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ABSTRACT

Deriving Euler-Lagrangian equations of motion for sophisticated mechanical systems symbolically often
results in complex and large expressions. Based on algorithmic differentiation we present an alternative
to the direct implementation of this equations. The Lagrangian provides the starting point for deriving
the equations of motion and not necessarily has to be given explicitly. Algorithms containing loops or
other control structures will work as well. We will demonstrate the usage of this alternative differentiation
method on the system of a tower crane. Experimental results will complete this proposal.

Index Terms— Algorithmic differentiation, automatic differentiation, tower crane, partial lineariza-
tion

1. INTRODUCTION

As like for other systems in mechatronics and robotics, providing minimal coordinates are found, modeling
the system dynamics of a tower crane can be written as a system of first order nonlinear differential
equations

ẋ = F (x,u), (1)

where F : Rn × Rm → Rn is a nonlinear map and x ∈ Rn and u ∈ Rm denote state vector and input of
the system, respectively. This system easily can be simulated using tools like Matlab, Scilab or Python.

Usually the equations of motion are derived symbolically based on the Lagrangian algorithm. Very
often this results in highly complicated nonlinear expressions. As an alternative to implementation of
the symbolic equations using algorithmic differentiation (AD) has been suggested in [3, 11, 12]. In
simulation this approach turned out as an easy to use method since only the Lagrangian of the system has
to be given [3, 11, 12]. In this paper we show the practicality of AD using the example of a tower crane.
Note that AD can also be utilized for the simulation of mechanical systems described by Hamilton’s
equations [8].

The paper is structured as follows. In Section 2 the model of the tower crane is derived based on the
Lagrangian algorithm. Section 3 gives a short introduction in computing derivatives using AD. It is shown
which derivatives are required in Euler-Lagrangian equations of motion and how their values are computed
with AD. In Section 4 a controller design based on partial linearization is described. Application of this
controller with an AD based implementation is provided in Section 5. Finally in Section 6 a summary and
an outlook is given.
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Fig. 1. Schematic figure of the tower crane

2. MODELING

As depicted in Fig. 1 a typical tower crane consists of the rotating tower with a boom. Along the boom
the trolley with the load is operated. The length of the rope can be controlled by the hoisting gear. From a
theoretical point of view, a tower crane is an underactuated mechanical system [14] with three actuated
degrees of freedom: rotation of the tower ϕ, position of the trolley r and rope length l and the two non
actuated degrees of freedom associated with the load ϕx and ϕy.

For modeling the dynamical behavior of the tower crane the Lagrange algorithm can be applied. Here,
the equations of motion for each degree of freedom qi can be given as follows:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi, (2)

where Qi are the generalized forces and L is the Lagrangian, consisting of the kinetic and potential system
energies T and V , respectively:

L = T − V. (3)

For the given tower crane the Lagrangian consists of the following kinetic and potentials energies of each
component:

Ttower =
1

2
Jϕ̇2, (4a)

Tboom =
1

2
mBr

2
Bϕ̇

2, (4b)

Ttrolley =
1

2
mT(r2ϕ̇2 + ṙ2), (4c)

Tload =
1

2
mLq̇L

T q̇L, (4d)

Vload = mLgl(1− cos(ϕx) cos(ϕy)), (4e)
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where qL is the position of the load

qL =

r cos(ϕ)− l(sin(ϕ) sin(ϕy) + cos(ϕ) sin(ϕx) cos(ϕy))
r sin(ϕ) + l(cos(ϕ) sin(ϕy) + sin(ϕ) sin(ϕx) cos(ϕy))

h− l cos(ϕx) cos(ϕy)

 . (5)

Therefore, the tower crane Lagrangian consists of the aforementioned system energies (4):

L = Ttower + Tboom + Ttrolley + Tload − Vload. (6)

To derive the Euler-Lagrangian equations of motion we first rewrite (2) in a vectorial form

d

dt

∂

∂q̇
L(q, q̇)− ∂

∂q
L(q, q̇) = Q, (7)

where q = (r, ϕ, l, ϕx, ϕy)T is the vector of generalized coordinates and Q = (FT,M, FL, 0, 0)T are the
corresponding generalized forces. Here, FT denotes the force to the trolley, M the torque the drive of the
tower generates and FL is the force to the cable of the load. Next, the total time derivative in (7) will be
replaced by partial derivatives using the chain rule:

∂2

∂q̇2
L(q, q̇)q̈ +

∂2

∂q∂q̇
L(q, q̇)q̇ − ∂

∂q
L(q, q̇) = Q. (8)

Using matrix notation this yields

M(q)q̈ + c(q, q̇) = Q (9)

where M denotes the mass of inertia and c includes Coriolis and centrifugal terms as well as terms
derived from potential energy. Assuming that the Lagrangian L is regular, i. e.,

det
∂2

∂q̇2
L(q, q̇) 6= 0 (10)

we can transform (8) into a system of 2n first order differential equations

d

dt
q = q̇ (11a)

d

dt
q̇ =

(
∂2

∂q̇2
L(q, q̇)

)−1
·
(

∂

∂q
L(q, q̇)− ∂2

∂q∂q̇
L(q, q̇)q̇ + Q

)
. (11b)

Defining the state vector x = (qT , q̇T )T we can rewrite (11) in the form of a general nonlinear state space
system (1).

It should be mentioned that the derived Lagrangian, mainly due to the coordinate transformation, is
already a difficult to read and interpret nonlinear function. Obviously, the situation is getting even more
difficult when calculating the derivatives needed for the Euler-Lagrange equations (2). Therefore, it should
be clear that modeling of tower cranes as multi-body systems generally results in large nonlinear equations
of motion, being hard to handle by hand and providing little physical insight due to their complexity. Thus,
in previous contributions, model simplifications have been introduced based on small angle assumptions,
fast/slow decomposition and controlled electric drives [7]. This approach of course introduces additional
model uncertainties and hence performance and robustness issues. As an alternative to the described
symbolic derivation of the equation of motions in this contribution an automatic differentiation based
solution strategy will be presented.
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3. ALGORITHMIC DIFFERENTIATION

3.1. Motivation

We consider a smooth map F : Rn → Rm of which certain derivatives have to be computed. In case F
is given as an explicit function, usually symbolic differentiation will be the first choice. For low order
derivatives mostly it is very efficient. However, symbolic differentiation will have some limitations as
for higher order derivatives the size of symbolically computed derivatives may increase exponentially.
Furthermore symbolic differentiation is not applicable if the considered function is not given explicitly
but by an algorithm that may contain structures as loops or branches.

When only experimental data are given, numerical differentiation may be the only choice. For
explicitly given functions, replacing differential quotient by difference quotient in general results in lack
of precision due to truncation and cancellation errors. The computation of derivatives will always be of
lower accuracy then the associated function value evaluation [5]. Also numerical differentiation is not
very convenient to get higher order derivatives.

Often symbolic expressions for derivatives are not necessarily required. This motivates for automati-
zation of the known rules to compute derivatives. The function under consideration will be split up into
a series of elementary functions (multiplication, summation, sin, ln, . . .) whose derivatives are known.
Evaluating each subexpression numerically will make the main difference to symbolic differentiation and
leads to the differentiation method called algorithmic or automatic differentiation (AD), see [5]. As like
the symbolic case, the chain rule will be used to get the entire derivative that now is represented by a set
of numerical values instead of symbolic expressions. Thus, the computed derivatives have the same level
of precision as the evaluated function. Furthermore exponential increasing memory effort for higher order
derivatives will be avoided [9]. Another interesting point is that the function itself does not have to be
given in form of a mathematical equation but also can be given as an algorithm.

3.2. Algorithmic Differentiation Principles

AD separates two modes of operation. While the forward mode is used to calculate directional derivatives,
the reverse mode provides weighted gradients. Both modes will be introduced in the following.

Forward Mode

The function F maps a curve x ∈ Rn given by a Taylor series

x(t) = x0 + x1t + x2t
2 + . . . + xdt

d +O(td+1) (12)

where x0, . . . ,xd ∈ Rn are vector-valued Taylor coefficients, into a curve y ∈ Rm, given by

y(t) = F (x(t)) = y0 + y1t + y2t
2 + . . . + xdt

d +O(td+1) (13)

with vector-valued Taylor coefficients y0, . . . ,yd ∈ Rm. Clearly the coefficient y0 can be obtained by
function evaluation at time t = 0, i. e.,

y0 = F (x(0)) = F (x0). (14)

Evaluating the time derivative of (13) at t = 0, with application of the chain rule one gets the next Taylor
coefficient

y1 =
d

dt
F (x(t)) = F ′(x0)x1, (15)

that is the directional derivative of F in direction of x1 at the point x0.

c©2017 - TU Ilmenau 4



Reverse Mode

The Jacobian matrix F ′(x0) characterizing the push forward F ∗ : Tx0Rn → TF (x0)Rm, maps the tangent
space in x0 into the tangent space in F (x0). In contrast, the pull back F ∗ : T ∗F (x0)

Rm → T ∗x0
Rn is a

linear map between the associated cotangent spaces whose elements are covectors. The dual spaces of Rn

and Rm are denoted by Rn∗ and Rm∗ respectively. The weighted gradients we obtain by

x̄T = ȳTF ′(x0) (16)

with x̄T ∈ Rn∗, ȳT ∈ Rm∗. By combination of forward mode and reverse mode also second order
derivatives can be computed effectively [5]. Therefore, we apply the reverse mode for both the function
evaluation (14) and directional derivative calculation (15). We obtain

z̄T = ȳTF ′′(x0)v̄, (17)

where the vector v̄ ∈ Rn and the covector ȳT ∈ Rm∗ reduce the Hessian matrix F ′′(x0) to a covec-
tor z̄T ∈ Rn∗.

3.3. ADOL-C

We use the open source AD package ADOL-C (Automatic Differentiation by OverLoading in C++) [15,
16] that is one of the leading software tools for AD of vector valued functions. Using the concept of
operator overloading it provides an efficient implementation of AD. The user can choose whether the
information that is necessary for the computation of derivatives is stored in a separate structure (trace/tape)
or not. The latter will result in the tapeless forward mode where only first order derivatives can be
computed. Thus we will focus on the more capable method of using tapes. Generating such tapes requires
the following procedure [15, 16]:

• The header file adolc.h has to be included.

• The active section containing the function whose derivatives will be required has to be marked.
Therefore the statements trace on(tag, keep) and trace off(file) have to be used,
where tag is an integer, giving the tape a distinct ID. The optional flag keep will prepare the tape
for an immediate call of the reverse mode. Setting the optional flag file forces the tape to be
written on hard drive. Otherwise a file for the tape will only be written if the tape exceeds a certain
length.

• Variables that may be considered as differentiable quantities, i. e., dependent, independent and
intermediate variables of the considered function, have to be declared as active variables. This is
done by changing their type from double or float to adouble.

• All independent and dependent variables have to be selected. For independent variables this is done
with <<= assignments and for dependent variables with >>= assignments respectively.

For detailed information see the ADOL-C manual [15]. Fig. 2 provides an example listing how to generate
the tape of a Lagrangian function. To make the functionality of ADOL-C available for Matlab and to
automatize the tape generation process for simulation purpose also an ADOL-C interface for Matlab based
on MEX functions has been developed [3].

3.4. Derivatives in Euler-Lagrange Equations of Motion

Simulating a mechanical System using the Euler-Lagrange equations of motion, we have seen that certain
derivatives of the Lagrangian are required. We define the state vector x = (qT , q̇T )T . The gradient

dL(x) =

(
∂L

∂q

∂L

∂q̇

)
(18)
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#include <adolc/adolc.h>

void lagrangian(int n, double *pq, double pL)
{

short int tag = 0; // tape specifier

adouble *q = new adouble[n]; // declare independent active variables
adouble *L = new adouble[1]; // declare dependent active variable

trace_on(tag); // start tracing

for (int i = 0; i < n; i++)
q[i] <<= pq[i]; // select independent variables

L[0] = ...; // Lagrangian

L[0] >>= pL; // select dependent variable

trace_off(); // stop tracing
}

Fig. 2. Minimal example code for tape generation of a Lagrangian

can be obtained by application of (16). ADOL-C provides the function gradient for this purpose.
Besides the gradient in term of q, also the generalize impulse dL/dq̇ is returned without any additional
computational effort. The second order derivatives, included in the Hessian matrix

∂2L(x)

dx2
=


∂2L

∂q2
∂2L

∂q∂q̇

∂2L

∂q̇∂q

∂2L

∂q̇2

 (19)

can be computed using (17). The required ADOL-C function is hessian.

4. CONTROLLER DESIGN

4.1. Partial Linearization

We can see that the right hand side of (9) does not depend on the generalized coordinates q and thus it is
easy to split into a fully actuated subsystem and a non actuated subsystem

M11q̈1 + M12q̈2 + c1 = Q̃, (20a)

M21q̈1 + M22q̈2 + c2 = 0, (20b)

where both subsystems are coupled. We denote q1 = (r, ϕ, l)T and q2 = (ϕx, ϕy)T the actuated and
non actuated coordinates respectively. The input for the actuated subsystem is Q̃ = (FK,M, FL)T .
Considering (20b) it can be resolved for the acceleration of the non actuated coordinates

q̈2 = −M−1
22 (M21q̈1 + c2). (21)

Next, the acceleration q̈2 in (20a) can be eliminated such that we get(
M11 −M12M

−1
22 M21

)︸ ︷︷ ︸
M̃

q̈1 + c1 −M12M
−1
22 c2︸ ︷︷ ︸

c̃

= Q̃. (22)
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Model Component Value
boom length 760 mm
tower height 1580 mm
maximal rope length 1300 mm
load mass 3.2 kg
trolley mass 1.2 kg

Table 1. Laboratory model parameters

We choose Q̃ = M̃v + c, where v ∈ R3 is a new virtual input that is equivalent to acceleration of the
fully actuated subsystem

q̈1 = v, (23a)

q̈2 = −M−1
22 (M21v + c2) . (23b)

This is equivalent to an input-output linearization where actuated coordinates q1 are treated as output. In
particular, this corresponds to a collocated partial linearization [13]. We obtain a linear system (23a) for
the actuated subsystem while (23b) represents an internal dynamics [10].

We can see, for partial linearization mass matrix M and vector c are required. According to Section 3.4
Jacobian and Hessian matrix of the Lagrangian L are required and can be computed using AD.

4.2. Stabilizing Control

We will design a control law such that actuated coordinates q1 are following a sufficiently smooth desired
trajectory q1,d : [0,∞)→ R3. The consequential tracking error is defined by q̃1 := q1 − q1,d for which
we propose the dynamics

0 = ¨̃q1 + KD
˙̃q1 + KPq̃1, (24)

where KP,KD are diagonal matrices of dimension 3× 3 with positive entries. In order to damp internal
dynamics (23b), that can be interpreted as oscillation of the load, the classical PD approach (24) will be
extended by feedback of the load angles ϕx and ϕy. This results in the control law

v = q̈1,d −KD
˙̃q1 −KPq̃1 −

 kxϕx

kyr
−1ϕy

0

 (25)

where kx, ky > 0.

5. EXPERIMENTAL RESULTS

5.1. Experimental Platform

The laboratory model of the tower crane used in experiment is shown in figure 3. The associate parameters
are given in Table 1. The rotation of the tower is driven by a worm drive at the bottom. For movement of
the trolley the jib is provided with a chain drive. A steel wire representing the hoist is driven by a winch
system. All motors are equipped with incremental encoders for measuring position and speed of tower
rotation, trolley and load. For real time operation purpose a DSpace controller board DS1103 is used. An
inertial motion unit (IMU) including magnetometer, accelerometer and gyroscope is mounted on the hook
to measure deflection of the load. It communicates to the DSpace controller via the serial protocol using
Bluetooth.

For the AD based control task we use a Raspberry Pi (RPI) running Raspbian Jessie (kernel version 4.9)
that is communicating with the DSpace system via a Waveshare High-Precision AD/DA Board [17]. This
structure avoids necessity of compiling ADOL-C for the DSpace Power PC.
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Fig. 3. Test station

5.2. Friction Compensation

In section 2 we deduced a point mass model for the tower crane were friction was completely neglected.
In practice this is a very strong restriction that would make the model inapplicable for the test station. To
overcome the influence of friction we follow the approach suggested in [6]. For demonstration we will
give a short sketch for friction identification of the drive of the tower only. For the trolley the identification
process is analogous. We consider the dynamics of the tower without any influence of the trolley and the
load

Jϕ̈ = MT − dT, (26)

where dT denotes friction of the tower drive. For this friction term we assume it depends on angular
velocity ϕ̇ and the momentum MT of the drive. Taking a simple Taylor series approximation leads to

dT(MT, ϕ) ≈ dT,0 + dT,1MT + dT,2ϕ̇ + dT,3MTϕ̇ (27)

where dT,0, . . . , dT,3 ∈ R are coefficients to be identified. Introducing

n(MT) := −dT,0 − dT,1MT + MT,

m(MT) := −dT,2 − dT,3MT,
(28)

for constant MT results in linear dependence between ϕ̈ and ϕ̇

Jϕ̈ = m(MT)ϕ̇ + n(MT). (29)

Taking step responses for various momentums MT approximately results in straight lines in the ϕ̇,ϕ̈ -
plane. For this step responses m(MT) and n(MT) can be fitted and thus the coefficients dT,0, . . . , dT,3
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Fig. 4. Experimental results, transition between rest positions

can be determined. Finally, the momentum MT to be set to achieve a desired acceleration ϕ̈d at some
point with an actual angular velocity ϕ̇ is

MT =
Jϕ̈d + dT,0 + dT,2ϕ̇

1− dT,1 − dT,3ϕ̇
. (30)

It has to be noted that step responses have to be taken for MT < 0 and MT > 0 that will result in negative
and positive angular velocities respectively. When friction depends on sign(ϕ̇) this results in different
coefficients depending on the direction the tower is rotating and for (30) one also have to switch between
these two sets of coefficients.

5.3. Experiment

To validate practicability of the proposed AD based controller design a simple polynomial trajectory to
convey between rest positions has been chosen. This trajectory was designed in Cartesian coordinates
to achieve a straight path between rest positions. We explicitly do not wanted to solve a boundary value
problem as described in [4] to generate a trajectory that already ensures that the load is in rest after
transition. This was done to verify load oscillation damping.

Figure 4 visualizes the trajectories of the position of the trolley and the angular position of the
tower. The length of the cable was kept constant with l ≈ 1.3 m. The transition starts at (rd, ϕd)(0) ≈
(0.34 m, 1.5◦) and ends at (rd, ϕd)(T ) ≈ (0.65 m, 52◦) where transition time was set to T = 4 s. It can
be seen that the transition causes load oscillations. In direction of the jib, this oscillation were damped
by the controller in a greater extend than the oscillation in the other direction. This behavior is caused
by friction in tower drive that could not be compensated completely. This also shows up in position
trajectories of the jib and the tower. While the jib is moving more actively to damp oscillations, the tower
keeps rather steady.

c©2017 - TU Ilmenau 9



6. SUMMARY AND OUTLOOK

AD is a powerful tool that not only can be used for a simulation of mechanical systems where just the
Lagrangian has to be given [12] but also for control purpose. For a controller based on partial linearization
or for Computed Torque [1, 2] the same derivatives are required as for system simulation. The advantage
of using AD is that the Euler-Lagrangian equations do not have to be explicitly given as for complex
mechanical systems they can become complicated with very long expressions. The partial linearization
approach using AD was practically applied to a tower crane test station.

In experiment it has been shown that friction compensation is quite challenging. Due to this the
experimental results lag the results that can be achieved in simulation [3]. To overcome this problem a
more sophisticated friction compensation is required. It could be noticed that friction at the test station also
depends on position. This property is not jet mapped by the used friction model. A completely different
approach would be using nonlinear model predictive control (NMPC) instead of partial linearization.

Another point is the sampling rate. Transferring data between the DSpace system and the RPI turned
out to be the bottleneck of the control structure. A direct implementation of the controller on the Power
PC therefore is worth striving for. This had not been done so far as this requires compiling the ADOL-C
package for the DSpace system.
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