
59th ILMENAU SCIENTIFIC COLLOQUIUM 

Technische Universität Ilmenau, 11 – 15 September 2017 

URN: urn:nbn:de:gbv:ilm1-2017iwk-118:4

©2017 - TU Ilmenau

DISSEMINATION OF THE « PLANCK-KILOGRAM » 

D. Knopf, Th. Wiedenhöfer, K. Bauer, F. Härtig

Physikalisch-Technische Bundesanstalt, Germany 

ABSTRACT 

Metrologists all over the world are looking at the activities of the Metre Convention 

concerning the New International System of Units on the basis of fundamental constants. 

Especially the redefinition of the kilogram will have consequences in nearly all fields of 

physics, engineering and trade. A new definition of a base unit imperatively implies thoughts 

about the future dissemination of the unit. After a short glance at the potential of the 

Kibble(Watt)-Balance the presentation will describe the strategy of the Physikalisch-

Technische Bundesanstalt to use silicon spheres of different qualities for the dissemination of 

the quantum based kilogram to the macroscopic world. Beside metrological aims the 

availability of realisations is of crucial importance within a future dissemination chain. 

Aspects like the connection to the established system as an important aspect for acceptance, 

the applicability of the developed tools and procedures for using such spheres as mass 

standards or the current state of activities to proof the expected excellent long term 

characteristics of silicon spheres in use will be presented. 

Index Terms  Redefinition of the Kilogram, Dissemination, Silicon Sphere, 

Avogadro-Project 

1. INTRODUCTION

Since 1889 an artefact defines the unit Kilogram in the International System of Units. In 2018 

metrologists worldwide are awaiting the decision about a change to a new system of 

international units defined via fundamental constants. Even the kilogram will be defined by a 

natural quantum based constant, the Planck constant. The new kilogram will overcome the 

gap to the electrical units measured based on quantum effects like the Josephson effect and 

the quantum Hall effect. But for daily life macroscopic realisations of this quantum based unit 

will be needed. Up to now only the experiments providing data for the redefinition of the 

kilogram – the Kibble-Balance, the Avogadro-Sphere (as result of the X-ray crystal density 

(XRCD) experiment) and the Joule-Balance – are expected to allow macroscopic realisations 

with the necessary small uncertainties. But, can these tremendously expensive and highly 

sophisticated experiments be used in the sense of disseminating the kilogram? 

At the IMEKO World Congress in September 2015 PTB presented for the first time the ideas 

of setting up a dissemination system for the “Planck-Kilogram” based on silicon spheres [1]. 

Most of the aspects presented there are still valid. The current paper will provide an overview 

of the status quo of these activities within the framework of the current mass metrological 

developments. 
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2. CURRENT STATUS 

 

In 1999 the General Conference on Weights and Measure (CGPM) recommended that the 

national metrology institutes shall continue their experiments to “link the unit of mass to 

fundamental or atomic constants” [2]. Since then a lot of effort was spent to improve the 

existing experiments and to develop new methods with the aim to redefine the kilogram and 

other base units in a universal manner, i.e. independent of artifacts.  

The Consultative Committee for Mass and Related Quantities (CCM) of the International 

Committee of Weights and Measures (CIPM) summarized the requirements necessary for a 

redefinition of the base unit kilogram at its 2005 meeting for the first time. These 

requirements were discussed and refined several times. In 2013 the following final version of 

the requirements was recommended by the CCM [3]: 

1. At least three independent experiments, including work from watt balance and XRCD 

experiments, yield consistent values of the Planck constant with relative standard 

uncertainties not larger than 5 parts in 108,   

2. At least one of these results should have a relative standard uncertainty not larger than 

2 parts in 108,   

3. The BIPM prototypes, the BIPM ensemble of reference mass standards, and the mass 

standards used in the watt balance and XRCD experiments have been compared as 

directly as possible with the international prototype of the kilogram,  

4. The procedures for the future realization and dissemination of the kilogram, as 

described in the Mise en Pratique, have been validated in accordance with the 

principles of the CIPM MRA 

Following the “Joint CCM and CCU roadmap for the new SI” [4] the CGPM in 2018 may 

decide about the future of the SI-units. If the listed requirement will be fulfilled also the 

kilogram may be redefined.  

 

 
Figure 1: Change of dissemination after redefinition of the kilogram … 
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In the current version of the drafted Mise en Pratique of the definition of the kilogram only 

two methods are described to be capable to realize the kilogram definition with acceptable 

relative uncertainties – Kibble(Watt)-balances and 28Si-spheres [5]. Of course, other primary 

realizations may reach the same magnitude of uncertainties in future. 

In CCM recommendation G 1 of 2017 [6] the need of “an on-going key comparison of 

primary realizations of the kilogram” at the level of national metrology institutes as a possible 

“procedure for applying corrections relative to the consensus value” was mentioned. Thus, the 

future dissemination structure for the kilogram may finally change as presented in figure 1. 

 

3. KIBBLE/WATT-BALANCE FOR DISSEMINATION 

 

At the moment, many institutes worldwide are developing their own systems balancing 

mechanical with electrical power or energy. The resulting systems are so called 

Kibble(Watt)-balances or Joule-balances. They were constructed with the aim to determine 

the Planck constant as good as possible. Only a few of them – the systems of NIST, NRC, 

NIM and LNE – provided measurement results for recognition within the CODATA value of 

the Planck constant. The different systems work at different target values, but, most of the 

balances work at a mass value of 1 kg. The existing systems are mainly of large geometry and 

expensive in use because of their construction – e.g. used materials, large coils, temperatures 

and pressures. The development of table top systems using a defined value of the Planck 

constant to realize mass values will offer alternative ways to use this method in future (see 

e.g. [7]). It is the aim to develop small, easy to use and accurate systems that can measure not 

only at a single mass value but continuously in a mass range. The so-called “Planck balance” 

– a cooperation between TU Ilmenau and PTB – as an example of such a system is far beyond 

theoretical considerations and will be described by the project colleagues elsewhere. 

Alternatively, to standard measuring systems like Kibble-balances well characterized silicon 

spheres could be used for the realization of the unit kilogram. Possible qualities of such mass 

standards and the respective framework will be described in the following chapters. 

 

4. THE «SILICON WAY» OF KILOGRAM DISSEMINATION 

 

4.1 Motivation 

During the process of establishing silicon spheres for the determination of the Avogadro 

constant and the Planck constant using the so-called X-Ray Crystal Density (XRCD) method 

a lot of experience arose in how to manufacture, characterize and handle silicon spheres of 

superior quality. During the years of activities of the International Avogadro Coordination 

(IAC) the Si-spheres were not only measurement objects but as well transfer standards 

showing a very good stability during transport and over time. 

In order to determine the Planck Constant with as small measurement uncertainty as possible 

it was necessary to use highly isotopic enriched monocrystalline silicon (28Si) to minimize 

influences due to the material, e.g. molar mass determination or point effects. However, such 

spheres are very expensive because of the rare material and time consuming manufacturing. 

Otherwise, they can be used as primary kg realizations with very low measurement 

uncertainties. During discussions on how to disseminate the kilogram via silicon spheres it 

became clear, that within the traceability chain different quality levels of spheres may be 

reasonable. As an outcome of this discussion three categories of 1 kg-Si-spheres were defined 

(see table 1):  

• “28Si” – “primary” Si-spheres, made of 28Si with surface and roundness of highest 

quality, well characterized and ready to use as a primary mass standard with relative 

measurement uncertainties in the range of 1,2 ·10-8. 
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• “natSiqp” – “quasi-primary” Si-spheres, made of natural monocrystalline silicon with 

surface and roundness of highest quality, well characterized and ready to use as a mass 

standard. Even the “quasi-primary” spheres could act as primary mass standards 

depending on the methods used for their characterization but with a slightly higher 

measurement uncertainty than the spheres made of 28Si. The expected relative 

measurement uncertainty of the mass is in the range of 3·10-8 when calibrated by 

magnetic flotation method. 

• “natSisc” – “secondary” Si-spheres, made of natural almost monocrystalline silicon 

with surface and roundness of high quality, manufactured by industry, calibrated and 

ready to use as secondary mass standards in calibration labs. The relative measurement 

uncertainties will be in the magnitude of 5·10-8. 

 

Table 1: Categories of Si-spheres proposed as standards for dissemination  

 “28Si” “natSiqp” “natSisc” 

category primary “quasi primary” secondary 

urel (k=1) of mass 2·10-8 3·10-8 3·10-8 

form error RONt < 30 nm < 20 nm < 80 nm 

average roughness 

Ra 
< 0,3 nm < 0,3 nm < 1 nm 

expected price > 1 Mio. € > 100 k€ > 10 k€ 

Availability 
limited, prepared by 

PTB 

prepared by PTB on 

inquiry 
industrial product 

PTB 

recommended 

transport 

packaging 

transport container 

in an aluminum case 

covered with 

bespoke polystyrene 

material 

transport container 

in an aluminum case 

covered with 

bespoke polystyrene 

material 

sphere protected by a 

microfiber tissue in 

an aluminum case 

covered with 

bespoke polystyrene 

material 

Delivered data 

(see 4.3) 

mass, volume, 

density, molar mass, 

crystal quality, oxide 

layer 

 mass, volume, 

density, crystal 

quality, oxide layer 

volume/density, 

mass 

 

4.2 Manufacturing of the Si-spheres 

First step in the manufacturing of a Si-sphere that can possibly be used as a mass standard is 

the preparation of a mono-crystal of natural or highly isotopic enriched monocrystalline 

silicon. The enrichment of 28Si is a scientific and technological challenge now solved by 

Russian colleagues of the Electrochemical Plant in Zelenogorsk and the Russian Academy of 

Science in Nishniy Novgorod. From the poly-crystalline material (natural silicon or isotopic 

enriched material) the Institute for Crystal Growth in Berlin prepares mono-crystals of a 

diameter of about 100 mm [8, 9].  

A mono-crystal made of natural silicon or 28Si of about 6 kg is departed into blanks for two 

spheres and test material after the part containing crystal misalignments was cut off. From a 

coarse cut blank, the first rough ingot is drilled out. After several scientific investigations and 

experiments it came out, that not edging but classical turning, lapping and polishing 

procedures allow the best and even manageable results in form and surface preparation as 
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well as for the sensitive process of silicon oxide formation. Finally, the developed procedures 

allow the manufacturing of a sphere with a form error RONt less than 30 nm and an average 

roughness value Ra of less than 0,3 nm [10, 11] (see table 1).  

Not only the visible surface quality is determining the quality of the sphere. It is important 

that the boundary layer resulting of processing the mono-crystalline material is rather uniform 

and small because here the silicon oxide forms. For mass metrology, finally the maximum 

deviation of the target mass value is important as well. The maximum admissible deviation of 

the mass is ± 10 mg. This quality is only achievable by in-process measurements of geometry 

and mass (see figure 2). 

PTBs manufacturing expertise and the developed processing machines allow a stable 

production of Si-spheres of highest quality within 3 month. At the moment, this technology is 

transferred to industrial partners to ensure sphere production independently of PTB in 

industrial scale number. In future, the manufacturing of “secondary” spheres should be 

handled by industry only. 

 

 

Figure 2: In-process measurements during Si-sphere development at PTB [1] 

 

4.3 Characterization of Si-spheres 

For many years, the colleagues of the International Avogadro Coordination (IAC) 

investigated what the determining parameters of a Si-sphere are and how these parameters can 

be obtained. For the determination of the Planck-Constant the following aspects were 

identified as the most important ones - volume, molar mass, lattice parameter, point defects, 

surface (here especially the silicon oxide layer, contaminations (carboneous, metallic, others), 

and scratches or other marks), and last but not least the mass [12, 13].  

To determine the mass value of a 28Si sphere or a natSiqp sphere the same quantities as listed 

above should be determined. Additionally, at PTB the density of the sphere will be 

determined by the so-called magnetic flotation method [18] with respect to well characterized 

silicon samples. The method is still under development and will probably be available in 

2019. The values for mass and density of the sphere have more or less the function of 

validation data – their relation to the volume should stay stable for each sphere. All 

measurements, except mass and density are independent to any mass referred quantity. Thus, 

these results allow a primary realization of the mass unit.   

1. Cutting processes:  

in-process inspections; 

- caliper gauge  

- balance 

  
 

2. Lapping processes:  
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3. Polishing processes:  
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When using silicon spheres as standards for disseminating the kilogram (28Si or natSiqp) it will 

not be necessary and even not be possible to determine all parameters day by day. Taking into 

mind that the composition and structure of the material will not change during use of the 

spheres, lattice parameter, point defects and molar mass will not change. As long as the 

spheres are not mechanically damaged (e.g. scratches), re-polished or re-lapped the 

determined volume will be stable over a long time too.  

Thickness of the oxide layer, surface contaminations and the surface quality will change over 

the time. These parameters may have influence on the mass value of the sphere and thus, must 

be checked regularly. Different methods for characterization may be used for different levels 

of quality (see figure 3). Every sphere delivered by PTB has a marking on its surface that 

allows a repeated positioning of the spheres in different instruments with respect to the 

orientation of the spheres crystal. This enables a topographic mapping of a sphere and thus, 

the determination of changes at the spheres surface. Scratches could be identified visually by 

using a strong torch (see methods referred to in chapter 5). For regular check of the oxide 

layer and surface contaminations the spectral ellipsometry is recommended because it allows 

a fast monitoring of the spheres surface with acceptable effort. The necessary calibration for 

the use of this method may be externally (proposed for natSisc) or internally as calibration 

points at the surface of the sphere (recommended for 28Si and natSiqp). The “internal 

calibration” is done with an XPS/XRF-measuring system developed at PTB [14]. Of course, 

other measuring systems realizing these methods could be used as well.  

Based on today’s experience PTB proposes to validate the surface layer stability every two 

years and the volume every 10 years for 28Si and natSiqp spheres. 

Figure 3: Methods of surface analysis used for characterizing Si-spheres [15] 

 

Thus, for using silicon spheres as mass standards in the dissemination system it will be 

needed to obtain regularly possible changes at the surface of the respective sphere (e.g. 

scratches) and to determine changes of the oxide layer. The determination of the other 

parameters (e.g. volume, molar mass) is only needed at the initial characterization of the 

sphere or after a re-manufacturing. All spheres may be delivered with material pieces not used 

for sphere manufacturing. It allows a later independent determination of all material measures 

needed for a determination of a primary mass value based on Planck’s constant. Thus, all 

relevant parameter may be determined independently of PTB measures. 
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be characterized like “conventional” mass standards by mass, volume (via density) and the 

visible surface quality only.  

 

5. SILICON SPHERES AS MASS STANDARDS 

 

In principle, silicon spheres can be used in the same way as other mass standards at the 

highest level (E1 according to OIML R111 [16] or better). Because of the sphere’s geometry, 

it is necessary to apply specific measures. Manufacturers of mass comparators considered this 

aspect still when constructing modern instruments. Silicon spheres are not sensitive against 

magnetic or electromagnetic fields what make them probably attractive as mass standards for 

specific measurement conditions. Because of the smaller density, the effect of air buoyancy 

will be larger than for stainless steel standards. Thus, it is recommended to use buoyancy 

artifacts to obtain changes of air buoyancy experimentally during the measurement [17].  

The biggest advantage of silicon spheres is their stability. If they are handled with care they 

show a stable behavior even after several vacuum-air-changes. If there are some 

contaminations due to normal use the mass value of the spheres could be "reset" within a 

short time (24 h stabilization time seems to be enough) by relatively simple cleaning. At the 

“Round and Ready” Workshop at PTB in 2016 respective tools and methods for handling and 

use of silicon spheres were presented. The posters and videos are available via Internet at 

www.ptb.de/si-kg-2016.  

At the moment 23 volunteering institutes from all over the world are testing the practicability 

of the “toolbox” developed at PTB. PTB is lending silicon spheres (natSiqp or natSisc) to the 

members of the so-called “Si-Trust” up to two years. These institutes will execute some tests 

discussed beforehand, in any case mass determinations, and get the possibility to do 

additionally some experiments of their own. Just now there are already 3 laboratories having 

spheres for tests and probably 11 others will get spheres within 2017. Nine other laboratories 

are planned to follow within 2018. As results of this measurement campaign not only 

conclusions concerning the stability of the spheres and the usability of the handling 

procedures are expected but as well comments, questions and proposals for future 

developments in this field. Additional partners to join Si-Trust are welcome (contact: si-

trust@ptb.de). 

One of the points coming up regularly is the manufacturing and characterization of smaller 

silicon spheres as mass standards. In density metrology, the use of smaller silicon spheres is 

still common. Currently, these spheres are not characterized at a level to become primary 

realizations of mass units. But, because the uncertainty of density comparisons decrease 

importantly using magnetic flotation [18] the uncertainty of the mass value of such spheres 

could be smaller in future than the uncertainties of (other) primary realizations. Just now, the 

manufacturing of such spheres is not intended at PTB. 

 

6. SUMMARY 

 

When the SI unit kilogram will be redefined based on a fundamental constant there will be not 

only one primary unit realization with zero uncertainty but several primary realizations with 

uncertainties determined following the rules of the Guide to the Expression of Uncertainty in 

Measurement [19]. The methods being capable to reach relative uncertainties smaller than 

5·10-8 are, just now, only the two methods used for the determination of the Planck constant. 

They are expensive and rare. Beneath the highest level in principle nothing needs to be 

changed. But, the existing experiences with manufacturing and use of silicon spheres open the 

possibility to use silicon spheres as stable mass standards in the laboratories too. Finally, the 

spheres are surprisingly simple to handle, robust and stable. Industrial manufactured spheres 

http://www.ptb.de/cms/presseaktuelles/messenevents/internationale-konferenzen/si-kg-2016/about-the-workshop.html
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of natural silicon will be available in bigger numbers in near future. Finally, because of the 

expected excellent stability in combination with the achievable high accuracy silicon spheres 

will play a major role in future dissemination structures. 
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