sensor space signals derived from
the electrodes, which were exclusively used for the functional connectivity estimations of
this thesis. However, signals can also be algorithmically transformed back into the source
space by solving the inverse problem of inferring the unknown distribution and behavior of
electrical current sources from EEG signals that best explain the observed external electrical

field behavior. More in-depth information on this line of research can be found in e. g. [9, 19, 20].

The signals derived from fMRI [21, 22, 11] registrations are indirect measurements of mass
activity of neurons. “The ability to detect changes in brain activity has a biophysical basis in
the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow
increases more than oxygen metabolism when local neural activity increases. These effects
translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation
level dependent (BOLD) effect, when neural activity increases.” [23]. The advantage of the
registration of BOLD signals is that they can be derived from the location of neuronal activity

with high spatial resolution.

1.2 Directed functional connectivity

Functional brain networks represent functional interactions, i.e. statistical dependencies,
between time series of brain activity recorded at different sites. Nodes of functional brain
networks are given by the recording sites (specific EEG electrodes or voxels) and their weighted
edges are given by the connectivity estimate (interaction) for corresponding pairs of recorded
time series of brain activity. Analysis of functional brain network has clinical relevance as
descriptive studies of functional brain networks have offered new insights into basic principles
of brain organization and function [3] and have enabled the assessment of specific abnormalities

even in structurally normal regions [24].
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There are currently two frequently used methodological classes for the computation of directed
functional® neural interactions [25, 9, 26]: (1) Granger causality (GC) concepts (2) dynamic
causal modeling (DCM). The methodological concepts and network analysis techniques pre-
sented in this thesis were applied to analyze functional network data obtained exclusively by
the first class of connectivity measures. Within this class various approaches are subsumed
by the notion of Granger causality. In dependence on the posed research question and signal
properties of time series data at hand, different directed connectivity measures were used for
the computation of functional brain networks: Granger Causality Index (GCI), large scale
Granger Causality Index (IsGCI), direct directed transfer function (dADTF) and generalized
partial directed coherence (gPDC). Such linear connectivity measures are normally based
on multivariate autoregressive (MVAR) modeling of time series. Functional connectivity
estimation is not within the scope of this thesis, as the functional network data was provided
by other members of my research group. For the sake of completeness of this thesis, the used

connectivity measures are concisely described in appendix B.1.

1.3 Aims of the thesis

The aims of my doctoral thesis cover two main areas: (1) the development of network analysis
approaches and (2) their application to functional connectivity networks (left and center
column of the table in figure 1.1). Even though the methodological solutions have been
tailored for specific applications in functional network analysis they can be generalized for
or readily transfered to other areas of application, i.e. analysis of networks from different
domains. Their universality with respect to the considered complex system is one of the

strengths of network modeling approaches. There are four methodological strands:

1. Testing and adapting of state-of-the-art network analysis methods (right column of the
table in figure 1.1) and combining them to comprehensive analysis concepts for the

envisaged applications.

2. Advancement and development of structural decomposition approaches in from of a

novel approach for the detection of network sample-specific motifs with node labels.

3. Development of an algorithm for the parameterized generation of ground truth networks

with known module structure for the simulation of MVAR time series.

3Friston distinguishes between functional and effective connectivity [1, 7].
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4. Development of analysis concepts for the assessment of network module structure quality
and preservation and for the extraction of dynamic module structure in time-evolving
networks, including novel approaches for network thresholding and visualization of the

module structure of network samples.

The developed concepts and methods contributed to the successful execution of the following
clinically oriented methodological studies (center column of the table in figure 1.1), i.e. the

corresponding analysis tasks were performed by me personally:

e One study was related to the investigation of samples of functional connectivity networks
with respect to differences in topological characteristics. Thereby, the functional networks
were computed from fMRI data. The study involved the pre-processing of network data
and the quantification and interpretation of structural changes in HIV-infected patients

in response to medical treatment (methodological strand 1).

e Analysis of functional connectivity during pain processing in patients with Major De-

pression and healthy subjects (methodological strand 2).

e Two additional studies aimed at evaluating the detrimental effects of a new approach
for large scale functional connectivity estimation (1IsGCI) on network edge patterns and
the preservation of underlying module structure. This evaluation involved ground truth
network simulation, the identification of network module structure and the analysis of
the module structure quality in 1sGCI functional brain networks. Again, HIV-infected
subjects were enrolled in both studies, which were based on fMRI recordings of brain

activity (methodological strands 1, 3 and 4).

e A not yet completed study aims at the analysis and tracking of dynamic module structure
in time-evolving networks in response to external stimuli. EEG data forms the basis for

this study and its preliminary results (methodological strands 1 and 3).

1.4 Structure of the thesis and integration of own contribu-

tions to network analysis

The following structure for the representation of the methodological approaches and appli-
cation studies was chosen. In part I, chapter 2 (‘Fundamental concepts in complex network
analysis’) the network theory and the methodological concepts required for the work pre-

sented in this thesis are briefly outlined. All reviewed methods for manipulating network
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data and algorithms for assessing fundamental network characteristics are implemented in a
network analysis toolbox. Only those approaches and network characteristics are described
in more detail that are relevant for the application studies, whereas all other implemented
approaches and topological characteristics are only briefly explained with references to the
most relevant literature. Fundamental methods for network analysis were utilized, combined
and complemented by new approaches that are described in part II, chapter 3 (‘Contributions
to network science methods and the multi-level analysis of functional brain networks’). The
developed advanced analysis approaches were tested on simulated networks and applied in
different application studies to real-world network data, which is described in the chapters of
part IIT (‘Applications and results’). Finally, some concluding remarks and perspectives are

given in part IV (‘Concluding remarks and perspective’) of the thesis.

Depending on the data at hand and the formulated research question, each application
study follows a specific methodological (and experimental) design, thereby utilizing different
compilations of established network analysis approaches and my own methodological develop-
ments. To give a clear overview about how my own methodological developments contribute
to the analysis of functional connectivity data from a network perspective and to highlight the
central themes of my doctoral thesis an illustrative mapping between my own contributions
(left column) and the application studies (center column) is depicted in figure 1.1. Also, the
mapping between fundamental concepts (on the right column) and the application studies, for
which they were utilized, is shown, enabling a clear distinction between my own work and the

established approaches (left vs. right column).




Own methodological
developements

Application studies

Utilization of fundamental
concepts

Network structure decomposition
Incorporation of node labels
Subnetwork significance in network
samples (analytical, simulation-based, i.e.
surrogate null model networks)
Filtering motifs wrt. group differences

+ Study on pain processing in depressed patients

Part of all studies

Network sample-specific motifs with
pairwise different node labels

« Different samples of functional networks
+ Characteristic interaction patterns wrt. groups

Analysis concept
Network characteristics of clinical interest
Data randomization technique for
surrogate-assisted analysis

Network simulation
Ground truth networks for benchmarks

Comprehensive analysis concept
Selecting, testing and combination of
diverse methods (information theoretic,
set-based, topology-based, edit distance-
based)

The comprehensiveness reaches beyond
module structure quality analyses (that are
rarely performed in practice) seen in the
literature

Cost optimal matching of module affiliation

labels & fuzzy matching extension
For module structure analysis and visual
comparison module labels have to be
matched across network samples
Solving assignment problem based on
module similarity
Fuzzy matching to prevent low quality
assignments

Computing network-specific
edge weight thresholds using an multi-
objective optimization approach

Combination of multiple thresholding and
Pareto optimization of corresponding
vectors of module structure quality
characteristics yields an optimal threshold

—

Network sample-specific characterization
of network topology

Lithium-induced changes in functional
connectivity in HIV-infected subjects

Analysis of module structure quality in /

spatially highly resolved functional brain
networks

Assessment of network topology alterations
caused by the IsGCl approach

Identification of large scale module structure in

resting state fMRI data

Analysis of dynamic module structure in
time evolving networks

Tracking temporal changes in the module
structure of EEG-derived functional networks
to reveal stimulus induced topological
reconfigurations

~

Thresholding of edge-complete weighted
networks
Filtering of spurious interactions
» Weighted vs. binary nw analysis

Symmetrization of directed networks
Application of methods for undirected
networks

Network simulation
Null model (surrogate-assisted analysis)
as essential tool
Configuration model, MCMC edge
swapping algorithm

Edge weight transformation for path

length-based measures
Connection strength to connection length
(cost) mapping

Multilevel characterization of network
topology
Microscopic, mesoscopic, macroscopic
characteristics

Measures for the analysis of module
structure quality
Ratio of correctly classified nodes, Rand
index and adjusted Rand index, variation
of information and mutual information,
split-join distance, partition edit distance,
modularity, performance measure,
coverage, overall average silhouette
width, Jaccard distance, Hamming
distance between adjacency matrices,
number of disconnected node pairs,
Cohen’s Kappa coefficient

Network module structure identification
algorithms
» Leading eigenvector algorithms, Blondel
et al., fast greedy modularity optimization,
random walk algorithm, Infomap, Potts
spin glass

Figure 1.1 — Overview of relations between my own methodological develop-
ments, the applications studies and fundamental network analysis concepts.
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Chapter 2

Fundamental concepts in complex

network analysis

ETWORK science and network analysis received a lot of attention since the seminal
N publications of Watts and Strogatz [27], and Barabési and Albert [28]. The resulting
wealth of new developments in this field makes it difficult to give a complete overview of
the topic and the large amount of techniques for dealing with different aspects of network
analysis also makes choosing a proper analysis strategy for given network data a difficult
endeavor. This chapter gives a concise summary of some network theory and those state-of-
the-art preprocessing and analysis techniques that are relevant for my work on functional
brain network analysis. The methods that I used and that are described in this chapter
cover a wide spectrum of network types and their topological features and can be used to
characterize functional brain networks across individuals, groups of individuals, developmental
stages and disease states. Together with my own methodological developments (see also
chapter 3) the state-of-the-art methods and general concepts of this chapter can be beneficially
combined to yield a powerful network analysis pipeline to extract essential information with
clinical relevance from functional brain network data starting with the weighted edge-complete
networks that are the result of the functional connectivity analysis (see also appendix B.1). I

start this theory chapter with an outline of the relevant notation and definitions.

2.1 Notation and definitions

In the following, I present the formal notation and precise meaning of relevant network specific

terms and language used throughout this thesis. These preliminaries will be useful for the
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concise explanation of network science concepts underlying my work, which will be given in
this chapter. Because the functional brain networks analyzed in this thesis are edge-directed,
the focus of the following definitions lies on directed graphs, but I remind the reader that
many of them apply naturally to undirected graphs, too. The chosen notation leans onto the

notations used and presented in the textbooks [29, 30, 31, 32, 33].

The directed, unipartite functional connectivity networks I investigated within the scope
of this thesis exhibit unilateral edges that encode asymmetric relations as they were based on
functional connectivtiy measures that take the direction of interactions into account, i.e. PDC,
gPDC, GCI and 1sGCI. These measures are described in section B.1. As represented by the
mathematical concept of a directed graph or digraph D, a functional connectivity network
consist of a non-empty finite set V of N = |V| vertices v, kK = 1,..., N and a finite set
& of ordered pairs of distinct vertices called arcs or oriented edges e. In the language of
functional brain network analysis, edges can also be called interactions. In social network
concepts, which often yield intuitive and useful analogies for the function of networks from
different domains, edges are called ties. In the context of the analysis of networks, specific
diagrammatic graph representations of systems, it is custom to use the term node instead of
vertex. Functional connectivity networks are unipartite, which means they have only one
type of node. A bipartite or two-mode network by contrast has nodes that are divided into
two nonoverlapping sets and there are no interactions between nodes of the same set. The
nodes of functional brain networks are usually uniquely labeled with the identifier of the
corresponding recording site of brain activity, e. g. the EEG electrode or the voxel location.
An ordered pair (v;,v;) is called an oriented edge that is originating from (outgoing from)
node v; and pointing towards (terminating at) node v;. An oriented edge is denoted by
v; — v; where v; is called the tail (initial node) and v; is called the head (terminal node) of
the edge. An edge is incident to its tail and head nodes and conversely, a node is incident to
the edges connected to it. Node v; and v; are called adjacent if they are directly connected
by an edge. Contrary to a digraph, in an undirected graph G edges are unordered pairs
v;,vj of nodes that have no particular relation structure and direction of interaction, which
results in a lack of orientation for the edges in the graph. Let |I';| denote the neighborhood
of a node v;, which consists of all nodes that are adjacent to v;. In directed networks the
out- and in-neighborhood can be discerned with respect to the direction of the edges that

connect adjacent nodes to v;. A binary or unweighted (functional connectivity) network is
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represented by its adjacency matrix A of size N x N, which is a special case of a similarity
matrix and where A;; = 1 if and only if the functional connectivity network contains the
directed edge v; — v;. Accordingly, a reciprocated (mutual) edge is indicated by two entries
in the adjacency matrix A;; = 1 and Aj; = 1, and is denoted by v; <+ v;. The absence of
an edge is indicated by A;; = 0. The adjacency matrix of a functional connectivity network
and other digraphs is an asymmetric matrix. An undirected network has a symmetric
adjacency matrix since A;; = Aj;. In situations where both types of adjacency matrices
should be discerned, Ap is the notation used for an asymmetric adjacency matrix, whereas
Ag denotes a symmetric one. In case of a weighted (functional connectivity) network the
entries in A are real-valued, usually positive numbers indicating the strength of interaction
between a pair of nodes. Measures for weighted networks assume that edge weights are based
on a ratio scale. To better discern the representation of a weighted network, also called a
valued graph, from an unweighted network, the adjacency matrix A is often formally and
conveniently replaced by the edge weight matrix W with real-valued entries W;;. Wp and
Wg are the notations used for an asymmetric edge weight matrix and a symmetric edge weight
matrix, respectively. Functional brain networks do not contain hyperedges, a generalized
kind of edge that connects more than two nodes (that have a common group membership or
classification). Binary functional connectivity networks do also not contain multiple parallel
edges (vs,v;)1, (i, V5)2, ..., (Vi; Vj)m, m > 2 in the same direction. Directed networks can
be transformed to undirected networks by means of performing a symmetrization of the
adjacency matrix or edge weight matrix (see also section 2.2). Whereas in this thesis the
size of a network denotes the number of its nodes, often the term order! is used for it
instead, with the term size denoting the number of edges.

Functional brain networks are built by abstracting recording sites, single EEG-electrodes or
single fMRI voxels, as labeled nodes and modeling associated directed interactions between
these recording sites by oriented edges. It is crucial that, due to the pairwise different
node labeling, all nodes are different — each node has a unique location in the network and
plays a unique functional role as it represents (the activity of) a unique area of the brain.
A subdigraph or directed subnetwork, respectively, of a directed network D(V,€) is a
directed network Ds(Vs, &) consisting of subsets Vs C V and & C & of the sets of nodes and
edges of D. This means that a subnetwork is a part of a network. If a subdigraph Dy contains

all edges of its superdigraph D between its nodes, D; is called an induced subdigraph of

'In the wider context of my work the term ‘order’ is already reserved for the time series analysis of brain
signals, which is the foundation for obtaining functional brain networks.
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D. More precisely, if every edge e € £ with both end-nodes in Vs is element of &, we say that
D; is induced by V. For undirected networks the analogous terms subgraph or subnetwork
are used. An edge-complete network, or simply, a complete network, is a network that
possesses all possible directed or undirected edges between its nodes, i.e. for every pair v;, v;
of distinct nodes, both oriented edges (v;,v;) and (vj,v;) exist. Two digraphs D; and D are
isomorphic if and only if for any ordering of the nodes of D; there is an permutation € of
the nodes of Dy, such that their adjacency matrices are equal, i.e. {vg, vy, } is an edge of Dy if
and only if {e(vg), €(vy,)} is an edge of Ds.

A walk connecting the initial node v; to the terminal node vy is an alternating sequence
of nodes and edges, such that each edge connects its preceding (tail) with its succeeding
(head) node: vy, e1,v2,€9,...,ex_1, V. If v1 = v, then the walk is called a closed walk. In
a directed network, a walk in which all edges point in the same direction is also called a
directed-edge sequence that can be closed or open, too. A trail® is a walk in which all
edges are distinct (but not necessarily all nodes), whereas a path is a walk in which all nodes
are distinct (and therefore all edges, too). If a path has identical start and end nodes, v; = vy,
then it is called a cycle. A self-loop is a cycle of length one, i.e. an edge whose tail and head
coincide. Functional connectivity networks do not contain self-loops, i.e. A;; = 0, Vi € V.
The path length is the sum of the weights of all edges that lie on the path, where in the
special case of binary networks all edge have a weight of one. The distance, also called
graph distance or geodesic distance, d,,(v;,v;) between two nodes v; € V and v; € V of
a finite graph is the minimum length of any path connecting them, i.e. the length of the
shortest path connecting them. The shortest path? between two nodes is called their graph
geodesic and it can be computed [34, 35] using either a breadth-first traversal algorithm
(unweighted network), Dijkstra’s algorithm (weighted network, non-negative edge weights),
or using the Bellman-Ford algorithm or Johnson’s algorithm for networks with arbitrary
edge weights (but not containing negative cycles). The number of shortest path between
the nodes v; € V and v; € V is denoted by o0;;. By convention, o;; = 1. The number of
shortest paths between v; € V and v; € V on which some node v, € V lies is denoted by afj.
Pairs of nodes that are not connected by any paths, i.e. nodes that are members of different
isolated parts of the network, have infinite distance. Distances between all pairs of nodes
are stored in the all-pairs shortest path matrix Ay,(i,j) = dsp(vi, vj), which is symmetric

for undirected networks and asymmetric for directed networks. In a directed or undirected

2also called a directed-edge train [29]
3The path itself, not its length.
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network a node v; is reachable from another node v;, if a directed path or, respectively, an
undirected path from v; to v; exists that is connecting them. Pairs of nodes that are linked by
such paths are said to be connected. A directed network is strongly connected if every
ordered pair of nodes is strongly connected, i.e. mutually reachable, which means there exists
a directed (vs, v;)- and (vj,v;)-path between all pairs of nodes v; and v;. If the orientation
of edges in paths in a directed network is ignored by taking into account strict semipaths
between all pairs of nodes or due to considering a symmetrization variant of the directed
network where all unordered pairs of nodes are accordingly regarded as being connected if they
are reachable by undirected paths, the directed network is said to be weakly connected.
Similarly, an undirected network is connected if every node is reachable from any other
node. In a disconnected network D™ or G the set of nodes V is partitioned naturally
into subsets of nodes, which, together with their respective edges, form different connected
subgraphs that are separated from each other as they are not connected by any (reciprocated)
edge and that are called (strongly- or weakly-connected) components. Each node and edge
belongs to exactly one component and nodes of different connected components are mutually
unreachable. If a network is connected, it necessarily consists of only one component. After
determining network components using breadth-first search algorithms, the rows and columns
of an adjacency matrix of a disconnected network can be reordered so that the matrix takes
block diagonal form, in which the components become visible as square blocks of non-zero
elements along the main diagonal (similar to the adjacency matrix plots of networks with
module structure in section 6.1). The associated network components consisting exclusively
of strongly connected node pairs are called strongly connected components. The set of
nodes reachable from a given parent node v; via edge-directed paths, including v;, is called
out-component. All nodes external to the out-component interact with member nodes of the
out-component solely via edges that point towards the out-component. The in-component
is defined in an analog fashion as the set of nodes from which there is a directed path leading
towards a given node v;, which is included in this set. It follows that the strongly connected
component of v; equals the intersection of its in- and out-components.

The connectedness property is important and is controlled for in the functional brain
network analyses presented in this thesis: To yield a more realistic representation of brain
activity, the dichotomized functional networks under study are required to be at least weakly
connected, which means that they are not allowed to fragment into isolated nodes, which are

not incident with any edge, or separate weakly connected components, which are maximal
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subgraphs in which all pairs of nodes are weakly connected. A cut node or articulation
point is a node, whose removal, together with all its incident edges, increases the number of

components of a network. The edge equivalent of a cut node is called a bridge.

2.2 Symmetrization of directed networks

Despite functional connectivity networks being directed it might be useful to symmetrize
their adjacency matrix or their edge weight matrix to assess network characteristics of the
underlying undirected network. This way of proceeding allows to incorporate additional
measures of network topology that are only defined for undirected networks into the analysis.
For example, in the context of module structure identification (see also chapter 6) I found
that edge orientation had limited impact on the quality of the results. Thus, in favor of being
able to make use of different module structure identification algorithms I also worked on
symmetrized versions of the original networks, even though this might entail certain biases
and information loss (see also section 2.8). Ultimately, it all comes down to whether the
direction of relationships is important for the investigated research question. An interesting
application for link reciprocity (see also section 2.7.3) is the assessment of the amount of
interaction asymmetry for determining how close the structure of a binary directed network is
to being essentially undirected. This information can be used to objectively justify the use of

network symmetrization procedures for network analysis.

The asymmetric adjacency matrix of a binary directed network may be symmetrized by
addition with its transpose Ag = Ap + .A% and subsequently setting any resulting entries

Several basic symmetrization techniques exist for weighted networks. These functions can

be applied to each matrix element of W to generate the undirected network element-wise as
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follows [36]
sym" (W) = w (2.1)
sym™ "™ (W),;; = min(Wij, Wj;) (2.2)
sym™**(W);; = max(Wij;, Wii) (2.3)

The entries of the symmetrized edge weight matrix W might subsequently be scaled to the
interval [0, 1] with the methods of section 2.4.

2.3 Thresholding edge-complete weighted networks

Generally, the quantification of functional connectivity in recordings of brain activity results
in edge-complete, fully connected weighted networks (see also appendix B.1). While it is
possible to analyze such edge-complete weighted networks directly (see also chapter 5 on
page 96), it is common practice to further preprocess potentially noisy, edge-complete networks
by a thresholding procedure to remove low-weight interactions that are potentially spurious,
i.e. false positive. Working with the resulting non-complete networks circumvents certain
problems that can occur in subsequent analyses, primarily the problem of ill-defined network
measures and restricted combinatorial options for network randomization, which is essential
for surrogate-assisted network analysis ( 2.12 on page 50). These problems are particularly
pronounced in binary networks where all equally sized subsets of nodes exhibit the same
topological interaction pattern. In edge-complete weighted functional connectivity networks
problems of discerning substructures and topological characteristics arise since weights might
be very homogeneously distributed across the edges. Filtering? and rejecting edges with
sub-threshold weights is not a trivial procedure as it has the potential to introduce serious
biases and confounders into the resulting network topology [37, 12, 15, 38|. Corrections for
these effects do not exist, because the ‘real’ underlying network topology needs to be known
[37], which is clearly not the case for empirical data of brain activity, as determining the
topology and characteristics of functional brain networks is the very objective of the studies.

As a consequence, it is difficult to discriminate between a real effect seen in the data and one

“In principle , network filtering can also be performed on the node level by removing (peripheral) nodes
with certain properties.
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that is caused by the effects of the thresholding procedure®. The severity of such biases is
more pronounced for small networks as those obtained by EEG recordings or region-of-interest
approaches [37]. Thresholding always discards information on interaction patterns which can
obscure underlying structure. An example for this was given in [39], where it was shown for
a weighted toy network that thresholding will never succeed in revealing its true underlying

module structure in its entirety.

Until now there has been no generally accepted criterion for defining thresholds on edge
weights. There are two principle approaches: statistical significance tests [40, 41, 37] and
heuristic thresholding procedures [37, 24, 42]. Tests for statistical differences of edge weights
are computationally expensive and are feasible in practice only for small networks and small
network samples. They are burdened by the arbitrary definition of the type I error and the way
alpha-adjustments for multiple comparisons are performed, if any. The reliance on p-values,
a key element of such statistical tests, is disputed in general [43, 44, 45, 46, 47, 48, 49, 50].
In contrast, heuristic thresholds are chosen somewhat arbitrarily and usually yield a com-
mon cutoff level for all edges or are selected in an attempt to fix arbitrary values of basic
network characteristics, such as node degrees or edge density [37]. Fixing arbitrary network
characteristics, as e. g. in [51] has recently started to lose acceptance. Instead, often several
instances of a network that are obtained by using ranges of thresholds are analyzed. Both
principle thresholding approaches assume that only strong interactions contribute meaningfully
to the organization of network structure. Contrary to this, the role of certain kinds of weak
interactions was recognized as ‘the strength of weak ties’ [52, 53, 54| and the concept of bridges
[55]. Under the assumption that disconnected functional brain networks yield a poor model
of neural processing (cf. [56]), the thresholding in this thesis was constrained by the ensured
connectedness of the resulting networks, i.e. they were not allowed to fragment into separate
connected components or single isolated nodes. This is also circumvents certain problems that
arise for disconnected networks down the network analysis pipeline, e. g. the assessment of
some network characteristics that rely on path lengths and the malfunction of some module

detection algorithms.

5The analysis can be improved and detrimental effects can be reduced by surrogate-assisted analysis and
normalization of network characteristics using a baseline network model (random null model networks or
down-sampled networks with randomly removed edges) as described in section 2.12.
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2.3.1 Testing for statistical differences in edge weights

Edge weights W;; in the functional brain networks of this thesis are quantified by a functional
connectivity measure, i.e. GCI, IsGCI, dDTF or gPDC (see also sections B.1.1, B.1.2 and
B.1.3). To remove subliminal and statistically non-significant interactions from the edge-
complete weighted functional networks each edge weight is related to the distribution of the
connectivity measure when no influence from time series Y; to Y; is present, which corresponds
to the null hypothesis Hg of the associated statistical test. Since the distribution of edge
weights under Hj is usually analytically unknown, a bootstrap approach [57] has to be used
to construct it. Following, I give a brief summary of the procedure outlined in [58], which
was used for the functional networks of this thesis whenever thresholding and dichotomizaton

based on statistical tests was performed.

For the computation of the functional brain networks and their edge weights the param-
eters A" of a MVAR model (equation B.1) are estimated based on the neural time series
data at hand. To test for statistical differences of the resulting individual edge weights, the
model residuals are calculated with respect to the original time series data and resampled by
random sampling with replacement. To test the influence of the time series Y; on the time
series Y}, the associated entries® in the autoregressive parameter matrix are set to A;-i =0 for
all m =1,---,p, i.e. all coefficients related to time series Y; causing Y; are set to zero. All
other autoregressive coefficients remain as they were originally estimated. The autoregressive
model under Hy and the resampled model residuals are used to generate bootstrap time series
according to equation B.1. For these time series under Hy a new MVAR model is fitted
to compute a bootstrap replication Wg o of W;; under Hy that quantifies the relationship
between Y; and Y; under Hy. The entire bootstrap process is repeated a large number of
times for every pairwise interaction W;; separately, which results in high computational costs.
Therefore, the procedure is infeasible for large networks, e. g. the large functional networks of
chapter 6. Finally, for each pairwise interaction the obtained sample of bootstrap replications
WZ[]{ % is used to either calculate a critical value, given by the (1 — ) quantile, or a p-value
for the hypothesis test. Because it can be argued that the functional interaction structure
of a network has to be considered as a whole and single interactions should not be tested
independently [41], an alpha-adjustment for multiple hypothesis tests is necessary, which can

be performed by e.g. the Holm correction procedure [59] or by controlling the false discovery

5Note the different notation with respect to the order of the indices i and j.
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rate [60]. The p-value for each pairwise interaction Wj; is then compared with its adjusted o

value. Edges for which no statistical difference is found are removed from the resulting network.

To statistically threshold functional networks that were generated based on simulated ground
truth networks (see also section 3.4), a similar strategy to estimate the distribution of con-
nectivity measures under Hp can be used [61]. This approach is based on a Monte Carlo
simulation and works directly on the predefined autoregressive parameter matrix A" (see also
appendix B.2). As before, the coefficients for each tested interaction are set to A7, = 0 prior
to the realization of a new MVAR process, which generates a set of time series under Hy from
which the connectivity measure between time series Y; and Y is recalculated. This simulation
is repeated to generate a large sample of values of the connectivity measure Wg Y under Hy

for the statistical hypothesis test.

2.3.2 Multiple threshold strategy

To gain robustness against specific edge weight threshold choices, multiple thresholds should
be considered for the analysis of networks and the identification of persistent topological
features [42, 24]. To actually threshold an edge weight matrix, the edge weight corresponding

to a given percentile of all edge weights can be used as threshold parameter 7 [62]

1 if wij Z T
Aij = (2.4)
0 ifw;<T

In practice, whenever statistical tests were not feasible from a time resources point of view the
strategy that was pursued in this thesis consisted of using multiple pre-selected percentiles of
the edge weights as thresholds. Using edge weight percentiles circumvents specifying certain
edge weights directly, but results in a fixed number of retained edges independent of the
underlying edge weight distribution. In practice, a fixed number of edges for all networks in
a network sample might be undesirable, as it potentially masks differences in structure of
some networks. If samples of related networks are analyzed, it might be worthwhile to pool
the edge weights of all individual networks to select a weight as common threshold using a
pre-defined percentile. This results in individual networks with different numbers of retained
edges. Thresholding effects have to be analyzed in an exploratory fashion to justify the choice

of selected edge weight thresholds.
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In section 3.5 on page 74 I present a different method that obtains an ‘optimal’ edge threshold
value for module structure analyses. In a sense, this method accounts for an on average
minimum information loss with respect to the module structure of the resulting thresholded
network and yields non-arbitrary, objective and network-specific thresholds. I applied this

new approach for network data analysis in the study presented in chapter 7 on page 129.

2.4 Comparison of weighted vs. unweighted network analysis

Depending on research objectives, after removing low-weight edges one can either proceed with
the analysis of the non-complete weighted network, which is a form of soft thresholding, or one
can dichotomize all remaining weighted edges by assigning them a weight of 1, which yields non-
complete binary networks and is called hard thresholding [62]. Analysis of weighted networks
has the advantage that the information about the continuous nature of edge weights is preserved
and can consequently be exploited to obtain a more detailed, fine-grained understanding of
the network and the modeled relationship between its entities [63]. On the other hand the
underlying binary network, with limited richness of interaction information, is often easier to
interpret, to analyze and to visualize, using a wealth of available techniques and measures. In
particular, normalization of network characteristics is usually less intricate in binary networks
as compared to weighted ones. Dual approaches combine information from both network types
to discover different forms of latent structure [39], e. g. to account for the situation that the

same binary characteristic corresponds to different weighted counterparts [64, 65].

2.5 Rescaling of edge weights

Narrow ranges of similar edge weights are often found in weighted functional connectivity
networks. For analyses it might be beneficial to resolve a narrow range of edge weights by
mapping them into the entire [0, 1] interval. Such a mapping can be obtained by the following
function [36]

w;; — min(W) ))5

flwig, B.W) = (maX(W) — min(W (2:5)

where 5 > 0, e.g. § = 1.5 yields a good edge weight resolution for the EEG-derived networks
analyzed in chapter 7. Other functions for the purpose of separating similar edge weights are
given in [62]

1

flwi 0.0) = 4 o

(2.6)
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f(wij, e) = |wi;|° (2.7)

with positive parameters a, b and c¢. The choice of the parameters a,b and ¢ determines the
sensitivity of the mapping and therefore how good similar edge weights are resolved and how
much the mapping increases the differences between their newly assigned values. Alternatively,

edge weights might be scaled by dividing with the maximum value in the network.

2.6 Transforming edge weights for path length-based indices

In the context of network characteristics that are based on (shortest) path lengths between
nodes the weight of an edge is interpreted as its connection length. Accordingly, a high edge
weight is regarded as a large distance between the nodes connected by the edge. This implies
that the edge has high traversal costs and corresponds to a weak connection between its
nodes, which are too distant from each other to strongly interact. In structural networks,
which describe anatomical connections, network methodologies based on path lengths can be
applied directly and have a clear meaning in terms of neuronal signaling or communication [3].
However, in functional connectivity networks the situation is opposite, as high edge weights
indicate a strong interaction between the connected nodes. Therefore, edge weights have to
be transformed so that high strength interactions become short distances associated with
low edge traversal costs [66]. For it, several transformations were proposed, e. g. subtracting
from the maximum weight plus one or another upper bound, taking the inverse 1/wj;; or
taking a negative exponential e~ [63]. Equations 2.6 and 2.7 can also be used to obtain an
connection strength to connection length (cost) mapping. For it, parameter a and ¢ have to
take on negative values, whereas b can be either positive or negative. A potentially good range
for parameter a might be given by —15 < a < —5 and for parameter b it might be 0 < b < 0.6.
Setting parameter ¢ to —0.5 < ¢ < —0.1 might give reasonable results. The transformation

most often used for the work presented in this thesis is given by
d(vi, Uj) = 2(1 — wij) (2.8)

which defines a metric distance between any two nodes v; and v; [67].
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2.7 Comprehensive quantification of network topology

In this section I give a concise but broad overview of network characteristics that taken
together quantify many different structural aspects of a network and yield a good overall
picture of its topology. Thereby, I discern three topological scales: the microscopic, mesoscopic
and macroscopic scale. Although the described measures provide different perspectives on
major features of network architecture, several of them are inevitably interrelated. Due to
the methodological independence of these measures, which can be assessed individually and
separately, the given overview rather takes on the form of a listing. These measures and many
more are part of my network analysis toolbox. Currently, a manuscript is under preparation,
which reports the results for a study in which large scale functional brain networks of HIV
infected patients and healthy controls were analyzed using a multitude of macroscopic scale
characteristics. Subsequently, the network samples were compared and the correlations among
network characteristics and several clinical scores were investigated. Since this study is not
described in this thesis and reviewing every single measure of network topology is beyond the
scope of this thesis, I only state measures that I used for my work on analyzing functional
brain networks. For an extensive overview of network characteristics I refer to review articles
like e. g. [68, 31, 69, 70, 71, 72, 2] and textbooks like e.g. [73, 31, 36, 14].

Contrary to the descriptions typically found in the scientific literature on network science
I emphasize the network types for which measures of network structure, network models or
algorithms are defined, which I belief will add clarification and value to the explanations
and the overview given in this thesis. Thereby, the notation is the following: “BD” and
“BU” denote, respectively, binary directed and binary undirected networks. Consequently, the
abbreviations “WD” and “WU” denote, respectively, weighted directed and weighted undirected
networks. Due to the nature of functional brain networks, which have weighted or binary
directed edges, I focus primarily on presenting WD and BD network characteristics and
related algorithms, if available, despite stating all network types for which definitions and
concepts apply. Otherwise I state the undirected versions, which can be applied to functional
brain networks, too (see also section 2.2). As already described, weighted networks can be

dichotomized to apply binary network measures (see also section 2.3 on page 16).
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2.7.1 Microscopic scale network characteristics

Characteristics on the level of single nodes and edges are located on the microscopic scale
of network structure. A special meaning have node centrality indices that rank nodes by
assigning them a structural centrality value according to different notions of their role, position
and prominence in the network. This concept originated in the work on social networks
and communication [74] and in operations research [75]. Accordingly, nodes that have high
values for many centrality measures are important functional elements of network structure
[66]. They can be thought of as being strategically located at the center of star-like network
configurations, where due to their high degree and short distances to all other nodes they
constitute a major gateway for flow and communication along most of all the shortest paths
in the network. Central nodes can be regarded as able to avoid the control potential of other
nodes that act only as intermediaries of network flow [76]. On the contrary, nodes with low
centrality scores are likely to be on the outer layers of their network where they cannot access
many other nodes. Thus, centrality indices make for an important network analysis tool for

the extraction of information from networks.

To counteract the dependence of a node centrality measure on network size, a linear rescaling
of individual node centrality values to the [0, 1] interval can be performed. Another usual
way of normalizing a node centrality value is by dividing by the maximum possible score in
a network of the same size IV or by dividing by the sum of all scores if the distribution of
values is important [63]. To control for the influence of purely mechanistic effects of network
topology, centrality measures can be compared to the ones obtained from randomized network

counterparts (see also section 2.12 on page 50).

Following, I list relevant microscopic scale network characteristics together with their main
references.

BD.BU .. of a focal node v; in a binary network equals the number of

The node degree
adjacent nodes [69, 76]. The node strength™V®WVU ¢, in a weighted network equals the
sum of incident edge weights [69]. Therefore, node degree and strength measure a node’s
importance for the network structure in its proximity as given by its interaction activity (many
interactions vs. strong ones). In a binary directed network, due to the added complexity of

considering edge orientation there are four kinds of node degrees, the out-degree £2“!, the
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tot
i

in-degree £ [66], the total degree k!°! and the reciprocal degree x{* [77].

Closeness centrality?PBU,WD,WU

captures the centrality of a node with respect to its
independence from intermediaries and with respect to how easily and efficiently it can access
other nodes and their ressources in the network or route flow to them [66, 78, 76, 79, 80].

Betweenness centrality?P-BU,WD,WU

measures the number of shortest paths that pass
through a node. Thus, betweenness centrality captures the potential of a node to coordinate,
withhold or distort flow along geodesics between other nodes and other parts of the network
[74, 78, 81, 76, 63]. Different variants of betweenness centrality [63, 82, 66] were developed and
algorithmic aspects were improved to compute betweenness in large and dynamic networks, e.g.

[83, 84, 85, 86, 87]. Betweeness is also analogously defined for edges, which can be exploited

for network community detection.

Nodes centrality can also be assessed by the concept of key player nodes [88] or by classifica-

tion into hub nodes and non-hub nodes [89].

For any node v; the local node-level clustering coefficientPP-BU:WD-WU g oiven by the ratio
between the number of triangles with v; as center node (and two of its adjacent nodes that
are connected themselves) and the number of triangles that node v; could have formed, given
its number of neighboring nodes [90, 27, 91]. It is a measure of segregation. Nodes with low
clustering coefficient have relatively many missing edges in their neighborhood, which implies
the existence of so-called ‘structural holes’ (cf. [55]). This, in turn, gives the respective nodes
some additional control over the information flow between its mutually unconnected neighbor
nodes [31]. Influential nodes, e.g. hub nodes, have a low node-level clustering coefficient
[91, 92]. Different definitions of the clustering coefficient in weighted networks can be found in
[64, 93, 90, 94]. Clustering in network samples was analyzed in the study presented in chapter 5

The eccentricity®P-BU,WD,WU

€(v;) of a node v; in a connected network is the largest
geodesic distance between v; and any other node [75]. It can be thought of as how far a node
is from the one most distant from it.

kBD,BU,WD,WU

A node with an elevated Page Ran value is structurally and functionally
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important, acting as e. g. a switch and broker of network flow. High Page Rank values result
from either many other nodes being connected to the node, or at least some nodes that

themselves have a high PageRank [95, 96].

2.7.2 Mesoscopic scale network characteristics

Elements of network structure on this topological scale depend both on local and global aspects
of network organization. Network motifs and in particular network modules are indicative of
functional segregation in the brain [2]. Mesoscopic scale topological features might be used
for network-based data reduction techniques that summarize network structure by coarse
graining or focusing only on important substructures [39]. As a major part of my work focussed
on network analysis at the mesoscopic level, I describe these topological feature and their
detection in more detail.

Network motifsB2-WDb

are statistically overrepresented connection patterns given by small
local connected and induced subnetworks [97]. Motifs are assumed to act as functional mean-
ingful building blocks or as elementary information processing circuits [98] of a network. It
was discovered that individual real-world networks (or classes of networks) possess charac-
teristic combinations of network motifs that might reflect topological constraints related to
the functionality of the represented system and its history of development [99]. Standard
network motif detection in a single directed binary network with unlabeled nodes, which are

indistinguishable from each other, is performed in three fundamental and computationally

expensive subtasks [97]:

1. Solving the subgraph census problem [100] by exhaustively enumerating [101] or sampling
[102, 103] the number of occurrences of each subnetwork induced by a set of k nodes
in the input network. This quantity is affected by the kind of allowed node and edge
overlap, e.g. non-identical counting (arbitrary overlaps) [104, 105]. Even in comparably
small networks, the number of subnetwork occurrences is potentially large due to its
exponential increase with the size of the input network. Moreover, the number of k-node

subnetworks in a network grows very fast with &, which is commonly chosen to be 3 or 4.

2. The second subtask in network motif detection encompasses determining graph iso-
morphism (see also section 2.1) for found subnetworks to group them into topological

equivalence classes and obtaining their counts. It is believed that graph isomorphism
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cannot be solved in polynomial time. Several algorithms for solving graph isomorphism

with miscellaneous performance in practice have been presented [106].

3. The last subtask is assessing statistical significance of subnetwork occurrences. Subnet-
works with a statistical difference in their number of occurrence in the input network as
compared to their number of occurrence in a large set of simulated null model random
networks are deemed motifs (see also sections 2.11.2 and 2.12). Usually, a subnetwork
occurrence is defined to be significant if it occurs a certain multiple of standard deviations
more often in the input network than would be expected in the set of random networks,
which is expressed by the Z-score [104, 102, 107]. Making use of Z-scores for assigning
statistical significance to subnetwork occurrences is flawed by the unsafe assumption
being made that subnetwork occurrences follow a normal distribution [104] and it was
shown that this is not always the case [108]. Statistical significance of subnetwork
occurrences might in general be assessed by computing p-values based on the distribution
of subnetwork occurrences under the null model [101, 109], which corresponds to a
non-parametric evaluation that avoids the problem of making assumptions about a

particular type of distribution.

The centerpiece of the network decompostion into motifs is the third subtask, which is concerned
with uncovering statistical differences in subnetwork occurrences. It is the statistical overrep-
resentation of subnetworks that indicates their putative role as functional meaningful building
blocks or elementary local computational circuits of their network [101, 109, 110, 99, 111, 112].
Indeed, it was shown that motifs can act as elementary computational circuits for information
processing in gene transcription networks [109, 110, 111]. A complicated interplay between
motifs and global network structure seems to exist. On one side, the statistical overrepresenta-
tion of subnetworks might be a consequence of global topological constraints (architectural
type and function of the network) [98, 113]. Conversely, global network structure might be
shaped by the presence of motifs, which stabilize dynamics [98] and thus support robust
stability of the network with regard to small-scale perturbations. A slightly modified variant
of motif detection was used in the context of anatomic brain networks to investigate structural
motifs and the instances of functional motifs contained within them [107]. A somewhat
more specialized variant of motif detection considers topological motif generalizations, larger
subnetworks with a common architectural subpattern as defined based on replications of nodes
in basic subnetworks [114]. Another network fingerprinting method that analyzes smaller

substructures of networks and that can be used for network similarity comparisons is based
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on undirected and directed graphlets [115, 116, 100, 73], which are obtained by a network
decomposition into subnetworks without assigning statistical significance to their counts, and
the corresponding graphlet frequencies and graphlet degree distributions. Motif detection was
generalized to weighted directed networks in [93].

Network modulesBP:BU,WD,WU

, also known as communities, are disjoint cohesive groups
of densely connected nodes, which probably share common properties and play similar roles
within a network. The similarity of nodes is reflected in a higher probability of edges between
comember nodes of the same module than between nodes in different modules [70, 117, 118].
In a network module in the strong sense, each node has more intra-module edges than inter-
module edges [119]. Many algorithms for identifying module structure exist (see also section
2.8). Detecting modules in a network with an unknown number of present modules is inherently
subjective, depends on vaguely defined constraints and requires domain knowledge for proper

interpretation [120, 70]. Module structure was detected in the studies presented in chapters 6

and 7.

2.7.3 Macroscopic scale network characteristics

The global network characteristics on the macroscopic scale are usually highly non-trivial
functions of the adjacency matrix. On the macroscopic scale we find network properties
that summarize the network structure in its entirety. Such global network signatures provide
a parsimonious representation of a network’s functional interaction patterns. Macroscopic
network characteristics based on paths between nodes are measures of functional integration as
they indicate costs of routing of information flow within the network [2]. Small-world network
topology, which supports wiring cost efficient complex information processing, is reflected by
a combination of the transitivity measure and the characteristic path length [121]. Following,

I list relevant macroscopic scale network characteristics.

BD,BU WD,WU

The degree distribution or, respectively, the node strength distribution
constitutes an elemental characteristic of a network [31, 69] that can be used e.g. to discern
network types (see also section 2.11) or to reveal the existence of network hubs [122]. The
degree distribution is given by the fraction of nodes that have degree k, for all k. Since in

directed networks edge directions have to be taken into account, the in-degree and out-degree

distributions are discerned. Alternatively, a two-dimensional joint distribution of in-degrees
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and out-degrees might be considered [31]. The strength distributions in weighted networks are
defined analogously [69].

BD,BU

Network density , also known as edge density or sparsity, is quantified as the ra-

tio of actual edges to the possible number of edges.

The average node strengthWP"WU measures the strength of interactions nodes receive
or transmit on average, i.e. the average edge weight in the network. For weighted directed
networks, the average in-strength equals the average out-strength, which in turn equals the
average edge weight in the network. Network samples were analyzed with respect to the

average node strength in the study presented in chapter 5.

The network-wide clustering coefficientBP:BU-WD.WU g the average of the microscopic
scale clustering coefficients [27] (see also section 2.7.1). Therefore, it measures the density
of triangles in the entire network, i.e. the tendency of a network to form tightly connected
groups of nodes [90]. The average node-level clustering coefficient may be disproportionately
influenced by nodes with low degree [14] and highly skewed degree distributions [31], a draw-

back that is avoided with the similar transitivity measure.

Transitivity2P-BUWD:WU denotes the fraction of transitively closed node triplets [72, 65, 31].
It can be interpreted as the global clustering coefficient. In binary directed networks only
so-called non-vacuous triplets (one edge terminating at and another edge originating from the
center node v;: ap; = a;j = 1 or aj; = a;;, = 1) are considered and counted (denominator of
the fraction). Only non-vacuous node triplets that are additionally closed in a transitive way
with a directed edge from the first to the third node of the chain are also contributing to the
numerator of the fraction of transitive node triplets. To incorporate edge weights, a triplet

value w is computed for each non-vacuous triplet centered on node v; [65].

The characteristic path lengthPP-BUWD.WU (denotes the average length of the shortest
paths between all pairs of nodes in the network. It is a measure of the typical separation
between two nodes and therefore of the efficiency and cost of information transmission or spread
of entities on a network, assuming that such processes tend to utilize direct, i. e. shortest, paths

[68, 31, 27]. The characteristic path length is the most commonly used measure of functional
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integration [2]. Weighted network samples were analyzed with respect to the characteristic

path length in the study presented in chapter 5.]]

The efficiency e;; in the information transfer between two nodes i and j is defined to be
inversely proportional their shortest path distance Agy(7,7) and is given by e;; = 1/Ag,(4, j).

The global efficiency?P-BU,WD,WU

is the average efficiency of a network, i.e. the average
inverse shortest path distance between all pairs of nodes [123] (also called the average con-
ductance (inverse resistance) [124]). It is argued that global efficiency is generally better at
capturing so-called small-world properties and the efficiency of parallel information transfer
than the characteristic path length [125, 123].

The local efficiency?P:BU,WD,WU

is the average efficiency of subnetworks consisting of all
nodes adjacent to a node v;, over all nodes [125, 123]. The role of the local efficiency is similar
to the clustering coefficient as it measures for every node v; how efficient the communication

between its neighbors is [123].

The radiusBP-BUWD:WU g the smallest eccentricity (see also 2.7.1) in the network and
is given by rad = min,, cy €(vg) [75]. For directed networks, eccentricites take shortest paths
to and from the respective node into account.

The diameterB?:BU,WD,WU

is the maximum eccentricity in the network (i.e. the longest
graph geodesic between any two nodes; see also 2.7.1) and is given by dia = max,, cy €(vy)
[75]. In other words, the diameter is the greatest distance using only shortest paths between

any pair of nodes and describes the interconnectedness of a network.

In addition to the analysis loops of length three given by node triangles, in a directed
network loops of length two and their frequency of occurrence might also be considered [31].

Link reciprocity?P-WP

measures the propensity of node pairs to form reciprocated (mutual)
edges and is given by the proportion of reciprocated edges between all pairs of nodes. A
different definition of reciprocity as a correlation coefficient between entries of the adjacency
matrix was proposed in [77]. Networks of the same domain seem to display similar ranges
of reciprocity values [77] and heightened values of reciprocity were observed in functional

networks [126].
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The assortativity coefficient®”:BU-WU [127 128, 31, 14], essentially a linear correlation
coefficient, measures the level of assortative mixing (homophily) between connected nodes
according to a scalar characteristic in a network, in particular an intrinsic property of the
network nodes as given by node centrality indices like the degree (see also section 2.7.1).
Networks that are assortatively mixed according to some property are sometimes also said to
be stratified by that property. Assortative and disassortative behavior of nodes was found
to have implications for network robustness (resilience) with respect to random failure of
nodes and targeted deletion of most central nodes [129], with degree assortative networks
being robust to targeted removal of nodes, which in some contexts might be a bad thing,
e.g. due to the facilitation of epidemic outbreaks [128]. Networks that are assortative by
degree typically have densely connected cores consisting of high degree nodes, which are
surrounded by a periphery of chains of nodes with low degrees [31, 130, 122], whereas degree
disassortative networks adopt star-like structures [31]. In [129] directed assortativity measures
based on Pearson correlation for all four possible degree-degree correlations were proposed. An
extension of the node degree assortativity coefficient to weighted networks was presented in [64].

BD,BUWD,WU " 4150 known as network centrality, denotes a technique for

Centralization
defining a macroscopic, network-level scalar centrality quantity based on a comparison of the
difference between the value Cp.(v;) of a particular node centrality measure (see also section
2.7.1) of a structural central node v; and the respective centrality values Cyc(vg), k=1,..., N

of all other nodes [76, 131, 72]. Thereby, the centralization may be computed as Cen(Cy.) =
Yok (max; Cre(vi) — Che(vr)).

Functional (and structural) brain networks are assumed to possess small-world network
characteristics, which associate network structure with efficient information processing and

transmission. Small-world-nessBP-BU,WD,WU

is a continuous quantitative measure (as op-
posed to a categorical distinction) of the manifestation of small-world characteristics [132]. It
relates the transitivity and the characteristic path length of the investigated network with
the respective quantities obtained from an ensemble of null model networks (see also section
2.11.1). However, in [133] it was argued against the widespread belief that structural brain

networks represent small-worlds (the investigated functional brain networks of this thesis also

usually show only weak small-world characteristics).
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2.8 Network module detection algorithms

Structural analyses of networks often require a network decomposition into functionally self-
contained subnetworks [80] like the ones induced by network modules or other mesoscopic
structures like motifs [134] or connected components defined by the removal of high-degree
nodes [135], high-betweenness nodes [136] or nodes with other particular properties, e. g. [88].
The obtained subunits are not only functionally interesting on their own, using them as the
basis for subsequent anlyses might help to substantially reduce the complexity of the analysis
task. This section is concerned with the algorithmic detection of network modules (see also
section 2.7.2) by means of assigning densely interconnected, cohesive groups of nodes the same
module affiliation. For it, a large number of module detection methods are available, which
utilize different algorithmic strategies to exploit and interpret structural information inherent
to the network data [70]. Therefore, an identified network partition into modules is not
necessarily unique, and consequently different partitions of similar quality and equal legitimacy
might exist. To further fine-tune and optimize the result of a module detection algorithm,
the Kernighan-Lin algorithm [137] might be applied to the obtained network partition [118].
This algorithm attemtps to further increases the quality of the network partition by iteratively
swapping subsets of nodes or single nodes between modules. A commonly used module
structure quality function is called modularity, which quantifies the extent to which edge
densities within modules exceed the densities expected on the basis of chance (see also section
2.10). The lack of comparability of these algorithms makes it hard to decide on the most
suitable one for identifying modules in given network data [70]. Most module detection
algorithms are not deterministic and their results typically depend on specific random seeds,
initial conditions generated at random, random selections made by the algorithm at run time
and the tie-break rules adopted for their execution [138]. Consequently, different runs of an
algorithm might yield different network partitions. If for a given network multiple different
network partitions are returned by an algorithm, my strategy was to always select the highest
quality network partition as measured by the modularity statistic. Depending on available
time and computational resources a consensus clustering of different results can be generated,
which enhances the accuracy of the finally obtained partition (see also section 2.9). Very recent

approaches incorporate metadata on nodes to improve the accuracy of module detection [139].
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Figure 2.1 — Under the right conditions, module structure can be already evident
from network drawings. If the adjacency matrix of a network has a clear intrinsical module
structure, it becomes apparent in network plots where node positions are determined by
force-directed layout algorithms, e. g. Fruchterman—Reingold [140] or Kamada-Kawai [141].
Such layout algorithms place densely interconnected subsets of nodes together using attractive
forces while using repulsive forces to separate weakly interacting nodes (e. g. node pairs that
are connected by long shortest paths). Panels (a) and (b) show two different plots of the
same network without module structure. This network was obtained from the simulated
network with module structure shown in (¢) and (d) by adding random interactions (‘noise’).
The color-coded module affiliations of nodes were given by construction.

As a remark, it is often observed empirically, e. g. in [142], that network drawing algorithms
such as force-based layout algorithms, e.g. [140], and force-spring layout based algorithms,
e.g. [141], potentially reveal the existence of module structure to some extent in the visualized
network structure. By way of illustration, figure 2.1 shows how under ideal circumstances
network modules can be identified by visual inspection of different network layouts, which tend
to automatically separate such node groups without depending on a dedicated network module

detection algorithm. Despite the criticism and caution outlined above, identification of module
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structure in brain networks represents an opportunity to gain insights into the functional
segmentation of brain areas during certain recorded states of neural processing. To analyse
functional connectivity network data with respect to their module structure I selected several
algorithms for application that have a good reputation in the network science research commu-
nity and that are based on very different algorithm design strategies. An additional constraint
for the selection of module detection algorithms is yielding interpretable results with respect
to underlying neural mechanisms. Thus, in my work I was focused solely on finding clear-cut
and unambiguous modules, which means I did not take into account hierarchical [143, 92] or
overlapping module structure [144, 145, 146], even though, by their very nature, some of the
selected algorithms are uncovering hierarchies of module structure. While the orientation of
edges might encode potentially useful functional information that should not be discarded, the
effect of edge orientation on module detection accuracy is not a priori obvious and might not
be generalizable from one network data set to another, as an edge in any direction indicates
a potential commonality of nodes by virtue of their interaction. Following this reasoning, 1
also applied algorithms designed for undirected networks on symmetrized versions of directed
adjacency matrices or edge weight matrices, in which any directed edge is replaced by an
undirected one (see also section 2.2). Among other lines of research on network topology, from
research on stochastic block modeling (e. g. [147, 148, 149, 150, 151]) it is known that module
structure inferred from weighted networks might reveal latent structures that are qualitatively
distinct from the ones obtained in their dichotomized unweighted counterpart networks [39].
Module structure analyses could be gainfully augmented by analyzing the network at hand
with respect to a (multi)core-periphery structure, as module detection algorithms cannot
discern peripheral nodes from the dense modules to which they are connected [122, 130, 80].

The following concise descriptions only cover the algorithms that were used for this thesis.

The leading eigenvector algorithm of Newman®Y'WV [152, 153] is based on spectral
decomposition of the modularity matrix to express modularity (see also section 2.10) in terms
of eigenvalues and eigenvectors (cf. [147]). It forms the basis for the Leicht-Newman algorithm
described next.

The Leicht-Newman leading eigenvector algorithm®PWP [154]

is a generalization of
the spectral modularity optimization approach for undirected networks [152, 153] to directed

networks. It relies on the so-called modularity matrix B = A — P, where A is the adjacency
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matrix of the network and P contains the probability of each edge in a random network drawn
from the configuration model [155, 156, 157]. The method computes the eigenvector for the
largest positive eigenvalue of the symmetric matrix B + B”. The signs of the elements of this
eigenvector are used to divide the network into two modules and assign module membership
to nodes. In a subsequent heuristical “fine-tuning” step similar to the Kernighan-Lin algo-
rithm [137] nodes are assigned and re-assigned to any of the two modules in an attempt to
further increase the modularity of the network partition. Modules found this way are further

subdivided by repeated bisection as long as modularity can be increased.

The algorithm of Blondel etal. BP:BUWD-WU " the so-called ‘Louvain algorithm’ [158]
(cf. [159]), is based on iterated greedy local optimization of the network’s modularity char-
acteristic (see also section 2.10). The first iteration of the algorithm assigns one module to
each node and then repeatedly and sequentially identifies for each node the gain in modularity
when removing it from its module and placing it into the module of any of its neighbor nodes.
Subsequently, the displacement that yields the maximum positive gain is then performed and
the possible displacements of the next node are considered. The first iteration comes to an
end when no further modularity improvement is possible by individual node displacements.
The nodes of every identified module are contracted into a single node and their edge weights
are aggregated to build a new network on which further iterations takes place. In these further
iterations the greedy step is repeated and modules are merged until no further improvement

of modularity can be achieved.

The fast greedy modularity optimization®V algorithm [160] is an optimized version
of the greedy algorithm for optimization of the modularity criterion (see also section 2.10)
that was proposed in [161]. The key idea is, starting with single nodes, to repeatedly choose
and merge a pair of modules that are connected, so that in each merge step the biggest gain
or, if no increase is possible, the smallest decrease in modularity is attained. Consequently,
in each step this algorithm can only exploit local information about the module structure to
base its merges upon. The optimizations are achieved by using efficient data structures for
sparse matrices and by eliminating needless operations on the network’s adjacency matrix
during runtime. This algorithm has the reputation of being fast enough for applying it to very
large networks, however its estimations of the modularity maximum is not as accurate as the

results of other methods [138].
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The random walk algorithm of Pons and Latapy®V [162, 163] detects network modules
using a random walk process along edges to measure distances between nodes. The basic
intuition here is that short random walks are likely to stay for most of the time within a
network module, where the edge patterns are more dense as compared to inter-module regions.
The probabilities for the transition from a node v; to an adjacent node v; are only determined
by the degree of v; and define a transition matrix. Two nodes v; and v; of the same module
have very similar probabilities for a transition to a third node v;. This idea is incorporated
into the distance measure which uses powers of the transition matrix and accounts for module
membership of nodes and thus captures the module structure of the network. The problem of
finding network modules is reduced to a clustering problem by generalizing the node-node
distance to a distance between modules and using it in an agglomerative clustering approach
which computes network partitions. Finally, the partition maximizing a certain quality crite-
rion is selected as the result.

The Potts spin glass algorithmPPBYU,WD,WU

reformulates the problem of module detection
as the problem of finding the global ground state configuration of an infinite range spin glass
[164, 165, 166] with the states of the IV spins being equivalent to the module labels [167]. The
principle of the spin glass model is that edges should preferably connect nodes of the same
spin state, whereas nodes with different spin states should be disconnected. Respective edges
are energetically rewarded or penalized by the Hamiltonian (cost function) of the spin model,
which is the sum over all interaction energies, which depend on the spin states, i.e. module
affiliations, of the nodes of each considered node pair and the strength of their interaction.
The interaction energy of two nodes is only added if the nodes are in the same spin state. It is
positive (ferromagnetic, aligned interaction) only if the interaction strength of two nodes is
larger than expected under a given null model [118]. If their interactions strength is less than
expected under the null model, the energy is negative (antiferromagnetic, differently oriented
interaction). The equation of Hamiltonian bears a strong resemblance with the expression of
modularity (equ. 2.22) and contains the resolution parameter v that expresses the relative
contribution from existing and missing edges to the energy (adjusts importance of the null
model term) and allows to tune the number of discovered modules in the minimum energy
partition, thus, enabling the exploration of the hierarchical organization of module structure.

It was shown that finding the spin configuration for which the Hamiltonian is minimal is

35



CHAPTER 2. FUNDAMENTAL CONCEPTS IN COMPLEX NETWORK ANALYSIS

equivalent to maximizing modularity [167]. The ground state of the Hamiltonian is found
using a simulated annealing algorithm [167].

BD.BUWD,WU  algorithm [168] finds modular structure with respect to flow

The Infomap
and is based on the idea that the problem of module structure identification can be turned into
an equivalent coding problem”, where a network partition is sought that yields a minimum
description length of a random walk across the network structure, which is given by the ‘map
equation’ objective function [170]. The idea of the ‘map equation’ is using Huffman codes
[171] for an optimal two-level description of the random walk, which is obtained by differently
labeling regular important structures (modules) and insignificant details (nodes in the modules)
that are encountered by it. Whenever the random walk transitions into a different module,
where it likely has a long persistence time, a unique binary codeword will be used for the
encountered module in the description of the random walk. The lengths of Huffman codewords
is derived from the visit rates of the structures, with frequently encountered structures having
short codewords. The nodes that are encountered by the random walk process within a
module also get unique codewords in the description of the random walk, but these are
much shorter than the module codewords and they are reused among different modules to
compress the description. This ‘network map’ resembles somewhat geographic maps where
different cities have mostly unique names, but share a large number of street names. Thus,
finding an optimal code that describes the random walk solves the dual problem of finding the
regularities and important structures of the network. To minimize the ‘map equation’ a certain
number of modules have to be used (the description length associated with transitions among
modules increases with the number of modules, whereas the description length associated
with the movements within modules decreases with the number of modules) and it has to
be determined which nodes belong to which modules. Given a network partition, the ‘map
equation’ yields the lower bound for the description length, without actually generating the
description code. Whereas modularity accounts for the relationships between any two nodes,
the ‘map equation’ accounts for the way local interactions induce a system-wide network flow.
As a result, optimization of these quality functions uncovers different module structures. The
optimization of the map equation may be carried out by combining a greedy search with

a simulated annealing step or by using an adapted variant of the fast greedy modularity

"Minimum description length statistics is concerned with the duality of data compression and extracting
patterns within this data. The more the data can be compressed, the more can be learned about its regularities
[169].
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optimization technique of Blondel etal. (see above) [170].

2.9 Consensus clustering

Consensus clustering is a method for integrating different related network partions into a
single one, while enhancing trends and consistent features in the partition data and removing
or smoothing out noise in the module assignments. Such partitions might be obtained from
different runs of a module detection algorithm or from different network configurations at
different time steps. In this work, consensus clustering is primarily used for dynamic module
structure analysis in small and dense EEG-derived networks (see also chapter 7) as an ap-
proach to simplify the amount of generated network partition data and to extract trends in
the network module structure time course [138]. In essence, a consensus network partition
of snapshot networks in a given time window accounts for the history of the network system
and constitutes a summary of its time-evolving module structure in either the vicinity of
pre-selected isolated time frames corresponding to specific network snapshots or in snapshot
networks of several overlapping time windows that cover the entire network evolution. The
selected time window length, i.e. the number of combined partitions is important. If too
few partitions are combined, their consistent features might not be sufficiently extracted. If,
however, the selected time window is too broad, time-specific meaningful features of network
module structure are also removed by the smoothing associated with the procedure. Therefore,
one should strive for a balanced approach and avoid merging network partitions referring
to a time range that is much broader than the natural time scale of the network evolution.
Identification of a meaningful time scale [172] for the network evolution usually requires prior
knowledge and exploratory data analysis. Snapshot time frames need not be equidistant to
each other and the number of combined snapshot networks, i.e. the width of time windows,

along the network sequence might be chosen to vary.

At the heart of the methodology proposed in [138] is the so-called N x N symmetric consensus
matrix ¢, whose entries €;; store the number of partitions in which nodes i and j are comember
nodes of the same module, divided by the number of partitions, which contain both nodes.
As said before, in the context of this thesis nodes in the functional connectivity networks
correspond to brain recording sites and therefore their number remains static over time. The

partitions used for the construction of ¥ are obtained from applying a module detection

37



CHAPTER 2. FUNDAMENTAL CONCEPTS IN COMPLEX NETWORK ANALYSIS

algorithm to a number of snapshot networks® at different time steps. This module detection
algorithm can be designed to handle either binary or weighted networks. Nodes that often
share the same module affiliation get relatively large entries in the consensus matrix, while
nodes at the boundary of modules that are often misclassified due to interaction noise are
linked by low weights in 4. In a subsequent filtering step, all entries 4;; with a weight below
a threshold 7 are set to zero. Nodes that would become disconnected due to this filtering
keep their largest entry in 4. Then a module detection algorithm for weighted networks is
applied to the consensus matrix to obtain a new set of partitions. If the newly obtained set of
partitions is still heterogeneous, a new consensus matrix is constructed from this new set of
partitions and the procedure is iterated. The iterations are stopped if the partitions obtained
from a consensus matrix ¥ are homogeneous, which means that ¥ has a block-diagonal
structure with entries of weight of (almost) 1 for nodes of the same block and entries of weight
of (almost) 0 for nodes of different blocks. The convergence of entries in % usually occurs

after only a few iterations of the procedure.

2.10 Measures for module structure quality assessment

For many applications obtaining a natural partition of the node set into groups of well in-
terconnected nodes provides crucial phenomenological or functional information about the
underlying system (cf. [15]). This suggests the importance of making a precise distinctions
about ‘clear-cut’ high quality or ‘weak’ low quality network partitions. Naturally, the quality
and definiteness of identified network partitions depends on the local topological context of
clustered nodes and single modules given by the spatial distribution of edges, the heterogeneity
of edge density and the technique used to uncover partitions. Module structure quality might
also depend on correlated metadata on nodes, if available, which is not considered here [139].
Different network partitions might be compared with each other, using the module preservation
and quality measures described in this section. Following aspects of module structure quality
might be assessed: Module structure preservation can be quantified with cluster resemblance
measures (ratio of correctly classified nodes, van Dongen metric, Rand index, Jaccard index),
information theoretic measures (variation of information, mutual information), edit distance-
based measures (Hamming distance between adjacency matrices, partition edit distance)

and measures from statistics (Cohen’s Kappa). Module structure quality and definiteness

8To improve module detection results in a single network instance, the described procedure might be applied
to several of its partitions obtained from different runs of one or several module detection algorithms.
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of obtained module structure can be assessed by topological measures (modularity measure,
performance measure, coverage, number of disconnected node pairs) and measures assessing
the clustering validity, i.e. the fit of node-module assignments based on structural similarity

and equivalence of node pairs (overall average silhouette width).

The ratio of correctly classified nodes is obtained by comparing the network partition
yielded by a particular module detection algorithm with another (benchmark) classification of
nodes. It measures the ‘goodness’ of a partition simply by counting misclassified nodes. To
compute this percentage, module labels in the different network partitions have to be matched
(see also chapter 3 section 3.2). This approach causes problems when the number of modules
in both partitions is different, e. g. when modules in one partition might have been separated
into several modules in the other partition. In this case, only one of separated modules can
be matched to their counterpart in the other partition. Consequently, the ratio of correctly
classified nodes will be greatly reduced by virtue of this split, even though a large fractions of
the same node pairs are still clustered together. This situation is handled more robustly by

the Rand index that is described next.

The Rand index [173], one of the most commonly used partition resemblance measures
[174], compares two different partitions #4 and &g of the same node set on the basis of
counting and comparing classifications of pairs of nodes in both partitions. Thereby, it does
not make use of topological information, i.e. adjacency information of the network. The Rand
index is given by the number of identically classified comembership and non-comembership of

node pairs normalized by the total number of node pairs

P11+ Poo

R(Py, Pp) =
( ) P11+ poo + po1 + p1o

(2.9)

where p1; (true positives) represents the number of node pairs that are comembers in both,
P4 and Pp, and poo (true negatives) denotes the number of node pairs that are separated
and assigned to different modules in &4 and #g. There are two more types of classified
node pairs that represent disagreement. More specifically, the number of pairs of nodes that
are assigned to different modules in &4 but are placed in the same module in &g (po1, false
positives) and the number of pairs of nodes where the situation is the opposite (p19, false
negatives). In practice the Rand index does not necessarily range over the entire [0, 1] interval

and instead often concentrates in a small interval close to 1. Therefore, it might be adjusted
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for chance assignment of modules [175, 176, 174]. The adjusted Rand index is given by

R(P4, P5) — E[R]

AR(P 4, Pp) = I — B

(2.10)

The Rand index is a measure of similarity, which can be easily converted to a measure
of distance between two network partitions by taking the one-complement [173]. This distance

is a metric on the set of all clusterings of a given set of nodes

dr(Pa, ZB) =1 — R(Pa, PB) (2.11)

The Jaccard index is a similarity measure, which compares network partitions and the
extent to which their module assignments overlap. It is based on counting pairs of nodes
in which both partitions agree or disagree in a way similar to the Rand index (see above)

[177, 176]. The Jaccard index is given by

P11
J( Py, Pp) = ——L 2.12
(P4, Z5) P11+ po1 + pP1o ( )

where, as before for the Rand index, p;; denotes the true positives, p1p denotes the false
negatives and pg1 denotes the false positives. The Jaccard index can also be easily transformed
into a distance function (dissimilarity measure) by the one-complement, which measures the

dissimilarity between two network partitions
dj(Pa, Pp)=1—J(Pa, PB) (2.13)

Other similarity measures for binary data based on p11, poo, po1, P10 can be found in [178].

The variation of information compares two network partitions of N nodes into mod-
ules, P4 = {M3l,.., M2} and Zp = {MP, ... MB}, by measuring the change in their
information content [176]. It is a true metric on the space of network partitions and can
consequently be used to calculate the distance (i.e. dissimilarity) between two partitions of

the same network data or between the module structure of two different but equally sized
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networks (i.e. for comparing members of a functional connectivity network sample). Variation
of information is not using topological information of the input network as it relies only on
module affiliations of nodes, i.e. the information on the subsets of nodes that are grouped
together. Thereby, it does also not depend on the ordering of assigned module affiliation
labels. To derive this network partition distance measure, two quantities are established: the
amount of information with respect to node assignments contained within each partition and
the amount of information one partition has about the other. First, for each partition 24 and
Pp a discrete random variable is defined that models the module affiliation of a node picked
uniformly at random from the network’s N nodes. The probability mass functions associated
to these random variables are Pr(k) = Ny/N and Pr(l) = N;/N, giving the probability of
a randomly picked node being member of module M? consisting of N nodes or module
MZB consisting of NV; nodes, respectively. The entropy H associated with a network partition
quantifies the uncertainty of node assignments (the uncertainty of the module of a randomly
picked node), that is, the information needed on average to describe the node assignments in

each partition. The entropy of node assignments in partition &4 is calculated as

k) log Pr(k) (2.14)

|
T
)
3.

The calculation for H(Zp) is analog. Pr(k,l) is the joint probability distribution of the two

random variables associated with &4 and Pp

| M O MP |

Pr(,1) = =

(2.15)

It specifies the probability that a node is at the same time assigned to module ./\/l,‘? in #Z4 and
module MP in Zp. Then, the reduction of uncertainty of node assignments in one partition
due to knowledge about the other partition is given by the mutual information I [179]

between the associated random variables

K L
(P4, Pg) :ZZ r(k,1) logm (2.16)

Only if the two network partitions to be compared are equal, the following holds

(P4, PB) = H(P4) = H(ZB) (2.17)

Finally, the normalized variation of information is given by
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Pp)+ H(Pp) —2I(P4a, PB)
log N

VI, 7p5) = DL (2.18)

The numerator represents the information about &4 that is lost and the information about
Zp that is gained when partition &4 is changed or converted to partition &p. Normalization

by dividing by log N ensures that VI is bounded to the intervall [0, 1] [179].

The van Dongen metric on the space of partitions of the same set of nodes is based

on set matching and is given by [180, 176, 179]
d(Py, PB) =2N —pn(Py — PB) — pn(Pp — P4) (2.19)

Again, 4 and Zp denote the two partitions to be compared, which consist of a number
of modules k and [, respectively. N denotes the number of nodes in the network and
(P4 — Pp) is the projection number of Z4 onto &p, which reflects how close &4 is to
being a subpartition of &p. The projection number measures the amount of module overlap

in both partitions and is defined as

p(Pa— Pp)= > max | M MP | (2.20)
k 3
Mg, MOETs

The partition edit distance quantifies topological alterations of intra-module edge patterns.
For each pair of corresponding, matched modules in &4 and &5 the Levenshtein edit distance
[181, 182] of intra-module edges is computed, which is the cost for their optimal alignment.
For it, the adjacency matrix for each module is vectorized and typecasted to a string in the
alphabet {0,1}. The Levenshtein distance is the minimum number of insertions, deletions and
substitutions to make both strings equal. Single edit distances for each pair of corresponding
modules are added up to yield the partition edit distance. Alternatively, Kappa coefficients
could be computed to quantify the inter-rater agreement of intra-module edge patterns (see

also section 2.10).

The modularity2P-BU-WD-WU meagure [154, 148, 70, 183, 184] quantifies the degree to which

a given network partition into modules is clearly delineated by means of accounting for
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the magnitude of local edge densities. Networks possessing a strong module structure have
statistically surprisingly high intra-module edge densities and low inter-module edge densities,

thus yielding high values of modularity. It is defined as

@ = (fraction of intra-module edges)—

(2.21)
(expected fraction of such edges if placed at random)
For binary undirected networks modularity is given by the following equation
B 8(ci, e 2.2
2|g‘ Z ij = 21€] ) 8(ci, ¢5) (2.22)

where k; denotes the degree of node v; and ¢; denotes the module of node v;. The Kronecker-¢
function is defined as usual, i.e. it is unity if and only if both arguments are equal and it is
zero otherwise. Thus, QPY quantifies the existence of each edge inside a module by comparing
it with its expected probability in an equivalent null model network, which could be generated
by the configuration model (see also section 2.11.2). Equation 2.22 also states that edges
between large degree nodes are not ‘surprising’ and add only little to the modularity of a
given network partition, with the rationale being that in a modular network edges are not
homogeneously distributed since the density of edges inside modules is higher than expectated
under random edge placement. Modularity for binary directed networks quantifies ‘surprising’
edges with respect to the in-degree and out-degree information of their tail and head nodes,

e.g. edges that fall between pairs of nodes where the tail-node has small out-degree and the

head node has small in-degree. It is defined analogously to equation 2.22 as follows

ROUt H[zn

@] Z 7o) dlenes) (2.23)

Modularity for weighted directed networks can be calculated as [185]

w = w
)

out ~in

where w = }_,; w;; is the total weight of all edges in the network under consideration. The

definition for modularity in weighted undirected networks can be found e.g. in [185, 184].

Since modularity might occasionally have increased values in random networks [179], for
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module structure quality assessment it is a good strategy to not rely on the modularity
characteristic alone. It was also found that modularity optimization, while it works well in
many situations, suffers from a resolution limit [186], which means that a maximum modularity
partition can fail to resolve modules smaller than a certain size. In particular, if the number
of internal edges of an identified module is smaller than about +/2[€], then the identified
module might be an artificial merger of two or more sufficiently smaller modules. In the worst
case, if all modules of a network are ‘fuzzy communities’ that maintain a large number of
inter-module edges, the identified supermodule could in principle have a size of the order of
the size of the whole network. Incorporating a resolution parameter into the optimized quality
function is a way to address the resolution limit [167, 118]. Optimization of modularity is a
nondeterministic polynomial-time complete (NP-complete) problem [187] and is therefore
computationally intractable?, i.e. there is no hope for designing an fast and exact algorithm
that computes maximum modularity partitions for all inputs. As a consequence and unless
P = NP, any polynomial-time algorithm has to make use of heuristics. On the other hand,
the result of the NP-completeness of modularity maximization can be seen as a justification
for using approximation algorithms. To overcome these limitations in weighted networks, an
exact procedure for network size reduction that preserves modularity and allows for a more ex-
haustive search of the network partition space by heuristic modularity optimization algorithms
was proposed [185]. In addition to these difficulties, it was found that the modularity function
exhibits degeneracies as it admits an exponential number of distinct high-scoring, near-optimal
solutions and typically lacks a clear global maximum [188]. Consequently, analysis of real-world
network partitions obtained by modularity maximization warrants cautious interpretations
and the output of several runs of an algorithm should be compared if feasible in practice. It
also implies that results of different module structure identification algorithms are not unlikely
to differ from each other. These issues are more pronounced in larger networks and in binary
networks [15]. On the other hand, the exponential number of near-optimal solutions provides
an explanation for the good performance of modularity optimization in practice, despite its
NP-completeness: good partitions are not hard to find, even though the optimal solution
is obscured [188]. A similar behavior is expected for other quality functions and identifica-
tion techniques, too [188, 186]. A local version of the modularity measure was proposed in [189].

BU

The performance measure”" is given by the fraction of node pairs that are correctly

°No polynomial-time algorithm has yet been discovered for an N'P-complete problem and also it has not
been proved that no polynomial-time algorithm can exist for any such problem [34].
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‘interpreted’ by an obtained network partition with regard to the network adjacency informa-
tion [70]. It takes into account the node pairs that are assigned the same module and that
also interact via an edge and those node pairs where both nodes are classified to belong to
different modules that are not connected by an edge. For the performance measure only the
presence of an interaction is relevant as it indicates a putative common role of nodes and a
less unlikely common module affiliation. Since edge directions are ignored, directed networks

have to be symmetrized. The performance measure is given by

(i,4) & &M@ # MO} |
/2

per()  L1(0n) € £:MTD = M} |+ §

NN =1 (2.25)

where M) denotes the module of node vg. In other words, the performance measure
penalizes edges that are ignored by a given network partition, i.e. if both nodes of an edge are
assigned to different modules and it penalizes edges implied by the network partition that are

not present in the network, i.e. if nodes with the same module affiliation are unconnected.

CoveragePPBU denotes the ratio of the number of intra-module edges by the total number
of edges [70]. The motivation behind it is the following: in an ideal module structure, e.g. if a
network is fully fragmented into isolated connected components with no inter-module edges
linking nodes of different connected components, there would be little ambiguity with respect
to the (non-hierarchical) module structure. In this case all edges are intra-module edges and
the value of coverage is one. Thus, coverage measures the goodness of the obtained network

partition into modules in dependence of the quality of the network’s inherent module structure.

The overall average silhouette widthPP-BU.WD-WU qyuantifies the disbalance between the
average intra-module dissimilarity of all nodes and their smallest average inter-module dissimi-
larities. It equals the average over all individual silhouette values s(v;) [190] of each node v;,
which measure how well each v; is classified with respect to the network partition at hand. For
it, the average intra-module dissimilarity a(v;) is compared with the minimum of its average
inter-module dissimilarities b(v;) (the average dissimilarity of v; to its second-best module).
In a high quality network partition a(v;) values are small and b(v;) values are high, which
means that node v; is similar to its comember nodes, whereas all other modules consist of

dissimilar nodes. Using an appropriate node dissimilarity measure to compute a(v;) and b(v;)
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the silhouette of a node is given by

b(vi) — a(vi)

s(vi) = mazx{a(v;),b(v;)}

(2.26)

Consequently, silhouette values close to 1 indicate good module assignments, whereas silhouette
values close to 0 and close to —1 indicate ambiguous module affiliations and misclassification,
respectively. To obtain a characteristic for a network partition in its entirety the overall
average silhouette width is computed. An example silhouette plot is presented in figure 6.5.
To determine node dissimilarity in the absence of spatial embedding of network data and

10 measure similar to

information on contextual similarity of nodes, a structural equivalence
ones presented in [191] could be used. Structural equivalence measures consider adjacency
relationships between neighboring nodes, i.e. common neighbors that pairs of nodes share.
This corresponds to a common theme of data clustering, where similarity between objects can
be related to the number of features they share [192]. This notion of similarity between nodes
corresponds also to a well-established result in sociology, that people are increasingly likely to
be friends, the more commonalities they share [193]. One possible dissimilarity measure and

the one I used for this thesis accounts for the direction of edges between shared neighboring

nodes (cf. [70]). It takes on the following form

D(v;,vj) > A — + [Agi — Ag;j)? (2.27)
k#i,5

Its suitability depends on the network data and the actual application, due to the way this
measure determines dissimilarity of nodes: Any node v, connected to only either v; or v;
increases the dissimilarity. Any shared neighboring node v, linked by the same kind of edge
to both, node v; and v; doesn’t affect the value of D. However, any shared neighboring
node vy, linked by different kinds of edges to v; and v; contributes to a further increase of
dissimilarity. Consequently, D might take on large values for nodes of high degree, even
if they share a large number of neighboring nodes, since high-degree nodes are more likely
to also have a larger number of neighboring nodes they don’t share. In this situation the
resulting dissimilarity value D might be even larger than for some nodes of small degree,
that have only a small overlap of neighboring nodes and at the same time have only few

neighboring nodes they don’t share. Depending on the application this emphasis on the

10 Structurally equivalent nodes share the same neighboring nodes to a large extent. Regularly equivalent
nodes do not necessarily have to share neighboring nodes, but their neighboring nodes are themselves similar
[31], therefore two nodes are similar to the extent that their neighbors are similar.
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direction of edges linking neighboring nodes (and not the fact alone that two nodes share a
certain number of neighbors) might be an undesirable trait of the proposed distance measure
D. The similarity/dissimilarity of nodes could also be established by other means, e.g. by the
topological overlap measure [143, 62], m-th order generalized topological overlap measure [194],
Jaccard distance between node neighborhoods I'; and I'; [70], the measure based on regular
equivalence and structural equivalence proposed in [191], correlations between rows or columns
of the adjacency matrix [31, 70], correlations of time-variant node properties (cf. [195]), cosine
similarity of node adjacency vectors [31, 192, 70], the distance of Adamic—Adar [193], ‘most
reliable route’ similarity [196] or measures based on edit distances or the Hamming distance
of node adjacency information [31].

BD.BUWD.WU can be interpreted

For each module the number of disconnected nodes
as a simple measure of fragmentation. Total or median numbers accounting for all modules

can be used for comparing entire partitions.

Cohen’s Kappa coefficient®”:BU [197] can be used as a topological measure of network
module structure similarity by means of quantifying the agreement between edge patterns

given by corresponding adjacency matrix entries.

2.11 Network models

Network models are used in this thesis primarily as null models to contrast regularities in
investigated real-world networks with random network structure in the absence of functional
constraints. However, it was found that network topology might be classified into four different
topological classes [198, 199], which cannot be completely reproduced by the commonly
deployed network models (Erdos—Rényi random networks with uniform edge probability
distribution [200, 201], Barabdsi-Albert preferential attachment (scale-free, i.e. power-law)
networks [28, 201, 143] and random networks with prescribed degree sequence (see also section
2.11.2)). Of these network models, the random network model with prescribed the degree
sequence is of particular relevance for the analysis of functional brain networks (see also sections
2.11.2 and 2.12). As geometric constraints can give rise to unique subnetwork distributions,
random geometric graphs (edges connect pairs of nodes that are proximal in space [202, 115]
or interactions decay with the distance between nodes [203]) might be used as an analysis tool

for discerning whether the abundance of certain subgraphs is caused by such purely geometric
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constraints or whether they arise due to additional optimizations and characteristics of network
structure design. Small-world networks [27, 204] provide an appealing description of brain
networks due to their inherent incorporation of integration (high clustering coefficient) and
segregation (short characteristic path length) that can be achieved with low wiring costs [124].
These network models are also interesting from the perspective of studying the resistence of

network structure to random failures and targeted attack on nodes [31] (cf. [205, 206]).

2.11.1 Network null models

Null models correspond to a null hypothesis and are used to analyze patterns and test
hypotheses [207]. A null model is broadly defined as a pattern-generating model that is based
on constrained data randomization [208]. For the construction of the null model, certain
aspects of the observed data are preserved while others are randomized and vary stochastically
to create new patterns in the null model data [209, 210, 211, 212, 213, 214, 215, 128]. Network
null models like the network models and random graph models of the previous sections are
important for network analysis to validate results using surrogate-assisted approaches (see also
section 2.12), since identified network characteristics might be the product of random effects
and contingencies in the network structure or are simply caused by mechanistic effects of basic
network properties. Consequently, distinctly nonrandom characteristics of network topology are
linked to functionally important substructures. Therefore, real-world network measures should
be compared with ‘default’ values identified in appropriate null model networks. Thereby, a
network null model is needed to construct a reference system that contrasts such topological
regularity with random effects that also influence the network topology. Particularly, the
effects of any process that created structures with functional relevance in the networks have
to be reversed during the generation of the null model networks. Choosing a suitable null
model that fits given network data is an open problem. In particular, it is difficult to decide
which low-level topological properties of the network data should be captured by the null
model networks while at the same time the connectivity between nodes vary stochastically.
Imposing too many constraints on the null model will reduce its statistical power [122]. Thus,
type II statistical errors are increased. Imposing too few constraints on the randomization
procedure that yields null model networks increases false positive discoveries, i.e. type I errors.
The problem of balancing type I and type II errors is inevitable in null model analysis and
statistical tests in general [207]. Thereby, it is difficult to assess whether a particular null

model sufficiently captures the range of patterns specified or implied by the null hypothesis
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[207]. Consequently, using an inappropriate null model in the statistical test might introduce
a bias in the assignment of statistical significance [216, 217]. The null model widely employed
for network analysis preserves the in-degree and out-degree sequence. To ways for constructing

such null model networks are presented in the following section.

2.11.2 Random networks with prescribed degree sequence

Both degree sequences determine the topology of a directed network by imposing constraints
on potential locations of edges connecting specific pairs of nodes and therefore it ultimately
affects many of the network’s properties. Thus, the in-degree and out-degree sequence is a
basic and important attribute of a directed network which consequently should be accounted
for in the generation of reasonable null model random networks [216, 210, 213]. Incorporation
of the vertex degree sequences into the null model yields a statistical test for significant
subnetwork counts (see also section 2.7.2) with a ‘good’ amount of restrictiveness so that not
too many false positive results nor too many false negative results are expected. The associated
random networks are usually either generated by the configuration model (‘stubs-pairing’)
[155, 157, 218, 219, 220] or by a Markov chain Monte Carlo (MCMC) method (‘edge-switching’)
[213, 101, 157, 214, 221].

The basic idea of the process of drawing networks from the configuration model ensem-
ble is to consider the in-degrees and out-degrees of nodes as ‘stubs’ that have to be randomly
paired by connecting them with directed edges. For it, a node is chosen uniformly and
repeatedly from the set of nodes which have not used up all their outgoing edges and another
one is randomly chosen from the set of nodes that can still accept ingoing edges, both nodes
are linked by an directed edge. This procedure is performed until all nodes have acquired
all of their connections as specified by their degree sequence. In practice, the configuration
model approach suffers from the possible introduction of multiple edges and loops into the
randomly constructed network, thereby creating multigraphs (multiple parallel edges in the
same direction) or pseudographs (multigraph with loops), which provide an undesired model
for functional brain networks, which do not exhibit these properties. Rejections of selected
node pairs that would be required to avoid the addition of degenerating edges are unfortunately
problematic on their own. A sampling bias would be introduced if following the rejection of a
multi-edge an alternative node pair is chosen at random from the set of available nodes with

free ‘stubs’ [219, 214]. This modified strategy would be equivalent to an extended exploration
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of the search space in the neighborhood of non-simple partial directed networks, causing
the final simple network to be drawn non-uniformly from all possible ‘stub’-pairings. The
algorithm might also be modified to reject partial networks upon introducing a degenerate
edge. It then uniformly samples simple networks with prescribed degrees but its acceptance
rate would be too small to apply it to real-world problems [219]. Nevertheless, numerical
experiments have revealed that the modified configuration model algorithm that discards
degenerating edges and instead selects a new node pair can be acceptable in practice despite
of its sampling bias [157]. The non-Markov chain Monte Carlo method ‘go with the winners’
that also constructs networks with prescribed degree sequences generates statistically correct

samples but is too inefficient for generating large null model network ensembles [157, 222].

The Markov chain Monte Carlo method (MCMC) ‘edge-switching’ algorithm rewires an
input network by means of a series of random reconnections of edges. Repeatedly, two di-
rected edges (vg,vm) and (v],v,,) are selected uniformly at random and their head nodes are
exchanged to yield the edges (v, v,,) and (v}, vy,). If this would generate multiple edges or
loops, the edge switch is not performed and a new pair of edges is randomly selected. These
edge switching attempts are repeated Q |E| times, where 2 is a (‘mixing’) parameter which has
to be chosen large enough to allow the underlying Markov chain to converge to its stationary
distribution. In the course of this, rejected edge switches, which correspond to the transition
from a network to itself, are also counted. For the selection of 2 values and the number
of randomized network instances I refer to section 3.1.3. With respect to functional brain
networks the resulting randomization disintegrates network structure with functional relevance
that represents the recorded neural processing. The MCMC edge-switching algorithm is
recommended for network motif detection as its application yields a good trade-off between

speed and accuracy (uniform sampling of random graphs) [157].

2.12 Surrogate-assisted network analysis

To assess if observed network characteristics are relevant and reflect true functionally meaningful
properties of the underlying network topology or whether they are caused by random processes
and simple mechanistic effects that stem mainly from very basic topological properties, like
the degree sequence or edge density, surrogate-assisted analysis [223, 224, 132, 209] has to be
performed. Central to surrogate-assisted analysis approaches is the utilization of topological

information obtained from appropriate null model network ensembles (see also section 2.11.1).
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Essentially, surrogate-assisted analysis looks whether null model networks can generate the same
patterns and characteristics that were observed in the empirical networks. After generation
of a large sample of hundreds or thousands of null model adjacency matrices, the patterns
that each of them contains have to be quantified with the network characteristics of interest.
The obtained null model network characteristics can be used in several ways. A common
approach is to normalize the values of real-world network characteristics relative to the null
model ensemble, i.e. by dividing the real-world network characteristics with their mean value
in the null model ensemble [224, 225]. Obviously, this ratio is larger than one if a topological
characteristic is larger and more pronounced in the real-world networks as compared to its
surrogate counterparts. Another approach consists in obtaining the distribution of the network
characteristic under the null model to calculate p-values for assessing statistical significance
(see also section 3.1.3).

Surrogate-assisted analysis might be influenced by network size effects. In particular, simple
randomization schemes for large networks potentially yield null model network ensembles
whose topology will almost always be deviating significantly from the associated real-world

networks, causing the underlying null hypothesis to be rejected regardless of the data [207].
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Chapter 3

Contributions to network science
methods and the multi-level
analysis of functional brain

networks

OR the purposes of my research on the analysis of functional network data I developed a
F network toolbox in the form of several R packages and additional Matlab code. In this
chapter I present my methodological contributions to the multi-level analysis of functional
brain networks. They are roughly illustrated in figure 1.1, left column, and consist of (1)
development of analysis concepts by combining state-of-the-art methods, (2) complementation
of these concepts by own application-tailored approaches, (3) conduction of the network
analysis parts of application studies and (4) visualization of the results. To provide additional
context for the topics of this chapter, I begin with an overview that relates my methodological
developments to the scientific problems and the processing steps of the application studies,

which are then presented in the following chapters.

Section 3.1, “Motif detection in samples of binary directed networks with pairwise differ-
ent node labels”: The presented method is an extension of classical network motif analysis. It
accounts for the case of network samples and it includes pairwise different node labels into
the definition of a motif. This method was applied in a study of functional brain connectivity

in patients with major depression vs. a healthy control group during neural processing of
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painful electrical stimuli, where characteristic patterns of functional interactions were to be
identified and compared among groups. For this data my analytical approach for assigning
subnetwork significance enables a fast discrimination between functional networks of both
groups, whereas my network randomization-based approach enables a more precise resolution
of sample-specific network motifs. The involved processing steps are illustrated in figure 3.1a

and the corresponding methodological application study is presented in chapter 4 on page 84.

Section 3.2, “Cost optimal matching of module affiliation labels and a fuzzy matching ex-
tension”: Module structure analyses in network samples leads to the problem of matching
module affilition labels of nodes among different network partitions, so that similar modules
will have the same assigned labels (identities). The presented algorithms solve this problem
by exploiting module similarity to perform cost-optimal assignments. They were used in all

studies in which module structure was identified. They are presented in chapters 6 and 7.

A concept that combines state-of-the-art techniques for the network sample-specific analysis
of weighted edge-complete networks was devised. It entails quantification of topological
characteristics with relevance for the clinical research question (weighted clustering coeffi-
cients, average node strength, characteristic path length; see also sections 2.7.1 and 2.7.3)
and surrogate-assisted statistical analysis of the results, which is often not reported in the
literature on network analysis (see also section 2.12). This network analysis concept was used
to investigate whether an expected reconfiguration of functional brain network topology in
response to medical treatment (lithium therapy) took place in HIV-infected subjects with
diagnosed cognitive impairment. The application study is presented in chapter 5 and the

corresponding methodological overview is shown in figure 3.1b.

Section 3.3, “Comprehensive analysis of module structure quality”: A comprehensive module
structure analysis concept was developed that goes beyond the typical analysis schemes re-
ported in the literature. I combined several different popular network module identification
algorithms (e. g. algorithm of Blondel et al. , Infomap, Potts spin glass-based algorithm, leading
eigenvector algorithms) for unweighted networks with many different kinds of measures of
module structure quality, similarity and preservation (e. g. modularity, variation of information,
intra-module edge pattern edit distance, Rand index, ‘split-join’ distance). This analysis

framework was assembled for the purpose of evaluating the effects of the new large scale
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Figure 3.1 — Flow chart of the data processing steps and results for two applica-
tion studies. Data acquisition and connectivity analysis (gray rectangles) were performed
by others. (a) Motif detection in network samples with node labels (chapter 4). (b) Charac-
terization of network sample topology (chapter 5).
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Figure 3.2 — Flow chart of the data processing steps and results for two applica-
tion studies. Data acquisition and connectivity analysis (gray rectangles) were performed
by others. (a) Module structure detection and quality analysis in 1sGCI functional brain
networks (chapter 6). (b) Dynamic module structure analysis (chapter 7).
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Granger (IsGCI) approach (see also appendix B.1.1) on network edge patterns. This approach
enables the computation of spatially very highly resolved functional interactions at the cost
of an information loss with respect to the underlying interaction patterns. Thereby, the
general problem of quantifying the effects of edge pattern alterations was shifted to the
quantification of module structure quality and preservation. For this evaluation an extensive
simulation study using ground truth networks with known module structure was performed.
Within this framework, it was my task to design the needed network simulation tools, which
are presented in section 3.4. Furthermore, module structure and the associated functional
segmentation was identified in spatially highly resolved functional brain networks that were
obtained from resting state' fMRI recordings using the 1sGCI approach. The flow chart for
the respective study is shown in figure 3.2a and the study is presented in chapter 6 on page 103.

Section 3.4, “Simulating networks with pre-defined module structure”: The presented al-
gorithm simulates networks with ground truth module structure. The resulting networks
possess a constrained topology so that they can be used for the simulation of MVAR time
series (see also appendix B.2). The parametrization of the simulation allows to tune several
quality characteristics of the module structure. Therefore, the algorithm could also be used
to generate benchmark networks for testing module structure identification algorithms. The

algorithm was used for the study presented in chapter 6 on page 103.

Section 3.5, “Computing edge weight thresholds using a multi-objective optimization approach”:
Defining optimal edge weight thresholds to filter potentially spurious interactions and to
binarize networks is still an open research problem. The presented approach allows to com-
pute thresholds so that the resulting non-complete binary or weighted networks exhibit their
most strongly marked module structure. The algorithm was applied in the application study

presented in chapter 7 on page 129.

Section 3.6, “Extraction and visualization of time evolving module stucture”: For success-
ful dynamic module structure extraction several available methods were combined with my
own approaches. The clinical background of the corresponding application study were EEG
recordings of subjects during a single-leg balancing task on a initially stable surface that

abruptly becomes unstable. From these EEG recordings time-variant connectivity networks

'Studies have shown that, unexpectedly, spontaneous brain activity at rest is not idle or unstructured,
e.g. [226, 227]. Instead, the activity of functionally related brain regions at rest is organized and correlated.
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were computed using time-variant dDTF (see also appendix B.1.3). The execution of cognitive
tasks is associated with time-varying changes of the functional connectivity structure. Thus,
the working hypothesis of this study is that dynamic module structure in functional brain
networks reflects the neural processing during optimization of balance control. The data
analysis concept entails my method for network thresholding (section 3.5), module structure
detection in weighted networks, my cost optimal module label matching approach (section
3.2) and visualization of the results using Sankey diagrams that illustrate the ‘flow’ of nodes
through the modules. The network analysis concept was extensively evaluated and continually
modified to cope with the noisy nature of the data and to reveal their underlying patterns.
The concept-related flow chart is represented in figure 3.2b. The application study is presented
in chapter 7.

In the following sections I describe my network analysis methods in more detail.

3.1 Motif detection in samples of binary directed networks

with pairwise different node labels

Analysis of complex systems is most commonly performed on single network instances of
the investigated system, which can be problematic as isolated instances are usually not rep-
resentative of the system itself. To take account of this situation I present an extension
of the standard approach for network motif detection in single, directed networks without
node labeling to the case of a sample of directed networks with pairwise different node labels.
A network sample is obtained by pooling functional brain networks of a group of related
subjects, e. g. a group of patients with a similar manifestation of a neural disease and similar
medical treatment regime, or a control group (cf. illustration of processing steps in figure
3.1a). All sample element networks consist of the same set of nodes. The involved statistical
tests are adjusted to assign significance to subnetwork counts derived from the entire network
sample. In addition, my methodological extension does not discard but rather preserve the
functionally important topological information associated with the node labels. This network
decomposition procedure can be seen as a way to filter intricate network topology by omitting
less important substructures with the resulting motifs being a distinguishing characteristic to

reveal sample-specific differences in network topology.
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Dealing with samples of directed networks with identical pairwise different node labeling,
given by e.g. EEG recording sites, instead of single networks without such labeling imposes
certain constraints on network motif detection. Given a pairwise different node labeling, two
subnetworks are identical if and only if they consist of the same subset of labeled nodes and if
they share the exact same set of directed edges (with labeled tail and head nodes) as opposed to
only sharing their patterns of interconnections. As a consequence, the problem of determining
graph isomorphism for subnetworks does not have to be addressed and topological equivalence
classes of isomorphic subnetworks do not exist. The situation is completely different for
networks without node labeling, where equivalence classes for isomorphic subnetworks exist
(see also section 2.7.2). The existence of node labeling also means each subnetwork can occur
at most only once in a single sample element network, which affects the statistical analysis
of subnetwork occurrences. It is not possible to assign statistical significance to subnetwork
counts in a single network or in very small samples of networks. Consequently, motif detection
in a sufficiently large sample of networks constitutes not only a novel approach to reveal
common topological characteristics of all sample element networks but is also a necessity.

In order to deal with network samples and to incorporate the information of the node
labeling, i. e. the recording sites, into the network decompostion approach one has to extend
the original notion of network motifs [101, 109] to define the special case of network motifs of
a sample of directed networks with pairwise different node labeling. In this context, network
motifs are defined as small connected subnetworks which differ in their set of edges, as opposed
to differ in their patterns of interconnections only, which appear in their sample of networks
significantly more often than in random networks according to a suitable random graph
model. In this way the node labeling is taken into account that yields not only an advantage
with respect to the computational complexity of motif detection but also has the important
advantage of conserving the positional information of motifs in the network. This positional
information is associated with underlying neural processes and is therefore important for
a subsequent functional interpretation of the results. If node labeling is discarded or not
available, as in standard motif detection, then the only information obtained from motifs
in the absence of localization is about the existence and the type of significant patterns of

directed influences between nodes.

Detecting sample-specific and node labeled network motifs encompasses the following steps.

1. Exhaustive enumeration of subnetworks of a certain size in all sample element networks.

99



CHAPTER 3. CONTRIBUTIONS TO NETWORK SCIENCE METHODS AND THE MULTI-LEVEL ANALYSIS OF
FUNCTIONAL BRAIN NETWORKS

2. Identifying subnetworks that have a statistically significant occurrences in the network
sample using either a fast analytical approach or an approach based on extensive and
computationally expensive null model network simulations. The analytical approach
save considerable computation time since no random network ensembles have to be
generated and no subnetwork counts have to be obtained from them. The alternative

approach on the other hand yields a more realistic null model than the analytic one.

The following descriptions of the motif detection steps are taken from my publications on

sample-specific network motifs [97, 156].

3.1.1 Exhaustive enumeration of subnetworks

Let D = (Dy,...,D;,) be a sample of n node-labeled directed networks Dy = (V, &) all
having the same set of nodes V with pairwise different labels and a specific set & of directed
edges. A* denotes the adjacency matrix that represents network Dj. The first step in our
approach is to explicitly enumerate all subnetworks S of a certain size Ng > 2 in every network
Dy.. Thereby, for each sample network Dy every combination of Ng nodes is investigated to
determine whether a connected subnetwork is induced by it in Dj. This exhaustive enumeration
technique is computationally tractable for small to medium sized networks, e.g. the ones
encountered in the computational neuroscience setting of EEG-derived network analysis, where
128-channel caps or 256-channel caps for recording the EEG represent typical upper bounds.
EEG-derived functional brain networks are usually much smaller than these numbers of nodes.
Alternatively, for larger networks and lower edge densities, subnetwork sampling algorithms
can be used instead of exhaustive enumeration (see also section 2.7.2). Subsequently, the
number of occurrences of each induced subnetwork over the entire sample is counted. Based

on these subnetwork counts statistical significance is assigned to subnetworks.

3.1.2 Analytical approach to determine subnetwork significance

To identify subnetworks with statistically significant counts in an investigated network sample,
the counts have to be contrasted with the counts obtained in corresponding random networks,
i.e. in absence of any functional constraints on the network topology. For it, a null model has
to be specified, which entails what ‘randomness’ with respect to edge patterns exactly means.
For a sufficiently large sample of node-labeled binary directed networks a suitable null model

can be derived as follows.
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Let 0 < |&| < N(N — 1) be the number of edges of the directed network Dy, and let

q:;'N(Nl—l)Z’gk’ (3.1)
k=1

0

be the normalized mean number of edges of the sample D. Then, the i.i.d. variables Alj,

1<i#j <N, with

P(A)=1)=q, (3.2)

P(A)=0)=1-q, (3.3)
describe a random network DY = (v, 50) with a mean number of edges ¢ N(N — 1). It provides
the basis of the null model. Let S be an arbitrary subnetwork with at least Ng > 2 nodes of
the set V and ng edges. Obviously, the subnetwork S can exhibit at most ng,,,, = Ns(Ns—1)
edges. The count of S in the sample D is considered, where it can occur at most once in a
sample network Dy. Since all sample networks Dy, are associated with the same null model,
the count of subnetwork § in the sample D is binomially distributed under the null model
with B (n, ¢S - (1 — q)"Smaz~"5). Finally, all subnetworks of a certain size Ng are tested
with respect to a significant overrepresentation in the sample. Thus, an alpha-adjustment
has to be applied. In the present study, generally the Bonferroni-Holm correction [59] with
a multiple significance level of &« = 0.05 was adopted for all multiple test procedures to
conservatively control the familywise error rate for all hypotheses at « in the strong sense
instead of controlling the expected proportion of incorrectly rejected null hypotheses (false
discovery rate [60]).

The time complexity of the associated computations is comparably low, since no simulations
of large ensembles of random networks are involved and consequently no subnetwork counts
have to be obtained from them. As a downside, the null model that is used for contrasting
the network data is somewhat simple. This is the starting point of another approach that, in
return for greatly increased computational costs, offers a much more realistic null model for

the investigated network data. It is presented in the following.
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3.1.3 Network randomization-based approach to determine subnetwork sig-

nificance

Similar to classic motif detection in single networks the Markov chain Monte Carlo (MCMC)
network randomization approach that preserves the in-degree and out-degree sequences of an
input network is applied to each network of the investigated network sample (see also sections
2.11.2 and 2.7.2). Determination of suitable randomization parameter values often seems to be
overlooked in the literature on motif detection, where the choice of parameters is usually not
specified or not justified [156]. Contrary to this, the presented randomization-based approach
includes a parameter determination step [156]. In particular, no a-priori bound exists for the
mixing time of the underlying Markov chain [212]. The ‘mixing’ parameter €2, which determines
the number of edge swap attempts as 2 - |€|, has to be chosen to ensure sufficiently uniform
generation (sampling) of every directed network with prescribed in-degree and out-degree
sequences. Often values of €2 around 100 are described in the literature. Also, the choice of
the size of the random network ensemble, given by the number of random realizations b* for
every sample element network, is important. On one hand it should be as small as possible to
save computational resources, and on the other hand the random network ensemble has to
be large enough to ensure that the distribution of relative subnetwork frequencies in these
random networks is likely to differ only within sufficiently small bounds from a distribution
obtained by generating a larger number of realizations. Often just 100 or 1000 random network
realizations were reported, but sometimes up to 10000 random networks were used, but not
much justification was given for any choice [156]. Here, both quantities are determined more
accurately with regard to the investigated network sample data.

For large network samples it is unfeasible from a computational cost point of view to
determine (2 for each sample element network separately. Thus, one sample element network is
identified that is representative of all other analyzed networks of its sample with respect to the
property preserved during randomization, namely the in-degree and out-degree sequence. One
way to identify the representative network is to calculate the mean in-degree and out-degree
sequence of the network sample and to select the network whose degree sequences have minimal
distance to it, according to the maximum norm. With the representative network a large
range of {2 values is analyzed with respect to their effect on uniform network sampling by the
MCMC edge-switching algorithm. The idea is to use the exact chi-squared goodness-of-fit test
to investigate the evidence against the null hypothesis of a uniform generation of networks for

the preselected €2 values. For it, the number of all networks with the degree sequence of the
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representative networks needs to be known. This number cannot be calculated analytically,
hence, it has to be obtained by simulations. Due to the time complexity of the simulations
and the large number of network instances with a given degree sequence, often only an
approximation, i.e. a good lower bound, of the number of networks with the degree sequence
of the representative network can be obtained. To obtain this lower bound and to perform the
chi-squared goodness-of-fit test, a large number of randomized instances of the representative
network have to be generated using the edge-switching algorithm with different values of €.
The results of the independent simulations are then pooled together, since for different €2
the MCMC algorithm is likely to sample networks with prescribed degree sequences from
different regions in the network configuration space. After detecting and removing all duplicate
networks from the generated union set, a lower bound for the number of networks with the
same degree sequences as the representative network is given by the cardinality of the resulting
set of unique networks. The sampling distribution of the corresponding test statistic under Hy
is determined by means of Monte Carlo simulations. The smallest €2 for which the test statistic
falls below the (1 — «)-quantile is selected. Otherwise, if it exceeds the (1 — a))-quantile for
all Q) the edge-switching algorithm does not uniformly sample networks with the same given
prescribed degree sequences for any 2. In this case, one has to use the 2 for the randomization
for which the test statistic is minimal. In addition to identifying the value of the ‘mixing’
parameter €2, the number of random realizations b* for all sample element networks required
for a reliable detection of motifs is determined. This procedure starts by generating an upper
bound B of bootstrap network samples using the MCMC edge-switching algorithm, where
each bootstrap network sample consists of one randomized instance of each input sample
element network. Based on these bootstrap network samples, a reference distribution RiB of
relative subnetwork frequencies is calculated by enumeration of all interesting node-labeled
directed subnetworks S;. The reference distribution is then compared to distributions R};
obtained in the same way from lower numbers b of bootstrap network samples. R}; is accepted
to be sufficiently close to R if it holds &, = max; |Rf, — ’B| < ¢ for an arbitrary fixed £ > 0.
Finally, b* is defined by b* = miny(Vk > b : 0 < €). By implication, if no such b* exists
the upper bound B of bootstrap network samples was chosen too low and more bootstrap

networks have to be generated to augment the set of randomized networks and to increase B.

Statistical significance is assigned to subnetwork counts that have been obtained from the

input network sample using the b* random realizations of every sample element network’s
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degree sequences. Relative subnetwork frequencies in each of the b* bootstrap network samples
were already obtained in the preceding step for the computation of distributions Rli). Relative
subnetwork frequencies are used to compute p-values for the corresponding subnetwork counts
in the input network sample. As for the analytical approach presented in section 3.1.2 various
subnetworks are tested with respect to a significant overrepresentation in the sample, which
makes an alpha-adjustment necessary. Again, the conservative Bonferroni-Holm correction [59]
with a multiple significance level of & = 0.05 might be applied. Subnetworks with statistically
significant counts in the input network sample are network sample-specific motifs with pairwise

different node labels, i. e. locatable characeristic topological patterns of the network sample.

3.1.4 Filtering motifs

Depending on the number of different investigated network samples, their cardinality and
the size of the networks they contain, a large number of subnetworks are enumerated, some
of which are potential motifs. A simple data reduction technique is needed to reduce the
number of subgraphs to be evaluated. For example, one might focus the further evaluation on
3-node node subnetworks that occur in at least one of the investigated network samples at
least a given minimum number of times, because these subnetworks would represent the most
promising candidates for network motifs. Typically, such a restriction would dramatically
decrease the number of 3-node subnetworks from several thousands to just a few hundred
that have to be further analyzed with respect to an overrepresentation in the input network
samples by comparison with their counts or their probability in null model network ensembles
[156].

It is also advised to filter identified motifs so that only ‘interesting’ motifs are finally
interpreted. Filtering motifs might be achieved by considering only those motifs whose
occurrence is either sample-specific or which occur often in most samples of functional

connectivity networks.

3.2 Cost optimal matching of module affiliation labels and a
fuzzy matching extension
A problem often encountered when working with network modules in different networks of a

network sample consists in dealing with mismatched module labels. Due to the randomized

nature of network module detection algorithms, different module labels might be assigned
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to similar or identical modules across distinct networks, which complicates analyses and
graphical representation of module structure and its changes. An example of such a situation is
illustrated in figure 3.3. Module labels had to be matched in the application studies presented
in chapters 6 and 7. The corresponding methodological overview of both studies is shown in

figures 3.2a and 3.2b.

Following, I present three module label matching algorithms that are based on the clas-
sical two-dimensional (n:n)-assignment problem with quadratic cost matrix® [228] and the
unbalanced assignment problem with rectangular cost matrix, where two sets of entities with
different cardinality have to be matched in a cost optimal way [229, 230]. In both assign-
ment problems an injective, one-to-one assignment of “workers” (i.e. modules in one network
partition #24) to “tasks” (i.e. modules in another network partition #p) with minimal sum
of assigned costs is sought. Thus, for the unbalanced assignment problem, the number of
matchings is determined by the smaller set of either “workers” or “tasks”. A schematic overview

of assignment problems can be found in a publication I had co-authored [231].

Formally, this kind of considered assignment problem is given by a set W containing p
elements, a set T' containing ¢ elements, with p < ¢ and a p x g cost matrix C where C(%, j)
is the cost of assigning element i of W to element j of T' [229, 230]. An assignment can be
interpreted as a permutation of a p-element subset of T, such that element ¢ of W gets assigned

the ith element of that permutation. To solve the assigment problem, the objective is to

2The classical assignment problem is mathematically identical to the weighted bipartite matching problem
from graph theory.
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Figure 3.3 — Example of the module label matching problem. A typical situation is
illustrated using three different fMRI-based networks of a network sample for which module
structure was identified (see also chapter 6). (a) Unmatched, originally obtained module
affiliations of nodes (voxels) are projected to their respective fMRI slice voxel mask. Modules
with a large overlap in voxel locations have different assigned module labels (colors) among
the three networks (frontal and occipital regions). For subsequent module structure analysis
and to improve the visual representation a matching of module labels across the three
networks has to be performed. With the methods described in this section, module label
matching can be accomplished automatically with little computational costs even for large
network samples. (b) Unmatched module affiliations in the corresponding network layouts.
(c) Matched module affiliations shown using the voxel mask. The matching was performed
using fuzzy matching with a threshold of 0.15. (d) Matched module affiliations shown in the
corresponding network layouts.
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P4
minimize Z Z C(i,7)xs (3.4)

i=1j=1

subject to constraints

Tij € {0’ 1}7 (V Z?]) (37)

In equation (3.7) z;; is an indicator variable for the assignment of element W; to element T}.
Each element of W is assigned to exactly one element of T' (equ. 3.6). Each element of T is
assigned to at most one element of W, i.e. each “task” cannot be assigned to more than one
“worker” (equ. 3.5).

A function for solving these two kinds of assignment problems is part of my R packages
that constitute my network analysis toolbox. The resulting linear programs are solved using

an R interface to the popular mixed integer linear programming solver IpSolve [232].

I developed the following algorithms to compute cost optimal module label matchings across
networks of a network sample. As primary input parameter they accept a matrix of node
module affiliations for at least two different networks with the same number of nodes.

The first step in the procedures is selecting the network partition with the maximum
number of modules as a reference against which the module affiliations of all other networks
are being matched separately. Then all pairs of modules of the reference partition and each
non-reference partition are compared systematically to compute a cost matrix C for every
single reference partition—mnon-reference partition comparison. The entries of C contain the
costs of matching all pairwise combinations of reference network modules and the modules of
the respective non-reference partition. In detail, this cost matrix C' is defined as the difference

between the number of network nodes and the cardinality of the intersection of member nodes
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of each considered module pair®. Consequently, the costs for matching a reference network
module label to a pair of reference—non-reference network modules are decreasing with an
increasingly larger overlap of module member nodes. Using this cost matrix, the assignment
problem is solved. According to the solution obtained, module labels of each non-reference

network partition are changed to the assigned module labels of the reference network partition.

Despite the cost optimal nature of this module label matching algorithm, in practice sit-
uations can and do arise in which the used module detection algorithm returns conflicting
module labels for different networks that cannot be plausibly matched. After making good low-
cost assignments, the matching algorithm ultimately has to assign the remaining non-reference
modules to the remaining modules of the reference partition even though their member node
sets are very different. A further complication arises if the number of modules differs between
the reference partition and a non-reference partition or between different non-reference parti-
tions. Since in this situation not all modules can be matched, modules of different partitions
automatically appear to be merged, splitted or non-existent and the resulting module label
matching across such a network sample cannot be unequivocal. Since nodes in functional
brain networks are associated with unique identity labels (e.g. EEG electrode identifiers or
voxel positions), module structure of several networks should be interpreted with respect to
the spatial information of nodes and their location in the network, while the colors associated
to the modules are acting merely as a guide. By way of illustration, figure 3.4 (a) shows an
example situation where module labels in three different network partitions are difficult to
match. In this figure the module label matching results of the cost optimal matching algorithm
described above is shown in figure 3.4 (b). Panel (c) shows the results for an improved version

of the label matching algorithm, which is described below.

Two further improvements of the cost optimal module label matching algorithm were imple-
mented. The first improvement concerns the handling of low-quality assignments. In a sort
of ‘fuzzy’ matching extension, a non-reference network module is compared to the reference
network module to which it is assigned by the standard approach. If their similarity is below a
(user-defined) matching threshold 6, the label of the corresponding reference network module
is not assigned and instead, under the assumption of the novelty of the module and its

composition of nodes, a new label (and thus a new color), which is not already in use in the

3An equally good choice for the cost function would be the Jaccard distance (section 2.10 on page 40), which
can be seen as a normalized version of the cost function described in the text (cf. [172]).
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(c) Cost-optimized label matching subject to module similarity constraints.

Figure 3.4 — Module label matchings obtained by two different algorithms. Three
different network instances of the same size (|V| = 9, presented as EEG electrodes) with very
different, constructed module affiliations are shown. The first network, which was partitioned
into four modules, was automatically selected as the reference for matching module labels.
The module affiliations of the reference partition are not changed. (a) The conflicting original,
unmatched module labels, as they could have been returned by a module detection algorithm.
(b) Results of the cost optimal label matching algorithm that solves the assignment problem
and strictly applies the resulting label matches. For the 2nd network, the @ module is
correctly changed to the ® one, since for this choice the overlap of member nodes (3 nodes)
is the largest (the overlap with @ is only 2 nodes). The label matching for the 3rd network is
also algorithmically correct, but it is ambiguous and implausible. The original ® module
could have been equally well matched to the @ reference module and the original ® module to
either the @ or @ reference module. (c) Results of the “fuzzy” label matching algorithm that
solves the assignment problem, but actually assigns reference module labels to non-reference
network modules only if the matched module pairs have at least a minimum user-specified
similarity to each other. Implausible, low-similarity matchings of spatially distinct modules
are not performed and instead new module labels are assigned. Consequently, the original
® module of the 2nd network becomes @ and the original ® module of the 3rd network
becomes ®. Although being dissimilar to all reference modules, the original ® module of
the 3rd network does not get assigned a new identity, because this module label is already
unique among all three networks.
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network sample, is allocated. The new color might be selected in a way that similar modules,
e.g. two related modules that occured as the result of a splitting event of a larger module,
are assigned similar colors, i.e. by adjusting the hue or opacity. If on the other hand their
similarity exceeds the matching threshold 6, the non-reference network module gets assigned
the label of the matching reference network module, as before. The similarity of a pair of
modules and their member nodes might be measured in terms of the relative overlap of module
member nodes [233]. This is calculated using the Jaccard coefficient (section 2.10 on page 40)

which can be reformulated for dealing with sets as

_ ’VMz N VMk|

(3.8)

Clearly, the parameter 6 has a big influence on the results of this matching strategy, as
a trade-off between eliminating poorly fitting matches and an excessively colored, diffuse
module structure has to be made, in particular if large network samples are considered.
Illustrative module label matching results of the improved cost optimal matching algorithm

are shown in figure 3.4 (c).

Another improvement of the module label matching strategy is concerned with an addi-
tional matching of the low quality assignments that were identified by the ‘fuzzy’ matching
approach. As explained above, these low quality assignments were too dissimilar to any
reference network module and as a result they were not actually matched to any reference
module, but were assigned a completely new label instead. Since modules of non-reference
network partitions are matched separately to the module structure of the reference partition,
it is possible that modules with very similar member node composition got assigned different
unique labels across the network sample. Thus, the problem that the second improvement
solves consists in a re-matching of these unmatched modules (that got new labels) across the
non-reference partitions by pairwise comparisons of module similarity, using equ. 3.8 as before,
in an attempt to further reduce the number of unique labels in the network sample, which

improves subsequent module structure analyses.

The presented module label matching algorithms have internal logic for dealing with certain

special cases that might occur, for example module labels are not consecutive integers starting
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with 1 (i.e. input module labels are allowed to have gaps), all input module affiliations consist
of the same module label, or each network’s community affiliation vector has only one module
label. The fuzzy matching algorithms also contains code for intelligently managing the reuse
of already existing module labels for non-matchable modules in special cases. Further im-
provements of the module label matchings might be obtained by a more sophisticated strategy
for selecting the reference network partition, as the choice of the reference partition plays a

role for generating plausible module label assignments across different networks.

3.3 Comprehensive analysis of module structure quality

The development of a data analysis concept that is specific to the context of the data is
in many cases not possible without the use and integration of established and time-proven
concepts and methods, i. e. a sophisticated application-tailored combination and modification
of established methods often creates innovations. Following this line of thought, I extend
the frequently used somewhat simple analyses of identified module structure quality and
similarity by combining a vast number of measures of different scope: module quality and
resemblance measures based on exploiting features of network topology in association with
measures comparing the module membership assignments of nodes and information theoretic
measures (e.g. modularity, variation of information, intra-module edge pattern edit distance,
Rand index, ‘split-join’ distance). This concept enables the comparative analysis of network
module structure quality and preservation. This strategy proved to be useful for evaluating a
new Granger Causality approach of my institute (IsGCI, see also appendix B.1.1) that makes it
possible to compute directed interactions in spatially very high-resolved fMRI brain recordings.
The network-based analysis of the effects of 1sGCI on connectivity patterns and the resulting
recoverability of module structure is the main topic of chapter 6 on page 103. The selected
measures, which were used in combination for pairwise comparisons of network partitions of
ground truth networks and corresponding IsGCI networks are listed and described in section

2.10. The flow chart for the corresponding application studies is shown in figure 3.2a.

3.4 Simulating networks with pre-defined module structure

The following algorithm simulates unsymmetrical binary random adjacency matrices with
edge patterns that link nodes to form a pre-defined non-overlapping module structure, where

the module structure quality and definiteness is adjusted by several parameter settings. The
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corresponding edge-directed ground truth networks can be used as benchmark to evaluate the
performance of community detection algorithms or to control whether network visualization
methods are able to separate single modules in the layout of the network structure. In one
application study (chapter 6, cf. overview in figure 3.2a) simulated ground truth networks
with pre-defined module structure were used for the analysis of the adverse effects the 1sGCI
approach (see also appendix B.1.1) has on network topology and how the associated alterations
of edge patterns impact the recoverability of module structure. The data basis for this analysis
was a set of realized first order MVAR processes that were simulated on the basis of constructed

ground truth networks (see also appendix B.2).

Each edge-directed ground truth network consists of a specified number of N nodes, where N
is a multiple of 25. The generated networks can be partitioned naturally into non-overlapping
modules restricted to consist between 10 to 15 nodes each. The number of modules scales
with the network size, so that for every increase of 25 nodes two additional modules are build
into the network topology. Thereby, the size of each module is chosen randomly, such that the
sum of all module sizes equals N. Nodes are selected and accordingly assigned membership
to the modules. Pairs of nodes are then linked by edges placed uniformly at random under
constraints that define the module structure, using separate probabilities for intra-module
edges (“internal”, p;,;) and inter-module edges (“external”, pe,;) that have to be specified as
parameters of the algorithm. Clearly, the larger the ratio pjn¢/pest > 1, the more pronounced is
the network module structure. Optionally, the algorithm allows to specify global restrictions on
the column sums (in-degrees) of the generated adjacency matrix. Incorporating this constraint
in the network simulation might become necessary due to technical reasons in the case of
using the generated adjacency matrices for MVAR time series simulation as described in B.2.
For each node the network size determines its number of possible inter-module interaction
partners. Thus, if the column sums are constrained, the probability of directed inter-module
edges pest depends on the network size so that the constraint on the column sums holds
true: To account for outlier nodes that have an above average number of intra-module and
inter-module edges that would violate the column sum constraint, each node is allowed to
have, on average, three edges to and from nodes of different modules. Consequently, the
algorithm sets the probability of directed inter-module edges to peys = 3/(N — 15). Outlier
nodes are likely to occur in synthetic networks with large N, and networks of size N >= 500

can already be difficult to generate otherwise. Moreover, additional conditions on minimum
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intra-module (k ) in- and out-degrees have to
hold true so that the resulting module structure is more clear-cut, while the modules remain
connected. By means of specifying these four parameters, nodes are bound to maintain a given
minimum number of edges to and from member nodes of their own module, while their number
of interactions with nodes of other modules must not exceed a maximum number of edges in
each of both directions. Clearly, the constraints on internal and external degrees do not entail
a determination of specific connection patterns between nodes. To make the computations
involved much more tractable, the network simulation problem is being split into simulating
intra-module edge patterns that satisfy the constraints on intra-module node degrees separately
from the simulation of eligible inter-module edges. In each of the two parts of the simulation,
edge patterns are constructed a module at a time. Only if the constraints on the node degrees
hold, the algorithm proceeds with generating the next module’s intra-module or, respectively,
inter-module edge patterns. Otherwise, the algorithm keeps on restarting the simulation of the
current module’s edge patterns until an upper bound of iterations (e.g. 10,000) is reached and
the algorithm terminates without success. If the simulation of intra-module and inter-module
edges eventually succeeds, their corresponding adjacency matrices are combined to yield a
ground truth network as the algorithm’s output.

The computational costs of the simulation increase strongly with network size N, as the
aforementioned constraints, which strongly limit the space of allowed network configurations,
become increasingly harder to satisfy. In fact, during the simulation a large number of attempts
to generate a network under the given topological constraints have to be discarded and the
process has to be started all over again. Finally, the adjacency matrices of both separate
simulations are then combined to yield a network with ground truth module structure. If
potential additional contraints on column sums are satisfied, the algorithm terminates and
returns the network. Unfortunately, in many cases the deployment of long compute times to
construct a network having a correct degree sequence is in vain and the process has to be
repeated, as the network will have (a few) columns for which the column sum constraint will be
unsatisfied. In particular for large values of NV, I found that setting all input paramter values

of the algorithm is not straightforward, as their values have to be balanced in a delicate way

to make the conjunction of all topological constraints and the column sum constraint satisfiable.

It is straightforward to extend the algorithm and to devise a second variant of this al-
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gorithm that slightly varies the parameters pin¢, Pext, nfzt, K to yield a
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greater diversification of the resulting networks. In detail, the user-specified probabilities
for internal and external edges might be changed by drawing from normal distributions, e.g.
Pint = N (Dint,0.03%) and pezt = N (Pest, 0.0012), respectively. Also, similar to LFR benchmark
graphs [234] a power law distribution could be used instead. Similarly, the user-specified
minimum intra-module and maximum inter-module node degrees are changed by drawing from
normal distributions with the mean being the user-specified parameter value and a certain
variance, e.g. 0.45%. Of course, the empirically-derived parameterization of these probability
distributions doesn’t have to be fixed, as the variances constitute additional input parameters

of the simulation algorithm.

Depending on the size of the generated networks, the satisfaction of the maximum col-
umn sum constraint for all nodes, as required for the autoregressive parameters of the MVAR
time series simulation (see also B.2 on page 150), requires careful fine-tuning of all other
network simulation parameters to a narrow range of combined values, which results in ground
truth networks with a topology that potentially makes uncovering their module structure
challenging. Example ground truth networks are shown in figures 6.2a and 6.7a.

As already explained, the presented algorithm was specifically designed to account for
the requirements of MVAR time series simulation while still incorporating many parameters
that define the notion of module structure, i.e. it is possible to tune the resulting module
structure in many different ways. Therefore, it is similarly powerful as the LFR benchmark
and more powerful than the classic and commonly used planted I-partition model [235], which
constructs [ modules of identical size using a fixed probability for intra-module edges and a

fixed probability for inter-module edges.

3.5 Computing edge weight thresholds using a multi-objective

optimization approach

Thresholding edges of a network is a common processing step in the network analysis pipeline
to remove spurious interactions, to yield edge non-complete networks and to dichotomize
weighted networks for the application of binary network analysis techniques. The difficulties
and challenges of defining edge weight thresholds were already outlined in section 2.3 on
page 16. Here I describe a novel approach that I developed for the analysis of module structure

in samples of time-evolving EEG-derived functional networks (cf. overview in figure 3.2b), for
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which statistical significance tests (see also section 2.3.1) are not computationally feasible and
determining a global edge weight threshold for all networks turned out to be too inaccurate for
individual networks so that no clear and stable module structure could be uncovered. While
the following descriptions focus on the optimization of binary network module structure, the
presented approach can be used in an analog fashion for obtaining optimal thresholds with

respect to the inherent module structure of weighted edge non-complete networks.

The novel approach takes a weighted input network and computes a global network-specific
edge weight threshold for which the resulting binary (or weighted) edge non-complete network
has Pareto optimal module structure. A specified range of edge weight percentiles is consid-
ered and the corresponding edge weights are computed [236]. They serve as a threshold to
dichotomize the weighted input network. The calculations described in the following are only
performed for those resulting binary networks that are at least weakly connected. Several
topological characteristics of the resulting networks are evaluated. These networks characteris-
tics mainly give information on the network’s module structure quality (cf. 3.3 on page 71).
In particular, the modularity measure, performance measure, coverage, maximum Page Rank
and small-world-ness are computed. For it, the maximum modularity partition is found by
comparing the results of several module detection algorithms (walkTrap BU, infoMap BD,
fastGreedy BU, Louvain BD and leadingEigenvector BD, cf. 2.8 on page 31). This analysis is
repeated for each specified edge weight percentile yielding vectors containing the values of each
of the five considered network characteristics. Thereby, each network characteristic represents
an independent objective that has to be optimized. The goal of multi-objective optimization
(Pareto optimization) [237] is to find solution vectors that represent a reasonable trade-off
among different, conflicting objective functions that are optimized simultaneously. In general,
for nontrivial multi-objective optimization problems the existence of a single unique solution
that would yield an optimal value for each objective simultaneously cannot be expected. Hence,
for real-world problems, the objectives are usually at least partly conflicting. A unique vector
of different objectives is called nondominated or Pareto optimal if none of its components
(objective function values) can be further improved without deteriorating the value of at
least one of its other components. That is, there exists no other possible solution point for
which all objectives have clearly better values, i.e. at least one of the objectives has to be
improved in value, while all other objectives are at least as good. Such a nondominated

point (nondominated feasible solution, i.e. nondominated vector of objectives) is an ‘efficient
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solution’ [238] of the multi-objective optimization problem. Since the vectors of objective
function values cannot be naturally ordered in the objective space (they can only be partially
ordered), multi-objective optimization problems are in a sense ill-defined, hence all Pareto
optimal solution points can be considered as equally acceptable. That means each Pareto
optimal solution represents a different instance of the unavoidable trade-offs. Therefore, the
set of Pareto optimal vectors consists of ‘compromise solutions’ from which a final solution
has to be sorted out by a human decision maker* with problem domain expertise [239]. The
set of Pareto optimal solutions is called a Pareto front. Scalarized problems in which the
optimization of multiple objectives is transformed to a single objective optimization problem

[238] are not considered here.

Thus, a multi-objective optimization problem has the following form [237]

minimize  {fi(x), fo(x),..., fr(x)} (3.9)

subject to x € S

The k (k > 2) objective functions (criteria) f; : S — R quantify the values of the network
characteristics of interest. The decision variable vector = (x1,x2,...,z,)’ belongs to the
non-empty feasible region set S, which is the set of alternatives (feasible solutions) of the
decision problem [238]. For the problem of computing good edge weight thresholds the decision
variables are the individual edge weight percentile values or, respectively, the thresholded
binary networks that correspond to these percentiles. In this context, one has finitely many
and explicitely given alternatives. Note that multi-objective optimization problems are usually
formulated as simultaneous minimization problems, whereas in the context of this thesis the
selected network characteristics need to be maximized. Multiplication of the objectives with
—1 easily converts the maximization problem to yield an equivalent minimization problem.
The dimension k of the criterion space RF is given by the number of objective functions
f=1(f1,---, frx). Depicting f(x), the feasible set in criterion space, can help identify nondomi-
nated, Pareto optimal points [238], an example of which is given in figures 3.5a and 3.5b. For
computing edge weight thresholds, no ranking of the objectives is employed, even though it
would be a reasonable choice, for example, to rank modularity values higher than the values
of other characteristics. Such a ranking yields a weak definition of order of vectors in criterion

space.

“The decision maker might be algorithmically supported by methods of multicriteria decision aid (MCDA).
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The above given informal definition of Pareto optimality can be stated more precisely. A
decision variable vector * € S is (globally) Pareto optimal if there does not exist another
decision variable vector & € S such that f;j(x) < fi(z*), Vi =1,...,k and f;(x) < f;(x*)
for at least one index j. x* is called efficient point. An objective function vector (outcome)
=05 f ) with ff = fi(z*) is Pareto optimal if its corresponding decision variable

vector is Pareto optimal. f* is called nondominated point.

The objective values of feasible solutions in S are not known in advance and have to be
enumerated. For this reason all considered network characteristics are computed for all consid-
ered edge weight percentiles as described above. The sign of the components of the resulting
(objective function) vectors are interchanged to handle the situation that the underlying
multicriteria optimization problem is formulated in terms of a maximization problem. The
Pareto front is computed based on pairwise comparisons and nondominant sorting [240]. To
obtain a consensus, single most representative solution the centroid of the set of nondominated
objective vectors (points of the Pareto front) is computed. Finally, the nondominated point
with minimum Euclidean distance to the centroid vector is considered as the best compromise

and is returned.

Preliminary results obtained from network sequences indicate an improved module detection,
which yields more clear-cut module structures due to the network-specific edge weight thresh-
olds computed by the Pareto optimization approach. An example is shown in figures 3.5¢ -
3.5e. Pareto optimal thresholds have a clear meaning with respect to the obtained binary
network structure — these thresholds guarantee that the underlying binary network module
structure is most pronounced with respect to the evaluated module structure characteristics
(objectives). With regard to other network properties, the possibility that bias is introduced
cannot be ruled out. For a discussion of thresholding biases I refer to section 2.3 on page 16.
A strength and advantage of the presented method for computing edge weight thresholds is its
specificity to the structure of individual networks of a network sample. It might replace the
commonly used approach of explicit verification of several distinct thresholds applied to the

entire network sample at once.

For my work in network module tracking in EEG-derived functional networks (see also
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Figure 3.5 — Pareto front of module structure quality objective vectors for dif-
ferent edge weight percentile decision variables (and module structure in corre-
sponding thresholded networks). Edge weight threshold analysis was performed for an
EEG-derived functional network (dDTF interactions) [241] using the novel multicriteria
optimization method. The range of evaluated edge weight percentiles was 0.5,0.51,...,0.99.
Large percentile values starting with 0.86 were excluded by the algorithm as the underlying
binary network starts to fragment into isolated components. (a) - (b) For each remaining
percentile a sphere depicts the corresponding vector of objective values: modularity, perfor-
mance index and coverage. The red spheres indicate the Pareto front, which consists of the
nondominated objective function values that represent the set of optimal trade-offs between
network module structure quality characteristics. Finally, the nondominated objective func-
tion vector with lowest Euclidean distance to the centroid of the Pareto front was found. It
corresponded to an edge weight percentile of 0.85 and an edge weight threshold of 0.069. (c)
Network module structure of the weighted network where edges were thinned out using the
optimal Pareto front threshold (given by the 85% percentile). (d) Network module structure
of the weighted network where edges were thinned out using a Pareto front threshold (0.060,
given by the 81% percentile). (e) Network module structure of the weighted network where
edges were thinned out using an arbitrary threshold (0.055, given by the 77% percentile).
For the actual network data, with the optimal threshold one finds the split of the green
module into a red and green submodule (¢). This split is not visible with the other Pareto
front threshold (d). With the arbitrary threshold the resulting module structure has lower
quality and appears more fragmented (e). Module structure was detected with the algorithm
of Blondel et al. for edge-weighted directed networks.
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chapter 7) I also developed and applied another edge filtering approach for network module
detection, which is different from standard global thresholding. This approach aims to reverse
construct the network and shows some promising first results, too. For it, the algorithm first
sorts all edges in decreasing order with respect to their weight. Then, in this order edges
are placed back to their original position in the initially empty original node set — the edge
with largest weight is placed first, then comes the edge with the second largest weight and
so on. This process stops once the constructed network is weakly connected. The resulting
network represents the backbone of the strongest interactions of the original network. Note
that this procedure does usually not correspond to constructing a maximum spanning tree, as
the backbone network likely contains cycles. Depending on the specific spatial distribution of
edge weights in the network at hand, it is not unreasonable to expect the strongest connections
of the network being primarily situated inside modules. In practice, however, this must not
always be the case.

I included an Repp [242] function to compute the Pareto front for explicit feasible sets
based on nondominated sorting in my utility R package of the network analysis toolbox. The
function that implements the presented method for computing edge weight thresholds is part
of another one of my R packages for network analysis, as is a function that uses multicriteria
optimization in a similar fashion to find network-specific module detection algorithms that
yield the highest quality network partitions. To perform module detection in thresholded
weighted networks, a different implementation of the above described method exists, which
Pareto-optimizes weighted network module structure characteristics instead of binary ones.

Also, the weighted edge backbone function is implemented in my network analysis toolbox.

3.6 Extraction and visualization of time evolving module stuc-

ture

In many neuroscience settings, longitudinal network data can be extracted naturally from
brain recordings. Identification of structural features in time-variant sequences of networks
adds another layer of analysis for studying brain processes. This section deals with the
problem of extracting information on time-variant module structure in samples of longitudinal
networks, i.e. samples of snapshot network sequences. A snapshot network refers to the
network corresponding to a particular time step. The analysis concept presented in this section

is specifically tailord towards samples of small and high edge density EEG-derived functional
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network sequences, in which consistent time-variant module structure identification poses

additional challenges.

The work presented in this section does not aim at a direct modeling of module struc-
ture dynamics in a sequence of snapshot networks, rather, the aim is to uncover the module
structure hidden within the intricate topology of the snapshot network sequence, to visualize
this complex information and in this way to direct it to an interpretation with regard to
underlying brain activity. The dynamics of module structure changes that have to be identi-
fied and visualized is given by the ‘life cycle’ of individual modules that is briefly described
in appendix B.4. Sankey diagrams (alluvial diagrams) [159] represent a suitable means to
visualize the time evolution of module structure. In Sankey diagrams the time-varying module
memberships of nodes is displayed in the form of different amounts of node flows (ribbons)
between modules at different time steps. Example Sankey diagrams can be found in figures
7.2b and 7.2d. This graphical representation gives a good overview over long-term trends
in the module affiliations of nodes and it shows time steps with large fluctuations and rapid
reconfigurations of module structure. Sankey diagrams help to discern persistent, interesting
modules from short-lived noisy ones. In addition to the Sankey diagrams, network plots using
the EEG electrode layout delineates the spatial location of modules and their affiliated nodes.
To color-code the module representation in the Sankey diagrams, module structure has to be
matched between the considered time steps, for which I use the algorithms presented in section
3.2. This matching inherently accounts for the time evolution of module structure, i.e. the
similarity of modules at different time steps with respect to shared member nodes. Now that
the setting and the desired outcome of the analysis concept is clearly defined I describe the
pipelining of all network processing and analysis techniques required to achieve the aims.
The descriptions of the methodology follow the flow chart depicted in figure 3.2b. This
concept was successfully applied to EEG data in the application study described in chapter 7.
Once a sequence of weighted directed edge-complete networks is obtained and a time grid for
investigating snapshot networks is defined, two separate analysis approaches for identification
of time-variant module structure can be applied, each offering a different perspective on the
time evolution of network modules. The difference between both analysis approaches is given

by the way of thresholding the snapshot network sequence.

The first analysis approach is shown on the left branch of the flow chart in figure 3.2b.
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It combines empirical multiple thresholding with a pooling of all available snapshot networks
so that the edge weight thresholds corresponding to the predefined percentiles are deter-
mined with respect to the distribution of all available edge weights at all time steps (see
also section 2.3.2). Extraction of time evolving module structure is performed separately
for each obtained threshold. Crucially, the snapshot networks at each considered time step
are not soft thresholded (see also section 2.4) directly. Rather, the predefined time grid is
used to center a time window on each considered time step and to compute a consensus
network for each centered time window. In the process, a consensus network aggregates the
connectivity structure of each considered snapshot network and the surrounding networks in its
temporal neighborhood. Thereby, for each snapshot network on the time grid a given number
of snapshot networks directly preceding it and directly succeeding it in the network sequence
are selected to compute a consensus network. The consensus network is given by the median
interaction strength of each individual edge of all networks within the time window. This
processing step incorporates connectivity information in the vicinity of a given time step into
the module structure identification and in the same time it reduces the influence of random
fluctuations of interaction strengths. The consensus networks at each time step in the time
grid are used for subsequent thresholding and module structure identification. The already
obtained thresholds are then applied to soft threshold each considered consensus snapshot
network, which results in weighted directed networks with different edge densities. This way
of thresholding and aggregating connectivity information potentially makes it possible to
reveal more detailed differences in the connectivity structure of individual time grid snapshot
networks. The rationale behind it is that for many experimental settings where a stimulus
effect is considered a global increase of interaction strengths with time can be expected as a
result of the processing of the stimulus. Therefore, snapshot networks that appear early in
the network sequence are more extensively thresholded and their interaction ‘noise’ is more
strongly suppressed as compared to time grid snapshot networks that appear later in the
network sequence. The sequence of module structure reconfigurations that is obtained by the
subsequently performed module detection will most likely reflect clearer, more stable changes
and less fluctuations between time steps. Standard multiple thresholding (see also section
2.3.2) on the contrary would result in less clear module structure detection results. Since
this way of global threshold computation potentially yields disconnected networks I advise to
assign all disconnected (isolated) nodes the same separate module affiliation, which is contrary

to the default output of most module detection algorithms, which would assign these nodes
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to different separate modules. As disconnected nodes are normally being excluded from the
interpretation of the results this step greatly reduces visual clutter from the presentation of
the results. In summary, the first approach is focused on revealing module structure in single
snapshot networks with respect to the respective connectivity structure and the changing

strength of interactions over the entire network sequence.

The second analysis approach, which is shown on the right branch of the flow chart in
figure 3.2b is based on my Pareto optimization approach for computing specific thresholds
for each snapshot network (see also section 3.5). While it is possible to compute a consensus
network in a time window surrounding each considered time grid snapshot network, a consenus
module structure may be computed instead (see also chapter 2 section 2.9). Thereby, the
considered time grid snapshot networks and all surrounding networks within the time window
are soft thresholded individually using Pareto optimal thresholds. Using a weighted network
module detection algorithm, the considered snapshot network and all its surrounding networks
are partitioned into modules. The information of these separate module structures is combined
and enhanced by the consensus clustering procedure, which outputs the final module structure
at each considered time step. The second analysis approach reveals module structure in single
snapshot networks with respect to only the connectivity structure at the given time step.
After obtaining either a network partition of each consensus snapshot network or a consensus
clustering of each snapshot network, my module matching algorithms presented in section 3.2
relate the changing modules at each time step to each other. I note that it would be also
possible to use consensus clustering in combination with the global edge weight thresholds of
the first analysis approach. Alternatively, consensus networks can be computed if the Pareto
optimal thesholding is applied. The main point is that some form of aggregation and smooting
of connectivity information of networks in the temporal vicinity of each considered time step,
including the network at the time step, is likely to improve the results of module detection as
it reduces a possible high temporal variation of the identified module affiliations. However,
the presented workflow and the combinations of edge thresholding and connectivity structure
aggregation yielded the most clear and robust results for the application study in chapter
7. Stability of the obtained network partition of each snapshot network could be further
investigated with perturbation analysis [179, 243].
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Applications and results
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Chapter 4

Network sample-specific detection
of motifs with pairwise-different

node labels

HIS chapter deals with the filtering, description and comparison of the intricate topology
T of samples of node-labeled binary directed networks, which were obtained from EEG
recordings during the neural processing of painful intracutaneous electrical stimuli in patients
with major depression (MD) and healthy controls. For this task I applied both of my approaches
for network sample-specific motif detection that are presented in section 3.1. The results
of this study were reported in two different publications [97, 156]. The data generated by
this EEG experiment [244] is scientifically interesting by virtue of the not well understood
intertwined relationship between pain processing and depression.

In this respect, it is known that chronic pain and major depression are correlated since
depression is a common comorbidity of chronic pain and often chronic pain is an additional
symptom of depressed patients [245, 246]. It has been confirmed by some studies that thresh-
olds for acute painful stimulation are lower in depressed patients than in healthy controls
[247, 248], whereas other studies found the opposite, namely increased thresholds in depressed
patients [249, 250, 251, 245, 252]. The physiological basis for pain perception, pain processing
and the sensitivity to painful stimuli of depressed patients remains unclear. It is hypothesized
that in depressed patients the processing of painful stimuli in the so-called neuromatrix of

pain [253] and consequently the functional connectivity might be altered [250].
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Analysis of the intricate wiring patterns found in the functional pain processing network
samples by visual inspection and by way of qualitative description seems impossible. The
aim of the two studies is to extract insightful, clinically relevant but not readily accessible
information about elementary directed interaction patterns, i.e. motifs (see also chapter 3,
section 3.1), in both groups that can subsequently be used for group comparisons. Such a
network decomposition into motifs provides a means to simplify network structure analysis
by focussing only on functionally important substructures of the network. Unification of this
information for all networks of each investigated network sample is promising to shed light on
the basic neural activity which occurs during the processing of painful stimuli in patients with
major depression and in the healthy controls. In general, the new approach offers new ways

for studying structure—function relationships and design principles of network samples.

4.1 Data description

The following description of the major points of the EEG data acquisition and connectivity
analysis is taken mostly verbatim from my publication [97]. Data and connectivity analysis

were first described in [244].

4.1.1 Subjects and connectivity analysis

Eighteen patients (10 women, 8 men) with major depression (mean age + standard deviation:
38.9 4+ 15.5 years) and 18 sex- and age-matched healthy control subjects (39.3 4 14.8 years)
participated in this study. The procedure was approved by the Ethics Committee of the
Friedrich Schiller University (reference number 2282-04/08). Major depression was established
by a staff psychiatrist according to DSM IV criteria using a structured interview. All subjects
were right-handed. Nine patients were treated with antidepressive medication (5 patients
received selective serotonin reuptake inhibitors SSRI; 4 patients norepinephrine and serotonin
reuptake inhibitors NaSRI) while the remaining participants did not receive any medication.
All subjects were electrically stimulated intracutaneously at the tip of the middle fingers of
both the right and the left hand. Stimuli consisted of a bipolar rectangular pulse of 10 ms
duration. Participants were requested to rate each electrical stimulus on a scale ranging from 0
to 6 [254, 255]. The pain threshold was defined as the intensity yielding a sensation described
as a sharp painful pinprick, corresponding to a rating of ‘3’

The EEG was recorded continuously during the electrical stimulation from 60 electrodes,

referenced to Cgz, using a standard EEG cap based on an extended 10-20 system. Finally,
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nine electrodes F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4 (re-referenced to linked ears) that are
situated above some of the important regions of pain processing, attention, and depression
(frontal, central, and parietal brain regions) were used. In order to compare the pre- and
post-stimulus condition, signal sections of 700 ms duration were extracted pre (700ms before
onset to the onset of stimulus, i.e. -700ms to Oms) as well as post stimulus onset (from stimulus
onset to 700ms after stimulus onset, i.e. Oms to 700ms). To assess the functional connectivity
between the nine electrodes, the generalized partial directed coherence (gPDC) (see also
section B.1.2) was applied. Binary functional brain networks were obtained by thresholding
using significantly increased gPDC values and subsequent dichotomization of remaining edges.
Statistical significance was assessed using the bootstrap method described in section 2.3.1 and
Holm multiple test correction with a multiple significance level of o = 0.05.

Connectivity analysis was complicated by the fact that during the Bootstrap procedure
not all MVAR processes under Hy could be realized due to MVAR parameter sets yielding
non-stationary processes, so that many networks are partially unobserved. As a consequence,
traditional analysis (listwise deletion of networks with missing values) would discard a huge
amount of useful information of the data. Since there is no superior approach concerning all
possible missing data mechanisms, a reasonable imputation strategy according to the specific
data set has to be chosen. Because it seems implausible that observed variables contain useful
information to predict missing values (i. e. data is missing at random), we performed extreme
case imputation: First, all missing directed edges are imputed as no interactions, while in the
second data set they are treated as interactions. Both data sets are analyzed independently,
and only subnetworks that are significant in both cases are considered as motifs. This is a
conservative approach to deal with the problem of missing values, and it keeps the effect of

the imputations on topological pattern selection as small as possible.

4.1.2 Samples of functional connectivity networks

Due to the nature of the EEG data, the connectivity analysis and the clinical question eight
different samples of unweighted directed functional connectivity networks have to be considered:
They are defined by all combinations of the group assignment (MD — patients suffering from
major depression vs. HC — healthy control subjects), the stimulated side (left vs. right) as
well as the time window with respect to the stimulus conditions (pre — time window before
noxious stimulation vs. post — time window directly following the stimulation, i.e. including

the processing of the noxious stimulus). The nomenclature is: MD-pre-left, MD-pre-right,
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Figure 4.1 — Functional networks of a healthy subject, pre- and post-stimulus.
The network is shown within the EEG-electrode layout (top) and as a circle layout (bottom),
which yields a clearer representation of the interaction patterns. The pre-stimulus network is
shown in column (a), whereas the post-stimulus network is shown in column (b).

MD-post-left, MD-post-right, HC-pre-left, and so forth. The sample size for the MD-post-right

sample is fifteen, whereas the sample size is sixteen for all other samples.

These functional connectivity networks have a small size, each consisting of the same set of

nine nodes that are pairwise differently labeled with associated EEG-electrode identifiers. For

our approach to network motif detection in network samples it is crucial that, due to the node

labeling, all nodes are different. As shown in figures 4.1 and 4.2 these functional connectivity

networks exhibit dense and intricate patterns of directed interactions.

4.2 Results and discussion

Both methods to detect motifs, i.e. locatable characteristic topological patterns, were applied

to each of the eight network samples separately. Because of the spatial information associated

with the node labels, it makes sense to look even for 2-node motifs in order to find significant

interactions between two areas covered by the EEG electrode scheme. Furthermore, char-
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Figure 4.2 — Functional networks of a patient with MD, pre- and post-stimulus.
The network is shown within the EEG-electrode layout (top) and as a circle layout (bottom),
which yields a clearer representation of the interaction patterns. The pre-stimulus network is
shown in column (a), whereas the post-stimulus network is shown in column (b).

acteristic interaction patterns given by 3-node motifs were detected. Motifs of a larger size
were not detected, because clinical interpretation of neural processing patterns represented by
2-node motifs and 3-node motifs is already difficult. Hence, detecting larger motifs does not
seem to contribute much to the qualitative knowledge about functional connectivity patterns
in the investigated groups. However, from a theoretical point of view the detection of larger
motifs is straightforward given that sufficiently large samples are available.

As a result of dismissing interactions that are by definition less important, the large amount
of information contained in the intricate directed interactions of the investigated network
samples was reduced to only the characteristic interaction patterns. These were used for

subsequent interpretation with respect to the underlying neural information processing.
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4.2.1 Results obtained with the analytical approach for assigning subnet-

work significance

For the sake of keeping the presentation of results concise I omit the recapitulation of the

results obtained with the analytical approach and refer instead to my publication, where a

detailed account of the results and an assessment of their clinical relevance can be found [97].

The results of the randomization-based approach, which are presented in the following section

can be seen as a prime example of the utitlity of motif detection for the analysis of functional

brain networks. Moreover, despite its more accurate null model for subnetwork significance

assessment, the results of the randomization-based approach are consistent to a large degree

with the ones obtained with the fast but less accurate analytical approach.

4.2.2 Results obtained with the randomization-based approach for assign-

ing subnetwork significance

A detailed account of the results can be found in my publication [156]. Prior to generating the

null model network ensembles for each of the eight network samples, the simulation parameters

2 (‘mixing’ parameter that determines the number of edge swaps) and b* (number of random

realizations for every sample element network) were determined as described in chapter 3,

section 3.1.3. To cope with the immense computational overhead, the ‘mixing’ parameter €2

was determined for all eight network samples at once. Thereby, the representative network

needed for the determination of the parameter €2 was an element of the ‘HC-post-left’ sample.

Random realizations of the representative network were generated using the MCMC edge-

switching algorithm with different values of 2 and the independent results were then pooled

together to yield a total of 190,400,001 networks. In this set we found 101,996,824 pairwise

different networks with the given prescribed degree sequence. According to detailed statistical

considerations given in [156], for the analyzed network data the edge-switching algorithm

seems to sample networks with a non-uniform distribution for every €. Because no particular

value of € could be identified with the test statistic of the exact chi-squared goodness-of-fit

test the lowest value of 2 was selected for which the test statistic was minimal. As it turned

out this was Q = 120. According to the procedure outlined in chapter 3, section 3.1.3 the

required number of random realizations for every sample element network in all network

samples was b* = 7500. This number reflects a conservative choice, since for most investigated

network samples 7000 realizations would have been sufficient to achieve convergence of relative

subnetwork frequencies.
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Figure 4.3 — Motifs of size 2. The motifs were detected in the eight functional network
samples with the randomization-based approach. The occurrence of a 2-node motif in an
network sample is indicated by filled areas. These motifs represent characteristic directed
interaction patterns of brain activity recorded at three different EEG electrodes that occur
before and during the processing of painful electrical stimuli.

The detected motifs of size 2 shown in figure 4.3 reveal several interesting points. MD patients

show slightly more motifs of size 2 than HC subjects. However, 8 out of 12 motifs in MD

and 8 out of 9 motifs in HC are similar with respect to the motif and the time period when

it occurs. Overall this demonstrates that motifs of size 2 show strong communalities in

processing between the groups. This shows that the method allows the identification of robust

connections. One of these functional connections, Fz <> F4, is present for all time windows for

both sites of stimulation. This motif was also seen in the results of the analytical approach

(section 4.2.1). It is likely that this connection represents a part of the background activity or

attentional processes which are independent of group (MD, HC), time period (pre, post), or

site of stimulation (left, right). Other motifs, e.g. F3 <+ Fz, are primarily found in association

with the stimulation of the right hand. So this processing contralateral to the stimulation site

might represent processes of preparing to and analyzing the nociceptive input. Interestingly,

this motif is the only 2-node motif in HC that is also not present in MD. It occurs during the

pre-stimulus period prior to the left hand stimulation in HC. This activity might represent a

preparation in advance of the hand stimulation, e. g. the process of distributing attentional

resources. The lack of the F3 < Fz motif in MD fits with additional motifs in MD which do
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Figure 4.4 — Motifs of size 3. The motifs were detected in the eight functional network
samples with the randomization-based approach. The occurrence of a 3-node motif in an
network sample is indicated by filled areas. These motifs represent characteristic directed
interaction patterns of brain activity recorded at three different EEG electrodes that occur
before and during the processing of painful electrical stimuli.
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not appear in HC. Similarly to previous results presented in section 4.2.1 all these additional
motifs are located in the right hemisphere or midline. This might reflect the role of the right
hemisphere in the processing of emotions and mood in MD patients [250, 256, 248, 257, 258].

Similarly to motifs of size 2, motifs of size 3 (figure 4.4) are also more often identified
in MD than in HC subjects. However, the exact communalities are far less expressed for
the motifs of size 3 (5 of 18 in MD; 5 of 13 in HC) compared to size 2 (8 of 12 in MD; 8
of 9 in HC). The results seem to indicate that some motifs in HC are replaced by different
motifs in MD. For example, motifs 2 and 3 in HC seem to be replaced by motifs 1 and 2 in
MD (including the communality of motif 2 for the processing after stimulation of the right
hand). Interestingly, when comparing these motifs between groups, the principle difference
lies in stronger activation of the right frontal areas in MD patients. This finding might
be interpreted as agreeing with theories on the role of the prefrontal cortex (PFC) in the
processing of emotions [256]. The left PFC has been demonstrated to be involved preferentially
in processing associated with approach-related, appetitive goals, while the right PFC is more
strongly involved in the processing of behavioral inhibition and withdrawal [259, 260]. This
theory opens possible interpretations on pathophysiological mechanisms for MD, namely a
hypoactivity of the left PFC or a hyperactivity of the right PFC [256]. Our data clearly points
to a hyperactivity of the right PFC in our patients. Our data is also consistent with findings
indicating the additional recruitment of prefrontal areas by MD patients [261]. While there
are nearly as many motifs of size 3 in MD patients during the pre-stimulus period as in the
HC subjects, a clear difference can be found in the pre-stimulus period with respect to the
site that will become stimulated. Seven out of the 8 motifs of size 3 in MD patients were
found before stimulation of the right hand, only one motif was found before stimulation of the
left hand. In contrast, in the HC subjects we found 4 motifs of size 3 before stimulation of
the right hand and 3 motifs before stimulation of the left hand. Obviously, there is a clear
preponderance of motifs before stimulation of the right hand in MD patients. One reason for
this preponderance might lie in the contralateral organization of somatosensory information
processing. Thus it might be more demanding for MD patients to recruit resources for the
analysis of the left hand stimulation because the resources had to be redistributed from the
more active right to the left hemisphere. In line with this interpretation, most of the motifs
active during the preparation to stimulation of the right hand in MD patients include directed

information flow to or within the left hemisphere (i.e. motifs 1, 7, 9, 11 and 12). Another
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somewhat surprising finding is that there are slightly more motifs in the post-stimulus period
found in MD patients. It was previously found that MD patients compared to HC exhibit
higher pain thresholds to external stimulation including electrical stimulation [245, 249], lower
sensitivity to C-fiber activation [252], and/or lower sensitivity to experimental nociceptive
stimulation [249, 262]. However, it should be mentioned that the stimulation was performed
with stimuli that were adjusted for subjective pain ratings (i.e. moderately painful in both
groups). This might be the reason that there is no obvious difference in the number of motifs
found in MD vs. HC subjects. Nevertheless, there are clear differences with respect to the
motifs themselves.

Thus, there exists an interesting phenomenon regarding differences in motif composition
between the MD and HC group after stimulation. It seems that the connectivity due to
stimulation shows an opposite direction compared to the pre-stimulus connectivity. With
regard to left-hand and right-hand stimulation, MD showed an equal number of motifs (5),
whereas the HC showed more motifs after right-hand stimulation (6) and only one after
left-hand stimulation. This might again represent the nature of stimulation with a preferred
contralateral processing of the information. So the noxious stimulation of the right hand will
primarily (or, at least, more quickly) activate the left hemisphere, but nociceptive processing
will activate behavioral inhibition and withdrawal. Thereby a need exists to transfer the
information from the left hemisphere to the right and to activate the right PFC due to the
noxious stimulation in the HC subjects. Indications for such a transfer might be seen in motifs
2, 4, or 8. In our MD subjects, there is already a clear preponderance of right hemisphere
activation, as discussed in the previous paragraph. This might indicate that activation of
the right PFC in MD to the same degree as in the HC, does not occur because it is already

activated.

4.2.3 Discussion

An in depth discussion of my approaches for motif detection in network samples in the light of
the pain processing functional network samples, motif detection in general and the strengths
and limitations of such topological network decomposition approaches can be found in my
publications [97, 156]. Here I revisit only a few of the most important points.

I applied both of my methods for motif detection in network samples with pairwise different
node labels to the same functional network data. Since both approaches rely on different null

models for contrasting the subnetwork counts obtained from the network samples they are
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expected to identify —and in fact they do identify— non-identical, but overlapping sets of motifs.
For the identified 2-node motifs the agreement is larger than for the 3-node motifs. Thereby,
the randomization-based approach seems to be able to better discriminate variations in edge
patterns for the same set of nodes, which might be explained by the fact that the design of the
underlying null model incorporates more topological information of the input network sample.

It has to be noted that the two presented studies focused on motifs at the sensor level,
which means that the current view on anatomical locations of motifs might only serve as a
cautious hint with reference to anatomical sources.

The null model widely employed in motif detection preserves the in-degree and out-degree
sequences of the input network, which is a basic property on the node level that ultimately
affects many other properties of the network. For the assignment of subnetwork significance
based on simulated null model networks I used the MCMC edge-switching alorithm (see also
section 2.11.2) and applied new techniques for the determination of randomization parameters
Q and b*. To the best of my knowledge, methods to determine these central parameters were
never published before and in the literature on motif detection their choice is usually either
not stated or not justified. Since the edge-switching algorithm is applied a large number of
times to each sample element network of each of the eight network samples a very large data
set of randomized networks was generated. These simulations are very time-consuming with
compute times in the range of weeks. Also the subsequent counting of subnetwork appearances
in the obtained random ensemble is costly. On the other hand my analytical statistical test is
computed much faster, taking only seconds, but comes at the cost of simpler assumptions being
made for the null model which accounts for the mean number of edges of the input network
sample. Referring to the randomization-based approach, it seems that for small values of €2 the
network most often yielded from the randomization process was the input network itself. This
is expected, because for smaller values of 2 the MCMC edge-switching algorithm can cover only
a small part of the network configuration space. Thus, in general it might be a good strategy
to use the last generated network as input for subsequent randomizations instead of always
using the investigated real-world network as input for the MCMC edge-switching algorithm.
However, for motif detection one is not primarily interested in the particular instances of
sampled random networks. Rather, the uniform sampling of networks with precribed degree
sequences is an desirable property of the MCMC edge-switching algorithm. In this regard, at
least for the investigated network data, the MCMC edge-switching algorithm did not seem

to uniformly sample networks with the prescribed degree sequences of the representative
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network. The extent of compensating effects given by the choice of the number of random
realizations per input network is currently unknown. Thus, the null model random networks
generated with the parameter values obtained by my determination techniques might still be
‘good enough’. The difficulties arising from determining the value of the ‘mixing’ parameter {2
illustrate that one must not simply select an arbitrary value for it (as seems to be the case for

most of the literature).

The design of a suitable null model formalizes a particular null hypothesis and defines
the notion of randomness [208]. It is crucial for distinguishing regular topological effects from
contingencies in the structure of network samples (cf. [113, 263, 264]) and thus is crucial for
obtaining valid results [216]. At the present time there is no established theoretical background
for choosing null models that fit to given network data and thus it is not clear which network
properties might be incorporated into a good null model. Some progress was recently made in
[209], where the problem of selecting the right base properties for null model networks was
explored. Clearly, motif detection would miss any functional meaningful subnetworks that
appear only infrequently. Conversely, subnetworks that appear with a statistically significant
frequency are not necessarily important for the structure and functioning of their network.
Whereas experimental validation of motifs in functional brain network seems to be beyond
reach in the foreseeable future, isolated network motifs have been tested experimentally for
their regulatory functions as recurring circuits in bacteria and yeast transcription networks
[134, 265]. These experimental studies confirmed theoretical predictions and could assign
specific modes of molecular information processing to distinct motifs in these networks, thereby
demonstrating that some network motifs indeed appear to be building blocks of transcription
networks. Yet despite some potential limitations on assigning information processing roles
to motifs in functional brain networks both novel approaches for motif detection in network
samples might be seen as tools that simplify the topology of all member networks in a network
sample by thinning out interactions that are not characteristic for the network sample, thereby
yielding a compact description of recurring important topological elements contained in the
network sample. Finally, after this simplification step network samples can be compared with

respect to their characteristic interaction patterns, which was as yet not attainable.
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Chapter 5

Network sample-specific
characterization of network

topology

ETWORK structure quantification can be utilized to discriminate functional brain net-
N work samples and to evaluate them with respect to therapeutical treatment or other
effects that can be assumed to be reflected in the topology of sample element networks. Such
a description of network structure can be obtained on all three topological scales presented
in chapter 2, section 2.7, that is to say the microscopic, mesoscopic and macroscopic scale.
Quantification of network topology considerably contributes to the understanding of a network
and it complements network decomposition approaches like motif dection, which was presented
in the preceding chapter. If applied to functional brain network samples, the resulting charac-
terization of all sample element networks might be the basis for deriving qualitative information

about underlying recorded brain processes and their alterations in different investigated groups.

Following I present the network analysis results of an application study [266] where weighted
edge-complete functional networks of cognitively impaired HIV-infected patients were investi-
gated. For this work information obtained from structural and functional imaging data was
combined to quantify the effects of lithium treatment-induced changes in brain microstructure

on gPDC-derived functional connectivity patterns.
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5.1 Data description

The following description of the fMRI data and the connectivity analysis is a concise recapitu-
lation of the main facts. Detailed information may be found in a publication I co-authored

[266).

5.1.1 Subjects and connectivity analysis

A cohort of seven HIV-infected individuals (4 male, age range 43-52 years, mean = 45.5) with
diagnosed cognitive impairment was enrolled in a 10-week, open-label lithium study [267]
at the University of Rochester. The study was reviewed and approved by the Institutional
Review Board at the University of Rochester Medical Center and all subjects signed a written
informed consent prior to undergoing study procedures. The open-label trial study design
did not include a control group. Subjects were instructed to begin taking lithium carbonate
300 mg PO at approximate 12-h intervals. Neuroimaging was performed before and after
lithium treatment, with a period of 10 weeks between the recordings. A series of BOLD EPI
scans (GRE EPI sequence, TR/TE = 2000/30ms) was acquired while participants performed
a working memory task. The task was based on Garavan et al. [268] and consisted of sequences
of large and small squares presented visually for 1500 ms each and intermixed with 100 ms
fixation trials. Each sequence of squares was considered a condition and labeled ‘1-switch’,
‘2-switch’ or ‘3-switch’ based on how many times the size of the squares changed during the
sequence. Participants were required to retain separate counts of small and large squares in
memory and report it at end of the sequence. Each imaging run consisted of 15 randomly
presented conditions, five of each ‘switch’ type. During each visit (pre or post treatment),
participants performed three imaging runs, with the order of sequence presentation changing
from run to run to avoid practice effects. The diffusion tensor imaging (DTI) results from
[267] were used to select the regions of interest (ROI) for the connectivity analysis of this
study. The following seven areas were selected as ROIs for the connectivity analysis: right
cerebellum, right putamen, right medial frontal gyrus, right and left frontal orbital cortex,
right lateral occipital cortex and right subcallosal cortex. The degree of directed information
transfer between the seven nodes (ROIs) of the fMRI-based network was quantified by means
of time-variant gPDC based on time-variant multivariate autoregressive (tvMVAR) processes

(see also appendix B.1.2).
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5.1.2 Samples of functional connectivity networks

Due to the way the vast amount of connectivity data was pooled together 600 functional
connectivity networks were analyzed: For each HIV-infected patient in each of the three
repeated measurements (runs), the three ‘switch’ conditions were repeated five times each,
resulting in 45 functional connectivity networks for each one of the two treatment conditions.
This results in 315 networks representing the functional connectivity patterns in all seven
patients prior lithium treatment. Since for patients five and six only two instead of three runs
from the post treatment visit were available for analysis, the number of functional connectivity
networks in the post-lithium treatment condition was just 285. Connectivity patterns were
represented as weighted edge-complete directed networks with seven labeled nodes representing
ROIs and edge weights defined by the corresponding aggregated gPDC values. All networks
of each of the two treatment conditions constitute a network sample. Example networks of

both network samples are shown in figure 5.1.

5.2 Analysis of the network samples

The aim of the study was to investigate the network samples with respect to expected differences
in the pre-treatment vs. post-treatment global connectivity structure. Contrary to the common
approach to analyze thresholded binary networks (see also section 2.3) in this study I extracted
topological features from the unaltered weighted directed edge-complete networks. This strategy
enables to circumvent information loss and the threshold-dependency, i.e. the complications
that arise from analyzing different samples of binary networks obtained from dichotomizations
of the gPDC data for different, yet arbitrarily defined thresholds. Due to the investigated
clinical question and its specific interpretation I primarily analyzed the global increase in
interaction strength (average node strength), which is associated with positive effects of
lithium treatment on brain function of the investigated patient group. Other topological
characteristics were also investigated, including the characteristic path length and weighted
clustering coefficients (see also section 2.7). To meaningfully calculate the characteristic path
length, connection strengths given by gPDC values were mapped to connection costs using
equation 2.8 as suggested in [67]. The obtained network characteristics were further analyzed
using surrogate-assisted network analysis (see also section 2.12) so that mechanistic and
stochastic effects can be segregated from the influence that nontrivial topological properties

have on the assessed measures. With this additional information changes in functional brain

98



CHAPTER 5. NETWORK SAMPLE-SPECIFIC CHARACTERIZATION OF NETWORK TOPOLOGY

&

Figure 5.1 — Pre-treatment and post-treatment functional connectivity structure
of three different subjects. Randomly selected weighted edge-complete networks of three
subjects, pre- (a) and post-lithium (b) treatment in the same experimental condition. The
weakest interactions are not shown. The following subjects and condition are depicted:
subject 1, run 1, switch 1, block 1 — subject 3, run 1, switch 3, block 4 — subject 7, run
3, switch 3, block 15. Detailed information about the experiments may be found in [266].
It can be seen that the interaction strength tends to increase after lithium treatment. The
nodes correspond to the following ROIs: 1 — right cerebellum, 2 — right putamen, 3 — right
medial frontal gyrus, 4 — left orbital gyrus, 5 — right orbital gyrus, 6 — right lateral occipital
cortex and 7 — right subcallosal gyrus.

network characteristics can be reported more conclusively. Thereby, for each functional brain
network the observed network characteristics were normalized by dividing them with their
mean value in a sample of 1000 surrogate null model networks with random topologies. This
normalization rules out biasing effects that stem mainly from very basic topological properties,
like the collection of edge weights and accounts for the degree of influence that nontrivial and
nonrandom topological properties have on the measures. Additionally, statistical differences
between values of unnormalized network characteristics in each sample of functional brain
networks and their average values in their surrogate network ensembles were identified with
the paired two-sided Wilcoxon signed rank test [269] and a significance level of o = 0.05. A
fully connected, edge-complete network is combinatorially very constrained with respect to

randomization procedures, i.e. edges cannot be rewired. As surrogates I used an ensemble
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of random networks that preserve the weights of the edge-complete (i.e. fully connected)
weighted functional brain networks by means of global edge weight permutations (random

shuffling of edge weights) as described in [94].

5.3 Results and discussion

Following I present the main results of this study. A detailed description of the results may be

found in [266] and its supplement.

The main finding of this study is the increase in interaction strength (average node strength)
after lithium treatment (p = 4.7-1077). Such a lithium treatment effect has never been reported
before. A global lithium effect on the characteristic path length was also found, which was
decreased due to the lithium treatment (p < 10~7). Raw values of all seven weighted clustering
coefficients were significantly increased in the post-lithium treatment condition (p < 10™%).
These findings were obtained using linear mixed models [270] (this statistical analysis was
performed by coworkers of my institute). An additional perspective on the network analysis
results, in particular the weighted clustering coefficient, was obtained by surrogate-assisted
analysis. For some individual weighted clustering coefficients statistical differences between
the functional brain networks of both network samples and their randomized surrogate coun-
terparts were found. These weighted clustering coefficients had both, statistically significantly
increased and decreased values. Since high values of clustering coefficients are commonly
associated with good local information processing capabilities, this result hints at non-trivial
effects of lithium treatment on brain function. The results are represented in figure 5.2. To
summarize both statistical analyses, the weighted clustering coefficients of all nodes were
statistically significantly increased post lithium treatment and for at least some of the nodes it
cannot be entirely ruled out that this increase can be explained, at least in part, by nontrivial
local changes in the underlying networks. However, since the effect sizes were small one
should refrain from emphasizing the increase in weighted node clustering too strongly in the
interpretation of the results. To give an idea of typical effect sizes, I state the statistical results
of the surrogate-assisted analysis of weighted clustering coefficients for the post-treatment
network sample. As can be seen in figure 5.2, ROIs 3, 6, 7 have increased weighted clustering
coefficients compared to the respective randomized surrogate network ensembles. According
to the paired two-sided Wilcoxon signed rank test this increase is statistically significant,

with p-values p < 10716, p = 1.33 - 10712 and p < 1076, respectively. For these nodes the
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median values (and interquartile range) of the normalized weighted clustering coefficients
were 1.070 (0.142), 1.062 (0.163) and 1.060 (0.157), respectively. No statistical differences
were found for the weighted clustering coefficients of ROI 2 (p = 0.868; 0.997 (0.145)) and
ROI 4 (p = 0.985; 0.998 (0.195)). The weighted clustering coefficients of ROI 1 (p < 107!6;
0.914 (0.164)) and ROI 5 (p = 4.46 - 107%; 0.967 (0.165)) were decreased in the functional
brain networks as compared to the surrogate networks. For the pre-treatment network sample,
the situation of the effect sizes is similar. Contrary to the situation for the weighted clustering
coefficients, the value of the characteristic path length was not changed in the surrogate
network ensembles. The reason for it is the edge-completeness of the analyzed functional
brain networks and the fact that edge weights obtained after the necessary strength—to—cost
transformation are homogenous enough so that the direct connections between node pairs are
always the shortest ones. Since the collection of edge weights is preserved in the surrogate
networks, the characteristic path length does not change. This illustrates a drawback of not
filtering out low weight edges prior to the network analysis. In addition, there is the possibility

for biasing effects that spurious interactions might have on the results.
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Figure 5.2 — Network sample-specific changes of the weighted clustering coeffi-
cient pre- and post-lithium treatment. While all weighted clustering coefficients were
significantly increased after lithium treatment, surrogate-assisted network analysis, as a
supplemental statistics layer with different emphasis, indicates that for some nodes this
increase is likely caused solely by mechanistic effects of the global increase in interaction
strength and cannot be associated to any additional non-random topological changes. Thus,
surrogate-assisted analysis gives a more detailed picture of the network characteristics in the
pre-treatment (a) and post-treatment network sample (b). ® nodes had significantly larger
clustering coefficients in the functional brain network sample than in the surrogate networks.
For ® nodes there was no statistical difference in clustering coefficients between the real and
surrogate networks. ® nodes had significantly decreased clustering coefficients as compared
to the surrogate networks. Functionally relevant clustering is increased after treatment, as
node 7 and node 2 are improved with respect to their local clustering. However, all effect
sizes were small. The nodes correspond to the following ROIs: 1 — right cerebellum, 2 — right
putamen, 3 — right medial frontal gyrus, 4 — left orbital gyrus, 5 — right orbital gyrus, 6 —
right lateral occipital cortex and 7 — right subcallosal gyrus.
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The found global increase of interaction strengths might be indicative of a positive over-
all effect of lithium treatment on cognitive performance [271] of HIV-infected patients with
cognitive impairment. A decrease of the characteristic path length post treatment could be
associated with the benefit of lithium treatment in restoring or building efficient connections
for information transfer between nodes in the underlying brain network. It seems that lithium
treatment of HIV-infected individuals induces changes in brain microstructure (as assessed
by DTT) that are associated with improved performance related features of brain functional
network connectivity (as assessed by fMRI). Considering the results of surrogate-assisted
analysis, it remains largely unresolved to which extent the changes in the characteristic path
length and weighted clustering coefficients are a direct byproduct of the global increase in edge
weights post-lithium treatment or if additional functionally relevant effects on the network

topology are at work, too.
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Chapter 6

Analysis of module structure
quality in large scale functional

brain networks

ETS of strongly interconnected nodes called network modules (see also chapter 2, section
S 2.7.2), or communities represent a defining topological feature of many network data
sets [70, 148]. They indicate relatively independent indivisible and cohesive substructures of a
network that play an important role in the organization of network structure. Typically, the
subnetworks induced by network modules are characterized by a larger number of internal
interactions and stronger internal interaction patterns that allow for more information flow
between affiliated vertices as compared to interactions between these subnetworks. Network
module structure might be associated with specific domains of behavior and cognition [3] and
plays a role in human learning [15] and the organization of human brain structural connectivity
[272]. Thus, obtaining a functional segmentation of a brain network node set yields a picture
of brain activity at a specific instant of time. Network module detection at the outset is
inherently connected with two uncertainties: It is usually a priori not clear which module
detection algorithm is suited to partition the network data at hand, i.e. how good its detection
strategy fits the network topology and the underlying processes it encodes. After having
uncovered a network partition, its quality with respect to topological information remains to
be determined, as well as its compatibility with the specific concept and notion the user has
about network modules. However, prior to obtaining a functional segmentation in the form of

identified module structure in functional brain networks the underlying cognitive processes
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and the information flow among and within spatially distinct regions of the brain has to be
quantified [3]. High dimensional data, such as fMRI recodings, in combination with a low
temporal resolution imposes computational limits on classical Granger Causality analyses with
respect to obtaining a representation of functional interactions in the brain at a large and

highly resolved scale.

The work described in this chapter was published in two publications about a new ap-
proach, the large scale Granger Causality Index (IsGCI) (see also appendix B.1.1) that much
improves the quantification of directed information transfer in very high-dimensional systems
and that is less restricted by dimensionality of the underlying time series than other approaches.
The preservation of a high spatial data dimensionality that is possible with this new large
scale Granger Causality Index (IsGCI) may result in the computation of unprecedentedly
large functional brain networks, representing functional connectivity patterns consisting of
several thousands of nodes connected by millions of edges. This approach was developed by
my colleagues at the institute. To evaluate the practical effect of the IsGCI approach I applied
several state-of-the-art module detection algorithms to 1sGCI-derived functional networks
computed from time series that were realized on the basis of ground truth network data,
for which I devised a simulation algorithm (see also chapter 3, section 3.4). Subsequently, I
analyzed module structure quality using the analysis strategy outlined in chapter 3, section
3.3 to examine the tradeoff between computing increasingly higher dimensional functional
connectivity networks and the loss of topological information caused by the approach. Finally,
IsGClI-derived spatially highly resolved functional networks obtained from fMRI brain scans
were investigated with respect to their module structure (functional segmentation). For ob-
taining a visualization of a subject’s functional segmentation, the network module affiliations
of all voxels can by directly projected back onto the neuroimaging data slices that were used
for the 1sGCI computations. The first of these two publications, which will be referred to as
study I [61], is basically a feasibility analysis that demonstrates the usefulness of the large
scale Granger Causality Index. The data used for this study was one instance of a ground
truth network model (|V| = 50, see also 3.4 on page 71) and clinical data in the form of a
functional brain network computed from one slice of an fMRI scan (|V| = 1031). The other
study, referred to as study II [273], builts upon the results of the first study and enhanced our
methodology towards a representation of almost full-brain fMRI functional interactions. For

the analyses involved in this study, a sample of 100 simulated ground truth networks of size
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|V| = 100 and several fMRI-based functional brain networks of size between |V| = [5723, 6007]

were used.

6.1 Study I - Data description

The following concise description of the first study and the involved data analysis is taken

from my publication, where a detailed account of the application study may be found [61].

6.1.1 Subjects and connectivity analysis

Data from one male healthy subject was used in the first study, which was conducted as a proof
of principle study to investigate whether our proposed techniques for analyzing functional
brain connectivity at the large spatial scale yields useful results. The acquisition was approved
by the Ethics Committee of the University of Rochester Medical Center (reference number
RSRB00042912), and the individual gave his written consent. Resting state [11, 227] (EPI-
BOLD) fMRI images were acquired. Each volume consisted of 30 axial slices with an in-plane
resolution of 4 mm x 4 mm. The inter-slice distance was 4mm. During the scan, the subject
was instructed to stay still and keep eyes closed. To aid in localization and registration of
functional data, a high-resolution T1-weighted MPRAGE sequence was acquired. 192 slices
were acquired in the sagittal direction with an in-plane resolution of 1 mm x 1 mm and a
slice thickness of 1 mm. Functional MRI data was then preprocessed using FSL v4.1.9. Data
volumes were motion corrected, brain extracted, temporally filtered with a high-pass filter
of cut-off frequency 0.005 Hz, and normalized to MNI152 brain atlas. To demonstrate the
value of the 1sGCI methodology for obtaining functional segmentations of brain connectivity
data, we used one slice (slice number 10) for network module structure identification, which
contained N = 1031 voxels associated to the brain. The MVAR model order was set to 6.
The weighted directed 1sGCI-derived networks were binarized using edge weight percentiles
(see also chapter 2, section 2.3.2) that were defined in advance as thresholds (40th, 60th and
80th percentile of ISGCI values). All binary directed networks remained weakly connected
after thresholding. This is important, because network fragmentation causes problems for
some module detection algorithms and would not represent a good model of (functional) brain

connectivity from a neurophysiological point of view.
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6.1.2 Synthetic networks with ground truth module structure

To investigate the reliability of the 1sGCI approach, i.e. to investigate the effect of dimension
reduction on network module structure and for comparing the 1sGCI approach with the
conventional Granger Causality Index I simulated an artificial data set consisting of binary
directed ground truth (ad hoc) networks with known, pre-defined module structure (see also
chapter 3, section 3.4). The module structure’s degree of definiteness depends on the chosen
parameterization and should be identifiable by module detection algorithms. The algorithm
and the chosen parameterization used in study I [61] to simulate such networks differs slightly
from the one used in study II, which is described in the next section. For the analysis, one
generated network instance was used to realize different time series as input to the 1sGCI
approach and subsequent functional network computation. The size of the simulated ground
truth network was D = 50. Given a predefined number of modules and their sizes (two modules
of size 12, two modules of size 13), nodes are selected and accordingly assigned membership to
non-overlapping modules. The edges connecting these nodes in the ground truth networks are
placed randomly under constraints that define a notion of module structure, as designated by
the simulation algorithm outlined in section 3.4, the variant that does not vary the network

generation parameters for each generated network. The chosen parameterization was p;,: = 0.7,
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Pext = 0.02, K7, = & 6 and K, = KU =
Stationary first order multivariate autoregressive processes (N; = 1000 and N; = 3000)
were simulated on the basis of the resulting adjacency matrix A, the details of which can
be found in the appendix B.2 on page 150. Interactions between components of these time
series were identified with the 1sGCI approach and used to construct edge-complete and
edge-weighted functional connectivity networks. To dichotomize and to remove spurious edge
weights given by 1sGCI values, statistical significance of IsGCI values was determined using a
Monte Carlo method (see also chapter 2, section 2.3.1), which estimates the distribution of
IsGCI values under the null hypothesis of no directed interactions between respective nodes
v; and v;. An analytical distribution under Hy [274] was used for the dichotomization of

synthetic networks based on the classical GCI. These statistical analyses were performed with

a type-1 error of 1% adjusted for multiple comparisons.
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6.2 Study II - Data description

The following concise description of the data used in the second study is taken from my

publication, where a detailed account of the application study may be found [273].

6.2.1 Subjects and connectivity analysis

Five HIV positive subjects (four males, one female; mean age: 41 years; age range: 28-53
years) participated in this study. The study was approved by the Ethics Committee of the
University of Rochester Medical Center (reference number RSRB00042912). Brain scans
of the subjects were acquired at the Rochester Center for Brain Imaging. High resolution
structural imaging was performed using T1-weighted magnetization-prepared rapid gradient
echo sequence (MPRAGE). Resting state fMRI scans were acquired using a gradient spin
echo sequence. Four independent runs were recorded for each subject, where the acquisition
of each run lasted 6 minutes with 250 volumes each. A total of 25 slices, each 5 mm thick,
was acquired for each volume. During acquisition, the subject was asked to lie still with
closed eyes. The first 10 volumes were deleted to allow the signal to reach equilibrium.
The volumes were then subjected to slice timing and motion correction as well as brain
extraction. Linear detrending was performed by high pass filtering (0.01 Hz). These were
then registered to the standard MNI152 template (2 mm isotropic). For subsequent anal-
yses, time series from ventricles were masked out using the standard ventricle mask based
on the MNI152 template available in FSL [275]. All preprocessing steps were carried out
using FEAT (FMRI Expert Analysis Tool), which is part of FSL and its respective subroutines.

Connectivity analysis of clinical data was limited to every third voxel, in sagittal, frontal
and transverse direction, still resulting in |V| = 5723 to |V| = 6007 voxel time series to be
processed. The MVAR model order was set to 5. The IsGCI approach utilizes an embedded
dimension reduction during the MVAR modeling process. In the studies described in this
chapter the Principal Component Analysis was applied, introducing a parameter, the variance
explanation, into the 1sGCI approach. The amount of variance explanation was variably
chosen between 80% and 90%. The weighted directed 1sGCI-derived networks were binarized
using edge weight percentiles (see also chapter 2, section 2.3.2) that were defined in advance
as thresholds (90th, 95th and 98th percentile of IsSGCI values). Relatively high thresholds were
chosen to preferentially obtain networks with a reduced fixed edge density [37]. All binary
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directed networks remained weakly connected after thresholding.

6.2.2 Synthetic networks with ground truth module structure

For the simulation of edge-directed networks with ground truth module structure I used
my algorithm described in chapter 3, section 3.4 on page 71 with the following parameter
settings: 100 different instances of ground truth networks were generated for each network size
|V| € {100, 200, ...,800}. These numbers of nodes were chosen to obtain networks that can be
still processed with standard GCI methods for the purpose of quantitative comparisons. The
generating algorithm scales the number of modules with the network size, so that for every
increase of 100 nodes eight additional clusters of nodes are simulated. All column sums in the
simulated adjacency matrices were restricted to be at most fifteen (an explanation for it is
given in appendix B.2). The probability for intra-module edges in both directions between
pairs of nodes was given by p;,: = 0.5, whereas the probability of directed inter-module edges
depends on the network size so that the constraint on the column sums holds true. This
probability was given by pe,t = 3/(IN — 15). Underlying this probability for each node v; is
the conservative assumption that v; has on average only 3 in-going connections' from at least
N — 15 possible nodes outside the module of v;, with 15 being the maximum size of any module.
The minimum intra-module (“internal”) in- and out-degree and the maximum inter-module
(“external”) in- and out-degree of all nodes were set to ki, = koUWt = ki koW = 4. An

it — Vint ext — Next =

example of a ground truth network is shown in figures 6.6 (a) and 6.7 (a).

Similar to study I, for each network size |V| € {100,200,---,800} stationary first order
multivariate autoregressive processes with 1000 temporal samples each were simulated on
the basis of the adjacency matrices of 100 instances of ground truth networks (see also ap-
pendix B.2 on page 150). Interactions between components of these time series were identified
with the 1IsGCI approach and used to construct edge-complete and edge-weighted functional
connectivity networks. These networks were dichotomized using network-specific thresholds
that were chosen so that the resulting binary networks had maximum similarity to their
associated ground truth network according to a maximum Cohen’s kappa [197, 276]. Results

are presented for ground truth networks of size [V| = 100.

1t was found that with increasing network size too many outlier nodes with either more than 4 inter-module
edges or with in-degree (column sum) larger than 15 were generated, which causes frequent restarts of the
simulation. This problem is slightly more pronounced for nodes whose module size is smaller than 15, since
they potentially can make slightly more interactions with external nodes.
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6.3 Module structure quality analysis for the assessment of

network topology alterations

As mentioned above, the analysis of the extent to which the dimension reduction step of
the IsGCI procedure negatively affects edge patterns —the interaction structure between
the recorded time series of brain activity— and degrades the recoverability (preservation),
definiteness and quality of network modules was based on samples of simulated networks with
ground truth module structure and the corresponding realized multivariate time series, which
comprise the ground truth connectivity patterns. Network module structure was detected in
the resulting samples of 1sGCI-derived networks and, for comparisons, in GCI-derived networks.
For it, different module detection algorithms for binary directed and binary undirected (i.e.
symmetrized) networks were used. They are described in section 2.8 on page 31. The effect of
varying degrees of IsSGCI dimension reduction on the quality, definiteness and recoverability of
network module structure was assessed by contrasting detected network partitions of (1s)GCI-
derived networks with the detected and known module affiliation of nodes in the ground
truth network using several network structure characteristics. The structural and information
theoretic measures that were used for the quantification of network module structure are

described in section 2.10 on page 38.

6.3.1 Results of study I

In study I [61] network partitions were identified with the algorithm of Blondel etal. for
directed networks (see also section 2.8). Tables 6.1, 6.3, 6.2 and 6.4 show the results of the
involved comparisons. Thereby, module recoverability in the networks identified by (1s)GCI
approaches was quantified by the following measures: ratio of correctly classified nodes with
regard to their known module membership classification, normalized variation of information
as a partition distance and normalized mutual information between two network partitions.
Additional information to these measures of network partition similarity was obtained by
assessing the quality of the partitions to distinguish “clear-cut” from “weak” network partitions.
The following quality measures were evaluated: modularity measure, performance, coverage

and overall average silhouette width.

As expected, for time series length Ny = 1000 the impact of dimension reduction on network

topology is noticeable, but remains manageable as the assessed module structure characteristics
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are reduced in comparison to the ground truth network, yet they are not conflicting with the
presence of a marked network module structure (tables 6.1 and 6.2). It can be seen in panels (d)
and (e) in figures 6.1 and 6.2 that intra-module and inter-module edge patterns are thinned out
(false negatives) as compared to the ground truth network. Still, for Ny = 1000 and different
degrees of dimension reduction the recoverability of ground truth nework modules is acceptable,
with up to 98% correctly identified module affiliations of nodes, which is a larger rate than for
the GCI network and it explains the only moderately reduced similarity of obtained network
partitions with a low variation of information (partition distance) and sufficiently large mutual
information between 1sGCI and ground truth network partitions. Surprisingly, certain levels
of variance explanation seem to yield networks in which the preservation of module structure
is particularly good, even better than for the classical GCI. Modularity values, that measure
the quality of module structure inherent in the network, are already high. It can be seen that
higher modularity values do not always translate to a higher ratio of correctly classified nodes.
This means that topological alterations result in a new, slightly different module structure as
compared to the ground truth network. Overall average silhouette width values were somewhat
low, indicating that nodes were either not always placed in their best fitting module with
respect to their dissimilariy with comember nodes or that due to edge pattern alterations the
differences betweenn the average dissimilarity of nodes to comember nodes and to nodes of
other modules were not marked enough. There might also be a bias introduced by the choice
of the node dissimilariy measure and perhaps another such measure could have been used (see

the discussion in chapter 2, section 2.10).

Table 6.1 — Network partitioning: module quality assessment (study I, |V| = 50,
N; = 1000). Network module structure definiteness can be quantified and compared using
several measures that account for module membership assignments of nodes and how this
classification is backed up by topological properties of identified, putative modules. For
IsGCI-derived networks, the degree of variance explanation is stated.

Network Modularity Performance Coverage Avg. silhouette
ground truth 0.651 0.942 0.903 0.395
GCI 0.529 0.890 0.731 0.090
IsGCT 93% 0.478 0.725 0.839 0.090
IsGCI 86% 0.555 0.842 0.818 0.103
IsGCT 78% 0.441 0.900 0.602 0.059
IsGCT 69% 0.482 0.831 0.737 0.070

For N; = 3000 the quality of (1s)GCI network module structure is similar to the ground
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Table 6.2 — Network partitioning: module recoverability assessment (study I,
|[V| = 50, N; = 1000). The effect of the 1sGCI dimension reduction step on recoverability
of ground truth network module structure can be quantified using several measures that
account for the similarity of identified network partitions in (Is)GCI networks and the ground
truth network. For 1sGCI-derived networks, the degree of variance explanation is stated.

Network Correctl. class. nodes Variation of inf. Mutual inf.
GCI 0.800 0.116 0.852
IsGCI 93% 0.760 0.089 0.857
IsGCI 86% 0.940 0.073 0.897
IsGCI 78% 0.640 0.169 0.807
IsGCI 69% 0.980 0.036 0.949

truth network (table 6.3), with the performance measure being slightly smaller as compared
to the case of the shorter time series. High performance and coverage values indicate that
the identified module structure fits the network topology of the 1sGCI-derived networks with
respect to large numbers of node pairs of the same module being connected by edges and only
comparatively few edges falling between nodes of different modules. In the case of N; = 3000
all characteristics that quantify the recoverability of module affiliations of all nodes take on
their optimal value for all analyzed (1s)GCI-derived networks, which means that the ground
truth module affiliations of all nodes could be fully recovered (table 6.4). The expected positive
effect of longer time series on the reproducibility of network topology by IsGCI and GCI
approaches was thus observed in the data. Contrary to the case of Ny = 1000, for N; = 3000
it can be seen in figure 6.1b, 6.1c and figure 6.2b 6.2c that there are spurious, false positive
interactions between nodes of different modules, given by increased numbers of inter-module
edges, while intra-module interactions remained largely stable as compared to the ground

truth network.

To further evaluate the effect of the embedded dimension reduction step on binary edge
patterns beyond visual inspection (figures 6.1 and 6.2) we considered Cohen’s kappa (figure
6.3) for measuring the agreement between a ground truth adjacency matrix (figure 6.1a) and
corresponding adjacency matrices identified by 1sGCI and classical GCI approaches (figure
6.1b - 6.1e). As before, in the case of the longer time series, Ny = 3000, the agreement with the
ground truth is substantial up to very good. For Ny = 1000, the agreement may be considered
as moderate for the GCI-derived network and 1sGClI-derived networks for which the variance

explanation was at least 78%.
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Table 6.3 — Network partitioning: module quality assessment (study I, |V| = 50,
N; = 3000). Network module structure definiteness can be quantified and compared using
several measures that account for module membership assignments of nodes and how this
classification is backed up by topological properties of identified, putative modules. For
IsGCI-derived networks, the degree of variance explanation is stated.

Network Modularity Performance Coverage Avg. silhouette
ground truth 0.651 0.942 0.903 0.395
GCI 0.593 0.915 0.845 0.332
IsGCT 92% 0.572 0.898 0.824 0.258
IsGCI 84% 0.571 0.898 0.824 0.237
IsGCI 75% 0.591 0.899 0.844 0.218
IsGCI 66% 0.588 0.887 0.839 0.202

Table 6.4 — Network partitioning: module recoverability assessment (study I,
|V| = 50, N; = 3000). The effect of the 1sGCI dimension reduction step on recoverability
of ground truth network module structure can be quantified using several measures that
account for the similarity of identified network partitions in (Is)GCI networks and the ground
truth network. For 1sGCI-derived networks, the degree of variance explanation is stated.

Network Correctl. class. nodes Variation of inf. Mutual inf.
GCI 1 0 1
IsGCI 92% 1 0 1
IsGCI 84% 1 0 1
IsGCI 75% 1 0 1
IsGCI 66% 1 0 1
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(d) (e)

Figure 6.1 — Edge pattern alterations in the adjacency matrices of GCI and IsGCI
networks in comparison to the ground truth network (study I). Networks (b) - (e)
are based on the simulated network with ground truth module structure (a). Interactions are
color-coded with respect to the module affiliation of their nodes as detected by the algorithm
of Blondel etal. (“Louvain”). Inter-module edges that represent interactions between nodes
of different modules are shown in black. (a) ground truth network (|V| = 50, ground truth
module affiliations were recovered 100%), (b) GCI computed network (N; = 3000), (c) IsGCI
computed network (N; = 3000, 84% variance explanation), (d) GCI computed network
(N; =1000), (e) IsGCI computed network (N; = 1000, 86% variance explanation). The four
network modules are visible as blocks of dense edge patterns centered on the main diagonal
of the adjacency matrices. As expected, the preservation of ground truth edge patterns
depends on time series length and degree of dimension reduction. However, even though
edge patterns are altered and intra-module edges are thinned out, the module structure is
still apparent in all cases.
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Figure 6.2 — Network layouts for the adjacency matrix images of figure 6.1 (study
I). Two-dimensional node configurations were computed for the ground truth network using
the algorithm of Kamada and Kawai [141]. Thereby obtained node coordinates were applied
to the layout of all other networks. Nodes are color-coded with respect to their module
affiliations (cf. figure 6.1) as detected by the algorithm of Blondel etal. (“Louvain”). (a)
ground truth network (]V| = 50, ground truth module affiliations were recovered 100%),
(b) GCI computed network (N; = 3000), (¢) 1sSGCI computed network (N, = 3000, 84%
variance explanation), (d) GCI computed network (N; = 1000), (e) 1sGCI computed network
(N = 1000, 86% variance explanation). The four network modules are visible as regions with
high density of interactions. It can be seen again that the preservation of ground truth edge
patterns and ground truth module structure depends on time series length and degree of
dimension reduction. Modules display higher interaction densities in all cases and can be
recovered to a large degree (cf. tables 6.2 and 6.4).
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— [ N, = 1000

- [N = 3000
0.8r ] b
0.6r i
0.4r 1
0.2 b

0 1 1 1 1 1
GClI IsGCI 93/92% IsGClI 86/84% IsGCIl 78/75% IsGCl 69/66%

Figure 6.3 — Assessment of edge pattern alterations in terms of Cohen’s kappa
(study I). The agreement between edge patterns of a ground truth adjacency matrix and
corresponding adjacency matrices identified by 1sGCI and classical GCI approaches indicates
the amount of edge pattern alterations caused by the 1sGCI dimension reduction step. The
ratios at the abscissa denote the proportion of retained components. As expected, the
agreement of adjacency matrix entries depends on time series length and degree of dimension
reduction. In particular for the case of the longer time series and lower degrees of dimension
reduction the agreement ranges between high and adequate.

(a) (b)

Figure 6.4 — Pairwise adjacency relationship-based node distances (study I). (a)
Ground truth network (N = 50). Clear network module structure is reflected in small
distances between comember nodes and large distances between nodes of different modules.
(b) 1sGCI network (N; = 1000). Degradation of module structure is apparant by larger
distances between nodes of the same modules and less pronounced differences in distances
between nodes of flanking modules. (c¢) ISGCI network (N; = 3000). With increasing length of
simulated time series the module dissimilarities become similar to the ground truth network,
hinting at an increasingly more clear-cut module structure that resembles the one of the
ground truth networks, although inter-module node distances are reduced. These findings
are consistent with the silhouettes calculated for the same data (cf. figure 6.5).
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Figure 6.5 — Silhouettes of identified
module structure (study I). The four
silhouettes in each plot show which nodes
are qualitatively fitting well into their as-
signed modules, which nodes are not show-
ing a strong association with their module
and are merely lying in between different
modules and which ones are misclassified.
Narrow and negative silhouettes are indi-
cating the degree of artificial clustering of
nodes to define modules. The adjacency re-
lationship node distance measure of section
2.10 is used for calculating the silhouette
widths of single nodes. (a) Ground truth
network (|V| = 50). (b) 1sSGCI network
(V| = 50, N; = 1000, 86%). (c) IsGCI
network (|V| = 50, Ny = 3000, 84%). The
silhouette plot reveals the influence of di-
mension reduction and the length of under-
lying time series on the quality and recover-
ability of the four ground network modules.
A relatively weak module structure that is
less pronounced than the one of the ground
truth networks is apparent in (b) for short
time series length (cf. figure 6.4). Also note
the different module sizes and the different
average silhouette widths s(i) of modules.
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The effect of dimension reduction on node degree sequences can be quantified by means
of the Li-metric (Manhattan distance) separately for in-degrees and out-degrees. Using the
ground truth network of study I for comparison the degree sequences were found to be altered
profoundly. The L distance for Ny = 1000 and 1sGCI-computed networks was in the range of
268 (93% variance explanation) to 287 (69% variance explanation), whereas for the respective
GClI-computed networks it was 253. The L; distance for N; = 3000 and 1sGCI-computed
networks was in the range of 66 (92% variance explanation) to 153 (66% variance explanation),
whereas for the respective GCI-computed networks it was just 33. Again, it can be seen that
the influence of different degree of dimension reduction on alterations of network topology are

smaller than the effect of the chosen time series length.

In summary, the module preservation is very good, and the influence of the dimension
reduction on module recoverability and module quality is much lower than one might as-
sume by comparing edge patterns only (figure 6.3) or comparing graphical representations of

adjacency matrices (figure 6.1).

6.3.2 Results of study II

In study IT [273] network partitions were identified with the following algorithms:

1. Algorithm of Leicht and Newman [154] (“leading eigenvector”, BD networks)

2. Algorithm of Blondel et al. [158] (“Louvain”, BD networks)

3. Random walk algorithm of Pons and Latapy [162, 163] (BU networks)

4. Greedy algorithm of Clauset etal. [160] (BU networks)

5. Algorithm of Newman [152, 153] (“leading eigenvector”, BU networks)

6. Potts spin glass based algorithm of Reichardt and Bornholdt [167] (BU networks)
7. Algorithm of Blondel et al. [158] (“Louvain”, BU networks)

8. Algorithm of Rosvall and Bergstrom [168] (“Infomap”, BD networks).

The results of the algorithm of Rosvall and Bergstrom were excluded, because for the investi-
gated fMRI data, uncovered network partitions frequently consisted of one module only. All

algorithms are described in chapter 2, section 2.8.
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Edge pattern alterations caused by different degrees of dimension reduction and their ef-
fect on module structure can be seen in the adjacency matrix plots in figure 6.6. The
corresponding network layouts are shown in figure 6.7. Again, network module structure
is directly recognizable in the images of the adjacency matrices as diagonal blocks of dense
edge patterns. Due to dimension reduction, a number of intra-module edges are lost, whereas
spurious, false positive interactions between nodes of different modules are gained. As expected,
the preservation of ground truth edge patterns depends on the degree of dimension reduction.
Similar to the case of the smaller ground truth networks of study I, with respect to the edge
pattern alterations, an intermediate range of variance explanations seems to yield the best
results. Large deviations from ground truth module structure can be seen for dimension
reductions with high variance explanations (figure 6.6e and to some extent also evident from
figure 6.6d). In the case of 100% explained variance (which corresponds to the classical GCI)
two ground truth modules are fused into one module, inter-module edges connect original
ground truth comember nodes of the same module, while at the same time some ground truth
non-comember nodes are linked by intra-module edges. For dimension reductions within a
range of lower variance explanations the situation is not very different and similar assertions
hold true (figure 6.6b). Figure 6.7 shows edge pattern alterations from the perspective of

two-dimensional network layouts.

For a more objective assessment, edge pattern alterations in ground truth network ensembles
were quantified with several measures that combine information on network topology with the
classification of nodes, or measures that compare node partitions directly (see also chapter 2,
section 2.10). The various network characteristics that were evaluated cover many different
aspects of network module structure and give a coherent picture of ground truth network and
IsGCI network topology. Despite the information loss inflicted by the dimension reduction
step and its associated edge pattern alterations, we found that the module recoverability as
well as the quality of the identified network partitions was still good in the 1sGCI networks,
as compared to their respective ground truth networks, even when considerably reduced.
This is particularly true for the range of explained variance that is of practical relevance.
In this analysis the recoverability of module structure was investigated with the following
characteristics that quantify the similarity between the detected partitions of the ground truth

networks and the ones detected in 1sGCI-computed networks: the ratio of correctly classified
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nodes, Rand index and adjusted Rand index, normalized variation of information, normalized
mutual information and split-join distance. Network module structure quality was assessed
with the following characteristics: partition edit distance, modularity, performance measure,
coverage and overall average silhouette width. The boxplots in the appendix, figures B.1 -
B.11 show the results of the analysis of the effects of dimension reduction on ground truth
network module structure. Notably, for most considered module identification algorithms, we
found that the percentage of correctly classified nodes in all 1sGCI networks was adequately
high, even though a reduction in comparison to the ground truth networks was noticeable.
Depending on the module detection algorithm used and the amount of explained variance,
the median percentage of correctly classified nodes for ISGCI networks was between 47% and
87.5%, whereas for the the ground truth networks it was in the range between 77% and 100%.
The results for the ratio of correctly classified nodes are presented in figure B.1. As explained
in section 2.10 on page 39, the ratio of correctly classified nodes potentially yields a distorted
picture of the module detection results if the number of identified modules does not coincide
with the number of modules in the ground truth network. The Rand index mitigates against
this effect. It measures the similarity of the module structure detected in the ground truth
networks with the one in the 1IsSGCI networks. The boxplots in figure B.2 show that a large
fraction of node pairs are either clustered together or are separated into different clusters in an
identical fashion in the ground truth networks and IsGCI networks. Depending on the module
detection algorithm used and the amount of variance explanation the median Rand index is in
the range between 0.76 and 0.96, which is close to its maximum. For the chance-adjusted Rand
index (figure B.3) the interquartile ranges are increased and mean values are much smaller.
Like the ratio of correctly classified nodes and the Rand index, variation of information (figure
B.4), mutual information (figureB.5) and split-join distance (figure B.6) are measures that
depend only on the classifications of nodes in the two network partitions that are compared
with each other. The results show that their values were still in line with the recoverability of
node module affiliations, which means that the 1sGCI networks were sufficiently similar to
their ground truth networks from the perspective of module identification.

To further contrast the module structure of the ground truth networks with the one of the
IsGCI networks I consider network characteristics that take into account features of network
topology, as well as the module affiliations of nodes. Such characteristics can be expected
to yield a particularly accurate picture of the degree to which the 1sGCI network structure

was impaired by the dimension reduction step of the ISGCI computation. The (partition)
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edit distance of intra-module edges (figure B.7) was relatively high, reflecting the changes
of intra-module edges patterns in the 1sGCI networks. I found that the values of network
characteristics like modularity (figure B.8), performance measure (figure B.9) and coverage
(figure B.10) were noticeably reduced in comparison to the ground truth networks. Using the
example of coverage values, it can be seen that a negative influence of increasing degrees of
dimension reduction on module structure exists (as shown in the boxplots from panels (E) to
(B)), but over entire network samples this influence turned out to be smaller than expected.
This confirmes the initial findings obtained from inspecting the adjacency matrix plots. The
overall average silhouette width values (figure B.11) were surprisingly low. This can be in
part attributed to the somewhat short time series length (N; = 1000). As shown in study
I, silhouette values greatly improved for N; = 3000. In addition, due to stricter constraints
on the synthetic ground truth network model the ground truth module structure was less
pronounced as compared to study I. For the ground truth network data of study II the node
dissimlarity measure might not have been appropriate (see the discussion in section 2.10 on

page 45).

6.4 Application of the 1sGCI approach to functional resting

state MRI data — detecting large scale module structure

In both studies [61, 273] clinical data was analyzed in addition to simulated ground truth
networks. Thereby, 1sGCI-derived functional networks were analyzed that describe interaction
pattens in spatially highly resolved fMRI data with |V| > N; that cannot be handled by
classical GCI approaches. Network module structure in dichotomized networks was detected
using different community detection algorithms. Thereby, best results were frequently obtained
with the algorithm of Blondel et al. for directed binary networks (see also section 2.8). The
integer module affiliations of nodes that were returned by the detection algorithms were
matched optimally to ensure best possible comparability across data sets (see also chapter 3,
section 3.2) and mapped to unique colors and projected to the fMRI slice voxel masks. The

resulting images yield a visualization of functional segmentation in the fMRI recordings.

6.4.1 Results of study I

As can be seen in figure 6.8 that depicts one fMRI slice with projected module structure, the

affiliation of spatially distributed voxels to modules did not occur unsystematically. Therefore,
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Figure 6.6 — Edge pattern alterations in the adjacency matrices of (1s)GCI com-
puted networks with different degrees of dimension reduction in comparison to
an exemplar ground truth network (study II). For all networks |V| = 100. Networks
(b)-(e) (N; = 1000) are based on the network (a). Interactions are color-coded with respect
to the module affiliation of their nodes (Potts spin glass algorithm [167]). Inter-module edges
are shown in black. (a) ground truth network, (b) IsSGCI computed network, 70% variance
explanation, (c¢) 1sGCI computed network, 80% variance explanation, (d) IsSGCI computed
network, 90% variance explanation, (e) GCI computed network, 100% variance explanation.
Network modules are visible as blocks of dense edge patterns. In (b)-(e) inter-module edges
are increased and intra-module edges are thinned out. As expected, the preservation of
ground truth edge patterns depends on the degree of dimension reduction. For some of
the (Is)GCI networks module structure alterations are visible by inter-module interactions
between ground truth comember nodes (black pixels in colored blocks) and intra-module
interactions between ground truth non-comember nodes (colored pixels outside blocks).
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Figure 6.7 — Network layouts for the adjacency matrix images of figure 6.6 (study
IT). For the ground truth network the node configuration on the plane was found by the
graphopt force-directed network layout algorithm [277]. To improve visual clarity (retain
separation of modules) these node coordinates were used for networks (b)-(e), too. Nodes
are color-coded with respect to their module affiliations (Potts spin glass algorithm [167],
cf. figure 6.6). All networks have size |V| = 100. Time series length for the IsGCI computed
networks was N; = 1000. (a) ground truth network, 100% correctly classified nodes (CCN),
(b) 1sGCI computed network, 70% variance explanation, 89% CCN, (c) 1sGCI computed
network, 80% variance explanation, 89% CCN, (d) IsGCI computed network, 90% variance
explanation, 97% CCN, (e) GCI computed network, 100% variance explanation, 88% CCN.
Network modules are visible as regions with a high density of interactions. The preservation
of ground truth edge patterns and module structure depends on the degree of dimension
reduction. In all cases modules can be recovered to a large degree (cf. figures B.1 to B.11).
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similar to the situation of the simulated data set used in study I, it seems that the effect of
the embedded dimension reduction on the module structure is small enough so that module
affiliations can be recovered. Module structure identification results seem to be more robust
with respect to variations of network dichotomization thresholds than expected, although
the network topology is directly affected. Most likely this can be attributed to intra- and
inter-module edges being similarly influenced by threshold alterations. Also, it is remarkable
that the dimension reduction with the highest variance explanation does not necessarily result
in the most pronounced segmentation. This effect was already described for artificial data
[278] and can be observed here again. Variance explanations of around 80% were found to

result in similar identified module structures (figure 6.8).

6.4.2 Results of study II

Even more conclusive are the findings of study II. In this study five functional networks
of high spatial resolution that cover multivariate interactions in several slices of fMRI data
were analyzed. An example functional segmentation for the entire functional network sample
is given in figure 6.9, which shows the projection of identified module affiliations onto the
original fMRI voxel masks. Remarkably, for all subjects the ‘voxel modules’ closely followed
the conventional classification of the lobes of the brain and the arrangement of voxels with
the same color (nodes with the same module affiliation) was almost symmetric with respect
to the left and right hemispheres of the brain. The module structure projections of all five
analyzed subjects displayed a demarcation of the area of the precentral gyrus (primary motor
cortex) and postcentral gyrus (primary sensory cortex) to the frontal lobe and parietal lobe,
respectively. This module (colored in red) was particularly prominent in the images for subjects
E and C. In summary it can be stated, that the resulting module structure (derived based on
functional connectivity patterns) is very alike to anatomical structures for all five analyzed

subjects.

6.5 Discussion

In both studies network module structure was detected in synthetic networks and in real-world
functional networks that represent the interaction structure in spatially high-resolution fMRI
recordings. The synthetic networks were used to evaluate the feasibility and utility of the
new 1sGCI approach for calculating multivariate interactions in high-dimensional time series

data, such as functional neuroimaging data, and for obtaining an informative functional
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Figure 6.8 — Functional segmentation of one resting state fMRI slice (study I).
Network module structure was identified in binary directed networks computed for various
degrees of dimension reduction and threshold levels using the algorithm of Blondel et al. for
directed networks. The ventricular system of the brain was not excluded from the fMRI
voxel mask. The columns represents module structure of ISGCI networks with different
levels of variance explanation (from left to right, 90%, 85% and 80% variance explanation).
The rows show segmentation in dependence on different threshold levels used for network
dichotomization (a: 80th, b: 60th and c: 40th percentile of 1sGCI value distribution). For all
thresholds, dichotomized networks consisted of one connected component. Module identities
are color-coded. Despite cost-optimal matching of the node’s module affiliations, there
are few differences across networks due to the individual network partitions being unique.
Thus, module location information has to be additionally considered for interpretation of the
network sample.

segmentation of the resulting large scale binary directed networks. For this evaluation, the
definiteness and quality of identified modules was quantified using a comprehensive analysis
concept. The results of both studies indicate the existence of a range of appropriate levels of
dimension reduction and network dichotomization thresholds, which preserve main features of
network module structure in the resulting high-dimensional IsGCI functional networks, despite
profound alterations of in-degree and out-degree sequences of nodes. This is of particular
interest when the detection of functional similar, strongly interacting nodes (voxels in the case
of fMRI data) and tracing changes of entire regions with similar connectivity characteristics
(functionally segmented brain areas in the case of fMRI data) is the primary objective. For it,
unfortunately, the interpretation of module structure projected back to fMRI slices is difficult,

as it depends on prior physiological knowledge, definiteness and localization of identified
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Figure 6.9 — Functional segmentation of virtually full brain resting state fMRI
voxel interactions of five different subjects (study II). Network module structure
was identified in binary directed networks computed with 85% variance explanation and
dichotomized with the 95th percentile of the edge weight distribution as threshold for binary
connections. All dichotomized networks consisted of one connected component. The algorithm
of Blondel et al. for directed networks was used to obtain a functional segmentation of strongly
interacting nodes. Module identities are color-coded. Despite cost-optimal matching of the
node’s module affiliations, there are few differences across networks due to the fact that
individual network partitions are unique. Module location information has to be considered
for interpretation of the network sample. As reference, one fMRI volume is shown bottom
right (registered to the standard MNI152 template).

modules.

Like all other functional networks considered in this thesis, the investigated networks were

initially edge-weighted and edge-complete. As a result, the biases and problems described in

section 2.3 on page 16 affect the analysis and its results. For the two presented studies the

strategy to analyze binary network instances obtained for a range of pre-defined percentiles of

the edge weights as thresholds seems to give a good overview of the data and the robustness

of its features with respect to the thresholding influence. It turned out that the choice of the

global threshold parameter had a stronger influence on uncovered module affiliations than

the choice of explained variance of the IsGCI computation. For appropriate percentages of
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Figure 6.10 — Images of a binary directed IsGCI network of a HIV infected patient (study
IT). Variance explanation after dimension reduction was 85%. The threshold for the dichotomization of
the complete edge-weighted 1sGCI network was the 95th percentile of the edge weights. The resulting
network is connected and represents functional interactions between recorded voxel time series. Module
structure was detected using the algorithm of Blondel et al. (‘Louvain’). (a) Presentation of the original,
unsorted adjacency matrix. The shown IsGCI network consists of 5,779 nodes (voxels) and 1,669,842
edges (voxel interactions). Black pixels indicate inter-module edges. Intra-module edges are color-coded
with respect to module identity. (b) A 2D network layout of the unfiltered 1sGCI network further reveals
the high complexity of its interaction patterns. To compute this layout a metric multidimensional
scaling algorithm (MDS) [279, 178] was applied to the shortest path matrix, which is used to define
dissimilarities between nodes. Nodes are colored according to their module affiliation. (c) Image of a
reordered version of the original adjaceny matrix in which comember nodes of each module are occupying
subsequent positions in the rows and columns. Consequently, the interactions of comember nodes are
centered around the main diagonal of the adjacency matrix and network module structure becomes
apparent by the (color-coded) block-diagonal structure of pairwise interactions. It can be seen that the
IsGCI network has a large number of inter-module interactions, which represents a demanding situation
for module detection algorithms. (d) A filtered version of the original 1sSGCI network. Network filtering
improves visual clarity and allows to show relevant structures. This particular network filtering retained
all nodes, all intra-module edges and edges with largest betweenness values (99.5th percentile threshold)
that are linking modules. Again, the MDS algorithm was used to compute node configurations in
two-dimensional Euclidean space.
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explained variance it seems that intra-module edges and inter-module edges are altered by the
dimension reduction step in a balanced way, so that information about the original module
structure is preserved to a large degree. However, in study II for different reasonable settings
of variance explanation and dichotomization threshold, visual assessment did not reveal large
differences for the classification of the lobes of the brain given by identified module structure.
Due to the lack of an available ground truth for real-world data, evaluation of the results is
mainly based on plausibility arguments. In the case of our analyzed data, this plausibility was
provided by a similarity between identified network modules and anatomical lobe classification.

In study II [273] several algorithms for module structure identification (see also section 2.8
on page 31) were applied to the data. The quality of the results was varied and depended
directly on the used algorithm. Frequently, the ‘leading eigenvector’ algorithms of Leicht
& Newman [154] and Newman [152, 153], the ‘Louvain’ algorithm of Blondel et al. [158] for
directed and undirected networks and the ‘Potts spin glass’ algorithm [167] yielded clearly
outlined network modules for our data. Although these four algorithms utilize structural
information differently to identify node partitions into modules, they all yield plausible and
comparable network partitions. On the other hand, some of the applied algorithms (random
walk algorithm of Pons and Latapy, ‘Infomap’, greedy algorithm of Clauset) identified either
only one module or only an implausible module structure consisting of a large number of
small modules that were split and scattered across their network. This demonstrates the
value of exploratory data analysis using different methods. One of the last remarks in this
discussion section concerns the color coding of network module structure accross a set of
networks. It is clearly desirable that modules with similar topological properties, composition
or location are color-matched. However, as explained in section 3.2 on page 64 this objective
cannot be achieved if modules occupying specific areas in one network are disaggregated into
several smaller modules in another network. To correctly interpret the functional segmentation
obtained by identified modules, spatial information, i.e. the location of modules in the brain
should be considered in addition to the color codes. In fact, the spatial arrangement of modules

contains more information than the color coding alone.

The finding that the module structure identified based on 1sGCI functional connectivity
patterns resembles anatomical structures, as seen in particular in the spatially high-resolution
functional networks of study II, constitutes an encouraging result that might offer new perspec-

tives for future research on applications that trace functional segmentation dynamics, i.e. the
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changing composition of strongly interacting areas of the brain. Revealing such changes of
functional segmentation over time and at a spatially large scale as the underlying functional
connectivity patterns change in response to stimuli, medical treatment or as an accompanying
symptom of disease certainly will lead to an improvement of our understanding of brain
function.

In this context, the next chapter deals with the last application study that is presented in
this thesis, in which a novel concept for dynamic module structure extraction in time-evolving

EEG-derived networks is introduced.

128



Chapter 7

Extraction of dynamic module

structure in time-evolving networks

NFORMATION on the temporal evolution of functional brain network structure is assumed
I to give insights into time-variant neural processing and the dynamics of brain function.
Sequences of consecutive snapshot networks, i. e. longitudinal networks, can be computed from
the functional interactions of the brain recordings at selected time steps. As already mentioned,
module structure constitutes an intuitive characterization of network organization, as it gives
information about strongly interacting group of nodes. This information enables and facilitates
an interpretation of underlying brain activity based on the functional connectivity data. In this
regard it was shown that module structure in functional brain networks can be associated with
cognitive performance and plays a role in human learning [15]. Therefore, dynamic module!
structure is identified and analyzed in this application study to gain a better understanding
of the time-variant changes? of the functional connectivity data in response to the execution
of cognitive tasks. For each individual time step and its corresponding snapshot network
[281, 172] a network partition can be computed, which represents the functional organization
of network nodes, i.e. brain regions, in several distinct functionally segmented modules. Then,
the network structure reconfigurations and the resulting dynamics in the module structure

from time step to time step reflect how functional interactions between brain regions are

"Motifs are another mesoscopic structural feature that can be tracked over time, too [126].

2Network dynamics in general can be displayed on many levels. For example, qualitatively different nodes
can be gained or lost, like bridging nodes [55] that mediate connections between different areas of the network
and that have access to non-redundant information. Nodes can affect network topology by acquiring edges at
different rates due to their intrinsic capacity, fitness and ageing [280, 281]. On the level of edges, new edges can
introduce triadic closures that close structural holes, introduce important weak ties [52, 53, 54] or reciprocity of
interactions.
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redistributed in the course of the neural processing. In particular, module structure changes
in response to stimuli and during solving cognitive tasks promises to be informative and to
improve the understanding of normal and pathological brain function. Also, investigating
the inverse situation is interesting, where the aim is to use the topological information of
the network sequence to identify certain events in the time evolution, i.e. the time a certain
stimulus sets in and is processed. Thus, analysis of sequences of time varying networks offers
new perspectives on brain function and can reveal information that remains largely absent from
the analysis of static, single network representations of functional interactions between brain
regions. At present, network science applications are just beginning to see a shift from static
network representations of systems to embrace the dynamic nature of interaction patterns
in many real-world networked systems that constantly evolve over time. Contrary to the
static version of the problem of identifying network modules, detecting and tracking network
modules in series of network snapshots is still mostly uncommon in present research and is only
recently being considered for network analysis [70, 282, 172, 281]. In particular in the field of
computational neuroscience analysis of time-variant networks seems to be the next logical step,
as brain recordings naturally have a temporal aspect and timestamped (functional) network

data can commonly be made available.

Given the usually intricate and dense interaction structure, identification of network module
structure in functional networks obtained from EEG data is a challenge in itself. Sophisticated
pre-processing of network data is essential to uncover patterns in the otherwise inaccessible
network structure that usually features high interaction density ‘noise’. A main concern is the
interpretability of obtained results with respect to neural information processing across the
considered time steps. In chapter 3 section 3.6 I present a network data processing strategy
that is capable to solve these problems, which I demonstrate by applying it to a sequence of
snapshot networks that represent brain activity before and during the compensation of a major
balance perturbation. It is known that motor activities that sustain balance are predominantly
controlled by neural circuits in the spinal cord, the brainstem and the cerebellum. Strong
evidence suggests additional contributions are made by the cerebral cortex [283, 284, 285]. The
compensatory reactions of the cerebral cortex in response to a sudden and unpredicted balance
perturbation to regain postural stability and to avoid a fall is currently only imprecisely un-
derstood [241]. Improving the understanding of cortical balance control and the identification

of activated cortical regions and cortical adaptation effects in the context of balance recovery
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is a topic of ongoing research and constitutes the background of the experiments on which the

application study of this chapter is based.

7.1 Data description

Following, I state the main facts about the data used in this study. The experiment and the

data acquisition is described in detail in [241].

7.1.1 Subjects and connectivity analysis

EEG data was recorded from 37 healthy male subjects, (mean (SD) age: 24.7 (3) years; body
weight: 77.3 (8.1) kg). The recording was obtained from 32 electrodes according to the 10-10
international system. The electrical reference was located at FCz and the ground electrode was
located at AFz. The experiment on which the study is based consisted in ten trials of transient
unpredictable balance perturbations using a passively oscillating platform. Each perturbation
trial, lasting 30s in total, started immediately after the subjects positioned themselves on
their dominant leg in the center of the platform. The task for the subjects during which the
EEG was recorded consisted in balancing on this platform and keeping platform oscillations to
a minimum after sudden perturbation, while having their hands at the iliac crest and focusing
on a fixation cross at eye level. The platform was laterally deflected by 2.2cm and fixed
by an anchor in this position. In each trial the investigator randomly released the anchor,
which induced a medial movement of the supportive platform. The perturbation onset was
determined as the time point following anchor release at which the platform motion exceeded
its mean oscillation level in medial-lateral or anterior-posterior direction during the last 5s

prior to anchor release by five standard deviations.

Next, I state the main features of the functional connectivity analysis, which was performed by
members of my group. The multi-trial EEG data was fitted using the general linear Kalman
filter in order to obtain time-variant MVAR model parameters (see also appendix B.1). The
connectivity analysis based on the tvMVAR parameters was performed by means of direct
DTF (dDTF) (see also appendix B.1.3). The dDTF was chosen because of its good frequency
resolution that was able to clearly separate the specific frequency bands of interest, the theta
and alpha band. This translates into frequency selective networks that can describe the
connectivity related to different oscillations. For group analysis, the dDTF time-frequency

maps are averaged over all subjects. The resulting dDTF interactions are in a narrow range
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of very low values, which makes module detection in the weighted functional brain networks

challenging. Therefore, using equ. 2.5 a rescaling of the values was performed to enhance the

values of the strong interactions (see also section 2.5).

7.1.2 Samples of functional connectivity networks

For each subject 800 snapshot networks were available. For group analysis, the dDTF time-

frequency maps of each interaction are averaged over all subjects. Such a map represents the

strength of an directed interaction among two electrodes at each frequency bin and at each point

in time. From these time-frequency maps, we extract the median value of a specific frequency

band of interest at each time step to obtain weighted directed edge-complete functional brain

networks. Thereby, the theta (5Hz to 7Hz) and alpha (9Hz to 11 Hz) band were selected,

because in these frequency bands the strongest activity was observed. Consequently, two

sequences of snapshot networks were obtained for the entire group of subjects, one for the theta

band and one for the alpha band. The time grid was defined with respect to time-frequency

analysis results, i.e. with respect to characteristic amplitude changes in the time-frequency

maps. Thereby, seven time steps and corresponding snapshot networks were preselected: 2s,

3s,4s,5s, 6s, 7s and 7.8s. The last time step was determined by the width of the consensus

data aggregation time window (see also section 3.6 on page 79). In the preprocessed EEG

data, the stimulus occured at 3s. Due to heavy artifact contamination four electrodes, that

acted solely as sources of interactions (Fpl, Fp2, P7, P8) were excluded resulting in networks

with 28 nodes. These nodes had minor influence on the tvMVAR model when comparing with

a reduced model (that excludes these electrodes) but a strong influence on the detection of

network modules. The resulting EEG recording sites used in this study are shown in figure

7.2 Analysis of the network samples

The analysis concept outlined in chapter 3 section 3.6 was utilized to analyse the two network

samples given by the group averaged connectivity in the theta and the alpha frequency bands.

A global threshold based on pooling all 800 snapshot networks was computed using the 90th

percentile. To aggregate and smooth connectivity information in the vicinity of investigated

snapshot networks at preselected time steps, a time window length of 41 networks corresponding

to 400 ms was selected in an exploratory fashion. This means, for each investigated snapshot

network the connectivity information of 20 networks directly preceding it and 20 networks
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directly succeeding it in the network sequence is combined with the investigated snapshot
network itself to yield either a consensus network or a consensus partition, depending on the
analysis strategy. Module structure in these aggregated interaction patterns at the predefined
time steps was identified using the algorithm of Blondel et al. for weighted directed networks

(see also section 2.8).
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Figure 7.1 — EEG electrode positions.

7.3 Results and discussion

The main results of the application study can be summarized as follows. The global threshold
computation using pooled edge weights of all 800 available networks leads to an identified
module structure evolution that is associated with the temporal evolution of interaction
strengths. In doing so, deviations from this overall information on interaction strengths are
highlighted. By contrast, Pareto optimized network-specific thresholds take the temporal
reconfiguration of connectivity structure at each considered time step into account. Therefore,
by using different threshold definitions, different perspectives on the module structure dynamics
are given. As expected, after the stimulus onset, i. e. after the transition to a more demanding
balancing task, module structure starts to constantly reconfigure in both frequency bands, with
no dramatic changes being observed between any two subsequent time steps. In particular,
in the theta frequency band network sequence the module structures between 5s and 8s

(2s to 5s after stimulus onset) remains relatively stable in spite of an increasing number
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of threshold-exceeding interactions strengths (figure 7.2). The general localization and the

time-evolution of the modules mostly corresponds to the expected neural processing for the

balancing task.

In the theta band network sequence obtained by the global threshold an increase in laterality

can be observed following the stimulus onset (figure 7.2a), whereas laterality is a consistent

property of the module structure for the Pareto optimal thresholds (figure 7.2¢). It is known

that balancing tasks are associated with significant activation of the fronto-central and centro-

parietal cortical regions. Specifically, when balance tasks became more challenging a significant

increase in cortical theta activity was observed in the aforementioned regions [286]. The

localization of the modules of the theta network (figure 7.2) demonstrate that these regions are

involved in information processing during balancing on the unstable surface, i. e. after stimulus

onset. In particular, the central electrodes C1, Cz, C2 and the centro-parietal electrodes CP1,

CPz and CP2 (cf. EEG electrode layout in figure 7.1) act as the core of these modules for

both thresholding approaches. Thereby, for both thresholding approaches the centrally located

theta network module around CPz (module 4, @) is already established after the stimulus

onset and remains stable until the end of the analyzed period. The somatotopic representation

of the feet and legs comprises the medial part of the primary motor cortex M1 (Cz) and that of

the neck and trunk comprises the more lateral parts (C1, C2). Coinciding with the beginning

of interactions related to M1, a frontal module (module 2, @, electrodes FC1, FCz, FC2, Fz,

F4) evolves over the supplementary motor area (medial part) and the premotor area (lateral

part, area extrapyramidales). Associated functions are e.g. motor sequencing and planning as

well as movement initiation and inhibition [287]. The corresponding alluvial diagram (figure

7.2b) shows that the module around CPz (module 4, @) shows the highest degree of dynamics

during balancing on the unstable surface. The application of the Pareto-optimal threshold to

the theta band network sequence yields stable central modules around CPz, Cz (module 4, @)

and a widespread module which covers frontal and occipital regions (module 2, ®) (figure 7.2¢).

The main feature that stands out is the stability of the central module and of the modules,

which are associated with the temporal lobes of the cortex (module 1, ® and module 3, @).

Laterality of module structure is less pronounced in the alpha band network sequence

(figure 7.3) as compared to the theta networks, where it is again more prominent in the

Pareto thresholded networks (figure 7.3a). In the alpha networks, the occipital nodes O1 and

02 (cf. EEG electrode layout in figure 7.1) act as a source of interactions, which propagate

predominantly in the directions from occipital to parietal and to centro-parietal areas. In the
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alpha band network sequence for the global thresholding it can be seen that two occipital

modules do already exist pre stimulus (figure 7.3a). These two occipital modules cannot be

seen in the theta band, wheras in the alpha band they unite and the fusion module continues

to exist after the ‘alpha drop’ at 4s (reduced number and strengths of interactions). The

alpha network for the global threshold (figure 7.3a) is characterized by strong interactions

between the occipital electrodes (O1, Oz, O2, primary visual cortex) during the less demanding

balancing task before the stimulus onset. The interaction strengths, the number of interactions

to other electrodes and the number of modules slowly increases after the stimulus onset,

i.e. the module structure gradually expands from occipital to frontal electrodes until the entire

network is involved in the processing of the stimulus. The Pareto-optimal threshold reveals the

existence of a large module (module 4, @), which covers a high percentage of all network nodes,

including the occipital region (figure 7.3c). Starting with the stimulus onset this module is

constantly contracting, which can be seen in the corresponding Sankey diagram (figure 7.3d).

This could mean that at later time steps the visual control has lost some of its relevance for the

balancing task. Particularly notable is the co-existence of lateral and central modules which

encompass large parts of the ventral and dorsal pathways of visual information processing

[288, 289, 290], where the main direction of interactions is clearly from the occipital to the

temporo-parietal cortical areas. This finding indicates that both the ventral and the dorsal

visual system might be involved the optimization of balancing control [291]. Such an inter-

pretation is supported by the results based on the application of the Pareto-optimal threshold.

The results demonstrate the usefulness of the proposed module tracking approach, which can

also be directly applied to functional brain networks obtained with different recording modali-

ties, e. g. fMRI, or to longitudinal networks from entirely different domains. Information about

dynamic module structure can be complemented with an analysis of time-variant network

characteristics considering all investigated and aggregated time step networks. The quality

and stability of resulting dynamic network modules and the amount of volatility between

time steps, i.e. the amount of short-lived module structure changes are depending on the

choice of investigated time steps and the time step window size. In addition to the proposed

workflow (see also chapter 3 section 3.6), the stability of the module structure under minor

perturbations of the network data could be analyzed [292, 179, 243], e. g. by using the module

structure quality characteristics presented in chapter 2 section 2.10. This information could

be beneficially used to complement the selection of investigated time steps, which was based
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Figure 7.2 — Dynamic module structure of the theta band networks. The spatial
location of module structure changes is shown in the network plots according to the EEG
electrode layout, whereas the dynamics, i.e. the flow of node membership, are shown in the
Sankey diagrams. Thus, changes of information processing in the brain can be identified
from its spatio-temporal module structure changes. Results for the global threshold (90th
percentile, consensus networks) are shown in (a). Results for the Pareto optimal thresholds
(with consensus clustering) are shown in (b).
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Figure 7.3 — Dynamic module structure of the alpha band networks. The spatial
location of module structure changes is shown in the network plots according to the EEG
electrode layout, whereas the dynamics, i.e. the flow of node membership, are shown in the
Sankey diagrams. Thus, changes of information processing in the brain can be identified
from its spatio-temporal module structure changes. Results for the global threshold (90th
percentile, consensus networks) are shown in (a). Results for the Pareto optimal thresholds
(with consensus clustering) are shown in (b).
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on time-frequency analysis results. Such a perturbation analysis might be used to devise a
method for automatic time step selection. In a line of thought related to the perturbation
analysis a bootstrap [57] method was proposed to identify significantly clustered module
cores in weighted directed networks that might be tracked from time step to time step [159].
Tracking significantly clustered module cores is supposed to distinguish real trends in the
time evolution of the module structure from noisy data and random fluctuations that act to
insignificantly associate some nodes to their modules. The utility of this otherwise powerful
approach for EEG-derived noisy functional networks is unclear, because a too large number of
nodes from the already small networks might be found to be non-significantly clustered and
excluded from the module tracking. Dynamic module structure might also be identified in the
framework of multislice or multilayer networks [293], where the network configuration at each
time step corresponds to one slice and multiple slices (adjacency matrices) are coupled by edges
that connect each node with itself in neighboring slices [294, 295]. Despite the significantly
increased computational costs for the optimization of the associated multislice modularity as
compared to standard modularity optimization, this approach or related approaches might
represent a potentially interesting future avenue of research. Finally, in the experimental set-
tings typical for computational neuroscience in which group data is analyzed, sets of individual
time-varying network sequences have to be analyzed if one does not want to consider grand
mean networks of a network sample, as was done in this study. This potentially generates a
large amount of information that has to be dealt with, in particular high temporal variations
of identified module affiliations. The complexity of the results would further increased if
potentially interesting overlapping module structure is considered, where individual nodes can
be members of more than one module. Thus, taking all these considerations into account, it
can be said that the proposed workflow strives a good balance between extracting important
information about the brain activity and strongly interacting cohesive brain regions in the form
of network modules on one side and on the other side speed of computation and simplification

of analysis results, which have to remain interpretable.
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Chapter 8

Conclusions and future research

directions

HIS thesis investigated cognitive processes and brain function on the basis of functional
T connectivity analysis from a network perspective. The inherent network structure of
functional connectivity patterns naturally suggests the role of network analysis approaches as
one of the most suitable ways of gaining an improved understanding of functional connectivity.
In dependence on the research aims and the experimental background of the network data,
various adapted preprocessing techniques and analysis methods were used to extract relevant
information from the investigated network samples. The topology of the sample element
networks encodes the different ways information is transferred and processed among and
within neural structures of the brain. This suggests the importance of functional connectivity
analysis for gaining an deeper understanding of cognitive processes and brain function. The
methodological developments described in this thesis, although being generally applicable
to networks from different domains, were tailored towards the analysis of functional brain
networks and in particular samples of such networks. These network samples can basically be
analyzed on three different topological scales with respect to the level of topological details
considered for the analysis: the microscopic scale, mesoscopic scale and macroscopic scale. For
the work presented in this thesis, network characteristics of all three topological scales were
covered. With the clinical research questions for each application study in mind, a particular
focus was put on the mesoscopic scale of network topology, which is typically accessed by
network decompositions into functionally important recurring or unique substructures, like

building block subnetworks (motifs) or important node sets (e.g. modules). If longitudinal
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network data for the sample element networks is available, time-variant analysis is promising
to yield additional valuable information about the underlying recorded neural processing,
e. g. reconfiguration of connectivtiy patterns in response to a stimulus. In this regard, one of
the presented application studies taps into the potential of time-variant network analysis by
extracting dynamic module structure and revealing stimulus-dependent information about
the neural processing that would otherwise not have been available. In this work I described

several new methodological developments whose main ideas and potential improvements are:

o Motif detection in samples of binary directed networks with pairwise different node labels.
This approach makes it possible to detect functionally relevant small subnetworks that
occur significantly often within a network sample. Such subnetworks, i. e. motifs, are
deemed as characteristic interaction patterns. I demonstrated that they can be used
for interpretations of network function and to distinguish groups of networks. Possible
improvements of this approach relate to the involved network null models. Open questions
remain with respect to the design of null model networks that fit given network data. In

particular, the analytical calculation of subnetwork significance has to be improved.

o (ost optimal matching of module affiliation labels and a fuzzy matching extension. To
analyse different network partitions, e.g. the partitions of sample element networks, and
to improve the visual representation of module structure the module affiliation labels
of nodes have to be matched. This problem seems to be overlooked in the literature,
supposedly because analysis of single networks is still predominant in research. A few
further improvements seem currently conceivable. One of them has to do with the
handling of special cases with respect to the selection of the reference network partition.
For example, it is possible that the reference network has particularly many modules
and a poor module structure quality, resulting in bad (albeit cost optimal) matchings.
In such a case, another reference network should be selected. Currently, it is possible to
manually exclude networks from the matching process. In this regard, an algorithmic
approach for the quantification of the quality of the matchings would be desirable. This
could pave the way for selecting optimal subsets of partitions to be matched that could

further improve the quality of the whole matching.

o Comprehensive analysis strategies. Analysis of network data usually requires suitable
combinations of diverse techniques for preprocessing the data, network type conversions

and the actual characterization of network structure. Consequently, for all application
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studies several established preprocessing techniques and analysis approaches were in-
tegrated with my own developments to yield an application-specific analysis workflow.
Most likely in some cases different workflows and combinations of approaches could have
been successfully used, too. Future methodological developments should be incorporated

into existing workflows.

o Simulating networks with pre-defined module structure. The presented algorithm enables
the simulation of directed benchmark networks with known module structure for a range
of different parameter settings, which define different aspects of the resulting module
structure. Networks that had been generated with this algorithm were used for testing of
module detection algorithms and for MVAR time series generation to evaluate a method
for functional connectivity computation (IsGCI). In the future, this algorithm should be

extended to generate weighted directed networks with ground truth module structure.

o Computing edge weight thresholds using a multi-objective optimization approach. This
approach allows to compute objective thresholds for filtering edges so that the resulting
non-complete binary or weighted networks exhibit their most strongly marked module
structure. For it, a multi-objective optimization of module structure quality vectors
obtained at different global threshold levels is performed. Defining optimal edge weight
thresholds is still an open research problem, as is the case for the quantification of
thresholding-induced biases on the resulting network topology. However, with respect to
the underlying module structure, this approach might represent a step into the right
direction. Finding ways for obtaining local thresholds for individual regions inside a

network would likely further improve the situation.

With the help of these approaches several network samples were investigated in four major
studies of different clinical background. It seems that one of the most limiting factors with
regard to the applicability of network science approaches for functional brain network analysis
lies in the ability to correctly interpret the findings with respect to the observed neural
processing, for which additional knowledge about neurophysiological processes is essential.
This illustrates the central problem of neuroscience that often there is no good way to evaluate
a theory or a model [296]. Functional connectivity measures offer only a limited view on the
underlying neurophysiology and networks constitute only models that approximate a real
system. For the case of networks derived from EEG sensor space data, another source of

inaccuracy is given by the presence of noise and volume conduction effects, i.e. the fact that
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the exact neural signal sources are not known, as the recorded brain activity is a superposition
of different source activities, which limits interpretations of functional connectivity patterns
[297]. Consequently, much work remains in the area of relating functional network analysis
results to cognition and neural information processing [3]. On the part of network approaches,
major future advancements for the investigation of time-variant networks and network samples
in the form of multilayer network [293] modeling and analysis can be anticipated. The network
analysis approaches presented in this thesis can principally be applied for the analysis of
network from different domains. This generality with respect to the investigated system is
a great advantage of thesse methods. Natural examples of networks from other domains
are social networks, which represent social contacts among individuals or social groups, or
metabolic networks. Metabolic networks represent directed metabolic pathways in two ways.
The first one is given by modeling the metabolites as nodes and the enzymes as edges that
connect nodes if the enzyme catalyzes their conversion. The second way of representation is
given by modeling the enzymes as nodes that are connected by directed edges if the product
of one enzymatic reaction forms the substrate for the other enzyme. However, other metabolic
network representations and analysis approaches than the structural ones covered in this
thesis seem to have received more attention. Examples are the stoichiometry constraint-based
analysis framework [298] and metabolic models, e. g. elementary flux pattern analysis for the

prediction of novel biochemical pathways [299].

Overall, despite some inevitable limitations I think the appeal and the utility of network
analysis techniques for revealing features of functional connectivity and monitoring their alter-
ations in health and disease, in different neurophysiological states and during different modes
of neural processing became apparent in this thesis. Representing functional connectivity
as networks and trying to gain a deeper understanding of brain function by analyzing these
networks with suitable approaches likely constitutes the currently most powerful and most

elegant way of accessing brain activity.
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Appendix B

Supplemental information for

functional brain network analysis

B.1 Methods for functional brain network identification

This section gives a review of the functional connectivity estimation methods that were used

to compute the networks whose algorithmic analysis is the foundation of this thesis.

B.1.1 Granger Causality Index and large scale Granger Causality Index

The concept of Granger Causality encompasses various approaches for the investigation of
directed interrelations between time series. A popular Granger Causality [300] approach is
based on the principle of mutual predictability, i.e. the notion that a process variable affects
another process variable, if the knowledge of the former variable helps improving predictions
of the latter variable [301]. More specifically, an univariate time series Y; (e.g. the recording
at a specific EEG electrode or one specific fMRI voxel time series) is said to Granger-cause
another univariate time series Y; of the same multivariate process if the knowledge of the past
of Y; leads to a significant improvement in the prediction of Y. Therefore, Granger causality
measures directional (unreciprocal) dependencies between the pair of time series Y; and Y; and
can be applied to identify directed functional connectivity in neural time series data [8] where
it can be interpreted as the existence of some underlying information flow from the brain
area corresponding to time series Y; to the brain area related to Y; [58]. Linear multivariate
autoregressive (MVAR) time series models, which gives a quantification of prediction errors,

are most commonly used for the identification of Granger causality. A p-th order |V|-variate
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autoregressive model is formally given by
P
Y(n):ZAT-Y(n—T)+E(n), n=p+1,--- Ny (B.1)
r=1

with state vectors Y (n) € RVl for N; available temporal samples, AR model parameter
matrices A" € RVI*Vl and a zero mean uncorrelated noise process E(n) € RV,

Given an observed multivariate time series (y(n)) _N,» Which consists of all [V| observed

n=1,..

univariate time series (yx(n)) _N,» in practice the model order p may be determined ac-

n=1,..
cording to the procedure outlined in [302], which consists of applying the general AIC criterion
[303] for the calculation of p and subsequent fine-tuning to match the AR-related, parametric
spectrum with the Fourier power spectrum. To estimate the AR parameters the MVAR model

is fitted to the observed time series (y(n)) N, Subject to minimizing the sum of squared

n=1,..
model residuals [301]. This yields an estimated multivariate time series (§(n)),—; , and
corresponding model residuals given by é(n) = y(n) — y(n). For the case of a time-variant
MVAR process [302], where the value of the autoregressive coefficients A”(n) depends on n,

the model parameters can be estimated e.g. by a Kalman filter approach [304].

To quantify the influence of the obscured time series y; on the time series y; the MVAR model

is also fitted to a restricted time series (yi_ (n)) LN, obtained by excluding all data on y;,

n=1,.
which yields restricted model residuals &~ (n). With the covariance matrices C = cov(é) and
C'~ = cov(é), a Granger Causality Index (GCI) that quantifies the directed influence from
yi to y; is defined by

vimg =10 (C]7) = (Cy). (B.2)

where CJZ:_ and C; denote the j-th diagonal entry of C*~ and C, i.e. the variance of the
model residuals associated with y; in the modified and in the original system. GCI takes on

nonnegative values.

Due to a limited availability of temporal samples and the resulting problem of estimation
equations in MVAR model fitting becomming under-determined, classical multivariate Granger
Causality analyses, as described above, are commonly restricted to spatially low-dimensional
data, which requires a pre-selection or aggregation of time series as a preprocessing step [273].

With this, only a reduced amount of the available spatially distributed information can ulti-
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mately be exploited. Even approaches that are geared towards reducing spatial dimensionality
by a suitable coordinate transformation, such as principal component analysis (PCA) [305] or
independent component analysis (ICA) [306] do not constitute a fully adequate replacement
for unfavorable time series subset pre-selection or time series aggregation approaches, because
identified interactions between a few principal or independent components cannot be readily
transferred back into the original high-dimensional space, which severely limits the interpreta-

tion of functional connectivity.

With the large scale Granger Causality (IsGCI) index [278, 61, 273] spatially high-dimensional
data is incorporated into the connectivity analysis. This is achieved by an embedded PCA
data dimension reduction step, which is followed by standard Granger Causality connectivity
analysis, i.e. the MVAR model parameter estimation, is based on low dimensional time series
that were obtained by PCA. Subsequently, the estimated low dimensional MVAR model is
projected back into the original high dimensional space by an orthogonal transformation.
The back projected model is then used to calculate residuals with respect to the original
high-dimensional time series for defining pairwise standard GCI interactions between network
nodes. The preservation of high spatial data dimensionality may result in functional networks
that consist of several thousand nodes that are connected by millions of edges, yielding a

representation of brain connectivity phenomena that span many spatially distinct brain regions.

B.1.2 Partial directed coherence (PDC) and generalized PDC

Partial directed coherence (PDC) [307] can be seen as a frequency domain counterpart of
Granger Causality, which works in the time domain, and has become a very prominent tool
for the quantification of functional connectivity in EEG recordings [58]. It yields a linear
frequency-selective quantifier of the multivariate relationship between simultaneously observed
time series [308]. The PDC can be derived based on Fourier transformed MVAR parameters.

With a |V|-dimensional identity matrix I the AR parameter matrix is given by

A(f)=1- i AT eVl (B.3)
r=1
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The PDC, which quantifies the degree of connectivity, i.e. the relative interaction strength,

from Y; to Y; at a normalized frequency f, is defined as follows

Aji(f)

misi(f) =
) SV AP

(B.4)

Thus, m;—;(f) accounts for the ratio of the coupling strength of the interaction of ¥; with
regard to Y; and the coupling strengths of all interactions of Y;. The PDC takes on values in
the [0, 1] interval [307].

The generalized PDC (gPDC) is an extension of the PDC that can be suitably applied
in the presence of unbalanced predictive modeling errors if signal amplitudes differ to a large
extent as it is more robust in estimating imprecisions associated with finite time series samples

[308]. It is given by
o Ai(f)

’l-)] V
¢z'd '1 L Aa(P

where 03 refers to the variance of the d-th MVAR model residual. Weighting the AR coefficients

(B.5)

with the variances of the model residuals E (MVAR prediction errors at frequency f) reduces

the influence of particular signal amplitude amplifications.

B.1.3 Direct directed transfer function (dDTF)

A modification of the directed transfer function (DTF) was proposed in [309]. The so-called
direct DTF (dDTF) is a measure to estimate direct causal relations between signals using the
transfer matrix of the system in the frequency domain. The method combines information
from the partial coherence function with information about the direction of influence. One
advantage of the dDTF is that the resulting time-frequency maps have a good frequency
resolution so that specific frequency bands can be separated with high accuracy. As a drawback,

(d)DTF is susceptible to the influence of indirect interactions.

149



B.2 Simulation of MVAR time series that mirror ground truth

network connectivity patterns

Publications [61] and [273], which I coauthored, rely on extensive simulation studies, in
which 1sGCI (see also section B.1.1) connectivity analysis was performed and validated on
multivariate time series that comprise a known network module structure. Here I briefly

describe the simulation of such time series based on simulated ground truth networks.

The multivariate time series corresponding to each ground truth network and comprising their
connectivity structure were realized on the basis of first order |V|-variate autoregressive models
formally given by equation B.1. Thereby, the number of available temporal samples was kept
constant with N; = 1000 [273]. The corresponding AR matrices A! of equation B.1 were
separately defined for each ground truth adjacency matrix as follows: if there is no connection
from node v; to node v;, the corresponding AR parameter coefficient Azlj was set to zero
(note the different order of indices as compared to the notation typically used for adjacency
matrices). Otherwise, it is Al-lj = ¢ -(0.99/n) where ¢ is selected uniform at random from
{=1,1} and 7 is the maximum in-degree of all nodes. This scaling ensures the stationarity of
the resulting multivariate process [301]. The maximum column sums of all adjacency matrices
were restricted to be at most fifteen, which yields n < 15 (see also section 3.4 on page 71).
Thus, this column sum constraint ensures similar coupling strengths for all dimensions |V|. As

a consequence, the process of generating ground truth networks was inevitably controlled by

the requirements of the autoregressive parameters Az-lj, which directly depend on 7. Since the
column sum constraint needs to be satisfied for all nodes, adjustment of the other network
simulation parameters to a narrow range of values was required (see also section 3.4 on page 71,
Simulating networks with pre-defined module structure). The added noise terms E(n) are

zero mean normally distributed random numbers with an identity covariance matrix.
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B.3 Supplemental module structure recoverability and quality

analysis results

The following boxplots give a detailed overview of the module structure recoverability and

quality analysis results for the second study presented in chapter 6.
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