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ABSTRACT

Recent research topics in bionics focus on the analysis and synthesis of mammal’s perception of their environment
by means of their vibrissae. Using these complex tactile sense organs, rats and mice, for example, are capable of
detecting the distance to an object, its contour and its surface texture. In this paper, we focus on developing and
investigating a biologically inspired mechanical model for object scanning and contour reconstruction. A vibrissa
– used for the transmission of a stimulus – is frequently modeled as a cylindrically shaped Euler-Bernoulli-bending
rod, which is one-sided clamped and swept along an object translationally. Due to the biological paradigm, the
scanning process within the present paper is adapted for a rotational movement of the vibrissa. Firstly, we consider
a single quasi-static sweep of the vibrissa along a strictly convex profile using nonlinear Euler-Bernoulli theory.
The investigation leads to a general boundary-value problem with some unknown parameters, which have to be
determined in using shooting methods. Then, it is possible to calculate the support reactions of the system. These
support reactions together with the boundary conditions to the support, which all form quantities an animal solely
relies on in nature, are used for the reconstruction of the object contour. Afterwards, the scanning process is
extended by rotating the vibrissa in opposite direction in order to enlarge the reconstructable area of the profile.

Index Terms— tactile sensor, bio-inspired sensor, animal vibrissa, object contour detection, rotatable movement.

1. INTRODUCTION

Tactile sensors play a key role in many engineering sectors, such as mobile robotics, production technology or
quality control. These sensors are capable of characterizing objects based on mechanical contacts. The scope of
common tactile sensors ranges from simple passive impact sensors to complex, integrated systems. A major benefit
of tactile sensors is their suitability in environments with poor visibility, where optical sensors reach their limits.
Within the present work, we focus on developing and investigating a model for object shape recognition using
tactile information. Since technical solutions for this task are often inspired by nature, we give a brief overview of
the biological paradigm.

Many rodents (e.g. mice and rats) use their mystacial macrovibrissae (prominent tactile hairs in their snout region)
for non-visual exploration of their environment (see Fig. 1(a) and (b)).
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(a) (b)

Figure 1. Mystacial pad with vibrissae: (a) snout of a rat [25]; (b) schematic arrangement [3].

Vibrissae do not consist of any sensory components, but are used for the transmission of a stimulus. Thus, the
perception of a stimulus does not happen in the vibrissa but in its support, the so-called follicle-sinus complex
(FSC) [6], [7]. Every vibrissa is embedded in its own FSC, which consists of several mechanoreceptors converting
tactile information into neural impulses for the central nervous system [6], [3], [16]. Figure 2 shows two adjacent
hair follicles, which are surrounded by the extrinsic and intrinsic musculature.

Figure 2. Schematic drawing of two adjacent hair follicles [5].

This musculature enables the animal to use its vibrissae in two different operating modes – an active and a passive
one [13]:

• In passive mode, a vibrissa is deformed only by external forces (e.g. wind or mechanical contacts, when the
animal passes an object) without activating the musculature. If the external force disappears, the vibrissa
returns passively to its initial state due to the elasticity of the surrounding tissue or actively by activation of
the extrinsic musculature [3].

• In the active exploration mode, vibrissae can be swept along an object rotationally by alternating contraction
of the intrinsic and extrinsic musculature in order to detect surface or shape information of an object. This
behavior, in which the vibrissae are moved back and forth repeatedly, is called “whisking”. Mice and rats
are capable of controlling this movement (e.g. the frequency and amplitude) [13].

In this work, we focus on a kind of an active behavior of the vibrissa movement: Setting up a model for tactile
shape recognition we limit ourselves to the main characteristics of the biological paradigm, which are given by the
rotational movement of the vibrissae and the fact, that stimuli can only be detected by mechanoreceptors in the
FSC. Since there are already different modeling approaches in literature, we give a short overview of the current
state of the art at first.
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2. STATE OF ART

In literature, biological inspired tactile sensors are used with different purposes. In the simplest case, artificial
vibrissae function as binary contact detectors [9], [10] to provide information about whether there is contact with
an object or not. Simple arrangements like these can be used for early identification of obstacles and collision
avoidance for mobile robots. Other sensors provide more detailed information like the distance to an object, its
shape or surface texture.

A vibrissa is frequently modeled as a long slim Euler-Bernoulli bending rod. The scanning process is operated by
sweeping the rod along an object translationally or rotationally, that leads to a linear-elastic (assumed) deformation
of the rod. Measuring different information at the support (e.g. the rod angle or the reaction forces and moment),
these quantities can be used to reconstruct the object contour. Depending on the permitted deflection the deforma-
tion of the rod can be described using linear [2], [11], [19] or nonlinear [18], [4], [20], [21], [22], [23], [24], [8],
[14] Euler-Bernoulli theory.

In [11], artificial whiskers were used to determine the distance to an object using the linear theory of elasticity.
The model used is shown in Fig. 3.

Figure 3. Model used in [11] for distance estimation.

In this case only information about the deflection angle at the support but no reaction forces or moments are re-
quired. The object distance is determined taking advantage of the angular relationships, but using the simple linear
bending theory.

Since linear theory is not suitable for describing large deflections of a vibrissa (that actually occurs in reality),
other models make use of the nonlinear Euler-Bernoulli theory. In [18], a single artificial vibrissa was swept along
an object by a DC-motor as shown in Fig. 4(a). During the rotational scanning process the support reactions were
measured by a load cell. The shape of the vibrissa was determined by numerically integrating the deformation
equations at different points in time. Frequently repeating this procedure results in a variety of deformation states,
see Fig. 4(b), that can be used for an approximation of the object contour.
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Figure 4. Rotational scanning procedure in [18]: (a) prototype; (b) numerically integrated deformed states.

In [4], this approach was adapted for spatial problems.
The authors of [20], [22], [23], [24] consider a quasi-static translational sweep of an Euler-Bernoulli bending rod,
which is one-sided clamped, along a strictly convex profile function. In a first step, the scanning process is treated
analytically as far as possible to determine the unknown parameters (e.g. the contact force) which have to be used
to calculate the support reactions. In a next step, a sequence of contact points (approximating the object contour)
is determined using only the these support reactions.

Figure 5. Translatorally scanning of a strictly convex profile function [24].

In [24], the elasticity of the support (clamping) was increased by a rotational spring in order to take the elastic
properties of the FSC into account. In addition, other models consider the geometric properties of a vibrissa,
especially its tapered shape and intrinsic curvature [8], [14]. In both publications, the tapering is described linear
and the pre-curvature is approximated using finite differences. The authors in [1] used a polynomial of order 10 to
describe the precurvature of the artificial vibrissa, that is used for object shape recognition.
Within the present paper, we will not focus on the geometrical characteristics of the vibrissae, but on the main
characteristic of the rotational movement of the vibrissa. The governed results will extend and complement the
ones from [22], [23], [24], [20], [21].

3. GOAL

Current models frequently describe a translationally movement of technical vibrissae. However, this does not
match the behavior observed in rats and mice during active whisking. Thus, within the present paper, we focus on
the following aspects:

• setting up a model of a single technical vibrissa for rotational object scanning and contour reconstruction;

• formulating the model equations using nonlinear Euler-Bernoulli theory for large deflections;

• describing the procedure of locating a sequence of contact points between the rod and the object (contour
reconstruction), only using information at the support of the (technical vibrissa); and

• numerical simulations of the scanning process:
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1. we determine the unknown support reactions and the setting moment during a single sweep,

2. we use these quantities to determine a sequence of contact points in order to approximate the object
contour, and

3. afterwards, the scanning process is extended by rotating the vibrissa in opposite direction in order to
enlarge the reconstructable area of the object.

4. MODELING

For the scanning process we consider a single vibrissa that is swept along an object rotationally in a mathematical
positive sense, as shown in Fig. 6.
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Figure 6. Modeling approach: left – schematic representation of the biological paradigm (modified from [17]);
right – mechanical model in [12].

The mechanical model is based on the following assumptions:

• The scanning process takes place in the x-y-plane. The vibrissa rotates around the z-axis by increasing the
setting angle ϕ0 incrementally. Therefore, the required setting moment M0 will be calculated.

• The rotational movement of the vibrissa is sufficiently slow, which allows to treat the scanning process
quasi-statically.

• The vibrissa is modeled as a thin Euler-Bernoulli bending rod of length L, which is straight and cylindrically
shaped. Its second moment of area Iz and its Young’s modulus E are constant. The large deflections
occurring during the scanning process are described using the nonlinear Euler-Bernoulli theory.

• The bending rod is pivoted rotationally by a bearing.

• The object is modeled as a rigid body, whose contour is considered as a strictly convex function g : x 7→
g(x). This assumption ensures that there is only one contact point between the rod and the object. Ignoring
friction effects, the contact is modeled as an ideal contact. Thus, the contact force is always perpendicular
to the profile tangent.
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The curvature κ(s) of the deflected beam can be described using nonlinear Euler-Bernoulli theory, as follows:

κ(s) =
Mbz(s)

EIz(s)
(1)

with bending moment Mbz(s), Young’s modulus E and second moment of area Iz , that is assumed to be constant,
see above. The bending rod axis can be parameterized by means of its slope angle ϕ(s) in dependence on the
natural coordinate arc length s:

dx(s)

ds
= cos(ϕ(s)) (2)

dy(s)

ds
= sin(ϕ(s)) (3)

dϕ(s)

ds
= κ(s) (4)

Remark 4.1. To allow any kind of scaling, we introduce dimensionless variables. Therefore, all lengths are
measured in L (e.g. s := s̃

L , s ∈ [0, 1]), moments in EIzL−1 and forces in EIzL−2.

These dimensionless quantities are used to rewrite (1), (2), (3) and (4), which form a set of ordinary differential
equation (ODE), describing the deflected bending rod:

x′(s) = cos(ϕ(s))

y′(s) = sin(ϕ(s))

ϕ′(s) = κ(s), κ(s) = mbz(s)

 (5)

Due to the strict convexity, the contour function g : x 7→ g(x) is parameterized by means of its slope angle
α ∈ (−π2 ,

π
2 ) as follows:

dg(x)

dx
= tan(α)

⇒ ξ(α) = g′−1(tan(α))

⇒ η(α) = g(ξ(α))

Hence, each point of the contour function can be given by (ξ(α), η(α)).
Since the contact force ~f is perpendicular to the profile function it can be described by

~f = f
(
sin(α)~ex − cos(α)~ey

)
(6)

We have the bending moment about the z-axis:

mbz(s) =

{
f
(
(y(s)− η(α)) sin(α) + (x(s)− ξ(α)) cos(α)

)
s ∈ [0, s1)

0 s ∈ (s1, 1]
(7)

with the condition for the setting moment m0

mbz(s→ 0) = −m0 (8)

Using (7) and introducing a differential equation for the curvature, the ODE system (5) can be rewritten as

(a) x′(s) = cos(ϕ(s))

(b) y′(s) = sin(ϕ(s))

(c) ϕ′(s) = κ(s)

(d) κ′(s) = f cos(ϕ(s)− α)

 (9)

A distinction between tip and tangential contact of the rod with the object (phase A and phase B, respectively) is
made (see Fig. 7).
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(b)

Figure 7. Contact scenarios: (a) Phase A (contact at the tip), (b) Phase B (tangential contact)

For both phases the boundary conditions are determined.

• Phase A: Contact at the tip

Contact at the tip of the rod (s1 = 1) with unknown ϕ(1) > α:
The ODE-system (13) is valid for s ∈ [0, 1]. The describing set of boundary conditions is given by

(a) x(0) = x0 (e) x(1) = ξ(α)

(b) y(0) = 0 (f) y(1) = η(α)

(c) ϕ(0) = ϕ0

(d) κ(0) = ct(ϕ(0)− ψ) (g) κ(1) = 0

(10)

• Phase B: Tangential Contact

Contact at an unknown point s1 ∈ [0, 1) with ϕ(s1) = α:
The ODE-system (13) is valid for s ∈ [0, s1). We have the boundary conditions

(a) x(0) = x0 (e) x(s1) = ξ(α)

(b) y(0) = 0 (f) y(s1) = η(α)

(c) ϕ(0) = ϕ0 (g) ϕ(s1) = α

(d) κ(0) = ct(ϕ(0)− ψ) (h) κ(s1) = 0

(11)

The boundary-value problems (13)&(10) and (13)&(11) can be solved using shooting methods to determine the
unknown parameters f , α and s1 (note that s1 = 1 in presence of phase A). Therefore, an algorithm is created
that is used for simulating the rotational sweep along a strictly convex object contour and generating the unknown
observables (support reactions fAx, fAy and the setting moment m0, that is required to set the angle ϕ0).
In a next step, these observables are used for the reconstruction of the scanned profile by solving an initial-value
problem, which is given by (13) and the following initial conditions at the base point:

x(0) = x0, y(0) = 0, ϕ(0) = ϕ0, κ(0) = −m0 (12)

In this case, the parameters f and α in (13)(d) are not known, but can be specified as a function of the known
support reactions:

f =
√
f2Ax + f2Ax and α = − arctan

(fAx
fAy

)
(13)

Since we now have all parameters of (13)(d) the ODE can be integrated numerically. For determining the contact
position s1, we use the condition κ(s1) = mbz(s1) = 0. Then, the contact point (x(s1), y(s1)) can be determined
integrating (13)(a) and (b).
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To improve the efficiency of the algorithm it is useful to have a condition for the distinction between phase A and
phase B by means of the observables. Therefore, we present a criterion for the presence of phase B:

m2
0 − 2fAy sin(ϕ0)− 2fAx cos(ϕ0) = 0 (14)

A condition for tangential contact has already been derived in previous publications for the translationally scan-
ning process [24], see Fig. 5:

mAz − 2fAy = 0 (15)

Setting the control angle ϕ0 = π/2 it becomes clear that (14) corresponds to (15).

5. SIMULATIONS

Here, we simulate a single rotational sweep along the following contour function:

g : x 7→ g(x) = p x2 + q

The support position is x0 = y0 = 0 and the parameter q is varied to investigate the influence of the object
distance on the scanning process. The deformation states are shown in Fig. 8, where tip contacts (phase A) are
blue colored and tangential contacts are red colored. The transitions between those phases are shown in black
(the black state still belongs to the prior phase). The scanned area is limited by the profile parameters αStart and
αEnde. Whereas αStart results from the first contact between the undeflected rod and the object, αEnde is defined
by the last equilibrium state of the vibrissa, which is computed before the algorithm aborts.
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Figure 8. Scanning process with different object distances q

It can be observed that the size of the scanning range varies by changing the object distance q. In addition, it
is clear that, with a large object distance, only tip contacts occur, whereas tangential contacts increasingly occur
with decreasing object distance. Figure 9(a)-(c) shows the observables m0, fAx and fAy plotted against the setting
angle ϕ0 (note that there is a varying notation for the setting angle ϕ0 in Fig. 9: ϕ0=̂ψ).

©2017 - TU Ilmenau 8



1/4 1/2 3/4
0

1

2

3

4

5

6
m

0
q=0.3
q=0.4
q=0.5
q=0.6
q=0.7

(a)

1/4 1/2 3/4
-5

-4

-3

-2

-1

0

f A
x

q=0.3
q=0.4
q=0.5
q=0.6
q=0.7

(b)

1/4 1/2 3/4
0

5

10

15

20

25

30

35

f A
y

q=0.3
q=0.4
q=0.5
q=0.6
q=0.7

(c)

-1 -0.5 0 0.5 1
x

0

0.2

0.4

0.6

0.8

y

q=0.3
q=0.4
q=0.5
q=0.6
q=0.7
reconstruction

(d)

Figure 9. Scanning process with different parameters q

The extreme values are marked with an “x”. The phase transitions (see Fig. 8) are marked with an “o”.

(a) The setting moment m0 begins to rise at the first contact between the rod and the profile. It reaches a
maximum and then drops sharply until the algorithm terminates. The closer the object the higher is the
maximum value of the required positioning torque.

(b) The magnitude of the bearing force fAx increases until reaching a maximum and then decreases until the
algorithm terminates. As the object distance decreases, the amount of the bearing force fAx increases.

(c) The bearing force fAy increases strictly monotonously until the termination of the algorithm. The lower the
object distance q, the steeper the gradient is.

(d) The object contours are outlined and overlaid with a sequence of reconstructed contact points for each scan.
These sequences of reconstructed points where determined using condition (14) for the distinction of phase
A and B, what serves as a validation for (14).

As Fig. 9(a)-(c) shows, it is possible to control the signal strength by varying the object distance q. Thus, the
signal strength could be adapted for the measuring range of any sensor. Since we focus on a vibrissa rotation in
mathematical positive sense, the scanning area is limited to the right side of the object (positive x-area).
To enlarge the reconstructable area, we extend the scanning process with a view on the biological paradigm.
Because animals sweep their vibrissae back and forth along objects, from now on, we consider two rotational
movements of the vibrissa – one in a mathematical positive sense and then another one in opposite direction.
Fig. 10(a) and (b) shows the extended scanning procedure using two different exemplary contour functions:

• Example 1: a parabola as used in Fig. 9: g1 : x 7→ g1(x) = 0.5x2 + 0.3
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• Example 2: an asymmetric profile using a sectionally defined function:

g3 : x 7→ g3(x) =

{
0.5x2 + 0.5 (−1 ≤ x < 0)

x4 + 0.5 (0 ≤ x ≤ 1)
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Figure 10. Scanning process for various object contour functions

The curves for the observables m0, fAx and fAy are illustrated in Figs. 10(c) and (d). To give some information
about the scanning range in addition, it is suitable to plot the observables against the slope angle α instead of the
setting angle ϕ0. Furthermore, Figs. 10(e) and (f) shows the reconstructed contact points using only the observables
and informations about the support position.

• Example 1: Figure 10(a) shows that the size of the scanning range is significantly greater than in Fig. 8.
Since the parabola is placed symmetrically relative to the support the scanning area (shown in Fig. 8) is mir-
rored at the y-axis by sweeping the vibrissa in opposite direction. This symmetry is also apparent looking at
the observables in Fig. 10(c). The observables for α > 0 result from the scanning movement in mathematical
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positive sense, those for α < 0 from the rotation in opposite direction. It can be observed, that the curves
for the setting moment m0 and the support reaction fAx are point symmetric. The curve for fAy is axial
symmetric because the reaction force must be positive for both directions of rotation.

• Example 2: To show the general functionality of the algorithm we use another object shape, that is given by
a sectionally defined contour function (asymmetric object). The asymmetry reappears in the curves for the
observables (see Fig. 10(f)). In particular, the curves of fAy for the positive sweep and the negative sweep
are qualitatively different.

We have seen that the reconstruction of the object works well for symmetric or asymmetric shapes. Nevertheless,
the reconstructed ranges in both cases are severed by a small gap in the area of α = 0. This gap results from
the abort of the algorithm for both, the positive and the negative scanning rotation. In Figs. 10(a) and (b), the
last contact point for each scan is marked with an “o”. The according deformation state of the vibrissa is the last
equilibrium that can be determined by the algorithm. It can be imagined that in reality after reaching a critical
angle ϕ0 the vibrissa would snap off of an object. The abort of the algorithm used for the simulations could point
out that after reaching the last equilibrium state a further increase of the setting angle ϕ0 would lead to the snapp
off.

6. SUMMARY AND OUTLOOK

In this paper, we set up a biologically inspired mechanical model for tactile shape recognition. Therefore, the trans-
lationally scanning procedure, that is used in many preceded publications, was adapted for a rotational movement
of the vibrissa, which is closer to the animals behavior during active whisking. The vibrissa was modeled as a
cylindrically shaped Euler-Bernoulli bending rod, which is pivoted by a bearing. A single quasi-static sweep of the
rod along a strictly convex contour function was analyzed using nonlinear Euler-Bernoulli theory. The investiga-
tion resulted in a set of ordinary differential equations, describing the deformation state of the vibrissa. After that,
a distinction between tip and tangential contact of the vibrissa with the object (phase A and phase B, respectively)
was made, and for both phases the boundary conditions were determined. The arose equations together with the
boundary conditions form a general boundary-value problem with some unknown parameters. We presented an
algorithm to determine these unknown parameters (e.g. the contact force) using shooting methods and to generate
the support reactions as well as the setting moment during the rotational sweep of the vibrissa along a strictly
convex profile. In a next step, the support reactions together with the boundary conditions at the support were used
for the reconstruction of the object shape by solving an initial-value problem. We presented a condition for the
distinction between phase A and phase B by means of the observables in order to improve the efficiency of the
algorithm. This condition is a more general formulation compared with a similar criterion presented in [24] for
translationally scanning.
First of all, the simulation algorithm was used for scanning a parabola by a single sweep. In particular, it was
shown that the occurring observables could be manipulated, changing the object distance. The closer an object, the
higher the extreme values of the observables. Thus, it is possible to control the signal strength with respect to the
measuring range of any sensor. Furthermore, the investigation showed, that the scanning range of the profile was
limited to the right side of the parabola. For that reason, in a next step, the scanning procedure was extended by
rotating the vibrissa in opposite direction. In doing so, the reconstructable area could be enlarged. Two example
simulations using different contour functions showed that the reconstructed areas in both cases were severed by
a small gap, which results from the abort of the algorithm in both scanning directions. This observation might
indicate a snap off of the vibrissa from the object, that would actually occur in reality.

Further studies should be conduced to investigate this snap off behavior more closely and to formulate a termination
condition for the algorithm. Therefore, it is conceivable to simplify the object by a constant profile contour (note
that such a profile is no longer strictly convex) and simulating the rotational sweep with different object distances.
Thus, we could acquire a better understanding about which parameters influence the critical snap off angle ϕ0,snap.
This might enable us to reduce the size of the gaps in the scanning range (see Figs. 10(e) and (f)).
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