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Abstract
Mathematical models for simulation and control of systems and mechanisms naturally arise in
a descriptor form. The stability analysis of descriptor systems, involving free parameters as
uncertainties or design qualifiers is subject of this paper. Two approaches for the calculation
of the stability boundaries in the underlying parameter space are discussed. The first one uses
a quantifier elimination method, while the second one is based on the direct solution of the
Lyapunov equation. The computational methods are exemplary demonstrated on Chua’s circuit.

Index Terms — Stability, descriptor systems, quantifier elimination, Lyapunov functions

1. INTRODUCTION
A large class of systems in mechatronics feature algebraic conditions (e.g. holonomic and non-
holonomic constraints in mechanics, Kirchoff’s laws in networks etc.) in addition to differential
equations, yielding a system of differential-algebraic equations (DAEs) as a modeling setting [3,
19,22]. Stability of such models continues to attract attention in control and modeling and builds
the subject of the present paper.
More specifically, we study the stability of parameter-dependent descriptor systems. The pa-
rameter dependence may result from the presence of a control algorithm, but it could also de-
scribe inherent system uncertainties. Such classes of problems for ordinary state-space models
have been already a subject of research for many years. A variety of methods have been de-
veloped, e.g. see [1], for a collection. Most of such methods are based on direct mapping of
stability criteria into the parameter space which typically boils down to solving two nonlin-
ear algebraic equations in two parameters. Yet the extensions of these methods to the class
of descriptor models have been scarcely addressed. In the current paper, we make a step in
this direction. On one hand, we make use of a recent Lyapunov-based approach proposed by
the authors in [25], which is based on solving the Lyapunov equation for ordinary state-space
models and results in four parameter-dependent determinant conditions. Thereby we adopt the
result of [25] to the descriptor system formulations. On the other hand, one can consider the
Lyapunov feasibility conditions as prenex formula as, by their very definition, they include exis-
tential and universal quantifiers. A related general computational framework called ”Quantifier
Elimination” (QE) attempts to produce corresponding equivalent quantifier-free algebraic ex-
pressions [8, 28]. Such expressions are just about what every parameter space method tends
to end with. Hence, from this perspective the utilization of QE for computing the stable pa-
rameter regions in the sense of Lyapunov is a particularly appealing computational approach.
Several recipes in applying this framework for solving the feasibility problem of Lyapunov
function have been already published, e.g. [21]. However, nearly all methods address ordinary
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differential equations. In the present paper, we propose an extension to the descriptor system
formulation.

The paper is organized as follows. In Section 2 some aspects of linear descriptor systems and
their Lyapunov formulations are briefly introduced. This is followed by an introduction to QE
and its usage in the context of Lyapunov stability. In Section 4 we address the first algebraic
method based on the solutions of the Lyapunov equation. After introducing the two approaches
in Sections 3 and 4, we demonstrate the two methods on stability analysis of a descriptor model
of Chua’s circuit in Section 5.

2. STABILITY ANALYSIS OF DESCRIPTOR LINEAR SYSTEMS
We consider the systems description in linear descriptor form

E(q)ẋ = A(q)x (1)

with the matrices E(q),A(q) ∈ Rn×n, the generalized states x ∈ Rn and the free parameters
q ∈ Rp, see [3]. The descriptor system (1) is called regular if

∃γ ∈ C : det(γE−A) 6= 0. (2)

For regular descriptor systems described by a pair (E,A) or the matrix pencil sE −A, we can
check its stability by determining the eigenvalues, which are the roots of the characteristic
equation (for convenience, we drop from time to time the parameter dependency on q, but it
will be there throughout the paper)

det(sE−A) = 0. (3)

If all real parts of these eigenvalues are negative, then the system (E,A) is (asymptotically)
stable. Another important characteristic is impulse-freeness. The descriptor system (1) is said
to be impulse-free if

rank(E) = degdet(sE−A), (4)

which means that the state response of system (1), does not contain impulsive terms. Formally,
a regular system is impulse-free if and only if its index does not exceed one, ind(E,A) ≤ 1.
Regularity and the index are structural properties, see [23,24,26]. A system which is stable and
impulse-free is often referred to as admissible [11, 20].

Recall that our aim is calculation of the stability regions of (1) in the parameter space Rp of
q. This domain describes the set of all stabilizing parameters q for the pair (E(q),A(q)). A
straightforward idea is applying the frequency sweeping mapping techniques from [1] on the
equation (3). However, one is afflicted thereby with solving nonlinear algebraic equations which
is both time consuming and, typically, applicable to the parameters space of second order only.
The recent alternative approach based on the quadratic Lyapunov formulations [25] is more
natural for being more general and capable of dealing (at least principally) with parameter
space of a larger order. Hence, in our study we rather follow such a ”Lyapunov approach”.

To this end, we consider two technical formulations of Lyapunov stability for differential alge-
braic equations [20]. The first approach is a natural extension to the ordinary state-space case.
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If we consider a quadratic candidate Lyapunov function in the form

V1(x) =
1
2

xT ET X1Ex, (5)

where X1 = XT
1 , the Lyapunov equation results to be

AT X1E +ET X1A =−Y, (6)

where Y = Y T . Equation (6) may be unsolvable if the matrix pencil sE−A has roots at infinity
[27]. To overcome this constraint, we make use of the Weierstrass canonical form. Each regular
system (E,A) can be transformed in the Weierstrass canonical form [11, 12]

QEP =

(
In1 0
0 N

)
and QAP =

(
A1 0
0 In2

)
, (7)

with invertible matrices P and Q, while N is nilpotent and n1 + n2 = n. This transformation
decomposes the system (1) into two subsystems

ẋ1 = A1x1, (8)
Nẋ2 = x2. (9)

The subsystems (8) and (9) are called slow and fast subsystem, respectively. It is important
to emphasize that the stability of the descriptor system (1) is completely determined by the
slow subsystem [11]. Using the transformation matrices P and Q, one can define the spectral
projectors Pr and Pl onto the right/left finite deflating subspace of the matrix pencil sE−A by

Pr = P
(

In1 0
0 0

)
P−1, Pl = Q

(
In1 0
0 0

)
Q−1, (10)

respectively. Considering this, we can now provide another formulation of the Lyapunov stabil-
ity, see [20, 27].

Theorem 1. The regular descriptor system (1) is asymptotically stable if and only if the equation

AT X1E +ET X1A =−PT
r Y Pr, X1 = PT

l X1Pl = XT
1 (11)

has a unique symmetric, positive semidefinite solution X1 = XT
1 ≥ 0 for every symmetric, posi-

tive definite matrix Y = Y T > 0.

The additional condition X1 = PT
l X1Pl = XT

1 guaranties the uniqueness of solution, while the
solution of AT X1E +ET X1A = −PT

r Y Pr is not unique [27]. Nevertheless the existence of a
positive definite matrix Y and a positive semidefinite matrix X1 assures the stability of the pair
(E,A), see [11]. If the system (E,A) is admissible, we can avoid the calculation of the projector
and rather use the matrix E directly, as given by the following theorem [11, Theorem 3.16].

Theorem 2. The regular descriptor system (1) is admissible if there exist matrices X1 = XT
1 ≥ 0

and Y = Y T > 0 solving the equation

AT X1E +ET X1A =−ETY E. (12)
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If the system (1) is admissible, then for each Y > 0 there exists a X > 0 solving (12).

The second approach to generate a Lyapunov formulation for linear descriptor systems assumes
the candidate Lyapunov function in the form

V2(x) = xT ET X2x, (13)

with ET X2 = XT
2 E. Using this Lyapunov function, the related Lyapunov equation reads:

AT X2 +XT
2 A =−Y, (14)

with Y =Y T > 0. This formulation resembles the case of classical state-space systems. The two
differences to the ordinary state-space formulation are the additional condition ET X2 = XT

2 E
and that there are no requirements on the symmetry and definiteness of X2. This is summarized
in the following [17, Lemma 2]

Theorem 3. The regular descriptor system (1) is admissible if and only if for any Y > 0 there
exists a matrix X2 that solves

AT X2 +XT
2 A =−Y, (15)

ET X2 = XT
2 E ≥ 0. (16)

Based on these theorems two approaches to calculate the stability boundaries in the parameter
space Rp are proposed in the following to sections.

3. QUANTIFIER ELIMINATION
The quantifier elimination (QE) algorithm can be used for the stability analysis and design
of control systems, as shown, e.g. in [10, 15] for linear time-invariant systems in state-space
form and in [21] for switched linear systems. Since A. Tarski had proven the existence of
a solution to the QE problem over the reals and provided the first algorithmic technique for
real quantifier elimination in the 1940s (see below), a variety of tools have been developed for
efficient implementation of the QE procedures. For instance, the software packages QEPCAD
[4], REDLOG [9], as well as the library of RegularChains [6] in Maple are commonly used.
However, these algorithms issue unavoidably computational barriers in solving practical QE
problems. In the worst case, their computational complexity is doubly exponential in terms of
the number of variables [6].
The QE tools are used to simplify the formulas involving quantified variables and logic connec-
tives. The quantifiers can be universal or existential. In order to introduce the QE approach, we
review some basic definitions from [8].

Definition 1. An atomic formula is defined as a polynomial expression of the form

f (x1, · · · ,xk) τ 0 (17)

with τ ∈ {>,=} and f ∈Q[x1, · · · ,xk], the latter representing the set of real polynomials in the
variables x1, . . . ,xk with rational coefficients.

Definition 2. A formula is said to be quantifier-free, if it is a propositional combination of
atomic formulas with the boolean operators ∨,∧,¬ and⇒.
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Definition 3. A prenex formula is a standard formula in the variables X = (x1, · · · ,xk) and
Y = (y1, · · · ,yl) with the form

PF(X ,Y ) := (Q1y1) · · ·(Qkyl)F(X ,Y ), (18)

where Qi ∈ {∃,∀} and F(X ,Y ) is a quantifier-free formula. When a quantifier is corresponding
to a variable, then the variable is called quantified, or free otherwise.

The goal of a quantifier elimination procedure is to output a quantifier-free formula QF(X),
which is equivalent to the prenex formula PF(X ,Y ). Tarski has proved the solvability of QE
problem over the real field in [28].

Theorem 4 (Quantifier Elimination over the Real Field). For any formula PF(X ,Y ) over the
real field, there always exists a quantifier-free formula QF(X) such that, for any Y ∈Rl , QF(X)
is true if and only if PF(X ,Y ) is true.

One of the most efficient implementations of the QE procedure is the cylindrical algebraic
decomposition (CAD), see [2, 5, 8]. Given a set of polynomials in Rn, a CAD is a partition
of Rn into finite number of cylindrically arranged cells. Two cells C1 and C2 are said to be
cylindrically arranged if their projections in the subspaces Rk(1≤ k ≤ n) are equal or disjoint.
Furthermore, each cell in the partition is a connected semi-algebraic subset, i.e., over such a cell,
all the polynomials are sign-invariant. Thus, selecting a sample point in each cell is sufficient
to determine the sign of the polynomials in the cell. For the prenex formula (18), we can apply
CAD to the quantifier-free part F(X ,Y ) and evaluate the truth value over each cell to perform
quantifier elimination.
Coming back to our original problem, we first formulate the feasibility condition of Lyapunov
function as a prenex formula, and then apply QE to get a quantifier-free formula which is a
polynomial expression in terms of the parameters q. To this end, we make use of Theorem 3.
Thereby, without loss of generality, we can set the matrix Y to be the identity matrix I and
define:

U(q,X2) := AT (q)X2 +XT
2 A(q)+ I !

= 0, (19)

V (q,X2) := ET (q)X2−XT
2 E(q) !

= 0, (20)

W (q,X2) := ET (q)X2
!
≥ 0, (21)

where U(q,X2), V (q,X2) and W (q,X2) represent the matrix functions of the parameter q and the
entries of X2. Rewriting (19), (20) and (21) into the element-wise form, yields the equivalent
descriptions of (15) and (16) in form of the quantified formula

∃X2

[(
n∧

i=1

n∧
j=1

ui j(q,X2) = 0

)
∧

(
n∧

i=1

n∧
j=1

vi j(q,X2) = 0

)
∧

(
m∧

i=1

zi(q,X2)≥ 0

)]
(22)

where the polynomials ui j ∈ Q[q,X2] and vi j ∈ Q[q,X2] represent the i j-th entry of matrix U
and V respectively, zi ∈Q[q,X2] denotes the i-th principal minor of matrix W . Here the entries
of X2 are considered as existential quantified variables, and the elements of parameter q as free
variables.
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After introducing the second approach in the next section, we will apply this procedure to
Chua’s circuit.

4. ALGEBRAIC LYAPUNOV APPROACH

The basic idea of this approach lies in a reformulation of the Lyapunov equation (12) to a
system of linear equations. To illustrate the procedure, we briefly discuss the case of ordinary
state-space models given by

ẋ = A(q)x. (23)

The stability of this system can be analyzed using the Lyapunov equation

AT (q)X +XA(q) =−Y, (24)

where both matrices Y = Y T and X = XT need to be strictly positive definite. Applying the
Kronecker product we can rewrite equation (24) in vector form:(

I⊗AT (q)+AT (q)⊗ I
)︸ ︷︷ ︸

M(q)

vec(X) =−vec(Y ), (25)

see [16]. The solution of the linear system of equations (25) is then given by

vec(P) =−M−1vec(Y ). (26)

Now, the stability is determined by the definiteness of P. The inverse M−1, as well as P, have
the determinant of M in their denominators. This determinant is connected to the system matrix
A via [13]

det(M(q)) =
n

∏
i=1

n

∏
j=1

(si(q)+ s j(q)). (27)

Eq. (27) shows that if an eigenvalue of A crosses the imaginary axis, the determinant of M
becomes zero and if an eigenvalue of A tends to infinity, so does the determinant of M, too.
Therefore, the stability information of (23) is encoded in the determinant of M. In fact, it turns
out that det(M(q)) = 0 and det(M(q))→ ∞ produce all the relevant stability boundaries in the
q-parameter space, see [25]. On the basis of (12), we extend this idea to descriptor systems by
posing the generalized form of (25):

(ET ⊗AT (q)+AT (q)⊗ET )︸ ︷︷ ︸
M(q)

vec(X) =−vec(ETY E). (28)

Note that, for convenience, we changed the notation of X1 to X , because we do not need to
discriminate between the two Lyapunov approaches here. Due to the singularity of E, the
matrix M is non-invertible and the linear system of equations (28) is underdetermined.

Although the structure of (28) is similar to (25), we are not able to use the conditions based on
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the determinant of M. However, we can reshape M in a form

M =

(
Mr×r 0r×t

0t×r 0t×t

)
, (29)

with r+ t = n2 and rank(M) = r. The explicit values of r and t depending on rank deficit of
E. The full-rank matrix Mr×r is associated with the matrix of the slow subsystem and hence
we can use the the det(M) conditions, introduced for the state-space case. In contrast to the
approach given in [29], we are here able to calculate the exact boundaries.
The workflow of the two proposed approaches are exemplary illustrated in the following section.

5. CHUA’S CIRCUIT
5.1 MODELING AND PROBLEM STATEMENT

As an example for the application of the procedures Chua’s circuit [7] is used. The circuit
diagram is shown in Fig. 1. Chua’s circuit is an chaotic oscillator. The nonlinearity which
generates this behavior is an voltage-controlled current source, called Chua’s diode. This diode
can be modeled by a piecewise linear function consisting of three segments [14]

ϕ̄(u1) =−G0u1−
1
2
(G1−G0) [|u1 +1|− |u1−1|] , (30)

which is shown in Fig. 2. The gains G0 and G1 have to be chosen such that the system has
three equilibrium points, one in the origin and two symmetrically located around the origin.
In opposite to the normal issue, the aim is to create a system with chaotic behavior and thus
an unstable one. In particular, all equilibrium points of Chua’s circuit have to be unstable.
More precisely, the following selection is used in order to obtain the well-known chaotic double
scroll [18]:

1. The gain G0 in the outer region of ϕ̄ is chosen such that the resulting linear system has
an unstable conjugate pair of eigenvalues and one stable real eigenvalue.

2. The gain G1 in the inner region of ϕ̄ is chosen such that the linearization has a real
unstable eigenvalue and a stable conjugate pair.

L

iL

C2 u2

R iR

C1 u1 ϕ

Figure 1: Chua’s circuit

Therefore, we are looking for incremental gains of Chua’s diode which destabilizes the system.
This claim can be represented in a DAE parameter space analysis.
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−1 1

G0

G0

G1
u1

ϕ̄(u1)

Figure 2: Characteristic curve of Chua’s diode

Chua’s circuit shown in Fig. 1 can be modeled using Kirchhoff’s current and voltage law. Fol-
lowing the aim of determining the gains for Chua’s diode which leads to an unstable behavior,
we thus consider the piecewise linear nonlinearity ϕ̄ in one the outer part as the linear function

ϕ(u1) =−G0u1. (31)

The same approach can be used for the linear part around the origin with the gain G1 instead of
G0. Using this approximation and (u1,u2, iL, iR)T as generalized variables it results the descrip-
tor system  0 C2 0 0

C1 0 0 0
0 0 L 0
0 0 0 0


︸ ︷︷ ︸

E

u̇1
u̇2
i̇L
i̇R

=


0 0 1 −1

G0 0 0 1
0 −1 0 0
1 −1 0 1

G


︸ ︷︷ ︸

A

u1
u2
iL
iR

 , (32)

with G = 1
R being the conductance of the resistor R.

In order to use the Lyapunov formulations stated in Section 2, we need to verify the regularity
and impulse-freeness of (32). Therefore we calculate the determinant

det(sE−A) =
s3 +(10−9G0)s2 +(7−9GG0)s+63G−63G0

63G
, (33)

with (C1,C2,L) = (1
9 ,1,

1
7). The determinant (33) is not identically zero (in the sense of the

zero polynomial), so the system is regular. Furthermore degdet(sE −A) = rankE = 3 states
the impulse-freeness of Chua’s circuit. Therefore, we can use the simplified versions of the
Lyapunov formulations.

c©2017 - TU Ilmenau 8



5.2 QE BASED STABILITY BOUNDARY CALCULATION

We first apply the QE method to compute the feasible region for the considered design parame-
ters (G,G0) for the given system (32). To this end, the Maple package RegularChains from [5]
is used. With the Lyapunov formulation from Theorem 3, we can easily calculate the following
prenex formula in Maple, yielding

PF := ∃X2 [(
n∧

i=1

n∧
j=1

ui j(G,G0,X2) = 0)∧ (
n∧

i=1

n∧
j=1

vi j(G,G0,X2) = 0)∧

(
m∧

i=1
zi(G,G0,X2)≥ 0∧ (G > 0)∧ (G0 > 0))],

(34)

where ui j and vi j denote respectively the entries of matrix U and V as defined in (19) and (20),
zi is the i-th principal minor of matrix W . The entries of matrix X2 are quantified variables and
denoted by the symbol X2, and the parameters (G,G0) are free variables.

It should be noted that two additional atomic formulas G> 0 and G0 > 0 are added in the prenex
formula, because of the positive definiteness from the characteristics of conductance and Chua’s
diode. Applying the Quantifier Elimination function in RegularChains, the default output FF
is a quantifier free formula formed by polynomial constraints and logical connectives, yielding

FF = (0 < G0)∧ (0 < G−G0)∧ (90GG0−81G2
0 < 7). (35)

These boundaries and the resulting stability area are shown in Fig. 3. The linear system is
(asymptotically) stable in region A; see the figure. In our application, we want to obtain an
unstable linearization. For the conductance G we choose the normalized parameter value G =
0.7 as in [14]. This choice is sketched by a vertical blue line in Fig. 3. The parameter G0 = 0.5
is taken from the region C, whereas the parameter G1 = 0.8 is selected from region B. In both
cases, we obtain an unstable behaviour, just as desired, see [14].

5.3 ALGEBRAIC STABILITY BOUNDARY CALCULATION

The procedure proposed in Section 4 before leads to a 16×16 matrix M of the form

M =

(
M15×15 0

0 0

)
. (36)

The determinant of the submatrix M15×15 is

det(M15×15) =
8(G−G0)(81G2

0−90GG0 +7)2

3938980639167G4 (37)

and we are thus able to calculate the stability boundaries by analyzing this determinant. The
conditions det(M)→ ∞ and det(M) = 0 of (37) can easily determined and gives us the four
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0.5

1

1.5

A

B
C

G = 0.7

G0 = 0.5

G1 = 0.8

G

G0

Figure 3: Stability boundaries of Chua’s circuit

boundaries

G = G0, G =
81G2

0 +7
90G0

, G = 0, G→ ∞. (38)

Obviously, the only two conditions of interest are the two left ones.

6. CONCLUSION
We discuss the computation of feasibility regions for parameter-dependent Lyapunov functions
for linear descriptor system descriptions. Therefore, we develop two approaches. The first one
is indirect, and it deals with the inherent formulation of the existence condition of a Lyapunov
function in form of a prenex formula. In this case, a proper formulation of the feasibility
condition is utilized and standard quantifier elimination techniques are applied thereupon to
compute quantifier-free expressions, i.e. explicit polynomials in terms of the free parameters,
describing the stability boundaries in the parameter space. The second approach is direct in that
it derives the mapping conditions from the algebraic solution of the resulting Lyapunov linear
system of equations. While QE approach is principally a much more general approach, it has
computational limitations. Nevertheless, the basic idea of the QE based approach is applicable
to a large class of control and analysis problems. On the other hand, the direct approach based
on Lyapunov equation is trimmed to the particular problem formulation of the paper and, hence,
it is principally applicable to systems with more states and free parameters.
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