
Integrating Requirements Prioritization and
Selection into Goal Models

Doctoral thesis
for attaining the academic degree of

Doctor of Engineering (Dr. -Ing.)

presented to the Faculty of Information and Automation
Software Architectures and Product Lines Group

by M.Sc. Arfan Mansoor
(12. December 1983)

1. Reviewer: Dr.-Ing. Detlef Streitferdt

2. Reviewer: Prof. Dr.-Ing. habil. Wolfgang Fengler

3. Reviewer: Associate Professor. Ghulam Rasool

Submitted on: 26.10.2016
Defended on: 30.05.2017

urn:nbn:de:gbv:ilm1-2017000222

Dedication i

Dedication

To the never ending memories of my father and grandmother

To my mother for her ongoing love and support

To my wife, brothers, sisters and lovely nephews and nieces

PhD Dissertation Arfan Mansoor

Acknowledgements ii

Acknowledgements

Thanks to Almighty Allah(SWT).

I would like to thank my guide Dr.-Ing. Detlef Streitferdt for giving me an oppor-

tunity to work with him as a PhD student. I am indebted to him for his persistence

during my work. He spent long hours with me discussing all aspects of my thesis. His

valuable suggestions helped me a lot, not only in my work but also in difficult times.

Without his guide and support this work would not have been possible.

I would also like to thank professor Ilka Philippow who initially supported me at

the Ilmenau University of Technology. Furthermore, I would like to thank Dr Oswald

Kowalski, Dr. Patrick Mäder, Franz-Felix Füßl, Stefan Wendler and late Heiner Kotula

for their friendly attitude and support during my PhD. My special thanks to Nils Würfel

for his technical support at TU Ilmenau.

Special thanks to my late father Mansoor Ahmed Gill who always has been a source

of inspiration for me. Moreover, I sincerely thanks my brothers for their support,

patience and encouragement throughout my educational timespan and my friends here

in Ilmenau, Germany and back in Pakistan.

Finally, thanks to my wife for understanding ups and downs in last one year.

PhD Dissertation Arfan Mansoor

Abstract iii

Abstract

Requirements engineering is the first main activity in software development process.

It must address the individual goals of the organization. The inadequate, inconsistent,

incomplete and ambiguous requirements are main obstacles on the quality of software

systems. Goal Oriented Requirements Engineering (GORE) starts with abstracts high

level goals. These goals are refined to lower levels until they are assignable to agents.

During GORE analysis, decisions need to be made among alternatives at various po-

sitions. Decisions involve different stakeholders which may contradict with each other

based on certain criteria.

In the context of GORE, the support for identifying and managing the criteria for

requirements selection process is required. The criteria are based on stakeholders needs

and preferences and therefore stakeholders opinions need to be involved in selection

process. It helps to identify the importance of requirement according to stakeholders

understandings and needs. It also helps in the understanding of interaction between

system and stakeholders (stakeholders involvement in making important decisions) and

by documenting the stakeholder preferences early in GORE, helps to identify inconsis-

tencies early in the requirements engineering.

Software quality requirements are essential part for the success of software devel-

opment. Defined and guaranteed quality in software development requires identifying,

refining, and predicting quality properties by appropriate means. Goal models and

quality models are useful for modelling of functional goals as well as for quality goals.

This thesis presents the integration of goal models with quality models, which helps to

involve stakeholders opinions and the representation of dependencies among goals and

quality models. The integration of goal models and quality models helps in the deriva-

tion of customized quality models. The integrated goal-quality model representing the

functional requirements and quality requirements is used to rank each functional re-

quirement arising from functional goals and quality requirement arising from quality

goals. Triangular Fuzzy Numbers (TFN) are used to represent stakeholder opinions for

prioritizing requirements. By defuzzification process on TFN, stakeholders opinions

are quantified. TFN and defuzzification process is also used to prioritize the identified

relationships among functional and non-functional requirements. In the last step devel-

opment constraints are used to re-prioritize the requirements. After final prioritization,

PhD Dissertation Arfan Mansoor

Abstract iv

a selection algorithm helps to select the requirements based on benefit over cost ratio.

The algorithm makes sure that maximum number of requirements are selected while

fulfilling the upper cost limit. Thus the whole process helps in the selection of require-

ments based on stakeholders opinions, goal-quality models interaction and development

constraints.

The thesis also presents an integrative model of influence factors to tailor product

line development processes according to different project needs, organizational goals,

individual goals of the developers or constraints of the environment. Tailoring is re-

alized with prioritized attributes, with which the resulting elements of the product,

process and project analysed are ranked. An integrative model for the description of

stakeholder needs and goals in relation to the development process artefacts and the

development environment specifics is needed, to be able to analyse potential influences

of changing goals early in the project development. The proposed tailoring meta-model

includes goal models, SPEM models and requirements to development processes. With

this model stakeholder specific goals can be used to support binding a variable part

of the development process. This support addresses soft factors as well as concrete

requirements.

PhD Dissertation Arfan Mansoor

Zusammenfassung v

Zusammenfassung

Requirements Engineering ist der erste Schritt im Softwareentwicklungsprozess. Er

dient zur Aufnahme organisationsabhängiger Ziele und Anforderungen. Unangemessene,

inkonsistente, unvollständige oder mehrdeutige Anforderungen können die Qualität

von Softwaresystem stark negativ beeinflussen. Goal Oriented Requirements Engi-

neering (GORE) beginnt mit der Entwicklung von übergeordneter Zielen, welche in

weiteren Entwicklungsstufen verfeinert werden, bis sie einer verantwortlichen Person

zugewiesen werden können. Während einer GORE Analyse werden an verschiedenen

Stellen Entscheidungen über Alternativen getroffen.

Diese Entscheidungen betreffen unterschiedliche Akteure, die sich in ihren Ansichten

widersprechen können. Im Rahmen von GORE wird die Unterstützung zur Iden-

tifizierung und Verwaltung von Kriterien zur Auswahl von Anforderungen benötigt.

Diese Kriterien basieren auf den Vorstellungen und Vorlieben von Stakeholdern, daher

ist eine Integration aller Stakeholder in den Auswahlprozess erforderlich. Dies soll dabei

helfen, die Bedeutung bestimmter Anforderungen auf Basis der betroffenen Personen

zu identifizieren und aufzuarbeiten. Darüber hinaus hilft GORE bei der Kommunika-

tion zwischen System und Akteuren durch ihren Einbezug in wichtige Entscheidungen.

Durch frühzeitige Dokumentation des tatsächlichen Stakholderbedarfs können Inkon-

sistenzen im Requirements Engineering frühzeitig ermittelt werden.

Die Bestimmung von Software Qualitätsmerkmalen ist wesentlicher Erfolgsfaktor

in der Software Entwicklung. Zur Gewährleistung einer qualitativen Softwareentwick-

lung und eines entsprechenden Produktes sind die Identifizierung, die Verfeinerung

und die Vorhersage von Qualitätseigenschaften jederzeit durch geeignete Maßnahmen

erforderlich. Goal Models und Quality Models sind wertvolle Werkzeuge zur Ermit-

tlung und Modellierung funktionaler und nicht-funktionaler Anforderungen und Ziele.

Diese Arbeit enthält einen Lösungsansatz zur Integration von Goal Models und Qual-

ity Models, der dazu beitragen soll, Stakeholder und Abhängigkeiten zwischen Goal

und Quality Models einzubeziehen und sichtbar zu machen. Die Integration von Goal

Models und Quality Models soll zur Ableitung spezifischer Quality Models beitragen.

Somit kann das integrierte Goal-Quality Model, welches die funktionalen Anforderun-

gen und die Qualitätsanforderungen vereint, zur Priorisierung aller funktionalen An-

forderung, die sich aus den funktionalen Zielen ergeben, und aller Qualitätsanforderun-

PhD Dissertation Arfan Mansoor

Zusammenfassung vi

gen, die aus Qualitätszielen resultieren, dienen. Zur Priorisierung der Anforderung auf

Basis der Stakeholderbedarfe werden Triangular Fuzzy Numbers (TFN) verwendet.

Nach der endgültigen Priorisierung dient ein spezieller Algorithmus zur Einschätzung

und Auswahl der Anforderungen auf Basis einer Kosten-Nutzen-Analyse. Dieser Al-

gorithmus stellt sicher, dass unter Einhaltung einer von der Organisation gewählten

Kostenobergrenze die maximale Anzahl der Anforderungen umgesetzt werden kann.

Der gesamte Prozess dient demnach zur Anforderungsanalyse unter Berücksichtigung

verschiedener Interessengruppen, Abhängigkeiten, sowie durch den Einbezug von Gren-

zen, die sich beim Zusammenspiel von Goal-Quality Models und der Softwareentwick-

lung ergeben können.

Darüber hinaus enthält die Arbeit ein integratives Modell, um Entwicklungsprozesse

während der Erstellung von Produktlinien an Einflussfaktoren, wie Projektbedürfnisse,

Organisationsziele, individuelle Ziele von Entwicklern oder an Umweltbedingungen

anzupassen. Dieses sogenannte Tailoring wird durch Priorisierung von Attributen

erreicht, welche verschiedene Elemente des zu erzeugende Produktes, des Prozesses

oder des Projektes analysieren und nach Bedeutung sortieren. Ein integratives Modell

zur Beschreibung von Stakeholderbedürfnissen und -zielen in Bezug auf die Artefakte

des Entwicklungsprozesses und die Besonderheiten einer Entwicklungsumgebung wird

benötigt, um potenzielle Einflüsse sich verändernder Ziele frühzeitig während der Pro-

jektentwicklung zu analysieren. Das hier vorgestellte Tailoring-Meta-Model beinhal-

tet Goal-Models, SPEM Models und Requirements hinsichtlich Entwicklungsprozesse.

Mithilfe dieses Modells können stakeholderspezifische Ziele dazu verwendet werden, um

einen variablen Teil eines Entwicklungsprozesses projektbezogen zu gestalten. Auf diese

Weise können weiche Faktoren genauso integriert werden, wie konkrete Anforderun-

gen.

PhD Dissertation Arfan Mansoor

CONTENTS vii

Contents

Dedication i

Acknowledgements ii

Abstract iii

Zusammenfassung v

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals of the Thesis . 4
1.3 Contributions . 5
1.4 Outline of the Thesis . 7

2 Fundamentals of Software Requirements 9
2.1 Software Requirements . 9
2.2 Requirements Engineering (RE) Process 10

2.2.1 Requirements Statement Characteristics 12
2.2.2 Requirements Specification Characteristics 13

2.3 Requirements Types . 13
2.3.1 Functional Requirements . 14
2.3.2 Non-functional Requirements 14
2.3.3 Domain Requirements . 15
2.3.4 Inverse Requirements . 16
2.3.5 Design and Implementation Constraints 16

2.4 Why GORE . 16
2.5 Summary . 17

3 State-of-the-Art
GORE Concepts and Frameworks 18
3.1 Goal Oriented Requirements Engineering 18

3.1.1 Goals, Terms and Definitions 18
3.2 Goal Based Requirements Analysis . 20

3.2.1 Goal Identification . 20

PhD Dissertation Arfan Mansoor

CONTENTS viii

3.2.1.1 Goal Elicitation by Refinement 22
3.2.1.2 Goal Elicitation by Abstraction 22
3.2.1.3 Goal Elicitation by Scenarios 22
3.2.1.4 Goal Elicitation by Obstacle Analysis 22
3.2.1.5 Goal Elicitation through Constraints 23

3.2.2 Goal Refinement . 23
3.2.3 Elaboration Method . 24

3.2.3.1 Identifying Objects . 24
3.2.3.2 Identifying Agents and Agents Assignments to Goals . 25
3.2.3.3 Identifying Operations and Operationalizations of Goals 26

3.3 Goal Classifications . 27
3.3.1 Classification by Patterns . 27
3.3.2 Classification by Type . 28
3.3.3 Classification by Target Condition 28
3.3.4 Classification by Nature of Goals 28
3.3.5 Classification based of RE Activity 29

3.4 Links in GORE . 29
3.5 Benefits of GORE . 31
3.6 GORE Frameworks . 34

3.6.1 NFR framework . 34
3.6.2 i* (i-star) . 35
3.6.3 Keep All Objects Satisfied (KAOS) 36
3.6.4 Goal Requirements Language (GRL) 38

3.7 Summary . 40

4 Decision Support in GORE 41
4.1 Identifying Decision Points in GORE 42
4.2 Importance of Decision support in GORE 43
4.3 GORE and Decision Making Framework 44
4.4 Decision Influencing Factors . 48
4.5 Non-functional Requirements for Decision Support 50

4.5.1 Identifying Terms of Non-functional Requirements 50
4.5.2 Elicitation of Requirements . 51
4.5.3 Requirements Elicitation Challenges 52
4.5.4 Requirements Elicitation Context 53
4.5.5 Requirements Elicitation using Goals 54

4.6 Summary . 57

5 Quality Models and Goal Models Integration 58
5.1 Quality Models Classifications . 58

5.1.1 Boehm’s Software Quality Tree [Boe76] 58
5.1.2 McCalls Quality Model (1977) 59
5.1.3 Romann Model [Rom85] . 61
5.1.4 Sommerville Model [Som95] . 63
5.1.5 Dromey’s Quality Model [Dro95] 63
5.1.6 FURPS/FURPS+ [Gra92] . 65
5.1.7 ISO 9126 Model [Sta04] . 66
5.1.8 Comparison of Quality Models 68

5.2 Goal Model and Quality Model Integration 70

PhD Dissertation Arfan Mansoor

CONTENTS ix

5.3 summary . 71

6 Prioritization and Selection of Requirements: Three Tier Approach 72
6.1 Fuzzy Numbers . 74
6.2 General Procedure . 76
6.3 Methodology . 77
6.4 Cyclecomputer Example . 79

6.4.1 Establishing High level Goals 80
6.4.2 Refine Goals to Leaf Levels (establish functional goals) 80
6.4.3 Stakeholders and Their Opinions 80

6.4.3.1 Identifying Stakeholders 80
6.4.3.2 Stakeholders Opinions Accumulation 82

6.4.4 Aggregating the Importance Using TFN 83
6.4.5 Apply Defuzzification Process on TFN 83
6.4.6 Normalizing Values Obtained by Defuzzification Process 84
6.4.7 Functional and Quality Goal Impact Measurement 85

6.4.7.1 Determining Project Specific Quality Goals 85
6.4.7.2 Determining and Evaluating the Dependency between

Quality Goals . 86
6.4.7.3 Determining and Evaluating the Impact of Quality goals

and Functional goals 87
6.4.8 Development Factors Considerations 88

6.5 Comparison With Related Work . 89
6.6 Summary . 91

7 Extending the Approach for Alternatives Selection 93
7.1 Selection Procedure . 94
7.2 Methodology . 95

7.2.1 TOPSIS Review . 95
7.3 Cyclecomputer Example . 96

7.3.1 Step 1 Establishing High level Goals 96
7.3.2 Refine Goals to Leaf Levels (establish criterion for each goal) . . 96
7.3.3 Identifying Stakeholders . 97
7.3.4 Stakeholders Opinions Accumulation 97
7.3.5 Step 5 to 7 . 98
7.3.6 Cyclecomputer Alternatives . 98
7.3.7 Evaluate Alternatives Using TOPSIS 99

7.3.7.1 Constructing Decision Matrix 99
7.3.7.2 Normalizing Decision Matrix and Constructing Weighted

Normalize Decision Matrix 99
7.3.7.3 Determine the Positive Ideal and Negative Ideal Alter-

natives . 99
7.3.7.4 Calculating the Separation Measures 100
7.3.7.5 Calculating Closeness to Ideal Solution 101
7.3.7.6 Ranking and Selection 101

7.4 Comparison With Related Work . 101
7.5 Summary . 102

PhD Dissertation Arfan Mansoor

CONTENTS x

8 Goal Model Integration for Tailoring Product Line Development Pro-
cesses 104
8.1 The Need of Integration Model . 106
8.2 Tailoring Development Processes . 108
8.3 Tailoring Meta-model . 112
8.4 Summary . 115

9 Evaluation of the Proposed Approach 116
9.1 Goals of the Experiment . 117
9.2 Steps of Experiment . 117
9.3 Case Study . 117
9.4 Workshop Results . 118

9.4.1 Functional Requirements . 118
9.4.2 Non-functional Requirements 119

9.5 Execution of Experiment . 120
9.5.1 Sample Population . 120
9.5.2 Research Question of Experiment 121
9.5.3 First Round . 121
9.5.4 Second Round . 124

9.6 Evaluation of Results . 128
9.7 Validation of Experiment . 136

9.7.1 Conclusion Validity . 136
9.7.2 Internal Validity . 136
9.7.3 Construct Validity . 136
9.7.4 External Validity . 137

9.8 Summary . 137

10 Conclusions and Outlook 138
10.1 Thesis Goals and Acquirement . 138
10.2 Future Work . 139

Appendix A Implementation and Modelling 142
A.1 Implementation of case Study . 143
A.2 Alternatives Selection Using a variant of TOPSIS 155
A.3 Regression Modelling . 158

Appendix B Cycle Computer Goals 181
B.1 AHP Pairwise Comparisons . 188

Appendix C Cycle Computer comparisons 191

Appendix D Abbreviations 195

Bibliography 196

Erklärung 204

PhD Dissertation Arfan Mansoor

LIST OF FIGURES xi

List of Figures

2.1 RE Process [KS98] . 11

2.2 RE Process Activities [KS98] . 11

2.3 Central Role of Requirements Documents 12

2.4 Non-functional Requirements Aid . 15

2.5 Missing Non-functional Requirements Effect 16

3.1 Goal Based Requirements Analysis . 21

3.2 Hard/Softgoal . 29

3.3 NFR Elements . 35

3.4 i* Elements . 36

3.5 KAOS Elements . 37

3.6 GRL Elements . 38

4.1 Goal Exploratory Analysis . 43

4.2 Decision Making Framework and GORE 46

4.3 Decision Making Activities . 47

4.4 Decision Factors . 49

4.5 Cycle Computer Goals . 56

4.6 Call&MsgFunction Subgoals . 56

5.1 Boehm’s Software Quality Tree . 60

5.2 McCall’s Quality Model . 61

5.3 McCall’s Quality Factors and Quality Criteria 62

5.4 Sommerville Classification of NFRs . 63

5.5 Dromey’s Product Quality Model . 65

5.6 ISO Quality Model in the Product life cycle [WS03] 67

5.7 ISO Quality Model Internal and External Quality Characteristics . . . 69

5.8 Comparison of Quality Models . 69

5.9 Integrated Meta Model . 70

6.1 TFN Membership Function . 75

6.2 Proposed Methodology . 79

PhD Dissertation Arfan Mansoor

LIST OF FIGURES xii

6.3 Partial Goal Model . 82

6.4 Quality Goals and Functional Goals . 85

7.1 Methodology Extension for Alternative Selection 96

7.2 Relevant Stakeholders . 97

7.3 Decision Matrices . 99

7.4 Separation Measure for Positive Ideal Alternative 100

7.5 Separation Measure for Negative Ideal Alternative 100

7.6 Relative Closeness to Ideal Solution . 101

8.1 Product Line Development Process . 106

8.2 Goal and Method Models . 109

8.3 Integrated Goal Model . 109

8.4 OpenUP Overview . 111

8.5 Developer Role in OpenUp . 112

8.6 OpenUP Guidance for SPEM elements 112

8.7 Meta-model for Development Process Tailoring 113

8.8 choose Pseudo-code . 114

9.1 Time Difference between AHP and Proposed Approach 128

9.2 Time Difference of Used Approaches 129

9.3 Methods Comparisons . 131

9.4 AHP Ranks of Both Rounds . 133

9.5 Proposed Approach Ranks of Both Rounds 133

9.6 NFR Ranks of Both Rounds . 134

9.7 Participants Expertise in RE . 134

9.8 Evaluation Results . 135

9.9 Participants Recommendations About Approach 135

B.1 High Level Goal Model . 181

B.2 Flexible Configuration . 182

B.3 Customization . 182

B.4 Attractiveness . 183

B.5 Entertainment . 183

B.6 Usability . 184

B.7 Training Support . 184

B.8 Maintenances . 185

B.9 Tour Management . 186

B.10 Reliability . 186

B.11 Sensor Data . 187

B.12 Robustness . 187

PhD Dissertation Arfan Mansoor

LIST OF TABLES xiii

List of Tables

2.1 Software Requirements . 10

3.1 GORE Terms and Definitions . 19

3.2 What are Goals . 20

3.3 GORE Frameworks and Their Relevance 39

4.1 Decision Influencing Factors . 48

4.2 Functional Requirements according to Domain 49

4.3 Run Time and Development Time Qualities 55

6.1 Partial Goal subgoal description . 81

6.2 Linguistic terms and their TFN values 82

6.3 Stakeholder judgements . 83

6.4 TFN, Defuzzification and Normalized Scores 84

6.5 Linguistic terms and their values for quality goals 86

6.6 Quality Goals Impact and Measurement 86

6.7 Relationship Strength Values . 87

6.8 Requirements Values after Quality Goals Interactions 87

6.9 Requirements Values after Development Factors 88

6.10 Requirements Selected by Algorithm 89

7.1 TFN, Defuzzification and Normalized Scores 98

7.2 Alternative fulfilling Criteria Scores . 99

9.1 Design Used . 122

9.2 Participants Judgements . 122

9.3 Ranks based on AHP Comparisons . 123

9.4 AHP Distance Matrix . 123

9.5 Prioritization after First Step . 124

9.6 Requirements Interaction . 125

9.7 Requirements Priorities after Interactions 126

9.8 Non-functional Requirements Priorities 126

PhD Dissertation Arfan Mansoor

LIST OF TABLES xiv

9.9 Final Priority List . 127

9.10 100 Dollar Test . 127

9.11 AHP Ranks of Both Rounds . 130

9.12 Proposed Approach Ranks of Both Rounds for Functional Requirements 130

9.13 Proposed Approach Ranks of Both Rounds for Non-functional Require-

ments . 132

9.14 Survey Questionnaire Results . 132

PhD Dissertation Arfan Mansoor

1. Introduction 1

Chapter 1

Introduction

Software development process is mainly divided into four stages; vision, definition,

maintenance and development. Each stage has different focus of activities. In vision

phase focus is on ’why’ i.e., why this system is required. In definition phase focus is

on ’what’ i.e., what needs to built the outlined vision. Development phase is focused

on design and implementation of the system while in the maintenance phase, system

changes and enhancement in the system are carried out. Requirements engineering is

the starting point of development process at which the system services and constraints

are established or in other words elicited.

Most of the problems in development process are tracked down to shortcomings

in the requirements gathering and requirements specification phase. Some studies

show that 40% - 60% of defects in software projects are because of poor require-

ments [Lam00a]. It is necessary to identify and catch errors early in the software

development life cycle because correcting an error later is more difficult, more time

consuming and it will also costs much more. Correcting an error after development

costs 68 times more than correcting it before development and it may go up to 200

times [Lam00a]. Poor requirements are also cause of delays and over budgets in soft-

ware development life cycle. Therefore, requirements are one critical success factor for

any software development project.

In 10th RE conference (RE02) requirements engineering is defined as goal-driven:

“Requirements Engineering (RE) is the branch of system engineering concerned with

the real-world goals for, functions of, and constraints on software-intensive systems. It

is also concerned with how these factors are taken into account during the implemen-

tation and maintenance of the system, from software specifications and architectures

up to final test cases.” Goals have been used as high-level abstraction medium for the

structuring and abstracting the contents of requirements [Don04] .

PhD Dissertation Arfan Mansoor

1. Motivation 2

Goals are used for identifying, organizing and justifying software requirements [Ant96]

and goal oriented requirements engineering (GORE) deals with the use of goals for elic-

iting, elaborating, structuring, specifying, analysing, negotiating, documenting, and

modifying requirements [VL01]. GORE is an incremental approach in which high level

goals are identified then these high level goals are refined and classified into different

categories. Different types of goal categorization have been purposed. Finally the

requirements and assumptions are elaborated to meet these goals. A goal under the

responsibility of single agent in the software-to-be is called a requirement while a goal

under the responsibility of single agent in the environment of the software-to-be is

called an assumption.

One of the major highlights of Goal Oriented Requirements Engineering (GORE)

is the concept of early requirements analysis [Lap05]i.e., instead of answering ’what’

needs to be implemented GORE first focus on ’why’ and ’how’ questions (not ’how’

to implement but ’how’ to identify new goals) . GORE also helps to answer ’who’

and ’when’ questions [DLF93] i.e., ’why’ a certain goal is required, ’how’ that goal can

be achieved and ’who’ is responsible for that goal. Goal elicitation, refinement and

analysis of goals, assignment of goals to agents, and alternative system proposals are

some of the main areas of research in GORE. This research will focus on GORE in

general and on finding alternative system proposals in specific.

1.1 Motivation

Several studies show that requirements problems are major cause of cost overruns

and project delays. A survey of 8000 projects under 350 organizations was conducted

in US and mostly the causes of failures were identified to poor requirements - more

specifically, the lack of user involvement (13%), requirements incompleteness (12%),

changing requirements (11%), unrealistic expectations (6%), and unclear objectives

(5%) [Lam00a]. The inadequate, inconsistent, incomplete, ambiguous requirements are

numerous and they have critical impact on the quality of the resulting software [LL02].

[LL02]describes requirements gathering, establishing the detailed technical require-

ments including all the interfaces to people, to machines, and to other software systems

as the hardest single part of building a software system. No other part of the work

so cripples the system if done wrong. No other part is more difficult to rectify later.

Therefore, the iterative extraction of product requirements are the most important task

that requirements engineer performs for the client.

PhD Dissertation Arfan Mansoor

1. Motivation 3

Requirements engineering approaches so far discussed are in the what-how range.

The idea of goals have introduced ’why’ concerns in the early stage of requirements

engineering i.e., ’why’ the system was needed and does the requirements specification

captures the needs of stakeholders. The idea of goal also emphasized the understanding

of organizational context for new system [Lap05]. Goal based requirements engineer-

ing is concerned with identification of high level goals to be achieved by the system

envisioned, the refinement of such goals, the operationalization of goals into services

and constraints and the assignment of responsibilities for the resulting requirements to

agents such as human, devices and programs [DL96]. Requirements engineering must

address the contextual goals, functionalities to achieve these goals and constraints re-

stricting how these functions are to be designed and implemented [Lam00a]. These

goals, functions, and constraints have to be mapped to precise specifications of soft-

ware behaviours and their evaluation over time and across software families [Zav97].

Although Eric Yue was the first one who explicitly stated the representation of goals

for requirements completeness – the requirements are complete if they are sufficient to

establish the goal they are refining [Yue87] but the idea of goal was already recognized as

essential component of requirements engineering by Ross and Schoman [VL01] as they

stated “Requirements definition must say ’why’ a system is needed, based on current or

foreseen conditions, which may be internal operations or an external market. It must

say ’what’ system features will serve and satisfy this context. And it must say ’how’ the

system is to be constructed” [RS79]. Unified Modelling Language (UML) also mentions

the importance of goals as higher-level abstractions “In my work, I focus on ’user goals’

first, and then I come up with use cases to satisfy them; by the end of the elaboration

period, I expect to have at least one set of system interaction use cases for each user goal

I have identified” [FS97]. From 10th requirements engineering conference the notion of

goal has been explicitly stated in requirements engineering “Requirements Engineering

(RE) is the branch of systems engineering concerned with the ’real-world goals’ for,

functions of, and constraints on software-intensive systems. It is also concerned with

how these factors are taken into account during the implementation and maintenance

of the system, from software specifications and architectures up to final test cases.”

The difficulties during the GORE lead to several challenges:

C1 One start with initial high level goals and keep refining them until they are

reduced to functional requirements satisfying these goals. The goals identified at the

start may be of contradictory nature, for example, there may be technical contradictions

or physical contradictions. In technical contradiction, alternative solution improve

PhD Dissertation Arfan Mansoor

1. Goals of the Thesis 4

one aspect at the expense of another while in physical contradiction solution may be

required to be in two states at once.

C2 Analysis of these contradictory nature goals is required to facilitates the discovery

of trade-offs and search of the full space of alternatives rather than a subset [Myl06].

C3 Each alternative found represents a particular way to satisfy the goal [MCL+01].

This leads to the selection of alternative system proposal [LL00].

C4 Decision making is required at various positions [Myl06] in GORE e.g., during the

decomposition of an objective into sub-objectives there are different alternatives and

one need to select the best one according to certain criteria. During conflict analysis,

resolving critical risks, assigning a goal to particular agent or operationalizing particular

objectives different solutions can be available and the selection process is required.

C5 Alternative solutions will help to capture variability in GORE [Lap05]. Instead of

going for one solution, all alternatives solutions are considered and then one solution is

selected. This leads to customizable solutions depending on the stakeholder preferences.

C6 For stakeholder preferences, there is need to capture stakeholders opinions into

GORE.

C7 A better understanding is required on the prioritization and evaluation of goals

based on stakeholder preferences.

C8 For quality properties, the impacts measurement of quality requirements on goals

is necessary.

1.2 Goals of the Thesis

This work is focused on the requirements phase of the software development which is

the starting point of development process where system services and constraints are

established or elicited. The work particularly focuses on goal oriented requirements

engineering(GORE) and provides a systematic mean to involve stakeholder preferences

into GORE, prioritization of goals based on stakeholder preferences, tailoring of quality

models based on goals and their integration into goal models. Next, it evaluates the

impact of quality goals on high level identified goals and produces two prioritized lists

PhD Dissertation Arfan Mansoor

1. Contributions 5

for functional requirements and non-functional requirements. Then it quantifies the

impact of development constraints. In the last it focused on selection of requirements

based on cost constraints.

The research goals related to this work are:

Goal 1 Evaluating existing goal methods/frameworks for requirements analysis.

Goal 2 Establishing the means for stakeholders representation into GORE.

Goal 3 Providing a prioritization scheme for high level goals and quality goals which

is based on stakeholder preferences.

Goal 4 Providing a goal based tailoring process for quality model, for the quality

requirements and their integration into goal models.

Goal 5 Once the integrated goal-quality model is obtained, establishing the influences

(positive or negative) of quality goals on each other.

Goal 6 Measuring the impact of quality goals on each other and of high level goals.

Goal 7 Involving development factors into prioritization of requirements and selection

of requirements based on cost constraints.

Goal 8 Alternative selection of system solutions based on already established prior-

itization scheme.

Goal 9 Provide the tailoring of product line development process based on goals.

1.3 Contributions

This thesis contributes to the area of requirements engineering generally and to GORE

more specifically. Following are the contributions made by this thesis in the field of

GORE:

PhD Dissertation Arfan Mansoor

1. Contributions 6

� It presents a through investigation of GORE concepts and frameworks and iden-

tification of limitations regarding stakeholders involvement in GORE. In the pro-

cess thesis presents an approach to involve the stakeholders opinions into GORE

by allowing them to rate the importance of each requirement .

� To achieve the overall goal which is the decision support and prioritization and

selection of requirements in GORE, the thesis combines ideas from goal-oriented

requirements engineering with quality models. An integrative model based on

goal models and quality models is presented. The goal graphs of GORE are

used for transition from high level goal to lower level requirements. Then the

lower level requirements are presented to different stakeholder to accumulate their

opinions regarding importance of these requirements. Based on their inputs, each

requirement is quantitatively evaluated. The integration helps to model explicitly

the dependencies between goals, and quality requirements. Furthermore,

� The integration of goal models and quality models helps in resolving conflicts

among goals. It helps to quantitatively evaluate the dependencies regarding the

influence of goals and quality requirements to support prioritization. The depen-

dencies are quantified using fuzzy numbers and by using multi-criteria approach

each alternative is ranked.

� By using the quantification of stakeholder opinions, dependencies and develop-

ment constraints a requirements prioritization technique is implemented. Pro-

posed approach provides two prioritization of both functional and non-functional

requirements. The approach not just provide the rank/order of requirements but

also a selection algorithm which helps to select maximum number of requirements

by not exceeding the cost upper limit.

� The thesis also presents an integrative model of influence factors to tailor product

line development processes. The tailoring process is based on project needs,

organizational goals, and individual goals of the developers or constraints of the

environment. Tailoring is realized with prioritized attributes, with which the

resulting elements of the product, process and project analysed are ranked. An

integrative model for the description of stakeholder needs and goals in relation

to the development process artefacts and the development environment specifics

is needed, to be able to analyse potential influences of changing goals early in

the project development. With this model stakeholder specific goals can be used

to support binding a variable part of the development process. This support

addresses soft factors as well as concrete requirements.

PhD Dissertation Arfan Mansoor

1. Outline of the Thesis 7

1.4 Outline of the Thesis

Chapter 2 discusses the fundamentals software requirements, requirements engineer-

ing(RE) process, requirements statements characteristics, requirements specification

characteristics and evaluates the traditional RE definitions. This chapter concludes

with different types of requirements, their use for this work and why GORE is useful

as requirements engineering.

Chapter 3 elaborates the state of the art for GORE. Main concepts, definitions and

the strengths of GORE are discussed. Goal based requirements analysis is presented

and most widely used frameworks based on GORE are discussed. The findings from

these frameworks that are useful for this work are highlighted in this chapter.

Chapter 4 discusses the need of decision making at the early stage of requirements

engineering. This chapter highlights the decision points in GORE which are prerequisite

of effective prioritization. Factors that influence decisions in GORE are established

specifically the importance of non-functional requirements as decision factors.

Chapter 5 presents classification of quality model and comparison of these quality

models. The main highlights of this chapter is the integration of goal models and quality

models and an integrated meta model is the research output of that integration.

Chapter 6 presents an approach for the prioritization of functional goals. The pri-

oritization is based on stakeholder opinions. Triangular fuzzy numbers are used in

the process because of their accurate representation in vague situations. Quality goals

are also prioritized and the interactions between quality goals and functional goals are

quantified.

Chapter 7 presents the extension of approach used in last chapter for alternatives

selection. A variant of TOPSIS method is used for alternative selection. Score obtained

by TFN and defuzzification process are used as weighing criteria by TOPSIS to rank

best alternative.

Chapter 8 discusses the use of goal models for product line development. For tai-

loring product line development process a tailoring meta-model is presented. This

meta-models integrates goal models, SPEM process models as well as requirements.

With this model stakeholder specific goals can be used to support binding a variable

part of the development process.

PhD Dissertation Arfan Mansoor

1. Outline of the Thesis 8

Chapter 9 presents the evaluation of the proposed approach. For evaluation, student

experiment was conducted. The experiment was performed in two rounds; In first round

proposed approach is compared to most widely used approach in the literature and in

second round it is compared with five other approaches. In the end a survey in the

form of questionnaire is given to participants to evaluate proposed approach.

PhD Dissertation Arfan Mansoor

2. Software Requirements 9

Chapter 2

Fundamentals of Software

Requirements

This chapter starts with brief introduction of requirements engineering process and why

goal-oriented requirements engineering is needed. Next the main concepts used in goal

oriented requirements engineering are defined. In last part of this chapter, some major

goal oriented frameworks will be discussed and their usage for this thesis is highlighted.

2.1 Software Requirements

Before describing RE process, it is important to understand what requirements are. A

number of definitions of requirements exits in literature but the most used in research

and academia are presented in table 2.1:

Evaluation of Traditional Definitions All of these definitions take requirements

engineering as a whole and there is no distinction made between early phase and

late phase requirements engineering. Use of Goal Oriented Requirements Engineer-

ing (GORE) helps to distinguish between early phase and late phase requirements

engineering. In early stage requirements engineering the focus is on high level goals, on

stakeholder needs and interests. Early-stage requirements engineering is characterized

by uncertainty, ambiguity etc. Late-stage requirements engineering concerns future ob-

jectives and how these may be operationalized in terms of systems components. Here

focus has been on analysis for ambiguity, incompleteness and inconsistency. It focuses

on achieving the completeness, consistency, and precision on moving towards the final

specification document.

PhD Dissertation Arfan Mansoor

2. Requirements Engineering (RE) Process 10

Table 2.1: Software Requirements

Author(s) Description

Definition by Jones Software requirements document is a statement of needs
by a user that triggers the development of a program or
system.

Definition by Alan
Davis

Software requirements document is a user need or neces-
sary feature, function, or attribute of a system that can
be sensed from a position external to that system.

Definition by Ian
Somerville

Requirements are a specification of what should be im-
plemented. They are descriptions of how the system
should behave, or of a system property or attribute.
They may be a constraint on the development process
of the system.

Definition by IEEE IEEE defines software requirements as:

� A condition or capability needed by user to solve
a problem or achieve an objective.

� A condition or capability that must be met or pos-
sessed by a system, or system component, to sat-
isfy a contract, standard, specification, or other
formally imposed document.

� A documented representation of a condition or ca-
pability as in 1 or 2

Definition by Web-
ster’s Dictionary

Requirement is something required, wanted or needed
(there is difference between wanted and needed and it
should be kept in mind).

2.2 Requirements Engineering (RE) Process

Software requirements engineering is a process which enables to systematically deter-

mine the requirements for a software product. The process involved in developing

system requirements is collectively known as Requirements Engineering process. RE

process is shown in figure 2.1. The focus is on functionality of the system to be built

i.e., what the system needs to do. In contrast, in goal driven methods the importance

is on why a certain functionality is needed and how it can be implemented.

The major activities performed in RE process are: requirements elicitation, require-

ments analysis and negotiation, requirements specifications, requirements validation.

These activities are represented in RE process as shown in figure 2.2.

PhD Dissertation Arfan Mansoor

2. Requirements Engineering (RE) Process 11

Figure 2.1: RE Process [KS98]

Figure 2.2: RE Process Activities [KS98]

Requirements

 Elicitation

Requirements

Analysis &

Negotiations

Requirements

Specifications

Requirements

 Validations

Requirements

 Documents

User Needs, Domain

Information, Existing

Systems

Agreed

Requirements

Requirements documents produced as output of the RE process are used throughout

software development cycle. They are used in project planning to determine time,

effort and outlays in the project development. Requirements documents are used as

base reference point in designing and coding phase of the software development. Project

managers use these requirements documents to monitor and track software progress to

meet deadlines. The central role of the software requirements documents in the entire

development process is depicted in the figure 2.3.

Two kinds of documents are produced during RE phase i.e., Requirements Statement

and Requirements Specification. They are also called Requirements Definition and

Functional Specification. Requirements Definition are used to document user require-

ments and Functional Specification are used to document functional requirements. Re-

quirements documents should include functional and non-functional requirements while

the project requirements (e.g., staffing, schedules, costs, milestones, phases, reporting

PhD Dissertation Arfan Mansoor

2. Requirements Engineering (RE) Process 12

Figure 2.3: Central Role of Requirements Documents

Software

 Requirement

Software

 Requirement

Construction

process

Construction

process

User

documentation

User

documentation

Project

planning

Project

planning

System testingSystem testing

Project trackingProject tracking

Change controlChange control

procedures etc.), designs, and product assurance plans (e.g., configuration management

plans, verification and validation plans, test plans, quality assurance plans etc.)

2.2.1 Requirements Statement Characteristics

Requirements statement document must possess the following characteristics:

� Complete: Each requirement must fully describe the functionality to be delivered

� Correct: Each requirement must accurately describe the functionality to be built

� Feasible: It must be possible to implement each requirement within the known

capabilities and limitations of the system and its environment

� Necessary: Each requirement should document something that the customer re-

ally needs or something that is required for conformance to an external system

requirements or standard

� Prioritized: An implementation priority must be assigned to each requirement,

feature or use case to indicate how essential it is to a particular product release

� Unambiguous: All readers of a requirement statement should arrive at a single,

consistent interpretation of it

� Verifiable: User should be able to devise a small number of tests or use other ver-

ification approaches, such as inspection or demonstration, to determine whether

the requirement was properly implemented.

PhD Dissertation Arfan Mansoor

2. Requirements Types 13

2.2.2 Requirements Specification Characteristics

Requirements specification document must possess the following characteristics:

� Complete: No requirement or necessary information should be missing

� Consistent: No requirement should conflict with other software or higher-level

system or business requirements. For example, the following requirements may

be conflicting with each other.

- All programs must be written in ADA

- The program must fit in the memory of the embedded micro-controller

These requirements conflict with one another because the code generated by the

ADA compiler was of a large footprint that could not fit into the micro-controller

memory.

� Modifiable: One must be able to revise the Software Requirements Specification

when necessary and maintain a history of changes made to each requirement.

� Traceable: One should be able to link each requirement to its origin and to the

design elements, source code, and test cases that implement and verify the correct

implementation of the requirement.

2.3 Requirements Types

In traditional approaches requirements are categorized into five major classes. Each

of them is briefly discussed except non-functional requirements which are discussed

in more detail. Non-functional requirements are focused because they will be used in

quality goal trees (part of solution concept) in later chapter.

1. Functional requirements

2. Non-functional requirements

3. Domain requirements

4. Inverse requirements

5. Design and implementation constraints

PhD Dissertation Arfan Mansoor

2. Requirements Types 14

2.3.1 Functional Requirements

These are the statements describing what the system does; they capture the function-

ality of the system. Functional requirements are the statements of services the system

should provide. These statements will represent the reaction to particular inputs, be-

haviour in particular situations, abnormal behaviour etc. sequencing and parallelism

are also captured by functional requirements. Usually the customers and developers

have their focus on functional requirements.

2.3.2 Non-functional Requirements

Requirements documents not only describe the services system performs but they must

also describe the constraints under which it will operate. These constraints are restric-

tions for software developers about the design and construction of software. These

kinds of requirements are called non-functional requirements. The attributes of func-

tional requirements may be timing, performance, reliability, accuracy, security, ease of

use, regulations, standards, contracts etc. Non-functional requirements arise through

user needs, external factors, safety regulations, privacy legislation, budget, constraints

etc. Sometimes failure to meet non-functional requirements may make the whole sys-

tem unusable e.g., failure of performance requirements in real time control system will

make the control function to not operate correctly thus making the system unreliable.

Non-functional requirements are usually divided into three classes:

1. Product requirements: usability, reliability, portability and efficiency require-

ments

2. Organizational requirements: standards, Implementation and delivery require-

ments

3. External requirements: interoperability, ethical, privacy and safety requirements

Use for Proposed Approach Specifying non-functional requirements is key for

the later stages of software development activities. Missing non-functional require-

ments can be a major threat of project and product success [CPL]. Non-functional

requirements will be used in quality goal tree (represented in next chapter) which is

used to represent the interdependencies between quality attributes. These interdepen-

dencies represent the positive and negative influences between the quality attributes

and therefore help in making the important decisions and trade-offs. Non-functional

requirements help to enable following key success factors in the development of the

software-based systems [CPL01].

PhD Dissertation Arfan Mansoor

2. Requirements Types 15

1. Identify the quality requirements that will impact the architectural decisions.

2. Identified quality requirements help in effective subcontracting. If only func-

tional requirements are specified the contractor can get into a situation where

subcontractor fulfils the functional requirements but it is still not useful because

of insufficient quality.

3. Identifying measurable non-functional requirements in early phase requirements

engineering at high level goals helps in early quality assurance.

Figure 2.4: Non-functional Requirements Aid

NFR

aid to

NFR

aid to

Architectural

decisions

Architectural

decisions
SubcontractingSubcontracting

Quality

assurance

Quality

assurance

On the contrary missing the non-functional requirements can lead to [Jorsh]:

1. Product does not fulfilling the quality needs will be delivered with lower quality

2. If the product does not fulfil the quality needs and higher management decides

for rework to match the quality expectations, the project will be consuming more

effort than planned and time to deliver the product will be postponed. It will

result in higher rework cost and

3. Higher time to market

2.3.3 Domain Requirements

Domain requirements can be both functional and non-functional requirements. They

come from the application domain and represent the fundamental characteristics of the

application domain. Domain requirements may not be explicitly mentioned but there

absence may cause dissatisfaction.

PhD Dissertation Arfan Mansoor

2. Why GORE 16

Figure 2.5: Missing Non-functional Requirements Effect

Missing NFR

lead to

Missing NFR

lead to

Insufficient

product quality

Insufficient

product quality
Higher rework

cost

Higher rework

cost
Higher time

to market

Higher time

to market

2.3.4 Inverse Requirements

These requirements indicate the indecisive nature of customers about certain aspects

of the product. They explain what the system should not do, for example, the system

should not have red colour in interface etc.

2.3.5 Design and Implementation Constraints

These are guidelines within which the designer must work. They restrict choices avail-

able to customers, for example, the system should be developed using open source and

shall run Linux operating system.

2.4 Why GORE

In GORE importance is given to high-level goals as opposed to their operationalizations

into constraints to be ensured by agents through appropriate actions which are derived

from these higher level goals at later phase requirements engineering. Instead of starting

directly from lower level process or action oriented descriptions as usually done in

traditional (current) RE approaches, GORE starts from system level and organizational

objectives from which such lower level descriptions are progressively derived.

PhD Dissertation Arfan Mansoor

2. Summary 17

2.5 Summary

This chapter discussed the basic concepts of software requirements, including require-

ments definition, requirements process, requirements statements characteristics, re-

quirements specification characteristics, different requirements types present in litera-

ture. The chapter focused to highlight why GORE is useful and to discuss how different

requirements types are used in this thesis.

PhD Dissertation Arfan Mansoor

3. Goal Oriented Requirements Engineering 18

Chapter 3

State-of-the-Art

GORE Concepts and Frameworks

3.1 Goal Oriented Requirements Engineering

Goal oriented requirements engineering refers to the use of high level goals for require-

ments elicitation, elaboration, organization, specification, analysis, negotiation, docu-

mentation and evolution [VL01]. From this definition the major activities of GORE

are identified:

1. Elicitation

2. Analysis

3. Elaboration

4. Refinement

5. Specification

3.1.1 Goals, Terms and Definitions

Many authors have defined Goals according to their specific purpose. Most widely

used GORE terms and their definitions are given in table 3.1 and table 3.2 gives the

definitions of Goals in literature.

PhD Dissertation Arfan Mansoor

3. Goal Oriented Requirements Engineering 19

Table 3.1: GORE Terms and Definitions

Term Definition

Object An object is thing of interests which can be referenced in
requirements. Entity, relationship, event, and agent are spe-
cialization of object concept.

Entity An autonomous object which exits independently from other
object(s).

Event An instantaneous object defined In GORE by name and def-
inition [Let01].

Action Actions define state transitions. The attributes of action in-
clude PreCondition, TriggerCondition, postCondition. The
pair (PreCondition, PostCondition) defines the state transi-
tion. An action can be applied only if its PreCondition holds
whereas it must be applied if its TriggerCondition becomes
true.

Agents Active objects which are capable of performing operations,
monitoring and controlling objects and can take the respon-
sibility for goals. Agents may be software agents, hardware
devices or humans.

Relationship A subordinate object defined by a set of features. A feature
is either an attribute of relationship or the ordered list of
concepts linked by relationship together with their respective
roles and cardinality e.g., ’Borrowing’ may be a relationship
linking ’Borrower’ and ’Bookcopy’ concepts. [DL96].

Attribute In GORE an attribute is defined by characteristics like its
name, informal definition, domain of values, and unit of values
e.g., [Let01]. Number of attributes can be attached to goals
[VL01].

Requirement A goal under the responsibility of a single agent in the
software-to-be is called requirement.

Assumption A goal under the responsibility of a single agent in the envi-
ronment of the software-to-be is called assumption.

Constraints A constraint is an operational objective to be achieved by the
composite system. It can also be defined as the limit on the
achievement of the goal e.g., ’LimtedBorrowingPeriod’ may be
defined as constraint to make sure the availability of Book(s)
in the library. Goals are made operational through constraints
i.e., the goal can be achieved provided the constraints oper-
ationalizing it can be met. For example the goal ’RegularA-
vailability’ is met by implementing ’LimitedBorrowingPeriod’
constraint.

PhD Dissertation Arfan Mansoor

3. Goal Based Requirements Analysis 20

Table 3.2: What are Goals

Author(s) Definition

Dardenne at al. 93 ”A goal is a non-operational objective to be achieved
by the composite system. Non-operational means that
the objective is not formulated in terms of objects and
actions available to some agent in the system; in other
words, a goal as it is formulated cannot be established
through appropriate state transitions under control of
one of the agents”

Anton 97 Goals are high level objectives of the business, organiza-
tion, or system. They capture the reasons why a system
is needed and guide decisions at various levels within the
enterprise.

Zave 97 Goals are formulated in terms of optative statements
which may refer to functional and non-functional prop-
erties and range from high level concerns to lower-level
ones.

Rolland et al. 1998 A goal is defined as something that some stakeholders
hope to achieve in the future.

Phol and Haumer
1997

The goal represents the objectives an actor wants to
achieve when requesting a certain service.

3.2 Goal Based Requirements Analysis

GORE concerns are classified into major categories i.e., goal analysis and goal evolution.

Goal analysis is the process of exploring gathered documents, ranging from informa-

tion about the organization, (i.e., enterprise goals) to system specific information (i.e.,

requirements) for the purpose of identifying, organizing and classifying goals [Ant96].

Goal evolution concerns the how goals are changed from when they were identified

to when they are operationalized. Goal evolution process is further refined into goal

refinement and goal elaboration. Because stakeholders change their minds and goals

have to be operationalized into requirements the goals and their priorities are likely to

change. In former case it is called goal elaboration and in later goal refinement [Ant96].

3.2.1 Goal Identification

Sometimes goals may be explicitly stated but most often they are implicit and elicita-

tion process needs to b undertaken to identify goals. A preliminary analysis of current

system is important source for goal identification. The main sources for identifying

goals are to look for intentional keywords in documents provided like interviews, tran-

scripts, mission statements, policy statements [Don04] etc. A common approach is to

PhD Dissertation Arfan Mansoor

3. Goal Based Requirements Analysis 21

Figure 3.1: Goal Based Requirements Analysis

Goal Based

Requirements

Analysis

Goal Based

Requirements

Analysis

Goal

identification

Goal

identification

Goal

evolution

Goal

evolution

Goal

elicitation

Goal

elicitation

Goal

refinement

Goal

refinement
Goal

elaboration

Goal

elaboration

find deficiencies that can be formulated, negate these deficiencies to produce first list

of goals [VL01]. Once high level goals are identified then goal refinement, goal abstrac-

tion, and goal elaboration processes are used to identify further goals. Scenarios, use

cases and initial goal model for these processes are used to identify goals. Goal analysis

deals with identification, organization and classification of goals. Three main activities

involved in goal analysis are [AP98]:

� Explore: Deals with examination of available information

� Identify: Extracting goals and identifying responsible agents from the information

available

� Organize: classifying and organizing identified goals according to goal dependency

relationship. Goal should be classified in particular to their target condition

desired [AP98].

After the initial identification of goals the main approaches to identify further goal

are:

� Goal elicitation by refinement

� Goal elicitation by abstraction

� Goal elicitation by obstacle analysis

� Goal elicitation by scenarios

� Goal elicitation from constraints

PhD Dissertation Arfan Mansoor

3. Goal Based Requirements Analysis 22

3.2.1.1 Goal Elicitation by Refinement

Goal elicitation by refinement is used to identify more concrete goals form high level

goals so that these goals can be easily operationalized and implemented [Ant96]. ’How’

questions are used to identify new off springs [Don04] and then AND/OR refinement

links are used to link these goals. The formulations of subgoals entail the formulation

of parent goal [LL00]. Subgoals may also need to be refined further until one can get

assignable subgoals. For example one subgoal identified for high level goal ’Borrower

request satisfied’ by asking ’How’ questions in library management system may be

’Book request satisfied’ which may further be refined into subgoals (again by asking

’How’ questions)like ’Maintain regular availability’, ’Achieve availability notified’ and

’Maintain enough copies’ [Lap05].

3.2.1.2 Goal Elicitation by Abstraction

In some situations goals may be identified which are refinements of some parent goal

and somehow they were missed in the initial goal identification process. In these

cases ’Why’ questions are used to elicit more abstract goals from already identified

goals e.g.
”

asking ’Why’ question about the goal ’Maintain minimum distance between

trains’ yields more abstract goal ’Avoid train collision’ [Don04].

3.2.1.3 Goal Elicitation by Scenarios

Scenarios also help in identification of new goals. Initial set of functions may be vague

and confusing and scenarios are used to elaborate these by asking and listing different

activities. Scenarios are comprised of actions or behaviours which may be mapped to

goals [Let01]. In fact there is bidirectional relationship between goals and scenario.

When a goal is identified a scenario can be authored for it and when a scenario is

authored it can be analysed to yield goals [SMMM98]. Therefore one can say that goal

elaboration and scenario elaboration are intertwined processes. Scenarios may help in

elicitation of goals and goals may help in elicitation of scenarios.

3.2.1.4 Goal Elicitation by Obstacle Analysis

Obstacles provide a mechanism for anticipation of exceptional cases. This helps in

finding more robust requirements. Once an obstacle is introduced it is refined much

the same way goals are refined. There are number of approaches for obstacle resolution

like obstacle elimination obstacle prevention, goal substitution, agent substitution, goal

de-idealization, obstacle mitigation, goal restoration [LL00]. Some of these techniques

like goal substitution, goal restoration, obstacle prevention and obstacle mitigation help

PhD Dissertation Arfan Mansoor

3. Goal Based Requirements Analysis 23

us to find or define some new goals [LLb98]. For example in goal substitution, an alter-

native goal refinement procedure is selected for higher level goal in which obstructed

goal and obstructing obstacle is no longer present similarly goal restoration strategy

consist of adding new goal to make obstacle disappear.

3.2.1.5 Goal Elicitation through Constraints

In some situations new goals may also be identified from constraints operationalizing

some goals. For example a constraint which states that “Before an employee can ad-

vance their certification level, they must take a course which officially qualifies them

for achievement”. This constraint helps us to identify a goal ”courses which employee

qualifies” because system must know which courses an employee can take [Ant96]. This

is the case in which one may find requirements first and then identify goal from these

requirements. Constraints also help to identify the situations where goal priorities may

change e.g., consider a constraint which specifies that a meeting must be scheduled on

a specific day and if no room is available or no one can attend meeting on that day

then one have to re-examine goal priorities [Ant96].

3.2.2 Goal Refinement

Requirements completeness process goes beyond the stakeholders words to discover the

goals driving the development process. Requirements describe the detail implementa-

tion plan for general goals. Goal refinement is intended to reduce the risk of incomplete

requirements [AP98]. Goal refinement process deals with decomposing goal into sub-

goals until these goals can be assigned as responsibility of single agents [DLF93]. In

literature number of refinement techniques has been purposed. The idea is to provide

to provide complete and correct refinement [DL96]. The main approaches for goal

refinement are:

� Agent driven decomposition: A goal is decomposed into subgoals that involve less

number of agents. First a group of agents are identified which are involved in the

achievement of parent goal. This group of agents is then divided into subgroups

that can achieve corresponding subgoals according to their abilities or to some

known schedule [Let01]. A catalog of agent based refinement tactics for refining

unrealisable goal until realizable subgoals are achieved is purposed in [LL02].

� Case driven decomposition: A goal is decomposed by case analysis i.e., normal

case or exceptional case.

PhD Dissertation Arfan Mansoor

3. Goal Based Requirements Analysis 24

� Time driven decomposition: A goal is decomposed into subgoals that need to be

achieved successively over time. In this technique a state ’milestone’ is identified

and that state has to be reached in order to achieve target state.

Formal refinement patterns are useful for number of reasons [DL96] e.g., they allow

formal reasoning to be hidden from Requirements engineers, they help in detecting of

incomplete refinements and they allow choices underlying the refinements to be made

explicit. Numbers of formal refinement patterns are purposed in literature which are

proved correct once for all. These patterns are generic and can be instantiated to

different situation. The pattern library should have following properties [DL96].

� Relevance: library should provide patterns that are actually needed by require-

ments engineers

� Retrievability: relevant patterns should be retrieved easily

3.2.3 Elaboration Method

Once goals are found from goal identification and goal refinement process next step

is to identify agents, identify objects concerned by goals, identify actions describing

state transitions, operationalization of actions and assigning responsibilities to agents.

These steps may be running in parallel with possible backtracking at every step [LL00]:

� Identifying Objects

� Identifying Agents and Agents Assignments to Goals

� Identifying Operations and Operationalizations of Goals

3.2.3.1 Identifying Objects

During the goal identification and goal refinement process the objects concerned by

these goals are also identified. The identification and characterization of objects from

goals ensures that only those objects are identified which are relevant to goal [DLF93].

The identified objects and attributes are defined by relating them to real-world quan-

tities they belong [Zav97]. An object may be classified as entity, relationship, event

or agent based on whether the object is autonomous, subordinate, instantaneous or

active. The objects characteristics are declared as attributes and relationships links to

other objects [Let01]. Each object has name and definition; name is used to identify

object while definition is usually a natural language statement. Object instances may

PhD Dissertation Arfan Mansoor

3. Goal Based Requirements Analysis 25

change over time e.g., a person may be an instance of ’student’ object at one time but

he may no longer be instance of that object in future. Objects are also not necessarily

disjoint. An object instance may be member of several instances at same time [Zav97]

e.g., a person can be instance of two different objects ’teacher’ and ’student’ at the

same time.

3.2.3.2 Identifying Agents and Agents Assignments to Goals

Agents are active system components which have choices of behaviours to ensure goals

they are assigned to. They may be classified as human agents, physical devices and

programs etc. Each agent is responsible of performing some action. These actions are

present in the capability list of agent. Basic preconditions and postconditions for that

action are also specified in that capability list. The identification of agent is made

together with their categories and by the actions they are capable of performing on

objects [DLF93]. This identification of agent and assignment of agent to the actions also

helps in determining terminating condition for goal refinement [Let01]: goal refinement

stops when a responsibility can be assigned to single agent. Terminal goals assigned to

agents in the software-to-be are known as requirements while goal assigned to agents

in the environment of the software-to-be are known as assumptions or expectations.

Agents are normally identified by interaction between client and analyst but it is not

necessarily that all agents will be identified at early stages of analysis. Some agents

might be identified at later stages when operationalizing goals [DLF93]. Agents can be

classified into hierarchies when a specific agent inherits the characteristics of general

agent e.g., ’Professor’ may be specific agent of more general ’Employee’ class agent.

Generic agents belong to domain specific knowledge base. Responsibility assignment

of goals to agents is declared by responsibility links. A goal is assigned to an agent only

if the agent has the sufficient capabilities to ensure that goal [LL02]. The meaning of

responsibility assignment of an agent to goal is that the agent responsible for goal is the

only one required to restrict its behaviour to ensure the goal [Fea87]. It requires that

goal be operationalized by strengthening operations performed by that agent assigned

for goal. The requirements assigned to an agent are defined in terms of quantities

monitored and controlled by agent. By term ’Monitor’ means that agent directly reads

the value of the attribute and by term ’Control’ means that agent can write the value of

the attribute. In addition to monitor and control variables there are internal variables

i.e., variables internal to that agent. An internal variable of an agent is an attribute

that is controlled by that agent and monitorable by no other agent. The monitoring

and control properties of an agent help in determining the responsibility assignment of

an agent to the goal; a goal assignable to an agent must be defined in terms of variables

PhD Dissertation Arfan Mansoor

3. Goal Based Requirements Analysis 26

monitored and controlled by that agent [Fea87]. Some heuristics for assignment of goal

to agent are purposed in [DFL91], although some of these heuristics conflicts with each

other. These heuristics are:

� Each agent defines its private goals and wished goals. If possible none of the

goals for which agent is responsible should be in conflict with its private goals.

For this it is necessary to check for conflicts between system goals and agent’s

private goals.

� Minimize multiple responsibilities to avoid overloaded agents.

� Minimize number of agents to avoid coordination problems.

� Minimize over communication between agents.

� Three attributes motivation, ability and reliability are defined and if there are

more candidate agents for an action, assign action to an agent that has high

values for ability and reliability attributes.

3.2.3.3 Identifying Operations and Operationalizations of Goals

In this step, the operations relevant to goals are identified and then requirements on

operations are derived so that goals may be satisfied. So, this step consists of two sub

steps [Let01]:

� Identify operations: goals refer to state transitions; these state transitions are

identified in this step. Domain pre- and post conditions of these state transitions

are also identified.

� Derive requirements on operations: domain pre- and postconditions does not

ensure the satisfaction of goals and therefore one need to identify strengthened

pre-, trigger and postconditions on these operations so that goals can be satisfied.

After the terminal goals assigned to agents next step is to derive operational soft-

ware specifications. Goals refer to specific state transitions for which operations caus-

ing these transitions are identified and domain pre- and postcondition capturing these

state transitions are also identified [VL01]. To operationalize leaf goals constraints

are introduced which are formal assertions to objects and actions available to agents.

Transforming goals into constraints is not an easy task because there may be several

operationalizations available for same goal and one have to decide about best opera-

tionalization. Constraints provide information about the requirements that must be

met for a goal completion and they also provide insight into issues when goal priorities

PhD Dissertation Arfan Mansoor

3. Goal Classifications 27

changes [Ant96] e.g., consider a constraint which specifies that meeting must be held

on specific day but for certain reasons meeting cannot took place on that day then

goal priorities must be re-examined and in the result constraints help to identify new

goals and new actions. Note that strengthening pre-, triggered and postconditions are

defined in addition to domain pre- and postcondition. There is distinction between do-

main pre- and postcondition that captures application of operations in the application

domain and required (strengthening) pre-, triggered and postcondition which capture

requirements on operations that are necessary to achieve operations [LL02]. These re-

quired pre-, triggered, and postconditions produce requirements on the operations for

corresponding goals to be achieved [VL01]. Assignment of an agent to constraints is

represented by responsibility relationship as [DLF93]:

� Responsibility (ag, C) iff agent ’ag’ is among the candidates to enforce constraint

’C’ through some appropriate behavior prescribed by ’Ensuring links’.

� Ensuring relationship is defined as follow: Ensuring (act, C) iff the application

of action ’act’ under strengthened conditions Pre
∧

StrengthenedPre, Trig
∧

StrengthenedTrig, Post
∧

StrengthenedPost guarantees that constraint ’C’ holds

in the initial and final states of ’act’. Ensuring (obj, C) iff the restriction of

’ob’ states to the strengthened condition Inv
∧

StrengthenedInv guarantees that

constraint ’C’ holds in the initial and final states of any action on ’ob’.

Constraints may be divided into two classes i.e., Hard Constraints and Soft con-

straints [DLF93]. Hard constraints may never be violated while soft constraints may be

temporarily violated. Hard constraints may be safety and time critical constraints e.g.,

’no planes on same portion of air corridor’ is hard constraint. Since soft constraints

may be temporarily violated therefore every soft constraint must have one restoration

action with them.

3.3 Goal Classifications

Goals are discussed in several contexts in literature and therefore they are classified

into different categories by different authors. Goal classification yields more focused

set of questions which analysts selectively employ depending upon the nature of the

proposed system [AP98]. This section briefly covers different kind of classifications

found in literature.

3.3.1 Classification by Patterns

According to temporal behaviour the following patterns are identified:

PhD Dissertation Arfan Mansoor

3. Goal Classifications 28

� Achieve P −→ ♦ Q

� Maintain P −→ � Q

The operator ♦ ensures the property Q will hold some time in future while � ensures

that property Q will hold always in future. In this classification ”Achieve” shall lead to

a system behaviour (referred by the property Q) in the future while“Maintain”restricts

the possible system behaviour in the future [VL01].

3.3.2 Classification by Type

At the root of the hierarchy there are system goals and private goals [DFL91]. System

goals are then further classified into subcategories of satisfaction goals, information

goals, robustness goals, consistency goals safety and privacy goals. These are the spe-

cialized categories of goals which fall under the general categories of functional and

non-functional goals [VL01]. For example satisfaction and information goals are clas-

sified as functional goals [DLF93] while accuracy goals are classified as non functional

goals [MCN92].

3.3.3 Classification by Target Condition

Goals are also classified according to desired target condition. Two classes of goals

are proposed; achievement goals and maintenance goals. Achievement goals are ful-

filled when their target condition is achieved while maintenance goal is satisfied as long

as its target condition remains true. Maintenance goals are usually high level goals

with which associated achievement goals should comply [Ant96]. Achievement goals

are usually extracted from process descriptions and therefore they represent opera-

tional strategies while maintenance goals are derived from organizational policies and

therefore they represent organizational goals [Ant96].

3.3.4 Classification by Nature of Goals

According to nature of goals a distinction is made between hard goals and soft goals. A

goal is classified as hard goal when its achievement criteria is sharply defined (e.g., buy

a computer) [Don04] or whose satisfaction is established through verification techniques

[DLF93]. Hard goals are related to functional requirements. They are true/satisfied or

false/denied. A softgoal is one whose satisfaction cannot be done in clear cut sense and

it is up to the goal originator to define when a goal is considered to be achieved (e.g., buy

a fast computer). Softgoals are highly subjective in nature and mostly related to non-

functional requirements. In literature the new term ’satisficing’ has been introduced

PhD Dissertation Arfan Mansoor

3. Links in GORE 29

for softgoals. Softgoals are represented by clouds while hard goals are represented by

rounded rectangles.

Figure 3.2: Hard/Softgoal

3.3.5 Classification based of RE Activity

In [Kav02] author has identified four types of goals in relation to RE activities namely:

current goals, change goals, future goals and evaluation goals. At requirements elic-

itation level one needs to understand current goals and the motivation for changing

the current situations i.e., identifying the change goals. At requirements specification

level focus will be on future goals and how these goals can be incorporated into system

components i.e., relating to functional and non-functional components of the system.

Finally at the requirements validation level focus is on evaluation goals.

3.4 Links in GORE

During whole GORE process from goal identification to goal refinement and to goal

operationalization different kind of links are derived known as goal links. Goal links are

used to relate goals with each other and with other elements of requirements model.

Based on this definition goal links are divided into two main categories:

� Inter-goal links: these are used to relate goals with other goals

� Cross-goal links: these are used to relate goals to other elements of requirements

model

Goal links identified in GORE are discussed in this section.

Refinement Links Refinement links are used to relate goal to subgoal and usually

refinement links are represented in AND/OR graphs used in GORE. They may be

classified into following two categories:

PhD Dissertation Arfan Mansoor

3. Links in GORE 30

� AND-refinement links: they are used to relate a goal to set of subgoals. Satisfying

all subgoals is necessary condition for the satisfaction of parent goal.

� OR-refinement links: they are used to relate a goal to an alternative set of re-

finements. Satisfaction of one subgoal is sufficient condition for the satisfaction

of parent goal.

Contribution Links Usually the softgoal contribution is not in an absolute sense

and contribution links are used to represent the softgoal contribution towards other

goals (hard goals or other softgoals). A softgoal may partially contribute positively

or negatively in ’satisficing’ an other goal. In AND-decomposition positive contribu-

tion means if all subgoals are ’satisficed’ then parent goal will ’satisfice’ and negative

contribution mean if subgoal(s) is satisfied parent goal will be denied.

Responsibility Links Relate goal(s) and there responsible agent(s). Responsibility

links can be classified as outer level responsibility links and as instance declaration

responsibility links [Let01]. The former are used to declare agent class responsible for

the goal while instance level declaration specifies more precisely which instance of agent

class is responsible for goal.

Conflict Links They are used to capture the situations in which satisfaction of one

goal may prevent other to satisfy. Conflict links capture potential conflicts and as a

result they are helpful in goal refinement and in finding alternatives.

Input/output Links They are used to relate operations to objects. Input and

output links may also be used to declare which object attributes make the domain and

co-domain of the operation.

Performance Links They are used to relate agent to operations. The agent assigned

to the operation by performance link must be able to perform this specific operation.

Operationalization Links They relate goals to operations which ensure them through

required pre-, post-, trigger conditions.

Wish Links Each agent is capable of performing some actions. These actions are

defined in the capability list of the agent. The actions assigned to an agent must

be in the capability list of the agent. The actions are defined in the capability list

of an agent through wish links. Therefore one can say wish links are used in agent

assignment. Normally a goal is assigned to an agent if that agent has wish for goal.

PhD Dissertation Arfan Mansoor

3. Benefits of GORE 31

Monitoring and Control Links Agent interfaces are declared through monitoring

and control links. In monitoring links agent directly monitor (’reads’) the values of

the object attributes while in control links agent directly control (’writes’) the value of

objects attribute.

Coverage Links Goal elaboration and scenario elaboration are intertwined pro-

cesses. When a goal is identified a scenario can be authored for it and when a scenario

is authored it can be analysed to yield goals [SMMM98]. Coverage links are used to

relate goal(s) with scenario(s).

3.5 Benefits of GORE

GORE offers number of benefits over traditional RE approaches.

Wider Perspective GORE takes wider system engineering perspective as compared

to traditional approaches . Goals are prescriptive statements that should hold in the

system made of software-to-be and its environment; domain properties and expectations

about the environment are explicitly captured during the requirements elaboration pro-

cess, in addition to usual requirements specification [Lap05]. The relationship between

systems and its environment are expressed in terms of goal based relationships [YM98].

Requirements Acquisitions Traditional modeling techniques help in modeling of

requirements while GORE also helps in eliciting and refinement of requirements. Iden-

tified goals are refined and elaborated by asking ’why’, ’how’ and ’how-else’ ques-

tions [YM98].

� ’Why’ questions extracts abstract goals from specialized ones

� ’How’ questions are used to identify offspring goals.

Obstacle analysis and conflict analysis are also used to identify new requirements.

Goal along with scenarios are assumed to be main requirements elaboration ingredients

[VL01].

Requirements Completeness Goals provide sufficient completeness criteria for re-

quirements specification. Specification is complete with respect to set of goals if all the

goals are proven to be achieved from the specification and from the known properties

about the application domain to be considered [Yue87].

PhD Dissertation Arfan Mansoor

3. Benefits of GORE 32

Requirements Clarification Goal oriented approach is an incremental approach in

which goals are identified and clarified in an incremental way. Requirements analysis

in terms of goals can be seen to tease out many level of requirements statements, each

level addressing the demands of next level [YM98]. NFR framework is goal and process

oriented approach used to clarify non-functional requirements.

Requirements Pertinence Goal models can be used to avoid irrelevant require-

ments; from goal models one can judge whether a particular goal contributes to some

high-level stakeholder goal or not [Lap05]. A requirements is pertinence with respect

to set of goals in the domain considered if its specification is used in the proof of one

goal at least [Yue87].

Rational behind Requirements Instead of asking what the system needs to do

GORE asks why certain functionality is needed and how it can be in implemented. Thus

GORE provides a rational for system functionality by asking ’why’ certain functionality

is needed. A requirements appears in the specification because there exists some goal(s)

which provide a base for it [DFL91], [VL01]. Requirements which does not contribute

to a goal will not be considered therefore every requirements will have a rational for it.

There are also different kinds of traceability links in goal refinement tree which help to

find rational behind requirements.

Conflict Resolution Goals provide starting point for conflict and obstacle analy-

sis. During requirements engineering process one may have to face different kinds of

inconsistencies originating from elicitation of goals, from different requirements of each

stakeholder, from different viewpoints and from different source documents. Various

models and heuristics are proposed for resolving conflicts in [LLb98]. Meeting of one

goal may interfere with other goals. These contributions among goals (positive or neg-

ative) can be modelled and managed and thus providing conflict resolution. One more

advantage relating to this is because goals introduces the concept of early requirements

analysis and therefore conflict analysis and divergence analysis is started at much earlier

stage and thus providing more freedom to solve these conflicts and divergences [LLb98].

Traceability Goal refinement trees provide traceability links from high-level objec-

tives to low level technical requirements to precise specification and to architectural

design choices [Lam04]. Different kinds of goal links are also defined in goal models

which relate goals to other elements requirements model. In addition to capturing

positive or negative interaction between different goals these links are also used for

PhD Dissertation Arfan Mansoor

3. Benefits of GORE 33

tractability. The hierarchical arrangement of questions (’why’, ’how’, ’how-else’) is

also helpful for traceability of requirements.

Robust Requirements Goals are also helpful in producing robust requirements

through the introduction of obstacle and conflict analysis [Lam04].

Ideal communication In [Lam04], it is claimed that decision maker are more inter-

ested in well documented goal models than UML models providing an ideal commu-

nication interface between business managers and software engineers. Goal refinement

offer right level of abstraction to involve decision makers for validating choices made

among alternatives [Lap05]. In addition to alternative goal refinement models they

were operationalizations, responsibility assignments.

Explorations of Alternatives In GORE there is great emphasis on alternative

system proposals in which less or more functionality is automated. In GORE obstacle

analysis, conflict analysis, alternative goal refinements and responsibility assignments

help in finding alternatives which are missing from traditional approaches. Moreover

during requirements elaboration process many alternatives are considered which may

help to find some overlooked problems.

Capturing Variability The single goal model focuses on alternative goal refine-

ments and alternative assignment of responsibilities. The quantitative and qualitative

analysis of these alternatives helps to choose the best one. Therefore goal models help

to capture the variability in problem domain [Lap05].

Better Documentation and Improved Readability Instead of starting from

lower-level process or action oriented descriptions GORE gives importance to high

level goals. Lower-level descriptions are then derived and documented from these high

level goals (system-level and organizational objectives) therefore goal refinement pro-

vides a natural mechanism for structuring requirements documents and thus improv-

ing readability [VL01]. AND/OR structures are used to capture how goals are refined

and abstracted. Overall goal structure maintains the division of responsibility among

agents, ties specification components to informal text describing goal and it can be

used to resolve conflicts [DFL91].

Requirements Management The higher level the goal is the more stable it is will

be. Separating stable information from volatile is an important concern for require-

PhD Dissertation Arfan Mansoor

3. GORE Frameworks 34

ments management and goals are much more stable than lower-level requirements or

operations therefore they also help us in requirements management.

3.6 GORE Frameworks

After presenting the main goal oriented requirements engineering concepts are terms

GORE approaches will be discussed. Although there are number of GORE approaches

but only those are selected which are widely being used. Most of the other approaches

are either extending these approaches or they are based on one of these approaches.

Most important of them are Non-Functional Requirements framework(NFR) by Chung

et al. [CCL99], i* framework by [Yu96], Goal Oriented Requirements Language (GRL)

[GRL08] and Knowledge Acquisitions in automated Specification or Keep All Objects

Satisfied (KAOS) by Lamsweerde [DLF93].

3.6.1 NFR framework

The non-functional requirements framework (NFR) presented by [CCL99] deals with

modelling of quality requirements. It uses the concept of softgoals for quality re-

quirements. Softgoals are goals which can not be fulfilled in their true scene. These

are the goals without a clear definition and definite criteria for their fulfilment. But

these are important as they can influence the design decisions. Because of their inter-

dependencies and positive and negative influences on each other they are used for

handling conflicts and trade-offs. The interdependency among softgoals is categorized

according to influence on each other. They used qualitative terms to define the in-

fluences: strongly positive (++), weakly positive (+), weakly negative (-), strongly

negative (–) and unknown (?). These influences are also named contribution types and

are named make, help, hurt , break and unknown respectively. The softgoals and their

inter-dependencies are represented in Softgoal Interdependency Graph (SIG). In SIG

first, softgoals are established and then they are refined into subgoals by AND and

OR decomposition. In process to enhance NFR framework some argumentation are

proposed to enhance the SIG for domain specific knowledge. After decomposition the

goals are fulfilled by operationalizing these goals. operationalization represented the

solution(s) for softgoals. Figure 3.3 below represents elements of NFR framework.

For detailed information about NFR framework address the work of [CCL99].

PhD Dissertation Arfan Mansoor

3. GORE Frameworks 35

Figure 3.3: NFR Elements

3.6.2 i* (i-star)

i* framework presented by [Yu96] is based on GORE concepts. It is similar to NFR

framework used for early phase of system modelling. It was originally developed for

modelling and reasoning about organizational context. i* is a combination of two

modelling approaches: goal oriented modelling and agent oriented modelling. It sup-

port two types of modelling: Strategic Dependency model (SD) and Strategic Rational

model (SR). It differs from other goal models like KAOS because it also represent the

dependencies among the various actors in organizational context and it this actor de-

pendencies are represented by SD model. SD model of nodes representing the actors

and links connecting these actors. These links represent the dependencies between

actors.

SR model is used to mode rational for each actor and their dependencies. There are

four elements in the model to describe the dependencies: goal, softgoal, task, resource.

These four elements are called intentional elements. SR model illustrate interdepen-

dency using different kinds of links: task decomposition links, mean-end links. When

an actor is participating in a goal, softgoal, task or he requires a resource the task de-

composition link is used. Mean-end link is used to describe why an actor would engage

in a certain task. To represent the influences i* uses positive or negative contributions

similar to NFR framework. Further the decomposition links and mean-end links are

also similar to AND and OR decomposition of NFR framework. One advantage of i*

over NFR framework is that it is not only useful to models system requirements but

also helps to represent the organizational context. Of late i* framework has been ex-

tended (Tropos framework) to model the social context of the complex systems. This

work is done by John Mylopoulos in the context of conceptual modelling and it uses

the i* modelling framework. A number of other prototype tools are developed using

the i* framework and Tropos. A few to mention are:

� TAOM4E (support tool for Tropos methodology)

� GR-Tool (Goal Reasoning tool)

PhD Dissertation Arfan Mansoor

3. GORE Frameworks 36

� T-Tool (Formal Tropos tool)

� OpenOME (general purpose tool based on i*)

� SecTro (Automated modeling tool that provide supports for the Secure Tropos

methodology)

Figure 3.4: i* Elements

The work of Eric S. Yu [Yu96]and John Mylopoulos [MCN92] gives a detail insight of

i* framework and for further elaborated studies their work needs to be addressed.

3.6.3 Keep All Objects Satisfied (KAOS)

The KAOS - method another representative of goal-oriented RE goes back to the work

of Lamsweerde et al. [LF91] and Dardenne et al. [DLF93]. KAOS stands for Knowl-

edge Acquisition in autOmated Specification or Keep All Objects Satisfied. KAOS is

described as a mulit-pradigm framework which provides various semi-formal and for-

mal models at different levels of abstraction [Lap05]. Semi-formal models are used for

modelling and structuring of goals, qualitative means are used for selection among the

alternatives, and formal model are based on temporal operators are used for more ac-

curate reasoning. It considers the system to be developed at two levels: an outer level

also called graph semantic level with concepts, properties and relationships among the

concepts and an inner formal level which is supported by temporal logic elements and

is used for formally defining the concept (goal) [WPAOPL09].

Goal(s) in the KAOS is defined as a ”prescriptive statement of intent about some

system whose satisfaction in general requires the cooperation of some of the agents

forming that system” [Lam04]. Goal are reached by certain conditions also called req-

uisite. These conditions when operationalized into specification of software operations

are known as requirements and called assumptions when they express the behaviours

performed by external agents. Software agents performing operations necessary for

PhD Dissertation Arfan Mansoor

3. GORE Frameworks 37

the fulfilment of certain requirements are the active components. Active (agents) and

passive objects (entities, relations or events) are used to describe the structural model

of the project. The dependencies of the agents with each other are represented by

their interfaces made of objects, which are controlled by those agents. Obstacles and

conflicting goals relations are used to integrate scenarios with KAOS.

In contrast to NFR framework’s SIG model and i* framework’s SD and SR model

KAOS yields four kinds of models.

� Goal model is a set of goal graphs representing the goals in a top-down or bottom-

up hierarchy. Goals are refined into subgoals by using the AND and OR relations.

Other refinement pattern are also proposed by [Lam00a]. Subgoals describe how

the overall goal can be achieved. Refining a subgoal ends when that subgoal may

be associated with a single agent.

� Responsibility model represents the interfaces and responsibilities of agents that

are placed on the respective agents through the assignment of requirements and

expectations.

� Operational model represents the behaviours of the agents which are needed to

cope with their responsibilities in the form of operations and tasks. With these

operations and tasks associated objects are defined in the object model.

� Object model represents the formal specification of the objects and goals.

Figure 3.5: KAOS Elements

For details studies of KAOS framework book written by Lamsweerde [Lam09a] gives

a details insight.

PhD Dissertation Arfan Mansoor

3. GORE Frameworks 38

3.6.4 Goal Requirements Language (GRL)

The Goal-oriented Requirements Language (GRL) is another goal-based language used

for goal and agent oriented modelling. Like NFR and i* framework the focus of GRL

is on quality requirements. From 2008 GRL has been the part of User Requirements

Notation (URN) approved as international standard. Since GRL is based on i* frame-

work most of the elements (goal, softgoal, task, resources) are same with an additional

element beliefs which is used to represent assumptions and relevant conditions (en-

vironmental). The relationship types: means-ends, decomposition, contribution and

dependency are also with same meaning as in i* framework with just addition to corre-

lation relationship which is used to describe the side effects of one elements to others.

The tool support for GRL is provided by Organization Modelling Environment (OME).

Figure 3.6 below represents GRL elements.

Table 3.3 gives the relevance of these frameworks for the work presented in this thesis.

Figure 3.6: GRL Elements

PhD Dissertation Arfan Mansoor

3. GORE Frameworks 39

Table 3.3: GORE Frameworks and Their Relevance

Approach Relevance for Thesis

NFR
framework

Dependencies among the softgoals and their contribution links are
useful for decision making. Alternative solutions are evaluated us-
ing the influences relations (also known as contribution links) and
finally suitable solutions are selected. By using SIG, conflicts among
the goals are detected and prioritization technique presented in this
thesis is useful to resolve these conflicts. NFR framework provides
a catalogue for certain quality goals. These catalogues can be used
depending on particular situations where the same quality goals are
being used.

i* (i-star) The goal and softgoal concepts are used to represent the functional
and non-functional (quality goals). The interdependencies among
the goals are used in similar way to NFR framework by using the
contribution links. The quality goal refinement is also done by
same way as in NFR framework. But a prioritization technique is
missing in i* framework which is necessary for conflict resolution
among goals.

Keep All
Objects
Satisfied
(KAOS)

KAOS model like other goal models refine the high level goals into
subgoals. One advantage of KAOS is that it provides a catalogue,
in addition to AND/OR refinement, for the refinement of goals.
The catalogue consist of patterns and these patterns are used for
refinement of goals. Among all the goal based frameworks discussed
KAOS represents a very detail process for obstacle handling which
is used for conflict management and risk analysis. These are used
in comprehensive prioritization approach. KAOS provides a detail
basis of task description as tasks are related to constraints and to
an object which can be active (human or machine) or passive agent
(event, entity or relation). KAOS does not provide explicit rep-
resentation of non-functional requirements or quality goals which
are used for design decisions at later stages to deal this issue, NFR
framework or i* framework is used.

Goal Re-
quirements
Language
(GRL)

GRL is based on i* framework therefore it uses the same concepts to
model the quality requirements with just minor graphical notations
differences.

PhD Dissertation Arfan Mansoor

3. Summary 40

3.7 Summary

This chapter discussed the main goal definitions and concepts of GORE. A complete

goal based requirements analysis is presented and as the novelty of this analysis goal

classification is discussed. Later the links present in goal models and benefits of GORE

are figured out. In the last part of this chapter, GORE frameworks are evaluated and

their use for this work is discussed.

PhD Dissertation Arfan Mansoor

4. Decision Support in GORE 41

Chapter 4

Decision Support in GORE

Requirements engineering start with high level customer problems or needs and move

towards a detailed specification of these problems. One need to make various decisions

in the requirements engineering process and the wrong or poor decisions here will lead

to failures of software products or to products poorly fulfilling their functionality. Ac-

cordingly, there is a need of a decision making activity at the early stages of software

development i.e., at the requirements engineering stage which can aid the discovery

of trade-offs and to find alternatives. Decision making also needs an important con-

sideration because it ranges from requirements elicitation to requirements negotiation

and from requirements prioritization to requirements release planning. In this chapter

the emphasis has been on the need of decision making in goal oriented requirements

engineering and the mapping of decision making framework to GORE. It is discussed

whether decision making needs to be introduced into one of the phases of GORE or to

take this as a continuous activity which spans throughout all phases of goal oriented

requirements engineering.

PhD Dissertation Arfan Mansoor

4. Identifying Decision Points in GORE 42

System development is a creative activity which requires iteratively twisting be-

tween problem space and solution space. It will be considered successful if the system

meets its intended purpose and for this one need to have a thorough understanding of

the system and user behaviour, the underlying technology and how the elements are

going to interact with each other. The problem space is mainly focused on customer

needs and problems and in the solution space the focus is on developing products, sys-

tem architectures, standards and legacy systems [Leh05]. Based on this, requirements

related to the problem space are considered to be external requirements (related to cus-

tomer/user) and requirements related to the solution space are considered as internal

requirements (related to solution and technical stakeholders). Goal oriented require-

ments engineering helps to capture and external requirements as well as internal re-

quirements. In GORE there is a need to document the representation and justification

of goal modelling choices i.e., why requirements engineers prefer one set of require-

ments over the others. The decision making activities that need to be incorporated

into GORE might constitute strategic level decisions, management control decisions,

operational control decisions [Reg01], [AW03]. The omission of decision making re-

sults in inconsistencies between requirements, weak traceability between expectations

and their representations in goal diagrams, information loss on part of stakeholders

modelling decisions [JFS08] etc.

4.1 Identifying Decision Points in GORE

In goal oriented requirements engineering (GORE) one start with initial high-level

goals and keep refining them until the functional requirements satisfying (absolute ful-

filment) or satisficing (partial fulfilment) these higher level goals are achieved. Because

multiple stakeholders are involved in system development and these stakeholders might

have different concerns, therefore, these initial goals contradict with each other and ex-

ploratory analysis needs to be undertaken to facilitate the discovery of trade-offs and

to find alternative system proposals. During this analysis, there are situations where

one can have various alternative options and there is need to select one option from

many others e.g., in goal refinement many refinements are possible, in conflict analysis

one have to choose among conflicting resolution options, during obstacle analysis dif-

ferent obstacle resolution techniques are available, during operationalization of a goal

different operationalization options are available, similarly in responsibility assignment

different assignments are possible etc.. In all these steps one have to decide about

the best option according to one’s needs. There are two options either to select the

best option early in the analysis or support alternative options and let the stakeholders

select the best option resulting in customizable solutions. Decisions have to be made

PhD Dissertation Arfan Mansoor

4. Importance of Decision support in GORE 43

Figure 4.1: Goal Exploratory Analysis

among alternatives at various positions and these decisions need to be demonstrated

and documented to make a requirements specification document more accurate and

less deceptive [Lam09b]. The following question arises: At which step should decision

making be involved into the goal oriented requirements engineering process? Further-

more, when a certain requirement is approved or disapproved there are a number of

decisions that lead to approval or disapproval of this requirement. Usually only se-

lected options are documented in requirement specification and discarded options are

not documented. This information loss can cause problems when revising decisions and

therefore there is need to have a good support for decision recording.

4.2 Importance of Decision support in GORE

There are many benefits of introducing the decision support in GORE:

� Decision support at goal level is useful to involve stakeholders early in require-

ments engineering phase. This is helpful in understanding the interaction be-

tween system and stakeholders (stakeholders involvement in making important

decisions).

� It is easier for stakeholders to recall the reasons of their decisions if the rational

for decisions is made explicit.

� If the rational is explicitly documented, it will result in better identification be-

tween requirements and other goal artifacts in the goal model.

PhD Dissertation Arfan Mansoor

4. GORE and Decision Making Framework 44

� By explicitly documenting the rational of each decision, decision support in

GORE is helpful for better change management capabilities.

� By documenting the stakeholder preferences early in requirements engineering the

inconsistencies are pointed out by identifying the contradictions between stake-

holders.

4.3 GORE and Decision Making Framework

Kontonya and Sommerville [KS98] consider decision making as an embedded activity

in the requirements analysis and negotiation phase but in GORE, decision making is

an activity which might appear in all phases of goal oriented requirements engineering.

The approach adopted in [Reg01] is considered where decision making is considered

as an evolutionary process that involves decisions which are continuous with iterations

possible at each level. These decisions might include planning, objectives, resources,

effective use of these resources and effectively performance of operations [Reg01]. An-

thony [AW03] in his classic decision making model has distinguished decision making

activity at three levels i.e. strategic decisions, management control and operational

control. Accordingly, strategic level decisions are related to organizational goals while

management control deals with decisions, which are related to identification and use

of resources or in other words these describe management level goals or objectives.

In these two stages it is determined whether a requirement is consistent with organi-

zational product strategy and what resources are needed i.e. who is responsible for

particular task and whether there is need of more effort for this task or not. Opera-

tional control concerns about the effective and efficient performance of the tasks. The

qualitative assessment and dependency determination of requirements is carried out at

operational control level.

At strategic level decisions might include the inclusion or removal of goals and there-

fore experienced and higher level staff is engaged in these decisions. The goal elab-

oration (goal analysis and goal refinement) technique is applied to refine goals into

Subgoals until one get concrete level goals i.e. requirements and assumptions. Con-

straints, pre-, and post-conditions are also identified for the goals. Goals can also be

classified depending upon the nature of proposed systems. At management control level

possible ways of implementations of decisions made at strategic levels are explored. It

is the stage where alternatives are analysed and assessed. Cost and benefit analyses

of each alternative are also carried out here and then the best alternative is chosen for

implementation. Decisions made at management control level include which develop-

ment strategies to adopted, or what resources are needed etc., [AW03]. Requirement

PhD Dissertation Arfan Mansoor

4. GORE and Decision Making Framework 45

priorities are also assigned here. These requirement priorities will help in the selection

of alternative system proposals. To make sure that prioritisation produces accurate

results, one need to involve all relevant stakeholders in the prioritisation process. Se-

lection of stakeholders in prioritisation process depends upon the prioritisation criteria.

There are different prioritisation criteria and selecting an appropriate criterion is again

a decision making activity which requires the presence of relative stakeholders. For

example, if a prioritisation criterion is usability then there is need to involve users or

a group of users and if a prioritisation criterion is related to strategic importance of

a requirement for the market segment then product managers should be involved in

the prioritisation process. ’Importance’, ’cost’, ’damage’, ’durability’, ’risk’, ’volatility’

are some common criteria for requirement prioritisation [Poh10a]. The requirement

prioritisation can be based on one criterion e.g., requirements can be prioritised re-

garding the importance for acceptance of the system or it is based on multiple criteria

e.g., a specific requirement is prioritised according to the criteria of importance and

development cost. In management control level the probable solutions and their imple-

mentation methodologies are obtained i.e., one move from problem space to solution

space. This level complements goal operationalization, goal assignment to agents and

alternative system proposals activities of GORE. Requirements implemented at the op-

erational control level involve the decisions which are more structured as compared to

the other two stages because the most preliminary analysis has been done in the earlier

two stages. Mostly, decisions at operational control level relate to the quality and accu-

racy of the implementation of requirements. The proposed solutions are weighted and

ranked to evaluate the individual alternatives. Decisions regarding product delivery

and budget are also handled here. The overall mapping of decision making framework

to basic GORE activities is shown in figure 4.2.

Based on the decision making framework three levels of requirements are as follow:

Organizational Level Requirements these include requirements related to busi-

ness strategy, technology, marketing, benefits and profits.

Product Level Requirements are related to requirements for specific release, prod-

uct architecture, resource management, implementation, change management.

Project Level Requirements are related to project planning, feasibility study,

recruiting people, project management, quality control and validation.

PhD Dissertation Arfan Mansoor

4. GORE and Decision Making Framework 46

Figure 4.2: Decision Making Framework and GORE

Goal Identification

Goal Elaboration

Goal Operationalization

Alternative Proposals

Evaluating Alternative

Selection

Obstacle

Analysis

Conflict

Analysis

Strategic Decisions

Management

Control

 Decisions

Operational

Control

 Decisions

One also need to differentiate between decision making at individual level and de-

cision making at organizational level i.e., group level decision making. For examples,

individual level decisions might include developers taking decisions on their own about

the implementation of a certain requirement. Similarly, individual level decisions might

include management decisions about the imposition of certain requirement. Usually the

individual level decision making at the developers site is not visible at the upper level

i.e. requirement management groups etc. This also emphasizes on the need of incorpo-

rating individual choices in decision making models. In the requirements engineering

process decision making should not be confused with problem analysis activities. In

the problem analysis data is gathered and assessed while in decision making activity

the gathered and processed data is used for decision making. Problems are identified

and described in the problem analysis phase. These problems can be deviations from

certain performance standards or they may be caused by some changes. At decision

making stage the goals are stabilized and classified. Acceptance criterion is also de-

fined for these goals. After that, possible solutions are explored for these goals. During

this exploration, distinctive alternatives are uncovering . These alternatives are then

PhD Dissertation Arfan Mansoor

4. GORE and Decision Making Framework 47

evaluated against the already established objectives. The alternative that is able to

accomplish all objectives or most of the objectives fulfilling the acceptance criteria is

chosen for implementation. Again, the selection of an alternative from various alterna-

tives is the decision making activity which involves technical as well as non-technical

factors. These factors might be objective or subjective depending on the decisions to

be made, for example, in economic decisions financial factors are more important while

in real time decisions security and timing factors are more important. Some of the

important factors involved in decision making are: customers, organization process, or-

ganization objectives, financials, constraints, decision variables. The decision making

activity along with its main steps that are important from a goal oriented requirements

engineering perspective are represented in figure 4.3.

Figure 4.3: Decision Making Activities

Data collection &

assessment

Data collection &

assessment

Problem statementProblem statement

Extract goalsExtract goals

Identify alternativesIdentify alternatives

Evaluate alternativesEvaluate alternatives

Select an alternative Select an alternative

Goal identification

Establish & weigh

decision criteria

Pros & cons, risk

analysis

Possible

implementations

P
ro

b
le

m
 A

n
al

y
si

s
D

ec
is

io
n

 M
ak

in
g

Organizational

level

Organization

procedures,

interests,

constraints,

etc.,

Organization

procedures,

interests,

constraints,

etc.,

Team 1

Team n

DecisionDecision

PhD Dissertation Arfan Mansoor

4. Decision Influencing Factors 48

Table 4.1: Decision Influencing Factors

Sr Organizational Level
Factors

Technical Level Fac-
tors

Product Level Factors

1 Management Hardware factors Functional features
2 Domain knowledge Domain specific factors Non-functional features

(quality factors)
3 Employee skills (analy-

sis skilled employees, im-
plementation skilled em-
ployees)

Software factors Product constraints

4 Process and development
environment

Architecture (product
lines)

Maintenance

5 Schedule Any particular standards
6 Cost (hardware budget,

software budget)

4.4 Decision Influencing Factors

Several factors influence decision making. Understanding the factors that influence

decision making process is important to understanding what decisions are made. That

is, the factors that influence the process may impact the outcomes. This section cate-

gorizes the decision factors into three main categories:

� Organizational factors

� Technical factors

� Product factors

Table 4.1 gives influencing factors related to each of these categories.

Organizational factors are related to management decisions and they are of more

concern at process and project level. They address project and process issues like

cost, time or the maturity level the process has to fulfil. Requirements on specific

development methods and techniques are also addressed here. For decision support

at requirements level and in GORE the technical and product factors are of primary

concern because of their importance at product level. Decision points in GORE are

identified in goal graphs where functional and non-functional requirements influence

the decision support as shown in figure 4.4. For the involvement of functional and

non-functional requirements, a requirements taxonomy defined by [Jorsh] is used. This

taxonomy was based on the results of a joint workshop of German-speaking NFR

experts from industry and academia.

PhD Dissertation Arfan Mansoor

4. Decision Influencing Factors 49

Figure 4.4: Decision Factors

As mentioned above at organizational level the decisions are more managerial ad

product level decisions involve functional, non-functional requirements and product

constraints. The requirement taxonomy classify functional requirements according to

different domains. The business processes and interaction descriptions also known as

operational scenarios are typical for information system domain. Whereas the be-

haviour descriptions and terms like stimuli and responses are representatives of embed-

ded area. Neutral terms like functional descriptions and data items are also classified

as functional requirements.

Table 4.2: Functional Requirements according to Domain

Non-functional requirements are ones that restrict the solution space by constraining

the qualities. Third category, product constraints, are usually known before the actual

system development starts. They include constraints like:

� Architectural constraints

� Cultural constraints

� Operating environmental constraints

� Legal constraints

� Constraints imposed by physical laws

PhD Dissertation Arfan Mansoor

4. Non-functional Requirements for Decision Support 50

4.5 Non-functional Requirements for Decision Sup-

port

Non-functional requirements are considered from two perspectives:

� As requirements that describe the properties, characteristics or constraints of the

system

� As requirements that describe the quality attributes that system must have

First type consist of business rules, external interfaces, development constraints and

any other requirements that do not describe the functionality of the system. Quality

attributes are properties of functional requirements that describe any other character-

istic other than its functionality. An important part of quality attributes is that they

should be measurable i.e., one or more metrics can be attached to the quality attribute

e.g., response time, throughput time etc. There are three important characteristics of

non-functional requirements that differentiate them from functional requirements:

� Functional requirements are related to specific functions while non-functional

requirements are related to architecture and they might have affect on several

functions. Due to this reason changes in non-functional requirements are more

complicated.

� Functional requirements have hard criteria for their fulfilment i.e., when imple-

mented they either work or do not work. While non-functional requirements

might not be fully satisfied and they have a sliding scale of good or bad. For that

reason they are difficult to test and usually are evaluated subjectively.

� Non-functional requirements might conflict with each other and therefore trade-

offs are needed in these situations.

4.5.1 Identifying Terms of Non-functional Requirements

Non-functional requirements can be identified by specific terms like:

� -ilities: understandability, usability, modifiability, inter- operability, reliability,

portability, maintainability, scalability, (re-)configurability, customizability, adapt-

ability, variability, volatility, traceability, ...

� -ities: security, simplicity, clarity, ubiquity, integrity, modularity, ...

� -ness: userfriendliness, robustness, timeliness, responsiveness, correctness, com-

pleteness, conciseness, cohesiveness, ...

PhD Dissertation Arfan Mansoor

4. Non-functional Requirements for Decision Support 51

But this list is not exhaustive, there are also other keywords used to define non-

functional requirements like: performance, efficiency, accuracy etc. [MZN10] have iden-

tified a total of 252 types of non-functional requirements. These 252 types consist

of quality attributes (e.g., reliability, maintainable, performance), development con-

straints (e.g., time, cost), external interface requirements (e.g., user interface, human

factors, look and feel, system interfacing), business rule (production life span) and

others (cultural, political and environmental). Among these 252 types 114 types are

specifically related to quality requirements. The top five most frequent types of quality

requirements are: performance, reliability, usability, security, and maintainability.

4.5.2 Elicitation of Requirements

The requirements reside in scattered sources (stakeholder, text documents, require-

ments models etc.,) in different forms, e.g., as an idea, intentions or needs in the

minds of stakeholders. For a successful requirements engineering process, all the rel-

evant sources should be considered during requirements elicitation activity. The first

goal of requirements engineering process is defined as ”all relevant requirements shall

be explicitly known and understood at the required level of detail.” The general re-

quirements engineering process was shown in figure 2.2. This process is decomposed

into four major activities: requirements elicitation, requirements analysis, requirements

specification and requirements validation. Each activity is defined as:

� Requirements elicitation: requirements elicitation consists of earliest activities in

the requirements engineering process. The requirements are elicited from differ-

ent sources (from customer, user, related documents) using different requirements

elicitation techniques. The elicited requirements are known as customer require-

ments or user requirements.

� Requirements analysis and negotiation: customer requirements are analysed to

discover problems especially problems related to inconsistent requirements (no

requirements are contradictory), to identify the missing requirements (no needed

services or constraints have been missed out) and to develop new and innovative

requirements. The feasibility of requirements in the context of budget and sched-

ule is also carried out at analysis phase. An important objective is to realize the

relations among requirements and to find the requirements conflicts and overlaps.

In case of conflicts the requirements are negotiated to find a compromise among

the stakeholders.

� Requirements specification: requirements specification is about the representa-

tion of requirements that can be accessed for correctness, completeness and con-

PhD Dissertation Arfan Mansoor

4. Non-functional Requirements for Decision Support 52

sistency using natural language, graphical notations, mathematical notations or

models.

� Requirements validation: the requirements documents are validated, before they

are used as a basis for the system development, by customer and other concerned

stakeholder to detect the deviations between the requirements documents and the

stakeholder needs and wishes. During the validation activity, new requirements

are developed and the process iterates until all requirements are validated and

no more new requirements are elicited.

Eliciting clear, complete, and consistent requirements is a challenge and intricate task

in requirements engineering due to number of reasons e.g., communication barriers that

makes common understanding difficult. Most of the literature work has focused on the

representation of requirements i.e., on requirements specification. The IEEE Guide

to Software Requirements Specifications [IEE98] defines a good software requirements

specification as being: unambiguous, complete, verifiable, consistent, modifiable, trace-

able, usable during operations and maintenance. In [Poh10b] the main goals of require-

ments engineering are characterized by three dimensions of requirements engineering

which are:

� Content dimension: deals with understanding of requirements, all requirements

should be known and understood in detail.

� Agreement dimension: deals with agreements among relevant stakeholders about

known requirements.

� Documentation dimension: deals with documentation/specification of require-

ments in compliance with defined formats and rules.

Requirements elicitation process Interleaves the first two dimensions and therefore a

good requirements elicitation process structures the foundation to build specification

documents with desired attributes.

4.5.3 Requirements Elicitation Challenges

One of the main origin of project failures is the lack of due diligence at the requirements

engineering phase. The study [PF] indicates 23.8 per cent projects were cancelled be-

cause of communication barriers between team members and end users, ambiguous

requirements definition, and poor requirements management. Another study [Cha]

shows that 90 per cent of system failures are tracked back to poor requirements elicita-

tion. Problems of requirements engineering are grouped into three categories: problems

of scope, problems of understanding, problems of volatility [Chr92].

PhD Dissertation Arfan Mansoor

4. Non-functional Requirements for Decision Support 53

� Problems of scope: problems of scope relate to determining the system boundary

and the objectives of the target system. To little or too much information results

in incomplete, ambiguous, not verifiable, and unnecessary requirements. These

requirements do not reflect true user needs and they are not implementable under

system constraints.

� Problems of understanding: problems of understanding occur because of user’s

poor or incomplete understanding of his needs, computer capabilities and limita-

tions. Analysts do not have complete knowledge of domain. Communication bar-

rier exist between user and analyst; both of them speak different language. There

are conflicting and unspoken or assumed requirements from different stakeholders.

These problems results in requirements which are often vague and un-testable.

� Problems of volatility: the requirements evolve over time and hence there are

some requirements which are bound to change. The main reason of requirements

change is that user needs evolve over time. Therefore, requirements engineering

process should be iterative in nature to accommodate changes in the light of

increased knowledge.

4.5.4 Requirements Elicitation Context

It is important to consider the context in which requirements are being elicited. Re-

quirements elicitation process is followed in the following contexts: Organization, En-

vironment, Project, Constraints imposed by people provide a good starting point for

requirements elicitation.

� Organization context: Although requirements elicitation emphasis on the sys-

tem’s mission statements, but the overall organization context is often neglected.

The requirements elicitation needs to understand the context of the organization

where the system will be placed. The important factors of organizational context

include: submitters of input, users of output, ways in which the new system will

change the business process.

� Environmental context: Environmental context is necessary because the devel-

oping system must interface with the large system. Environmental constrains

have a strong impact on requirements elicitation as for one type of applications;

one may require methods and tools that are not necessary for other types of ap-

plications, for example, eliciting requirements for a real-time system will require

different approaches than eliciting requirements for information systems. Impor-

tant environmental factors include: hardware and software constraints, maturity

PhD Dissertation Arfan Mansoor

4. Non-functional Requirements for Decision Support 54

of the target system domain, certainty of the target system’s interfaces to the

larger system, the target system’s role in the larger system.

� Project context: The project context also affects the requirements elicitation

process. The factors of project context include: the attributes of the different

stakeholder communities, such as the end users, sponsors, developers, and require-

ments analysts. Examples of such attributes are: management style, management

hierarchy, domain experience, computer experience.

� Constrains imposed by the people: They are involved in the elicitation process,

e.g., managerial constraints concerning cost, time, and desired quality in the

target system.

4.5.5 Requirements Elicitation using Goals

According to Pohl [Poh10b] requirements elicitation in terms of tasks should facilitate:

� Identification of relevant requirements sources

� Eliciting existing requirements from identifies sources

� Developing new and innovative requirements

Identification of relevant requirements sources starts by exploring the gathered doc-

uments, ranging from information about the organization, (i.e., enterprise goals) to

system specific information (i.e., requirements). For the identification of relevant re-

quirements sources other approaches that complement goal based analysis are used.

In [Poh10a] a two step procedure is proposed: in first step the relevant requirements

sources are identified and in second step requirements sources are selected from those

identified sources for eliciting and analysing requirements. The numbers of identified

resources are restricted due to number of factors e.g., time, cost, availability of experts.

In the first step techniques like interviews, workshops, or brainstorming sessions are

used to identify relevant sources. The collected sources are added to the already iden-

tified sources. The process iterates until newly identified sources become sufficiently

low or reaches to zero. For assessing the relevant sources a test named ’100-dollar test’

is proposed [LW00]. In this test each stakeholder is given 100 dollars to spend on the

items and in the end the average amount of money spent on the items determines the

relative weighting of that item. Now the requirements sources are prioritized depending

on the amount spent on each item.

PhD Dissertation Arfan Mansoor

4. Non-functional Requirements for Decision Support 55

Table 4.3: Run Time and Development Time Qualities

Sr Run Time Qualities Development Time Qualities

1 Usability (ease-of-use, learnability,
memorability, efficiency)

Localizability

2 Configurability and supportability Extensibility
3 Correctness, reliability, availability Evolvability
4 Performance (throughput, response

time, transit delay, latency,etc.)
Composability

5 Safety (security, fault tolerance) Reusability
6 Scalability

After the identification of relevant sources, the next step is to elicit and analyse

requirements. A preliminary analysis of current systems is important source for goal

identification. Sometimes goals (high level) may be explicitly stated but most often

they are implicit and an elicitation process needs to be undertaken to identify goals.

The main sources for identifying goals are to look for intentional keywords in provided

requirements sources like interviews, transcripts, mission statements, policy statements

etc. A common approach is to find deficiencies that can be formulated, negate these

deficiencies to produce first list of goals. Once high level goals are identified they are

refined to elicit further goals until the system requirements are achieved. Scenarios,

use cases and initial goal model are used to elicit system requirements.

Non-functional Requirements Elicitation from Functional Requirements Non-

functional requirements emerge from functional requirements e.g., cash withdraw con-

sists of quality and constraints: quality aspects represents the properties of the system

that concerns stakeholders and these properties affect the degree of satisfaction of the

system while constraints unlike qualities are not subject to negotiation, they are off-

limits during design trade-offs. The qualities that are relative to users goals and judged

by users are categorized as run-time qualities while qualities related to development

organization’s goals are categorized as development-time qualities [MB01]. Table 4.3

highlights the main run time and development time qualities.

Steps Involved Non-functional requirements elicitation from stakeholder goals

consist of following steps:

1. Identify stakeholders

2. Elicit goals for stakeholder

3. Establish softgoals (non-functional requirements) for each goal

4. Refine goals to subgoals

5. Identify softgoals for each subgoal

PhD Dissertation Arfan Mansoor

4. Non-functional Requirements for Decision Support 56

6. Refine softgoals to sub-softgoals

7. Establish links among goals and softgoals, subgoals to sub-softgoals

Cyclecomputer Example In cyclecomputer example user can have number of goals

e.g., ProfessionalCycling, EntertainmentGoal, HealthAndFitnessGoal. Entrainment-

Goal is selected for further analysis which is refined into number of subgoals: Main-

tain[StandardFunctions], Achieve[MediaPlayerService],

Achieve[RoutePlanning], Achieve[WeatherForcast], Achieve[CompitionFunction],

Achieve[Call&MsgFunction] Figure 4.5.

Figure 4.5: Cycle Computer Goals

EffectiveCycleCompEffectiveCycleComp

ProfessionalCyclingProfessionalCycling
EntertainmentGoalEntertainmentGoal Health&FitnessHealth&Fitness

Maintain

[StandardFunctions]

Maintain

[StandardFunctions]
Achieve

[MediaPlayerService]

Achieve

[MediaPlayerService]
Achieve

[RoutePlanning]

Achieve

[RoutePlanning]
Achieve

[WeatherForcast]

Achieve

[WeatherForcast]
Achieve

[CompitionFunction]

Achieve

[CompitionFunction]
Achieve

[Call&MsgFunction]

Achieve

[Call&MsgFunction]

Legend

AND refinement

Goal

Now lets take one subgoal from EntertainmentGoal i.e., Call&MsgFunction and refine

that into further subgoals until requirements assignable to agents are achieved. The

bold lines parallelograms in Figure 4.6 represents requirements and these requirements

need a non-functional requirement i.e., usability.

Figure 4.6: Call&MsgFunction Subgoals

Call&MsgFunctionCall&MsgFunction

ProfessionalCyclingProfessionalCycling Health&FitnessHealth&Fitness

Display

call

Display

call
Accept

call

Accept

call
Reject

call

Reject

call
Display

msg

Display

msg
Read

msg

Read

msg
Read

later

Read

later

PhD Dissertation Arfan Mansoor

4. Summary 57

Functional Requirements from Non-functional Requirements Non-functional

requirements at high level (whole system) lead to functional requirements at lower lev-

els (subsystems). In that case non-functional requirements result in new functional

requirements. A security requirement which is conventionally a non-functional require-

ment because it does not specify any specific functionality may lead to security subsys-

tems to protect the system as a whole. For example a security requirement to prevent

unauthorized access when refined results in functional requirement (user login): ”The

system shall include a user authorisation procedure where users must identify them-

selves using a login name and password. Only users who are authorised in this way

may access the system data.”

Cyclecomputer Example In cyclecomputer example there is one goal

Achieve[SupportforTraining] which is a subgoal of a goal ProfessionalCycling 4.5.

Achieve[SupportforTraining] is further refined into number of subgoals one of which

is Maintain[CaloryConsumption]. Maintain[CaloryConsumption] requires security re-

quirement (non-functional) for different users and therefore Maintain[UserLogin] is in-

troduced in goal model.

4.6 Summary

This chapter discussed the importance of decision making at early stage of requirements

engineering. After that the decision points in GORE are identified and the mapping

of GORE as decision making framework is presented. The main factors that influence

various decisions at requirements level are identified. In later part of this chapter the

importance of non-functional requirements as decision factors is highlighted. The case

study ’cyclecomputer’ was presented as an example of requirements elicitation.

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 58

Chapter 5

Quality Models and Goal Models

Integration

5.1 Quality Models Classifications

There are wide variety of concepts used for the classification of NFRs.

5.1.1 Boehm’s Software Quality Tree [Boe76]

Boehm’s quality tree was perhaps the earliest attempt to establish a conceptual frame-

work of software quality. Boehm tree started by defining important software char-

acteristic then metrics are defined to access the degree to which software has these

characteristics. These metrics are then evaluated according to a number of criteria. In

this way Boehm model presents three level approach. First level defining the highest

level characteristic address three main questions:

� As-is utility: How well (easily, reliably, efficiently) it is used as-is?

� Maintainability: How easy is it to understand, modify and retest?

� Portability: Can I still use it if I change my environment?

Second level represents seven quality factors that represents the quality of the software

system: These seven quality factors are:

� Portability (General utility characteristics): The characteristic portability defines

the extent to which the system can be operated easily on configurations other

than its current one

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 59

� Reliability (As-is utility characteristics): The characteristic reliability defines the

extent to which the system can be expected to perform its intended functions

satisfactorily

� Efficiency (As-is utility characteristics): The characteristic efficiency is about the

efficient use of resources

� Usability (As-is utility characteristics, Human Engineering): the characteristic

usability defines the extent to which the system is reliable, efficient and human-

engineered

� Testability (Maintainability characteristics): Testability defines the extent that

system facilitates the establishment of verification criteria and supports evalua-

tion of its performance

� Understandability (Maintainability characteristics): Understandability defines

that the system’s purpose is clear to the inspector

� Flexibility (Maintainability characteristics, Modifiability): Defines the extent to

which system facilitates the incorporation of changes, once the nature of the

desired change has been determined.

Third level which is lowest level in Boehm’s quality tree represents the metric hierar-

chy which given the foundation for defining the quality metrics. Figure 5.1 represent

complete hierarchy between software characteristics from high level to low level. High

level represents the uses of the software and low level is closely related to metrics that

are used to perform the evaluations.

5.1.2 McCalls Quality Model (1977)

The McCall quality model has three major perspectives for defining and identifying

the quality of a software product:

� Product revision: It defines the ability to undergo changes. It includes

- maintainability: the effort required to locate and fix a fault in the program

within its operating environment

- flexibility: the ease of making changes required in the operating environment

- testability: the ease of testing the program. The purpose is to ensure that

it is error-free and meets its specification

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 60

Figure 5.1: Boehm’s Software Quality Tree

� Product transition: Defines the product adaptability to new environments. Prod-

uct transition is all about

- portability: the effort required to transfer a program from one environment

to another

- reuseability: the ease of reusing software in a different context

- interoperability: the effort required to couple the system to another system

� Product operations: Defines the operation characteristics. Quality of operations

depends on

- correctness: the extent to which a program fulfils its specification

- reliability: the systems ability not to fail

- efficiency: deals with use of resources e.g., processor time, storage etc., It is

further categorized into execution efficiency and storage efficiency

integrity: the protection of the program from unauthorized access

usability: the ease of the software

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 61

Figure 5.2: McCall’s Quality Model

The model further describes 11 quality factors and 23 quality criteria. Quality factors

are used to specify the external view of the product as viewed by the user. The quality

criteria is used to describe the internal view of the product as as seen by the developer.

5.1.3 Romann Model [Rom85]

Roman defined NFRs as constraints and he divided NFRs into six types of constraints.

� Performance Constraints: They cover wide variety of concerns:

- time/space such as response time, throughput, workloads, storage space etc.

- reliability deals with physical components and integrity of information main-

tained and supplied to the system

- security constraints such as permissible information flow

- survivability constraints such as related to defence system and system

database prevent loss

� Interface Constraints: They define the ways the system interact with its environ-

ment, with users and other systems e.g., user friendliness

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 62

Figure 5.3: McCall’s Quality Factors and Quality Criteria

� Operating constraints: They include physical constraints, personnel availability,

skill level considerations, system accessibility for maintenance, etc.

� Life cycle constraints: They fall into two categories:

- quality of the design which is measured in terms such as maintainability,

enhanceability, portability

– limits on development such as development time limitations, resource avail-

ability, methodological standards, etc.

� Economic Constraints: They define immediate and long terms costs. Thy may

be limited to particular component and/or might consider the global marketing

and production objectives

� Political constraints: They deal with policy and legal issues

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 63

5.1.4 Sommerville Model [Som95]

Ian Sommerville classified NFRs into product requirements, organizational require-

ments and external requirements.

� Product requirements: Requirements which specify that the delivered product

must behave in a particular way e.g. execution speed, reliability, etc.

� Organizational requirements: Requirements which are a consequence of organ-

isational policies and procedures e.g., process standards used, implementation

requirements, etc.

� External Requirements: Requirements which arise from factors which are external

to the system and its development process e.g., interoperability requirements,

legislative requirements, etc.

Figure 5.4: Sommerville Classification of NFRs

Figure 5.4 represents Sommerville [Som95] classification of NFRs.

5.1.5 Dromey’s Quality Model [Dro95]

Dromey proposed a product based quality model. Dromey model argues that quality

evaluation differ for each product. The focus in this model is on the relationships

between the quality attributes and sub-attributes and it attempts to connect product

properties with quality attributes. In this quality model, there are three main elements:

� Product properties: They influence the quality

� Quality attributes

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 64

� Links: linking between product properties and quality attributes

Quality carrying properties are structured into four basic categories and then quality

attributes are identified against each quality property:

� Correctness properties: represents minimal generic requirements for correctness

- Computable: obeys law of arithmetic etc.

- Complete: all elements of structural form are satisfied

- Assigned: variable given value before use

- Precise: accuracy preserved in computations

- Initialized: Assignment to loop variables establish invariant

- Progressive: each iteration decreases variant function

- Variant: loop guard derivable from variant function

- Consistent: no improper use or side effects

� Structural properties: deals with low level intermodule design issue

- Structured: single entry/single exit

- Resolved: data structure/control structure matching

- Homogeneous: only conjunctive invariants for loop

- Effective: no computational redundancy

- Non-redundant: no logical redundancy

- Direct: problem specific representation

- Adjustable: parametrized

- Range independent: applies to variables (arrays), types, loops

- Utilized: to handle representational redundancy

� Modularity properties: deals with high level intermodule design issues

- Parametrized: all inputs accessed via a parameter list

- Loosely coupled: data coupled

- Encapsulated: uses no global variables

- Cohesive: the relationships between the elements of an entity are maximized

- Generic: is independent of the type of its inputs and outputs

- Abstract: sufficiently abstract

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 65

� Descriptive properties: deals with various form of specification/documentation

properties

- Specified: preconditions and postconditions are provided

- Documented: comments are associated with all blocks

- Self descriptive: Identifiers have meaningful names.

Figure 5.5: Dromey’s Product Quality Model

ImplementationImplementation

Software product

CorrectnessCorrectness StructuralStructural ModularityModularity DescriptiveDescriptive

Quality properties

Functionality,

reliability

Functionality,

reliability

Maintainability,

efficiency,

reliability,

portability

Maintainability,

efficiency,

reliability,

portability

Maintainability,

reusability,

reliability,

portability

Maintainability,

reusability,

reliability,

portability

Maintainability,

reusability, usability

Maintainability,

reusability, usability

Quality attributes

5.1.6 FURPS/FURPS+ [Gra92]

This model was introduced by Robert Grady. The name comes from characteristics

Functionality, Usability, Reliability, Performance, Supportability (FURPS). This clas-

sification addresses both functional and non-functional requirements as represented by

letter F which stands for functionality. FURPS+ is used to represent constraints such

as ”the system will use ’xyz’ database.”

� Functionality: functional requirements are defined by inputs and expected out-

puts and may include feature sets, capabilities

� Usability: usability includes eliciting and stating requirements regarding user

interface issues. They include human factor, accessibility, interface aesthetics,

user documentation, training and consistency within the user interface

� Reliability: reliability includes availability, accuracy, and recoverability, pre-

dictability

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 66

� Performance: constraints on functional requirements such as speed, efficiency,

throughput, response time, recovery time and resource usage

� Supportability: supportability includes number of other requirements like testa-

bility, adaptability, maintainability, compatibility, configurability, installability,

scalability, localizability etc.

FURPS+ is used to specify design, implementation, interface and physical constraints.

� Design constraints: define constraints on design i.e., the approach one take in

developing the system.

� Implementation constraints: constraints on coding e.g., platform, implementation

language etc.,

� Interface constraints: constraints on external systems interactions.

� Physical constraints: constraints regarding shape, size, weight etc.

5.1.7 ISO 9126 Model [Sta04]

The ISO 9126 is an international standard for software quality evaluation and it is

based on the McCall and Boehm models [Boe76]. This model represents the quality

from three aspects [Sta04]:

� Internal quality: is about the design of the software i.e., it is the implementa-

tion. Falling to fulfil internal quality means, the system will be less responsive to

changes in future. The internal quality characteristics are: Maintainability, Flex-

ibility, Portability, Re-usability, Readability, Testability and Understandability.

� External quality: determines the fulfilment of stakeholders requirements i.e., is

the system providing the required functionality? Is the interface clear and con-

sistent? Its obvious measures are functional test and measures of the bugs of

the product. The external quality characteristics are: Correctness, Usability,

Efficiency, Reliability, Integrity, Adaptability, Accuracy, and Robustness.

� Quality in use: is the user view of the quality and depend upon achieving the

external quality. internal quality influences the external quality which influences

the quality in use. Quality in use is categorized into four characteristics: effec-

tiveness, productivity, safety, satisfaction .

This model presents six top level quality characteristics (internal and external) which

are further refined into twenty one sub-characteristics at the lower level.

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 67

Figure 5.6: ISO Quality Model in the Product life cycle [WS03]

� Functionality: provides the required functionality which meet stated and implied

needs when the software is used under specified conditions.

- Suitability: provide specific set of functions for specific tasks and user ob-

jectives

- Accuracy: provide the agreed results with needed degree of precision i.e.,

correctness of functions.

- Interoperability: The capability to interact with one or more specified com-

ponents or systems i.e., the system does not work in isolation.

- Security: protecting the information and data from unauthorized access and

granting access to authorized persons.

- Compliance: Adhering to standards, conventions or regulations in law

whether industry or government.

� Reliability: maintaining a specified level of performance under specified condi-

tions.

- Maturity: concerns frequency of failures of the software.

- Fault tolerance: Maintaining a specified level of performance in case of

software faults.

- Recoverability: re-establishing a specified level of performance and recover-

ing the system to operational state (data and network connections) after failure.

- Availability: the capability to be able to perform a required function at a

given point in time under stated condition of use. It is a combination of maturity,

fault tolerance and recoverability.

� Usability: the capability of the product to be understood, learned and used.

Usability also addresses the environment of the product.

- Understandability: ease with which the product functions are understood.

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 68

- Learnability: enabling the user to its applications.

- Operability: enabling the user to operate and control the product i.e., easily

operated by a given user in a given environment.

- Attractiveness: to be attractive to the user

� Efficiency: capability to provide appropriate performance relative to the amount

of the resources used under stated conditions.

- Time behaviour: characterizes the response time, processing time for a given

through put.

- Resource behaviour: Characterizes the appropriate amount and types of

resources used, i.e., memory, CPU, disk, network usage etc.

� Maintainability: capability of the software product to be corrected, improved

and/or adapted to the changes in environment, requirements and specifications.

- Analyzability: ability to identify the root causes of failures.

- Changeability: amount of effort to implement the change.

- Stability: avoiding unexpected effects of the changes.

- Testability: efforts needed to test a system change.

� Portability: the capability of the product to be transferred from one environment

to another.

- Adaptability: ability to change to new specifications or operating environ-

ments.

- Installability: effort required to install the product.

- Co-existence: ability to co-exist with other independent software in same

environment sharing common resources.

- Replaceability: how easy is it to exchange a given component within a

specified environment.

- Conformance: adhering to standards or conventions relating to portability.

5.1.8 Comparison of Quality Models

Most of the quality models consist of layers. The number of layers are two (character-

istics, sub-characteristics) or three; third layers usually consisting of metrics. Figure

5.8 gives a comparative analysis of quality model’s characteristics.

PhD Dissertation Arfan Mansoor

5. Quality Models Classifications 69

Figure 5.7: ISO Quality Model Internal and External Quality Characteristics

Internal & External quality Internal & External quality

FunctionalityFunctionality ReliabilityReliability UsabilityUsability EfficencyEfficency MaintainabilityMaintainability PortabilityPortability

Suitability,

accuracy,

interoperability

, security

Suitability,

accuracy,

interoperability

, security

Maturity, fault

tolerance,

recoverability

Maturity, fault

tolerance,

recoverability

Understandability

learnability,

attractiveness,

operability

Understandability

learnability,

attractiveness,

operability

Time behaviour,

resource

utilization,

efficiency

compliance

Time behaviour,

resource

utilization,

efficiency

compliance

Analysability,

changeability,

stability,

testability

Analysability,

changeability,

stability,

testability

Adaptability,

Installability,

replacaebility

Adaptability,

Installability,

replacaebility

Figure 5.8: Comparison of Quality Models

Factors/Attributes/
Characteristics

Boehm's
Model

McCall's
Model

Romann
Model

Sommerville
Model

Dromey's Model FURPS/
FURPS+

ISO9126
Model

Maintainability * * * * *

Flexibility * * *

Testability * * * maintainability

Correctness * * * maintainability

Efficiency * * * * * *

Reliability * * * * * * *

Integrity * * * * * *

Usability * * * * *

Portability * * * * * *

Reusability * * * *

Interoperability * * * *

Human Engineering * * * *

Understandability *

Modifiability * maintainability

Functionality * * * * *

Performance * * *

Supportability * *

Clarity *

Documentation * * * *

Resilience *

Validity * maintainability

Generality * * * *

Economy * *

PhD Dissertation Arfan Mansoor

5. Goal Model and Quality Model Integration 70

5.2 Goal Model and Quality Model Integration

Mostly the quality models will not fit perfectly for the developing system [KLM11]

and therefore the adaptation of these quality models for specific project is required.

This section focused on the integration of goal models and quality models that helps

in the derivation of customized quality models. In chapter IV, the decision influencing

factors are identified. The adaptation of quality models is based on those organizational

specific factors. The general tailoring process consist of three steps:

1. Specifying the goal: The process begins with specifying the higher level goal

which defines the needs of the project or organization.

2. Specifying quality aspect: The quality related aspects belonging to identified

goal are specified. For that, quality models are used. The quality model used to

identify the quality aspects is called the reference model. In figure 5.8 all widely

used aspects are identified. So, instead of using one particular quality model

which may lack quality aspects present in other models this is used as reference

model.

3. Tailoring the model: Once all quality aspects are chosen, the ones that are not

needed in the final analysis are discarded.

Figure 5.9: Integrated Meta Model

PhD Dissertation Arfan Mansoor

5. summary 71

The defined meta-model 5.9 is used to describe quality models in use, integrate the

relevant attributes that are specific to stakeholder goals. The meta concepts GoalModel

and QualityModel are central to overall meta model. A single goal have OR or AND

refinements until the LeafGoal is achieved. LeafGoal can be the Task assignable to

Agent or it may be a Quality Attribute(QA) derived from QualityGoal. QA influence

other QA and it can also contribute to Task in positive or negative manner. Agents are

of two types SoftwareAgent, EnvironmentAgent. Task is generalized form of UserTask

and SystemTask having related User QA (UserQA) and System QA (SystemQA). For

organizational specific QA, OrganizationalQA meta concept is defined. Each OR re-

finement may have variation points. Meta concept VariationPoint explicitly define the

variability in goal model. VariationPoint represents the variation subject while Variant

define concrete type of variation.

5.3 summary

This chapter discussed different quality models. A classification of quality models from

various authors is presented. In comparison of quality models, the quality factors from

all these models are presented. In the last an integration of quality models and goal

models is discussed and an integrated meta model is presented as an output of that

integration.

PhD Dissertation Arfan Mansoor

6. Prioritization and Selection of Requirements: Three Tier Approach 72

Chapter 6

Prioritization and Selection of

Requirements: Three Tier

Approach

Software quality requirements are essential part for the success of software development.

Defined and guaranteed quality in software development requires identifying, refining,

and predicting quality properties by appropriate means. Goal models of goal oriented

requirements engineering (GORE) and quality models are useful for modelling of func-

tional goals as well as for quality goals. In previous chapter, a goal based tailoring

process for quality models is defined. Once the goal model representing the functional

requirements and integrated quality goals are obtained, there is need to evaluate each

functional requirement arising from functional goals and quality requirement arising

from quality goals. The process consist of two main parts. In first part, the goal mod-

els are used to evaluate functional goals. The leaf level goals are used to establish the

evaluation criteria. Stakeholders are also involved to contribute their opinions about

the importance of each goal (functional and/or quality goal). Stakeholder opinions

are then converted into quantifiable numbers using triangle fuzzy numbers (TFN). Af-

ter applying the defuzzification process on TFN, the scores (weights) are obtained for

each goal. In second part specific quality goals are identified, refined/tailored based

on existing quality models and their evaluation is performed similarly using TFN and

by applying defuzzification process. The two step process helps to evaluate each goal

based on stakeholder opinions and to evaluate the impact of quality requirements. It

also helps to evaluate the relationships among functional goals and quality goals.

PhD Dissertation Arfan Mansoor

6. Prioritization and Selection of Requirements: Three Tier Approach 73

The distinct purpose of software development is to satisfy various stakeholders needs

[KR97]. There are multiple stakeholders involved in the system development and these

stakeholders might have different concerns/opinions about the goals to be achieved by

the system. Requirements engineering must provide a way to understand stakeholders

needs so that high quality software systems are developed. Although stakeholders needs

are placed at the most important place, their classification is regarded as the most dif-

ficult task. Each stakeholder might have different requirements and sometimes these

requirements are of contradicting nature. Therefore, satisfying these requirements is

a challenging task [Ito07]. The goal models of goal oriented requirements engineer-

ing(GORE) are used to identify and refine the high level goals. Finding the criteria

based on GORE require high level goals to be analysed till leaf goals are achieved,

that is, until operational requirements are achieved. These leaf level goals are used as

criteria for the established high level goals.

There are multiple criteria in one goal model and each criterion may have different

importance for various perspective stakeholders, that is, some criteria are more im-

portant than others [EK08]. Stakeholders opinions and preferences should be involved

in the process to find the relative importance of each criterion. Normally, there is

uncertainty and vagueness about selected criteria because of contradicting stakeholder

interests and to find relative importance of criteria according to different stakehold-

ers, multi-criteria analysis (MCA) is performed. These kind of problems are known as

Multi-criteria problems and in general fuzzy set theory is adequate to deal with these

problems [Che00].

One essential output of GORE is goal models. Goal model is a set of goal graphs

representing the goals in a top-down or bottom-up hierarchy. Goals are refined into

subgoals by using the AND/OR relations. In [Lam00b] a catalogue of refinement pat-

terns is proposed. Subgoals describe how the overall goal is achieved. Refinement of a

subgoal ends when that subgoal may be associated with a single agent. Most impor-

tant GORE work includes Non-Functional Requirements framework(NFR) [CCL99], i*

framework [Yu96], Goal Oriented Requirements Language (GRL) [GRL08] and Knowl-

edge Acquisitions in automated Specification or Keep All Objects Satisfied (KAOS)

[DLF93]. Functional goals are achieved by operationalization of them either by the

system or by external actor while quality goals capture system qualities. The non-

functional requirements framework (NFR) [CCL99] deals with the modelling of quality

aspects.

GORE frameworks used the concept of softgoals for quality requirements. Soft-

goals are goals which can not be fulfilled in their true scene. These are the goals

PhD Dissertation Arfan Mansoor

6. Fuzzy Numbers 74

without a clear definition and definite criteria for their fulfilment. Because of their

interdependencies and positive/negative influences on each other they are used for

handling conflicts and for making trade-offs. Dependencies among the softgoals and

their contribution links are useful for the determination of quality goals impact on

functional goals [CCL99]. Non-functional requirements are considered from two per-

spectives [Ant96]:

1. As requirements that describe the properties, characteristics or constraints of the

system

2. As requirements that describe the quality attributes the system must have

First type consist of business rules, external interfaces, development constraints and

any other requirements that do not describe the functionality of the system. Quality

attributes are properties of functional requirements that describe characteristic other

than its functionality. An important part of quality attributes is that they should

be measurable i.e., one or more metrics can be attached to the quality attribute e.g.,

response time, throughput time etc. Quality aspects represent the properties of the

system that concern stakeholders and these properties affect the degree of satisfaction

of the system while constraints unlike qualities are not subject to negotiation, they are

off-limits during design trade-offs. [Fra98] argue that quality requirements serve as basis

for non-functional requirements in quality models. Quality models used for specifying

non-functional requirements provide a hierarchical list of quality attributes also called

quality aspects or quality factors. Although these quality model give a systematic

structure to quality requirements, they are not consistent with each other [LHM+14],

for example, understandability is a sub-quality of usability in IS0 9126 [Sta04], but

is a sub-class of maintainability in Bohem’s model [Boe76]. A comparison of quality

models [Boe76], [RS79], [Rom85], [Som95], [Dro95], [Gra92], [Sta04] is presented in

figure 5.8.

6.1 Fuzzy Numbers

The functional goals and quality goals help to identify the criteria for the acceptance

of target system. There are requirements derived from goal models and quality models

which are imprecise in nature. In literature, fuzzy numbers are very popular in engi-

neering disciplines for their ability to represent imprecise and vague information. By

using fuzzy sets, requirements are described using linguistic terms. These linguistic

terms are then converted into formal representation by using membership functions

described for fuzzy numbers [YT97]. Membership function is the set of real numbers

PhD Dissertation Arfan Mansoor

6. Fuzzy Numbers 75

(R) whose range is the span of positive numbers in the closed interval [0,1], where

’0’ represents the smallest possible value of the membership function, while ’1’ is the

largest possible value [LW92].

Fuzzy numbers depict the physical world more realistically than single-valued num-

bers. Among the fuzzy number Triangular Fuzzy Number (TFN) is capable of aggregat-

ing the subjective opinions [MD14]. A triangular fuzzy number (TFN) is described by

a triplet (L, M, H), where M is the modal value, L and H are the left (minimum value)

and right (maximum value) boundary respectively. TFN is used to represent stake-

holder opinions for functional goals and quality goals which are established through

goal models and quality models. Fuzziness of TFN is (L, M, H) is defined by the

equation 6.1:

TFN(L,M,H) =
H − L

2M
(6.1)

The membership function µ(x) for TFN is defined by the equation 6.2 and is shown in

the figure 6.1 [Che00] .

µ(x) =



0, x < L
x−L
M−L

, L ≤ x ≤M
H−x
H−M

, M ≤ x ≤ H

0, x > M

(6.2)

Algebraic operations (addition, subtraction, multiplication and division) for TFN are

Figure 6.1: TFN Membership Function

PhD Dissertation Arfan Mansoor

6. General Procedure 76

performed respectively as [Zad99]:

(a1, b1, c1)⊕ (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2) (6.3)

(a1, b1, c1)− (a2, b2, c2) = (a1 − a2, b1 − b2, c1 − c2) (6.4)

(a1, b1, c1)⊗ (a2, b2, c2) = (a1a2, b1b2, c1c2) (6.5)

(a1, b1, c1)÷ (a2, b2, c2) = (a1 ÷ a2, b1 ÷ b2, c1 ÷ c2) (6.6)

6.2 General Procedure

GORE is used for identifying and managing the criteria for higher level goals. The leaf

level goals help in establishing the criteria which are used to accumulate stakeholder

opinions. These criteria based on stakeholders needs and preferences help to identify the

importance of requirements by using qualitative and quantitative reasoning techniques.

After the relative importance of each leaf level functional goal, the quality models are

used to identify quality goals of already accepted functional goals. Then the impact of

quality goals among each other and among functional goals is determined.

The general procedure consists of the following steps:

1. Establishing leaf level functional goals for higher level goals

2. Involving stakeholders opinions

3. Finding scores of each leaf level functional goal

4. Identify quality goals related to functional goals

5. Establish links (contributions) among functional goals and quality goals

6. Measure the impact of quality goals and functional goals

7. Ranking quality goals

GORE is used to explore and establish the leaf level functional goals. These leaf level

functional goals are then prioritized based on the stakeholders interests, for determining

which of them are more important than others. It serves two purposes:

1. Involving the stakeholders opinions

2. Finding the relative importance

The output of this step is a prioritized list of functional goals. This list is then used to

find the impact of quality goals which helps in the evaluation of quality goals among

each other and on functional goal.

PhD Dissertation Arfan Mansoor

6. Methodology 77

6.3 Methodology

Success of the software system depends on its capability to satisfy both functional and

non-functional requirements. Traditionally, the functional requirements are given high

priority while dealing with requirements at abstract level. Goal oriented requirements

engineering has been used in representing the requirements at higher level. Goal mod-

els combined with quality models can represent both functional and non-functional

requirements adequately. However, the impact measurement of contributions among

quality goals and also between functional and quality goals is rarely addressed. Because

of imprecise nature of the requirements, fuzzy number combined with goal models and

quality models can sufficiently represent the requirements impact among each other by

quantitative means.

In this section, the approach on how to use fuzzy number for functional goals and

to find out among different functional goals, the ones which lead to better stakeholder

satisfaction is presented. The proposed methodology consist of three levels. At first

level all the identified functional requirements are prioritized according to different

stakeholders using the fuzzy numbers. Stakeholder opinions are accumulated using

linguistic terms and these opinions are converted to quantifiable terms using TFN and

defuzzification process. These values are then normalized using the equation 6.10.

Prioritized functional requirements based on stakeholder opinions are used as input

for second level of prioritization. In second level, the interactions or dependencies

between functional and non-functional requirements are determined and requirements

are ranked based on these interactions. The interactions between requirements can

be positive or negative. This stage ranks functional requirements and non-functional

requirements as well. At last level of prioritization development factors like cost, time,

effort and risk are used for prioritizing. The proposed methodology consist of following

steps and is represented in the figure 6.2:

1. Identify all functional requirements

2. Identify relevant stakeholder

3. Assign stakeholders weights according to their importance. At least three per-

spective stakeholders should always be presented when prioritizing requirements

[Dav03]. They are customers, developers and financial representatives. Stake-

holders opinions are taken in linguistic terms.

4. Calculate score of each requirement based on stakeholders opinions and weights

assigned to them. Stakeholder opinions represented in qualitative terms are con-

verted to quantitative values by Triangular Fuzzy Number (TFN).

PhD Dissertation Arfan Mansoor

6. Methodology 78

5. Defuzzification process is used to get crisp number

6. scores are normalized to get order/ranks of requirements

After these steps, a prioritized list is obtained based on stakeholders opinions. In next

step, prioritization is refined based on non-functional requirements.

1. Identify non-functional requirements related to functional requirements

2. Identify the interactions (positive or negative) among functional and non-functional

requirements

3. A relationship matrix is constructed based on functional and non-functional re-

quirements interaction

4. Priority is calculated using fuzzy numbers and defuzzification process

After the two step process requirements are prioritized based on stakeholder opinions

and non-functional requirements dependencies. In the last step, requirements are pri-

oritized based on effort, time, and risk aspects.

The impact of non-functional requirements to the functional requirements is deter-

mined by using GORE. Higher level goals are modelled goal graphs are used to get

the goal models. AND/OR diagrams which are essential output artefact of these goal

models are used in the exploration phase of alternatives. The leaf nodes of goal models

are used as criteria for functional requirements. These criteria are compared based on

the weighted scores.

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 79

Figure 6.2: Proposed Methodology

Stakeholder 1

Stakeholder 2

Stakeholder n

Goal Model

1: Functional Requirements

3: Fuzzifier Ranked

Functional

Requirements

1
st
 Step

Quality Model

4: Quality Requirements

5: Requirements Interactions

6: Fuzzifier

Ranked

Functional

and Non-functional

Requirements

2
nd

 Step

7: Development

Factors

Developers Opinions

2: Stakeholders Opinions

Final Priority

list

3
rd

 Step

9: Selection

Algorithm
8: Fuzzifier

10: Selected

Requirements

6.4 Cyclecomputer Example

The ’cyclecomputer’ system is used as case study which is developed in our research

group. The aim of ’cyclecomputer’ project is to develop a flexible and modular bicycle

computer which is adaptable to the needs of the driver. A driver will be supported

while riding the bike, for maintenance issues, for tour preparations, or to enhance the

safety using the bike e.g., besides the normal cycling activities one could use the ’cy-

clecomputer’ as a medical device which will support people having of health problems.

It can be used for professional cyclist or just for entertainment purposes. A variety of

sensors in ’cyclecomputer’ provide a comprehensive view of bike, driver/rider and route.

In addition to speed, temperature, altitude, geographic location, heart rate; measure-

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 80

ments like oil quality and pressure in the damper elements, brake wear or brake fluid

quality are relevant to this project. Measurement of the quality framework on strain

gauges is also an important requirement. This system will be attached to a bicycle,

will process data from various sensors. All data is processed in the ’cyclecomputer’

itself or it will communicate with a standard PC in the aftermath of a tour. One of

the results of the requirements engineering phase is a goal model [MS11].

6.4.1 Establishing High level Goals

Though there are many goals related to ’cyclecomputer’ but for space and simplicity

considerations the following identified high level goal Achieve[TourPlaningServiceSatisfied]

is selected.

6.4.2 Refine Goals to Leaf Levels (establish functional goals)

The above mentioned goal is refined using GORE until they are assignable to agents

i.e., human agents or software agents. These leaf levels goals are used as criteria for

functional goals. Quality goals which include non-functional requirements and often

serve selection criteria are also refined based on quality models. The goals along with

their subgoals and short description are presented in table 6.1, while figure 6.3 shows

partial goal model for high level goal Achieve[TourPlaningServiceSatisfied].

6.4.3 Stakeholders and Their Opinions

6.4.3.1 Identifying Stakeholders

Though there are number of stakeholders in ’cyclecomputer’ but following are the

relevant stakeholders for goal Achieve[TourPlaningServiceSatisfied]:

1. Medical Cyclist: People who need a defined training / exercise due to any disease

e.g., a heart disease. Medical cyclist can use pulse measurement, blood pressure,

calory consumption by ’cyclecomputer’ device.

2. Doctor (medical): The doctor will cooperate with a patient to set-up the correct

tour plans.

3. Touring Cyclist: People who like to ride the bicycle for long trips (>100km) and

they need specific services for their tours. The trips might take more than one

day.

4. Analyst: analyse the touring details, analyse the cyclist.

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 81

Table 6.1: Partial Goal subgoal description

High
level
goal

Sub-goals
till func-
tional
goals

Description

Tour
Plan-
ning
Ser-
vice
Sat-
isfied

Route
planning

� The cycle computer should offer route planning.

� Routing should consider the current weather forecast.

Initial
checkups

The cycle computer should offer an initial check-up to assess the
drivers capabilities.

Technical
riding ca-
pabilities

� Frame quality level should be analysable and visible i.e., show
the condition of the frame, interpret the frame condition by
a coloured icon.

� The quality level should be visualized by the time until the
frame might break.

� The cyclist should see the current speed of the cycle.

� The cyclist should be informed when the oil in the shocks
should be changed.

Weather
info

� The cyclist should see the current environmental temperature.

� The temperature of the last 5 days should be analysable.

Transferable
to web

Track data should be transferred to a Web-portal to enable online
competition / comparison.

Tour de-
tails

� The cycle computer should provide complete details of the
tours.

� The cyclist should be informed about the current height
(above sea level). A cumulative value should be shown by
ascended and descended meters.

Navigation The cyclist should be able to navigate to a given location. The
location could be a point of interest, e. g., a hotel. The cyclist
should be informed about his global position on a map.

Trip sug-
gestions

The cycle computer should offer trip tips for professional sports
cyclists e.g., gear change tips, speed tips based on the (known)
route.

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 82

Figure 6.3: Partial Goal Model

Table 6.2: Linguistic terms and their TFN values

Linguistic terms Representative TFN

Very High (0.9, 1.0, 1.0)
High (0.7, 0.9, 1.0)

Medium (0.3, 0.5, 0.7)
Low (0, 0.1, 0.3)

Very Low (0, 0, 0.1)

6.4.3.2 Stakeholders Opinions Accumulation

Three stakeholders are selected and these stakeholders are asked to give their judgments

against functional goals in table 6.1. Their judgements are used to elicit the importance

degree of each functional goal. To enhance the user-friendliness for interacting with

stakeholders linguistic terms are used. Linguistic terms are used to describe complex

and ill-defined situations which are difficult to be described in quantitative measure.

These linguistic terms are represented using TFN. The TFN values for these linguistics

terms are derived from [Che00]. Table 6.2 shows the linguistic terms and their repre-

sentative TFN values. Table 6.3 shows stakeholders judgments against functional goals

in table 6.1.

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 83

Table 6.3: Stakeholder judgements

High
level goal

Sub-goals till func-
tional goals

SH1 SH2 SH3

Tour
Planning
Service
Satisfied

Route planning Very High High Very High

Initial checkups Medium High High
Technical riding capa-
bilities

High Medium High

Weather info Low High Medium
Transferable to web Low Low Medium
Tour details High Very High High
Navigation Very High High Very High
Trip suggestions Medium Medium Medium

6.4.4 Aggregating the Importance Using TFN

The different importance degrees of each functional goal assigned by stakeholders is

calculated using TFN. TFN is used to aggregate the subjective opinions of stakeholder

using fuzzy set theory. Many methods based on mean, median, min, max, etc.; are

available to aggregate the opinions. Among them average operation is most commonly

used aggregation method [EK08]. The average operator is used as an aggregation meth-

ods to accumulate stakeholder opinions. Let’s say there are ’k’ number of stakeholders

who assign linguistic term values according to table 6.2 to ’n’ number of functional

goals. The aggregated weight (importance) of each functional goal is calculated as [?]:

rf =
1

n
{Lf ,Mf , Hf} (6.7)

where ’f’ represents functional requirements from 1...n

Lf =
n∑

j=1

wjLfj, Mf =
n∑

j=1

wjMfj, Hf =
n∑

j=1

wjHfj (6.8)

where ’j’ represents number of stakeholders from 1...n. For ’n’ number of stakehold-

ers who use linguistic term according to table 6.2 to assign values to ’n’ number of

functional goals and ’w’ represents weights of each stakeholder.

6.4.5 Apply Defuzzification Process on TFN

Defuzzification process is applied to convert calculated TFN values into quantifiable

values (for crisp output). For its simplicity ”2nd weighted mean”defuzzification method

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 84

Table 6.4: TFN, Defuzzification and Normalized Scores

Functional
goals

SH1 SH2 SH3 Triangular
Fuzzy Num-
bers

Defuzzi-
fication

Norma-
lized
Values

Route planning Very
High

High Very
High

(0.83, 0.96, 1.0) 0.93 0.17

Initial checkups Medium High High (0.56, 0.76, 0.9) 0.74 0.13
Technical riding
capabilities

High Medium High (0.56, 0.76, 0.9) 0.74 0.13

Weather info Low Medium High (0.33, 0.5, 0.66) 0.49 0.08
Transferable to
web

Low Low Medium (0.1, 0.23, 0.43) 0.24 0.04

Tour details High Very
High

High (0.76, 0.93, 1.0) 0.90 0.16

Navigation Very
High

High Very
High

(0.83, 0.96, 1.0) 0.93 0.17

Trip suggestions Medium Medium Medium (0.3, 0.5, 0.7) 0.5 0.09

is applied to convert a fuzzy number into crisp score. Defuzzification process is repre-

sented by the equation 6.9 and is adapted from [Opr11]:

DFN = (2M + L+H)/4 (6.9)

L, M and H represents lower, middle and upper values of TFN.

6.4.6 Normalizing Values Obtained by Defuzzification Process

Although here all the fuzzy numbers are in interval [0,1] and therefore the calculation

of normalization is not required, still the scores after the defuzzification process can be

normalized by using the equation 6.10:

NDi = Di/
m∑
i=1

Di (6.10)

where ’m’ represents number of functional goals.

Table 6.4 represents TFN, defuzzification and final normalized defuzzification val-

ues that give the importance of degrees of each functional goal. The defuzzification

normalized values give the prioritized list of functional goals. Although here in the

example, stakeholders are assigned same weight but it is possible to assign different

weights to each stakeholders based on their importance in the project.

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 85

6.4.7 Functional and Quality Goal Impact Measurement

This process consist of three steps:

1. Determining project specific quality goals

2. Determining and evaluating the dependency among quality goals

3. Determining and evaluating the impact of quality goals and functional goals

6.4.7.1 Determining Project Specific Quality Goals

Quality models and NFR framework are useful for determining project based quality

goals, that is, the quality goals related to high level system goals. Figure 5.8 provides

widely used quality attributes in these models. The advantage of using these models is

that they provide clear, detail definitions of quality attributes. The universality of these

models, because of their acceptance all around the software community. The quality

goals are then integrated to functional goal model. Figure 5.9 represents the conceptual

model of quality goals integration to functional goal. Figure 6.4 shows two quality goals

’Safety’ and ’Availability’ for ’cyclecomputer’ functional goal ’RoutePlanning’. These

quality goals are represented as softgoals using openOME tool.

Figure 6.4: Quality Goals and Functional Goals

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 86

Table 6.5: Linguistic terms and their values for quality goals

Linguistic terms Numerical Scale

Make (0.4, 0.5, 0.5)
Help (0.2, 0.4, 0.5)

Neutral (-0.2, 0, 0.2)
Hurt (-0.5, -0.4, -0.2)

Break (-0.5, -0.5, -0.4)

Table 6.6: Quality Goals Impact and Measurement

LQG21 LQG22 LQG23 LQG24 Triangular
Fuzzy Numbers

Defuzz-
ification

Norm-
alized
Values

LQG11 - Make Help Hurt (0.03, 0.16, 0.3) 0.15 0.18
LQG12 Make - Help Make (0.33, 0.46, 0.5) 0.43 0.51
LQG13 Hurt Help - Help (-0.03, 0.13, 0.26) 0.11 0.13
LQG14 Make Help Hurt - (0.03, 0.16, 0.3) 0.14 0.16

6.4.7.2 Determining and Evaluating the Dependency between Quality Goals

Quality goals are refined same as functional goals are refined in goal models. These

lower level quality goals may influence other quality goals positively or negatively, for

example, the fulfillment of one quality goal may hurt or help in the fulfillment of another

quality goal. In this step, the importance of each individual quality goal identified in

previous step (6.4.7.1) is measured using TFN (6.4.5) and get crisp values by applying

the defuzzification process (6.4.6). The strength of relationships between quality goals

can be measured. The linguistic terms and their numerical values used to get crisp

values and to measure the relationship strengths are shown in figure 6.5. The real

number interval which represents the direction and strength of relationships among

quality goals is set [-0.5,0.5]. The range from negative number is chosen because the

contribution ’hurt’ or ’break’ will have negative impact on other quality goals. These

linguistic terms (make, help, hurt, break) are very common in GORE for their use as

softgoals contribution. The same linguistic terms are used and then numerical values

defined for these terms in the range [-0.5,0.5].

Let’s say there are two quality goals (QG1, QG2) each is refined to four leaf level

goals. Now leaf level goals of QG1 are influencing QG2 in positive and/or negative

way. Table 6.6 shows their contributions, measurements and final column representing

the priority of each leaf level goal of QG1.

The strength of relationships between two quality goals is measured and their val-

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 87

Table 6.7: Relationship Strength Values

LQG21 LQG22 LQG23 LQG24

LQG11 - 1.0 0.8 -0.8
LQG12 1.0 - 0.8 1.0
LQG13 -0.8 0.8 - 0.8
LQG14 1.0 0.8 0.8 -

Table 6.8: Requirements Values after Quality Goals Interactions

Requirements Score Security Safety User
friendly

Perfor-
mance

Triangular
Fuzzy Number

Defuzi-
fica-
tion

Norm-
alized
Values

Route plan-
ning

0.93 Neutral Help Neutral Help (0, 0.2, 0.35) 0.174 0.11

Navigation 0.93 Make Help Make Help (0.3, 0.45, 0.5) 0.395 0.25
Tour details 0.90 Neutral Help Help Help (0.15, 0.4, 0.42) 0.309 0.20
Initial
check-ups

0.74 Make Help Help Help (0.25, 0.425, 0.5) 0.296 0.19

Technical
riding capa-
bilities

0.74 Make Neutral Neutral Help (0.05, 0.22, 0.35) 0.157 0.10

Trip sugges-
tions

0.50 Neutral Help Help Help (0.1, 0.3, 0.425) 0.140 0.09

Weather
info

0.49 Neutral Neutral Neutral Help (-0.4, 0.1, 0.275) 0.040 0.02

Transferable
to web

0.24 Neutral Help Neutral Help (0, 0.2, 0.35) 0.045 0.03

ues for goals in table 6.6 are calculated in table 6.7, for example, relationship (LQG1,

LQG2, 1.0) gives relationship value (1.0) between leaf level QG1 and leaf level QG2.

Here first element LQG1 is impacting or contributing to second element LGQ2 (im-

pacted by LGQ1).

6.4.7.3 Determining and Evaluating the Impact of Quality goals and Func-

tional goals

In last part of this step the impact of quality goals and functional goals is determined

and evaluated. Table 6.5 is used to assign the values, impacting goals are arranged

vertically and impacted goals are arranged horizontally. Same steps as in 6.4.7.2 are

repeated to measure the contributions and relationship strengths. This is the second

step of the process and output is shown in table 6.8.

PhD Dissertation Arfan Mansoor

6. Cyclecomputer Example 88

Table 6.9: Requirements Values after Development Factors

Requirements Score Risk Time Effort Triangular Fuzzy
Number

Defuzi-
fication

Norm-
alized
Values

Navigation 0.395 Medium Medium High (0.43, 0.63, 0.8) 0.63 0.11
Tour details 0.309 Medium High High (0.56, 0.76, 0.9) 0.41 0.25
Initial check-
ups

0.296 High High High (0.7, 0.9, 1.0) 0.25 0.20

Route planning 0.174 Medium High High (0.56, 0.76, 0.9) 0.23 0.19
Technical rid-
ing capabilities

0.157 Low Low Medium (0.1, 0.23, 0.43) 0.60 0.10

Trip sugges-
tions

0.140 Medium Medium Medium (0.3, 0.5, 0.7) 0.30 0.09

Transferable to
web

0.045 Medium High High (0.56, 0.76, 0.9) 0.060 0.02

Weather info 0.040 Medium Medium Medium (0.3, 0.5, 0.7) 0.08 0.03

6.4.8 Development Factors Considerations

In the last step of the process, development constraints are involved in the prioritization

process. The factors considered here are time, risk, and effort. In this ways developers

opinions are taken into account. The output of final step is shown in table ??.

Instead of selecting the highest priority requirements, the requirements are selected

based on their importance in terms benefit over cost ratio. The requirements are se-

lected until the specified upper limit of cost is reached. The density of each requirement

calculated by priority per cost is given in 6.11.

Di = Pi/Ci (6.11)

After that requirements are sorted out in decreasing density order then in each iteration

it is checked that total cost is reached to maximum specified limit or not. If it is less

than the threshold value, it is selected from implementation. In this way algorithm

ensures that maximum number of requirements are selected from prioritized list while

not exceeding the cost limit. Algorithm for the selection of requirements is presented 1.

In the example if there is a maximum cost of 70% to be spent then by 1 the requirements

selected are shown in the 6.10. Only those requirements are selected which fulfil the

cost constraints and for requirements when cost constraints reaches above 70% are not

selected.

PhD Dissertation Arfan Mansoor

6. Comparison With Related Work 89

Table 6.10: Requirements Selected by Algorithm

Requirements Priority (p) Cost(c) Density
D= p/c

Total
Cost

Navigation 0.395 0.14 2.83 0.14 Selected
Tour details 0.309 0.12 2.57 0.26 Selected
Initial check-ups 0.296 0.12 2.46 0.38 Selected
Technical riding capabilities 0.157 0.14 1.12 0.52 Selected
Route planning 0.174 0.11 1.58 0.63 Selected
Trip suggestions 0.140 0.20 0.7 - Not Se-

lected
Weather info 0.040 0.06 0.66 0.69 Selected
Transferable to web 0.045 0.11 0.41 - Not Se-

lected

6.5 Comparison With Related Work

To measure the importance degree of each requirement many requirements prioriti-

zation methods are present in literature. Analytic Hierarchy Process (AHP) is one

popular method for prioritization, it involves pair-wise comparison [Saa08]. All pair

of requirements are compared to determine the priority level of one requirement over

another requirement. Requirements are arranged in matrix form, that is, rows and

columns. Then priority is specified to each pair of requirements by assigning a prefer-

ence value between 1 and 9, where 1 expresses equal value while 9 indicates extreme

value. AHP involves stakeholders opinions but pairwise comparison of all require-

ments make it cumbersome and difficult to use. This method also involves stakeholders

opinions and take into consideration both functional and non-functional requirements.

Comparisons are made only between the impacting requirements. Importance of both

functional and quality goals is obtained using linguistic terms which are easy to deal

from stakeholders point of view. These stakeholder opinions are then evaluated using

fuzzy set concepts, weight for each functional goals and contribution/impact values are

calculated.

In [Lam00b] [CKM02] qualitative approaches are used for measuring the contri-

butions. These methods mainly focus on choosing the best alternative. They use

temporal logic and label propagation algorithm. In this approach quantitative terms

are used for measuring the strength of relationships. In [MD14] prioritizing process for

software requirements is highlighted. It considers prioritization of both functional and

non-functional requirements at the same level and as a result produces two separate

prioritized lists: one of functional requirements and second for non-functional require-

ments. Like proposed approach their work also used the concepts from [LW92] but

their work is only used for prioritization of functional and non-functional requirement

PhD Dissertation Arfan Mansoor

6. Comparison With Related Work 90

Algorithm 1 Requirements selection algorithm

1: procedure Requirements-selection(p, c, C)
2: density Di = Pi/Ci

3: SortDecreasing (density)
4: while i <= n do
5: if ci + TotalCost <= C then
6: RequirementIsSelected
7: TotalCost = ci + TotalCost
8: i = i+1
9: else

10: RequirementIsNotSelected
11: i = i+1
12: end if
13: end while
14: while n > i do
15: if cn + TotalCost <= C then
16: RequirementIsSelected
17: TotalCost = ci + TotalCost
18: n = n-1
19: else
20: RequirementIsNotSelected
21: end if
22: end while
23: return TotalCost
24: end procedure

while proposed approach gives an integration model for functional and quality goals

and it uses the prioritized requirements to measure their impact on each other.

Wiegers [Wie99] method is semi-quatitative method which focused on customer

involvement. Requirements are prioritized based on four criteria defined as benefit,

penalty, cost, and risk. The attributes (criteria) are assessed on a scale from 1 (min-

imum) to 9 (maximum). The customer determines the benefit and penalty values

whereas the developers provides the cost and risk values associated with each require-

ment. Then, by using a formula, the relative importance value of each requirement is

calculated by dividing the value of a requirement by the sum of the costs and technical

risks associated with its implementation.

The work in [GSL14] focused on modeling the impact of non-functional requirements

on functional requirements. For that matter, they investigate the relationships between

functional and non-functional requirements. They advocate to define non-functional

requirements at the highest level of abstraction like functional requirements. Their

proposed approach uses and modifies the NFR framework concepts of contribution

but there is nothing mentioned about how to measure the relationships (contributions,

impacts) quantitatively.

PhD Dissertation Arfan Mansoor

6. Summary 91

The work of [YT97] was the initial attempt to use fuzzy concepts in requirements

engineering. Their method deal with conflicting requirements and focus of their work

is on prioritizing the conflicting requirements by finding some trade-off between these

requirements. The conflicting requirements were represented using fuzzy logic and

then they use reasoning scheme to infer the relationship between these conflicting

requirements. Ito [Ito07] discussed the uncertainty of design decisions. This work

suggests to use AHP and Quality Function Deployment (QFD) for prioritization and

for conflict resolution. In [LHM+14] the distinction is made between functional goals

and quality goals. They presented non-functional requirements as requirements over

qualities i.e., non-functional requirements are modelled as quality goals. For quality

goals they use ISO/IEC 25010 standard as reference. They distinguished between

domain and co-domain of quality goals. The problem with their model is that functional

goal(s) can not be refined into quality goal(s) and vice versa but in GORE there are

situations where one encounter these refinements i.e., functional goal refinement results

into quality goal and vice versa.

In [SPS+12] proposed the guidelines for the elicitation of trustworthy requirements.

These guidelines are helpful in selection of project specific quality goals from goal

models. Their model consist of three parts: decomposition tree, correlation matrix

(CM) and priority vector. Their CM is also base based on fuzzy set theory but it is

restricted to elicitation of trustworthy requirements.

This approach used the fuzzy set concepts to evaluate the importance of leaf level

functional goal. Weight for each functional goal is calculated based on stakeholders

opinions. These weights display stakeholders priorities for all functional requirements.

The interaction of stakeholders at early phase of requirements engineering helps to

capture the rational (by documenting the preferences) of each requirement and also

helps to identify inconsistencies at the early phase of requirements engineering. Using

the same method importance weight of quality goals is calculated. Quality goals are

tailored using quality models and dependencies among quality goals and functional

goals are modelled and measured using fuzzy concepts. The method gives a systematic

structure to calculate the fuzzy weight of functional and quality goals. The subjective

weights assigned by stakeholders are normalized into a comparable scale. The contri-

butions and strength values are also determined and the strength of the relationships

is measured using TFN and defuzzification process.

6.6 Summary

In this chapter an approach is presented to use the goal model of goal-oriented re-

quirements engineering to establish the functional goals as criteria. These leaf levels

PhD Dissertation Arfan Mansoor

6. Summary 92

functional goals are prioritized according to stakeholders preferences. Triangular fuzzy

numbers and defuzzification process is used for prioritization, the developers input and

risk tolerance is dealt by defuzzification of TFN. After that, the process is used for

specified quality goals which are tailored using quality models. In the final step, de-

pendencies among quality goals and between functional goals are evaluated. Therefore,

the proposed methodology was used to measure the strength of relationships.

The methodology was explained by ’cyclecomputer’ case study where 8 functional

goals were established and stakeholders opinions were collected for these functional

goals. After calculating the importance value of each functional goal, the quality goals

are integrated and prioritized them according to their dependencies. This approach is

promising for ranking of both functional and quality goals because of stakeholders and

developers involvement in the process.

PhD Dissertation Arfan Mansoor

7. Extending the Approach for Alternatives Selection 93

Chapter 7

Extending the Approach for

Alternatives Selection

The notion of goal and goal models is ideal for the alternative systems. Goal models

provide us different alternatives during goal oriented requirements engineering. Once

different alternatives are found, there is need to evaluate these alternatives to select

the best one. The selection process consist of two parts. In first part of the selection

process among alternatives an evaluation criteria is established. The evaluation criteria

is based on leaf level goals as discussed in last chapter. Stakeholders are involved

to contribute their opinions about the evaluation criteria. The input provided by

various stakeholders is then converted into quantifiable numbers using fuzzy triangle

numbers. After applying the defuzzification process on fuzzy triangle numbers the

scores (weights) for each criteria are obtained. In second part these scores are used

in the selection process to select the best alternative. The two step selection process

helps to select the best alternative among many alternatives.

PhD Dissertation Arfan Mansoor

7. Selection Procedure 94

Decision making process is about the selection of best option among all the alter-

natives. In decision making problems there are multiple criteria for selection among

the alternatives. The problems involving multiple criteria are called Multi Criteria

Decision Making (MCDM) problems. Decision making can be challenging because of

uncertainty and vagueness of selected criteria and also because of conflicting stake-

holders interests. There might be different criteria but some are more important than

others and tend to dominate the decision [EK08]. Fuzzy set theory is used to deal with

multi criteria problems [Che00].

7.1 Selection Procedure

In Goal Oriented Requirements Engineering (GORE) there is great emphasis on al-

ternative system proposals. Goal refinements help in finding alternatives and during

requirements elaboration process many alternatives are considered. The qualitative

and quantitative analysis of these alternatives helps to choose the best one. In alter-

native selection one have to decide about the best option according to stakeholders

needs.

In the context of GORE, there is need to support the identification and managing of

criteria for alternative’s selection process. Finding the criteria based on GORE require

high level goals to be analyzed till leaf goals are achieved i.e., requirements. As in the

previous chapter, these leaf level goals help in establishing the criteria which are used in

the selection process among alternatives. The criteria are based on stakeholders needs

and preferences and therefore stakeholders opinions need to be involved in selection

process. It helps to identify the importance of requirement according to stakeholders

understandings and needs. Based on these criteria the qualitative and quantitative

reasoning techniques are applied for the selection of alternative system proposals. It

serves two purposes: first involving the stakeholders opinions in selection process and

second finding the relative importance of these criteria.

The general procedure of selection among alternatives consists of the following steps:

1. Finding acceptance criteria

2. Involving stakeholders opinions

3. Finding scores of each criteria

4. Evaluating alternatives based on accepted criteria scores

5. Making a selection

PhD Dissertation Arfan Mansoor

7. Methodology 95

7.2 Methodology

First of all different alternatives are explored during GORE and for this goal models

obtained during GORE are used. AND/OR diagrams which are the essential output

artefact of these goal models are used in the exploration phase of alternatives. Once

different alternatives are selected, there is need to evaluate these alternatives to select

the best one. The alternatives are compared based on the weighted criteria. The criteria

are weighted using fuzzy numbers and stakeholders opinions are taken as input and then

converted to fuzzy numbers. By using the fuzzy numbers the qualitative information

of stakeholders is converted into quantitative one. The proposed methodology consist

of following steps and is shown in figure 7.1.

1. Establishing high level goal(s)

2. Establishing the criteria based on leaf level goals (directly assignable to agents:

humans or system agents)

3. Identify relevant stakeholders and take their opinions for above established crite-

ria as inputs

4. Calculate relative importance of each criterion by applying TFN and defuzzifica-

tion process

5. Normalize the scores

6. Identifying the alternatives

7. Evaluate alternatives using TOPSIS based on scores of each criteria

8. Rank alternatives

7.2.1 TOPSIS Review

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a

multi criteria decision analysis method. It is used to compare a set of alternatives based

on weighted scores of each criterion. In this method two alternatives are hypothesized:

positive ideal alternative and negative ideal alternative and then best alternative is

selected which is closet to the positive ideal solution and farthest from negative ideal

alternative [Gol13]. TOPSIS consist of following steps [Ols04]:

1. constructing a decision matrix

2. normalizing the decision matrix

PhD Dissertation Arfan Mansoor

7. Cyclecomputer Example 96

Figure 7.1: Methodology Extension for Alternative Selection

3. finding the positive ideal and negative ideal alternatives

4. calculating the separation measures for each alternative

5. calculating the relative closeness to the ideal alternative

7.3 Cyclecomputer Example

As in the previous chapters, the ’cyclecomputer’ system is used as case study.

7.3.1 Step 1 Establishing High level Goals

Though there are many goals related to ’cyclecomputer’ but for space and simplicity

considerations the following identified goals for high level ’cyclecomputer’ goal are

selected: Achieve[EntertainmentServiceSatisfied], Achieve[CompitionServiceSatisfied],

Achieve[TrainingServiceSatisfied], Achieve[TourManagementServiceSatisfied].

7.3.2 Refine Goals to Leaf Levels (establish criterion for each

goal)

The above mentioned goals are refined using GORE until they are assignable to agents

i.e., human agents or software agents. These leaf levels goals are used as criteria for

alternative selection. Quality goals which include non-functional requirements and

often serve selection criteria are also refined. The partial description of goals/subgoals

was defined in last chapter in table 6.1 and is used here as well.

PhD Dissertation Arfan Mansoor

7. Cyclecomputer Example 97

7.3.3 Identifying Stakeholders

Though there are number of stakeholders in ’cyclecomputer’ but the relevant stake-

holders for goals described in table 6.1 are shown in figure 7.2.

Figure 7.2: Relevant Stakeholders

1. Medical Cyclist: People who need a defined training / exercise due to any disease

e.g., a heart disease. Medical cyclist can use pulse measurement, blood pressure,

calory consumption by ’cyclecomputer’ device.

2. Doctor (medical): The doctor will cooperate with a patient to set-up the correct

training cycles. The cycles are dependant on the patients constitution.

3. Touring Cyclist: People who like to ride the bicycle for long trips (>100km) and

they need specific services for their tours. The trips might take more than one

day.

4. Trainer (sports): Create training plans, follow training plans, analyze the cyclist.

7.3.4 Stakeholders Opinions Accumulation

Three stakeholders, professional cyclist(SH1), fun cyclist (SH2), health and fitness

cyclist (SH3) are selected. These stakeholders are asked to give their judgements against

each criterion. Their judgements are used to elicit the importance degree of each

criterion. To enhance the user-friendliness for interacting with stakeholders ordinal

PhD Dissertation Arfan Mansoor

7. Cyclecomputer Example 98

Table 7.1: TFN, Defuzzification and Normalized Scores

Criterion Triangular
Fuzzy Number

Defuzzification Normalized
Values

Mic (0.75, 0.82, 1) 0.84 0.067
Data storage (0.75, 0.82, 1) 0.84 0.067
Audio service (0.75, 0.82, 1) 0.84 0.067
User accounts (0.75, 0.82, 1) 0.84 0.067
Transferable to web (0.75, 0.82, 1) 0.84 0.067
Online modus (0.75, 0.82, 1) 0.84 0.067
Offline modus (0.75, 0.82, 1) 0.84 0.067
Initial checkups (0.75, 0.82, 1) 0.84 0.067
Technical riding capabilities (0.5, 0.79, 1) 0.771 0.062
Fitness level (0.5, 0.721, 1) 0.735 0.059
Calories consumption (0.5, 0.655, 0.75) 0.639 0.051
Route planning (0.5, 0.721, 1) 0.735 0.059
Weather info (0.75, 0.75, 0.75) 0.75 0.060
Tour details (0.5, 0.572, 0.75) 0.598 0.048
Navigation (0.75, 0.82, 1) 0.84 0.067
Trip suggestions (0.25, 0.520, 1) 0.569 0.046

scale is used. The scale values are same as discussed in last chapter by using table 6.2.

Next ordinal scale values are converted to actual numerical numbers to apply TFN.

7.3.5 Step 5 to 7

Steps 5 through 7 are performed using same equations defined in sections 6.4.4, 6.4.5,

and 6.4.6. Table 7.1 represents TFN, defuzzification and final normalized defuzzifica-

tion values that give the importance of degrees of each criterion. The defuzzification

normalized values give the prioritized list of criteria which is used in TOPSIS to eval-

uated alternatives.

7.3.6 Cyclecomputer Alternatives

Four alternatives for evaluation: CM213C, CM404, HAC4Pro, Germin Edge 305 are

selected. The preliminary analysis results of these selected alternatives are given in

appendix C.

PhD Dissertation Arfan Mansoor

7. Cyclecomputer Example 99

Table 7.2: Alternative fulfilling Criteria Scores

Description Value

Alternative fulfilling criterion 9
Alternative partially fulfilling criterion 7
Alternative minimally fulfilling criterion 3
Alternative not fulfilling criterion 0.25

7.3.7 Evaluate Alternatives Using TOPSIS

7.3.7.1 Constructing Decision Matrix

For ’m’ number of alternatives and ’n’ number of criteria a m*n matrix is constructed.

Values in the matrix are entered according to table 7.2. For four alternatives, four

criteria are randomly selected along with their scores from table 7.1 and a decision

matrix is constructed.

7.3.7.2 Normalizing Decision Matrix and Constructing Weighted Normal-

ize Decision Matrix

The decision matrix is normalized according to equation 7.1:

rij = xij/

(
∑
i

x2ij) for i = 1, ...,m; j = 1, ..., n (7.1)

and then multiplied with each criterion score to get the weighted normalized decision

matrix. Figure 7.3 shows the resultant matrices.

Figure 7.3: Decision Matrices

7.3.7.3 Determine the Positive Ideal and Negative Ideal Alternatives

Positive ideal and negative ideal alternatives are determined using the equations 7.2,

7.3 respectively:

A∗ = (v∗1, ..., v
∗
n), where v∗j = maxi(vij) (7.2)

PhD Dissertation Arfan Mansoor

7. Cyclecomputer Example 100

positive ideal alternative: (0.04, 0.05, 0.03, 0.02)

A
′
= (v

′

1, ..., v
′

n), where v
′

j = mini(vij) (7.3)

negative ideal alternative: (0.01, 0.01, 0.01, 0.01)

7.3.7.4 Calculating the Separation Measures

separation measures for both positive and negative ideal alternatives are measured

using equations 7.4 and 7.5:

S∗
i = [

∑
j

(v∗j − vij)2]1/2, i = 1, ...,m (7.4)

S
′

i = [
∑
j

(v
′

j − vij)2]1/2, i = 1, ...,m (7.5)

Figure 7.4 shows results for separation measure for positive ideal alternative and figure

7.5 shows results for negative ideal alternative.

Figure 7.4: Separation Measure for Positive Ideal Alternative

Figure 7.5: Separation Measure for Negative Ideal Alternative

PhD Dissertation Arfan Mansoor

7. Comparison With Related Work 101

7.3.7.5 Calculating Closeness to Ideal Solution

The relative closeness to the ideal solution is calculated using the equation 7.6:

C∗
i = S

′

i/(S
∗
i + S

′

i), 0 < C∗
i < 1 (7.6)

7.3.7.6 Ranking and Selection

Finally the ranking is done and the alternative closet to 1 is selected as the best

alternative. Figure 7.6 gives results for selected alternatives and alternative A2 is

selected as an ideal solution.

Figure 7.6: Relative Closeness to Ideal Solution

7.4 Comparison With Related Work

Alternatives selection is ongoing research in the area of GORE. On the other hand

methods like AHP [Saa08], TOPSIS [Gol13], Fuzzy AHP, Fuzzy TOPSIS [EK08] and

VIKOR are used in classical Multi-Criteria Decision Making (MCDM) problems. Multi-

criteria decision making (MCDM) has been widely used in selecting or ranking decision

alternatives characterized by multiple and usually conflicting criteria [WL09]. The ap-

proach of these methods is useful and is adopted for alternatives selection and stakehold-

ers involvement in GORE. [SAG] also emphasizes the importance of decision support

in GORE but it differs as it uses Analytic Hierarchy Process (AHP) for prioritization

and it deals with only softgoals.

AHP is more suitable for small number of stakeholders and if alternatives are in-

creased to seven are more it becomes difficult to handle them with AHP because it

involves pairwise comparison. In contrast proposed approach involves stakeholders

opinions and take into consideration both functional and non-functional requirements.

The importance of criteria is evaluated using fuzzy set concepts, weight for each cri-

terion is calculated based on stakeholder opinions. When a new criterion is added it

PhD Dissertation Arfan Mansoor

7. Summary 102

is easy to extend, there is no need to change the previous calculations because newly

added criterion is independent from others. These weights are then used in TOPSIS

avoiding the cumbersome pair-wise comparisons of AHP.

AGORA [KHS02] is another quantitative approach for alternatives extending the

goal oriented requirements analysis but the focus of AGORA is on requirements elici-

tation. The method focuses on alternative among subgoals, that is, selection of subgoal

among many subgoals of same parent. Furthermore AGORA attaches a matrix called

preference matrix to nodes of goal graph. It is suitable if number of stakeholders are

small in number. When stakeholders are more (plus four) and have to select among

many alternatives, this method becomes difficult to handle and goal graph becomes

cumbersome.

Here Fuzzy set concepts are used to evaluate the importance of criteria for each goal.

Weight for each criteria is calculated based on stakeholder opinions. These weights

display stakeholder priorities for all requirements. The interaction of stakeholders at

early phase of requirements engineering helps to capture the rational (by documenting

the preferences) for the decisions and to identify inconsistencies at the early phase

of requirements engineering. The method gives a systematic structure to calculate

the fuzzy weight of each criterion. The subjective weights assigned by stakeholders

are normalized into a comparable scale. The performance measures of all alternatives

on criteria are visualized using TOPSIS which accounts for both the best and worst

alternatives simultaneously.

7.5 Summary

In this chapter an approach was presented to use the goal model of goal-oriented re-

quirements engineering to establish the acceptance criteria. After that TFN and de-

fuzzification process is applied to get scores for each criterion. In the final step TOPSIS

method is used to evaluate the alternatives and for selection of the best alternatives.

TOPSIS method uses the score obtained by TFN and defuzzification process. The

proposed methodology can be used against both the functional and non-functional

requirements.

The methodology was explained by ’cyclecomputer’ case study where 16 acceptance

criteria are established and stakeholders opinions were collected for these criteria. Af-

ter calculating the score of each criterion, four criteria (for simplicity considerations)

were selected and based on these evaluated four alternatives. The approach is promis-

ing for ranking the criteria and using for ranking of alternative selection because the

PhD Dissertation Arfan Mansoor

7. Summary 103

stakeholders opinions as well as developers considerations and risk tolerance are taken

into account for preference.

PhD Dissertation Arfan Mansoor

8. Goal Model Integration for Tailoring Product Line Development Processes 104

Chapter 8

Goal Model Integration for

Tailoring Product Line

Development Processes

Many companies rely on the promised benefits of product lines, targeting systems

between fully custom made software and mass products. Such customized mass prod-

ucts account for a large number of applications automatically derived from a product

line. This results in the special importance of product lines for companies with a large

part of their product portfolio based on their product line. The success of product line

development efforts is highly dependent on tailoring the development process. This

chapter presents an integrative model of influence factors to tailor product line devel-

opment processes according to different project needs, organizational goals, individual

goals of the developers or constraints of the environment. The model integrates goal

models, SPEM models and requirements to tailor development processes.

PhD Dissertation Arfan Mansoor

8. Goal Model Integration for Tailoring Product Line Development Processes 105

Software systems developed based on the product line approach result in systems

between custom made software and systems developed for a mass market. Thus, soft-

ware product lines are customized mass products. The architecture of a product line

consists of a core and diverse variable components. Any members of a product line are

based on its core and one or more variable components. Core and variable components

are pre-developed what results in the special usage of a product line. The customer

simply selects and may parametrized the desired features of the future system. Based

on the product line, the system (in more detail, the software application) will be au-

tomatically generated. The effort for the development of a product line core and its

variable components will reach a break even point starting from four [WL99] up to

five [LSR07] sold applications. This is mainly due to the large development efforts for

the core of the product line, the product line training needed for the developers, the

migration effort for companies to go towards the product line concept and the process

maturity level needed for product line development [BC96]. The efforts for product line

specific development processes are higher than the efforts for the development of stan-

dard systems and such development processes need to be tailored towards the project

environment of the development team [SW00], [BR87]. The survey of 273 software

projects in [Cla97] revealed a potential of reducing the development effort up to 21%

by raising the CMM level by one. This shows the big potential of defined and tailored

development processes. For the remainder of this chapter the terms method and pro-

cess are used according to the Software & Systems Process Engineering Metamodel

(SPEM) of the Object Management Group (OMG). A method is a reusable and goal

oriented procedure made of several steps, referred to as tasks. A process is a sequence

of tasks together with the timing information for the sequence. Thus, a process would

contain all the timed steps needed to develop a product line. As an example, a review

is taken from the method library and reused at different occasions in the process to

validate the documents developed along the product line development process. Ten

product line case studies have been analysed in [LSR07] out of the domains embedded,

oil and gas, finances, mobile communications, telecommunications, multi-media, and

the medical domain. All the case studies use a twofold development process, with a

domain engineering (development of the product line itself) and an application engi-

neering (development of applications based on the product line) phase, as shown in

figure 8.1. Both phases are further subdivided in a requirements, a design, a realiza-

tion and a testing phase. The common assets, managed in a repository, are in between

both phases. They are developed in the domain engineering phase and used in the

application engineering phase.

The challenges are the development methods and processes, which have been indi-

vidually and manually defined by all case studies in [LSR07] as the project proceeded.

PhD Dissertation Arfan Mansoor

8. The Need of Integration Model 106

Figure 8.1: Product Line Development Process

Although guidelines for the development of product lines have been developed [LSR07],

detailed recommendations for the tailoring step of a development process are still miss-

ing. It is not yet clear whether and to what degree a given development process will

fit to its development environment. A structured approach to address this savings

potential could be defined attributes together with a model to optimize the tailoring

step of the development process for product lines. Therefore, a tailoring meta-model

with a set of attributes to enhance the tailoring step with an optimization towards the

presented attributes is presented.

8.1 The Need of Integration Model

The product line development method PuLSE as presented in [BFK+99] is equipped

with the PuLSE Baselining and Customization (PuLSE-BC) [SW00] procedure to tai-

lor PuLSE towards the needs of an organization. Any tailoring decisions are bound

to the variable parts of the development process. The criteria for tailoring are based

on organizational and project domain issues. Such manually elicited criteria result in

the variability of the development process. Pulse-BC is managing this variability in

an own model. A further refinement of tailoring product line development processes is

presented in [AKM+09]. Here, a product line for development processes is proposed,

referred to as process line. The requirements of the development processes in this

process line are based on an analysis of current and future products, projects and pro-

cesses. Thus, the processes are optimized towards the products and projects, to derive a

tailored development process based on the process line. Tailoring is realized with prior-

PhD Dissertation Arfan Mansoor

8. The Need of Integration Model 107

itized attributes, with which the resulting elements of the product, process and project

analysed are ranked. An automated analysis of the underlying models is not yet real-

ized what also hinders the efficient analysis of different scenarios in different domains.

The company specific strategy and the goals of groups as well as individual developers,

referred to as soft attributes are also missing. Nevertheless such attributes are impor-

tant since personal factors influence the success of development process changes to a

larger degree than technological challenges [IF07], [SM98], [NWZ06]. As a result, a

process line model based on products, processes and project data in relation to mod-

els of the company strategy and developer goals is needed. Here, the relations of the

model elements and features of the process line are highly important to be able to

realize its variability [BSRC10]. In addition, there is also need of a complete model of

the attributes to enable an enhanced assessment of derived development processes.

Development process like the V-Model XT, SCRUM or OpenUP are targeting single

system development efforts. Nonetheless parts of the methods are taken for the product

line development. In [BH11] parts of an agile development process have been used for

the product line development in a large company (SAP). Again, tailoring of develop-

ment processes for product lines is an important success factor. As described in [BH11]

but not yet accomplished, the strategic and business goals of an organization need to

be part of the development process. The selection of process steps should be traceable

to the business and strategic goals. Without such traces development processes cannot

be fully analysed and tailored. Thus, the business goals need to be part of the above

described process line.

In [Ter09] the tailorability of the V-Model XT towards product line development

is analysed. Based on this work a process line was developed and a V-Model XT

development processes could be derived based on the process line. Unfortunately, the

selection of supporting tools for the development process is still left to the project

manager and/or developer and the selection of tools is bound to the knowledge about

their advantages and drawbacks, what is currently not part of the model of process

lines. The analysis of product line approaches emphasizes the relevance of tools for the

success of a product line development project.

All the presented approaches in this chapter are based on the product line develop-

ment concept shown in figure 8.1 and offer ideas to relate the development process to

the development environment. Although, none of the approaches is able to offer a com-

plete model of a tailorable development process together with the elements/components

of the development environment. Here, the analysis and assessment of development

PhD Dissertation Arfan Mansoor

8. Tailoring Development Processes 108

processes need to include tools, since they strongly influence the expected effort of a

product line development project.

The relation of decisions to the original goals can be realized with goal models

[Lam09a]. Goal oriented business processes with variabilities are presented in [SCSP10].

Such models could be used as in [GW03] to analyse and assess the chances of success

with the Goal-Question-Metric (GQM) method for product line development projects.

For the tailoring step of a developers environment the in influential factors and at-

tributes are still missing for process lines, but could be realized using a goal model.

Thus, a comprehensive view onto product line development domain would be possible.

Finally an integrative model for the description of stakeholder needs and goals in re-

lation to the development process artefacts and the development environment specifics

is needed, to be able to analyse potential influences of changing goals early in the

project development.

8.2 Tailoring Development Processes

As stated in the previous section the requirements on tailoring product line development

processes are manifold. Here, these requirements are divided in two main parts

1. The goal model based requirements

2. The method model based requirements

The following categories and parts of the two models are based on own experiences in

industrial projects and lessons learned within student software development projects.

First, the identification of influence factors that can be described by goal models

contains soft factors, as shown in figure 8.2.

Based on experience it is estimated that about 70% of the challenges throughout the

software development project can be traced back to such soft factors. Thus, addressing

such factors can influence the success of a project by a large degree. As shown in figure

8.3, two top level factors are refined with a goal model.

The strategyof a company is very important when comes to the initial decision for

or against a product line. Thus, the following sub-goals as refinement of the strategy

are tightly connected to the product line development.

PhD Dissertation Arfan Mansoor

8. Tailoring Development Processes 109

Figure 8.2: Goal and Method Models

Figure 8.3: Integrated Goal Model

� The target domain or domains of the products that will be developed rule about

the product line approach. New domains or domains that will be abandoned in

the future need to be known and elicited in the requirements engineering phase.

Of course, these requirements might have a large impact on the architecture of

the product line, specifically to the core and the variabilities of the product line.

� Any strategic choice of the technology influences the future constraints (perfor-

mance, memory, available development environment, available compilers) of the

system and thus, constraints for the product line. For example, the realization

of variabilities with the C language has reduced capabilities compared to C++.

� Stability of the strategy. For new companies this is highly relevant. The strat-

PhD Dissertation Arfan Mansoor

8. Tailoring Development Processes 110

egy is subject of a high risk for changes. Thus, this goal influences the overall

feasibility of the product line development.

� The roadmap includes the timing for the release of product features. For each

release a set of features is identified. The length (way into the future) of the

roadmap influences the technological choices and the re-development of the prod-

uct line. Due to technological changes, fluctuation of employees (and with them

the knowledge) and unforeseen requirements the implementation of the architec-

ture of a product line needs to be adapted to this new environment. The roadmap

needs to address these large and periodic updates.

The personal factors also have a large impact onto the other elements in the goal

model. The personal goals are coupled with a stakeholder model of the involved persons

in a software project. Each stakeholders should have an own personal goal model

reflecting his/her position towards the product line development process. Since this

is a very personal information it is recommended to keep this model private but use

the information in correlation with the other models (strategy and standards) as well

as use the results of a model analysis as input for the periodic discussions with the

management within the company and/or of the respective project.

� Each stakeholders own experience should be related to the role descriptions of

the basic development processes (e.g., OpenUp, SCRUM). Besides the potentials

for further personal development, such an experience level should be related to

the project roles (and their skills) which are attached to each development step.

For exchangeable development steps, experiences set the rules on which step to

take.

� Each stakeholder has preferences for application domains or technological choices.

There are also preferences for methods used along the development process or for

specific templates to be used for the deliverables of the development process.

These preferences will influence the choices of the method and development pro-

cess parts of the product line.

� Each stakeholder might (or should) have an own strategy in contrast to the

company strategy. The alignment of the strategy of all different stakeholders is

impossible, due to the private nature of this information. As with the experience,

the awareness of the other goals and their correlation to the own strategy is an

important step towards the integration into a developer group and a good starting

point to develop an own roadmap. The individual analysis of the own strategy is

a good point to think about the own position in the company and/or to better

understand the own position.

PhD Dissertation Arfan Mansoor

8. Tailoring Development Processes 111

Standards will influence the technology goals for the strategic planning and they

recommend or require technologies and/or tools. For example, the safety standard

IEC61508 recommends test case generation tools. Standards could also require a spe-

cific development process structure and give recommendations or require development

methods.

The lower part of figure 8.2 shows the method models. Here, SPEM is used to

describe all the needed parts of the methods, processes and best practices. As a SPEM

implementation, OpenUP is shown in figure 8.4.

Figure 8.4: OpenUP Overview

OpenUP is an open source development process for standard applications, the com-

plete extension of OpenUP towards a product line is a future work package. Neverthe-

less this process is taken as tailoring example to address the above mentioned goals.

The development process is split into four iterative phases. Compared to figure 8.1,

the requirements is equivalent to the inception phase, the design is equivalent to the

elaboration phase and the realization is equivalent to the construction phase. The

testing steps are present in each iteration of the OpenUP process and at the first sight

the testing phase in figure 8.1 does not match the OpenUP transition phase, but this

testing phase is meant to be the final system test with an iterative testing approach as

well and thus, the two models are comparable. For each of the development steps in

figure 8.4 parts of the method steps of the OpenUP method library are taken and put

together.

Each task has its responsible roles attached and each role has its tasks attached. As

shown in figure 8.5 the developer role is required to perform the five given tasks and

is also responsible for the four deliverables. The last of the SPEM elements relevant

for the process tailoring step are the guidances. As shown in figure 8.6 there are 14

guidance types which can be used to support any SPEM element, e. g., a task.

PhD Dissertation Arfan Mansoor

8. Tailoring Meta-model 112

Figure 8.5: Developer Role in OpenUp

Figure 8.6: OpenUP Guidance for SPEM elements

8.3 Tailoring Meta-model

Based on the above mentioned relations between goal models, method/process models

and requirements, the proposed meta-model as shown in figure 8.7.

The Element abstracts the Goal model elements, the MethodElements of SPEM,

and the Requirement elements found in most of the meta-models of requirements

management tools like Polarion. The meta-model now allows to connect any element

using links of the abstract LinkType. Currently the following link types are defined:

PhD Dissertation Arfan Mansoor

8. Tailoring Meta-model 113

Figure 8.7: Meta-model for Development Process Tailoring

� Preferences - Are used to indicate a stakeholders preference for a given element

(e. g., a developer might have a preference for a text editor which is part of

the guidances of the process model). The preference link can have values be-

tween -100% (aversion against an element) up to +100% (this element is vitally

important for a stakeholder)

� KnowledgeLevel - This link indicates the level of confidence a stakeholder might

have with an element in model. The knowledge level link is divided in two

categories. The knowledge as user of an element between 0% (the stakeholder

knows nothing about an element) and 50% (the stakeholder knows everything to

use and work with an element). The knowledge as teacher for an element my

have values between 51% (the stakeholder has taught the use of an element at

least once) and 100% (the stakeholder is an experienced teacher with more than

5 years of teaching experience).

� WeaknessStrength - Any element might weaken or strengthen another element.

For example, the presence of a requirement for safety in the medical domain

will result in high documentation demands what in consequence will strengthen

the quality of the final product and at the same time weaken a fast delivery

of the product. The weakness/strength link can have values between -100% (the

source element will disable/weakens the target element) up to +100% (the source

element requires/strengthens the target element. Thus, the target element be

comes mandatory)

PhD Dissertation Arfan Mansoor

8. Tailoring Meta-model 114

To work with the product line approach, variabilities are needed, as discussed in

the first sections. The variability of the process is modelled with the SPEM content

variability types (contributes, extends, replaces, extends and replaces) for the elements

of a SPEM model. To trigger this variability of the process model, the Choice in the

tailoring meta-model is introduced in figure 8.7. This has an input set of elements

influencing the choice. This input set will be updated by the update inputSet()

method whenever the choices are going to be evaluated. This method will search for

elements with target links present in the elements to choose list and will update the

inputSet list accordingly. Once the update inputSet() method has been executed

the choose() method can follow with its execution to calculate the variant based on

the given input elements.

The pseudo-code in figure 8.8 shows how to calculate the choice of elements. First

a map of elements and its ranking is created. For all the elements in the list of input

Figure 8.8: choose Pseudo-code

elements, the elements which have links to elements in the elements to choose list

are listed out. This is accomplished by the getLinkTypesFromTo method which

stores its results in a list of links as subset of the original links list of the Element type.

This list is then taken as input for the adjustRank method which in the current version

simply adds the values for the preferences, knowledge level and weakness/strength

values, to the ermap rankings discussed in the last section. Finally, a selection of

choices based on the rankings and the SPEM models constraints is made. This meta-

model can be extended in two ways:

1. First, any additional elements can be added to this meta-model to address future

models which need to be integrated in the tailoring process.

2. Second, the link types can be extended by new links needed in the future.

PhD Dissertation Arfan Mansoor

8. Summary 115

8.4 Summary

This chapter discusses the current state of the product line development domain and

the challenges when it comes to the development processes which need to be adapted to

the specific needs of the development teams. Tailoring product line development pro-

cesses has been identified to enable large savings for the domain engineering as well as

application engineering phase of product line development projects. For an integrative

approach to process line tailoring, a tailoring meta-model is proposed which includes

goal models, SPEM process models as wells as requirements. With this model stake-

holder specific goals can be used to support binding a variable part of the development

process. This support addresses soft factors as well as concrete requirements. Future

research work will be spent to further elicit attributes of different domains influenc-

ing the development process. In addition the enhancement of the few variable process

steps in OpenUP towards a complete process line will also be subject of future research

efforts.

PhD Dissertation Arfan Mansoor

9. Evaluation of the Proposed Approach 116

Chapter 9

Evaluation of the Proposed

Approach

This chapter presents evaluation of the approach. For the evaluation purpose, students

experiment was performed. The proposed approach was evaluated by comparing it

to other requirements prioritization approaches. The extensibility, usability, compre-

hensibility and understandability of the approach are analysed by the post experiment

survey. Section 9.1 discusses the goals of the experiment, experiment steps are described

in section 9.2. Next section 9.3 introduces the case study used in the experiment and

requirements elicitation workshop results are presented in section 9.4. Execution of

experiment performed in two rounds is explained in the section 9.5. Evaluation of re-

sults is presented in section 9.6 and in the end threats to validation of experiment are

described in the section 9.7.

PhD Dissertation Arfan Mansoor

9. Case Study 117

9.1 Goals of the Experiment

The goal of the experiment was to analyse the proposed approach against other re-

quirements prioritization methods. The goals of the experiment were identified as:

� Evaluating the proposed approach

� Practical challenges of the approach

� Satisfaction of participants regarding the approach

Ease of use

Accuracy

Understanding

Reliability

Comprehensiveness of the approach

Recommendation of the approach

9.2 Steps of Experiment

The following steps were performed in the process of evaluation:

1. Presentation on requirements prioritization methods

2. Requirements elicitation workshop

3. Presentation on the proposed approach

4. Execution of the experiment

5. Results of the experiment

6. Post experiment survey

9.3 Case Study

A cyclecomputer is a device mounted on a bicycle that calculates display trip informa-

tion, similar to the instruments in the dashboard of the car. The device with the display

or head unit is attached to the handlebar for easy viewing. Some GPS watches can

also be used as display. Important aspects of the cyclecomputer are the information it

can offer. The information can be displayed differently with the widgets. Widgets are

PhD Dissertation Arfan Mansoor

9. Workshop Results 118

components of an interface that enables a user to perform function or access a service.

Most cycle computers don’t display that much information. For cyclecomputer project

the idea is to create the widgets that offer the user insightful information in an efficient

manner. Users of the device can be any one who owns a bike, be it normal people

who like to travel for fun, or the people who use the bike as a transportation medium

and are curious about different facts and keep track of statistics like time and distance

travelled. Users can also be professional cyclists who take part in competitions on their

bikes and wish to improve their performance by taking different facts into account or

keeping track of their progress while training.

9.4 Workshop Results

A complete guide of cyclecomputer and elicitation of requirements for cyclecomputer

project was provided to students throughout the experiment.

9.4.1 Functional Requirements

After requirements elicitation workshop with students the following requirements were

identified:

1. Show speed: The device should be able to keep track of the current speed. The

bike is using KMH or MPH units.

2. Show travelled distance: The device should provide the information about the

distance travelled. The distance is displayed in KMH or MPH units. It should

keep track of total distance and one time distance travelled by the user.

3. Show date and time: Current date and time should be displayed in widget in 12

or 24 hour format.

4. Show stopwatch and countdown: User can keep time with the Stopwatch and the

Countdown. Stopwatch time starts from 0 and keeps track of the time till the

user pauses the timer or resets it. For the Countdown the user can choose a time

and the time will go in reverse order till it reaches 0 and then it will launch an

alarm sound.

5. Show temperature: The temperature will also be measured and displayed in a

widget. Temperature can be displayed in Fahrenheit or Celsius units.

6. Show humidity: The device measure and displays the current humidity. The

humidity is displayed as relative humidity (as %) and absolute humidity (g/m3)

PhD Dissertation Arfan Mansoor

9. Workshop Results 119

7. Show wind speed: The device should display the speed and direction of the wind

in form as of a compass showing from where the wind is blowing and showing the

speed in center.

8. Show brake disk temperature: The device will keep track of brake disks temper-

ature.

9. Show wheel RPM: the device should display rotations per minute of the wheel.

10. Show user direction: the device should be able to display the direction the user

is heading on a compass.

11. User accounts: The device should have a user management. Many cyclists should

be able to use the same device and user specific data needs to be password

protected.

12. Transferable to web: For online competition/comparison data should be trans-

ferable to a web portal.

13. Online modus: The competition mode should be used ’online’ (while riding the

bike).

14. Route planning: The device should offer route planning. The planning should be

done based on topographic maps. Routing should consider the current weather

forecast.

9.4.2 Non-functional Requirements

The following non-functional requirements were considered for the elicited functional

requirements by the participants of experiment:

1. Security: Security was considered to be an important factor for following func-

tional requirements User account, Route planning, Online modus, Transferable

to web.

2. Safety: Safety requirement was further refined to Send alert and Location update.

Send alert: It is considered to be interacting with the following functional

requirements: Show speed, Route planning, Show travelled distance, Show brake

disk temperature, Show temperature, Show wheel RPM, Show wind speed.

Location update: It is considered to be interacting with the following func-

tional requirements: Route planning, Show travelled distance, Show brake disk

temperature, Show humidity, Transferable to web, Show temperature, Show user

direction, Online modus.

PhD Dissertation Arfan Mansoor

9. Execution of Experiment 120

3. Availability: The device should be available in working condition in/for long

routes. Therefore availability is important for Route planning and even if some-

thing bad happens (weather update failure etc.,) it should display at least speed,

time.

4. User friendliness: User can display four widgets at same time on same page. Three

small widgets displaying information such as time, speed, temperature etc., and

one bigger widget displaying information such as graphs.

5. Performance: Speed should be updated at every second. Travelled distance

should be updated by every meter and weather related information should be

updated every minute.

6. Accuracy: Accuracy of distance should be +-5 meter, speed should be within

+-2 KMH, temperature should be with +-2 C then accuracy should also consider

accurate weather predictions.

9.5 Execution of Experiment

On the experiment day participants were presented with the following information:

� Objective of the experiment and case study (although they were already explained

a week prior to the experiment).

� Functional requirements document which contains requirements to be prioritized

by the participants (requirements elicited after workshop).

� Non-functional requirements document (requirements elicited after workshop) ex-

plaining the dependencies among requirements.

� Development factors (time, effort, risk) to be included in the prioritization pro-

cess were explained.

� Directly after the experiment participants were asked to rate the approach by

using the survey.

9.5.1 Sample Population

Eleven master students participated in the experiment. Students are enrolled in univer-

sity master degree course”Research in Computer & Systems Engineering. The students

in the experiment have a comparable educational background. A week before the actual

experiment, presentations were given to the students to introduce case study and also

PhD Dissertation Arfan Mansoor

9. Execution of Experiment 121

to explain the proposed approach and other prioritization methods. Therefore these

students had same level of expertise on the approaches and of the case study used in

the experiment. After that a workshop was organized to elicit the requirements for

case study and students prioritize the elicited requirements. Student involvement as

sample population consists of the following steps:

� Convincing the students about the need of prioritizing the requirements

� Training of the students participating in the process of prioritizing

� Working with the students to prioritize the requirements

9.5.2 Research Question of Experiment

The following research questions were identified for the experiment:

RQ1 Which approach is taking less time?

RQ2 Which approach is easier to use?

RQ3 Which approach is giving more accurate results?

RQ4 Are ranks produced similar?

9.5.3 First Round

The experiment was conducted in two rounds: Table 9.1 represents the design used in

the experiment. In first round one group of six students were asked to prioritize the

requirements according to the proposed approach. Each member was given the scales

and requirements document to prioritize the requirements. The scale used for functional

requirements is given in table6.2. The other group was asked to choose the approach

they like from the presented approaches. The students selected Analytic Hierarchy

Process (AHP). This reason of this approach might be because of its popularity in

literature. The six students in the first group on the average took 8 minutes to complete

the first step of proposed approach and in total took 14 minutes to complete all three

steps while second group performing AHP took 25 minutes. The time was higher

because of large number of comparisons they had to make; for 14 requirements total of

91 comparisons were made. Therefore the time of the second group was considerably

higher as compared to first group. Table9.2 represents the participants judgements

of the first group of students while B.1 gives the second group participants pair-wise

comparisons results using AHP.

Table 9.3 gives the ranks based on AHP pairwise comparisons and Table 9.4 gives

the value of distance matrix of AHP while table 9.5 gives the results of proposed

approach for prioritization of functional requirements.

PhD Dissertation Arfan Mansoor

9. Execution of Experiment 122

Table 9.1: Design Used

Group Round 1 Round 2

G1 Proposed
approach

AHP, 100 dollar, Top ten, Bubble sort, Numerical assign-
ment/Priority group

G2 AHP Proposed Approach

Table 9.2: Participants Judgements

Sr Requirements P1 P2 P3 P4 P5 P6

1 Show speed High High Very High High High High
2 Show travelled

distance
High Medium Medium High Medium High

3 Show date and
time

Medium Medium Medium Medium Medium High

4 Show stopwatch
and countdown

Medium Medium High Medium Medium Medium

5 Show tempera-
ture

Medium Medium Medium Medium Medium Medium

6 Show humidity Medium Medium Medium High High Medium
7 Show wind

speed
Medium Medium Low Low Low High

8 Show brake disk
temperature

High Medium Medium Medium High High

9 Show wheel
RPM

Medium Medium Medium Medium Medium Medium

10 Show user direc-
tion

Medium Low Low Medium Low Medium

11 User accounts Medium Medium Medium High High High
12 Transferable to

web
Medium Medium Medium High Low High

13 Online modus Medium Low Medium Medium Low Low
14 Route planning High High High Medium Medium High

After this non-functional requirements document was given to both groups and

they were explained the interactions among requirements. Both groups were asked to

prioritize the functional requirements based on these dependencies represented in 9.6.

AHP became difficult to handle as the requirements increased to double digit. An-

other issue observed with AHP was the consistency ratio: the ideal value of which

should be below than 20% but in first attempt when participants made pairwise com-

parisons, it was 23% and participants were asked to re-arrange their priorities. Rear-

ranging priorities mean they made another round of pairwise comparisons and this time

consistency ratio was 9.0% and the total time taken was 22 minutes. Participants us-

ing AHP had difficulties regarding handling of interdependencies among requirements

PhD Dissertation Arfan Mansoor

9. Execution of Experiment 123

Table 9.3: Ranks based on AHP Comparisons

Requirements Priority Rank

Show speed 33.7% 1
Show travelled distance 14.6% 2
Show date and time 11.4% 3
Show stopwatch and countdown 5.7% 4
Show temperature 7.1% 5
Show wind speed 4.9% 6
Show brake disk temperature 4.3% 7
Show humidity 4.2% 8
Show wheel RPM 2.9% 9
Show user direction 2.8% 10
User accounts 2.4% 11
Transferable to web 2.3% 12
Online modus 2.1% 13
Route planning 1.7% 14

Table 9.4: AHP Distance Matrix

and also they did not considered development constraints like cost, effort and time in

considering prioritizing requirements. Based on participants opinions the AHP method

did not provide any information on how to include development constraints (like cost,

effort, time) into prioritization. The interactions among requirements were quantified

according to 6.5 and table 9.7 represents the output of the first group participants

priorities while table 9.8 gives the non-functional requirements priority list.

The participants were asked to only enter the values for both AHP and proposed

approach and all the calculations were done by the author of the experiment. One

advantage of the re-arraigned priorities in proposed approach is that if there are major

differences between two priority lists (functional requirements priority list and list after

PhD Dissertation Arfan Mansoor

9. Execution of Experiment 124

Table 9.5: Prioritization after First Step

Requirements Normalized
Value

Rank

Show speed 0.111 1
Route planning 0.093 2
Show travelled distance 0.085 3
Show brake disk temperature 0.085 4
User accounts 0.085 5
Show humidity 0.078 6
Show date and time 0.070 7
Show stopwatch and countdown 0.070 8
Transferable to web 0.070 9
Show temperature 0.063 10
Show wheel RPM 0.063 11
Show wind speed 0.050 12
Show user direction 0.039 13
Online modus 0.039 14

requirements interactions) they can be revised accordingly.

In last step, participants of first group prioritized requirements incorporating the

development constraints time, effort and risk. Table 9.9 gives the final priority list of

the first groups participants.

9.5.4 Second Round

In second round of the experiment, the second group was given the task of prioritizing

the requirements based on proposed approach and first group was asked to use five

approaches of their own choice to prioritize the requirements. The selected approaches

were: AHP, 100 dollar test, numerical assignment, Bubble sort and Top-ten require-

ments. As in first round of experiment, AHP took more time as compared to other

approaches and was difficult for students to accommodate dependencies and develop-

ment constraints for prioritizing using AHP. 100 dollar test was simple approach to

use but it is more suitable when numbers of participants are three to five and when

there are strict timing constraints. It is not suitable when there are large numbers of

requirements and participants are more in numbers. Though it was simple but as in

AHP it did not handle dependencies well and it also has scalability issue. Table 9.10

gives the priority list of requirements based on 100 dollar test.

Numerical assignment was another technique used but it had the problem of as-

signing priorities into groups: High, Medium, Low and each requirement was assigned

priority into one of these groups. Individual priority to each requirement was an issue

PhD Dissertation Arfan Mansoor

9. Execution of Experiment 125

Table 9.6: Requirements Interaction

Requirements Score Security Send
alert

Location
update

User
friendly

Performance Accuracy Availability

Show speed 0.88 Neutral Help Neutral Help Help Help Help
Route plan-
ning

0.74 Make Help Make Help Help Make Help

Show trav-
elled distance

0.68 Neutral Help Help Help Help Help Neutral

Show brake
disk tempera-
ture

0.68 Make Help Help Help Help Help Help

User accounts 0.68 Make Neutral Neutral Help Help Neutral Neutral
Show humid-
ity

0.62 Neutral Help Help Help Help Neutral Neutral

Show date
and time

0.55 Neutral Neutral Neutral Help Help Neutral Neutral

Show stop-
watch and
countdown

0.55 Neutral Help Neutral Help Neutral Neutral Neutral

Transferable
to web

0.55 Make Help Help Help Neutral Neutral Neutral

Show temper-
ature

0.50 Neutral Help Help Help Help Help Neutral

Show wheel
RPM

0.50 Make Help Neutral Help Help Help Help

Show wind
speed

0.37 Neutral Help Neutral Help Help Help Neutral

Show user di-
rection

0.31 Neutral Help Help Help Help Neutral Neutral

Online modus 0.31 Make Make Make Help Help Neutral Neutral

in this approach. Bubble sort was fourth technique used by participants but like AHP

it had the pairwise comparisons issue. In bubble sort each requirement was assigned

weights and then comparisons were made between the two requirements to priori-

tize them and the process continued till all requirements were in order. Bubble sort

compared two requirements unlike AHP where the relativity was also determined by

assigning values from 1 to 9. At the end Top-ten requirements technique was used by

the students. In this simply 10 most important requirements were selected but benefit

or value of each requirement was not measured (the same issue with other approaches:

numerical assignment and bubble sort). In practice this approach is too simple too be

selected for prioritization and is also not applicable where different weights are assigned

to different stakeholders in the process.

PhD Dissertation Arfan Mansoor

9. Execution of Experiment 126

Table 9.7: Requirements Priorities after Interactions

Sr Requirements Triangular Fuzzy
Number(TFN)

Defuziffication Normalized
Value

1 Online modus (0.053, 0.101, 0.110) 0.365 0.159
2 Route planning (0.211, 0.327, 0.37) 0.308 0.134
3 Show brake disk tem-

perature
(0.155, 0.281, 0.34) 0.264 0.115

4 Show speed (0.075, 0.25, 0.36) 0.233 0.101
5 Show travelled dis-

tance
(0.058, 0.194, 0.281) 0.181 0.079

6 Show wheel RPM (0.085, 0.178, 0.228) 0.167 0.072
7 Show temperature (0.042, 0.142, 0.207) 0.133 0.058
8 Show humidity (0.017, 0.141, 0.230) 0.132 0.057
9 Transferable to web (0.031, 0.133, 0.204) 0.125 0.054
10 User accounts (0, 0.126, 0.223) 0.118 0.051
11 Show wind speed (0.010, 0.084, 0.137) 0.078 0.034
12 Show user direction (0.008, 0.070, 0.115) 0.065 0.028
13 Show date and time (-0.04, 0.063, 0.157) 0.060 0.026
14 Show stopwatch and

countdown
(-0.04, 0.063, 0.157) 0.060 0.026

Table 9.8: Non-functional Requirements Priorities

Sr Non-functional Re-
quirements

Triangular Fuzzy
Number(TFN)

Defuziffication Normalized
Value

1 User friendliness (0.2, 0.4, 0.5) 0.375 0.212
2 Send alert (Safety) (0.164, 0.35, 0.457) 0.330 0.186
3 Performance (0.171, 0.342, 0.457) 0.328 0.185
4 Location update

(Safety)
(0.057, 0.242, 0.371) 0.228 0.129

5 Security (0.057, 0.214, 0.328) 0.203 0.115
6 Accuracy (0.014, 0.207, 0.35) 0.194 0.109
7 Availability (-0.085, 0.114, 0.285) 0.107 0.060

PhD Dissertation Arfan Mansoor

9. Execution of Experiment 127

Table 9.9: Final Priority List

Sr Requirements Triangular Fuzzy
Number(TFN)

Defuziffication Normalized
Value

1 Route planning (0.3, 0.5, 0.7) 0.50 0.180
2 Online modus (0.2, 0.366, 0.566) 0.425 0.155
3 Show brake disk tem-

perature
(0.2, 0.366, 0.566) 0.307 0.111

4 Show speed (0.2, 0.366, 0.566) 0.270 0.097
5 Show travelled dis-

tance
(0.2, 0.366, 0.566) 0.211 0.076

6 Show wheel RPM (0.2, 0.366, 0.566) 0.192 0.069
7 Show temperature (0.2, 0.366, 0.566) 0.155 0.056
8 Show humidity (0.2, 0.366, 0.566) 0.152 0.055
9 User accounts (0.2, 0.366, 0.566) 0.136 0.049
10 Transferable to web (0.3, 0.5, 0.7) 0.108 0.039
11 Show stopwatch and

countdown
(0.1, 0.233, 0.433) 0.104 0.037

12 Show wind speed (0.2, 0.366, 0.566) 0.090 0.032
13 Show date and time (0.2, 0.366, 0.566) 0.069 0.024
14 Show user direction (0.43, 0.633, 0.8) 0.044 0.015

Table 9.10: 100 Dollar Test

Sr Requirements $

1 Show speed 6
2 Show travelled distance 5
3 Show date and time 5
4 Show stopwatch and countdown 4
5 Show temperature 4
6 Show humidity 2
7 Show wind speed 2
8 Show brake disk temperature 5
9 Show wheel RPM 4
10 Show user direction 3
11 User accounts 5
12 Transferable to web 6
13 Online modus 6
14 Route planning 5

Non-functional requirements
15 User friendliness 7
16 Send alert (Safety) 6
17 Performance 5
18 Location update (Safety) 5
19 Security 4
20 Accuracy 6
21 Availability 5

PhD Dissertation Arfan Mansoor

9. Evaluation of Results 128

9.6 Evaluation of Results

The results were examined by answering research questions of the experiment defined in

9.5.2. Regarding first RQ1, graph in figure 9.1 gives the time difference of both rounds

in seconds between proposed approach and AHP while graph in figure 9.2 gives the

time difference of approaches used in second round. As both figures show that proposed

approach performed better than AHP, bubble sort in terms of time consumption. Top

ten and priority group are better because they do not handle dependencies among the

requirements and are too simple to be used in practical applications when there are

large number of requirements and large number of stakeholders. The difference in final

rankings of these approaches is because of proposed approach take dependencies and

development constraints into consideration while other approaches either do not take

them into account or they become too complex to handle them.

Figure 9.1: Time Difference between AHP and Proposed Approach

Round 1 Round 2

Proposed Approach 840 900

AHP 1500 1620

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
 i

n
 S

e
c
s

Time Difference Chart

Regarding RQ2 and RQ3 defined in 9.5.2, a post experiment questionnaire was

given to the participants. Graph in figure 9.3 clearly shows that participants trusted

the proposed approach over other methods regarding these questions.

To answer RQ4 the output ranks of both rounds for proposed approach and AHP

PhD Dissertation Arfan Mansoor

9. Evaluation of Results 129

Figure 9.2: Time Difference of Used Approaches

0

200

400

600

800

1000

1200

1400

1600

1800

Proposed approach AHP Bubble sort 100 $ Top Ten Priority group

Time in Secs 900 1620 1200 960 500 630

T
im

e
 i

n
 S

e
c

Time Consumed

were compared. The ranks of AHP for both rounds are given in table 9.11 while change

in ranks by proposed approach are given in table 9.12 and table 9.13 respectively for

functional and non-functional requirements.

Graph in figure 9.4 represents the changes of both ranks. The change is given in

% and in absolute terms. Although the changes in both ranks are subjective in nature

but they also represent the understanding difficulty of AHP.

Figure 9.5 gives the ranks produced in both rounds by proposed approach. The

ranking of both rounds are more consistent as compared to rankings of AHP and

in addition it also gives the ranking of non-functional requirements which are also

consistent for both rounds and are shown in figure 9.6.

Further results were examined by evaluating the responses from questionnaire given

to the participants who had used the proposed approach and also other approaches.

The assessment scale used to verify the participants responses was referred to as Very

High: means participant is strongly satisfied to the outcome generated after using

the approach; High means participant is satisfied to the outcome; Medium means the

participant is satisfied to certain extent about the effectiveness of the approach; Low

means the participant is satisfied to some extent and Very Low means the participant

PhD Dissertation Arfan Mansoor

9. Evaluation of Results 130

Table 9.11: AHP Ranks of Both Rounds

Sr Round 1 Sr Round 2 Change
%

Absolute
Change

1 Show speed 1 Show speed 0.00% 0
2 Show travelled distance 2 Route planning 80.00% 12
3 Show date and time 3 Show travelled distance -6.66% -1
4 Show stopwatch and count-

down
4 Show brake disk tempera-

ture
26.66% 4

5 Show temperature 5 User accounts 40.00% 6
6 Show humidity 6 Show humidity 0.00% 0
7 Show wind speed 7 Show date and time -26.66% -4
8 Show brake disk tempera-

ture
8 Show stopwatch and count-

down
-26.66% -4

9 Show wheel RPM 9 Transferable to web 20.00% 3
10 Show user direction 10 Show temperature -33.33% -5
11 User accounts 11 Show wheel RPM -13.33% -2
12 Transferable to web 12 Show wind speed -33.33% -5
13 Online modus 13 Show user direction -20.00% -3
14 Route planning 14 Online modus -6.66% -1

Table 9.12: Proposed Approach Ranks of Both Rounds for Functional Requirements

Sr Round 1 Sr Round 2 Change
%

Absolute
Change

1 Route planning 1 Route planning 0.00% 0
2 Online modus 2 Online modus 0.00% 0
3 Show brake disk tempera-

ture
3 Show brake disk tempera-

ture
0.00% 0

4 Show speed 4 Show speed 0.00% 0
5 Show travelled distance 5 Show temperature 13.33% 2
6 Show wheel RPM 6 Show travelled distance -6.66% -1
7 Show temperature 7 Show wheel RPM -6.66% -1
8 Show humidity 8 Show humidity 0.00% 0
9 User accounts 9 User accounts 0.00% 0
10 Transferable to web 10 Transferable to web 0.00% 0
11 Show stopwatch and count-

down
11 Show stopwatch and count-

down
0.00% 0

12 Show wind speed 12 Show wind speed 0.00% 0
13 Show date and time 13 Show user direction 6.66% 1
14 Show user direction 14 Show date and time -6.66% -1

PhD Dissertation Arfan Mansoor

9. Evaluation of Results 131

Figure 9.3: Methods Comparisons

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Proposed
approach

Bubble sort AHP 100 $ Priority group Top ten

Which method is easier to use? 81.82% 0% 0% 9.09% 9.09% 0%

Which method is more accurate? 72.72% 0% 27.27% 0% 0% 0%

%

Methods Comparisons

is not satisfied to the effectiveness of proposed approach. The outcome of this activity

clearly dominated the results of first and second category (Very High and High) that

proved the effectiveness of the approach. Table 9.14 shows the survey questionnaire

results.

Figure 9.7 gives the results of participants knowledge on requirements engineering

and about requirements prioritization techniques. The results depicts that participants

have good understanding of requirements engineering and prioritization approaches.

Figure 9.8 results depict the satisfaction of participants in terms of ease of use, extensi-

bility, reliability, difficulty, and overall use of the approach. As it is evident from figure

9.8 that participants rated the proposed approach either very high or high for these

factors and that shows the applicability of approach. The results in figure 9.9 show

the representation of evaluation against questions in terms of improved performance;

higher level of customer satisfaction; handling dependencies; higher level of developers

involvement and recommendations on using the approach to others. The participants

answers show high interest for the approach as they mostly are satisfied to recommend

it to others and for handling the mentioned criteria (higher level customer involvement,

higher level developers involvement and handling dependencies) in the experiment.

PhD Dissertation Arfan Mansoor

9. Evaluation of Results 132

Table 9.13: Proposed Approach Ranks of Both Rounds for Non-functional Require-
ments

Sr Round 1 Sr Round 2 Change
%

Absolute
Change

1 User friendliness 1 User friendliness 0.00% 0
2 Send alert (Safety) 2 Send alert (Safety) 0.00% 0
3 Performance 3 Performance 0.00% 0
4 Location update (Safety) 4 Security 12.50% 1
5 Security 5 Location update (Safety) -12.50% -1
6 Accuracy 6 Accuracy 0.00% 0
7 Availability 7 Availability 0.00% 0

Table 9.14: Survey Questionnaire Results

Sr Questions Very High High Medium Low Very
Low

1 How would you rate yourself experience
wise in requirements engineering?

36.36% 45.45% 18.18% 0% 0%

2 How would you rate yourself knowledge
wise in the requirements prioritisation?

27.27% 45.45% 27.27% 0% 0%

3 How satisfied are you with the ap-
proach?

18.18% 63.64% 18.18% 0% 0%

4 How satisfied are you with the ease of
use?

27.27% 54.54% 18.18% 0% 0%

5 How satisfied are you with the extensi-
bility of the approach?

18.18% 81.82% 0.00% 0% 0%

6 How satisfied are you with the under-
standing difficulty of the approach?

9.09% 54.55% 36.36% 0% 0%

7 How satisfied are you with the reliabil-
ity of the approach?

9.09% 63.64% 27.27% 0% 0%

8 How satisfied are you with the ap-
proach in terms of handling desired pri-
oritisation?

18.18% 63.64% 18.18% 0% 0%

9 What are the chances that you will use
this approach?

27.27% 54.55% 18.18% 0% 0%

10 What are the chances that you will rec-
ommend this approach to friend or col-
league?

36.36% 63.64% 0.00% 0% 0%

PhD Dissertation Arfan Mansoor

9. Evaluation of Results 133

Figure 9.4: AHP Ranks of Both Rounds

Show
speed

Show
user

direction

Show
wind
speed

Show
brake
disk

temperat
ure

User
accounts

Route
planning

Online
modus

Transfera
ble to
web

Show
humidity

Show
stopwatc

h and
countdo

wn

Show
date and

time

Show
travelled
distance

Show
temperat

ure

Show
wheel
RPM

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Show
speed

Show
travelled
distance

Show
date and

time

Show
stopwatc

h and
countdo

wn

Show
temperat

ure

Show
humidity

Show
wind
speed

Show
brake
disk

temperat
ure

Show
wheel
RPM

Show
user

direction

User
accounts

Transfera
ble to
web

Online
modus

Route
planning

1 2 3 4 5 6 7 8 9 10 11 12 13 14

% Change 0.0000% 53.3333% 26.6667% 26.6667% 40.0000% 53.3333% 40.0000% 26.6667% -20.0000%-40.0000%-53.3333%-66.6667%-53.3333%-33.3333%

Absolute Change 0 8 4 4 6 8 6 4 -3 -6 -8 -10 -8 -5

-10

-8

-6

-4

-2

0

2

4

6

8

10

C
h

a
n

g
e

AHP Rankings in Two Rounds

Figure 9.5: Proposed Approach Ranks of Both Rounds

Route
planning

Online
modus

Show
brake
disk

temperat
ure

Show
speed

Show
temperat

ure

Show
travelled
distance

Show
wheel
RPM

Show
humidity

User
accounts

Transfera
ble to
web

Show
stopwatc

h and
countdo

wn

Show
wind
speed

Show
user

direction

Show
date and

time

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Route
planning

Online
modus

Show
brake
disk

temperat
ure

Show
speed

Show
travelled
distance

Show
wheel
RPM

Show
temperat

ure

Show
humidity

User
accounts

Transfera
ble to
web

Show
stopwatc

h and
countdo

wn

Show
wind
speed

Show
date and

time

Show
user

direction

1 2 3 4 5 6 7 8 9 10 11 12 13 14

% Change 0.0000% 0.0000% 0.0000% 0.0000% 13.3333% -6.6667% -6.6667% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 6.6667% -6.6667%

Absolute Change 0 0 0 0 2 -1 -1 0 0 0 0 0 1 -1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

C
h

a
n

g
e

Proposed Ranking in Two Rounds

PhD Dissertation Arfan Mansoor

9. Evaluation of Results 134

Figure 9.6: NFR Ranks of Both Rounds

User friendliness Send alert (Safety) Performance Security
Location update

(Safety)
Accuracy Availability

1 2 3 4 5 6 7

User friendliness Send alert (Safety) Performance
Location update

(Safety)
Security Accuracy Availability

1 2 3 4 5 6 7

% Change 0.0000% 0.0000% 0.0000% 12.5000% -12.5000% 0.0000% 0.0000%

Absolute Change 0 0 0 1 -1 0 0

-1.5

-1

-0.5

0

0.5

1

1.5

C
h

a
n

g
e

Non-functional Requirements Ranks

Figure 9.7: Participants Expertise in RE

Very High High Medium Low Very Low

How would you rate yourself experience wise in the

requirements engineering...
36.36% 45.45% 18.18% 0% 0%

How would you rate yourself knowledge wise in the

requirements prioritisati...
27.27% 45.45% 27.27% 0% 0%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Participants expertise in RE

PhD Dissertation Arfan Mansoor

9. Evaluation of Results 135

Figure 9.8: Evaluation Results

How satisfied are you

with the approach?

How satisfied are you

with the ease of use?

How satisfied are you

with the extensibility

of the approach?

How satisfied are you

with the

understanding

difficulty of the

approach?

How satisfied are you

with the reliability of

the approach?

How satisfied are you

with the approach in

terms of handling

desired prioritisation.

Very High 18.18% 27.27% 18.18% 9.09% 9.09% 18.18%

High 63.64% 54.54% 81.82% 54.55% 63.64% 63.64%

Medium 18.18% 18.18% 0.00% 36.36% 27.27% 18.18%

Low 0% 0% 0% 0% 0% 0%

Very Low 0% 0% 0% 0% 0% 0%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

S
a

ti
sf

a
c
ti

o
n

 o
f

P
a

r
ti

c
ip

a
n

ts

Evaluation results of proposed approach

Figure 9.9: Participants Recommendations About Approach

Recommendation to

others
Improved performance

Higher level customer

involment
Handling dependencies

Higher level developers

involment

Sufficient model for

priortization

Yes 85% 80% 90% 75% 70% 80%

No 15% 20% 10% 25% 30% 20%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Participants recommendations

PhD Dissertation Arfan Mansoor

9. Validation of Experiment 136

9.7 Validation of Experiment

It is always vital to analyse the possible threats in an experiment in order to validate

the results obtained. Validity has been a key challenge in scientific research and it

means to check that experiment fulfils its intended purposes. The objective of the

experiment here was to illustrate the application of the proposed approach and to

make comparisons to other prioritization methods. Following potential threats should

be kept in mind when analysing the results of this experiment:

9.7.1 Conclusion Validity

A threat to conclusion validity can lead to reach an incorrect conclusion about relation-

ships in the experiment. However, small sample size and low (or medium) numbers of

requirements were issues in this experiment to highlight any significant relationships.

Although the participants have good understanding on requirements prioritization ap-

proaches and results are significant but this significance is limited because of these

issues and it is still regarded as a partial threat to the evaluation. Usefulness of the

approach signifies the effectiveness and future experimentation practice.

9.7.2 Internal Validity

Internal validity is about finding the causal relationship in the experiments that is

where one can define certain outcome is because of certain treatment. To minimize any

causal relationships in the experiment, it was performed in two rounds. To eliminate

any biasses in the experiment all participants in both rounds used the same material

and shared the same presentations on the prioritization approaches.

9.7.3 Construct Validity

Construct validity is about how well the operationalization of experiment is performed.

In experiment several variables were selected to measure the ”satisfaction” of the ap-

proach for example, ease of use, understanding, accuracy, extensibility and reliability.

With regard to these variables, participants were asked open questions in likert scale

(qualitative manner) rather than a quantitative to make the participants more com-

fortable for expressing their opinions freely. However, the experiments are performed

independently from a software project. This a potential threat in the experimenta-

tion. However the main objective of the experiment was to know the applicability

of the approach and understanding the differences and problems of other prioritizing

approaches.

PhD Dissertation Arfan Mansoor

9. Summary 137

9.7.4 External Validity

External validity is about how well the results of the experiment can be generalized.

The external validity is always an important issue in the student experiments and the

same threat is in this experiment but since the students were well prepared for the

experiment therefore the results can not be dismissed just for this reason. The results

obtained in the experiment about the applicability of the approach are promising but

still they cannot be generalized for other applications in other environments. Never

the less evaluation results does provide valuable understandings to advantages and

disadvantages of the different methods and the practical challenges one may face during

the prioritization of requirements.

9.8 Summary

This chapter discussed the evaluation of the proposed approach based on student ex-

periments where the proposed approach was compared against other requirements pri-

oritization methods. The variables used to check the effectiveness of the approach are:

ease of use, reliability, understandability and extensibility of the approach compared

to other approaches. The results extracted from the experiments are presented and in

the end possible implication to validity of results are presented.

PhD Dissertation Arfan Mansoor

10. Thesis Goals and Acquirement 138

Chapter 10

Conclusions and Outlook

This chapter presents the conclusion of this thesis. Section 10.1 discusses how the goals

identified in section 1.2 are achieved in this thesis. Then the chapter concludes with

an outlook into future research directions based on the results of this thesis.

10.1 Thesis Goals and Acquirement

In section 1.2 research goals of this thesis were presented. For each of these goals, short

answers based on the work presented in this thesis are given.

Goal 1: Evaluating goal methods/frameworks for requirements analysis.

Chapter 3 presented the GORE frameworks from literature and a complete goal ori-

ented analysis of requirements is described. The findings from these frameworks that

are relevant for this work are highlighted in table 3.3.

Goal 2 and 3: Establishing the means for stakeholders representation into GORE

and providing a prioritization scheme for high level goals based on stakeholder prefer-

ences.

Once goal analysis has been performed and the functional level goals are obtained,

stakeholder opinions are gathered using linguistic terms. Their opinions are then quan-

tified using the fuzzy numbers and crisp values are obtained by defuzzification process

defined in section 6.4.5. This gives the first priority list of operational functional goals

based on stakeholders representations.

Goal 4: Providing an integration of quality models into goal models.

Chapter 5 presents classification of quality model and comparison of these quality

models. An integration of goal models to quality models is presented. The quality

PhD Dissertation Arfan Mansoor

10. Future Work 139

models and goal-quality model integration helps to identify quality requirements related

to goals and to find the dependencies among these requirements.

Goal 5 and 6: Establishing the influences (positive or negative) of quality goals and

measuring the impact of quality goals on each other and of high level goals.

To establish the influences, contributions links of goal models are used and section

6.4.7.2 describes how to measure the impact of them. The same defuzzifications process

6.4.5 is used to quantify the measure. After that the prioritization obtained as an

answer to research goal 2 and 3 is updated based on dependencies. At that point two

prioritize lists are obtained one for functional requirements and one for non-functional

requirements.

Goal 7: Involving development factors into prioritization and selection of require-

ments based on cost constraints.

Section 6.4.8 describes to update the prioritization list based on development factors

and algorithm 6.10 gives the final selection of requirements while fulfilling the cost

constraints.

Goal 8: Alternative selection of system solutions based on proposed approach.

Chapter 7 provides the extension of the proposed approach for alternative selection.

TOPSIS method was integrated into proposed approach to evaluate all the alternative

solutions. Score obtained by TFN and defuzzification process 6.4.5 are used as weighing

criteria by TOPSIS to rank best alternative.

Goal 9: Provide the tailoring of product line development process based on goals.

For tailoring product line development process, a tailoring meta-model is presented in

section 8.2. This meta-models integrates goal models, SPEM process models as well

as requirements. With this model stakeholder specific goals can be used to support

binding a variable part of the development process.

10.2 Future Work

Regarding the approach different aspects of improvements can be discussed for future

work. Though the approach was applied on a case study where different quality goals

are integrated to functional goals but still an integration of complete set of quality

goals could be a future work.

PhD Dissertation Arfan Mansoor

10. Future Work 140

Though the approach is tested to handle the dependencies among functional and

non-functional requirements but it still needs an evaluation when the interactions

among non-functional requirements are too many or they are increased in depth. For

practitioner acceptance of this approach further evaluation for the industry projects is

required.

The goal based tailoring of product line development process presented in this

thesis could further be enhanced to feature oriented modelling. The goal structures

could be mapped to feature models where feature models are parametrized according

to initial goals. By this feature models will be enhanced with new structures, and

will introduce another level of variability. Each level of variability will results in a

design supporting the road map of product with its future changes without breaking

the software architecture.

PhD Dissertation Arfan Mansoor

141

Appendices

PhD Dissertation Arfan Mansoor

A. Implementation and Modelling 142

PhD Dissertation Arfan Mansoor

A. Implementation of case Study 143

Appendix A

Implementation and Modelling

A.1 Implementation of case Study

Cycle Computer Requirements Analysis

Performing the requirements analysis for Cycle Computer project consist of:

 Finding requirements, analyzing them

 Incorporating stakeholder choices, developers opinions

 Using fuzzy logic to prioritize these requirements

Basic settings

echo = TRUE # make code visible
library(ggplot2)
library(gplots)
library(lattice)
library(RColorBrewer)
library(corrplot)
library(FactoMineR)
library(data.table)
library(plyr)
library(reshape)
library(scales)
require(gridExtra)
setwd("C:/Users/dell pc/Desktop/course/Implementation/implementation")

Data Processing

data<- "SH.csv"
data<-read.csv(data)

requirements<- data[,1:2]
shInputs<- as.data.frame(data[,3:5])
dim(data)

[1] 16 5

head(data)

Goals Sub.goals.till.leaf.level.goals SHO1 SHO2
1 EntertainmentServiceSatisfied Mic H VH
2 Data storage H VH
3 Audio service VL VH
4 CompitionServieSatisifed User accounts VH H
5 Transferable to web VH H
6 Online modus VH H
SHO3
1 H
2 H
3 VL
4 H
5 H
6 H

summary(data)

Goals Sub.goals.till.leaf.level.goals
:12 Audio service : 1
CompitionServieSatisifed : 1 Calories consumption: 1
EntertainmentServiceSatisfied : 1 Data storage : 1
TourManagementServiceSatisfied: 1 Fitness level : 1
TrainingServiceSatisfied : 1 Initial checkups : 1
Mic : 1
(Other) :10
SHO1 SHO2 SHO3
H :8 H :8 H :9
VH:7 VH:3 VH:4

PhD Dissertation Arfan Mansoor

VL:1 VL:5 VL:3

Summary of data shows there are four high level goals which are further refined till leaf level
goals are achieved i.e., the goals that are directly assignable to agents. Sixteen leaf level goals
against are obtained from four high level goals. These goals are presented to three stakeholders
and get their opinions are recorded against each leaf level goal.

Stakeholder opinions are obtained in linguistic terms for simplicity reasons. Their opinions are
then converted into fuzzy numbers.

VH<-c(0.9,0.9,1.0)
H<-c(0.7,0.9,1.0)
M<-c(0.3,0.5,0.7)
L<-c(0.0,0.1,0.3)
VL<-c(0.0,0.0,0.1)
likertScale<- data.frame(VH,H,M,L,VL)
attr(likertScale, "row.names")<-c("Low","Medium","High")
likertScale$category <- row.names(likertScale)
mdfr <- melt(likertScale, id.vars = "category")
(p <- ggplot(mdfr, aes(category, value, fill = variable)) +
geom_bar(stat='identity',position=position_dodge()) +
scale_fill_brewer(palette="Paired")+theme_minimal())

Map Stakeholder opinions to numeric values

The stakeholder opinions from above table are mapped to fuzzy number.

mapOpinions<-list(VH=VH, H=H, M=M, L=L, VL=VL)

The following function is used to extract the stakeholder opinions from data and replace them to
numeric values.

 relevel <- function(shInputs, levelmap) {
 shInputs[] <- lapply(shInputs, function(x)
levelmap[as.numeric(x)]);shInputs
}

newValues<-relevel(shInputs, mapOpinions)
newValues

A. Implementation of case Study 144

PhD Dissertation Arfan Mansoor

SHO1 SHO2 SHO3
1 0.9, 0.9, 1.0 0.7, 0.9, 1.0 0.9, 0.9, 1.0
2 0.9, 0.9, 1.0 0.7, 0.9, 1.0 0.9, 0.9, 1.0
3 0.3, 0.5, 0.7 0.7, 0.9, 1.0 0.3, 0.5, 0.7
4 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
5 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
6 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
7 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
8 0.9, 0.9, 1.0 0.9, 0.9, 1.0 0.7, 0.9, 1.0
9 0.7, 0.9, 1.0 0.3, 0.5, 0.7 0.7, 0.9, 1.0
10 0.9, 0.9, 1.0 0.3, 0.5, 0.7 0.7, 0.9, 1.0
11 0.9, 0.9, 1.0 0.3, 0.5, 0.7 0.7, 0.9, 1.0
12 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.3, 0.5, 0.7
13 0.9, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
14 0.9, 0.9, 1.0 0.3, 0.5, 0.7 0.3, 0.5, 0.7
15 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
16 0.9, 0.9, 1.0 0.3, 0.5, 0.7 0.9, 0.9, 1.0

Calculating TFN

Triangular Fuzzy Number (TFN) is calculated for each leaf level goal against stakeholder
opinions and the results are saved in new data set with new TFN column.

TFN <- Reduce('+', lapply(newValues, function(x) do.call(rbind,
x)))/ncol(newValues)
newTFN<-newValues
newTFN$TFN <- do.call(paste, c(as.data.frame(TFN), sep=", "))
newTFN

SHO1 SHO2 SHO3
1 0.9, 0.9, 1.0 0.7, 0.9, 1.0 0.9, 0.9, 1.0
2 0.9, 0.9, 1.0 0.7, 0.9, 1.0 0.9, 0.9, 1.0
3 0.3, 0.5, 0.7 0.7, 0.9, 1.0 0.3, 0.5, 0.7
4 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
5 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
6 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
7 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
8 0.9, 0.9, 1.0 0.9, 0.9, 1.0 0.7, 0.9, 1.0
9 0.7, 0.9, 1.0 0.3, 0.5, 0.7 0.7, 0.9, 1.0
10 0.9, 0.9, 1.0 0.3, 0.5, 0.7 0.7, 0.9, 1.0
11 0.9, 0.9, 1.0 0.3, 0.5, 0.7 0.7, 0.9, 1.0
12 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.3, 0.5, 0.7
13 0.9, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
14 0.9, 0.9, 1.0 0.3, 0.5, 0.7 0.3, 0.5, 0.7
15 0.7, 0.9, 1.0 0.9, 0.9, 1.0 0.9, 0.9, 1.0
16 0.9, 0.9, 1.0 0.3, 0.5, 0.7 0.9, 0.9, 1.0
TFN
1 0.833333333333333, 0.9, 1
2 0.833333333333333, 0.9, 1
3 0.433333333333333, 0.633333333333333, 0.8
4 0.833333333333333, 0.9, 1
5 0.833333333333333, 0.9, 1
6 0.833333333333333, 0.9, 1
7 0.833333333333333, 0.9, 1
8 0.833333333333333, 0.9, 1
9 0.566666666666667, 0.766666666666667, 0.9
10 0.633333333333333, 0.766666666666667, 0.9
11 0.633333333333333, 0.766666666666667, 0.9
12 0.633333333333333, 0.766666666666667, 0.9
13 0.9, 0.9, 1
14 0.5, 0.633333333333333, 0.8
15 0.833333333333333, 0.9, 1
16 0.7, 0.766666666666667, 0.9

dtp<-data.table(TFN)

A. Implementation of case Study 145

PhD Dissertation Arfan Mansoor

Defuzzification process

The defuzzification process is performed to convert TFN values to crisp value. These values are
stored in csv file and are extracted below:

defuzi<- read.csv("SH1.csv")
alpha<-defuzi[,6]
beta<-defuzi[,7]

alpha<-data.table(alpha)
alpha

alpha
1: 0.3
2: 0.6
3: 0.7
4: 0.8
5: 0.9
6: 0.3
7: 0.2
8: 0.6
9: 0.9
10: 0.5
11: 0.8
12: 0.4
13: 0.1
14: 0.3
15: 0.4
16: 0.8

beta<-data.table(beta)
beta

beta
1: 0.5
2: 0.8
3: 0.1
4: 0.2
5: 0.8
6: 0.7
7: 0.7
8: 0.9
9: 0.9
10: 0.5
11: 0.2
12: 0.9
13: 0.5
14: 0.7
15: 0.7
16: 0.4

dtp[,DFN:={beta;alpha; lb<-V1+(V2-V1)*beta; rb<-V3+(V2-V3)*beta;
(alpha*rb+(1-alpha)*lb)}]

Normalizing the values

The normalization is performed on scores obtained after the defuzzification process. The
normalization is performed by following equation:

sumDFN<-sum(dtp[,dtp$DFN])
dtp[,NDFN:=DFN/sumDFN]

Writing results as external file

 write.table(dtp, file = "interactive.csv", row.names = FALSE)

After that subgoals, their defuzzification and normalized defuzzification values are combained.

A. Implementation of case Study 146

PhD Dissertation Arfan Mansoor

ndfn<-read.csv("interactive.csv")
data<-read.csv("SH.csv")
ndfn1<-cbind(data[,2], ndfn)
names(ndfn1)[1]<-paste("subgoals")
write.table(ndfn1, file = "subgoal-values.csv", row.names = FALSE)

Graph for the above results:

figs2<- read.csv("interactiveCombined.csv")
figs2

DFN NDFN
Mic 0.8916667 0.06640848
Data storage 0.9066667 0.06752563
Audio service 0.6843333 0.05096696
User accounts 0.9533333 0.07100122
Transferable to web 0.9166667 0.06827040
Online modus 0.8950000 0.06665674
Offline modus 0.8900000 0.06628435
Initial checkups 0.9033333 0.06727738
Technical riding capabilities 0.7766667 0.05784365
Fitness level 0.7666667 0.05709888
Calories consumption 0.8306667 0.06186540
Route planning 0.7640000 0.05690028
Weather info 0.9050000 0.06740150
Tour details 0.6203333 0.04620044
Navigation 0.9000000 0.06702912
Trip suggestions 0.8226667 0.06126958

figs1<-data.matrix(figs2)

barplot(figs1[-17,1],ylab=colnames(figs1)[1],col=rainbow(1),main="Sub-
Goals",las=2, cex.names=.7, space = 0.4)

If one considers the preference values (i.e., developers opinion) and ignore the risk tolerance
value, then following equation is used for defuzzification:

preferenceValue<-data.table(TFN)
preferenceValue[,DFN:={(alpha*V3+V2+(1-alpha)*V1)*0.5}]
sumDFN<-sum(preferenceValue[,preferenceValue$DFN])
preferenceValue[,NDFN:=DFN/sumDFN]
write.table(preferenceValue, file = "preference.csv", row.names = FALSE)
ndfn<-read.csv("preference.csv")
data<-read.csv("SH.csv")
ndfn1<-cbind(data[,2], ndfn)

A. Implementation of case Study 147

PhD Dissertation Arfan Mansoor

names(ndfn1)[1]<-paste("subgoals")
write.table(ndfn1, file = "preferenceCombined.csv", row.names = FALSE)
figs2<- read.csv("prefCombined.csv")
figs1<-data.matrix(figs2)
barplot(figs1[-17,1],ylab=colnames(figs1)[1],col=rainbow(1),main="Sub-
Goals",las=2, cex.names=.7, space = 0.4)

If only the risk tolerance values are considered and ignore the developers opinion, then
defuzzification process is applied by following equation:

toleranceValue<-data.table(TFN)
toleranceValue[,DFN:={(V3+(V2-V3)*beta)+(V1+(V2-V1)*beta)}]
sumDFN<-sum(toleranceValue[,toleranceValue$DFN])
toleranceValue[,NDFN:=DFN/sumDFN]
write.table(toleranceValue, file = "tolerance.csv", row.names = FALSE)
ndfn<-read.csv("tolerance.csv")
data<-read.csv("SH.csv")
ndfn1<-cbind(data[,2], ndfn)
names(ndfn1)[1]<-paste("subgoals")
write.table(ndfn1, file = "toleranceCombined.csv", row.names = FALSE)
figs2<- read.csv("tolCombined.csv")
figs1<-data.matrix(figs2)
barplot(figs1[-17,1],ylab=colnames(figs1)[1],col=rainbow(1),main="Sub-
Goals",las=2, cex.names=.7, space = 0.4)

A. Implementation of case Study 148

PhD Dissertation Arfan Mansoor

Visualizing leaf level goals and stakeholders using graphical matrix

lgoalSh<- read.csv("SH_Input.csv")
dt <- as.table(as.matrix(lgoalSh))
balloonplot(t(dt), main ="Leaf level goals and stakeholders",label.digits=2,
xlab ="", ylab="Leaf level goals",label = FALSE, show.margins = FALSE)

Calculating distance matrix

The distance matrix (a kind of correlation or dissimilarity matrix). the distance matrix is used to
compare the requirements. To get the final distance matrix, one have to calculate row margins
and column margins.

Row margins and column margins are calculated by following methods respectively:

dist<- read.csv("dist.csv")
row.sum <- apply(dist, 1, sum)
head(row.sum)

Mic Data storage Audio service
3.533333 4.133333 2.666667
User accounts Transferable to web Online modus
3.733333 4.433333 3.733333

col.sum <- apply(dist, 2, sum)
head(col.sum)

A. Implementation of case Study 149

PhD Dissertation Arfan Mansoor

SH1 SH2 SH3 Developer.opinion
11.66667 13.20000 15.10000 8.60000
Risk.tolerance
9.50000

#grand total
n <- sum(dist)
n

[1] 58.06667

Row profile

Since the requirements are arranged as rows and to compare requirements, the row profile is
calculated by taking each row point and dividing by the sum of all row points.

row.profile <- dist/row.sum
head(row.profile)

SH1 SH2 SH3 Developer.opinion
Mic 0.2358491 0.2547170 0.2830189 0.08490566
Data storage 0.2016129 0.2177419 0.2419355 0.14516129
Audio service 0.1625000 0.2375000 0.3000000 0.26250000
User accounts 0.2232143 0.2410714 0.2678571 0.21428571
Transferable to web 0.1879699 0.2030075 0.2255639 0.20300752
Online modus 0.2232143 0.2410714 0.2678571 0.08035714
Risk.tolerance
Mic 0.14150943
Data storage 0.19354839
Audio service 0.03750000
User accounts 0.05357143
Transferable to web 0.18045113
Online modus 0.18750000

The average row profile is computed by dividing the column sum to grand total. Column sum
and grand total are already calculated above.

average.rp <- col.sum/n
average.rp

SH1 SH2 SH3 Developer.opinion
0.2009185 0.2273249 0.2600459 0.1481056
Risk.tolerance
0.1636051

Distance (or similarity) between requirements

To compare 2 requirements, one need to compute the squared distance between their profiles
e.g., the distance between mic and data storage is calculated as follow:

Mic.p <- row.profile["Mic",]
DStorage.p <- row.profile["Data storage",]
Distance between Mic and Data storage
d2 <- sum(((Mic.p - DStorage.p)^2) / average.rp)
d2

[1] 0.05940535

The requirements with less distance between them are closer to each other as compared to
requirements with more distance value. The distance from the average profile for all the
requirements (rows) is given below.

d2.row <- apply(row.profile, 1,function(row.p, av.p){sum(((row.p -
av.p)^2)/av.p)}, average.rp)
as.matrix(round(d2.row,3))

[,1]
Mic 0.041
Data storage 0.007
Audio service 0.199

A. Implementation of case Study 150

PhD Dissertation Arfan Mansoor

User accounts 0.107
Transferable to web 0.030
Online modus 0.038
Offline modus 0.070
Initial checkups 0.018
Technical riding capabilities 0.089
Fitness level 0.002
Calories consumption 0.126
Route planning 0.059
Weather info 0.128
Tour details 0.054
Navigation 0.017
Trip suggestions 0.056

To get the distance matrix, squared distance is computed between each row profile and the other
rows.

average.profile: average profile
dist.matrix <- function(data, average.profile){
 mat <- as.matrix(t(data))
 n <- ncol(mat)
 dist.mat<- matrix(NA, n, n)
 diag(dist.mat) <- 0
 for (i in 1:(n - 1)) {
 for (j in (i + 1):n) {
 d2 <- sum(((mat[, i] - mat[, j])^2) /
average.profile)
 dist.mat[i, j] <- dist.mat[j, i] <- d2
 }
 }
 colnames(dist.mat) <- rownames(dist.mat) <- colnames(mat)
 dist.mat
}

Distance matrix
dist.mat <- dist.matrix(row.profile, average.rp)
dist.mat <-round(dist.mat, 2)
Visualizing the matrix
corrplot(dist.mat, type="lower", method = "number", is.corr = FALSE)

corrplot(dist.mat, type="lower", method = "circle", is.corr = FALSE)

A. Implementation of case Study 151

PhD Dissertation Arfan Mansoor

Stakeholders analysis

Since the stakeholders are arranged in columns, the Column profile is used for stakeholders
analysis in the same way as the row profiles.

col.profile <- t(dist)/col.sum
col.profile <- as.data.frame(t(col.profile))
head(col.profile)

SH1 SH2 SH3 Developer.opinion
Mic 0.07142857 0.06818182 0.06622517 0.03488372
Data storage 0.07142857 0.06818182 0.06622517 0.06976744
Audio service 0.03714286 0.04797980 0.05298013 0.08139535
User accounts 0.07142857 0.06818182 0.06622517 0.09302326
Transferable to web 0.07142857 0.06818182 0.06622517 0.10465116
Online modus 0.07142857 0.06818182 0.06622517 0.03488372
Risk.tolerance
Mic 0.05263158
Data storage 0.08421053
Audio service 0.01052632
User accounts 0.02105263
Transferable to web 0.08421053
Online modus 0.07368421

After that average column profile is calculated as follow:

row.sum <- apply(dist, 1, sum)
average column profile= row sums/grand total
average.cp <- row.sum/n
head(average.cp)

Mic Data storage Audio service
0.06084960 0.07118255 0.04592423
User accounts Transferable to web Online modus
0.06429392 0.07634902 0.06429392

Distance (similarity) between stakeholders

To compare stakeholders, the squared distance between their column profiles e.g., is computed
the distance between stakeholder 1 and stakeholder 2 is calculated as follow:

SH1.p <- col.profile[, "SH1"]
SH2.p <- col.profile[, "SH2"]
d2 <- sum(((SH1.p - SH2.p)^2) / average.cp)
d2

A. Implementation of case Study 152

PhD Dissertation Arfan Mansoor

[1] 0.00780916

The average profile for all stakeholders is computed:

d2.col <- apply(col.profile, 2, function(col.p, av.p){sum(((col.p -
av.p)^2)/av.p)}, average.cp)
round(d2.col,3)

SH1 SH2 SH3 Developer.opinion
0.022 0.007 0.007 0.209
Risk.tolerance
0.138

Distance matrix
dist.mat <- dist.matrix(t(col.profile), average.cp)
dist.mat <-round(dist.mat, 2)
dist.mat

SH1 SH2 SH3 Developer.opinion Risk.tolerance
SH1 0.00 0.01 0.02 0.32 0.18
SH2 0.01 0.00 0.00 0.26 0.17
SH3 0.02 0.00 0.00 0.24 0.18
Developer.opinion 0.32 0.26 0.24 0.00 0.52
Risk.tolerance 0.18 0.17 0.18 0.52 0.00

Visualize the matrix
corrplot(dist.mat, type="lower", method = "number", is.corr = FALSE)

corrplot(dist.mat, type="lower", order="hclust", is.corr = FALSE)

A. Implementation of case Study 153

PhD Dissertation Arfan Mansoor

A. Implementation of case Study 154

PhD Dissertation Arfan Mansoor

A. Alternatives Selection Using a variant of TOPSIS 155

A.2 Alternatives Selection Using a variant of TOP-

SIS

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi

criteria decision analysis method. It is used to compare a set of alternatives based on weighted

scores of each criterion. We already had computed the scores of each criterion and we will use

these score for the selection of best alternative. We randomly selected four criteria and four

alternatives to compare against these criteria. The selected criteria are: Navigation, audio service,

route planning, user accounts.

criteria

c1<-"Navigation";c2<- "audioService";c3<-"routePlanning";c4<-"userAccounts"

criteria<-c(c1,c2,c3,c4)

weights against each criterion, should be equal to length(criteria)

weight<-c(0.9,0.68,0.76,0.95)

#set of alternatives

Al1<-"a1";Al2<-"a2";Al3<-"a3";Al4<-"a4"

alternative<-c(Al1,Al2,Al3,Al4)

#scores values to be assigned

fulfilled<-0.9;partiallyFulfilled<-0.7;minimunFulfilled<-0.3;notFulfilled<-

0.01

score vector of length= length(criteria)*length(alternative)

sc<-c(fulfilled,notFulfilled,notFulfilled,minimunFulfilled,minimunFulfilled,

 partiallyFulfilled,fulfilled,fulfilled,notFulfilled,partiallyFulfilled,

 minimunFulfilled,partiallyFulfilled,notFulfilled,minimunFulfilled,

 partiallyFulfilled,fulfilled)

Topsis variant

Topsis variant implementation to select best alternative according to given criteria.

topsisVariant<-function (criteria = NULL, critweights=NULL,

alternativesId=NULL, scores = NULL)

{

 if (missing(criteria))

 stop("'criteria' should be in a vector")

 if (missing(critweights))

 stop("'criteria' should be in a vector")

 if(length(criteria)!= length(critweights))

 stopr("Each criteria must have a weight")

 if (missing(alternativesId))

 stop("'alternativesId' should be in a vector")

 if (missing(scores))

 stop("'Score Values' are missing")

 if (!(is.vector(scores)))

 stop("'Score Values' should be in a vector")

 if(length(scores)!= length(alternativesId)*length(criteria))

 stop("Scores are not entered for each alternative against

PhD Dissertation Arfan Mansoor

each criteria")

 ## filter the scores into decision matrix according to the given
alternatives and criteria

 if (!is.null(alternativesId))

 if (!is.null(criteria)) {

 decision<- matrix(scores, length(alternativesId),
byrow=TRUE)

 rownames(decision)<-alternativesId

 colnames(decision)<-criteria

 }

 # create Rij matrix

 R <- matrix(nrow = nrow(decision), ncol = ncol(decision))

 for (i in 1:nrow(decision)) {

 for (j in 1:ncol(decision)) {

 R[i, j] <- decision[i, j]/sqrt(sum(decision[, j]^2))

 }

 }

 rownames(R)<-alternativesId

 colnames(R)<-criteria

 ## create Vij matrix

 w<-diag(critweights)

 V<- R %*%w

 ## make positivel ideal solution

 psMax<- apply(V,2,max)

 ##subtracting max from matrix column wise

 sp<-sweep(V[,],2,psMax)

 ##square, sum, square root

 sp<-sp^2

 sp<-rowSums(sp)

 sp<-sqrt(sp)

 ## buid negative ideal solution

 # select min from each col

 nsMin<-apply(V,2, min)

 #subtracting min from matrix column wise

 sn<-sweep(V[,],2,nsMin)

 #square, sum, square root

 sn<-sn^2

 sn<-rowSums(sn)

 sn<-sqrt(sn)

A. Alternatives Selection Using a variant of TOPSIS 156

PhD Dissertation Arfan Mansoor

 ## closet to ideal solution

 id<-sp+sn

 ideal<- sn/id

 ideal<- as.data.frame(ideal)

 print("Relative Closness to Ideal Solution")

 print(ideal)

 # best solution

 best<-max(ideal)

 print("Best Solution is:")

 print(best)

}

Results

d<-topsisVariant(criteria,weight,alternative,sc)

[1] "Relative Closness to Ideal Solution"

ideal

a1 0.5054113

a2 0.6047311

a3 0.3712308

a4 0.4088185

[1] "Best Solution is:"

[1] 0.6047311

A. Alternatives Selection Using a variant of TOPSIS 157

PhD Dissertation Arfan Mansoor

A. Regression Modelling 158

A.3 Regression Modelling

Experimental Set-up

load required packages
library(dplyr)
library(data.table)
library(triangle)
library(ggplot2)
library(manipulate)
library(UsingR)

1. From our model equation, we require alpha and beta values crosspoding to stakeholder

opinions and risk tolerance respectively.

set.seed(1000)
Produce Alpha and Beta values

alpha<- rtriangle(1000, 0, 1)
alpha<-data.table(alpha)
beta<- rtriangle(1000, 0, 1)
beta<-data.table(beta)

2. Producing data for set of requirements

Requ <- data.table("Requ"=rep(letters[1:10],100))

3. Assigning the sacles used to obtain stakeholder opinions on requirements.

VH <- c(0.9, 1.0, 1.0)
H <- c(0.7, 0.9 ,1.0)
M <- c(0.3, 0.5, 0.7)
L <- c(0.0, 0.1, 0.3)
VL <- c(0.0, 0.0, 0.1)

4. Populating stakeholders opinion against the set of requirements. We selected 10 stakeholders

for requirements opinion accumulation.

SH1<- data.table("SH1"= sample(rep(list(VH,H,M,L,VL),200),replace=TRUE))
SH2<- data.table("SH2"= sample(rep(list(H,VH,L,M,VL),200),replace=TRUE))
SH3<- data.table("SH3"= sample(rep(list(H,H,M,L,L),200),replace=TRUE))
SH4<- data.table("SH4"= sample(rep(list(H,H,VH,M,L),200),replace=TRUE))
SH5<- data.table("SH5"= sample(rep(list(H,H,VH,M,L),200),replace=TRUE))
SH6<- data.table("SH6"= sample(rep(list(VH,VH,H,M,M),200),replace=TRUE))
SH7<- data.table("SH7"= sample(rep(list(H,H,M,M,M),200),replace=TRUE))
SH8<- data.table("SH8"= sample(rep(list(M,M,VL,VL,L),200),replace=TRUE))
SH9<- data.table("SH9"= sample(rep(list(M,H,L,VL,VL),200),replace=TRUE))
SH10<- data.table("SH10"= sample(rep(list(M,H,L,VL,L),200),replace=TRUE))

5. Combining requirements and stakeholder opinions.

PhD Dissertation Arfan Mansoor

total <- cbind(Requ,SH1,SH2,SH3,SH4,SH5,SH6,SH7,SH8,SH9,SH10)
head(total)

Requ SH1 SH2 SH3 SH4 SH5
1: a 0.7,0.9,1.0 0.9,1.0,1.0 0.0,0.1,0.3 0.3,0.5,0.7 0.7,0.9,1.0
2: b 0.3,0.5,0.7 0.0,0.1,0.3 0.7,0.9,1.0 0.7,0.9,1.0 0.7,0.9,1.0
3: c 0.7,0.9,1.0 0.7,0.9,1.0 0.7,0.9,1.0 0.0,0.1,0.3 0.3,0.5,0.7
4: d 0.0,0.1,0.3 0.0,0.1,0.3 0.3,0.5,0.7 0.7,0.9,1.0 0.7,0.9,1.0
5: e 0.9,1.0,1.0 0.9,1.0,1.0 0.3,0.5,0.7 0.9,1.0,1.0 0.3,0.5,0.7
6: f 0.7,0.9,1.0 0.0,0.1,0.3 0.3,0.5,0.7 0.9,1.0,1.0 0.9,1.0,1.0
SH6 SH7 SH8 SH9 SH10
1: 0.9,1.0,1.0 0.3,0.5,0.7 0.3,0.5,0.7 0.7,0.9,1.0 0.0,0.1,0.3
2: 0.9,1.0,1.0 0.3,0.5,0.7 0.0,0.0,0.1 0.0,0.0,0.1 0.0,0.1,0.3
3: 0.9,1.0,1.0 0.7,0.9,1.0 0.3,0.5,0.7 0.3,0.5,0.7 0.0,0.1,0.3
4: 0.9,1.0,1.0 0.7,0.9,1.0 0.3,0.5,0.7 0.3,0.5,0.7 0.3,0.5,0.7
5: 0.3,0.5,0.7 0.3,0.5,0.7 0.0,0.1,0.3 0.3,0.5,0.7 0.0,0.1,0.3
6: 0.3,0.5,0.7 0.7,0.9,1.0 0.3,0.5,0.7 0.0,0.0,0.1 0.3,0.5,0.7

6. Performing TFN analysis

data<-total[,2:11, with=FALSE]

TFN <- Reduce('+', lapply(data, function(x) do.call(rbind, x)))/ncol(data)
data$TFN <- do.call(paste, c(as.data.table(TFN), sep=", "))
head(data)

SH1 SH2 SH3 SH4 SH5 SH6
1: 0.7,0.9,1.0 0.9,1.0,1.0 0.0,0.1,0.3 0.3,0.5,0.7 0.7,0.9,1.0 0.9,1.0,1.0
2: 0.3,0.5,0.7 0.0,0.1,0.3 0.7,0.9,1.0 0.7,0.9,1.0 0.7,0.9,1.0 0.9,1.0,1.0
3: 0.7,0.9,1.0 0.7,0.9,1.0 0.7,0.9,1.0 0.0,0.1,0.3 0.3,0.5,0.7 0.9,1.0,1.0
4: 0.0,0.1,0.3 0.0,0.1,0.3 0.3,0.5,0.7 0.7,0.9,1.0 0.7,0.9,1.0 0.9,1.0,1.0
5: 0.9,1.0,1.0 0.9,1.0,1.0 0.3,0.5,0.7 0.9,1.0,1.0 0.3,0.5,0.7 0.3,0.5,0.7
6: 0.7,0.9,1.0 0.0,0.1,0.3 0.3,0.5,0.7 0.9,1.0,1.0 0.9,1.0,1.0 0.3,0.5,0.7
SH7 SH8 SH9 SH10 TFN
1: 0.3,0.5,0.7 0.3,0.5,0.7 0.7,0.9,1.0 0.0,0.1,0.3 0.48, 0.64, 0.77
2: 0.3,0.5,0.7 0.0,0.0,0.1 0.0,0.0,0.1 0.0,0.1,0.3 0.36, 0.49, 0.62
3: 0.7,0.9,1.0 0.3,0.5,0.7 0.3,0.5,0.7 0.0,0.1,0.3 0.46, 0.63, 0.77
4: 0.7,0.9,1.0 0.3,0.5,0.7 0.3,0.5,0.7 0.3,0.5,0.7 0.42, 0.59, 0.74
5: 0.3,0.5,0.7 0.0,0.1,0.3 0.3,0.5,0.7 0.0,0.1,0.3 0.42, 0.57, 0.71
6: 0.7,0.9,1.0 0.3,0.5,0.7 0.0,0.0,0.1 0.3,0.5,0.7 0.44, 0.59, 0.72

dtp<-data.table(TFN)
V2<-dtp$V2 # middle of TFN

7. Calculating the fuzziness

formula is H-L/2M (H, M, L stands for right, middle and left values)

dtp[,fn:={(V3-V1)/2*V2}]
fn<-dtp$fn

A. Regression Modelling 159

PhD Dissertation Arfan Mansoor

8. Defuzzifying TFN to produce the ranks of requirements. Alpha and beta values are created

above and crossponds to developers opinions and risk tolerance values.

dtp[,DFN:={beta;alpha; lb<-V1+(V2-V1)*beta; rb<-V3+(V2-V3)*beta;
(alpha*rb+(1-alpha)*lb)}]
head(dtp)

V1 V2 V3 fn DFN
1: 0.48 0.64 0.77 0.09280 0.6251102
2: 0.36 0.49 0.62 0.06370 0.4931981
3: 0.46 0.63 0.77 0.09765 0.5899158
4: 0.42 0.59 0.74 0.09440 0.6045936
5: 0.42 0.57 0.71 0.08265 0.5686491
6: 0.44 0.59 0.72 0.08260 0.5544840

DFN<-dtp$DFN

9. Normalization process

sumDFN<-sum(dtp[,dtp$DFN])
dtp[,NDFN:=DFN/sumDFN]
NDFN<-dtp$NDFN
head(dtp)

V1 V2 V3 fn DFN NDFN
1: 0.48 0.64 0.77 0.09280 0.6251102 0.0012165886
2: 0.36 0.49 0.62 0.06370 0.4931981 0.0009598614
3: 0.46 0.63 0.77 0.09765 0.5899158 0.0011480932
4: 0.42 0.59 0.74 0.09440 0.6045936 0.0011766593
5: 0.42 0.57 0.71 0.08265 0.5686491 0.0011067041
6: 0.44 0.59 0.72 0.08260 0.5544840 0.0010791360

10. Producing list of priortized requirements

data1<-total[,1 ,with=FALSE]
ndfn1<-cbind(data1, dtp)
head(ndfn1)

Requ V1 V2 V3 fn DFN NDFN
1: a 0.48 0.64 0.77 0.09280 0.6251102 0.0012165886
2: b 0.36 0.49 0.62 0.06370 0.4931981 0.0009598614
3: c 0.46 0.63 0.77 0.09765 0.5899158 0.0011480932
4: d 0.42 0.59 0.74 0.09440 0.6045936 0.0011766593
5: e 0.42 0.57 0.71 0.08265 0.5686491 0.0011067041
6: f 0.44 0.59 0.72 0.08260 0.5544840 0.0010791360

fig<-ndfn1[,.(fn, DFN)]
fi<-ndfn1[,.(V2, DFN)]
fig<-as.data.table(fig)
fi<-as.data.table(fi)

Now, we have a data set where each requirement is ranked based on stakeholders opinion.

A. Regression Modelling 160

PhD Dissertation Arfan Mansoor

Regression modeling

Regression analysis is used to perform estimations amnong variables. The relationship among

the variables is of dependent-independent nature. It helps to understand how the value of

dependent variable changes when one or more indepedent vaiables values are changed.

In our setup, we have following kind of questions to be answered:

• How fuzziness of TFN predicts the rank of requirements

• What is the mean relationship between fuzinees of numbers and rank of requirements

• Investigation the variations in ranks of requirements

• Quatifying the impact

• Predicting the rank of requirements based on our experiment results

Let's first have a look at data. To perform regression analysis, one important assumption is that

data should be normally distributed. We checked this assumption with a histogram.

par(mfrow=c(1,2))
hist(fig$fn,col="blue",main="Histogram for Fuzziness",xlab = "Fuzziness of
Numbers",breaks=100)
hist(fig$DFN,col="blue",main = "Histogram for
Difuzzification",xlab="Difuzzification Numbes",breaks=100)

Regression analysis assumption let x and y represents fuzinees value of TFN and DFN i.e.,

ranks of requirements respectively. clearly we can see both graphs follow the normal distribution

and therefore normality assumption of regression analysis holds for our data.

A. Regression Modelling 161

PhD Dissertation Arfan Mansoor

Explaining the ranks using Fn

We want to develop a model that allows us to make prediction about what value of y (rank) will

be for any given value of x (Fn).

To find pattern in the data, we used linear regression modeling. For prediction purpose, the least

square method is used. In linear regression modeling, we use all of the data to calculate a straight

line which is used to predict ranks based on fuzziness of numbers (Fn values). Since Fn value is

used to predict rank (DFN) value of requirements, Fn is called an 'Explanatory Variable' while

DFN is called a 'Response Variable' in our model.

Finding the middle To determine the physical center of the histogram, we will find the middle

of distribution by Least squares (LS) method by using following formula:

�(n

i�1

Yi − μ)2

where Yi is the rank of each requirement for i = 1, … ,n and μ is the mean of sample data Y.

meanDfn <- mean(fig$DFN)
mse <- mean((fig$DFN - meanDfn)^2)
 g <- ggplot(fig, aes(x = DFN)) + geom_histogram(fill = "salmon",
 colour = "black", binwidth =0.01)
 g <- g + geom_vline(xintercept = meanDfn, size = 3)
 g <- g + ggtitle(paste("mu = ", round(meanDfn,2), ", MSE = ",
 round(mse, 2), sep = ""))
 g

A. Regression Modelling 162

PhD Dissertation Arfan Mansoor

LS method was used because the data holds the following properties:

• Relationship between x and y is linear

• The distribution of x and y is normal

• Variance of x is much less than the variance of y

• Y is the respone to x i.e., the value of y is a function of x; y = f(x)

• we need to show the trends on scatter plot

• The sample correlation is high

Note, here x and y represents Fn and DFN values respectively.

Now, we will show the comparison of ranks against Fn values by using the scatter plot. Next

figure shows a scatterplot of DFN (on the Y-axis) versus Fn (on the X-axis):

g <- ggplot(fig, aes(x= fn, y=DFN))+geom_point()
g

Regression analysis assumption The points seem to fall around a certain pattern, sloping

upwards, suggesting linear relationship between independent and dependent variable. Therefore,

Linearity assumption of regression analysis holds for our data.

Regression to origin
To draw conclusion using LS method, we need to fit the line to data and that line should

minimize the Sum of Square Error/residuals (SSE). SSE is simply the square of residual/error

A. Regression Modelling 163

PhD Dissertation Arfan Mansoor

values. Residual or error value is defined as the difference between the best fit line and the

observed value. The formula for the line is:

�(n

i�1

Yi − Xiβ)2

which is interpreted as, for particular value of Xi, the slope β should minimizes the sum of the

squared vertical distances of the points to the line which in fact are the residuals.

Plotting the line to data

Fitting the best line The best fit line must pass through the centroid i.e., the mean of each

vairable x and y. In the code below, we subtracted the means so that the origin is the mean of the

DFN and fn values. Since we are interested in the slop, we subtracted 1 from lm function to get

rid of the intercept.

lm1 <- lm(I(DFN - mean(DFN))~ I(fn - mean(fn)) - 1, data = fig)

Applying LS to regression line Let Yi be the ith DFN value and Xi be the ith fn value. Consider

finding the best line

DFNvalue = β
0
+ fnvalueβ

1

By LS formula to minimize following equation over β
0
 and β

1

�Yi − (β0
+ β

1
Xi)2

n

i�1

Now, minimizing the above equation will minimize the sum of the squared distances between the

fitted line at the fn value (β
1

Xi) and the observed DFN value (Yi).This is actually least square

equation of line Y = β
0
+ β

1
X. For data points (Xi,Yi) where Yi is the outcome obtains the line

Y = β̂
0
+ β̂

1
X where

β̂
1
= Cor(Y,X) Sd(Y)

Sd(X)    β̂0
= Y − β̂

1
X

β̂
1
 has the units of Y/X, β̂

0
 has the units of Y. The line passes through the point (X,Y). The slope

of the regression line with X as the outcome and Y as the predictor is Cor(Y,X)Sd(X)/Sd(Y).
When data is normalized (centered and scaled),

Xi
X

Sd(X) , Yi
Y

Sd(Y), the slope is Cor(Y,X) because Sd(X)
and Sd(Y) is 1.

Double Check all the calculations

y <- fig$DFN
x <- fig$fn
beta1 <- cor(y, x) * sd(y) / sd(x)

A. Regression Modelling 164

PhD Dissertation Arfan Mansoor

beta0 <- mean(y) - beta1 * mean(x)
rbind(c(beta0, beta1), coef(lm(y ~ x)))

(Intercept) x
[1,] 0.1643706 4.912688
[2,] 0.1643706 4.912688

Reversing the relationship
beta1 <- cor(y, x) * sd(x) / sd(y)
beta0 <- mean(x) - beta1 * mean(y)
rbind(c(beta0, beta1), coef(lm(x ~ y)))

(Intercept) y
[1,] 0.005253362 0.1282138
[2,] 0.005253362 0.1282138

Regression through the origin should yield an equivalent slope when data is centered.

yc <- y - mean(y)
xc <- x - mean(x)
beta1 <- sum(yc * xc) / sum(xc ^ 2)
c(beta1, coef(lm(y ~ x))[2])

x
4.912688 4.912688

Normalization should result in slope being the same as correlation.

By normalization SD should be 1 and mean should be 0
yn <- (y - mean(y))/sd(y)
sd(yn)

[1] 1

mean(yn)

[1] -1.430954e-16

xn <- (x - mean(x))/sd(x)
sd(xn)

[1] 1

mean(xn)

[1] 4.199744e-17

c(cor(y, x), cor(yn, xn), coef(lm(yn ~ xn))[2])

xn
0.7936462 0.7936462 0.7936462

fit <- lm(DFN ~ fn, data = fig)

coef(fit)

A. Regression Modelling 165

PhD Dissertation Arfan Mansoor

(Intercept) fn
0.1643706 4.9126881

summary(fit)

Call:
lm(formula = DFN ~ fn, data = fig)

Residuals:
Min 1Q Median 3Q Max
-0.233096 -0.042987 -0.004952 0.041125 0.195712

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.164371 0.008705 18.88 <2e-16 ***
fn 4.912688 0.119207 41.21 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06231 on 998 degrees of freedom
Multiple R-squared: 0.6299, Adjusted R-squared: 0.6295
F-statistic: 1698 on 1 and 998 DF, p-value: < 2.2e-16

g <- g + geom_abline(intercept = coef(fit)[1], slope = coef(fit)[2],
 size = 3, colour = grey(.5))
g

A. Regression Modelling 166

PhD Dissertation Arfan Mansoor

Interpreting results The slope of the line is 4.91 and intercept i.e., y-intercept is 0.16. It is

interpretted as for each change in one unit of x the average change in the mean of y is about 4.91

units. Remember that x and y represents fuzziness and DFN values respectively. For example,

we can see from fitted line graph, when x is 0.0375 y might be between 0.3 and 0.4 (0.34 excatly

for this case).

Predicting the new values of y

newx<-c(0.035, 0.062, 0.087)
coef(fit)[1] + coef(fit)[2] * newx

[1] 0.3363147 0.4689573 0.5917745

Regression to the mean

In last step (fitting the best line), we normalized X (fn value) and Y (DFN value) so that they both

have mean 0 and standard deviations 1 and regression line passes through the (0,0) (the mean of

the X and Y). In that case, the slope of the regression line is Cor(Y,X), regardless of which

variable is the outcome because standard deviations of both variables are 1. Now, if X is the

outcome and we want to create a plot where X is on the horizontal axis, the slope of the least

squares line of that plot is 1/Cor(Y,X).
rho<-cor(xn,yn)
rho

[1] 0.7936462

g = ggplot(data.frame(xn, yn), aes(x = xn, y = yn))
g = g + geom_point(size = 5, alpha = .2, colour = "black")
g = g + geom_point(size = 4, alpha = .2, colour = "red")
g = g + geom_vline(xintercept = 0)
g = g + geom_hline(yintercept = 0)
g = g + geom_abline(position = "identity")
g = g + geom_abline(intercept = 0, slope = rho, size = 2)
g = g + geom_abline(intercept = 0, slope = 1 / rho, size = 2)
g = g + xlab("Fn, normalized")
g = g + ylab("DFN, normalized")
g

A. Regression Modelling 167

PhD Dissertation Arfan Mansoor

Interpreting results From the above figure, we can conclude:

• If we had to predict a y (DFN) normalized value, it would be Cor(Y,X) ∗ Xi

• If we had to predict a x (fn) normalized value, it would be Cor(Y,X) ∗ Yi

• Multiplication by correlation shrinks toward 0 i.e., regression toward the mean

• If the correlation is 1 there is no regression to the mean

Explaining variations in DFN values

Variations arround the regression line is explained using the residuals, which is the vertical

distance between the observed data point and fitted data point. We used residuals to explain

variations in DFN values.

n<-length(y)
fit <- lm(DFN ~ fn, data = fig)

residual/errors
e<-resid(fit)

#sum of all residuals must be 0
sum(e)

[1] -5.312591e-17

residual * x must be 0
sum(e * x)

A. Regression Modelling 168

PhD Dissertation Arfan Mansoor

[1] 1.196688e-17

#estimated or predicted value of y
yhat <- predict(fit)
max(abs(e - (y - coef(fit)[1] - coef(fit)[2] * x)))

[1] 1.247613e-14

plot(figfn, figDFN,xlab = "FN",ylab = "DFN",
 col = "black", cex = 2, pch = 21,frame = FALSE)
abline(fit,col="red",lwd=2)
points(fig$fn,yhat,col="blue",lwd=2,pch=3)

Plotting residuals

plot(figfn, figDFN,
 xlab = "FN",
 ylab = "DFN",
 bg = "lightblue",
 col = "black", cex = 2, pch = 21,frame = FALSE)
abline(fit, lwd = 2)

for (i in 1 : n)
 lines(c(x[i], x[i]), c(y[i], yhat[i]), col = "red" , lwd = 2)

A. Regression Modelling 169

PhD Dissertation Arfan Mansoor

plottng residuals on vertical axis Fn on horizontal axis

plot(x, e,
 xlab = "FN",
 ylab = "Residuals (DFN)",
 bg = "lightblue",
 col = "black", cex = 2, pch = 21,frame = FALSE)
abline(h = 0, lwd = 2)
for (i in 1 : n)
 lines(c(x[i], x[i]), c(e[i], 0), col = "red" , lwd = 2)

A. Regression Modelling 170

PhD Dissertation Arfan Mansoor

In above figure, residuals are the signed length of the red lines. We dont observe any specific

pattern in the residuals, proving our model a good fit.

Residual standard error

Our model equation is

Yi = β
0
+ β

1
Xi + ϵi

where ϵi ∼ N(0,σ2)
The average squared residual is calculated by σ2.

σ2 = 1

n
� ei

2

n

i�1

residual standard error or residual variation value
sqrt(sum(resid(fit)^2) / (n - 2))

[1] 0.06230787

The total variability in DFN value is the variability around an intercept.

Totalvariablity =�(n

i�1

Yi − Y)2

The regression variability is the variability around the regression line explained by the fn

Regressionvariablity =�(n

i�1

Ŷi − Y)2

The error variability (residual variablity) is what's leftover around the regression line

Residualvariablity =�(n

i�1

Yi − Ŷi)2

Note that error and regression vaiablities add up to toal variablity explained by the model.

�(n

i�1

Yi − Y)2 =�(n

i�1

Yi − Ŷi)2 +�(n

i�1

Ŷi − Y)2

e = c(resid(lm(DFN ~ 1, data = fig)),
 resid(lm(DFN ~ fn, data = fig)))
fit = factor(c(rep("Itc", nrow(fig)),
 rep("Itc, slope", nrow(fig))))
g = ggplot(data.frame(e = e, fit = fit), aes(y = e, x = fit, fill = fit))
g = g + geom_dotplot(binaxis = "y", size = 0.001,stackdir = "center")
g = g + xlab("Fitting approach")

A. Regression Modelling 171

PhD Dissertation Arfan Mansoor

g = g + ylab("Residual")
g

R squared R squared is the percentage of the total variability in the dependent variable (DFN in

our case) accounted for independent variable (fn in our case).

R2 = ∑ (n
i�1 Ŷi − Y)2

∑ (n
i�1 Yi − Y)2

For a model to be good fit, the difference between R� and adjusted R� should be minimum and in

our model values of R� and adjusted R� are 0.6299 and 0.6295 respectively which indicates a

good model fit.

Inference by regression model

For inferencing we use statistical fomula

θ̂ − θ

σ̂θ̂

where θ̂ is an estimate of interest and θ is the estimand of interest and σ̂θ̂ is the standard error of

θ̂. This formula is used to create confidence internval.

Now consider our model

Yi = β
0
+ β

1
Xi + ϵi

where ϵ ∼ N(0, σ2). The model is refined to

β̂
0
= Y − β̂

1
X

whereas we already had computed

β̂
1
= Cor(Y, X) Sd(Y)

Sd(X)
By substituting these values and standard error of our regression model in statistical formula, we

will get:

σ
β̂1

2 = Var(β̂
1
) = σ2/�(n

i�1

Xi − X)2

σ
β̂0

2 = Var(β̂
0
) = �1

n
+ X

2

∑ (n
i�1 Xi − X)2

�σ2

A. Regression Modelling 172

PhD Dissertation Arfan Mansoor

σ is replaced by its estimate we had already computed. Final form is of formula is

β̂
j
− β

j

σ̂β̂j

Code for inference formula

y <- fig$DFN; x <- fig$fn; n <- length(y)
beta1 <- cor(y, x) * sd(y) / sd(x)
beta0 <- mean(y) - beta1 * mean(x)
e <- y - beta0 - beta1 * x
sigma <- sqrt(sum(e^2) / (n-2))
ssx <- sum((x - mean(x))^2)

standard errors for our regression coefficients and the t statistic
seBeta0 <- (1 / n + mean(x) ^ 2 / ssx) ^ .5 * sigma
seBeta1 <- sigma / sqrt(ssx)
tBeta0 <- beta0 / seBeta0
tBeta1 <- beta1 / seBeta1

P-values
pBeta0 <- 2 * pt(abs(tBeta0), df = n - 2, lower.tail = FALSE)
pBeta1 <- 2 * pt(abs(tBeta1), df = n - 2, lower.tail = FALSE)
coefTable <- rbind(c(beta0, seBeta0, tBeta0, pBeta0), c(beta1, seBeta1,
tBeta1, pBeta1))
colnames(coefTable) <- c("Estimate", "Std. Error", "t value", "P(>|t|)")
rownames(coefTable) <- c("(Intercept)", "x")
coefTable

Estimate Std. Error t value P(>|t|)
(Intercept) 0.1643706 0.008705394 18.88147 3.145887e-68
x 4.9126881 0.119206940 41.21143 1.284160e-217

The first column are the actual estimates, second column shows standard errors, the third is the t

value (the first divided by the second).

fit <- lm(y ~ x)
par(mfrow=c(2,2))
lm.result=simple.lm(x,y)
plot(lm.result)

A. Regression Modelling 173

PhD Dissertation Arfan Mansoor

sumCoef <- summary(fit)$coefficients

confidence interval for intercept
sumCoef[1,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[1, 2]

[1] 0.1472877 0.1814536

confidence interval for slope
sumCoef[2,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[2, 2]

[1] 4.678763 5.146613

Results With 95% confidence, we estimate that a unit increase in Fn value results in a 4.67 to

5.14 increase in DFN value.

Prediction interval Prediction interval is used to estimate the uncertainity in prediction.

Consider the problem of predicting Y at a value of X. In our example, this is predicting the value

of DFN given the fn value. The estimate for prediction at point x0 is:

β̂
0
+ β̂

1
x0

standard error is needed for prediction interval.

Prediction interval
newx = data.frame(x = seq(min(x), max(x), length = 50))
p1 = data.frame(predict(fit, newdata= newx,interval = ("confidence")))
p2 = data.frame(predict(fit, newdata = newx,interval = ("prediction")))
p1$interval = "confidence"

A. Regression Modelling 174

PhD Dissertation Arfan Mansoor

p2$interval = "prediction"
p1$x = newx$x
p2$x = newx$x
dat = rbind(p1, p2)
names(dat)[1] = "y"

g = ggplot(dat, aes(x = x, y = y))
g = g + geom_ribbon(aes(ymin = lwr, ymax = upr, fill = interval), alpha =
0.2)
g = g + geom_line()
g = g + geom_point(data = data.frame(x = x, y=y), aes(x = x, y = y), size =
2)
g

Note that the confidence interval is much narrow as compared to prediction interval , because it

is prediction of line at those particular values of x.

Plot for best mse value:

y <- fig$DFN - mean(fig$DFN)
x <- fig$fn - mean(fig$fn)
freqData <- as.data.frame(table(x, y))
names(freqData) <- c("child", "parent", "freq")
fig$DFN <- as.numeric(as.character(fig$DFN))
fig$fn <- as.numeric(as.character(fig$fn))
msePlot <- function(beta){
 g <- ggplot(filter(freqData, freq > 0), aes(x = fn, y = DFN))

A. Regression Modelling 175

PhD Dissertation Arfan Mansoor

 g <- g + scale_size(range = c(2, 20), guide = "none")
 g <- g + geom_point(colour="grey50", aes(size = freq+5, show_guide =
FALSE))
 g <- g + geom_point(aes(colour=freq, size = freq))
 g <- g + scale_colour_gradient(low = "lightblue", high="white")
 mse <- mean((y - beta * x) ^2)
 g <- g + ggtitle(paste("beta = ", beta, "mse = ", round(mse, 3)))
 g
}
msePlot(1)

msePlot(3)

A. Regression Modelling 176

PhD Dissertation Arfan Mansoor

msePlot(4.91)

msePlot(7)

A. Regression Modelling 177

PhD Dissertation Arfan Mansoor

msePlot(9)

A. Regression Modelling 178

PhD Dissertation Arfan Mansoor

Note that the minimum mse value is against value 4.91, which was the slope value calculated by

our model. Any beta value more or less than 4.91 results in increase of mse value.

Testing regression assumptions

For statistical inferences about the regression line, we first have to make sure that the

assumptions of the model are appropriate. In this case, we will check that residuals have no

trends, and are normally distributed

residuals as a vector
lm.resids = resid(lm.result)

change in spread
plot(lm.resids)

data is bell shaped
hist(lm.resids)

A. Regression Modelling 179

PhD Dissertation Arfan Mansoor

data on straight line
qqnorm(lm.resids)

A. Regression Modelling 180

PhD Dissertation Arfan Mansoor

B. Cycle Computer Goals 181

Appendix B

Cycle Computer Goals

Figure B.1: High Level Goal Model

PhD Dissertation Arfan Mansoor

B. Cycle Computer Goals 182

Figure B.2: Flexible Configuration

Figure B.3: Customization

PhD Dissertation Arfan Mansoor

B. Cycle Computer Goals 183

Figure B.4: Attractiveness

Figure B.5: Entertainment

PhD Dissertation Arfan Mansoor

B. Cycle Computer Goals 184

Figure B.6: Usability

Figure B.7: Training Support

PhD Dissertation Arfan Mansoor

B. Cycle Computer Goals 185

Figure B.8: Maintenances

PhD Dissertation Arfan Mansoor

B. Cycle Computer Goals 186

Figure B.9: Tour Management

Figure B.10: Reliability

PhD Dissertation Arfan Mansoor

B. Cycle Computer Goals 187

Figure B.11: Sensor Data

Figure B.12: Robustness

PhD Dissertation Arfan Mansoor

B. AHP Pairwise Comparisons 188

B.1 AHP Pairwise Comparisons

PhD Dissertation Arfan Mansoor

B. AHP Pairwise Comparisons 189

PhD Dissertation Arfan Mansoor

B. AHP Pairwise Comparisons 190

PhD Dissertation Arfan Mansoor

C. Cycle Computer comparisons 191

Appendix C

Cycle Computer comparisons

Feature CM213C CM404 HAC4Pro Germin

Edge 305

Price [¿] 12 70 250

Speed [Miles] yes yes yes yes

Speed [KM] yes yes yes yes

Speed digits [xxx,] 3 3 3 3

Speed digits [,xxx] 1 1 1 1

Average speed yes yes

Wireless Speed Sensor no no yes n/a

Daytime AM/PM yes yes yes yes

Daytime 24h yes yes yes yes

Date day/month/year no no yes yes

Alarm clock yes

Stopwatch yes

Tire1 Size yes yes yes yes

Tire2 Size yes no yes yes

Sum-up Tire1 and Tire2 yes no yes

Tire Size digits 4 4 4

Tire Size min [mm] 500

Tire Size max [mm] 3000

Overall distance 5 5 5

Overall distance digits [xxx,] 5 5 5

Overall distance digits [,xxx] 1 1 1

Overall riding time yes

Set overall distance no no yes

Daily distance yes yes yes

PhD Dissertation Arfan Mansoor

C. Cycle Computer comparisons 192

Daily distance digits [xxx,] 3 3 3

Daily distance digits [,xxx] 2 2 2

Daily distance reset after [h] 12 12

Daily riding time no no yes

Distance digits 5 5

Distance [Miles] yes yes yes

Distance [KM] yes yes yes

Dist backup, batt change yes no no

Max batt. Change time [sec] 15 0

Low battery warning no no yes

Battery life [months] 10

PedalFreq yes no yes

Max. PedalFreq no no yes

Min. PedalFreq no no yes

Auto Turn off after [sec] 300 300 300

Auto Turn on, on tire turn yes yes yes

Heartbeat Sensor no no yes

No of Buttons 2 4 5

Height Sensor no no yes

Height min [m] -200

Height max [m] 9000

Height in m yes

Height in feet yes

Daily height yes

Daily ascend yes

Daily descend yes

Set overall height yes

Show gradient (up/down) yes

Set Gradient min 0

Set Gradient max 0.99

Show average gradient yes

Show max gradient yes

Show min gradient yes

Variometer . . .

Current ascend value yes

Current descend value yes

Max ascend yes

Max descend yes

Average ascend yes

PhD Dissertation Arfan Mansoor

C. Cycle Computer comparisons 193

Average descend yes

No of ascends yes

No of descens yes

GPS no no no yes

Auto Lap no no no yes

Virtual partner no no no yes

Temp Sensor yes

Temp Celsius yes

Temp Fahrenheit yes

Max Temp yes

Min Temp yes

PC-Connection no no yes

PC Analysis SW no no yes

Fitness

Sex no no yes

Body weight no no yes

Complete weight no no yes

Age no no yes

Set heartbeat1 min. level no no yes

Set heartbeat1 max. level no no yes

Set heartbeat2 min. level no no yes

Set heartbeat2 max. level no no yes

Ride by heartbeat zone no no yes

Heartbeat alarm (outside zone) no no yes

Check cool down heartbeat no no yes

Time in riding zone no no yes

Time above riding zone no no yes

Time below riding zone no no yes

Fitness level no no yes

Current calory consumption no no yes

Overall calory consumption no no yes

Current performance in Watts no no yes

Average performance no no yes

Max. performance no no yes

Compare training sessions no no yes

Countdown timer 1 no no yes

Countdown timer 1 max [min:sec] no no 99:59

Countdown timer 2 no no yes

Countdown timer 2 max [min:sec] no no 99:59

PhD Dissertation Arfan Mansoor

C. Cycle Computer comparisons 194

Firmware upgradeable no no yes

Sleep mode no no yes

Ski mode (use device for skiing) no no yes

Backlight no no yes

Display size 128x160

4-level-

grayscale

Waterproof [m] 30

Operation temp min [°C] -20

Operation temp max [°C] +60

Algorithms

Calculate heartbeat zone by Sex,

age, fitness level

yes

Measure
”
Ruhepuls“ yes

PhD Dissertation Arfan Mansoor

D. Abbreviations 195

Appendix D

Abbreviations

AHP Analytic Hierarchy Process

UML Unified Modeling Language

RE Requirements Engineering

GORE Goal Oriented Requirements Engineering

NFR Non-functional requirements

OMG Object Management Group

SPEM Systems Process Engineering Metamodel

CMM Capability Maturity Model

GRL Goal-oriented Requirement Language

GR Goal Reasoning

SIG Softgoal Interdependency Graph

GCT Goal Centric Traceability

GQM Goal Question Metrics

URN User Requirements Notation

QFD Quality Function Deployment

GBRAM Goal Based Requirements Analysis Method

HOQ House of Quality

KAOS Knowledge Acquisitions in automated Specification

RSD Requirements Specification Document

SD Strategic Dependency

SR Strategic Rationale

T-Tools Formal Tropos tool

FURPS Functionality Usability Reliability Performance Supportability

ISO International Organization for Standardization

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

PhD Dissertation Arfan Mansoor

BIBLIOGRAPHY 196

Bibliography

[AKM+09] Armbrust, Ove ; Katahira, Masafumi ; Miyamoto, Yuko ; Münch, Jürgen
; Nakao, Haruka ; Ocampo, Alexis: Scoping Software Process Lines. In:
Softw. Process 14 (2009), Mai, Nr. 3, 181–197. http://dx.doi.org/10.1002/
spip.v14:3. – DOI 10.1002/spip.v14:3. – ISSN 1077–4866

[Ant96] Anton, Annie I.: Goal-Based Requirements Analysis. In: Proceedings of
the 2Nd International Conference on Requirements Engineering (ICRE ’96).
Washington, DC, USA : IEEE Computer Society, 1996 (ICRE ’96). – ISBN
0–8186–7252–8, 136–

[AP98] Anton, Annie I. ; Potts, Colin: The Use of Goals to Surface Requirements
for Evolving Systems. In: Proceedings of the 20th International Conference on
Software Engineering. Washington, DC, USA : IEEE Computer Society, 1998
(ICSE ’98). – ISBN 0–8186–8368–6, 157–166

[AW03] Aurum, Aybüke ; Wohlin, Claes: The fundamental nature of requirements
engineering activities as a decision-making process. In: Information & Soft-
ware Technology 45 (2003), Nr. 14, 945–954. http://dx.doi.org/10.1016/

S0950-5849(03)00096-X. – DOI 10.1016/S0950–5849(03)00096–X

[BC96] Brownsword, Lisa ; Clements, Paul: A Case Study in Successful
Product Line Development / Software Engineering Institute, Carnegie Mel-
lon University. Version: 1996. http://resources.sei.cmu.edu/library/

asset-view.cfm?AssetID=12587. Pittsburgh, PA, 1996 (CMU/SEI-96-TR-
016). – Forschungsbericht

[BFK+99] Bayer, Joachim ; Flege, Oliver ; Knauber, Peter ; Laqua, Roland ;
Muthig, Dirk ; Schmid, Klaus ; Widen, Tanya ; DeBaud, Jean-Marc:
PuLSE: A Methodology to Develop Software Product Lines. In: Proceedings
of the 1999 Symposium on Software Reusability. New York, NY, USA : ACM,
1999 (SSR ’99). – ISBN 1–58113–101–1, 122–131

[BH11] Blau, B. ; Hildenbrand, T.: Product Line Engineering in Large-Scale Lean
and Agile Software Product Development Environments - Towards a Hybrid
Approach to Decentral Control and Managed Reuse. In: Availability, Relia-
bility and Security (ARES), 2011 Sixth International Conference on, 2011, S.
404–408

[Boe76] Boehm, B. W.: Software Engineering. In: IEEE Trans. Comput. 25
(1976), Dezember, Nr. 12, 1226–1241. http://dx.doi.org/10.1109/TC.

1976.1674590. – DOI 10.1109/TC.1976.1674590. – ISSN 0018–9340

[BR87] Basili, V. R. ; Rombach, H. D.: Tailoring the Software Process to Project
Goals and Environments. In: Proceedings of the 9th International Conference

PhD Dissertation Arfan Mansoor

http://dx.doi.org/10.1002/spip.v14:3
http://dx.doi.org/10.1002/spip.v14:3
http://dx.doi.org/10.1016/S0950-5849(03)00096-X
http://dx.doi.org/10.1016/S0950-5849(03)00096-X
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12587
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12587
http://dx.doi.org/10.1109/TC.1976.1674590
http://dx.doi.org/10.1109/TC.1976.1674590

BIBLIOGRAPHY 197

on Software Engineering. Los Alamitos, CA, USA : IEEE Computer Society
Press, 1987 (ICSE ’87). – ISBN 0–89791–216–0, 345–357

[BSRC10] Benavides, David ; Segura, Sergio ; Ruiz-Cortés, Antonio: Automated
Analysis of Feature Models 20 Years Later: A Literature Review. In: Inf.
Syst. 35 (2010), September, Nr. 6, 615–636. http://dx.doi.org/10.1016/

j.is.2010.01.001. – DOI 10.1016/j.is.2010.01.001. – ISSN 0306–4379

[CCL99] Chung, Lawrence ; Cesar, Julio ; Leite, Sampaio P.: Non-functional re-
quirements in software engineering. 1999

[Cha] http://www.umsl.edu/~sir3b/Sean_Isserman_Requirements_

Elicitation_Home.html

[Che00] Chen, Chen-Tung: Extensions of the TOPSIS for Group Decision-making
Under Fuzzy Environment. In: Fuzzy Sets Syst. 114 (2000), August, Nr.
1, 1–9. http://dx.doi.org/10.1016/S0165-0114(97)00377-1. – DOI
10.1016/S0165–0114(97)00377–1. – ISSN 0165–0114

[Chr92] Christel, Kyo Michael; & K. Michael; & Kang: Issues in Require-
ments Elicitation (CMU/SEI-92-TR-012). / Software Engineering Institute,
Carnegie Mellon University,. Version: 1992. http://resources.sei.cmu.

edu/library/asset-view.cfm?AssetID=12553. 1992.. – Forschungsbericht

[CKM02] Castro, Jaelson ; Kolp, Manuel ; Mylopoulos, John: Towards
Requirements-driven Information Systems Engineering: The Tropos Project.
In: Inf. Syst. 27 (2002), September, Nr. 6, 365–389. http://dx.doi.org/

10.1016/S0306-4379(02)00012-1. – DOI 10.1016/S0306–4379(02)00012–1.
– ISSN 0306–4379

[Cla97] Clark, Bradford K.: The Effects of Software Process Maturity on Software
Development Effort. 1997

[CPL] Cysneiros, Luiz M. ; Prado Leite, Julio César S.: Using the Language
Extended Lexicon to Support Non-Functional Requirements Elicitation

[CPL01] Cysneiros, Luiz M. ; Prado Leite, Julio César S.: Using UML to Re-
flect Non-functional Requirements. In: Proceedings of the 2001 Conference of
the Centre for Advanced Studies on Collaborative Research, IBM Press, 2001
(CASCON ’01), 2–

[Dav03] Davis, Alan M.: The Art of Requirements Triage. In: Computer 36 (2003),
März, Nr. 3, 42–49. http://dx.doi.org/10.1109/MC.2003.1185216. – DOI
10.1109/MC.2003.1185216. – ISSN 0018–9162

[DFL91] Dardenne, A. ; Fickas, S. ; Lamsweerde, A. van: Goal-directed concept
acquisition in requirements elicitation. In: IWSSD ’91: Proceedings of the
6th international workshop on Software specification and design. Los Alami-
tos, CA, USA : IEEE Computer Society Press, 1991. – ISBN 0–8186–2320–9
(PAPER), S. 14–21

[DL96] Darimont, Robert ; Lamsweerde, Axel van: Formal Refinement Patterns
for Goal-Driven Requirements Elaboration. In: SIGSOFT FSE, 1996, S. 179–
190

PhD Dissertation Arfan Mansoor

http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://www.umsl.edu/~sir3b/Sean_Isserman_Requirements_Elicitation_Home.html
http://www.umsl.edu/~sir3b/Sean_Isserman_Requirements_Elicitation_Home.html
http://dx.doi.org/10.1016/S0165-0114(97)00377-1
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12553
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12553
http://dx.doi.org/10.1016/S0306-4379(02)00012-1
http://dx.doi.org/10.1016/S0306-4379(02)00012-1
http://dx.doi.org/10.1109/MC.2003.1185216

BIBLIOGRAPHY 198

[DLF93] Dardenne, Anne ; Lamsweerde, Axel van ; Fickas, Stephen: Goal-directed
Requirements Acquisition. In: Selected Papers of the Sixth International
Workshop on Software Specification and Design. Amsterdam, The Nether-
lands, The Netherlands : Elsevier Science Publishers B. V., 1993 (6IWSSD),
3–50

[Don04] Donzelli, Paolo: A Goal-driven and Agent-based Requirements Engineering
Framework. In: Requir. Eng. 9 (2004), Februar, Nr. 1, 16–39. http://dx.

doi.org/10.1007/s00766-003-0170-4. – DOI 10.1007/s00766–003–0170–4.
– ISSN 0947–3602

[Dro95] Dromey, R. G.: A Model for Software Product Quality. In: IEEE Trans.
Softw. Eng. 21 (1995), Februar, Nr. 2, 146–162. http://dx.doi.org/10.

1109/32.345830. – DOI 10.1109/32.345830. – ISSN 0098–5589

[EK08] Ertuğrul, İrfan ; Karakaşoğlu, Nilsen: Comparison of fuzzy AHP and
fuzzy TOPSIS methods for facility location selection. In: The International
Journal of Advanced Manufacturing Technology 39 (2008), Nr. 7-8, 783-795.
http://dx.doi.org/10.1007/s00170-007-1249-8. – DOI 10.1007/s00170–
007–1249–8. – ISSN 0268–3768

[Fea87] Feather, Martin S.: Language Support for the Specification and Develop-
ment of Composite Systems. In: ACM Trans. Program. Lang. Syst. 9 (1987),
März, Nr. 2, 198–234. http://dx.doi.org/10.1145/22719.22947. – DOI
10.1145/22719.22947. – ISSN 0164–0925

[Fra98] Franch, Xavier: Systematic Formulation of Non-Functional Characteristics
of Software. In: Proceedings of the 3rd International Conference on Require-
ments Engineering: Putting Requirements Engineering to Practice. Washing-
ton, DC, USA : IEEE Computer Society, 1998 (ICRE ’98). – ISBN 0–8186–
8356–2, 174–181

[FS97] Fowler, Martin ; Scott, Kendall: UML Distilled: Applying the Standard
Object Modeling Language. Essex, UK, UK : Addison-Wesley Longman Ltd.,
1997. – ISBN 0–201–32563–2

[Gol13] Goli, Davoud: GROUP FUZZY TOPSIS METHODOLOGY IN COM-
PUTER SECURITY SOFTWARE SELECTION. In: International Journal
of Fuzzy Logic Systems; Vol. 3 (2013), April, Nr. Issue 2, p29

[Gra92] Grady, Robert B.: Practical Software Metrics for Project Management and
Process Improvement. Upper Saddle River, NJ, USA : Prentice-Hall, Inc.,
1992. – ISBN 0–13–720384–5

[GRL08] GRL: Goal-oriented Requirement Language. 2008

[GSL14] Gnaho, Christophe ; Semmak, Farida ; Laleau, Regine: Modeling
the Impact of Non-functional Requirements on Functional Requirements.
Version: 2014. http://dx.doi.org/10.1007/978-3-319-14139-8_8. In:
Parsons, Jeffrey (Hrsg.) ; Chiu, Dickson (Hrsg.): Advances in Concep-
tual Modeling Bd. 8697. Springer International Publishing, 2014. – DOI
10.1007/978–3–319–14139–88. – ISBN 978–3–319–14138–1, 59-67

[GW03] Geppert, B. ; Weiss, David M.: Goal-oriented assessment of product-line
domains. In: Software Metrics Symposium, 2003. Proceedings. Ninth Interna-
tional, 2003. – ISSN 1530–1435, S. 180–188

PhD Dissertation Arfan Mansoor

http://dx.doi.org/10.1007/s00766-003-0170-4
http://dx.doi.org/10.1007/s00766-003-0170-4
http://dx.doi.org/10.1109/32.345830
http://dx.doi.org/10.1109/32.345830
http://dx.doi.org/10.1007/s00170-007-1249-8
http://dx.doi.org/10.1145/22719.22947
http://dx.doi.org/10.1007/978-3-319-14139-8_8

BIBLIOGRAPHY 199

[IEE98] IEEE: IEEE Guide for Software Requirements Specifications. In: IEEE Std
830-1998 (1998)

[IF07] Inoki, Mari ; Fukazawa, Yoshiaki: Software Product Line Evolution Method
Based on Kaizen Approach. In: Proceedings of the 2007 ACM Symposium on
Applied Computing. New York, NY, USA : ACM, 2007 (SAC ’07). – ISBN
1–59593–480–4, 1207–1214

[Ito07] Ito, Teruaki: Dealing with uncertainty in design and decision support ap-
plications. In: International Journal of Soft Computing Applications Vol.1
(2007), Nr. No.1, S. pp.5–16,

[JFS08] Jureta, Ivan ; Faulkner, Stéphane ; Schobbens, Pierre-Yves: Clear jus-
tification of modeling decisions for goal-oriented requirements engineering.
In: Requir. Eng. 13 (2008), Nr. 2, 87–115. http://dx.doi.org/10.1007/

s00766-007-0056-y. – DOI 10.1007/s00766–007–0056–y

[Jorsh] Jorg: Elicitation of a Complete Set of Non-Functional Requirements., Diss.,
English

[Kav02] Kavakli, Evangelia: Goal oriented requirements engineering: a unifying
framework. In: Requirements Engineering Journal, Springer-Verlag London 6
(2002), S. 237–251

[KHS02] Kaiya, H. ; Horai, H. ; Saeki, M.: AGORA: attributed goal-oriented re-
quirements analysis method. In: Requirements Engineering, 2002. Proceed-
ings. IEEE Joint International Conference on, 2002. – ISSN 1090–705X, S.
13–22

[KLM11] Klas, M. ; Lampasona, C. ; Munch, J.: Adapting Software Quality Models:
Practical Challenges, Approach, and First Empirical Results. In: Software
Engineering and Advanced Applications (SEAA), 2011 37th EUROMICRO
Conference on, 2011, S. 341–348

[KR97] Karlsson, J. ; Ryan, K.: A cost-value approach for prioritizing requirements.
In: Software, IEEE 14 (1997), Sep, Nr. 5, S. 67–74. http://dx.doi.org/10.
1109/52.605933. – DOI 10.1109/52.605933. – ISSN 0740–7459

[KS98] Kotonya, Gerald ; Sommerville, Ian: Requirements Engineering - Pro-
cesses and Techniques. John Wiley & Sons, 1998 http://www.comp.lancs.

ac.uk/computing/resources/re/

[Lam00a] Lamsweerde, Axel van: Requirements Engineering in the Year 00: A Re-
search Perspective. In: Proceedings of the 22Nd International Conference on
Software Engineering. New York, NY, USA : ACM, 2000 (ICSE ’00). – ISBN
1–58113–206–9, 5–19

[Lam00b] Lamsweerde, Axel van: Requirements engineering in the year 00: a research
perspective. In: ICSE, 2000, S. 5–19

[Lam04] Lamsweerde, Axel v.: Goal-Oriented Requirements Enginering: A
Roundtrip from Research to Practice. In: Proceedings of the Requirements
Engineering Conference, 12th IEEE International. Washington, DC, USA :
IEEE Computer Society, 2004 (RE ’04). – ISBN 0–7695–2174–6, 4–7

PhD Dissertation Arfan Mansoor

http://dx.doi.org/10.1007/s00766-007-0056-y
http://dx.doi.org/10.1007/s00766-007-0056-y
http://dx.doi.org/10.1109/52.605933
http://dx.doi.org/10.1109/52.605933
http://www.comp.lancs.ac.uk/computing/resources/re/
http://www.comp.lancs.ac.uk/computing/resources/re/

BIBLIOGRAPHY 200

[Lam09a] Lamsweerde, A. van: Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009 http://books.google.

de/books?id=AYk_AQAAIAAJ. – ISBN 9780470012703

[Lam09b] Lamsweerde, Axel: Conceptual Modeling: Foundations and Applica-
tions. Version: 2009. http://dx.doi.org/10.1007/978-3-642-02463-4_20.
Berlin, Heidelberg : Springer-Verlag, 2009. – ISBN 978–3–642–02462–7, Kapi-
tel Reasoning About Alternative Requirements Options, 380–397

[Lap05] Lapouchnian, Alexei: Goal-Oriented Requirements Engineering: An
Overview of the Current Research. In: RE, 2005

[Leh05] Lehto, Marttiin P. Jari A. A. Jari A.: Decision-Based Requirements Engi-
neering Process. In: Workshop on Collaborative (embedded) Systems Devel-
opment t, 6th International Conference on Product Focused Software Process
Improvement, Profes (2005)

[Let01] Letier, Emmanuel: Reasoning about Agents in Goal-Oriented Requirements
Engineering. 2001

[LF91] Lamsweerde, Axel van (Hrsg.) ; Fugetta, Alfonso (Hrsg.): ESEC ’91, 3rd
European Software Engineering Conference, Milan, Italy, October 21-24, 1991,
Proceedings. Bd. 550. Springer, 1991 (Lecture Notes in Computer Science). –
ISBN 3–540–54742–8

[LHM+14] Li, Feng-Lin ; Horkoff, J. ; Mylopoulos, J. ; Guizzardi, R.S.S. ; Guiz-
zardi, G. ; Borgida, A. ; Liu, Lin: Non-functional requirements as qualities,
with a spice of ontology. In: Requirements Engineering Conference (RE), 2014
IEEE 22nd International, 2014, S. 293–302

[LL00] Lamsweerde, Axel van ; Letier, Emmanuel: Handling Obstacles in Goal-
Oriented Requirements Engineering. In: IEEE Trans. Softw. Eng. 26 (2000),
Oktober, Nr. 10, 978–1005. http://dx.doi.org/10.1109/32.879820. – DOI
10.1109/32.879820. – ISSN 0098–5589

[LL02] Lamsweerde, Axel van ; Letier, Emmanuel: From Object Orientation
to Goal Orientation: A Paradigm Shift for Requirements Engineering. In:
RISSEF, 2002, S. 325–340

[LLb98] Lamsweerde, Axel V. ; Letier, Emmanuel ; (belgium, B-Louvain la-neuve:
Integrating Obstacles in Goal-Driven Requirements Engineering. 1998

[LSR07] Linden, Frank J. van d. ; Schmid, Klaus ; Rommes, Eelco: Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Secaucus, NJ, USA : Springer-Verlag New York, Inc., 2007. – ISBN 3540714367

[LW92] Liou, Tian-Shy ; Wang, Mao-Jiun J.: Ranking Fuzzy Numbers with
Integral Value. In: Fuzzy Sets Syst. 50 (1992), September, Nr. 3,
247–255. http://dx.doi.org/10.1016/0165-0114(92)90223-Q. – DOI
10.1016/0165–0114(92)90223–Q. – ISSN 0165–0114

[LW00] Leffingwell, Dean ; Widrig, Don: Managing Software Requirements: A
Unified Approach. Boston, MA, USA : Addison-Wesley Longman Publishing
Co., Inc., 2000. – ISBN 0–201–61593–2

[MB01] Malan, Ruth ; Bredemeyer, Dana: Defining Non-Functional Requirements
/ Bredemeyer Consulting. 2001. – White Paper

PhD Dissertation Arfan Mansoor

http://books.google.de/books?id=AYk_AQAAIAAJ
http://books.google.de/books?id=AYk_AQAAIAAJ
http://dx.doi.org/10.1007/978-3-642-02463-4_20
http://dx.doi.org/10.1109/32.879820
http://dx.doi.org/10.1016/0165-0114(92)90223-Q

BIBLIOGRAPHY 201

[MCL+01] Mylopoulos, John ; Chung, Lawrence ; Liao, Stephen ; Wang, Huaiqing
; Yu, Eric: Exploring Alternatives During Requirements Analysis. In: IEEE
Softw. 18 (2001), Januar, Nr. 1, 92–96. http://dx.doi.org/10.1109/52.

903174. – DOI 10.1109/52.903174. – ISSN 0740–7459

[MCN92] Mylopoulos, J. ; Chung, L. ; Nixon, B.: Representing and Using Non-
functional Requirements: A Process-Oriented Approach. In: IEEE Trans.
Softw. Eng. 18 (1992), Juni, Nr. 6, 483–497. http://dx.doi.org/10.1109/

32.142871. – DOI 10.1109/32.142871. – ISSN 0098–5589

[MD14] Mohammad Dabbagh, Sai Peck L.: An Approach for Integrating the Pri-
oritization of Functional and Nonfunctional Requirements. In: The Scientific
World Journal Volume 2014 (2014) (2014), Nr. Article ID 737626, S. 13 pages

[MS11] Mansoor, Arfan ; Streitferdt, Detlef: On the Impact of Goals on Long-
Living Systems. In: Software Engineering (Workshops), 2011, S. 133–138

[Myl06] Mylopoulos, John: Goal-Oriented Requirements Engineering, Part II. In:
RE, 2006, S. 4

[MZN10] Mairiza, Dewi ; Zowghi, Didar ; Nurmuliani, Nurie: An Investigation into
the Notion of Non-functional Requirements. In: Proceedings of the 2010 ACM
Symposium on Applied Computing. New York, NY, USA : ACM, 2010 (SAC
’10). – ISBN 978–1–60558–639–7, 311–317

[NWZ06] Niazi, Mahmood ; Wilson, David ; Zowghi, Didar: Critical success factors
for software process improvement implementation: an empirical study. In:
Software Process: Improvement and Practice 11 (2006), Nr. 2, 193–211. http:
//dx.doi.org/10.1002/spip.261. – DOI 10.1002/spip.261. – ISSN 1099–
1670

[Ols04] Olson, D. L.: Comparison of Weights in TOPSIS Models. In: Math. Comput.
Model. 40 (2004), Oktober, Nr. 7-8, 721–727. http://dx.doi.org/10.1016/

j.mcm.2004.10.003. – DOI 10.1016/j.mcm.2004.10.003. – ISSN 0895–7177

[Opr11] Opricovic, Serafim: Fuzzy VIKOR with an Application to Water Re-
sources Planning. In: Expert Syst. Appl. 38 (2011), September, Nr. 10,
12983–12990. http://dx.doi.org/10.1016/j.eswa.2011.04.097. – DOI
10.1016/j.eswa.2011.04.097. – ISSN 0957–4174

[PF] http://www.bcs.org/content/conwebdoc/19584

[Poh10a] Pohl, Klaus: Requirements Engineering: Fundamentals, Principles, and
Techniques. 1st. Springer Publishing Company, Incorporated, 2010. – ISBN
3642125778, 9783642125775

[Poh10b] Pohl, Klaus: Requirements Engineering: Fundamentals, Principles, and
Techniques. 1st. Springer Publishing Company, Incorporated, 2010. – ISBN
3642125778, 9783642125775

[Reg01] Regnell, et a. B.: Requirements Mean Decisions Research issues for Under-
standing and Supporting Decision Making in Requirement Engineering. In: In
First Conference on Software Engineering Research and Practice (SERPS01),
(2001)

PhD Dissertation Arfan Mansoor

http://dx.doi.org/10.1109/52.903174
http://dx.doi.org/10.1109/52.903174
http://dx.doi.org/10.1109/32.142871
http://dx.doi.org/10.1109/32.142871
http://dx.doi.org/10.1002/spip.261
http://dx.doi.org/10.1002/spip.261
http://dx.doi.org/10.1016/j.mcm.2004.10.003
http://dx.doi.org/10.1016/j.mcm.2004.10.003
http://dx.doi.org/10.1016/j.eswa.2011.04.097
http://www.bcs.org/content/conwebdoc/19584

BIBLIOGRAPHY 202

[Rom85] Roman, G. C.: A Taxonomy of Current Issues in Requirements Engineering.
In: Computer 18 (1985), April, Nr. 4, 14–23. http://dx.doi.org/10.1109/

MC.1985.1662861. – DOI 10.1109/MC.1985.1662861. – ISSN 0018–9162

[RS79] Ross, D. T. ; Schoman, K. E. Jr.: Classics in Software Engi-
neering. Version: 1979. http://dl.acm.org/citation.cfm?id=1241515.

1241537. Upper Saddle River, NJ, USA : Yourdon Press, 1979. – ISBN 0–
917072–14–6, Kapitel Structured Analysis for Requirements Definition, 363–
386

[Saa08] Saaty, Thomas L.: Decision making with the analytic hierarchy process. In:
Int. J. of Services Sciences, Vol.1, (2008), Nr. No.1, S. pp.83 – 98. http://dx.
doi.org/10.1504/IJSSCI.2008.017590. – DOI 10.1504/IJSSCI.2008.017590

[SAG] S, Vinay ; Aithal, Shridhar ; G, Sudhakara: Integrating TOPSIS and AHP
into GORE Decision Support System

[SCSP10] Santos, Emanuel ; Castro, Jaelson ; Sánchez, Juan ; Pastor, Oscar: A
Goal-Oriented Approach for Variability in BPMN. In: Anais do WER10 -
Workshop em Engenharia de Requisitos, Cuenca, Ecuador, April 12-13, 2010,
2010

[SM98] Stelzer, Dirk ; Mellis, Werner: Success factors of organizational
change in software process improvement. In: Software Process: Im-
provement and Practice 4 (1998), Nr. 4, 227–250. http://dx.doi.org/

10.1002/(SICI)1099-1670(199812)4:4<227::AID-SPIP106>3.0.CO;2-1. –
DOI 10.1002/(SICI)1099–1670(199812)4:4<227::AID–SPIP106>3.0.CO;2–1.
– ISSN 1099–1670

[SMMM98] Sutcliffe, Alistair G. ; Maiden, Neil A. M. ; Minocha, Shailey ; Manuel,
Darrel: Supporting Scenario-Based Requirements Engineering. In: IEEE
Trans. Softw. Eng. 24 (1998), Dezember, Nr. 12, 1072–1088. http://dx.doi.
org/10.1109/32.738340. – DOI 10.1109/32.738340. – ISSN 0098–5589

[Som95] Sommerville, Ian: Software Engineering (5th Ed.). Redwood City, CA, USA
: Addison Wesley Longman Publishing Co., Inc., 1995. – ISBN 0–201–42765–6

[SPS+12] Shao, Fei ; Peng, Rong ; Sun, Dong ; Lai, Han ; Liu, You-Song: An
attribute-driven model for trustworthy requirements elicitation. In: Interna-
tional Journal of Digital Content Technology and its Applications 6 (2012),
Nr. 23, S. 531–540

[Sta04] Standardization, International O.: ISO/IEC TR 9126-4: Software en-
gineering - product quality - Part 4 : Quality in use metrics. ISO, 2004
http://books.google.de/books?id=LM5xkQEACAAJ

[SW00] Schmid, Klaus ; Widen, Tanya: Customizing the PuLSETM Product Line
Approach to the Demands of an Organization. In: Software Process Tech-
nology, 7th European Workshop, EWSPT 2000, Kaprun, Austria, February
21-25, 2000, Proceedings, 2000, 221–238

[Ter09] Ternite, T.: Process Lines: A Product Line Approach Designed for Process
Model Development. In: Software Engineering and Advanced Applications,
2009. SEAA ’09. 35th Euromicro Conference on, 2009. – ISSN 1089–6503, S.
173–180

PhD Dissertation Arfan Mansoor

http://dx.doi.org/10.1109/MC.1985.1662861
http://dx.doi.org/10.1109/MC.1985.1662861
http://dl.acm.org/citation.cfm?id=1241515.1241537
http://dl.acm.org/citation.cfm?id=1241515.1241537
http://dx.doi.org/10.1504/IJSSCI.2008.017590
http://dx.doi.org/10.1504/IJSSCI.2008.017590
http://dx.doi.org/10.1002/(SICI)1099-1670(199812)4:4<227::AID-SPIP106>3.0.CO;2-1
http://dx.doi.org/10.1002/(SICI)1099-1670(199812)4:4<227::AID-SPIP106>3.0.CO;2-1
http://dx.doi.org/10.1109/32.738340
http://dx.doi.org/10.1109/32.738340
http://books.google.de/books?id=LM5xkQEACAAJ

BIBLIOGRAPHY 203

[VL01] Van Lamsweerde, Axel: Goal-Oriented Requirements Engineering: A
Guided Tour. In: Proceedings of the Fifth IEEE International Symposium on
Requirements Engineering. Washington, DC, USA : IEEE Computer Society,
2001 (RE ’01), 249–

[Wie99] Wiegers, K.: First Things First: Prioritizing Requirements. In: Software
Development Online 7 (1999), September, S. 48–53

[WL99] Weiss, David M. ; Lai, Chi Tau R.: Software Product-line Engineering: A
Family-based Software Development Process. Boston, MA, USA : Addison-
Wesley Longman Publishing Co., Inc., 1999. – ISBN 0–201–69438–7

[WL09] Wang, Tien-Chin ; Lee, Hsien-Da: Developing a Fuzzy TOPSIS Approach
Based on Subjective Weights and Objective Weights. In: Expert Syst. Appl. 36
(2009), Juli, Nr. 5, 8980–8985. http://dx.doi.org/10.1016/j.eswa.2008.

11.035. – DOI 10.1016/j.eswa.2008.11.035. – ISSN 0957–4174

[WPAOPL09] Werneck, Vera Maria B. ; Pádua Albuquerque Oliveira, Antonio de
; Prado Leite, Julio Cesar S.: Comparing GORE Frameworks: i-star and
KAOS. In: WER, 2009

[WS03] Witold Suryn, Alain A.: ISO/IEC SQuaRE. The second generation of stan-
dards for software product quality. In: IASTED 2003 - SEA 2003 November
3-5, 2003 Marinadel Rey, CA, USA (2003)

[YM98] Yu, Eric ; Mylopoulos, John: Why Goal-Oriented Requirements Engineer-
ing. In: REFSQ98 (1998)

[YT97] Yen, John ; Tiao, W. A.: A Systematic Tradeoff Analysis for Conflicting Im-
precise Requirements. In: Proceedings of the 3rd IEEE International Sympo-
sium on Requirements Engineering. Washington, DC, USA : IEEE Computer
Society, 1997 (RE ’97). – ISBN 0–8186–7740–6, 87–

[Yu96] Yu, Eric Siu-Kwong: Modelling Strategic Relationships for Process Reengi-
neering. Toronto, Ont., Canada, Canada, Diss., 1996. – UMI Order No.
GAXNN-02887 (Canadian dissertation)

[Yue87] Yue, K.: What Does It Mean to Say that a Specification is Complete, 1987

[Zad99] Zadeh, Lotfi A.: Some Reflections on the Anniversary of Fuzzy Sets and
Systems. In: Fuzzy Sets Syst. 100 (1999), April, 1–3. http://dl.acm.org/

citation.cfm?id=310817.310818. – ISSN 0165–0114

[Zav97] Zave, Pamela: Classification of Research Efforts in Requirements Engineer-
ing. In: ACM Comput. Surv. 29 (1997), Dezember, Nr. 4, 315–321. http:

//dx.doi.org/10.1145/267580.267581. – DOI 10.1145/267580.267581. –
ISSN 0360–0300

PhD Dissertation Arfan Mansoor

http://dx.doi.org/10.1016/j.eswa.2008.11.035
http://dx.doi.org/10.1016/j.eswa.2008.11.035
http://dl.acm.org/citation.cfm?id=310817.310818
http://dl.acm.org/citation.cfm?id=310817.310818
http://dx.doi.org/10.1145/267580.267581
http://dx.doi.org/10.1145/267580.267581

Erklärung 204

Erklärung

Ich bestätige, dass diese These kein Material enthält, das für die Vergabe eines

anderen Abschlusses oder ein Diplom in meinem Namen angenommen wurde, in jeder

Universität und zu meinem besten Bewusstsein, ich habe Referenzen verwendet, auf

die ausdrücklich im Text referenziert wurde.

Ich bestätige, dass das Urheberrecht der im Rahmen dieser Arbeit veröffentlichten

Werke mit dem Urheberrecht-Inhaber dieser Werke bleibt.

Ich gebe auch die Erlaubnis dafür, dass eine digitale Version meiner Dissertation

im Internet zur Verfügung gestellt wird, über die digitale Forschungsrepository der

Universität, die Bibliothekssuche und auch über Web-Suchmaschinen, es sei denn eine

Zustimmung der Universität wurde gewährt, mit der den Zugang für einen Zeitraum

beschränken wurde.

Mir wurde mitgeteilt, dass jede Unrichtigkeit der vorgelegten oben genannten Erk-

lärung als ein Betrugsversuch bewertet wird, und nach § 7 Abs. 10 der Promotionsor-

dnung, führt dies zu einem Abbruch des Promotionsverfahrens.

PhD Dissertation Arfan Mansoor

	Dedication
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goals of the Thesis
	1.3 Contributions
	1.4 Outline of the Thesis

	2 Fundamentals of Software Requirements
	2.1 Software Requirements
	2.2 Requirements Engineering (RE) Process
	2.2.1 Requirements Statement Characteristics
	2.2.2 Requirements Specification Characteristics

	2.3 Requirements Types
	2.3.1 Functional Requirements
	2.3.2 Non-functional Requirements
	2.3.3 Domain Requirements
	2.3.4 Inverse Requirements
	2.3.5 Design and Implementation Constraints

	2.4 Why GORE
	2.5 Summary

	3 State-of-the-Art GORE Concepts and Frameworks
	3.1 Goal Oriented Requirements Engineering
	3.1.1 Goals, Terms and Definitions

	3.2 Goal Based Requirements Analysis
	3.2.1 Goal Identification
	3.2.1.1 Goal Elicitation by Refinement
	3.2.1.2 Goal Elicitation by Abstraction
	3.2.1.3 Goal Elicitation by Scenarios
	3.2.1.4 Goal Elicitation by Obstacle Analysis
	3.2.1.5 Goal Elicitation through Constraints

	3.2.2 Goal Refinement
	3.2.3 Elaboration Method
	3.2.3.1 Identifying Objects
	3.2.3.2 Identifying Agents and Agents Assignments to Goals
	3.2.3.3 Identifying Operations and Operationalizations of Goals

	3.3 Goal Classifications
	3.3.1 Classification by Patterns
	3.3.2 Classification by Type
	3.3.3 Classification by Target Condition
	3.3.4 Classification by Nature of Goals
	3.3.5 Classification based of RE Activity

	3.4 Links in GORE
	3.5 Benefits of GORE
	3.6 GORE Frameworks
	3.6.1 NFR framework
	3.6.2 i* (i-star)
	3.6.3 Keep All Objects Satisfied (KAOS)
	3.6.4 Goal Requirements Language (GRL)

	3.7 Summary

	4 Decision Support in GORE
	4.1 Identifying Decision Points in GORE
	4.2 Importance of Decision support in GORE
	4.3 GORE and Decision Making Framework
	4.4 Decision Influencing Factors
	4.5 Non-functional Requirements for Decision Support
	4.5.1 Identifying Terms of Non-functional Requirements
	4.5.2 Elicitation of Requirements
	4.5.3 Requirements Elicitation Challenges
	4.5.4 Requirements Elicitation Context
	4.5.5 Requirements Elicitation using Goals

	4.6 Summary

	5 Quality Models and Goal Models Integration
	5.1 Quality Models Classifications
	5.1.1 Boehm's Software Quality Tree Boehm
	5.1.2 McCalls Quality Model (1977)
	5.1.3 Romann ModelRoman
	5.1.4 Sommerville ModelSommerville
	5.1.5 Dromey's Quality Model Dromey
	5.1.6 FURPS/FURPS+ Grady
	5.1.7 ISO 9126 Model ISO9126
	5.1.8 Comparison of Quality Models

	5.2 Goal Model and Quality Model Integration
	5.3 summary

	6 Prioritization and Selection of Requirements: Three Tier Approach
	6.1 Fuzzy Numbers
	6.2 General Procedure
	6.3 Methodology
	6.4 Cyclecomputer Example
	6.4.1 Establishing High level Goals
	6.4.2 Refine Goals to Leaf Levels (establish functional goals)
	6.4.3 Stakeholders and Their Opinions
	6.4.3.1 Identifying Stakeholders
	6.4.3.2 Stakeholders Opinions Accumulation

	6.4.4 Aggregating the Importance Using TFN
	6.4.5 Apply Defuzzification Process on TFN
	6.4.6 Normalizing Values Obtained by Defuzzification Process
	6.4.7 Functional and Quality Goal Impact Measurement
	6.4.7.1 Determining Project Specific Quality Goals
	6.4.7.2 Determining and Evaluating the Dependency between Quality Goals
	6.4.7.3 Determining and Evaluating the Impact of Quality goals and Functional goals

	6.4.8 Development Factors Considerations

	6.5 Comparison With Related Work
	6.6 Summary

	7 Extending the Approach for Alternatives Selection
	7.1 Selection Procedure
	7.2 Methodology
	7.2.1 TOPSIS Review

	7.3 Cyclecomputer Example
	7.3.1 Step 1 Establishing High level Goals
	7.3.2 Refine Goals to Leaf Levels (establish criterion for each goal)
	7.3.3 Identifying Stakeholders
	7.3.4 Stakeholders Opinions Accumulation
	7.3.5 Step 5 to 7
	7.3.6 Cyclecomputer Alternatives
	7.3.7 Evaluate Alternatives Using TOPSIS
	7.3.7.1 Constructing Decision Matrix
	7.3.7.2 Normalizing Decision Matrix and Constructing Weighted Normalize Decision Matrix
	7.3.7.3 Determine the Positive Ideal and Negative Ideal Alternatives
	7.3.7.4 Calculating the Separation Measures
	7.3.7.5 Calculating Closeness to Ideal Solution
	7.3.7.6 Ranking and Selection

	7.4 Comparison With Related Work
	7.5 Summary

	8 Goal Model Integration for Tailoring Product Line Development Processes
	8.1 The Need of Integration Model
	8.2 Tailoring Development Processes
	8.3 Tailoring Meta-model
	8.4 Summary

	9 Evaluation of the Proposed Approach
	9.1 Goals of the Experiment
	9.2 Steps of Experiment
	9.3 Case Study
	9.4 Workshop Results
	9.4.1 Functional Requirements
	9.4.2 Non-functional Requirements

	9.5 Execution of Experiment
	9.5.1 Sample Population
	9.5.2 Research Question of Experiment
	9.5.3 First Round
	9.5.4 Second Round

	9.6 Evaluation of Results
	9.7 Validation of Experiment
	9.7.1 Conclusion Validity
	9.7.2 Internal Validity
	9.7.3 Construct Validity
	9.7.4 External Validity

	9.8 Summary

	10 Conclusions and Outlook
	10.1 Thesis Goals and Acquirement
	10.2 Future Work

	Appendix A Implementation and Modelling
	A.1 Implementation of case Study
	A.2 Alternatives Selection Using a variant of TOPSIS
	A.3 Regression Modelling

	Appendix B Cycle Computer Goals
	B.1 AHP Pairwise Comparisons

	Appendix C Cycle Computer comparisons
	Appendix D Abbreviations
	Bibliography
	Erklärung

