
59th ILMENAU SCIENTIFIC COLLOQUIUM
Technische Universität Ilmenau, 11 — 15 September 2017

URN: urn:nbn:de:gbv:ilm1-2017iwk-048:9

CONTROL OF COMPLIANT ROBOTIC SYSTEMS WITH MUSCLE-LIKE
ACTUATORS AND SATURATED FEEDBACK

Konrad Siedler / Carsten Behn

Technical Mechanics Group, Department of Mechanical Engineering
Technische Universität Ilmenau

Max-Planck-Ring 12, 98693 Ilmenau, Germany
}konrad.siedler, carsten.behn‖@tu-ilmenau.de

ABSTRACT

This paper is devoted to the problem in controlling a compliant robotic system by means of actuators with muscle-

like properties, which underlie prescribed bounds due to the natural muscle behavior. A typical example to demon-

strate the effectiveness of developed control schemes is the choice of a (inverted) pendulum with higher degree of

freedom. Due to the force restriction of the driving muscle forces, we have to sought (saturated) feedback strate-

gies to control the system behavior (e.g. tracking of paths) which have to be limited a-priori. A suitable control

variable can be generated by adaptive controllers, e.g., a PID-λ-stabilization. But, the classical torque control

variable has to be converted to the muscle force at the joints, and the joint angle velocity has to be converted to the

contraction velocity. The effective force at every joint is the difference of the antagonistic muscles pairs with the

muscle characteristic curve of HILL (force-velocity-relation). The aim is now, to hold the control variable inside

the area restricted by the muscle pairs. Several simulations show the effectiveness of the designed controllers.

Index Terms— compliant system, muscle force, muscle-like actuator, adaptive control, saturated feedback.

1. INTRODUCTION

Today, artificial muscles are a serious alternative to conventional motors, especially for systems in which the

moving elements do not have to perform a whole revolution. This paper is devoted to the problem in controlling

a compliant robotic system by means of actuators with muscle-like properties, which underlie prescribed bounds

due to the natural muscle behavior. To avoid damage to the actuators and ensure the system behavior, saturated

feedback strategies are necessary. Due to the compliance of the system, many parameters are unknown and/or

uncertain, why adaptive control strategies are chosen. A typical example to demonstrate the effectiveness of

developed control schemes is the choice of a (inverted) pendulum with DoF ∈ 2, see [2] and [6].

2. MATHEMATICAL MODEL

To analyze these adaptive control strategies a model is chosen, in which the artificial, compliant muscles are

meaningful implemented with a sufficient number of inaccuracies. For this, a biological inspired robot arm in form

of a double pendulum (simplified SCARA-type) with two antagonistic muscle pairs is chosen. The functional

principle and the mechanical quantities of the system are depicted in Fig. 1. Using this model, the efficiency of the

designed control strategies should be well visible.
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Figure 1. Underlying double pendulum structure with actuator arrangement.

To determine the equations of motion, we use the Euler-Lagrange equations of the 2nd kind with the generalized

coordinates q1 := ϑ1 and q2 := ϑ2. The following matrix-vector notation results [1]:

M(q)q̈ + C(q, q̇)q̇ +G(q) = u, (1)

with:

M(q) =

(
m1 r

2
1 + J1 +m2

[
l21 + r22 + 2 l1 r2 cos(q2)

]
+ J2 m2

[
r22 + l1 r2 cos(q2)

]
+ J2

m2

[
r22 + l1 r2 cos(q2)

]
+ J2 m2 r

2
2 + J2

)
,

C(q, q̇) q̇ =

(
m2 l1 r2 sin(q2)

[
q̇22 + 2q̇1 q̇2

]
q̇21 m2 l1 r2 sin(q2)

)
,

G(q) =

(
sin(q1)[m1 g r1 +m2 g l1] +m2 g r2 sin(q1 + q2)

m2 g r2 sin(q1 + q2)

)
(2)

3. CONTROL STRATEGIES

As mentioned above, we have to deal with uncertainties, i.e., the system parameters are not known or are uncertain.

Hence, primarily adaptive control strategies are chosen. The tuning of the gain parameters (by trial&error-methods)

of conventional PID-strategies will consume a lot of time:

ei(t) := qi(t) qRef i(t)

ui(t) = kPi ei(t)

︸ ︷︷ ︸
P−part

kDi κi ėi(t)

︸ ︷︷ ︸
D−part

kIi ηi

t∫
0

ei(t)dt

︸ ︷︷ ︸
I−part

with kPi, kDi, kIi ∧ R

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3)

Remark: The index i in the following control strategies indicates the two control inputs at the joint i = 1, 2 of the

model.

A way out of this problem is the choice of adaptive controllers – having time-variant gain parameters which adjust

their necessary control values on their own using some adaptation laws. More precisely, a simple control objective

is the λ-stabilization one. It allows the design of simple feedback strategies, as described in the following:

ei(t) := qi(t) qRef i(t)

ui(t) = ki(t) ei(t) κi ki(t) ėi(t) ηi ki(t)
t∫
0

ei(t)dt

k̇i(t) =

{
γi ( ei(t) λi)

2 for ei(t) ∈ λi

0 else

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4)
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Using this control strategy, a so-called λ-tolerance area is introduced, in which the error value of the system is

accepted/tolerated. Outside of this area the gain factor will rise up in dependence on the deviation to the tolerance

area. The factor γ describes a proportional factor to gain the growth of the gain factor.

A more specialized control strategy is the advanced λ-stabilization, which is derived from (4), [5]:

ei(t) := qi(t) qRef i(t)

ui(t) = ki(t) ei(t) κi ki(t) ėi(t) ηi ki(t)
t∫
0

ei(t)dt

k̇i(t) = γi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ei(t) εiλi)
2 for εiλi + 1 ≥ ei(t)

( ei(t) εiλi)
1
2 for εiλi ≥ ei(t) < εiλi + 1

0 for ei(t) < εiλi { t tei < tdi

δi( ei(t) , εiλi) ki(t) for ei(t) < εiλi { t tei ∈ tdi

with δi( ei(t) , εiλi) := σi≤

(
1

ei(t)

εiλi

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

with some additional parameters:

ε - proportional factor to force the gain factor to rise up before the error value leaves the tolerance area;

δ(≤) - function to reduce the gain factor;

te - time stamp, when the system value enters the tolerance area;

td - time how long the system value has to stay in the tolerance area, before the gain factor will be

reduced by δ.

A third control strategy, just for comparison with previous results is a saturated control strategy from the very

beginning. This one was derived in [1], it is adapted from [7]. It works by compensating the potential energy of

the system:

ei(t) := qpi(t) qdi(t)

q̇ci(t) = k1i qci(t) k2i sat(qci(t) ei(t))

upi(t) = k2i sat(qci(t) ei(t)) +
∂

∂qpi(t)
Up(qp(t))

with Up(qp(t)) = ( m1 g r1 m2 g l1) cos(qp1(t)) m2 g r2 cos(qp1(t) + qp2(t))

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)

4. SATURATION OF THE FEEDBACK

To ensure a non-destructive operating, the system needs a saturated control variable u. Therefore, the muscle

characteristic curve of HILL (force-velocity-relation) is used [8]. Then, the maximum possible muscle force is

faced to the contraction velocity Ṡ. This relation can be described by the approximation [1]:

hj(≤) = a∗j b∗j arctan(c
∗
j ≤(≤)) with a∗j , b

∗
j , c

∗
j ∧ R, j = 1, . . . , 4 (7)

The index j describes each muscle CCj of the system j = 1, . . . , 4. The needed muscle force Fi can be interpreted

as a percentage of the possible maximum power – this ratio is called intensity vj [11]:

Fj = vj hj(≤) (8)

The effective force on every joint is the difference of the antagonistic muscles pairs [1]:

F1 = v1 h1(Ṡ1) v2 h2( Ṡ1), F2 = v3 h3(Ṡ2) v4 h4( Ṡ2) (9)

As a consequence now, the control input variable ui has to be converted to the muscle forces Fi, and the joint angle

velocity q̇i has to be converted to the contraction velocity Ṡi, with i = 1, 2, see [9].

To calculate the necessary muscle force the mechanical properties are respected, i.e., the joint of the limb elements

are positioned at the height of the muscle’s joints:

Fi(t) =
ui(t)

ai cos(qi)
, (10)
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introducing the variable ai which describes the distance between joint of the limb elements and the muscle’s joints.

The contraction velocity Ṡi is then

Ṡi = ai q̇i cos(qi). (11)

The task is now, to hold the control variable in an area restricted by the h(≤)-functions of the muscle pairs, see

(9). One way in doing this is, that the controller variables are chosen to stay in this area (maybe by a trial&error-

method). More promising, the control variable can be saturated so that no higher values of the control variable is

allowed than the system can process. With the saturated controller (6) this behavior is already included. The others

(3) to (5) need a hard “cut-off”, so following saturation is included for the following simulations:

h2( Ṡ1)v2 ∈ F1 ≥ h1(Ṡ1)v1 with v1 = 1 for F1 > h1(Ṡ1) and v2 = 1 for F1 < h2( Ṡ1)

h4( Ṡ2)v4 ∈ F2 ≥ h3(Ṡ2)v3 with v3 = 1 for F2 > h3(Ṡ2) and v4 = 1 for F2 < h4( Ṡ2)
(12)

To solve (9) and get usable muscle intensities, we introduce the following complimentary-slackness conditions

which is very easy to be implemented:

v1 v2 = 0; v3 v4 = 0 (13)

This was done and analyzed in [1]. A much more specified system of such rules can reflect the real model much

better. So the following rules are implemented to active the contra muscle for a moving to the course against the

intended one. Additionally, the factor ξ allows to switch this behavior to the movement of a segment by a relaxation

of the active muscle, so that the targeted position can be reached more stable. The following law shows rules for

the first segment, the same holds for the second one, [9]:

for cos(q) > 0 , q̇1 > ξ1 , F1 > 0 : v1 =
F1

h1(Ṡ1)
, v2 = 0

for cos(q) > 0 , q̇1 > ξ1 , F1 < 0 : v1 =
F1

h1( Ṡ1)
, v2 = 0

for cos(q) > 0 , q̇1 < ξ1 , F1 > 0 : v1 = 0 , v2 =
F2

h2(Ṡ1)

for cos(q) > 0 , q̇1 < ξ1 , F1 < 0 : v1 = 0 , v2 =
F2

h2( Ṡ1)

for cos(q) < 0 , q̇1 > ξ1 , F1 > 0 : v1 = 0 , v2 =
F2

h2(Ṡ1)

for cos(q) < 0 , q̇1 > ξ1 , F1 < 0 : v1 = 0 , v2 =
F2

h2( Ṡ1)

for cos(q) < 0 , q̇1 < ξ1 , F1 > 0 : v1 =
F1

h1(Ṡ1)
, v2 = 0

for cos(q) < 0 , q̇1 < ξ1 , F1 < 0 : v1 =
F1

h1( Ṡ1)
, v2 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

5. SIMULATIONS

In several simulations the following system quantities are presented in figures: the angles qi, the forces Fi, the

intensities vj , and the controller restrictions Fi(Ṡi), with i = 1, 2 and j = 1 . . . 4. Further, the follwing system

parameter are chosen for all simulations, oriented to [9]:

m1 = m2 = 2 r1 = r2 = 1 l1 = l2 = 2 J1 = J2 = 1

a∗j = 1000 b∗j =
2a∗

j

π c∗j = 10 ξi = 0.1 with j = 1 . . . 4.

The starting/initial position is (q1(0); q̇1(0); q2(0); q̇2(0)) = (0; 0; 0; 0), the targeted one (q1(0); q̇1(0); q2(0); q̇2(0)) =
(0.8; 0; 0; 0). This means, the first segment of the arm is moving 0.8 rad counterclockwise, the second segment

shall hold its position.

Simulation 1: The results of the first simulation are shown in Figs. 2 and 3 which present the system behavior.

Here, we use the conventional PID-controller (3) with the parameters:
kP1 = 80 kD1 = 180 kI1 = 70
kP1 = 500 kD1 = 100 kI1 = 300
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Figure 2. Simulation 1: joint angles (left), forces (middle), controller restriction of first joint (right).
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Figure 3. Simulation 1: intensities of muscles CC1, CC2 (left), Intensities of muscles CC3, CC4 (middle), con-

troller restriction of second joint (right).

The control parameters of the first segment has to be chosen quite low, for not to leave the restriction area on their

own. The ones for the second segment can be chosen high, because this one has only to stabilize itself. The chosen

parameters for segment 1 are nearly on the limit to leave the controller restriction area.

Simulation 2: The result shown in Figs. 4 and 5 offer higher control parameters for segment 1 and show what

happens when the saturation of the control variable appears. The chosen parameters are:
kP1 = 200 kD1 = 300 kI1 = 200
kP1 = 500 kD1 = 100 kI1 = 300
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Figure 4. Simulation 2: joint angles (left), forces (middle), controller restriction of first joint (right).
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Figure 5. Simulation 2: intensities of muscles CC1, CC2 (left), Intensities of muscles CC3, CC4 (middle), con-

troller restriction of second joint (right).

In the moment when the system requires more force to move the arm counterclockwise, the controller does not

grant this. So, a higher overshoot with less control of the segment moving results. The conventional PID-controller

(3) does not get on with its restriction.

Simulation 3: With the adaptive control strategies the restriction area can be exploit much better. In the following

simulation presented in Figs. 6 and 7 the following control parameters are used for controller (4):
λ1 = 0.026 γ1 = 1200 κ1 = 0.5 η1 = 0.5
λ2 = 0.026 γ2 = 600 κ2 = 0.5 η2 = 0.5
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Figure 6. Simulation 3: joint angles (left), forces (middle), controller restriction of first joint (right).
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Figure 7. Simulation 3: intensities of muscles CC1, CC2 (left), Intensities of muscles CC3, CC4 (middle), con-

troller restriction of second joint (right).

The results show from the beginning, that the intensity v1 shoots up to its maximum and touches the controller

restriction limit. Additionally, the targeted angles are reached much faster and more precisely than in Simulation 2.

The controller determines the needed gain factors on its own, so it is not such stiff as the PID-Controller before.

Simulation 4: Still one big disadvantage is present: The gain factor cannot be reduced. After several arm move-

ments the controller will still stay at very high gain factors, so that all movements will be done with “full” power.

One solution is the advanced λ-stabilization (5). Its performance is shown in the simulation results of Figs. 8 and
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9, using the following control variables:
λ1 = 0.026 ε1 = 0.7 γ1 = 640 κ1 = 0.5 η1 = 0.2 σ1 = 0.2 td1 = 2
λ2 = 0.026 ε2 = 0.7 γ2 = 400 κ2 = 0.5 η2 = 0.2 σ2 = 0.2 td2 = 2
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Figure 8. Simulation 4: joint angles (left), forces (middle), controller restriction of first joint (right).
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Figure 9. Simulation 4: intensities of muscles CC1, CC2 (left), Intensities of muscles CC3, CC4 (middle), con-

troller restriction of second joint (right).

The simulation shows a very good stabilization of the targeted position. Because of the falling gain factor, the

angle q1 is positioned on the limit of the λ-tolerance area. After enough time the gain factor is reduced too much,

so the angle leaves the tolerance area what the controller leads to rise up and start the process again.

Simulation 5: The last simulation shows the behavior of the saturated controller (6). The best results of this one

were even found in [1], these simulation results – shown in Figs. 10 and 11 – are presented to compare them with

the results above.
k1 1 = 0 k2 1 = 1
k1 2 = 0 k2 2 = 1
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Figure 10. Simulation 5: joint angles (left), forces (middle), controller restriction of first joint (right).
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Figure 11. Simulation 5: intensities of muscles CC1, CC2 (left), Intensities of muscles CC3, CC4 (middle),

controller restriction of second joint (right).

The simulation shows a precise stabilization of the targeted position, without inappreciable overshoots. The prob-

lem of this control strategy is its velocity: it is about ten times slower than on the shown control strategies above.

This can be solved by a trial&error-method in adjusting the control parameters, which is unfavorable.

6. CONCLUSIONS

Starting with the introduction of the model and the derivation of the equations describing the dynamics, we pre-

sented several control strategies to be applied to the muscle-like compliant robotic system in order to stabilize a set

point. Due to the lack of the precise knowledge of system parameters, the focus was on adaptive control schemes.

Because of the natural behavior of the used muscle structures as unconventional control input variables (muscle

force), we set up several problems and solve them: converting necessary control torques in muscle forces, using

the angular velocities which had to be converted into contraction velocities of the muscles. The last problem was

to guarantee a saturated control input the determine valid intensities for controlling the muscles.

The simulations carried out showed the effectiveness of the proposed advanced λ-tracking PID-controller, com-

pared to the other control strategies. This controller fulfilled the stabilization process in a very short time with high

precision. Because of its adaptive nature it is universal in combination with a hard saturation.
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