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ABSTRACT 

The demand for measuring the diameter of the spherical object, which is used for the CMM 
stylus, for example, is now rising and its measurement error is desired to be less than several 
10 nm for the spherical object whose size is around 100 μm. To achieve this, the measurement 
method based on WGM resonance is remarkable. But as long as we rely on this method, the 
model of the object must be a perfect sphere, and this assumption should not always be valid. 
Practically, a measured sphere has the rotational symmetry so that it suffices to evaluate the 
spheroidal distortion to know the macro-distortion. According to this motivation, we proposed 
the new measurement method to appreciate the degree of distortion for the object based on 
WGM resonance. Degeneracy for azimuthal direction disappears if the object distorted 
spheroidal-like. Hence, we can measure the interval between the resonant wavelengths for 
different azimuthal mode number and evaluate the degree of spheroidal distortion. 

Index Terms - Whispering Gallery Mode, resonance, diameter measurement, spheroidal 
distortion 

1. INTRODUCTION

In one exemplary aspect, micro-CMM (Coordinate Measuring Machine) has a micro sphere on 
tip of its probe. If the size of this probe sphere has an ambiguity, this affects the measurement 
precision of micro-CMM for un-ignorable degrees. Consequently, the absolute evaluation of 
the size of a micro sphere is necessary in metrological field. Practically, measuring a micro 
sphere whose diameter is around 100 μm with around 10 nm precision is required. To achieve 
this precision, we focus on the measurement method using the resonance phenomena called 
“whispering Gallery Mode resonance”[1]. This resonance is one of resonance phenomena of 
light wave, which occurs when the projected object has a spherical structure. We expect this 
method to achieve the desired measurement precision in non-contact and non-destructive way. 
 However, when we measure the object sphere by using Whispering Gallery Mode resonance, 
we assume that the model is a perfect sphere. In fact, this assumption usually fails from an 
experimental point of view. Many spheres have some distortion, i.e. the measured sphere is not 
always a perfect sphere. For example, measured sphere is sometimes chipped or dazzling in 
micro scale, or it is flatly crushed or elongated in macro scale. In this article, by focusing on the 
spheroidal distortion among above kinds of distortion, we consider the case that the object 
sphere is not necessarily a perfect sphere to confirm the validity of the measurement method 
based on the Whispering Gallery Mode resonance. 
 For instance, it is possible to manufacture micro spheres based on an aggregation property of 
the material, namely, by using surface tension of micro particles. Hence, it suffices to have a 
good measurement method that is suitable for measuring particles having rotational symmetry. 
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From this point of view, we expand the theoretical particle model from a perfect sphere to a 
spheroid and propose a new method to evaluate the spheroidal distortion of the measured object 
in this article. 
 

2. SPHERE DIAMETER MEASUREMENT BASED ON WGM RESONANCE 
 
2.1 Whispering Gallery Mode Resonance 
First, we introduce what Whispering Gallery Mode (WGM) resonance is. When the incident 
light wave is radiated into a sphere, there are some oscillation modes such that the light wave 
strongly resonates. This situation is described as that the incident light wave cirques around a 
surface of a sphere like Fig.1, which causes a strong resonance and scattering simultaneously. 
This resonance is called Whispering Gallery Mode (WGM) resonance and each oscillation 
mode is one of Whispering Gallery modes. 
 

 
Fig.1 Whispering Gallery Mode (WGM) resonance 

 

 
Fig.2 Mode numbers of WGM and modes about polarization (TE / TM) 

 
Above Whispering Gallery Resonance is classified by the way for which the light wave 
propagates in a sphere. Namely, WG modes have three kinds: angular mode, azimuthal mode, 
and radial mode. These modes characterize how the light wave propagate in a sphere, and 
angular mode, azimuthal mode, and radial mode are identified by integers 𝑙, 𝑚, 𝑞, respectively. 
In addition, two kinds of modes about the polarization of the light wave exist: transverse electric 
(TE) mode and transverse magnetic (TM) mode. The oscillation direction of electric field is 
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perpendicular to the tangential plane in TE mode, whereas is parallel to the tangential plane in 
TM mode. Fig.2 shows conceptual description of each mode. 
 
2.2 Theoretical background - interaction between a spherical particle and light wave 
To determinate WGM resonant wavelengths for sphere with arbitrary size, solving the problem 
about interaction between the particle and light wave is necessary. In other words, we have to 
solve the Maxwell’s equations for the coordinate system that is appropriate for the shape of the 
measured object. In this case, when the measured object is assumed as a perfect sphere, solving 
the following Maxwell’s equation in a spherical coordinate system enables us to know the 
WGM resonant wavelengths corresponding to the condition of each model and incident light 
wave in advance. 
 The Maxwell’s equations in vacuum are given as following. 

{
 
 

 
 

𝜵 ∙ 𝑬 = 0
𝜵 ∙ 𝑯 = 0

𝜵 × 𝑬 = −𝜇0
𝜕𝑯

𝜕𝑡

𝜵 × 𝑯 = 𝜀0
𝜕𝑬

𝜕𝑡

 (1) 

Here, 𝜇0  and 𝜀0  are dielectric constant and permeability in vacuum, respectively. From 
equation (1), we have the explicit representation of electromagnetic field 𝑬 and 𝑩 in a spherical 
coordinate system. It is known that there exists a solution for that electro field or magnetic field 
cirques around the near surface of a sphere. In case of this solution, the intensity of scattered 
light and internal transmitted light is enlarged and strong resonance phenomena occurs. This 
resonance in a sphere is the WGM resonance. 
 WGM resonance only occurs for limited values of incident wavelengths. Frankly speaking, 
WGM resonance occurs only when the circumference of the sphere nearly equals to some 
integer multiplication of the incident wavelengths like the Bohr’s quantum condition. WGM 
resonance is known as the resonance phenomena with high Q-value, i.e. if the incident 
wavelengths slightly changed the scattered and transmitted intensity clearly decreases. 
Compared with the Fabry-Pèrot interferometer, which is known as high Q-valued resonator 
(105~108)[2], Q-value of WGM resonator can be 107~109 in one exemplary aspect[3]. 
 These WGM resonant wavelengths are determined from the equation called the dispersion 
equation of a sphere. The dispersion equation is derived from the exact solution of the 
Maxwell’s equation (i.e. Mie scattering theory) without any kinds of approximation. 
The dispersion equation of a sphere for TE / TM modes are given as follows. 

𝜇1

𝑛1
2𝑗𝑙(𝜌1)

𝜕[𝜌1𝑗𝑙(𝜌1)]

𝜕𝜌1
=

𝜇0

𝑛0
2ℎ𝑙

(1)(𝜌0)

𝜕[𝜌0ℎ𝑙
(1)(𝜌0)]

𝜕𝜌0
 for TE mode (2) 

1

𝜇1𝑗𝑙(𝜌1)

𝜕[𝜌1𝑗𝑙(𝜌1)]

𝜕𝜌1
=

1

𝜇0ℎ𝑙
(1)(𝜌0)

𝜕[𝜌0ℎ𝑙
(1)(𝜌0)]

𝜕𝜌0
 for TM mode (3) 

where, 𝑗𝑙, ℎ𝑙
(1) denote the spherical Bessel function and the first spherical Hankel function of 

order 𝑙 (angular mode number), respectively. We use the following notation through this article: 
the lower subscript 0 means that the parameter is about the surrounding air, whereas the lower 
subscript 1 means the parameter is about inside of the object cavity. Based on this notation, 
𝜌0,1 = 𝑘0,1𝑎, where 𝑛 denotes refractive index, 𝑘 denotes the wave number. As stated above, 
the dispersion equation of a sphere is the strict result without any kind of approximation, and 
numerical solutions of equation (2) or (3) can be easily obtained. But it is sometimes useful to 
have other forms of equations for determining WGM resonant wavelengths by using finite 
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power series expansion approximation. Expanding the dispersion equation by using Airy 
functions, we get another representation of equation (2) or (3) as follows[4]. 

𝜆 = 2𝜋𝑎𝑛

[
 
 
 
 

𝑙 +
1

2
− 𝛼1(

𝑙 +
1
2

2
)

1
3

−
𝜒𝑛

√𝑛2 − 1
+

3𝛼𝑞
2

2
2
310(𝑙 +

1
2
)

1
3

−
𝜒𝑛3(2𝜒2 − 3)𝛼𝑞

3 ∙ 2
1
3(𝑛2 − 1)

3
2 (𝑙 +

1
2
)

2
3

]
 
 
 
 
−1

 (4) 

where 𝑎 denotes the radius of the sphere, 𝛼𝑞 denotes the 𝑞th zero point of Airy functions, 𝑞 
denotes the radial mode number 𝜒 characterizes the polarization mode: 𝜒 = 1 for TE mode and 
1/𝑛1

2  for TM mode. When model parameters (refractive index and radius of a sphere) and 
angular mode number 𝑙 are given, equation (2) or (3) has several solutions. In other words, 
corresponding to one given condition, a family of WGM resonant wavelengths {𝜆𝑙,𝑞}𝑞∈ℕ(𝜆𝑙,1 >
𝜆𝑙,2 > ⋯) are calculated from (4). These ordered number 𝑞 corresponds to radial mode number 
of WGM resonance. From the representation (4), we can directly calculate the WGM resonant 
wavelengths for each mode numbers. It is remarkable that azimuthal mode number 𝑚 does not 
exist in equation (4). This suggests that all different azimuthal modes degenerate because of a 
rotational symmetry of a perfect sphere. This approximation requires that the radius of the 
measurement object is much larger than the wavelength range, i.e., 𝑎 ≫ 𝜆0 is true[4]. 
In Table.3, Numerical examples of WGM resonant wavelengths are shown.  
 
 Table.3 Validity of approximate expansion (4) for several condition (polar mode: TE mode, 
refractive index of a sphere: 1.5). 𝜆1: WGM resonant wavelengths calculated from dispersion 
equation (2). 𝜆2: WGM resonant wavelengths calculated from approximate expansion (4) 

radius of sphere[μm] 

(angular mode number) 

𝜆1 [nm] 𝜆2 [nm] 𝛥𝜆 = 𝜆1 − 𝜆2 [nm] 

10(l=54) 1561.6073 1561.3543 0.2530 

10(l=55) 1535.0870 1534.8497 0.2373 

10(l=56) 1509.4651 1509.2422 0.2229 

50(l=289) 1567.8904 1567.8864 0.0040 

50(l=290) 1562.6177 1562.6144 0.0033 

50(l=291) 1557.3817 1557.3780 0.0037 

50(l=292) 1552.1798 1552.1767 0.0032 

50(l=293) 1547.0139 1547.0102 0.0037 

50(l=294) 1541.8814 1541.8781 0.0033 

50(l=295) 1536.7830 1536.7801 0.0029 

50(l=296) 1531.7193 1531.7159 0.0034 

50(l=297) 1526.6880 1526.6851 0.0029 

50(l=298) 1521.6906 1521.6874 0.0032 

100(l=586) 1568.7199 1568.7197 0.0001 

100(l=587) 1566.0910 1566.0902 0.0008 

100(l=588) 1563.4694 1563.4694 0.0000 

100(l=589) 1560.8581 1560.8574 0.0006 

100(l=590) 1558.2540 1558.2542 0.0002 

100(l=591) 1555.6601 1555.6597 0.0004 

100(l=592) 1553.0743 1553.0738 0.0005 

100(l=593) 1550.4966 1550.4965 0.0001 

100(l=594) 1547.9280 1547.9278 0.0002 

100(l=595) 1545.3683 1545.3676 0.0007 

100(l=596) 1542.8166 1542.8159 0.0007 

100(l=597) 1540.2728 1540.2726 0.0002 

100(l=598) 1537.7378 1537.7377 0.0001 

100(l=599) 1535.2117 1535.2112 0.0005 

100(l=600) 1532.6933 1532.6930 0.0004 

100(l=601) 1530.1837 1530.1830 0.0007 
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2.3 Diameter measurement based on WGM resonance 
In this section, how to measure the sphere-diameter based on WGM resonance will be briefly 
described. As stated in introduction, a comprehensive purpose of this research is measuring 
sphere diameter based on WGM resonance. For its high Q-value over 107, say, WGM resonance 
occurs only for discrete values of incident wavelengths. If the radius of the object sphere is 
known, these particular WGM resonant wavelengths are determined in advance by theoretical 
calculus, i.e. by solving the dispersion equation of a sphere. On an experimental aspect, we 
transmit stationary incident light wave from one side of an optical fiber with its wavelengths 
continuously changed and measure the transmitted spectrum on the other side of the fiber. When 
the light wave with WGM resonant wavelength is projected, a great deal of transmitted intensity 
clearly vanishes. Hence, the WGM resonant wavelengths are precisely measured 
experimentally. On the other hand, as stated above, values of WGM resonant wavelengths are 
deterministic by the Mie scattering theory: the dispersion equation predicts all values 
theoretically. So, by fitting experimentally measured values and theoretically calculated values, 
the unknown value of the radius of the sphere is estimated. This is the major principle of the 
measurement method based on WGM resonance. 
 

3. THEORETICAL BACKGROUND AROUND SPHEROIDAL DISTORTION 
 
3.1 Spheroidal distortion 
In the measurement method described above, the measurement object supposed to be a perfect 
sphere. In other words, this measurement method does not correspond to the case that the 
measured object has some distortion. However, it is often the case that the measured object is 
not a perfect sphere. It sometimes contains some distortion like following: chipped or dazzling 
in micro scale, or flatly crushed or elongated in macro scale. Here, we will explain how these 
kinds of distortion affects the measurement result.  
Now suppose that the same incident light is repeatedly projected from several directions. When 
the object is a perfect sphere, the measured transmitted light spectrum is invariant since a perfect 
sphere geometrically has a rotational symmetry. On one exemplary aspect, however, if the 
object sphere is elongated to spheroidal shape, resonant wavelengths varies corresponding to 
the propagating direction. In this case, a degeneracy for azimuthal direction disappears, i.e., 
different azimuthal mode numbers corresponds to different WGM resonant wavelengths. Fig.4 
shows the conceptual diagram of such disappearance of degeneracy along azimuthal direction.  
 As stated above, many kinds of distortion from a perfect sphere can be considered. Among 
these kinds of distortion, spheroidal distortion is the essential distortion while considering the 
macro distortion. This is because a distorted sphere still has a rotational symmetry. Many of 
micro-sphere particles are made based on the concentration property of the constituent: they are 
manufactured by using surface tension, which is dominant to a micro particle. Hence, even a 
sphere particle distorted by some remote field strength such as a gravity, it still has a rotational 
symmetry and an important part of its scattering property would be explained by a spheroidal 
model. By that meaning, above kind of distortion is an essential example in evaluating the 
distortion from a perfect sphere. 
 From a viewpoint of above consideration, our aim is to expand the model from a perfect sphere 
to a spheroid. In this article, as also stated in introduction, we propose a measurement method 
to evaluate the spheroidal distortion. Details of the measurement strategy will be described in 
following sections. 



©2017 - TU Ilmenau  6 

 
3.2 General consideration 
In this section, we explain the theoretical background about solving the interaction problems 
between light wave and spheroidal particles. Spheroids are generated by rotating a plane ellipse 
and there are two kinds of spheroids: rotation about the longer axis generates a prolate spheroid, 
whereas rotation about the shorter axis generates an oblate spheroid. When one treats spheroidal 
particles, spheroidal coordinate system is always appropriate for analysis of physical 
phenomena relating to spheroidal particles. The coordinate transformation formula between the 
Cartesian coordinate (𝑥, 𝑦, 𝑧) and spheroidal coordinate system (𝜉, 𝜂, 𝜙) is following.  

{

𝑥 = 𝑙√1 − 𝜂2√𝜉2 ± 1𝑐𝑜𝑠 𝜙

𝑦 = 𝑙√1 − 𝜂2√𝜉2 ± 1𝑠𝑖𝑛 𝜙 

𝑧 = 𝑙𝜉𝜂

 
(6) 

 for prolate: 
for oblate: 

−1 ≤ 𝜂 ≤ 1, 1 ≤ 𝜉 < ∞, 0 ≤ 𝜙 ≤ 2𝜋 
−1 ≤ 𝜂 ≤ 1, 0 ≤ 𝜉 < ∞, 0 ≤ 𝜙 ≤ 2𝜋 

Here, 𝑙 denotes the semi-focal distance of the spheroid and parameter 𝜉 represents how large 
the particle spread, whereas the parameter 𝜂 represents how the spheroidal object is elongated 
(for prolate) or flattened (for oblate). In spheroidal coordinate systems, a position of an arbitrary 
point is denoted by (𝜉, 𝜂, 𝜙) (Fig.5). 
 

 
Fig.5 Graphical representation of spheroidal coordinate systems 

 
Fig.4 Transmitted light spectrum for the case that the object has spheroidal distortion 

ξ=const 

η=const 
φ=const 

𝑧 

𝑥 
𝑦 
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 Ideally, it is desirable to solve the Maxwell’s equations in spheroidal coordinate system based 
on separation of variables method (SVM) as same as the spherical case and know the WGM 
resonant wavelengths for spheroidal particles theoretically. In other words, the dispersion 
equation for spheroidal particle is more necessary than anything so far as we stand on the same 
perspective as the spherical case. However, in view of measuring a spheroidal particle, this 
approach is not appropriate by following reason: in this case, Maxwell’s equations can be 
solved in the separation of variable method in a classical meaning[5], but the representation of 
the solution is too complex to treat easily even on numerical calculation. In particular, the 
electromagnetic field in the system will be explicitly represented as an infinite power series of 
the spheroidal wave functions, but the speed of convergence is extremely slow and yet the 
convergence of the expansion is not proved mathematically. If we tried to obtain the explicit 
formula of the dispersion equation of spheroid, the representation should be the form “the 
determinant of infinite dimensional matrix is zero” as following: 

𝑑𝑒𝑡

(

 
 
𝔖𝑚,𝑚
0 𝔖𝑚,𝑚+1

0

𝔖𝑚,𝑚
1 𝔖𝑚,𝑚+1

1

𝔖𝑚,𝑚+2
0

𝔖𝑚,𝑚+2
1

𝔖𝑚,𝑚
2 𝔖𝑚,𝑚+1

2 𝔖𝑚,𝑚+2
2

⋯

⋮ ⋱)

 
 
= 0 (7) 

Here, each component is expressed as following. 

𝔖𝑚,𝑛
𝑡 = 𝑖𝑛

(

 
 

𝑉𝑚𝑛
(3),𝑡(𝑐0) 𝑈𝑚𝑛

(3),𝑡(𝑐0) −𝑉𝑚𝑛
(1),𝑡(𝑐1) −𝑈𝑚𝑛

(1),𝑡(𝑐1)

𝑌𝑚𝑛
(3),𝑡(𝑐0) 𝑋𝑚𝑛

(3),𝑡(𝑐0) −𝑌𝑚𝑛
(1),𝑡(𝑐1) −𝑋𝑚𝑛

(1),𝑡(𝑐1)

𝑈𝑚𝑛
(3),𝑡(𝑐0) 𝑉𝑚𝑛

(3),𝑡(𝑐0) −ℋ𝑈𝑚𝑛
(1),𝑡(𝑐1) −ℋ𝑉𝑚𝑛

(1),𝑡(𝑐1)

𝑋𝑚𝑛
(3),𝑡(𝑐0) 𝑌𝑚𝑛

(3),𝑡(𝑐0) −ℋ𝑋𝑚𝑛
(1),𝑡(𝑐1) −ℋ𝑌𝑚𝑛

(1),𝑡(𝑐1))

 
 

 (8) 

Each component of matrix (8) is a function of wavelengths and parameters about the model (the 
concrete representation of each component is showed in APPENDIX). The representation form 
(7) is so complicated that it is difficult to solve it even numerically. Generally, it is still difficult 
to solve the wave equation in an arbitrary coordinate system (that is more complicated than the 
spherical coordinate system) and obtain the explicit solution in the classical forms. Hence, we 
are forced to use some approximation enough not to miss the physical characteristics.  
 
3.3 Approximate representation of WGM resonant wavelengths of a spheroid. 
We use an approximate representation formula of WGM resonant wavelengths for spheroids. 
How the approximation method was used for deriving the representation will be briefly 
described. When we try to derive the classical solution of Maxwell’s equations in spheroidal 
coordinate systems, consider the Helmholtz equation (namely, scalar wave equation of three 
dimension): 

𝛥𝛷 + 𝑘2𝛷 = 0 (9) 
where 𝛥 is the Laplacian in spheroidal coordinate systems, and 𝛷 is the scalar potential. In the 
separation of variables method, a solution 𝛷(𝜉, 𝜂, 𝜙) = 𝑋(𝜉)𝑌(𝜂)𝑍(𝜙) is found but the explicit 
representation of that solution is too complex to treat well. Hence, now we only focus on a 
solution of straight rays 

𝛷(𝒓) = 𝐴(𝒓) 𝑒𝑥𝑝(𝑖𝑘0𝑆(𝒓)). (10) 
The first order approximation for the phase function 𝑆, called eikonal, is determined by the 
eikonal equation: 

|∇𝑆(𝒓)|2 = 𝜀(𝒓) (11) 
where 𝜀(𝒓) is the optical susceptibility: equals to 𝑛12 inside the cavity and equals to 𝑛02 = 1 
outside the cavity. As following expansion shows, in the range that geometrical optics 
approximation holds, it suffices to use the eikonal solution of Maxwell’s equation to know 
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WGM resonant wavelengths in a spheroid. By Gorodetsky et al., the approximate formula of 
the WGM resonant wavelengths of spheroid should be[6]: 

𝜆𝑝 = 2𝜋𝑎𝑛 [𝑙 − 𝛼𝑞 (
𝑙

2
)

1
3
+
2𝑝(𝑎 − 𝑏) + 𝑎

2𝑏
−

𝜒𝑛

√𝑛2 − 1
+
3𝛼𝑞

2

20
(
𝑙

2
)
−
1
3

−
𝛼𝑞

12
(
2𝑝(𝑎3 − 𝑏3) + 𝑎3

𝑏3
+
2𝑛𝜒(2𝜒2 − 3𝑛2)

(𝑛2 − 1)
3
2

)(
𝑙

2
)
−
2
3
+ 𝑂(𝑙−1)]

−1

 

(12) 

where 𝛼𝑞 is a q th zero point of the Airy function and 𝜒 = 1 for TE mode and 1/𝑛12 for TM 
mode. A integer 𝑝 = 𝑙 − |𝑚|(𝑝 = 0,1, … , 𝑙) denotes the azimuthal direction for every fixed 
angular mode number 𝑙 . Here we write the lower subscript 𝑝  to emphasize that resonant 
wavelengths also depend on azimuthal propagation direction.  
 Hereafter we verify the values of resonant wavelengths calculated from equation (12) is 
consistent in particular spectrum range. Above approximation by restriction of the solutions is 
based on geometrical optics. It is known that eikonal approximation is credible when the length 
of the optical paths is much larger than the wavelength. This circumstance is same as the case 
of the expansion of the dispersion equation of a sphere (expansion (4)). Fig.6 shows the 
difference between the two distinct values of WGM resonant wavelengths: one is calculated 
from the expansion (4), whereas the other is calculated by the expansion (12) when let the 
shorter axis radius 𝑎 be equal to the longer axis radius 𝑏 (here assumed that the radius of the 
sphere is 100 μm and the refractive index is constant 1.5). This shows that, when the measured 
object is a perfect sphere, two distinct values of resonant wavelengths calculated from 
expansion (4) and (12) varies in order of 10-11 and the expansion (12) is consistent when the 
model is a perfect sphere in this order.  
 

      
Fig.6 WGM resonant wavelengths for spheroidal distortion 

 
4. PROPOSAL OF THE MEASUREMENT STRATEGY TO EVALUATE THE 

DEGREE OF SPHEROIDAL DISTORTION OF THE PARTICLE 
 
4.1 Non-degeneracy along azimuthal direction and spheroidal distortion 
As stated repeatedly, our purpose is to evaluate the spheroidal distortion of the object sphere.  
To achieve this, we focus on the geometrical characteristic of spheroids that both prolate and 
oblate spheroids do not have the rotational symmetry except for about the rotational axis. From 
this fact, optical path lengths differs depending on a propagating direction of light wave. In 
short, for a spheroid, the degeneracy along azimuthal direction disappears.  
To see this, let the object be a prolate spheroid and assume that the incident light wave 

projected perpendicular to the rotational axis. For simplicity, hereafter, we consider only prolate 
spheroids. In this case, while the fundamental mode that light wave oscillates in equatorial plane 
of the spheroid is excited, other modes that light wave propagates in spread area along azimuthal 



©2017 - TU Ilmenau  9 

direction are excited at the same time. It is intuitively clear from the geometrical characteristic 
of a prolate spheroid that the optical path for the latter mode has the longer lengths than for the 
former one. Azimuthal mode number suggests that how wide the propagating light spreads 
along the azimuthal direction. As same as the case for a perfect sphere (shown in Fig.2), large 
azimuthal mode number corresponds to the propagation mode such that the light wave spreads 
widely from the equatorial plane. Hence, prolate-spheroidal shape comprises the following 
property: the larger the azimuthal mode number, the longer the optical path lengths. 
Now we describe in detail the above intuitive discussion by using expansion (10). In Fig.7, 

WGM resonant wavelengths for a prolate spheroid (whose refractive index is 1.5 and shorter 
axis lengths is 100 μm) for several azimuthal mode numbers are plotted as explicit functions of 
degree of spheroidal distortion b/a. The upper graph is an enlarged view of the lower one. Here, 
let the radial mode number is consistently 1, and the graphs for azimuthal mode number 𝑝 =
0,1,2,3,4,5 (i.e. for 𝑚 = 𝑙, … , 𝑙 − 5) are plotted. As obvious from the fact that the values of 
optical path length for large azimuthal mode number monotone increase about the azimuthal 
mode number (consequently, whose WGM resonant wavelengths also increase), six curves in 
Fig.7 corresponds to 𝑝 = 0,1,2,3,4,5 in order from the smaller-valued curve.  
 

    
Fig.7 WGM resonant wavelengths for spheroidal distortion (light graph is the enlarged 

view of right graph) 
 
4.2 Proposal of measurement strategy  
In this section, we propose a new measurement method to evaluate the degree of spheroidal 
distortion of the particle. First, as the upper graph of Fig.8 suggests, values of WGM resonant 
wavelengths linearly increase about the degree of spheroidal distortion 𝑏/𝑎 if it is close to 1. 
Consequently, regarding the upper graph consists of several lines, the degree of variation among 
wavelengths pitches for each azimuthal mode number of one by one is small. To see this, we 
calculate a relative standard deviation of wavelengths pitches as a function of the degree of 
spheroidal distortion 𝑏/𝑎 in the following meaning. Let 𝛺 = {𝜔1, … , 𝜔𝑙}, ℱ = 2𝛺and ℙ be a 
discrete probability measure. On this probability space (𝛺, ℱ, ℙ), define a random variable 
𝛥𝜆: 𝛺 → ℝ by 𝛥𝜆(𝜔𝑝) = 𝜆𝑝 − 𝜆𝑝−1 (𝑝 = 1,2, … , 𝑙). Then define dimensionless quantity 𝑅𝑆𝐷 
(relative standard deviation) by: 

𝑅𝑆𝐷 =
√𝑉𝑎𝑟[𝛥𝜆]

𝐸[𝛥𝜆]
 (13) 

Fig.8 plots this values as a function of the degree of spheroidal distortion 𝑏/𝑎. Here, the model 
is the same as in section 4.1 (prolate spheroid whose refractive index is 1.5, shorter axis radius 
is 100 μm). The polarization mode is TE mode and let 𝑙 = 600, 𝑞 = 1.  
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Fig.8 relative standard deviation of Δλ 

(light graph is the enlarged view of right graph) 
 
This shows that the WGM resonant wavelengths pitches are invariant regardless of azimuthal 
mode numbers. Hence, several peaks that appeared in case of prolate spheroids are explained 
by the non-degeneracy along azimuthal mode direction. In addition, the pitches between each 
‘sub-peaks’ are regarded as constant if the degree of prolate-spheroidal distortion 𝑏/𝑎 is close 
to 1. 
 Now we propose a way to evaluate the degree of spheroidal distortion using these pitch values 
with respect to azimuthal mode numbers. From the transmitted light wave spectrum, pitches 𝛥𝜆 
are measured so that the degree of spheroidal distortion can be evaluated from these values as 
follows. First, assume that there is ideally no experimental restriction and all values of pitches 
corresponding to 𝑝 = 0,1, … , 𝑙 can be measured precisely. Let {𝛥𝜆�̂�}𝑝=1,2,…,𝑙 be experimentally 
measured several values of pitches between different azimuthal mode numbers next to each 
other. Then, the degree of spheroidal distortion 𝑏/𝑎 can be estimated from following several 
equations based on the expansion (12): 

{
 

 
𝛥𝜆1̂ = 𝜆1 − 𝜆0
𝛥𝜆2̂ = 𝜆2 − 𝜆1

⋮
𝛥𝜆�̂� = 𝜆𝑙 − 𝜆𝑙−1

 (14) 

Actually, there is a difficulty on realizing the above method. Since on circumstance that the 
shorter axis radius of the model is unknown and we can use only the information of resonant 
wavelengths, it is experimentally hard to detect the azimuthal mode numbers corresponding to 
the measured resonant wavelengths. Also, it is often the case that we can use only subsequence 
of the measured wavelengths values (i.e. whose number of values is fewer than 𝑙). So, if we 
conduct the above evaluation strategy in an experimental setup, following strategy should be 
applied. Let {𝛥𝜆�̂�}𝑝=1,2,…,𝑙0(𝑙0 ≤ 𝑙)  be a sequence of 𝑙0  credible values of measured 
wavelengths pitches between different azimuthal mode numbers next to each other. Then take 
an expectation of these values 𝛥�̂� = 1

𝑙0
(𝛥𝜆1̂ +⋯+ 𝛥𝜆𝑙0

̂)  and the degree of spheroidal 
distortion 𝑏/𝑎 can be estimated by 

𝛥�̂� = 𝐸[𝛥𝜆] = ∫𝛥𝜆(𝜔)ℙ(𝑑𝜔)
𝛺

(=
1

𝑙
∑ 𝛥𝜆(𝜔𝑝)

1≤𝑝≤𝑙

) (15) 

This averaging procedure is justified because of the invariance of pitches for each azimuthal 
modes stated at the beginning of this section.  
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4.3 Discussion 
We suggested the measurement strategy to evaluate the degree of prolate-spheroidal distortion. 
In section 4.2, we stated that there is an experimental restriction that azimuthal mode numbers 
cannot be detected. In addition to this, there are some other experimental restriction. First, the 
measurement accuracy of WGM resonant wavelengths depends on the performance of the 
spectrometer. In other words, if the pitches of resonant wavelengths corresponding to different 
azimuthal mode numbers next to each other are smaller than the resolution of the spectrometer 
cannot be discriminated so that there is no knowing about precise values of pitches. So, for each 
value of resolution, there exists a minimal value of distortion for which we can measure pitches 
between different azimuthal mode numbers next to each other. For example, if the shorter axis 
radius is 100 μm and the resolution of the spectrometer is 0.1nm, then the minimal value of 
degree of spheroidal distortion is 1.0377. in other words, if the measured spheroidal object is 
distorted over 1.0377 (i.e. 𝑏 ≥ 1.0377𝑎  holds), then the distortion can be detected 
experimentally. Table.9 shows the several numerical exemplary values of minimal degree of 
prolate-spheroidal distortion which can be measured when the resolution of the spectrometer is 
0.1 nm. 
 
Table.9 Degree of prolate-spheroidal distortion which can be measured if the resolution of the 

spectrometer is 0.1 nm (refractive index is 1.5 and radial mode number 𝑞 is 1). 
Short radius of the 

spheroid [μm] 

Angular mode number 
(corresponding resonant wavelength 

when 𝑏/𝑎 is 1 [μm]) 

Measurable minimal 

spheroidal distortion 

1 10 (1.35861) 1.00031 
50 300 (1.51244) 1.01942 
100 600 (1.53305) 1.0377 
500 3000 (1.55742) 1.16548 

1000 6000 (1.56229) 1.29667 
 
CONCLUSIONS 
In this study, we proposed a new measurement method for which the degree of spheroidal 
distortion of the object sphere can be evaluated. This method uses WGM resonant wavelengths 
for each azimuthal mode based on the disappearance of the degeneracy for the azimuthal 
direction for a spheroidal particle. We also appreciated the validity of this measurement method. 
 
APPENDIX 
Here we show the concrete representation of components appeared in matrix (7).  

𝑈𝑚𝑛
(𝑗),𝑡

(𝑐1,0) = 𝑚𝜉0𝑅𝑚𝑛
(𝑗)
(𝑐1,0; 𝜉0)[(𝜉0

2 − 1)𝐵𝑡
𝑚𝑛(𝑐1,0) + 2(𝜉0

2 − 1)𝐴𝑡
𝑚𝑛(𝑐1,0)

+ 𝐸𝑡
𝑚𝑛(𝑐1,0)] 

(A.1) 
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𝑉𝑚𝑛
(𝑗),𝑡

(𝑐1,0) =
𝑖

𝑐1,0
{
𝑚2𝑅𝑚𝑛

(𝑗)
(𝑐1,0; 𝜉0)

𝜉0
2 − 1

[(𝜉0
2 − 1)2𝐷𝑡

𝑚𝑛(𝑐1,0) + 2(𝜉0
2 − 1)𝐶𝑡

𝑚𝑛(𝑐1,0)

+ 𝐹𝑡
𝑚𝑛(𝑐1,0)]

− 𝑅𝑚𝑛
(𝑗)
(𝑐1,0; 𝜉0

2) [𝜆𝑚𝑛(𝑐1,0) − (𝑐1,0𝜉0)
2

+
𝑚2

𝜉0
2 − 1

] [(𝜉0
2 − 1)𝐶𝑡

𝑚𝑛(𝑐1,0) + 𝐹𝑡
𝑚𝑛(𝑐1,0)]

+ 𝜉0(𝜉0
2 − 1) [

𝑑𝑅𝑚𝑛
(𝑗)
(𝑐1,0; 𝜉)

𝑑𝜉
]

𝜉0

[2𝐶𝑡
𝑚𝑛(𝑐1,0)𝜉0

+ (𝜉0
2 − 1)𝐺𝑡

𝑚𝑛(𝑐1,0) + 𝐼𝑡
𝑚𝑛(𝑐1,0)]

+ 𝑅𝑚𝑛
(𝑗)
(𝑐1,0; 𝜉0)[(𝜉0

2 − 1)2𝐺𝑡
𝑚𝑛(𝑐1,0) + (3𝜉0

2 − 1)𝐼𝑡
𝑚𝑛(𝑐1,0)]} 

(A.2) 

𝑋𝑚𝑛
(𝑗),𝑡

(𝑐1,0) = 𝜉0𝑅𝑚𝑛
(𝑗)
(𝑐1,0; 𝜉0)𝐺𝑡

𝑚𝑛(𝑐1,0) − [
𝑑𝑅𝑚𝑛

(𝑗)
(𝑐1,0; 𝜉)

𝑑𝜉
]

𝜉0

𝐶𝑡
𝑚𝑛(𝑐1,0) (A.3) 

𝑌𝑚𝑛
(𝑗),𝑡

(𝑐1,0) =
𝑖

𝑐1,0
𝑚(

1

𝜉0
2 − 1

𝑅𝑚𝑛
(𝑗)
(𝑐1,0; 𝜉0)[𝐴𝑡

𝑚𝑛(𝑐1,0) + 𝐻𝑡
𝑚𝑛(𝑐1,0)]

+ {𝑅𝑚𝑛
(𝑗)
(𝑐1,0; 𝜉0) + 𝜉0 [

𝑑𝑅𝑚𝑛
(𝑗)
(𝑐1,0; 𝜉)

𝑑𝜉
]

𝜉0

}𝐵𝑡
𝑚𝑛(𝑐1,0)) 

(A.4) 

Here, 𝑐1,0 = 𝑙 ∙ 𝑘0,1 , closed curve 𝜉 = 𝜉0  denotes the surface of the object spheroid and 
𝑅𝑚𝑛
(𝑗)
(𝑐1,0; 𝜉0) is the radial spheroidal wave function where upper subscript 𝑗  classifies the 

asymptotic behavior of the radial spheroidal wave function as follows: 

𝑅𝑚𝑛
(1)

→
1

𝑐𝜉
𝑐𝑜𝑠 (𝑐𝜉 −

𝑛 + 1

2
𝜋) (A.5) 

𝑅𝑚𝑛
(2)

→
1

𝑐𝜉
𝑠𝑖𝑛 (𝑐𝜉 −

𝑛 + 1

2
𝜋) (A.6) 

𝑅𝑚𝑛
(3)

→
1

𝑐𝜉
𝑒𝑥𝑝 [𝑖 (𝑐𝜉 −

𝑛 + 1

2
𝜋)]  (A.7) 

𝑅𝑚𝑛
(4)

→
1

𝑐𝜉
𝑒𝑥𝑝 [−𝑖 (𝑐𝜉 −

𝑛 + 1

2
𝜋)] (A.8) 

Also, 𝐴𝑡𝑚𝑛, 𝐵𝑡𝑚𝑛, 𝐶𝑡𝑚𝑛, 𝐷𝑡𝑚𝑛, 𝐸𝑡𝑚𝑛, 𝐹𝑡𝑚𝑛, 𝐺𝑡𝑚𝑛, 𝐻𝑡𝑚𝑛, 𝐼𝑡𝑚𝑛 are defines as expansion coefficients of 
following functions of angular spheroidal wave function 𝑆𝑚𝑛(𝜂)  by associated Legendre 
function 𝑃𝑚𝑛(𝜂): 

(1 − 𝜂2)1/2𝑆𝑚𝑛(𝜂) =∑𝐴𝑡
𝑚𝑛 ∙ 𝑃𝑚−1+𝑡

𝑚−1 (𝜂)

∞

𝑡=0

  (A.9) 

(1 − 𝜂2)−1/2𝑆𝑚𝑛(𝜂) =∑𝐵𝑡
𝑚𝑛 ∙ 𝑃𝑚−1+𝑡

𝑚−1 (𝜂)

∞

𝑡=0

 (A.10) 
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𝜂(1 − 𝜂2)1/2𝑆𝑚𝑛(𝜂) =∑𝐶𝑡
𝑚𝑛 ∙ 𝑃𝑚−1+𝑡

𝑚−1 (𝜂)

∞

𝑡=0

 (A.11) 

𝜂(1 − 𝜂2)−1/2𝑆𝑚𝑛(𝜂) =∑𝐷𝑡
𝑚𝑛 ∙ 𝑃𝑚−1+𝑡

𝑚−1 (𝜂)

∞

𝑡=0

 (A.12) 

(1 − 𝜂2)3/2𝑆𝑚𝑛(𝜂) =∑𝐸𝑡
𝑚𝑛 ∙ 𝑃𝑚−1+𝑡

𝑚−1 (𝜂)

∞

𝑡=0

 (A.13) 

𝜂(1 − 𝜂2)3/2𝑆𝑚𝑛(𝜂) =∑𝐹𝑡
𝑚𝑛 ∙ 𝑃𝑚−1+𝑡

𝑚−1 (𝜂)

∞

𝑡=0

 (A.14) 

(1 − 𝜂2)1/2
𝑑𝑆𝑚𝑛(𝜂)

𝑑𝜂
=∑𝐺𝑡

𝑚𝑛 ∙ 𝑃𝑚−1+𝑡
𝑚−1 (𝜂)

∞

𝑡=0

 (A.15) 

𝜂(1 − 𝜂2)1/2
𝑑𝑆𝑚𝑛(𝜂)

𝑑𝜂
=∑𝐻𝑡

𝑚𝑛 ∙ 𝑃𝑚−1+𝑡
𝑚−1 (𝜂)

∞

𝑡=0

 (A.16) 

(1 − 𝜂2)3/2
𝑑𝑆𝑚𝑛(𝜂)

𝑑𝜂
=∑𝐼𝑡

𝑚𝑛 ∙ 𝑃𝑚−1+𝑡
𝑚−1 (𝜂)

∞

𝑡=0

 (A.17) 
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