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ABSTRACT

This paper is devoted to the analysis and simulation of multi-segmented artificial locomotion systems. The bio-
logical paradigm is the earthworm. Here, we restrict our investigation to a crawling system which is moving along
a straight line, more precisely, the system is firstly moving unidirectionally. Recent results from the examined
literature present investigations of short worms (n < 4). In contrast to this, the developed mechanical model in
this paper consists of a chain of 10 discrete mass points. Let us point out, that the presented investigations are not
restricted to a fixed number of mass points. To achieve a movement of the system, the distances between neigh-
boring mass points are controlled by viscoelastic force actuators. Due to a prescribed reference gait, an adaptive
controller determines the necessary forces to adjust the prescribed values. Then, due shortening and lengthening of
these distances together with a spiky ground contact at the mass point (preventing velocities from being negative),
we achieve a global movement of the whole system — called undulatory locomotion. Specific prescribed gaits are
required to guarantee a controlled movement that differ especially in the number of resting mass points and the load
of actuators and spikes. To determine the most advantageous gaits, numerical investigations are performed and a
weighting function offers a decision of best possible gaits. Finally, a gait transition algorithm for an autonomously
change of the locomotion velocity and number of resting mass points in dependence on the spike and actuator force
load is presented and tested in numerical simulations.

Index Terms— artificial locomotion system, optimal gait, gait transition algorithm, adaptive control.

1. INTRODUCTION

In current mechanics literature, worm-like locomotion systems play an increasing role, see for example [1-5], and
also are part of teaching and education of students, see textbooks [6,7]. The advantage of these systems is their little
space requirements due to their unidirectional motion. Therefore, they are used in environments that are difficult to
access for humans or other motion systems. Possible applications are, e.g., minimally invasive surgery [8], service
and maintenance robots [9] or drilling robots [10].

Previous publications deal with worm-like locomotion systems with 3 or 4 mass points [11]. This paper increases
the knowledge of worm-like locomotion by the dynamic behavior of systems with 10 mass points with the goal to
expand the gained results to snake-like locomotion systems in further works.

First of all, the mechanical model of a worm-like locomotion system and the adaptive control scheme are presented.
Afterwards, the generation of suitable gaits considering current literature is introduced. These gaits are used by a
gait transition algorithm that changes velocity and number of resting mass points depending on the load of spikes
and actuators, like the biological paradigm does [12]. Finally, simulations are carried out to demonstrate the
functionality of the scheme.

2. MODELING & CONTROL

The model is identical to [7]. The kinematic model comprises a chain of discrete mass points m; as shown in
Fig. 1, where x;(¢)(i = 0...n) are the coordinates of the mass points, which each own one degree of freedom. The
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distance of neighboring mass elements is:
lj(l‘) szl;l(t)—x,'(t) (D

Ideal spikes are mounted at each segment to inhibit backward movement.
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Figure 1: Chain of mass points with spikes, modified from [11].

In this model, a segment is a mass point, but it can also appear as balloon-like or bellows-like elements (possibly
fluid filled), see [4,5, 13, 14].

To allow a movement of the worm, the distances between the mass points have to be shortened and lengthened. This
can be done in adjusting their longitudinal or radial dimensions [15] or, as here, the distances between adjacent
elements [16, 17]. For this purpose, as a first purely theoretical realization, viscoelastic actuators are assumed
between the segments in the dynamic model. The applied forces on a mass point are (as you can see in Fig. 2):
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Figure 2: Mass point with forces, adapted from [11].

e spring forces F.; = ci(xi—1 —x; —lo;) and F. ;11 = —ciy1(x —xip1 — loi1), where ly; and Iy ;1 are the
detensioned lengths of the springs;

o damping forces Fy; = di(%;—1 —%;) and Fy ;11 = —dit1 (Xi — Xit1);

e actuator forces u; and u;11;

e spike forces Fyz ;;

e weight Fg,; in x-direction;

o friction force Fg; = 0, like Stokes friction due to environmental contact.

Remark 2.1. At this stage of investigations, the assumed zero friction force is only a special case. The interaction
to the ground is modeled via ideal spikes. In future work, we will replace these spikes by anisotropic Coulomb
friction, see also [7,16,17].
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According to [7], the ideal spikes have to fulfill these conditions:
X >0, Fz; >0, Xi-Fz; =0 2

This complementary-slackness condition can be fulfilled by the following equation, where F; is the sum of all
remaining applied forces:

1
Fri= 5 [1 = sign()][1 = sign(F)] - F )

3

Using Newton’s second law, the coupled differential equations for movement of the segments can be formulated:

miki = +ci(xio1 =X — loi) — cip1 (xi = xie1 —loiv1)
+di(kim1 — %) — dip1 (X — Xig1) @
i — 1 + Fz i+ Fori+ Fr

with cg = ¢pr1 = do = dy+1 = g = up+1 = 0. The DoF of the system is N.
To generate a movement of the system, acuators have to apply forces on the mass points. They serve as inputs to
the crawling system to control the distances between the segments.

To follow a given motion pattern, to deal with unknown or uncertain system parameters and to react to changes of
the environment, an adaptive controller is used that generates necessary actuator forces autonomously. The forces
depend on the error e(1):

o [i(t) :==xj_1(¢) —x;(t), the distance between neighboring mass points, which are the system outputs;

° lrefh,'(t), the predefined time-variant reference distance functions, i.e., a later determined optimal motion
pattern in form of a kinematic gait;

o ¢;(t) :=1;(t) — ey, (1), error of the output.

The used controller is described in [18]. It contains regular PD-feedback, which adapts the gain of P and D ele-
ments depending on the 2-norm of the error |le(¢)||. The controller’s goal is to track a reference function of the
outputs and to keep the error within a certain tolerated accuracy A. This kind of A-tracking in combination with an
adaptive controller is described in [19]:

e(r) :=1(r) — Ly (t)
u(t) =k(r)e(t)+k(t)xe() =k(t)- (e(r) +xe(r))

€

Y-(le@)l=%)%  lle)]| = A+1

Y- (le@)l| =1)%3, A+1>[le(r)] > A
iy )0 (le()]l <) ©)
Ko = ANt —tg <tg)

—ok(1), (le(®)]l <)

Nt —tg > tq)

k(to) =k0

withy>1,k>0,0>0,1; >0, A >0, ky > 0, determined in pre-simulations and set in Table 4 in Section 5.

Remark 2.2. It is obvious that the proposed controller is based on the availability of the error velocity. This
is sometimes quite hard to arrange, therefore, see [20, 21] for controllers without derivative measurement of the
output.

Controller (5) works as follows: if the error norm is higher than A, k(-) increases either quadratic or with a
square-root function depending on the amount of exceeding the A-tube. The variable 7 is the point in time, when
the error norm latest entered the A-tube. If the error norm is smaller than A and #g is smaller than the parameter ¢,
k(-) is staying constant. If the error norm stays within the A-tube for longer than #4, there is an exponential decrease
of k(-) with decay factor G.
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3. GENERATION OF GAITS

Firstly, it is demonstrated for a worm-like system of 3 mass points, how the controller works and that suitable gaits
are necessary. Suitable means some kind of optimality with respect to resting phases of mass points and speed
of the whole system. Therefore, arbitrarily chosen reference distance functions /,.f j(¢) and their time derivatives
Lo 1,j(t) are defined according to [11]:

1
lref,1 (1) = lo+ Zlo sin (o)

1 T
lref’z(t) =lyp+-lysin (Ot + =
ghsin (ar+3) o

1
Lef (1) = 7 lowcos (oot)
lrefo(t) = Zloo)cos ((ot + 5)

In Fig. 3a can be seen, how the gain k(r) behaves depending on the error norm ||e(z)||. Considering the worm
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Figure 3: Worm-like locomotion of a system with 3 mass points: arbitrary distance functions (6).

movement x;(¢) in Fig. 3b, the system is able to move forward successfully. However, the velocities of the segments
%;(¢) are non-uniform, which results in different resting times of the mass points (see Fig. 3¢). By using this kind
of reference distance functions (6), it is not possible to create a defined gait with a certain sequence of active spikes
(i.e., resting mass points), which is important for gait transition. Additionally, the speed of the worm system is
rather low due to the arbitrarily chosen gait (keep this in mind for the upcoming simulations, where the speed of
the system is increased by using appropriate developed gaits).

Therefore, gaits have to be designed systematically, as described in [22]. For further algorithms relying on binary
segment states (contracted, extended), see [13,23-25].

First of all, gaits differ in the number of active spikes a € {1,...,n}. Furthermore, there is a periodic sequence
of active spikes A(t), e.g., for a system with N = 3 mass points a possible sequence is A(r) = {1} — {2} — {0}.
With this knowledge, it can be deduced whether a distance /;(r) has to be shortened or lengthened at a certain point
of time. Following the recommendation from [22], the sequence of active spike should move to left or to the right
(only by one segment) like the worm does. A possible sequence is A(z) = {0,1} — {1,2} — {2,3} — {3,0} fora
system with N = 4 segments, while A(#) = {0,1} — {2,3} — {1,2} — {3,0} is not recommended. Thus, allowed
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gaits can be described explicitly by the beginning sequence A of the resting mass points of a time period and the

direction dir of the wave of active spikes, which can be ”I” for left or ”r” for right.
The reference distance functions are built as described in [22]. The time intervals are defined as:

T T
re |:pN7(p+1)N:|7 PENO-

To guarantee a smooth movement of the system, i.e., there are no jerks to the mass points, approximations like
sinz(-)—functions are used to describe the link lengths of the mass points, while T =17 — p%:

[;(t) = elg2N f sin? (L fN7)

1 (N
lj(t) = lo« +EloNfT— EEIO sin (2nfN7),

le| € (0;1) is the relative factor of the maximum distance change,

1
f’

f is the frequency of the A(¢)-sequence with its periodic time 7 =
body-movement of the whole worm system,

chosen in simulation to avoid a rigid-

lp > 0 is the initial distance (detensioned spring),

lo« is the distance at the beginning of the time interval (T = 0), depending on the previous interval either I,
lo(1+¢€) or l()(l —g) [L1].

Remark 3.1. The introduced parameters of the gait generation algorithm are chosen concerning the results in [7]
and [22].

The allowed gaits also differ in their load of the spikes and actuators during operation. Numerical simulations are
executed to find the most advantageous (i.e., lowest load of actuators and spikes) gaits for transition. Gaits with
equal number of active spikes a (i.e., equally quick) are rated with a weighting function:

n n
- 2 2 2
WS,g -—Wlkmax,S +wa Z FZ,i,max,S +ws Z Uj max,S
i~0

i= j=1
2 < 2 < 2
Wr g :=Wikmax,1” + W2 }_ Fzimax, "+ W3 ) Ujmax,T
8 ) oby ) Js )
i=0 j=1 (8)
W _ Wse - _ W,
18,5C T 4 1858C + T
WS,min WT,min
. WT,g.,sc"‘WS,g,sc WT,g,sc WS,g,sc
Wg,tot = +
2 Wsgse  Wrgse

Because of transient effects at the beginning of the simulation, this function considers the maximum load of
actuators u;(-) and spikes Fz;(-), and the maximum gain parameter k(-) for a transient interval Wr 4 as well as a
stationary interval Wy . To have a bigger influence of the load of actuators and spikes, the weighting factors are
chosen as:

wi = LOM/N)?, wy=4.0N2 w3 =40N" )

Remark 3.2. These values are individually chosen by the authors and do not underlie a stringent theory, only
chosen due to intuition and comprehension of influences on the gait selection: The gain parameter k(-) is an
element of the control force u(t), hence, we choose the factor w3 larger than wy. Because of the exhaustion of the
controllers (actuators) is a pretty unlike effect just like breaking spikes, we choose w3 = wy. This results in the
choice given in the formula above.

It is obvious, that — at this stage — a more precise investigation of the influence of these weighting factors on the
gait selection has to be done, but this was not in the main focus of this work.

Afterwards, the values Ws, and Wr, are scaled to the minimum value W i, respectively Wr ;, within the
gaits with equal number of active spikes a. Finally, transient and stationary parts are weighted against each other.
The minimum value W, ;,; within gaits with equal number of active spikes a identifies the most advantageous gait.
This leads to the result shown in Table 1-3 for systems with N = 4,7, 10 mass points. These gaits are used for gait
transition.
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Table 1: Most advantageous gaits for N = 4.

‘ gait
Ao={11.dir=1
Ao={1,2},dir=r
Ao={3,0,1},dir=r

W N = Q

Table 2: Most advantageous gaits for N = 7.

gait
Ao ={0},dir=r
Ao ={0,1},dir=r
Ao ={2,3,4},dir=r
Ao = {4,5,6,0),dir =1
Ao = {3,4,5,6,0}, dir = |
Ao ={1,2,3,4,5,6},dir =1

AN bW =]

Table 3: Most advantageous gaits for N = 10.

gait
Ao={l},dir=r
Ao={2,3},dir=r
Ao=1{0,1,2},dir=r
Ao =1{6,7,8,9},dir=1
Ao =1{2,3,4,5,6},dir=1
Ao =1{5,6,7,8,9,0},dir =1
Ao = 12,3,4,5,6,7,8), dir = I
Ao ={1,2,3,4,5,6,7,8)dir =1
Ao={1,2,3,4,5,6,7,8,9},dir =

O 01NN B~ W=

4. GAIT TRANSITION

After determining appropriate gaits via numerical simulations in Section 3, it is now obvious that the locomotion
system has to select the most advantageous gait for the actual situation on its own. Thinking of changes of the
environment, e.g., change of the slope, malfunction of an actuator or failing of spikes — summarizing an uncertain
environment, this gait transition becomes important, because an environmental change results in different loads
of (the remaining) actuators and spikes. To react to such circumstances, the system has to change the gait and its
frequency autonomously, i.e., on its own. This is addressed to the following investigations.

Remark 4.1. Analogous example: driving a car — increasing the frequency can be compared to accelerating while
gait changing is similar to gear shifting.

The frequency shall only be changed after concluding a single period, i.e., when a part of the sequence A ()
is finished. Changing the frequency has a great influence on the loads of actuators and spikes. To adjust the
frequency, a P-feedback is used. Additionally, it is possible to weight the load of actuators and spikes against each
other using the factors wr, and w:

_ wrzfo [1 +k 7Fz(Fz,soll _Fz,ist)] +wu fo [1 +kp,u(”soll - Misz)]
WEz + Wy

fi (10)

with k,, -, and k,, , as the gain parameters for spikes and actuators, fy as the previous frequency and f; as the newly
adjusted frequency. The setpoints F; s and ug, are predefined, while the actual values are within a single period:

Fz,acr = max {Fz,Oan,l s -~'aFZ,9}
1 t
Uj=— /Mj(’C)d’C (1
T,
1T,
uac,:max{ﬁhﬁz,...,ﬁg}
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The value for the frequency has to be limited to f,,,. Otherwise, there would occur rigid-body-movement, if the
frequency exceeded f,qyx, according to [7].

Remark 4.2. During the period of existence of such rigid-body motion of the whole system, it is uncontrollable in
this time-interval.

This maximum frequency f;,4y, from a kinematical theory according to [7], is given by:

gsin(a)

Fnax(@) = 2neloN (N —a)

12)
After finishing a total period T, i.e., when the sequence of active spikes would start again, the system changes the
number of active spikes a. The model upshifts (decrease the number of active spikes a), if the maximum frequency
Jfmax of a gait is reached. It downshifts (increases the number of active spikes a), if the current reference velocity
(13), according to [7], is also reachable with the next slower gait without exceeding the maximum frequency of the
slower gait:

vref(aaf) = (N_a)‘c:l()f (13)

This downshift frequency fi, is:

vmin,a = vmax,a—i—l

= (N — a)gl()fmin = [N — (a—|— 1)}€lofmax7a+1 (14)
N—(a+1
<~ fmin = ¥fmax.a+l
N—a

After shifting the gait, the frequency has to be adapted to guarantee the same velocity before and after a gait
transition. The analogy to car driving is the adaption of the engine speed while shifting. The frequency after the
transition is:

Vnew = Vold
g (N - anew)'glOfnew = (N - aold)SIOfold (15)
N —apq
<~ fnew =% . Jold
N — ayey Jo

In Fig. 4, the algorithm of frequency control and gait transition is shown, which is executed after the end of the
first single period.

End of Simulation

N
Yes

No | Termination criterion |
fulfilled?

Next time step

New single period?

Yes

Adjust frequency

New total period?

Yes

Adjust gait (and adjust
frequency to new gait)

Figure 4: Algorithm of frequency control and gait transition.
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5. SIMULATIONS

Example 1: Worm system with constant slope without gait transition: Firstly, a simulation without transition
and frequency controlling is shown to get familiar with the basic functionality of the system. The worm crawls up
a ramp with a slope of 30° with the maximum frequency fiuqax = 0.147Hz according to (12) of the fastest gait with
a = 1. The used parameters for each simulations are shown in Table 4.

Table 4: Parameters for simulations.

tona = 40s m; = 1.0kg ¢j=10.0N/m d; =5.0kg/s
lp=1.0m e=04 A=0.05m k=1s
t;=2.0s v =500 6=0.2s" ko = 10N/m

kpr.=0.02N"" k,,=002N"! ¢=9.806m/s> o =30°

Remark 5.1. As mentioned in Section 2, this set of system’s and controller’s parameter is arbitrarily chosen.
The adaptive nature of the controller is expressed by arbitrary choice of these parameters, because the controller
adjusts its behavior to achieve a prescribed control goal of tracking a reference gait. But here, for simulations, it
is obvious to choose a set of parameters to present some numerical results.

The controller data is chosen due to several pre-investigations in [18—20]. The adjustment of some tuning parame-
ters for the controller, like v, t4, © and ko, was investigated. For example, to large values of t; makes the controller
performance very ponderous. Small values of Y and ko decreases the speed of adaptation, meaning the speed of
convergence to the finite, necessary gain values for forcing the error into the prescribed h-tube. Too large values of
Y makes the controller behavior very stiff. A large value of G decreases the level of the gain factor all too fast, which
results in a unstable behavior in the A-tube. Hence, pre-investigations are performed in these references [18-20]
and results in the controller parameters in Table 4.

frequency — — — active spikes — ’ gain e eIror NOrm — — —  A-tube
0.20 \ \ \ 12 3 900 \ \ \ - 0.30
o 5 B
= 0.15 - - A =
Iy 2 5 600 1020 =
B0.10F----------mmmmmmm oo 41 3 = E
g 25 300 2
3
gO 05 - - ° ) ;g
= 8 7 5
0.00 ! ! ! Jo E 0 ! ! ! -0.00
0 10 20 30 40 = 0 10 20 30 40
time [s] time [s]
(a) Frequency and number of active spikes. (b) Gain and error norm.
= 20 1.25 T T T
i § 1.00 + R
= 10 =
QE) S 075
> 2
g 0 'g 0.50 -
E T 025
=]
g,]() S 0.00 :
0 10 20 30 40 8 0 10 20 30 40
time [s] time [s]
(c) Worm movement. (d) Mean velocity.

Figure 5: Worm-like locomotion of a system with 10 mass points: without transition (part 1).
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Figure 6: Worm-like locomotion of a system with 10 mass points: without transition (part 2).

One can clearly see in Fig. S5c a typical worm movement with the reference functions according to (7), the first
mass point travels 18m in 40s. The adaptive controller works reliably; the gain parameter reaches its stationary
state after 7s and oscillates around a value of 700N/m, see Fig. 5b. The maximum spike force is 98.3N, see Fig. 6b,
while the maximum actuator force is 90.3N, see Fig. 6a. Thus, the maximum values F7 . respectively u,, . are
set as 100N for the spike force and 90N for the actuator force for the upcoming simulations with gait transitions.

Example 2: Worm system with constant slope and with gait transition: Now, the system will change the gait
and the frequency, while the weighing factors in (10) are wg, = 1 and w,, = 1. The worm crawls up a ramp with a
slope of 30° again.

’ frequency — — — active spikes — ’ gain oo ©ITOr NOIM = — = A-tube
0.50 \ \ \ \ =10 : 800 \ \ I 0.20

5 0.40 -~ 18 2 _ /4\/_[ g
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“~0.30 i 46 o Z @
o M ¢ : e
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$0.20 ] - 14 8 = e
ool i R 5
t3:().10_] "'1____:2 —q;) E

0.00 | | | o §
0 10 20 30 40 50 <= 0 10 20 30 40 50
time [s] time [s]
(a) Frequency and number of active spikes. (b) Gain and error norm.
— 20 1.00
g —
= £ 075
s 10 = e
g > 0.50 - ‘
s 1 B
"o 0.25 — BAHImA N \
5 = oo
3710 | | | | 8 0.00 A”Mul
0 10 20 30 40 50 = 0 10 20 30 40 50
time [s] time [s]
(c) Worm movement. (d) Mean velocity.
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Figure 7: Worm-like locomotion of a system with 10 mass points: with transition (part 1).
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Figure 8: Worm-like locomotion of a system with 10 mass points: with transition (part 2).

As expected, the gait is changed depending on the loads, see Fig. 7a. Due to changing only one gait, it takes a long
time until the system finds a suitable gait. E.g., the system requires 40s to change from a =9 to a = 1. To solve
this problem, we restrict the usable number of gaits from 9 to 3 afterwards.

Example 3: Worm system with changing slope and with gait transition: Here, the worm also crawls up a
ramp with a slope of 30°, but when the worm covered the mean distance of 25m, there is a change of it to 60° for
each segment (in the plots marked with a red vertical line). After a distance of 50m, it is changed to 30° again
(also marked with a red vertical line). To get the setpoints F7 s respectively ug; for actuator and spike force, the
maximum values F7 4, and u,,,, are multiplied from now on with a safety factor s = 0.8. The weighing factors in
(10) are wp; =3 and w, = 1.
The system adapts the frequency and gait after the change of the slope to reduce/increase the loads of actuators
and spikes, see Fig. 9a. Similiar to Example 2, it takes too much time to adjust the gait. E.g., the system requires
53s to change from a = 3 to a = 9. Furthermore, there occur values above the maximum permissible values F7 4y
and u,,4x due to slope of 60°, see Figs. 9b and 9c. This problem is faced below.

0.60

50.48

“~0.36 [
>

Q
50.24
=

g
£o.12

0.00

0 50

frequency — — — active spikes

150 200 250 30
time [s]

100

(a) Frequency and number of active spikes.

worm movement x; [m]

50

100 150 200 250 300
time [s]
(c) Worm movement.

J
—_
(e}

number of active spikes a [-]

|
So N A O ®

1

gain k [N/m]

mean velocity x,, [m/s]

200

800

400 ¢

1.00

gain e eIfor NOrm — — — A-tube
\ \ —0.15
0.10
0.05
| | | | | | OOO
50 100 150 200 250 300

time [s]
(b) Gain and error norm.

0.75
0.5
0.25

000

L

100 150 200 250 300
time [s]
(d) Mean velocity.

n !

50

Figure 9: Worm-like locomotion of a system with 10 mass points: with transition and changing slope (part 1).
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Figure 10: Worm-like locomotion of a system with 10 mass points: with transition and changing slope (part 2).

Example 4: Worm system with changing slope and with gait transition for limitation of actuator forces:
To limit the actuator forces, a limitation factor / = 0.99 is used, that is multiplied with the maximum actuator
force u,c. Actuators are now not able to exceed this value. In practice, this could be realized with a current
limit function. In contrast, the spike forces cannot be limited by any function and hence, the spike load has to be
estimated. The weighing factors in (10) are wp, = 1 and w, = 1.
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Figure 11: Worm-like locomotion of a system with 10 mass points: with transition and changing slope.
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The actuator forces do not exceed their maximum value, see Fig. 11b. However, the spike forces are still exceeded,
see Fig. 11c. Spikes have to be designed adequately solid and should not be overstrained in practice.

Example 5: Worm system with changing slope and with gait transition using only three gaits: As mentioned
above, the number of gait transitions has to be reduced. For this purpose, the system can change only three gaits
at a time. Possible gaits are now those with a = 2,5, 8 from Table 4. The weighing factors in (10) are wr, = 1 and
w, = 3.

The number of transitions can be reduced significantly with this solution, see Fig. 12a. The system is able to find
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Figure 12: Worm-like locomotion of a system with 10 mass points: with transition and changing slope.

a suitable gait more quickly. The loads of spikes and actuators are not influenced by this method.

6. CONCLUSION & OUTLOOK

The presented investigations of the dynamical behavior of an artificial locomotion systems focussed on the presen-
tation of a mechanical model for the locomotion system, on the derivation of the model equation describing the
dynamic behavior, on the introduction of an adaptive control strategy to control the movement of the system, on
the determination and evaluation of most advantageous gaits for a system consiting of 10 mass points, and on a
gait transition algorithm adjusting the best gaits to achieve the best possible movement of the system according to
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the mean velocity. The gait transition is based on the restriction of the actuator and spike load.

The investigations showed that adaptive control is promising in controlling the neighboring mass point distances
to adjust an optimal reference gait to achieve movement of the whole system. The controllers worked successfully
and effentively. Moreover, various numerical simulations demonstrated the functionality of the gait transition algo-
rithm in collaboration with a frequency adjusting proportional controller. With respect to the limitation of actuator
and spike loads, the system autonomously changed the active gait to fulfill the condition of restriction. This was
successfully tested on a system crawling up a ramp with changing slope.

Future work shall be directed to the consideration of sliding friction which has to replace the ideal spiky structure
in real experiments; experimental verification of these theoretical investigations; expand the system to a 2D-snake-
likemovement based on [26], which deals only with the adaptive movement without gait transition.
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