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Abbreviations and Notation

Throughout this work geometrized units are employed with c = G = M� = 1. These

units correlate to physical units of time, length, mass and mass density as follows:

∆t = 1 ≡ 4.9266 µs, m = 1 ≡ 1.9889·1030 kg

∆s = 1 ≡ 1.4769 km, ρ = 1 ≡ 6.1733·1017 g

cm3

We use Greek letters for four-dimensional indices running from 0 to 3 and Latin

letters for three-dimensional indices running from 1 to 3.

We refer to most references using the first authors and the year of publication,

except for references to our own publications for which we use Arabic numerals.

The following abbreviations are used throughout the thesis, in most cases these

abbreviations are also introduced in the text at their first appearance:

ADM Arnowitt-Deser-Misner

BNS Binary neutron star

BSSN Baumgarte-Shapiro-Shibata-Nakamura

DF Dual foliation

DG Discontinuous Galerkin

EOS Equation of state

GHG Generalized harmonic gauge

GR General relativity

GRHD General relativistic hydrodynamics

HRSC High resolution shock capturing

NR Numerical relativity

PDE Partial differential equation

RHS Right hand side

RNS Rotating neutron star

SRHD Special relativistic hydrodynamics

SV Spectral volume

TOV Tolman–Oppenheimer–Volkoff

WENO Weighted essentially non-oscillatory
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Chapter 1

Introduction

Almost exactly 100 years after Albert Einstein published his famous series of papers

on general relativity [Einstein, 1915b; Einstein, 1915a], the first gravitational wave

signal was observed on September 14, 2015 by the Laser Interferometer Gravitational-

Wave Observatory (LIGO) [Abbott et al., 2016b]. Although there had already been

strong evidence for the existence of gravitational waves through indirect observa-

tions [Hulse and Taylor, 1975], the direct observation represents the longest pending

confirmation of general relativity. It also marks the birth of gravitational wave as-

tronomy, which will most certainly enhance our knowledge of exotic objects in the

universe. During the construction of the ground based detectors [LIGO; VIRGO; GEO],

expertise from several fields of physics was combined to push the detector sensitiv-

ity to the desired level. With the future earthbound [KAGRA; IND; ET] and space

facilities [LISA], a global network of detectors will be available. However, due to the

diverse sources of noise it will remain challenging to extract the gravitational wave

signal from raw data containing noise. Therefore, a complex data analysis machinery

has been developed to compare wave templates against the detector signal [LAL].

These gravitational wave templates are usually generated from post-Newtonian con-

siderations [Blanchet, 2006], the effective one body (EOB) approach [Buonanno

and Damour, 1999; Damour, 2001], or from the full numerical solution of the field

equations of general relativity. In most cases, numerical simulations are needed to

feed and tune analytical methods [Ajith et al., 2011; Taracchini et al., 2014] for

waveform modeling. Therefore, efficient and accurate general relativistic simulations

will be crucial for future gravitational wave astronomy.

The most promising source of gravitational waves are binary systems of fast

moving, compact objects such as black holes and neutron stars. Although all currently

observed gravitational wave events originated from black hole coalescences [Abbott

et al., 2016b; Abbott et al., 2016a; Abbott et al., 2017], binary neutron stars (BNSs)

are a promising source for upcoming detectors. In [Abbott et al., 2013], a BNS event

3



4 CHAPTER 1. INTRODUCTION

rate of 0.4 − 400 per year is expected for future detectors with a range of 200 Mpc.

In contrast to binary black hole mergers, the presence of matter leads to additional

physical phenomena [Baiotti and Rezzolla, 2016]: The initiation of short gamma-

ray bursts [Eichler et al., 1989; Narayan et al., 1992], the creation of heavy nuclei

through the r-process [Freiburghaus et al., 1999] or neutrino emission [Waxman,

2004; Dessart et al., 2009]. From a gravitational wave signal of coalescing neutron

stars, unique information about their internal structure, i.e. the so far unknown

equation of state may be extracted [Read et al., 2009].

Since the first simulation of BNSs [Shibata and Uryū, 2000], a variety of nu-

merical codes for general relativistic hydrodynamics (GRHD) simulations have been

developed [Font et al., 2000; Baiotti et al., 2005; Liu et al., 2008; Yamamoto et al.,

2008; Thierfelder et al., 2011; Radice and Rezzolla, 2012]. All these codes are based

on finite volume or finite difference methods. Parallelization is mostly realized by

a domain decomposition and a shared memory/message passing paradigm [MPI].

For this purpose, some part of the grid has to be sent to other processors. Typi-

cally, the amount of communication increases with the order of the scheme. This

makes efficient parallelization of these codes particularly hard. Spectral methods

have the potential to solve this issue and are therefore very popular candidates for

modern numerical relativity codes [SpEC; Tichy, 2006; Hilditch et al., 2016]. They

allowed for impressively efficient and parallel simulations of vacuum spacetimes, e.g.

gravitational wave collapse or binary black hole systems. Since spectral methods

are designed for smooth solutions and matter fields typically contain shocks and

discontinuities, it is particularly hard to treat both spacetime and matter spectrally.

This is why production codes still rely on finite volume/difference methods for the

treatment of hydrodynamical fields. Also hybrid codes like [Duez et al., 2008] have

been developed.

The main objective of this thesis is to implement and investigate a novel class

of numerical methods for the matter treatment in GRHD codes: The Discontinuous

Galerkin (DG) methods. Since its first application [Reed and Hill, 1973], DG methods

have emerged as a successful general purpose paradigm in the recent years [Canuto

et al., 2006; Hesthaven and Warburton, 2008; Kopriva, 2009]. Combining the key

advantages of finite volume and traditional finite element methods, e.g. element

locality and hp-adaptivity [Karniadakis and Sherwin, 2005], DG methods offer the

treatment of complex grid geometries and simple parallelization. Actually, DG meth-

ods require only communication of the shared interface layer of non-overlapping

elements, independent of the order of the scheme. With its application on hyperbolic

conservation laws [Cockburn and Shu, 1989; Cockburn and Shu, 1998], DG methods

found its way into first general relativity applications [Zumbusch, 2009; Field et al.,

2009; Radice and Rezzolla, 2011]. With the present work, we want to explore the
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features and usability of DG methods in the context of GRHD.

Apart from almost trivial test cases, we expect that occurring shocks are still a

challenging problem, also in the context of DG methods. Therefore, focus is also put

on high resolution shock capturing (HRSC) methods as an extension to the plain DG

method. Concerning this combination, two main strategies have seen remarkable

development in the past years: i) a generalization of the weighted essentially non-

oscillatory (WENO) reconstruction [Liu and Osher, 1994] for DG methods [Qiu and

Shu, 2005; Zhong and Shu, 2013; Zhao and Tang, 2013]; ii) a subdivision strategy to

divide the DG element in sub-volumes, which are then treated by another more robust

(but possibly lower order) method. In [Wang, 2002; Radice and Rezzolla, 2011], this

approach leads into the “spectral volumes” (SV) idea, while in the comprehensive

works [Dumbser et al., 2013; Zanotti and Dumbser, 2014; Dumbser et al., 2014],

“subcells” were developed as the key ingredient for complex adaptive mesh refinement

schemes.

Besides the evolution algorithm, the actual extraction of the gravitational wave

signal from the numerical data is a problem on its own. For an unambiguous and

coordinate independent wave extraction, future null infinity should be included in

the numerical grid. In most numerical relativity codes, gravitational waves are simply

extracted at a sufficiently big (but finite) radius [Bishop and Rezzolla, 2016]. Another

approach is the interpolation of numerical data from spatial slices to null slices,

followed by extrapolation to infinity [Pollney et al., 2009; Boyle and Mroué, 2009].

As a last alternative strategy, Cauchy-characteristic matching [Winicour, 1998] should

be named. Here, a global solution is obtained by matching the outer boundary of

spatial (Cauchy) slices with the inner boundary of characteristic (null) slices that

extend to future null infinity. Within this thesis, we present the first numerical test

of a new approach, based on the dual foliation (DF) formalism [Hilditch, 2015].

The plan is to choose hyperboloidal coordinates as a second coordinate frame and

to extend the outer parts of our numerical domain to future null infinity. Although

these first tests only consider the flat wave equation [Bug2], the procedure is a future

candidate for highly accurate gravitational wave extraction.

The structure of the thesis is as follows: We introduce the main concepts of

numerical relativity in chapter 2. Starting from Einstein’s field equations, we give a

rough guideline on the derivation of equations which are used in our code. Besides

the GHG and “Valencia” formulations, we also introduce the novel DF formalism. In

chapter 3, we concentrate on the implementation of the formerly derived equations.

A short summary on the existing bamps code is given. This is followed by a detailed

description on DG and HRSC methods, that we plan to use for the matter treatment

in our code. In chapter 4, we present and analyze all test simulations for our new

implementation. The behavior of several building blocks of our algorithm and its
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convergence are investigated for a set of test cases with increasing complexity. In

chapter 5, we show that our code can actually be used for simulating the dynamics of

a BNS system and to extract the corresponding gravitational waveform. First tests of

the DF implementation are shown in chapter 6. In chapter 7, we summarize and a

final comment on DG methods in the context of GRHD is given. Additionally, some

remarks on potentially interesting future developments are given.



Chapter 2

Numerical treatment of general
relativistic hydrodynamics

The objective of this thesis is the numerical evolution of general relativistic neutron

stars. This simple statement comprises several non-trivial facts. Evolving a “star”

means to evolve matter according to the conservation of rest mass and energy-

momentum

∇µj
µ = 0, (2.1a)

∇µT
µν = 0. (2.1b)

The term “general relativistic” imposes that Einstein’s field equations have to be

solved simultaneously:

Rµν = 8π

(
Tµν −

1

2
Tgµν

)
. (2.1c)

The remarkable and defining feature of covariant theories is the invariance of equa-

tions under tensor basis changes. Equations (2.1) satisfy this requirement, so that all

possible coordinates, i.e. spatial coordinates and time, are treated equally. In order to

“evolve” a state, the underlying problem has to be recast as an initial value problem.

It is achieved by reverting to a formulation, in which space and time are separated.

This so called 3+1 decomposition was originally proposed in the works of Darmois,

Lichnerowicz and Choquet-Bruhat [Lichnerowicz, 1944; Bruhat, 1952]. Later, it was

used very successfully by Arnowitt, Deser and Misner [Arnowitt et al., 1962; York,

1979]. We collect the essential parts of this formalism in Sec. 2.1 and continue with

its application on eqs. (2.1a,b) in Sec. 2.2. Detailed calculations on decomposing

covariant equations in 3+1 form can be found in [Gourgoulhon, 2012; Baumgarte

and Shapiro, 2010; Alcubierre, 2008]. In Sec. 2.3 we describe our coordinate choice -

or gauge - for (2.1), the Generalized harmonic gauge (GHG) [Lindblom et al., 2006].

In Sec. 2.4 the main ideas and features of the dual foliation formalism [Hilditch,

7



8 CHAPTER 2. NUMERICAL TREATMENT OF GR HYDRODYNAMICS

2015],[Bug2], i.e. the usage of two different foliations and/or gauges, are presented.

2.1 3+1 decomposition in numerical relativity

A wide class of spacetime manifoldsM is globally hyperbolic, meaning that there

is a Cauchy surface Σ such that the topology ofM is necessarily Σ×R [Gourgoulhon,

2012]. Exploiting this property, one introduces a smooth and regular scalar field

t and foliates the four-dimensional spacetime (M, gµν), where gµν is a metric with

signature (−,+,+,+), into three-dimensional spacelike level surfaces of t. Given the

data on slice Σt, an “evolution” than refers to the process of finding compatible data

at slice Σt+δt. The required equations originate from a split of the fully covariant

tensor equations along and orthogonal to the slices Σt. The orthogonal direction to

Σt is given by the normalized 1-form

Ωµ = α∇µt, α = [− (∇µt) (∇µt)]−
1
2 , (2.3a)

where the normalization α is called lapse [Wheeler, 1964], and the corresponding

normal vector
nµ = −gµνΩν . (2.3b)

By Taylor expansion it is easy to verify, that nµ points in a direction of increasing

t (since α > 0). Since nµ is normalized and timelike, one can think of it as the

four-velocity field of a family of observers. Locally, Σt can be seen as the set of

simultaneous events for this Eulerian observer [Gourgoulhon, 2012]. In contrast to

nµ, the vector αnµ has the property

t (xµ + δt · αnµ) = t̂+ δt, (2.5)

where x ∈ Σt̂, i.e. it maps a slice to its infinitesimally displaced neighbor (see

Fig. 2.1). Introducing coordinates xµ = (t, xi), another vector with this feature can

be constructed by the displacement (t, xi) 7→ (t + δt, xi), i.e. one that conserves

the spatial coordinates. This vector is typically called time vector tµ. The difference

between αnµ and tµ is tangent to the slice Σt and called the shift vector βµ. All defined

vectors are therefore related by the fundamental relation

tµ = αnµ + βµ, (2.6)

which is depicted in Fig. 2.1.

As mentioned earlier, we want to project tensor equations into and orthogonal

to Σt. To do so, we define the projector γνµ = δνµ + nµn
ν . By lowering one index, it is
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clear that

γµν = gµν + nµnν (2.7)

is identical to the full metric gµν for vectors tangent to Σt, which is why γµν is called

induced metric. At this point, we already have all ingredients in place to express the

full metric in terms of the new functions α, βi and γij. We choose a basis adapted

to the coordinates (t, xi), so that tµ = (1, 0, 0, 0) and with (2.3) nµ = (−α, 0, 0, 0).

Since βµ is tangent to Σt, βµ = (0, βi) (more generally, all zeroth components of

spatial contravariant tensors vanish [Baumgarte and Shapiro, 2010]). With the

normalization of nµ and (2.6) one finds the components of nµ =
(

1
α
,−βi

α

)
. The

inverse metric is then directly derivable as

gµν =

(
− 1
α2

βi

α2

βj

α2 γij − βiβj

α2

)
, (2.8)

and it follows by inversion that

gµν =

(
−α2 + βkβk βi

βj γij

)
. (2.9)

One usually introduces further objects and abbreviations in the 3+1 context. In the

following, those which are used in the thesis are defined and briefly described.

The Three-dimensional covariant derivative D is uniquely defined by the compati-

bility property [Baumgarte and Shapiro, 2010]

Dµγαβ = 0, (2.10)

which is fulfilled if D is constructed as the fully projected four-dimensional covariant

derivative

DµT
α1···αn

β1···βm = γνµγ
α1
δ1
· · · γαn

δn
γε1β1 · · · γ

εm
βm
∇νT

δ1···δn
ε1···εm , (2.11)

for spatial tensors T α1···αn

β1···βm . As the induced metric defines a derivative on the slice,

it is possible to measure the intrinsic curvature on Σt. The appropriate spatial

curvature quantities are defined in the same way as for the manifoldM, except for

the substitutions gµν → γµν and ∇ → D.

Besides their intrinsic curvature, the slices can bend inside the ambient manifold.

This is reflected by the extrinsic curvature, which measures the change of the normal

vector along a path in Σt:

Kµν = −γαµ∇αnν . (2.12)

Using (2.7), the metric compatibility of ∇ and nµ∇νn
µ = 0, it is straightforward to
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show that

−2Kµν = Lnγµν , (2.13)

which indicates thatKµν carries information about the temporal change of the induced

metric. Actually, the extrinsic curvature is a crucial part of the conjugate momentum

tensor in the Hamiltonian formulation of general relativity [Arnowitt et al., 1962].

Commonly, the acceleration of the Eulerian observer aµ is defined as

aµ = nν∇νnµ, (2.14)

and vanishes if the observer moves along a geodesic. aµ is tangential to Σt and can

alternatively be expressed as a spatial derivative:

aµ = Dµ lnα. (2.15)

As a last remark in this section, we want to comment on Lie and time derivatives.

The latter are required to evolve data from Σt to Σt+δt. For scalar data u, the temporal

derivative can easily be recovered as

∂tu = tµ∂µu = αnµ∇µu+ βiDiu. (2.16)

For a spatial covector wi we use the properties of the Lie derivative in adapted

coordinates to find

∂twi = Ltwi = Lαnwi + Lβwi = γjiLαnwj + Lβwi
= α

(
nµγji∇µwi − wiKi

j

)
+ Lβwi, (2.17)

which relates its covariant derivative along nµ and its time derivative. The Lβ term

in (2.17) can either be expressed in terms of the coordinate derivatives ∂i or the

covariant derivatives Di.

2.2 Recasting the matter equations
We want to apply the 3+1 decomposition on eqs. (2.1a,b). This step is covered

in many textbooks which are already mentioned in the beginning of this chapter.

Nevertheless, we want to point out that in particular [Rezzolla and Zanotti, 2013]

focuses on relativistic fluids and its numerical treatment. The particular set of

equations that will be derived in this chapter is called the Valencia formulation of
relativistic hydrodynamics [Martí et al., 1991; Font et al., 1994; Banyuls et al., 1997].

We start from modeling the fluid as a perfect fluid, by defining uµ as the fluid

four-velocity field and the scalar fields ρ, p, ε as the fluid rest mass density, pressure
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Figure 2.1: 3+1 decomposition: The manifold M (purple) is sliced by a scalar function
t. The slices Σt are hypersurfaces where t = const (black). Blue lines are lines of constant
spatial coordinates. The initial slice is colored red. A fluid particle worldline is sketched in
green. The infinitesimal vicinity of a point in Σt is shown on the right. The meaning of the
important 3+1 quantities lapse α, shift vector βi, normal vector nµ and time vector tµ is
depicted. Additionally, the four-velocity field uµ and the three-velocity field vi of the fluid are
illustrated.

and specific internal energy field. These fields are related to each other by an equation
of state (EOS), i.e. p = p(ρ, ε), which represents the microscopic characteristics of the

matter. In this work, we use either the polytropic EOS

p = KρΓ, (2.18)

or the ideal gas EOS
p = ρε(Γ− 1). (2.19)

The rest mass four-current and the energy-momentum tensor for this matter model

are defined as

jµ = ρuµ, (2.20)

T µν = ρhuµuν + pgµν , (2.21)

where h = 1 + ε + p
ρ

is the specific enthalpy of the fluid. As illustrated in Fig. 2.1,

uµ can be scaled by a factor α
W

, W = −uµnµ, so that it shares the property (2.5),

i.e. it maps points from Σt to Σt+dt. By comparing the proper times elapsing for

the Eulerian observer −δτ 2 = gµν(αn
µδt)(αnνδt) and the Lagrangian observer (i.e.

an observer moving with the fluid) −δτ 20 = gµν(
α
W
uµδt)( α

W
uνδt) in between the two

slices Σt , Σt+dt, one finds

δτ = Wδτ0 = αδt. (2.22)
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Because of this relation, W is called Lorentz factor referring to special relativity. It

also explains the name of the lapse, since α relates the lapse of proper time measured

by the Eulerian observer and the coordinate time difference δt. It is also evident

from Fig. 2.1, that the fluid displacement relative to this observer is given by the

projection γµν
α
W
uνδt. The observer dependent three-velocity of the fluid vµ is given by

this displacement divided by the elapsed proper time, so that by means of (2.22)

vµ = γµν
1

W
uν . (2.23)

Overall, we find the 3+1 decomposition of the fluid four-velocity:

uµ = W (nµ + vµ) . (2.24)

Hence, we reformulate the rest mass conservation law (2.1a)

α∇µj
µ = α

(
γνµ − nµnν

)
∇νρW (nµ + vµ)

= ∂t (ρW ) +Di

(
ρW

[
αvi − βi

])
+ ρW

(
Diβ

i − αK
)

= 0, (2.25)

where we used eqs. (2.11-16). Although this is already a 3+1 decomposed version of

the equation, it can be re-written such that its conservation properties are apparent

again. With ∂tγij = Ltγij and (2.13), it is

Diβ
i − αK =

1

2
γij∂tγij. (2.26)

The following two textbook results can be derived by expanding the determinant and

using the definition of the Christoffel symbol:

1
√
γ
∂t
√
γ =

1

2
γij∂tγij, (2.27)

Div
i = ∂iv

i +
1

2
viγkl∂iγkl =

1
√
γ
∂i
(√

γvi
)
. (2.28)

Applying these building blocks on (2.25), we gain its conservation law form:

∂t (
√
γρW ) + ∂i

(√
γρW

[
αvi − βi

])
= α
√
γ∇µj

µ = 0. (2.29)

The conservative nature of this equation deserves much more attention. We return to

this feature at the end of this section.

For the treatment of the energy-momentum conservation law (2.1b), we first
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introduce the 3+1 decomposition of the energy-momentum tensor,

E = nµnνTµν = ρhW 2 − p, (2.30a)

pα = −γµαnνTµν = ρhW 2vα, (2.30b)

Sαβ = γµαγ
ν
βTµν = ρhW 2vαvβ + pγαβ, (2.30c)

Tµν = Enµnν + pµnν + nµpν + Sµν , (2.30d)

with E, pα and Sαβ being the energy density, momentum density and stress tensor

observed by the Eulerian observer. Equation (2.1b) has a free index, so that it can

be projected along and orthogonal to Σt. In fact, the former projection will lead to

momentum conservation, while the latter results in energy conservation. Projecting

onto Σt and using again the preliminary eqs. (2.11-15), (2.17) and (2.30) gives

αγνi∇µT
µ
ν = αγνi

(
γβµ − nµnβ

)
∇β (Enµnν + pµnν + nµpν + Sµν)

= ∂tpi − Lβpi +Dj

(
αSji

)
+ EDiα− αpiK

= ∂tpi +Dj

(
αSji − piβj

)
+ pi

(
Djβ

j − αK
)
− pjDiβ

j + EDiα

= 0. (2.31)

As for the previous derivation, we use the trick (2.26) and the textbook relation

DjS
j
i = ∂jS

j
i +

1
√
γ
∂j
√
γSji − ΓkijS

j
k, (2.32)

to find the balance law result for momentum conservation:

α
√
γγνi∇µT

µ
ν = ∂t (

√
γpi) + ∂j

(√
γ
[
αSji − piβj

])
− 1

2
Sjk∂iγjk − pj∂iβj + E∂iα = 0.

(2.33)

Finally, we project (2.1b) onto nµ and by the same means as before, we derive

α
√
γnν∇µT

µ
ν = α

√
γnν∇µ

(
γβµ − nµnβ

)
∇β (Enµnν + pµnν + nµpν + Sµν)

=
√
γ
(
∂tE + E

[
Diβ

i − αK
]

+Di

[
αpi − Eβi

]
+ piDiα− αSijKij

)
= ∂t (

√
γE) + ∂i

(√
γ
[
αpi − Eβi

])
+
√
γpi∂iα + α

√
γSijKij. (2.34)

In this section, we obtained a system of the five equations (2.29), (2.33), (2.34)

for the matter variables. As in [Banyuls et al., 1997], we can summarize these results

as a fundamental balance law

∂tu+ ∂if
i(u) = s(u), (2.35)

which has a deeper physical meaning. Integrating this equation over a certain spatial
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volume Ω, the average of u in Ω changes in time only due to out/inflow through

∂Ω and due to sources and sinks in Ω. Although u is only conserved if s(u) = 0,

the components of u are usually called conserved variables. In contrast, the formerly

introduced fluid variables ρ, ε, p and vi are called primitive variables. The conserved

variables can be expressed in terms of the primitive variables (see eqs. (2.30a-c)).

Since there is no analytical inversion of this mapping, the primitives are usually

recovered by a Newton-Raphson procedure. We give a more detailed explanation on

this recovery in Appendix A. Note, that W is not an independent variable. From W =

−uµnµ, (2.24) and the normalization of nµ and uµ we conclude W = (1− vivi)
− 1

2 .

The numerical methods that are explained in chapter 3 intensively use this specific

form of (2.35). They are designed in a way, such that conserved variables are also

conserved on a discrete numerical grid. In (2.35), we call f i(u) fluxes and s(u) sources.
In the case of GRHD, the sources also depend on α, γij or Kij besides u. For what we

derived in this section, we can combine

u =
√
γ

Dpj
τ

 =
√
γ

 ρW

ρhW 2vj

ρhW 2 − p−D

 , f i =
√
γ

 D (αvi − βi)
pj (αvi − βi) + pδij

τ (αvi − βi) + pvi

 , (2.36)

where we use E − D as the fifth conserved variable instead of E alone. This is

motivated by numerical advantages [Rezzolla and Zanotti, 2013] and was originally

proposed in [Banyuls et al., 1997]. The sources can be solely expressed in terms of

four-tensors and the lapse:

s =
√
−g

 0

T µν
(
∂µgνj − Γδµνgδj

)
α (T µ0∂µ lnα− T µνΓ0

µν)

 . (2.37)

The derivation of these source terms from those in eqs. (2.31,34) is not obvious.

We followed two major steps: (a) Expressing E, pi and Sij as tensor components

of the energy-momentum tensor, e.g. E = α2T 00; (b) Expressing α, βi and γij as

components of gµν , using (2.9).

The system of eqs. (2.35-37) is hyperbolic, i.e. the dynamics of the correspond-

ing quasi-linear system can be decomposed in advective transport processes with

characteristic speeds. These provide very useful information, e.g. the maximum propa-

gation speed of the fields along a given direction. We will use these information to

construct numerical fluxes for our schemes (see Sec. 3.2). The characteristic speeds

are the eigenvalues of the matrix ∂(sif
i)

∂u
where the vector si specifies the direction of
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propagation. These eigenvalues are given by [Banyuls et al., 1997]:

λ0 = αsiv
i − siβi (triple),

λ± =
α

1− v2c2
s

[
siv

i(1− c2
s)± cs

√
(1− v2) [s2(1− v2c2

s)− (sivi)2(1− c2
s)]
]
− siβi.

(2.38)

Here, cs denotes the speed of sound defined by c2
s =

(
∂p
∂ρ

+ p
ρ2
∂p
∂ε

)
.

2.3 Recasting the Einstein field equations
After the treatment of the matter equations in Sec. 2.2, we want to discuss the

field equations of GR (2.1c). In principle, we could simply proceed as in the previous

section and apply the 3+1 formalism. This leads to the ADM equations [Arnowitt

et al., 1962]. By further modifications (e.g. introducing a conformal decomposition

of the spatial metric) the BSSN system [Baumgarte and Shapiro, 1998; Shibata and

Nakamura, 1995] can be derived. Together with a finite-differencing scheme it yields

the standard framework used in a majority of numerical relativity codes. In this

work, we follow another strategy which is closely linked to the Ph.D. project of

Andreas Weyhausen [Weyhausen, 2014; Hilditch et al., 2016]. Instead of BSSN, we

use the GHG system as presented in [Lindblom et al., 2006] to evolve the spacetime

quantities. Generalized harmonic coordinates proved to be very useful in numerical

simulations. In particular, they allow a reliable binary black hole inspiral evolution

up to the merger [Pretorius, 2005; Pretorius, 2006]. In this section, we summarize

the main derivation steps of the GHG system and its properties. We again refer the

reader to [Lindblom et al., 2006; Weyhausen, 2014] for more details.

The foundation of the GHG system is a certain representation of the Ricci tensor,

that is

Rµν = −1

2
gαβ∂α∂βgµν +∇(µΓν) + gαβgδε ([∂δgαµ] [∂εgβν ]− ΓµαδΓνβε) , (2.39)

with Γαµν = gαβΓβµν and Γα = gµνΓαµν . Although (2.39) is mentioned and discussed

throughout the GHG literature, we give a detailed derivation in Appendix B. From

this formulation it is obvious, that if we choose coordinates satisfying

gµν∇α∇αx
ν = −Γµ = Hµ (x, g) , (2.40)

where H is a function of the coordinates and the metric (but not its derivatives), the
Einstein equations are manifestly hyperbolic. Hence, the principal part of (2.39) is
just that of a scalar wave equation. The given function Hµ is usually called Gauge
source function. With a 3+1 decomposition, Hµ can be related to the derivatives of
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lapse and shift. For all our tests, we chose the Gauge source function constant in time,
such that ∂tα = ∂tβ

i = 0 is fulfilled on the initial slice. Although this is sufficient
for our purposes, it should be mentioned that there are more sophisticated ways to
chose Hµ, see e.g. [Lindblom and Szilágyi, 2009]. In numerical evolutions (2.40)
can be violated, which is why we view it as the Harmonic constraint Cµ = Hµ + Γµ.
Furthermore, the Einstein equations (2.1c) are modified:

Rµν −∇(µCν) + γ4ΓαµνCα −
1

2
γ5gµνΓαC

α + γ0

(
n(µCν) −

1

2
gµνn

αCα
)

= 8π

(
Tµν −

1

2
Tgµν

)
.

(2.41)

This system is still hyperbolic and solutions satisfying Cµ = 0 will be solutions of the

original field equations of GR. An analysis of the constraint evolution system gives two

additional insights: 1) The evolution system is self-consistent, i.e. if Cµ = ∂tCµ = 0 in

a domain Ω, the constraints also vanish in the domain of dependence of Ω [Lindblom

et al., 2006]; 2) The term proportional to γ0 causes a damping of high frequency

constraint violations. Although this has been proved in [Gundlach et al., 2005]

(performing a mode analysis on a linearization of GR), it is not obvious that these

arguments still hold for a general spacetime containing matter. However, in practice

γ0 > 0 leads to constraint damping in all our tests. The terms including γ4 and γ5

were incorporated into the GHG formulation in [Hilditch et al., 2016] to simplify the

constraint subsystem. Unless otherwise stated, we use γ4 = γ5 = 1
2

in this work.

The second order PDE system (2.41) can be reduced to be first order in time and

space by introducing the reduction variables

Πµν = −nα∂αgµν , Φiµν = ∂igµν . (2.42)

However, this adds two new constraints to the system, namely the Reduction constraint
Ciµν = Φiµν − ∂igµν , and the Ordering constraint Cijµν = ∂[iΦj]µν . We do not want

to give all details of the first order reduction calculation of (2.41). The main step

is expressing the second order part gαβ∂α∂βgµν in terms of the reduction variables.

Again using the 3+1 formalism (2.9), we can verify the intermediate results

αnµnνΦiµν = −2∂iα, α2nµnνΠµν = 2
(
∂tα− βi∂iα

)
αnµγjνΦiµν = ∂iβ

j, α2nµγjνΠµν = −
(
∂tβ

j − βi∂iβj
)
. (2.43)

With (2.6) Πµν can be linked to the time derivative of the metric. Finally, one finds
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the first order GHG evolution system as implemented in our code:

∂tgµν =βi∂igµν − αΠµν + γ1β
iCiµν (2.44a)

∂tΦiµν =βj∂jΦiµν − α∂iΠµν + γ2αCiµν +
1

2
αnαnβΦiαβΠµν + αγjknαΦijαΦkµν (2.44b)

∂tΠµν =βi∂iΠµν − αγij∂iΦjµν + γ1γ2β
iCiµν −

1

2
αnαnβΠαβΠµν − αnαγijΠαiΦjµν

+ 2αgαβ
(
γijΦiαµΦjβν − ΠαµΠβν − gδεΓµαδΓνβε

)
+ αγ0

(
2n(µCν) − gµνnαCα

)
− 2α

(
8π

[
Tµν −

1

2
Tgµν

]
+∇(µHν) + γ4ΓαµνCα −

1

2
γ5gµνΓ

αCα
)
, (2.44c)

where extra terms with the coefficients γ1 = −1, γ2 > 0 have been added in order to

damp the reduction constraint Ciµν and to make the system linearly degenerate [Lind-

blom et al., 2006]. In this first order version, the Christoffel symbols have to be

viewed as combinations of the reduction variables

Γµνα = γi(ν|Φi|α)µ −
1

2
γiµΦiνα + n(νΠα)µ −

1

2
nµΠνα. (2.45)

Besides to the evolution system, reasonable outer boundary conditions are needed

for a reliable numerical evolution. This topic could be a whole lecture on its own,

and we refer the reader to [Hilditch et al., 2016; Rinne et al., 2007] for a more

detailed description of our implementation. The fundamental idea is to impose

boundary conditions on the derivatives si∂iuα̂µν , where si is normal to the boundary

and uα̂µν is a characteristic variable. Just as for the evolved variables, a characteristic

decomposition of the constraint evolution system can be derived. It turns out, that

the characteristic fields for the constraint evolution system are linked with the former

mentioned derivatives si∂iuα̂µν [Lindblom et al., 2006]. Exploiting this fact, it is

possible to find boundary conditions, such that the incoming characteristic constraint

fields vanish, i.e. no constraint violations originate from the outer boundary. However,

additionally to the constraint fields two physical and four gauge degrees of freedom

have to be fixed at the boundary. For the former, this is done by imposing the

gravitational wave scalar Ψ4. This is defined as a contraction of the Riemann tensor,

which in turn contains combinations of ∂iuα̂µν . The gauge degrees of freedom are

treated according to [Rinne et al., 2007; Hilditch and Ruiz, 2016]. We implemented

all these boundary conditions using the Bjørhus method [Bjørhus, 1995].

2.4 The dual foliation formalism
One key feature of the theory of general relativity is its invariance under coordinate

transformations. In various situations, it can be desirable to employ two different

coordinate systems xµ = (t, xi), Xµ = (T,X i) in order to exploit the advantages
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Table 2.1: Two foliations and the corresponding 3+1 quantities

coordinates slices normal vector lapse shift time vector induced metric
(t, xi) t = const nµ α βi tµ γij

(T,X i) T = const Nµ A Bi Tµ (N)γij

of both. This means that two foliations Σt, ΣT are introduced with t = const and

T = const, respectively. The 3+1 quantities as explained in Sec. 2.1 can be defined

for both foliations (see table 2.1).

In what follows, we will refer to these two frames as the lower case and the upper
case frame. In [Hilditch, 2015], which is the pioneer work on the DF formalism, the

connection between these sets of variables was figured out. Here we will follow the

route of this paper to derive some of its main results.

In sec 2.2 we introduced the Lagrangian observer traveling along with the fluid.

This situation is identical to what we consider now, except that Nµ is the four-velocity

of an arbitrary family of observers. In perfect analogy, we define the Lorentz factor

W = −Nµnµ, so that the proper times of the two observers δτ and (N)δτ can be related

in the fashion of eq. (2.22), yielding δτ = W (N)δτ . This leads to the insight, that W

links the two lapse functions α, A:

αδt = δτ = W (N)δτ = WAδt ⇒ α = WA. (2.46)

We again find the relation

Nµ = W (nµ + vµ) . (2.47a)

Here vµ has no longer the meaning of a fluid velocity, but instead describes the

relative velocity of the two observers. Vice versa, switching the point of view to the

other observer, we find

nµ = W (Nµ + V µ) . (2.47b)

In the above equations, we call vµ the lower case and V µ the upper case boost vector.
This reciprocity of the two coordinate systems is also evident from Fig 2.2. The boost

vectors can be used to recover an uppercase spatial vector SµNµ = 0 from only its

projection onto the lower case slice Σt:

Sµ = γαν S
ν (δµα + nµvα) . (2.49)

It is straightforward to generalize this result for arbitrary uppercase spatial tensors.

Furthermore, we can now 3+1 decompose the Jacobian which is used to transform
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Figure 2.2: Dual foliation formalism: The manifold M (purple) is now sliced by two sets
of hypersurfaces Σt, ΣT where t = const (black) and T = const (blue). The infinitesimal
vicinity of a point in Σt ∩ΣT is shown on the right. The meaning of the DF quantities Lorentz
factor W and boost vectors vi, V i is depicted.

between the two coordinate systems. With the insights of Sec. 2.1 and (2.47) we find

J0
µ = ∇µt = − 1

α
nµ = −W

α

(
Nµ + Vµ

)
(2.50)

Jµ
0 = T νJµ

ν = ANµ + BνJµ
ν = AW (nµ + vµ) + BνJµ

ν . (2.51)

Introducing a symbol for the spatial part of the Jacobian Φi
j ≡ J i

j and using that

V0 = BiVi because V µ is spatial with respect to the upper case foliation, a concluding

representation of the Jacobian in terms of 3+1 quantities can be found:

Jµ
ν =

(
W
α
(A− BiVi) −W

α
Vj

AW
(
vi − βi

α

)
+ BjΦi

j Φi
j

)
. (2.52)

A major result of the first DF work [Hilditch, 2015] is a transformation rule for first

order PDE systems to switch between the foliations. Assuming, that using the upper

case foliation yields a system of the form

∂Tu =
(
AAi + Bi1

)
∂iu+ AS, (2.53)

we can use the Jacobian (2.52) and the lapse relation (2.46) to find the system in the

lowercase coordinates:

∂Tu = Jµ
0∂µu =

W

α

(
A− BiVi

)
∂tu+

(
AW

(
vi − βi

α

)
+ BjΦi

j

)
∂iu, (2.54)

∂iu = Jµ
i∂µu = −W

α
Vi∂tu+ Φj

i∂ju, (2.55)

⇒
(
1 +AiVi

)
∂tu =

α

W

(
AiΦj

i −W

(
vj − βj

α

))
∂ju+

α

W
S. (2.56)
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Note, that in the final transformed PDE system (2.56), the state vector u was not

affected by the transformation. In particular, u may contain tensor components with

respect to the upper case basis, even though lower case coordinates are used for

the evolution. This decoupling of coordinates and tensor basis is the unique feature

of the DF formalism compared to standard methods in NR. In the original work,

(2.56) is used to analyze certain properties of the PDE system, such as symmetric

hyperbolicity. In [Bug2], we applied the transformation to the wave equation in

Minkowski spacetime and introduced compactified hyperboloidal slices as a second

foliation. The tests and results of this certain work are the topic of chapter 6.



Chapter 3

Numerical methods

This chapter gives an overview on the numerical methods that are relevant for

this work. We first introduce the existing infrastructure of the bamps code, its grid

layout and symmetry treatment in section 3.1. Moreover, a summary is given on

pseudospectral and penalty methods, which are used for the numerical solution of

the GHG system (2.44) as presented in [Weyhausen, 2014; Hilditch et al., 2016].

Section 3.2 focuses on the key aspect of this work, the Runge-Kutta Discontinuous

Galerkin method [Cockburn and Shu, 1989] as applied to the GRHD eqs. (2.35-37).

We give a detailed description of the method and explain its application on three-

dimensional curvilinear grids. Since shocks are expected in a general setup, the

code has to be equipped with a shock capturing technique. In the scope of this work

we followed two different shock capturing strategies, the weighted-essentially-non-

oscillatory (WENO) methodology [Liu and Osher, 1994; Jiang and Shu, 1996; Qiu

and Shu, 2005; Zhao and Tang, 2013] [Bug1] and the local finite volume (or spectral

volume) treatment [Wang, 2002; Radice and Rezzolla, 2011]. Both shock capturing

methods are subject of section 3.3. Figure 3.1 gives a schematic overview on a single

time evolution substep (i.e. a Runge-Kutta substep) as implemented in bamps. The

different constituents are subject of this chapter.

3.1 Pseudospectral methods and the bamps code
The usage of spectral decompositions dates back to the days of Fourier’s an-

alytical investigations [Fourier, 1822]. With the development of the fast Fourier

transformation [Cooley and Tukey, 1965], the popularity of spectral methods as a

numerical approach to solve PDEs significantly increased in the 1970s. Since then,

spectral methods were very successfully applied in many fields of physics [Boyd,

1989]. Of particular interest regarding this work was the numerical solution of

the GHG system with a pseudospectral (or collocation) method implemented with

the SpEC code [SpEC]. Just as SpEC, the bamps code [Hilditch et al., 2016] in its

21
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MPI
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Figure 3.1: A time evolution substep in the bamps code. MPI [MPI] is used to communicate
grid data from one parallel process to another. The spatial derivatives are calculated via a
spectral approximation (see Sec. 3.1). For the spacetime variables, the time derivatives are
computed from (2.44) with a pseudospectral method (see Sec. 3.1). The matter balance
law (2.35) is usually evolved by a DG method (see Sec. 3.2). Both sets of variables are stored
in an interface array, whose components have a globally defined meaning. This concept was
mainly developed by Hannes Rüter. If the matter variables undercut a threshold, the cell is
marked as troubled and the spectral volume method (see Sec. 3.3.2) is employed instead of
DG. After the actual substep, the solution is checked by another troubled cell indicator. If
necessary, a WENO limiting procedure is applied (see Sec. 3.3.1). In a final step, the primitive
variables are reconstructed from the conservative variables (see Appendix A).

initial configuration is based on a pseudospectral method. The code is written in

the C programming language, making intensive use of structures towards an object-

oriented fashion. The technical branch of the code, including e.g. grid management,

input and output, parallel processing [MPI] and fundamental algebra is seperated

from the actual physics project modules. The various physics projects each contain

their respective first order evolution equations, boundary conditions and formulas

for miscellaneous analysis quantities. To simplify the input of these equations, a

Mathematica script is used to convert tensor expressions into C code. bamps has been

used for gravitational wave collapse simulations, giving impressive results both in

accuracy and efficiency [Hilditch et al., 2017].

Grid structure

Now focusing on the term “pseudospectral”, we want to emphasize that all types

of polynomial spectral methods (e.g. pseudospectral, Galerkin, Tau) rest on the same

fundamental considerations [Hesthaven et al., 2007]: Starting from

∂tu = Lu (3.1)

where L is a differential operator acting on the coordinates ξ, we approximate the

solution as an expansion of polynomials φi:

u(ξ, t) ≈ un(ξ, t) =
N∑
k=0

ak(t)φk(ξ). (3.2)
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Furthermore, the residual

Rn = ∂tun − Lun (3.3)

is defined and should of course vanish in the continuum limit. It is now the specific

implementation of this condition for Rn, that distinguishes between the several

spectral methods. In the case of a pseudospectral method, the residual is enforced to

vanish exactly at certain points in the domain,

∂tun(ξi, t) = Lun(ξi, t), (3.4)

where ξi are the so called collocation points or nodes. In bamps as used for this work,

these N + 1 nodes are given by the Legendre-Gauss-Lobatto points,

ξi ∈
{
ξ | (1− ξ2)

dPN
dξ

(ξ) = 0

}
, (3.5)

where PN is the N -th Legendre polynomial. Note, that the lower index in ξi enu-

merates the nodes and should not be confused with the upper index in ξi, which

is a coordinate index. Using these points in each dimension spans the cubic inter-

val [−1, 1]3, which is the fundamental reference grid in bamps (see top left part of

Fig. 3.2). From this reference grid, a rectangular box patch covering the interval

[u1
min, u

1
max]× [u2

min, u
2
max]× [u3

min, u
3
max] with local patch coordinates ui is constructed.

To increase resolution, these patches can be divided into N1 ×N2 ×N3 subpatches.

Each subpatch is a simple linear mapping of the fundamental reference grid (see

bottom left part of Fig. 3.2):

ui =
ūimax − ūimin

2
ξi +

ūimax + ūimin

2
,

ūimax = uimin +
ki
Ni

(uimax − uimin), ūimin = uimin +
ki − 1

Ni

(uimax − uimin), ki ∈ [1, Ni].

(3.6)

From the patches, the grid is built in global Cartesian coordinates xi = (x, y, z). In

bamps, the grid layout is a cubed-ball grid, i.e. it consists of three types of coordinate

patches: i) A cube which is centered around the origin; ii) Transition shells that

transfer the inner cube to a spherical shell; iii) Outer shells, that extend the grid

radially to its outer boundary. The full grid configuration is depicted on the right part

of Fig. 3.2. It includes the origin as a perfectly regular point and has a spherical outer

boundary, which is desirable e.g. for the formulation of boundary conditions and for

gravitational wave extraction.

For the central cube, the box patch is just mapped one-to-one into Cartesian
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Figure 3.2: The bamps grid layout for the x-y-plane. Top left: The fundamental reference
grid consisting of Legendre-Gauss-Lobatto grid points ξi ∈ [−1, 1]. Bottom left: A grid patch
consisting of several subpatches. Each subpatch is a mapping from the fundamental reference
grid. Right: The cubed-ball grid layout, built from a central cube (blue), transition shells
(gray) and outer shells (red). Each part of this grid is a mapping from the cubic grid patch.
The shell regions are first mapped to a master patch, which is oriented in positive x direction
(O+

x ). All other orientations, as indicated in the figure, are achieved by 90 degree rotations of
this master patch.

coordinates:

x = u1, y = u2, y = u3. (3.7)

The mapping of a box patch to a spherical shell in bamps is more complicated and

relies on the cubed-sphere transformation first presented in [Ronchi et al., 1996]

and used in a multipatch fashion in [Lehner et al., 2005; Pollney et al., 2011]. The

concrete coordinate transformation is given by

x̄ =
u1

s
, ȳ =

u1u2

s
, z̄ =

u1u3

s
, (3.8)

where for the outer shells

s =
√

1 + (u2)2 + (u3)2 (3.9)

and for the transition shells

s =

√
1 + 2λ

1 + λ((u2)2 + (u3)2)
, λ =

(u1)2
max − (u1

min)2

(u1
max)

2 − (u1
min)2

. (3.10)
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With this mapping, the whole domain is not yet covered. Solely the patches with

positive x orientation O+
x (see Fig 3.2) are reached by setting x = x̄, y = ȳ, z = z̄. All

other patches can be generated by 90 degree rotations of these O+
x patches:

O−x : x = −x̄, y = −ȳ, z = +z̄

O+
y : x = +z̄, y = +x̄, z = +ȳ, O−y : x = +z̄, y = −x̄, z = −ȳ

O+
z : x = +ȳ, y = +z̄, z = +x̄, O−z : x = −ȳ, y = +z̄, z = −x̄. (3.11)

This last building block completes the coordinate transformation as used in bamps.

Accordingly, the Jacobian for this mapping consists of three parts:

∂xi

∂ξj
=

∂xi

∂x̄l
∂x̄l

∂uk
∂uk

∂ξj
. (3.12)

The right part is the scaling from the fundamental reference grid to the box patch, the

middle part is the complicated mapping from the box patch to a curved patch and the

left part is the final permutation (and eventually negation) of Cartesian coordinates,

in order to rotate the patch in place.

Numerical differentiation

To build a numerical scheme from (3.4), an approximation for spatial derivatives

of u is needed. A simple way to derive this, is exploiting the properties of the Lagrange
polynomials

`k(ξ) =
N∏
l=0
l 6=k

ξ − ξl
ξk − ξl

, (3.13)

used for the expansion (3.2), i.e. φk ≡ `k. For each collocation point ξi, one

corresponding Lagrange polynomial `i can be defined with the properties `i(ξi) = 1

and `i(ξj) = 0 for i 6= j. This trivially leads to the fact, that the expansion coefficients

ak in (3.2) are identical with the values at the nodes:

un(ξ, t) =
N∑
k=0

un(ξk, t)`k(ξ). (3.14)

Using (3.13), it is straightforward to verify for the derivatives of `k

Dik :=
∂`k
∂ξ

(ξi) =


∑

m=0
m 6=i

(ξi − ξm)−1, for i = k(∏N
j=0
j 6=k

(ξk − ξj)
)−1∏N

m=0
m 6=k
m 6=i

(ξi − ξm), for i 6= k
. (3.15)
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With the spectral ansatz (3.2) and the property (3.14), we see that Dik is a derivative

matrix, that maps function values of the approximation at the nodes to its spatial

derivative at the same nodes:

∂un
∂ξ

(ξi) =
N∑
k=0

un(ξk, t)
∂`k
∂ξ

(ξi) =
N∑
k=0

Dikun(ξk, t). (3.16)

In the pseudospectral code, the numerical differentiation of a function is nothing

more than a matrix multiplication, which can be performed by optimized libraries, as

BLAS [BLAS]. In bamps, a subtlety in the calculation of Dik is used to make the code

less sensitive to rounding errors. Instead of using the Dii result from (3.15) directly,

it is constructed as the negative sum of the off-diagonal elements [Baltensperger and

Trummer, 2003]

Dii = −
N∑
k=0
k 6=i

Dik, (3.17)

such that the derivative of a constant function is numerically exactly zero. This differ-

entiation is always done on the fundamental reference grid. In the multidimensional

case, the derivative matrix is applied to each direction, i.e.

∂un
∂ξ2

(ξ1
i , ξ

2
j , ξ

3
k, t) =

N∑
l=0

Djlun(ξ1
i , ξ

2
l , ξ

3
k, t), (3.18)

for derivatives with respect to ξ2. To get the derivatives with respect to Cartesian

coordinates, which usually appear in the evolution equations, we have to multiply

with the appropriate Jacobian (3.12).

Time stepping

Now that spatial derivatives are available, the right hand side of (3.4) can be

built and therefore the time derivatives are known. To integrate forward in time, a

standard 4th order Runge-Kutta scheme is used. Unless otherwise stated, we use a

time-step ∆t = 0.25∆x, where ∆x is the minimal Cartesian distance of two points in

the grid.

Penalty method for patching boundaries

All ingredients for the numerical evolution of a single grid patch with the pseu-

dospectral method have been presented. Still, it is a central question, how the patches

interact with each other. In bamps, the penalty method [Taylor et al., 2010; Hesthaven

et al., 2007] is employed to connect the grid patches properly. This patching method

consists of two fundamental ideas: i) Boundary conditions are imposed for incoming

characteristic variables u−. Therefore, the evolution system is transformed to the
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characteristic fields; ii) Boundary conditions are not directly imposed as u− = uBC− at

boundary points. Instead, the right hand side of the evolution equation is modified to

be
∂u−
∂t

=̂ · · ·+ c(uBC− − u−) (3.19)

at the boundary. Denoting two adjacent grid patches as I and II, we intuitively set

the incoming characteristics of I being equal to the outgoing characteristics of II and

vice versa,

uBC−,II = u+,I , uBC−,I = u+,II . (3.20)

A back transformation to the original fields is performed to obtain the evolution

system with penalty terms. The penalty parameter c can be determined from a

semi-discrete energy analysis. This has been carried out for a general symmetric

hyperbolic system of PDEs in [Hilditch et al., 2016]. In this analysis, the total energy

on the two adjacent patches is expressed as an numerical integral of the fields. For

our choice of collocation points, this is done by means of Legendre-Gauss-Lobatto

integration. Demanding that the change of this energy due to the boundary patching

should not be positive, an estimate for the penalty parameter can be found. Typically,

this parameter depends on the integration weights and the Jacobian at the boundary

point. In our case, the penalty parameters for a characteristic field with speed Λs in

s-direction, e.g. at the ξ1 = const-surfaces, can be expressed as

c0jk =
ΛsN(N − 1)

2l
(ξ0, ξj, ξk), l =

√
γij
∂ξ1

∂xi
∂ξ1

∂xj
, (3.21)

where N is the number of collocation points in ξ1-direction.

The cartoon method

The bamps code allows us to exploit the axisymmetry or the spherical symmetry

of a physical system. In the first case, the numerical domain is reduced to the

y = 0, x > 0-half plane. In the latter case, only the positive x-axis is used for

numerical evolution. It is obvious, that this approach decreases the computational

costs significantly. To account for these two types of symmetries, we use the cartoon
method [Alcubierre et al., 2001; Pretorius, 2005] in Cartesian coordinates and with

Cartesian tensor components. In the case of axisymmetry, e.g. for rotations along the

vector field φ = (−y, x, 0)T , the Lie derivative of an arbitrary tensor field T along φ

should vanish:

LφT = 0. (3.22)
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Evaluating this condition at y = 0 yields analytic expressions for the unknown

y-derivative. We have

LφT
i1···in
j1···jm = φl∂lT

i1···in
j1···jm −

n∑
k=1

T
i1···l···in
j1···jm ∂lφ

ik +
n∑
k=1

T
i1···in
j1···l···jm∂jkφ

l

= x∂yT
i1···in
j1···jm −

n∑
k=1

T
i1···l···in
j1···jm A

ik
l +

n∑
k=1

T
i1···in
j1···l···jmA

l
jk

= 0, (3.23)

with the simple matrices

Ai
j = ∂iφ

j =

0 −1 0

1 −0 0

0 −0 0

 . (3.24)

For all x 6= 0, (3.23) further simplifies to

∂yu(x, 0, z) = 0 (3.25)

for a scalar field u, and to

∂yv
x(x, 0, z) = −v

y

x
(x, 0, z), ∂yv

y(x, 0, z) =
vx

x
(x, 0, z) (3.26)

for a vector field vi. For all higher rank tensor valences, the general formula (3.23) is

applied in the code. In the case of spherical symmetry, another Killing vector field

φ̃ = (−z, 0, x)T exists and aditionally to (3.22), Lφ̃T = 0 has to be imposed. In perfect

analogy to (3.23), a formula for the unknown derivatives in z-direction at z = 0 can

be derived, e.g. ∂zvx(x, y, 0) = −vz

x
(x, y, 0). To cover the limit x → 0, we use the

L’Hôpital’s rule if necessary, e.g. as vy → 0 for x→ 0, we get the relation

∂yv
y(0, 0, z) = ∂xv

x(0, 0, z). (3.27)

Note, that in these symmetry cases we first apply the above cartoon relations on the

PDE and then solve the transformed PDE with our numerical methods. E.g. for the

rest mass conservation eqs. (2.35,36), this procedure converts

∂t (
√
γD) + ∂x (

√
γD [αvx − βx]) + ∂y (

√
γD [αvy − βy]) + ∂z (

√
γD [αvz − βz]) = 0

(3.28)
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into

∂t (
√
γD) + ∂x (

√
γD [αvx − βx]) + ∂z (

√
γD [αvz − βz]) =

−

{
∂x
(√

γD [αvx − βx]
)
, x = 0

√
γD(αvx−βx)

x
, else

(3.29)

for the axisymmetric case, and into

∂t (
√
γD) + ∂x (

√
γD [αvx − βx]) = −2

{
∂x
(√

γD [αvx − βx]
)
, for x = 0

√
γD(αvx−βx)

x
, else

(3.30)

for spherical symmetry. Note, that this procedure converts flux terms into source

terms for balance law type PDEs and principal part terms in non-principal part terms

in general.

3.2 The Runge-Kutta Discontinuous Galerkin method
In the last section we described our usage of pseudospectral methods for the

spacetime evolution. To simultaneously solve the GRHD equations, we employ a

DG method to compute spatial derivatives. Coupling this approach to a Runge-

Kutta discretisation in time, its application on hyperbolic problems [Cockburn and

Shu, 1989; Cockburn et al., 1990; Cockburn and Shu, 1998] turned out to be very

successful and somehow natural in the case of balance law equations. The main

advantage of a DG scheme is that it combines appealing properties of finite volume

and finite difference methods: The covering of complex geometries, hp-adaptivity

and locality. A detailed discussion on the relation of DG methods to other numerical

schemes is given in [Hesthaven et al., 2007].

Weak formulation of PDEs

In contrast to the pseudospectral method, the analytical limit of the residual is

treated differently in a Galerkin method. Instead of enforcing the residual Rn to

vanish at certain points (see eq. (3.4)), its projection on the space of approximating

polynomials is set to zero:

ˆ
Ω

[∂tun(ξ, t)− Lun(ξ, t)] φi(ξ) dξ = 0. (3.31)

In a one-dimensional pseudospectral method, N + 1 collocation points are used to

construct equations for the N + 1 degrees of freedom. Now, the projection of Rn

onto the N + 1 basis polynomials gives the desired analogon in a one-dimensional

Galerkin method. Note, that (3.31) approximates the weak form of the original PDE,

in which φi would be a more general test function. It would be natural to choose the
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approximation space (and therefore also the test function space) to be polynomials

or at least continuous functions in Ω. This is exactly the starting point of finite

element, or continuous Galerkin methods. However, this ansatz breaks the locality

of the scheme, i.e. if the domain is subdivided into elements, numerical operators

will act globally and not element-wise. This is a clear disadvantage regarding grid

decomposition and parallelization of the algorithm.

In a Discontinuous Galerkin method, this issue is overcome by weakening the

constraints on the test and basis functions and accepting discontinuities at element

interfaces. More precisely, we consider φi to be piecewise polynomial on Ω. On the

one hand, this increases the degrees of freedom, as we have multiple values at each

element boundary. Furthermore, the connection of the elements, which is enforced

by the continuity of the basis functions in a finite element method, needs special care

in a DG method. On the other hand, we gain back element local numerical operators

and a scheme, which is easy to parallelize. We will comment on these points later

again, as we derive the DG scheme for general balance law systems in three spatial

dimensions.

As discussed in section 3.1, we divide the numerical domain in subpatches. Each

subpatch is now considered as an element E. We choose our basis functions to be

polynomials on the reference grid B which is mapped to E:

φk(ξ
1, ξ2, ξ3) = `k1(ξ

1)`k2(ξ
2)`k3(ξ

3), (3.32)

where k has the meaning of a multiindex k = (k1, k2, k3). The `i are again the

Lagrange polynomials introduced in (3.13), defined with respect to the corresponding

Legendre-Gauss-Lobatto collocation nodes ξi ∈ B. Just as the pseudospectral method

considered earlier, the final DG scheme will also map nodal values of the solution

to its time derivative because of this choice of basis polynomials. The method we

employ is therefore categorized as a nodal DG scheme. Since we choose the very

same collocation points as in section 3.1, the DG scheme operates on the same grid

points as the pseudospectral method, so that no interpolation step is necessary. We

start from the original balance law

∂tu+ ∂if
i(u) = s(u), (3.33)

and integrate element-wise against the test functions for a weak formulation:

∂t

ˆ
E

φku d
3x+

ˆ
E

φk∂if
i d3x =

ˆ
E

φks d
3x. (3.34)
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To evaluate these integrals, we need a transformation to the reference grid:

∂t

ˆ
B

φku det J d3ξ +

ˆ
B

φk(J
−1)j i

(
∂jf

i
)

det J d3ξ =

ˆ
B

φks det J d3ξ, (3.35)

making use of the Jacobian (3.12).

Metric identities

The second integral on the left hand side of (3.35) can be further modified by

exploiting the metric identities [Kopriva, 2006]

∂j
(
(J−1)j i det J

)
= 0. (3.36)

These identities can be verified in several ways. We will derive them in a straightfor-

ward manner. Using the adjoint method for the Jacobian inverse we write

(J−1)j i det J =
1

2
εii1i2ε

jj1j2
∂xi1

∂ξj1
∂xi2

∂ξj2
=

1

2
εii1i2ε

jj1j2
∂

∂ξj1

(
xi1

∂xi2

∂ξj2

)
, (3.37)

where the last equality holds because εjj1j2 is antisymmetric, whereas ∂j1∂j2x
i2 is sym-

metric and therefore the second derivative terms cancel. By the same argument, we

immediately see that the metric identities must hold, because εjj1j2 is antisymmetric,

whereas ∂j∂j1(· · · ) is symmetric. In vector calculus, this is a basic principle of the

vanishing divergence of the curl. In numerics, the metric identities can be violated

due to numerical differentiation errors. However, eq. (3.37) can be used to fulfill

the metric identities numerically. This is a very important feature of a numerical

scheme acting on curvilinear grids, if we want to guarantee free stream preservation.

Although the identities hold in the continuum limit, the numerical divergence of

sji := (J−1)j i det J ,

N∑
l=1

(
Dil s

1
i (ξ

1
l , ξ

2
j , ξ

3
k) +Djl s

2
i (ξ

1
i , ξ

2
l , ξ

3
k) +Dkl s

3
i (ξ

1
i , ξ

2
j , ξ

3
l )
)
, (3.38)

can differ from zero. To cure this issue, we do not use the analytical expression for

sji in the code, but rather calculate an N -th order approximation using (3.37) and

replacing the partial derivative by a numerical derivative:

2(J−1)j i det J ≈

εii1i2

N∑
l=1

(
ε1j2jDil

(
xi1

∂xi2

∂ξj2

)
(ξ1
l , ξ

2
j , ξ

3
k) + ε2j2jDjl

(
xi1

∂xi2

∂ξj2

)
(ξ1
i , ξ

2
l , ξ

3
k) + ε3j2j · · ·

)
.

(3.39)
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With this modification, the expression (3.38) is exactly zero in the numerics. In

Sec. 4.1 we investigate the effect of using (3.39) on the mass conservation in fluid

simulations.

Discretization of the integrals

Making use of (3.36), the flux term in (3.35) can be changed to

ˆ
B

φk(J
−1)j i

(
∂jf

i
)

det J d3ξ =

ˆ
B

φk∂j
(
(J−1)j if

i det J
)
d3ξ. (3.40)

For the treatment of the integrals, we expand all spatial variables along φl = `l1`l2`l3 ,

e.g. we approximate u det J ≈ (u det J)ln φl and get

∂t

ˆ
B

φk (u det J) d3ξ ≈ ∂t(u det J)ln

ˆ
B

φkφl d
3ξ

= (∂tu det J)l1l2l3n Ml1k1Ml2k2Ml3k3 , (3.41)

where we defined the mass matrix as

Mab =

ˆ 1

−1

`a(ξ)`b(ξ) dξ. (3.42)

Note, that the source integral in (3.35) is of the same type and we approximate

ˆ
B

φks det J d3ξ ≈ (s det J)l1l2l3n Ml1k1Ml2k2Ml3k3 . (3.43)

Instead of expanding the product of the solution u and the Jacobian determinant, one
might expand only u and compute the full integral, including the analytical Jacobian
determinant. However, this choice would make the mass matrix element dependent,
whereas in our approach one single mass matrix is valid on all elements with the
same order of approximation. As for the flux integral (3.40), we introduce the surface
normal covector in the j-direction sji = (J−1)j i det J and apply the fundamental
theorem of calculus:

ˆ
B
φk∂j

(
(J−1)j if

i det J
)
d3ξ

=

˚ 1

−1
φk1φk2φk3

(
∂1

(
s1
i f

i
)

+ ∂2

(
s2
i f

i
)

+ ∂3

(
s3
i f

i
))

dξ1 dξ2 dξ3

=

¨ 1

−1

([
φk1s

1
i f

i
]1
−1
−
ˆ 1

−1
s1
i f

i ∂1φk1 dξ
1

)
φk2φk3dξ

2 dξ3+

¨ 1

−1

([
φk2s

2
i f

i
]1
−1
−
ˆ 1

−1
s2
i f

i ∂2φk2 dξ
2

)
φk1φk3dξ

1 dξ3+

¨ 1

−1

([
φk3s

3
i f

i
]1
−1
−
ˆ 1

−1
s3
i f

i ∂3φk3 dξ
3

)
φk1φk2dξ

1 dξ2. (3.44)
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Note, that the first terms on each line are surface integrals over the elements bound-

ary surface. Although we will use (3.44) for our computations, the result can be

summarized in a very elegant way with the divergence theorem and multidimensional

partial integration:

˚
E

φk∇f d3x =

‹
∂E

φkf · dS−
˚

E

f · ∇φk d3x. (3.45)

To treat the remaining integrals in (3.44), we again have to approximate the spatial

variables, i.e. sjif
i ≈ (sjif

i)ln φl. With this expansion, we get the final expressions for

our DG scheme, representing the flux term of the balance law:

ˆ
B

φk∂j
(
(J−1)j if

i det J
)
d3ξ

≈
([
δk1N(s1

i f
∗i)Nl2l3n − δk10(s1

i f
∗i)0l2l3

n

]
− (s1

i f
i)l1l2l3n Sk1l1

)
Mk2l2Mk3l3+([

δk2N(s2
i f
∗i)Nl1l3n − δk20(s2

i f
∗i)0l1l3

n

]
− (s2

i f
i)l1l2l3n Sk2l2

)
Mk1l1Mk3l3+([

δk3N(s3
i f
∗i)Nl1l2n − δk30(s3

i f
∗i)0l1l2

n

]
− (s1

i f
i)l1l2l3n Sk3l3

)
Mk1l1Mk2l2 , (3.46)

where we defined k = (k1, k2, k3) as a multiindex and the stiffness matrix as

Sab =

ˆ 1

−1

`b(ξ) ∂ξ`a(ξ) dξ. (3.47)

The numerical flux function f ∗i will be explained momentarily.

Numerical flux

Another inconspicuous but very important change, comparing the analytic form

(3.44) and its numerical approximation (3.46), is the substitution of the physical flux

f by a numerical flux f ∗ in the surface integral terms. As mentioned in the beginning

of this section, the numerical solution is allowed to be discontinuous at element

interfaces. The value of un is therefore not uniquely defined on the element surfaces

and neither is f i. The idea to overcome this issue by introducing the numerical

flux is borrowed from finite volume methods. In both methodologies, DG and finite

volume, f ∗ is used to connect the elements and constitutes a key feature of the

numerical scheme. It maps the two solutions uL, uR from the adjacent elements to

a unique value f ∗i(uL, uR) that is used as the surface flux for both grids. A natural

requirement on f ∗ is its reduction to the physical flux in the continuous solution

case f ∗i(u, u) = f i(u). Usually, knowledge of the dynamics of the system enters the

numerical flux construction. There are many different choices for f ∗, we just want to

name the Roe flux [Roe, 1981], Harten, Lax and van Leer (HLL) flux [Harten et al.,

1983] and the local Lax-Friedrich (LLF) flux [Shu and Osher, 1989] as some of the
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most widely used. We decided to embed the HLL flux

sif
∗i(uL, uR) =

λ+sif
i(uL)− λ−sif i(uR) + λ−λ+ (uR − uL)

λ+ − λ−
, (3.48)

with the two characteristic speeds λ+, λ−, into our scheme. We want to cite a short

calculation from [Rezzolla and Zanotti, 2013] to motivate (3.48) and to understand

the approximations made. The main assumption of the HLL flux is that the initial

discontinuity (i.e. the Riemann problem with initial states uL, uR) decays into three

constant states uL, uHLL, uR and just two waves traveling in opposite directions with

speeds λ+, λ−:

u (xs, t) =


uL, if xs < λ−t

uR, if xs > λ+t

uHLL, else

, (3.49)

where xs = six
i. To evaluate the intermediate state at the boundary uHLL, a perfect

conservation law for u is assumed (i.e. the source terms are neglected) and integrated

over a spacetime control volume [0, T ]× [−S, S]:

ˆ T

0

ˆ S

−S
∂tu(xs, t)dxsdt+

ˆ T

0

ˆ S

−S
∂xs
(
sif

i(xs, t)
)
dxsdt = 0. (3.50)

On the one hand, this leads to

ˆ S

−S
u(xs, T )dxs =

ˆ S

−S
u(xs, 0)dxs +

ˆ T

0

sif
i(−S, t)dt−

ˆ T

0

sif
i(S, t)dt

= S (uL + uR) + T
(
sif

i
L − sif

i
R

)
, (3.51)

on the other hand it is

ˆ S

−S
u(xs, T )dxs =

ˆ Tλ−

−S
uLdx

s +

ˆ Tλ+

Tλ−

uHLLdx
s +

ˆ S

Tλ+

uRdx
s

= uL (Tλ− + S) + uHLLT (λ+ − λ−) + uR (S − Tλ+) . (3.52)

Combining eqs. (3.51,52), the intermediate state can be expressed as

uHLL =
λ+uR − λ−uL + sif

i
L − sif

i
R

λ+ − λ−
, (3.53)

and from the Rankine-Hugoniot conditions sif ∗i = sif
i
L + λ− (uHLL − uL) the HLL

numerical flux (3.48) follows immediately. Finally, we choose λ+, λ− to be the

maximum propagation speeds in positive and negative si direction, making use of the
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characteristic eigenvalues of the GRHD system (2.38):

λ± = max (0,±λ±(uR),±λ±(uL)) . (3.54)

Final DG scheme
Now, combining the weak form of the PDE (3.35) and the integral approxima-

tions (3.41,43,46) , one derives the final DG scheme as used in bamps:

(∂tu)l1l2l3n = (s)l1l2l3n +

1

(det J)l1l2l3n

((
M−1

)0l1 (s1
i f
∗i)0l2l3

n −
(
M−1

)Nl1 (s1
i f
∗i)Nl2l3n +

(
M−1

)ml1 Smk1 (s1
i f

i)k1l2l3n

+
(
M−1

)0l2 (s2
i f
∗i)l10l3

n −
(
M−1

)Nl2 (s2
i f
∗i)l1Nl3n +

(
M−1

)ml2 Smk2 (s2
i f

i)l1k2l3n

+
(
M−1

)0l3 (s3
i f
∗i)l1l20

n −
(
M−1

)Nl3 (s3
i f
∗i)l1l2Nn +

(
M−1

)ml3 Smk3 (s3
i f

i)l1l2k3n

)
(3.55)

with the precomputed geometric quantities det J and sji from the static curvilinear

grid structure, and the state dependent fluxes f i(u), f ∗i(u) and sources s(u). The

time derivatives of u are again fed into the time integrator, just as the spacetime

evolution variables in the pseudospectral scheme. Note, that by means of (3.55), only

an evolution scheme for the conserved variables is available. However, for the flux

computation also the primitive variables are needed. Therefore, after each Runge-

Kutta substep a recovery of primitive variables has to be performed. See Appendix A

for details. For the sake of simplicity, we assume the use of the same number of

collocation points (i.e. the same polynomial approximation order) in each direction.

Obviously, the DG scheme is not restricted to that case, as one calculates one mass

and stiffness matrix for each direction. The stiffness matrix is easily available, using

Gauss-Legendre-Lobatto integration:

Sab =

ˆ 1

−1

`b(ξ) ∂ξ`a(ξ) dξ =
N∑
k=1

`b(ξk) ∂ξ`a(ξk)ωk = ∂ξ`a(ξb)ωb ≡ Dbaωb. (3.56)

Note, that the second equality in the above equation is exact, because the integrand

is of order 2N − 1 and so is the highest order of approximation with N + 1 Gauss-

Legendre-Lobatto points. For the same reason, the mass matrix can not be determined

exactly in the same simple manner. However, this mass lumped approximation

Mab =

ˆ 1

−1

`a(ξ)`b(ξ) dξ ≈
N∑
k=1

`a(ξk)`b(ξk)ωk = δabωa. (3.57)

is often used in practice. It comes with the effect of a modal filter, decreasing the

highest mode by a factor N
2N+1

[Gassner and Kopriva, 2011]. The diagonal form of
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the mass matrix further simplifies the DG scheme, so that all numerical flux terms

only enter the right hand sides, that correspond to boundary points. In the bamps

code, we calculate the mass matrix exactly and find that this decreases numerical

errors significantly as compared to the mass lumped version (see Sec. 4.1, smooth

1D SRHD tests). In [Bug1] we found independently from [Teukolsky, 2015b] the

following simple relation for the Gauss-Legendre-Lobatto mass matrix:

(
M−1

)ij
=

1

ωj
δij +

N + 1

2
PN(ξi)PN(ξj), (3.58)

with PN again denoting the N -th Legendre polynomial. We give a derivation of this

result in Appendix C. As a closing statement of this section, we want to revisit locality

of the scheme. The most costly part of the DG scheme (3.55) is a matrix multiplication

acting on the element local flux field. The only interaction with neighboring elements

is implemented through the numerical flux f ∗i. For the computation of f ∗i, only the

(d− 1)-dimensional surface data of the d-dimensional neighbor element is needed.

Since we use Gauss-Legendre-Lobatto points, so that the element boundaries are

actually covered by nodes, this reduces the communication between two elements to

a simple exchange of the data fields at the shared boundary. This is a neat feature of

the scheme and simplifies its parallel implementation significantly.

3.3 High resolution shock capturing methods

As we present in the tests section of this work (Chapter 4), the DG scheme as

derived in Sec. 3.2 almost perfectly applies on smooth solutions without further

modification. However, in the case of strong discontinuities or shocks, the method

tends to generate spurious oscillations which ultimately lead to instability. In this

section, a variety of methods is presented, which target the prevention of such

artificial oscillations and unphysical behavior caused by the Gibbs phenomenon.

For this purpose, we locate discontinuities and oscillations with a troubled cell

indicator and apply limiting procedures on these elements. In the scope of this

work, we investigate the traditional WENO limiting approach in the context of DG

methods [Qiu and Shu, 2005; Zhao and Tang, 2013], as well as a subcell based

strategy [Radice and Rezzolla, 2011; Dumbser et al., 2014], where the DG elements

are subdivided into control volumes and the solution is obtained by means of a finite

volume scheme, in Sec. 3.3.2. In [Bug1], we also investigated the WENO-Z [Borges

et al., 2008] and the simple WENO [Zhong and Shu, 2013] approach. The former

method (which is similar to what we introduce as the WENO-5 method below) was

not able to resolve shocks or star surfaces accurately enough in the multidimensional

case. The latter method underlies a significant overhead for the parallelization, as the
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whole polynomial information of neighboring cells has to be communicated. Because

of these issues, we do not consider both methods in full detail here.

3.3.1 Weighted-essentially-non-oscillatory methods
In this section, the WENO limiting methodology and the detection of elements

containing shocks and discontinuities is explained. For both, we first consider one-

dimensional problems for simplicity and subsequently give a generalization to multi-

dimensional problems. Since the bamps code has a magnificent parallel performance,

a parallel WENO adaption is discussed. We also analyze a key ingredient of the WENO

scheme, involving the solution of an overdetermined linear system of equations, in

terms of solvability.

Troubled cell indication

Given the coefficients of the numerical solution un(x, t) at time t, we can calculate

its average on the elements Ej =
[
xj− 1

2
, xj+ 1

2

]
:

ūj(t) :=
1

∆x

ˆ x
j+1

2

x
j− 1

2

un(x, t) dx =
1

2

ˆ 1

−1

uin(t)`i(ξ) dξ , (3.59)

We further denote the boundary values of un as

u−j := un(xj− 1
2
), u+

j := un(xj+ 1
2
), (3.60)

and define the four differences:

ũ−j := ūj − u−j , ũ+
j := u+

j − ūj
∆−u := ūj − uj−1, ∆+u := uj+1 − ūj (3.61)

We also introduce the minmod function

minmod(a1, a2, ..., an) =

s ·min1≤j≤n |aj| if sign(a1) = ... = sign(an) =: s

0 otherwise
(3.62)

and the modified minmod function

minmodM(a1, a2, ..., an) =

a1 if |a1| ≤M (maxj ∆xj)
2

minmod(a1, a2, ..., an) otherwise
.

(3.63)

In practice, the constant M > 0 acts as a threshold for the troubled cell indication.

The lower M , the more elements will be marked as troubled. The particular choice of
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M is problem-dependent. Our troubled cell indicator marks an element as troubled,

if

minmodM
(
ũ−j ,∆−u,∆+u

)
6=
(
ũ−j
)

or

minmodM
(
ũ+
j ,∆−u,∆+u

)
6=
(
ũ+
j

)
. (3.64)

This is exemplary for a situation, in which un is not monotonous (because the

arguments of minmod differ in sign) or its gradient inside a patch is larger than

that of the neighboring patches (shock inside the element). In the case of a system

of equations, we perform the check (3.64) on each component of un. If one of the

components is marked as troubled, the element is marked as troubled.

In the case of multiple dimensions, we perform the 1D troubled cell indication in

every coordinate direction. An element is marked as troubled, if at least one of these

indications results in a troubled state. To apply the 1D algorithm, the boundary values

used in (3.60) have to be modified, since the element boundaries are no longer single

points, but lines or surfaces. Therefore, we redefine u±j by the boundary averages,

i.e. for a 3D rectilinear element Ejkl = [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
] × [zl− 1

2
, zl+ 1

2
] in

x-direction

u−jkl :=
1

∆y∆z

ˆ y
k+1

2

y
k− 1

2

ˆ z
l+1

2

z
l− 1

2

un(xj− 1
2
, y, z, t) dydz,

u+
jkl :=

1

∆y∆z

ˆ y
k+1

2

y
k− 1

2

ˆ z
l+1

2

z
l− 1

2

un(xj+ 1
2
, y, z, t) dydz. (3.65)

Traditional WENO limiting

In the standard WENO method of order 2w + 1, one constructs w + 1 stencils Si
aroundEj, each as an aggregation of w+1 elements: Si = (Ej−w+i, Ej−w+i+1, ..., Ej+i),

0 ≤ i ≤ w. In Fig. 3.3 this partitioning is shown for w = 2. For each stencil, we

construct a w-th order polynomial pi, which has the same average as the numerical

solution un over each element in the stencil. That means solving the system

ūk =
1

∆x

ˆ
Ek

pi(x) dx, for all Ek ∈ Si (3.66)

for the w + 1 coefficients of pi. Similarly, we construct a 2w-th order polynomial q

fulfilling

ūk =
1

∆x

ˆ
Ek

q(x) dx, for all Ek ∈ S, (3.67)
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Figure 3.3: The WENO-5 methodology applied in a smooth case (left figure) and a shock
case (right figure). The values in the interval x ∈ Ej = [−1, 1] are to be reconstructed from
the five element averages ūj−2, ūj−1, ūj , ūj+1, ūj+2. The three stencils S1, S2, S3 are created
as a clustering of three elements each with the corresponding approximating polynomial
p1(x), p2(x), p3(x). Another higher order polynomial q(x) can be found from employing all
five averages. Following the strategy as described in the text, the smoothness indicators βi
are calculated for each stencil. A large βi indicates non-smoothness of the corresponding
polynomial pi, which leads to a minor contribution of the stencil Si for the reconstruction.
In the shock case, the reconstructed point values (empty black circles) lie very close to the
smoothest polynomial p3, whereas in the smooth case all three approximating polynomials
are taken into account almost equally, so that the reconstruction is very close to the 5th order
polynomial q (filled gray circles). Adapted from [Bug1].

with S := ∪iSi being the large stencil over all 2w + 1 elements. The fundamental

concept is to approximate the solution in Ej as a linear combination of the pi, which

should give the same result as the higher order approximation q in smooth regions.

This condition defines the linear (or ideal) weights γi satisfying

q(x) =
w+1∑
i=1

γi(x)pi(x). (3.68)

We emphasize that the γi depend on the point x where the approximation should

hold. It is remarkable that although both sides of Eq. (3.68) depend intrinsically on

the 2w + 1 averages ūk, the system is soluble for almost every x ∈ Ej, although it is

overdetermined (only w + 1 variables). Details on the solvability of (3.68) are given

in the following discussion. In regions where the solution is not smooth, the weights

should be chosen such that the smoothest polynomial in {pi} is preferred. For this

purpose, we use a smoothness indicator as suggested in [Jiang and Shu, 1996]:

βi =
w∑
l=1

ˆ
Ej

∆x2l−1

(
dl

dxl
pi(x)

)2

dx. (3.69)
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Figure 3.4: Direction-by-direction paradigm for the WENO-5 reconstruction of element Ejk
in a 2D rectilinear grid. In accordance with Fig. 3.3, input averages for the reconstruction are
colored gray, the 3 stencils are colored green, red and blue and the reconstructed quantities
are marked by empty black circles. On the left (right), the first (second) reconstruction step,
as explained in the text, is depicted.

Because βi is large for non-smooth pi, the weights are chosen indirect proportional to

βi. We use the traditional WENO choice

ω̃i(x) =
γi(x)

(10−6 + βi)
2 , (3.70)

and normalize the result:

ωi(x) =
ω̃i(x)∑w+1
l=1 ω̃l(x)

, (3.71)

where ωi(x) are the final reconstruction weights. The reconstructed solution is then

given by:

uWENO(x) =
w+1∑
i=1

ωi(x)pi(x). (3.72)

In the case of systems, we apply this reconstruction method on each component of

un.

To generalize this reconstruction mechanism to multidimensional problems, we

use the procedure described in [Zhao and Tang, 2013]. For simplicity, we assume

a rectilinear 2D grid structure with N + 1 grid points xp per element and direction.

To reduce the full reconstruction of the element Ejk to the 1D case, we decouple

the different directions as suggested in Fig. 3.4. First we perform 2w + 1 1D WENO
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reconstructions in the x direction with input data

{
ūj−w,k̃, ūj−w+1,k̃, · · · , ūj+w,k̃

}
, k − w ≤ k̃ ≤ k + w (3.73)

to reconstruct the N + 1 line averages per element at x = xp, denoted ūp
j,k̃

. Then, we

can apply a second 1D WENO reconstruction based on the 1D averages in y direction

with the input data

{
ūpj,k−w, ū

p
j,k−w+1, · · · , ū

p
j,k+w

}
, 1 ≤ p ≤ N + 1 (3.74)

to get the 2D reconstructed values inside the element Ejk:

uWENO(xp, yq), 1 ≤ p, q ≤ N + 1 . (3.75)

This direction-by-direction fashion of the multidimensional limiting procedure is

only possible for rectilinear grids, where the ansatz pi(x, y) = p1
i (x)p2

i (y) for all

reconstruction polynomials can be exploited. On unstructured, curvilinear grids, a

general limiting algorithm would be much more costly. In this work, we therefore

restrict WENO reconstruction to box grid patches, in particular to the central cube of

the bamps grid.

Parallelization of the WENO method

For both the troubled cell indication and the polynomial reconstruction, averages

from the neighboring elements are needed. It is therefore obvious that the WENO

step is non-local and additional communication is needed in a distributed memory

parallelization. Referring to Fig. 3.1, this additional MPI communication block is

inserted in between the Runge-Kutta substep and the post substep block. This is very

unfavorable for the parallel performance of the code, because for each communication

step, synchronization of the processes is needed. While slower processes are still

working, faster processes are idling until synchronization is achieved. Another

problem is the big stencil of WENO methods. In the case of two-dimensional WENO-5

reconstruction, for example 5 × 5 cell averages are necessary for the computation.

This goes far beyond the communication that is usually required in bamps, where

data exchange occurs only between grids that share a common face. Even for the

WENO-3 reconstruction, this communication is not sufficient. Also average data from

the cells that share a common corner point is needed in this case. Altogether, the

WENO reconstruction is therefore expected to substantially diminish the parallel

performance of the code.
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Solubility of (3.68)

The determination of the optimal weights γj is the crucial ingredient in a WENO

method, since it guarantees high order convergence for smooth problems. As dis-

cussed, the ideal weights are the solutions of an overdetermined linear system of

equations. We first want to substantiate this statement, before we actually analyze the

solvability of the system. Although this issue has been recognized in some works on

WENO methods [Qiu and Shu, 2005; Shi et al., 2002], no analysis and no systematic

investigation has been done on the solvability of system (3.68), as far as we know.

Intensively using the ideas of [Shu, 1997] one starts by asking for a polynomial Q(x)

which takes certain values at the cell boundary points:

Q(xj−w− 1
2
) = 0, Q(xj−w+ 1

2
+k) =

k∑
n=0

ūj−w+n ∆xj−w+n, 0 ≤ k ≤ 2w. (3.76)

By explicit integration it is simple to see that q(x) = d
dxQ(x) fulfills condition (3.67)

and therefore represents the interpolating function q we are looking for. To build the

necessary polynomial Q with the properties (3.76), a standard Lagrange interpolation

is performed:

Q(x) =
2w∑

m=−1

(
m∑
n=0

ūj−w+n∆xj−w+n

)
2w∏

l=−1
l 6=m

x− xj−w+l+ 1
2

xj−w+m+ 1
2
− xj−w+l+ 1

2

. (3.77)

We can express the dependence of q from the averages ū as a scalar product

q(x) =
2w∑
n=0

ūj−w+n qn(x) with

qn(x) := ∆xj−w+n
d

dx

2w∑
m=n

2w∏
l=−1
l 6=m

x− xj−w+l+ 1
2

xj−w+m+ 1
2
− xj−w+l+ 1

2

, 0 ≤ n ≤ 2w. (3.78)

In a similar manner, we can find the lower order polynomials pi by fixing the inter-

polating values only at the cell boundary points of the i-th stencil. Here, we may

express the dependence of pi from the averages ū as a matrix-vector multiplication:

pi(x) =
w∑
n=0

ūj−w+i+n pi,n(x), 0 ≤ i ≤ w with

pi,n(x) := ∆xj−w+i+n
d

dx

w∑
m=n

w∏
l=−1
l 6=m

x− xj−w+i+l+ 1
2

xj−w+i+m+ 1
2
− xj−w+i+l+ 1

2

, 0 ≤ n ≤ w. (3.79)

Lemma. ∀ pi,n(x) there exists at most one x ∈ Ej with pi,n(x) = 0.
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Proof. Consider again the antiderivative of pi,n(x) =: d
dx
Pi,n(x). From its construction

and the interpolating property of the Lagrange polynomials, we can read the values of P
at the w + 2 cell boundaries in the stencil:

Pi,n(xj−w+i− 1
2
) = · · · = Pi,n(xj−w+i+n− 1

2
) = 0,

Pi,n(xj−w+i+n+ 1
2
) = · · · = Pi,n(xj+i+ 1

2
) = ∆xj−w+i+n (3.80)

It follows by the mean value theorem, that d
dx
Pi,n has at least on root in each of

the w intervals Ej−w+i, · · · , Ej−w+i+n−1, Ej−w+i+n+1, · · · , Ej+i. Since pi,n ∈ Pw has a
maximum of w roots, there is at most one root in Ej.

Having evaluated the interpolating polynomials, the next step is to find linear

weights consistent with (3.68). We can rewrite (3.68) in matrix vector form:


ūj−w

ūj−w+1

...

ūj+w


T



p0,0 0 . . . 0

p0,1 p1,0 . . . 0
...

... . . . ...

p0,w p1,w−1 . . . pw,0

0 p1,w . . . pw,1
...

... . . . ...

0 0 . . . pw,w


︸ ︷︷ ︸

=:A


γ0

γ1

...

γw


︸ ︷︷ ︸

=:γ

=


ūj−w

ūj−w+1

...

ūj+w


T 

q0

q1

...

q2w


︸ ︷︷ ︸

=:q

,

(3.81)

or with shorthands and valid for all combinations of averages ū

Aγ = q. (3.82)

Here, A is a matrix with 2w + 1 rows and w + 1 columns. γ and q are vectors with

w + 1 and 2w + 1 entries, respectively. We want to emphasize, that both A and q

depend on x. The linear system of equations (3.82) can therefore be overdetermined

and has to be investigated for all points x ∈ Ej. We analyze the augmented matrix

(A|q) =



p0,0 0 . . . 0 q0

p0,1 p1,0 . . . 0 q1

...
... . . . ...

...

p0,w p1,w−1 . . . pw,0 qw

0 p1,w . . . pw,1 qw+1

...
... . . . ...

...

0 0 . . . pw,w q2w


. (3.83)



44 CHAPTER 3. NUMERICAL METHODS

Lemma. pi,w 6= 0, 0 ≤ i ≤ w ⇒ w + 1 ≤ rank(A), w + 1 ≤ rank(A|q)

Proof. If the condition pi,w 6= 0 is met for all 0 ≤ i ≤ w, the w + 1 columns of A (and
therefore the w + 1 left columns of (A|q)) are linearly independent. The rank of A and
(A|q) must be at least w + 1 in this case.

Lemma. rank(A(x0)) ≤ w + 1 and rank((A|q)(x0)) ≤ w + 1 for every x0 ∈ Ej.

Proof. rank(A) ≤ w + 1 is trivial, since A has w + 1 columns. At x0 fixed, we
consider (A|q) to be the representation of a linear map V = R2w+1 → W = Rw+2.
To show the second inequality, we use the rank-nullity theorem dim(V ) = 2w + 1 =

rank(A|q) + ker(A|q) and show that ker(A|q) ≥ w. To prove this, we construct w
polynomials ni(x) of order w with the following properties:

n1(x0) = 0,

ˆ
Ej+1

n1(x)dx = 1,

ˆ
Ej+2

n1(x)dx = 0, · · · ,
ˆ
Ej+w

n1(x)x = 0

n2(x0) = 0,

ˆ
Ej+1

n2(x)dx = 0,

ˆ
Ej+2

n2(x)dx = 1, · · · ,
ˆ
Ej+w

n2(x)x = 0

· · ·

nw(x0) = 0,

ˆ
Ej+1

nw(x)dx = 0,

ˆ
Ej+2

nw(x)dx = 0, · · · ,
ˆ
Ej+w

nw(x)x = 1 (3.84)

i.e. all polynomials have a zero at x0 ∈ Ej and have a zero average in all intervals
Ej+1, · · · , Ej+w except for one. If we would require all of the above averages to be zero,
all polynomials would be identically zero (again by the mean-value-theorem). But in the
case (3.84) all ni can be constructed with the desired properties. On the one hand, the w
vectors containing the corresponding polynomial averages (ūj−w, · · · ūj+w) are linearly
independent by construction. On the other hand, since the approximation by both the
w-th order polynomials pi and the 2w-th order polynomial q is exact, (A|q) maps all
these vectors to zero, because ni(x0) = 0 by construction. Therefore the kernel dimension
of (A|q) is at least w.

Combining these insights, the best statement we can give on the solubility of (3.68)

is the following: If all pi,w(x0) 6= 0 for x0 ∈ Ej, then (3.68) is uniquely solvable at x0,

because rank(A) = rank(A|q) = w + 1. At the same time, each pi,w has at most one

root in Ej. Therefore there exist at most w + 1 points in Ej, where one of the pi,w is

zero and solubility can not be guaranteed.

3.3.2 The spectral volumes method

In this section we discuss a different shock capturing approach based on a reliable,

low order finite volume method. A very similar idea has been used to stabilize DG

methods for spherically symmetric neutron star simulations containing an atmosphere
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in [Radice and Rezzolla, 2011]. The purpose of this method is to stabilize the scheme

in low density regions of star simulations. We mark a cell as troubled, if a specified

variable u (in most cases the fluid density) falls below a certain threshold uSV at

one or more collocation points in the cell. This check is performed before each time

step. If a cell is flagged troubled, the N -th order polynomial from the DG ansatz

is converted to N + 1 subcell averages. A finite volume method is then used to

evolve these averages forward in time. We first give details on this method in one

dimension and explain its interaction with the DG method. Afterwards, a possible

implementation and issues of the higher dimensional method are explained.

Troubled cell evolution

If a one-dimensional N -th order DG element Ej = [a, b] is flagged as troubled,

we divide this element into N + 1 spectral volumes (SV) [Wang, 2002] of equal size

∆x = b−a
N+1

:

Sk = [a+ k∆x︸ ︷︷ ︸
=:xBk

, a+ (k + 1)∆x︸ ︷︷ ︸
=:xBk+1

], 0 ≤ k ≤ N. (3.85)

For these elements, the N + 1 degrees of freedom ui in the DG approximation

u(x) = ui`i(x) are converted to N + 1 SV averages ūk:

ūk =
1

∆x

ˆ
Sk

ui`i(x)dx = ui`i
(
xCk
)

+O(∆x2), (3.86)

where we used the midpoint rule approximation of the integral with the midpoint

xCk :=
xBk+1+xBk

2
. Although the integral after the first equality could be easily calculated

in order to determine ūk exactly, the second equality is employed in the code. Interpo-

lation routines and weights were already available in bamps and the induced second

order error does not impair the first order accurate SV scheme.

Once the SV averages have been determined, a standard finite volume scheme

can be applied. We integrate the balance law PDE (2.35) over a SV Sk to gain:

1

∆x

ˆ
Sk

∂tu(x)dx+
1

∆x

ˆ
Sk

∂xf(u)dx =
1

∆x

ˆ
Sk

s(u)dx

∂tūk +
f ∗
(
xBk+1

)
− f ∗

(
xBk
)

∆x
= s̄k (3.87)

Just as in the DG method, a numerical flux function f ∗ has to be specified as an

approximation of the physical flux at the interface between two SVs. For this purpose,

the HLL flux (3.48) is again used. However, a major difference to the DG method

is that the left and right state uL and uR are not immediately accessible, because

the solution is stored in terms of SV averages. Hence, a finite volume method is

characterized by a certain reconstruction of uL and uR from the averages ūk. For our
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implementation, we chose linear reconstruction with a minmod slope limiter, i.e.

uR
(
xBk
)

= ūk −
1

2
minmod (ūk+1 − ūk, ūk − ūk−1)

uL
(
xBk
)

= ūk−1 +
1

2
minmod (ūk − ūk−1, ūk−1 − ūk−2) , (3.88)

where the minmod function (3.62) was used. Although this results only in a first

order approximation of the boundary states, this method performs very reliably and

is robust in the presence of shocks. In the case of the GRHD eqs. (2.35-37), we apply

this limiting procedure on the primitive variables and subsequently calculate the

appropriate conserved quantities. With these ingredients, the temporal change of the

averages ūk is computable by (3.87). A Runge-Kutta method is again used for the

time integration. If an element changes its state to untroubled during the evolution,

the DG polynomial has to be recovered from the SV averages. This is done by a linear

interpolation to the collocation points, again combined with minmod slope limiting.

Obviously, the influence of the SV evolution on the overall convergence order in a

hybrid DG-SV scheme is questionable. In Chapter 4, a closer investigation is shown

for several example setups.

Patching DG and SV cells

As mentioned above, the SV scheme is only used in some elements, while in the

main part of the domain a DG method is employed for the evolution. In practice

we therefore encounter four possible types of communicating boundary data for

neighboring elements, which are also depicted in Fig 3.5: i) DG element sends, DG

element receives; ii) SV element sends, SV element receives; iii) DG element sends,

SV element receives; iv) SV element sends, DG element receives. Case i) is the

standard case present in a DG method, which we already discussed in Sec. 3.2. In

case ii), two SV elements exchange boundary data. As seen from (3.88) for k = 0,

the next two left averages ū−1 and ū−2 are necessary for the reconstruction of the

leftmost boundary value. Therefore, communicating the boundary layer only is no

longer sufficient for SV elements. Instead, the last two average layers have to be sent

to the neighboring SV element. In case iii), the DG element sends only its boundary

layer as usual, which is then directly interpreted as uL(a) (uR(b)) if the DG element is

the left (right) neighbor of the SV element. Since the average ū−1 (ūN+1) is missing

for the reconstruction of uR(a) (uL(b)), we do not limit the slope for this last point in

the SV cell. This is not expected to cause additional problems, as shocks should never

appear close to DG cells. Finally in case iv), the SV cell sends its last two average

layers to the neighboring DG element. From these two averages, a boundary value is

post-processed by linear reconstruction.
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Figure 3.5: Possible types of boundary communication for adjacent grids. Polynomial DG
data is colored blue, while SV averages are depicted as gray areas. Sent data are marked red
and post-processing steps are shown in green. More details are given in the text.

Multidimensional case

For a multidimensional generalization of the SV method, we simply divide the

d-dimensional element into (N + 1)d d-dimensional spectral volumes. In Fig. 3.6, this

division is shown for N + 1 = 3 spectral volumes per element. In order to gain the

SV averages from polynomial DG data, we use again the interpolation to the cell

center, as suggested in (3.86). This interpolation is possible for general curvilinear

elements without further modification. The local patch coordinates ui are used for the

interpolation on these grid patches. In what follows, we will extensively use the SV

Skl cell center point uC and boundary center points uN , uE, uS, uW , which we define

in local patch coordinates for the patch [ū1
min, ū

1
min +∆ū1]× [ū2

min, ū
2
min +∆ū2]:

uC
kl :=

(
ū1

min +

(
k +

1

2

)
∆ū1

N + 1
, ū2

min +

(
l +

1

2

)
∆ū2

N + 1

)
uN
kl :=

(
ū1

min +

(
k +

1

2

)
∆ū1

N + 1
, ū2

min + (l + 1)
∆ū2

N + 1

)
uE
kl :=

(
ū1

min + (k + 1)
∆ū1

N + 1
, ū2

min +

(
l +

1

2

)
∆ū2

N + 1

)
uS
kl :=

(
ū1

min +

(
k +

1

2

)
∆ū1

N + 1
, ū2

min + l
∆ū2

N + 1

)
uW
kl :=

(
ū1

min + k
∆ū1

N + 1
, ū2

min +

(
l +

1

2

)
∆ū2

N + 1

)
, 0 ≤ k, l ≤ N. (3.89)
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Figure 3.6: Strategies for the two-dimensional SV method with three spectral volumes per
element and direction (N = 2). Spectral volumes are colored gray, while element boundaries
are marked by blue lines. Assuming that (3.91) has to be evaluated for the green SV, the
corresponding stencil of necessary average data is depicted in light red. Dashed black lines
are curves along which linear reconstruction and limiting is performed. In (i), the SV center
and SV boundary points are denoted. The dark red SV average in (iii) would not be accessible
with our current parallelization strategy, if we implemented an improved version of the
multidimensional SV scheme.

These points are also depicted in Fig. 3.6 (i). The two-dimensional counterpart

of (3.87) can be derived by again integrating the balance law (2.35) and using the

midpoint rule in local patch coordinates,

|Skl| :=
¨

Skl

dxdy = det J
(
uC
kl

)
∆ū1∆ū2 +O

(
[∆ū1∆ū2]2

)
ūkl :=

1

|Skl|

¨
Skl

u(x, y)dxdy = u
(
uC
kl

)
+O(∆ū1∆ū2)

¨
Skl

∂if
i(x, y)dxdy =

[
s1i f

i
(
uE
kl

)
− s1i f

i
(
uW
kl

)]
∆ū2

+
[
s2i f

i
(
uN
kl

)
− s2i f

i
(
uS
kl

)]
∆ū1 +O

([
∆ū1

]3
,
[
∆ū2

]3)
,

(3.90)

where J i
j = ∂xi

∂uj and sji = (J−1)j i det J as in Sec. 3.2. The final outcome is the

generalization of (3.87) for general two-dimensional curvilinear grid patches:

∂tūkl +
s1i f

∗i (uE
kl

)
− s1i f

∗i (uW
kl

)
det J (uC

kl)∆ū1
+

s2i f
∗i (uN

kl

)
− s2i f

∗i (uS
kl

)
det J (uC

kl)∆ū2
= s̄kl (3.91)

To feed the numerical flux function f ∗, a reconstruction of the solution at the boundary

center points has to be done. For this, a limiter should be applied as in the one-

dimensional case. For rectangular elements, this procedure can be reduced to the

one-dimensional reconstruction and limiting, which is applied in a direction-by-
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direction fashion (see Fig. 3.6 (i)). However, a generalization to curved elements

is not straightforward. What we actually implemented is a reconstruction along

the ui coordinate lines as shown in Fig. 3.6 (ii). However, at patch boundaries,

these coordinate lines are non-smooth. Although we can not provide a clear proof,

we expect that this causes additional errors. Unfortunately, the literature on finite

volume methods for patched, curvilinear grids is sparse. Either patched quadrilateral

grids are discussed as in [Barth and Jespersen, 1989], or curvilinear grids with a

global coordinate transformation are considered [Bonnement, A. et al., 2011]. We

expect however, that the reconstruction procedure from [Barth and Jespersen, 1989]

is suitable for our grid setup. Here, a full two-dimensional reconstruction from

all adjacent cells (not only along a coordinate line) is suggested. This however

significantly increases the stencil of involved SV averages, as depicted in Fig. 3.6 (iii).

Even more problematic, it breaks the parallelization strategy of the bamps code, as

information of directly adjacent cells is not sufficient. In Fig. 3.6 (iii), the dark red

colored SV average would not be part of the data exchange area of the green SV cell.

Therefore, an additional communication step has to be included into bamps, possibly

right after the first MPI exchange (see Fig. 3.1). Although we did not consider this

development within this thesis, we definitely recommend its implementation in future

iterations of the code.

An even more concerning issue of higher dimensionality is the non-trivial patching

of DG and SV cells. The one-dimensional case which we discussed earlier, is special

in that the shared interface is only one point. At this point, the numerical flux

is uniquely determined. In higher dimensions, the interface is a line or a two-

dimensional surface. In this case, data from the adjacent DG and SV cell is not directly

available at a unique set of points on this surface. In our current implementation,

we simply “average” data sent from the DG cell to make it consistent with the

SV averages. On the other hand, we reconstruct the communicated SV data, to

get collocation point data for the DG element. Although this approach yields the

expected order of convergence, we encounter instabilities in multidimensional hybrid

DG/SV simulations (see Sec. 4.3). In [Choi, 2015], this problem is addressed for

a very similar numerical setup. According to [Choi, 2015], instabilities can arise

from breaking conservation and outflow conditions at the interface. As a solution,

the mortar method [Kopriva, 1996] is presented. This is based on the high order

representation of both conservative fields from the adjacent grids and the unique

numerical fluxes on the interface. A least squares projection is used to gain these high

order interface polynomials and to transfer back the unique numerical flux to DG and

SV cell. We think that a future implementation of the mortar method as discussed

in [Choi, 2015] is needed to allow reliable, long-term hybrid DG/SV simulations with

bamps.
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Chapter 4

Code tests

In this chapter, we want to present tests and results of our implementation. Before we

actually treat a binary system of neutron stars in Chapter 5, we check the functionality

of our methods with a variety of testbeds of increasing complexity: Starting from very

simple PDEs in flat spacetime, we check the fundamental convergence behavior of all

newly implemented methods. Continuing with the equations of special relativistic

hydrodynamics, we perform further convergence analysis on smooth problems and

test the shock capturing ability of our implementation in shock tube simulations. As a

next step toward GRHD, we consider the Michel-Bondi accretion [Michel, 1972] as a

setup in a curved spacetime without shocks or an artificial atmosphere. In a series

of TOV star evolutions, we investigate the code’s behavior in a “real life” application

and discuss the influence of the artificial atmosphere. We finish the testing section

with rotating neutron star tests, still with a static spacetime, and the migration test of

an unstable TOV star, which comprises a truly dynamic, general relativistic testbed

for our code.

4.1 Tests in flat spacetime

Advection equation

As a first test for the DG algorithm and the shock capturing methods, we consider

the advection equation

∂tu+ ∂i
(
viu
)

= 0, (4.1)

on the interval x ∈ [−3, 3] for an effectively one-dimensional Gaussian peak

u(x, 0) = Ae(−x2/σ2), (4.2)

51
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Table 4.1: Comparison of numerical methods introduced in Chapter 3: Errors and conver-
gence orders for the advection equation (4.1) (initial state (4.2)) at t = 2.0 for different
polynomial order N and numbers of grid patches N1. We chose M = 1 for the WENO tests
and uSV = 0.1 for the DG+SV run.

DG DG + WENO-3 DG + WENO-5 DG + SV SV only
N1 N L1 error order L1 error order L1 error order L1 error order L1 error order
16 1 1.33·10−1 - 2.81·10−1 - 2.60·10−1 - 1.09·10−1 - 2.03·10−1 -
32 1 3.07·10−2 2.11 1.11·10−1 1.33 1.55·10−1 0.74 3.26·10−2 1.74 7.29·10−2 1.48
64 1 6.39·10−3 2.26 3.57·10−2 1.64 4.72·10−2 1.71 1.07·10−2 1.61 2.75·10−2 1.40
128 1 1.58·10−3 2.01 8.25·10−3 2.11 1.05·10−2 2.16 3.02·10−3 1.82 9.74·10−3 1.49
256 1 3.93·10−4 2.00 1.66·10−3 2.30 2.00·10−3 2.39 8.14·10−4 1.89 2.67·10−3 1.86
512 1 9.81·10−5 2.00 3.19·10−4 2.38 4.05·10−4 2.30 2.14·10−4 1.92 7.26·10−4 1.88

16 3 2.02·10−3 - 3.20·10−1 - 2.29·10−1 - 3.12·10−2 - 6.83·10−2 -
32 3 1.49·10−4 3.75 1.67·10−1 0.93 1.55·10−2 3.88 9.30·10−3 1.74 2.64·10−2 1.37
64 3 7.78·10−6 4.26 4.92·10−2 1.76 3.45·10−4 5.49 2.54·10−3 1.86 9.39·10−3 1.49
128 3 4.78·10−7 4.02 1.29·10−2 1.93 7.33·10−6 5.55 7.06·10−4 1.85 2.63·10−3 1.83
256 3 3.00·10−8 3.99 2.89·10−3 2.15 1.33·10−7 5.77 1.88·10−4 1.90 7.28·10−4 1.85
512 3 1.87·10−9 3.99 3.66·10−4 2.98 3.22·10−9 5.37 5.34·10−5 1.82 1.93·10−4 1.91

16 5 5.11·10−5 - 3.29·10−1 - 2.56·10−1 - 1.53·10−2 - 4.13·10−2 -
32 5 5.85·10−7 6.44 1.67·10−1 0.97 2.56·10−2 3.32 4.17·10−3 1.88 1.48·10−2 1.48
64 5 8.05·10−9 6.18 5.02·10−2 1.73 1.96·10−3 3.70 1.07·10−3 1.95 4.41·10−3 1.74
128 5 1.32·10−10 5.92 1.34·10−2 1.90 4.62·10−5 5.40 2.80·10−4 1.93 1.24·10−3 1.82
256 5 2.00·10−12 6.04 3.00·10−3 2.16 7.93·10−7 5.86 7.31·10−5 1.94 3.32·10−4 1.89
512 5 3.30·10−13 2.60 3.96·10−4 2.92 1.07·10−8 6.19 1.87·10−5 1.96 8.86·10−5 1.90

and a rectangular pulse (non-smooth initial data)

u(x, 0) =

1 if |x− x0| < 0.5

0 else
. (4.3)

We first employ the DG method without any additional shock capturing methods. In

Fig. 4.1, the time evolution, as well as the absolute difference between the numerical

solution un and the available analytical solution u is shown for the first test case (4.2)

(A = 1, σ = 0.4). From here on, all error integrals over the computational domain

||∆||1 =
´

Ω
|u|dx are determined by a Legendre-Gauss-Lobatto quadrature. Due to

our choice of collocation points, we can directly use the function values for this

integration. The expected convergence order N + 1, where N is the maximal order of

the DG polynomial, is precisely observed. However, in an error regime beyond 10−11,

we find a further drop in the convergence rates, because of the growing influence of

truncation errors. When we employ shock capturing methods, as discussed in Sec. 3.3,

the final convergence rate is influenced by several effects; see Table. 4.1. Applying

the traditional WENO reconstruction procedure, we observe that the order of the

full scheme is the result of the DG order N + 1 and the order of the WENO method,

2w + 1. Focusing on the N = 1-WENO-3 case, the convergence order is determined
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Figure 4.1: Numerical solution and convergence test for the advection equation (4.1) with
the DG method. The test is performed in one spatial dimension with vi = (0.5, 0, 0)T and
outgoing boundary conditions. As initial state, a Gaussian pulse (4.2) (A = 1, σ = 0.4)
is chosen. Top: Time evolution of the pulse for t ∈ [0, 1.94]. The numerical solution un is
shown at 11 evenly distributed times. Bottom: Numerical errors and convergence for different
polynomial order N and number of grid patches N1. The solid line is the absolute difference
of numerical and analytical solution, integrated over the domain (L1 norm). The dashed
lines are scaled according to (N + 1)-th order convergence. Vertical lines are color coded in
accordance with the top panel, indicating the times at which the numerical solution is shown.

predominantly by the second order DG scheme, while in the N = 3-WENO-3 case,

the 3rd order reconstruction limits the order of the scheme. Choosing a WENO

order higher than that of the DG scheme, we observe that convergence for small

numbers of N1 is slower, but finally shows convergence above N + 1-th order. This

can be explained by the decreasing influence of the WENO procedure for increasing

N1. The cell indicator only marks the cells around the maximum of the Gaussian

peak as troubled, so the effective area in which the WENO reconstruction takes

place decreases. Since the reconstruction has a strong smoothing effect with a local

reconstruction of order w, the numerical results significantly differ from the analytic
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Figure 4.2: Pointwise convergence order for the DG + SV solution of the advection equation
(4.1) (initial state (4.2)) over time for polynomial order N = 3 and numbers of grid patches
N1,low = 128, N1,high = 256. We chose uSV = 0.1.

solution for small N1 and tend to the pure DG solution for large N1. Applying the

spectral volumes approach, second order convergence is observed throughout all runs.

This is consistent with the underlying first order finite volume scheme. The absolute

errors in the mixed DG+SV run are a factor of 3− 5 smaller compared to the pure SV

run. However, we do not observe the higher order DG convergence in the mixed run

which leads to the conclusion that the inaccuracies of the SV scheme are dominant. A

natural question is whether or not the error introduced by the lower order SV solution

propagates over the grid and spoils the results in the higher order DG region. To

investigate this, we tested pointwise convergence over time for the N = 3-DG+SV

setup and show the results in Fig. 4.2. Since we chose uSV = 0.1 and the SV scheme is

only activated for un below this threshold, the high order DG region “travels” with the

Gaussian pulse. The two areas - one with second order convergence, where un < uSV

(SV scheme) and one with fourth order convergence, where un > uSV (DG scheme) -

are clearly visible. Moreover, this structure does not change during time evolution. It

is remarkable that cells on the right side of the pulse show high order convergence

once the DG scheme is employed, although second order errors were present in an

earlier stage of the simulation. This could however also be an artifact of the simple

characteristic structure of the advection equation, where all information travels with

the same speed. From this test it is not clear that this structured convergence behavior

is also conserved over time for a more complicated set of PDEs.

For the non-smooth test case Eq. (4.3), which we just want to summarize briefly,

we observe larger total errors than for the smooth problem discussed above. Again the

pure DG method errors are below the corresponding errors for the DG + shock captur-

ing methods. Independent of the scheme we observe first order convergence, which is
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consistent with the expectation for a non-smooth problem containing discontinuities.

In these and some of the following tests the DG method gives accurate results

even when not combined with a shock capturing method, and is clearly also the

most efficient method. More demanding situations involving shocks typically require

methods to handle non-smoothness explicitly.

Burgers equation

The Burgers equation

∂tu+ ∂x

(
1

2
u2

)
= 0 (4.4)

allows the formation of shocks from smooth initial data u0. After the time

tshock = −
(

min
∂u0

∂x

)−1

(4.5)

shocks will appear during the evolution. We use this as a testbed for our code and

evolve the initial Gaussian peak (4.2) with A = 1 and σ = 0.2. For this initial

conditions, a shock forms at tshock ≈ 0.23316. Contrary to the advection problem,

we have no immediate analytic solution u(x, t) at hand. To determine an error

measure, we consider the following: Since the Burgers equation can be rewritten

as (∂t + u∂x) u = 0, the solution u(x(t), t) = u(x0, 0) is constant along the spacetime

curve x(t) = x0 + u(x0, 0)t. With this insight, we evolve the numerical solution back

in time to get a consistent counterpart of the numerical solution at t = 0:

un (x− un(x, t)t, 0) = un(x, t). (4.6)

One can then use this back evolved solution to compare with the analytically given

initial data and to give a meaningful error estimate:

∆0 = |u (x− un(x, t), 0)− un(x, t)| . (4.7)

As we would expect from our smooth and non-smooth advection equation results,

we observe that the convergence rate decreases after tshock; see Fig. 4.3. Again,

we find the expected convergence order of N + 1 up to the shock formation time

tshock. Shortly before that time, convergence starts to drop for all N (gray shaded

region) to approximately first order convergence. Although not shown in Fig. 4.3, the

developing shock was captured by the troubled cell indicator when WENO was active.

Both, the WENO and the SV method successfully avoided additional oscillations close

to the discontinuity. More convincing results on the shock capturing performance are

given in the SRHD shock tube test subsection.
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Figure 4.3: Numerical solution and convergence test for the burgers equation (4.4). The
test is performed in one spatial dimension and outgoing boundary conditions. As initial state,
a Gaussian pulse (4.2) (A = 1, σ = 0.2) is chosen. Top: Time evolution of the pulse for
t ∈ [0, 0.29]. The numerical solution un is shown at 11 evenly distributed times. Middle:
Numerical errors for different polynomial order N and number of grid patches N1. The solid
line is the absolute difference of the back evolved numerical solution and the initial state
(see text), integrated over the domain (L1 norm). The dashed lines are scaled according to
(N + 1)-th order convergence. Vertical lines are color coded in accordance with the top panel,
indicating the times at which the numerical solution is shown. Bottom: Convergence order
calculated from the numerical errors of the N1 = 128, 256 runs for different polynomial order
N . The gray shaded region indicates the time after shock formation.

In addition, we prepared the initial conditions

u(x, 0) = 0.5 + sin(xπ) (4.8)

with periodic boundary conditions and check convergence at t = 0.5/π to compare

with the results of [Qiu and Shu, 2005], Tab. 4.2 summarizes the results. Because

t < tshock in this example, the solution is still smooth and we observe again (N +1)-th

order convergence for the DG methods. As for the advection equation, we find higher
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Table 4.2: Comparison of numerical methods introduced in Chapter 3: Errors and conver-
gence orders for the Burgers equation (4.4) (initial state (4.8)) at t = 0.5/π for different
polynomial order N and numbers of grid patches N1. We chose M = 0.01 for the WENO tests
and uSV = 0.1 for the DG+SV run

DG DG + WENO-3 DG + WENO-5 DG + SV SV only
N1 N L1 error order L1 error order L1 error order L1 error order L1 error order
16 2 3.33·10−2 - 6.88·10−2 - 5.76·10−2 - 3.33·10−2 - 1.54·10−2 -
32 2 1.03·10−2 1.69 1.90·10−2 1.85 1.64·10−2 1.80 6.89·10−3 2.27 4.96·10−3 1.63
64 2 3.17·10−3 1.69 5.02·10−3 1.92 4.73·10−3 1.80 1.91·10−3 1.85 1.28·10−3 1.94
128 2 9.44·10−4 1.75 1.40·10−3 1.84 1.29·10−3 1.87 5.06·10−4 1.91 3.31·10−4 1.95
256 2 2.73·10−4 1.78 3.53·10−4 1.98 3.44·10−4 1.90 1.31·10−4 1.94 8.43·10−5 1.97
512 2 7.78·10−5 1.81 9.32·10−5 1.92 9.20·10−5 1.90 3.37·10−5 1.95 2.15·10−5 1.96

16 4 2.26·10−4 - 4.40·10−2 - 1.88·10−3 - 7.83·10−4 - 4.99·10−3 -
32 4 1.70·10−5 3.73 1.05·10−2 2.06 9.66·10−5 4.28 1.51·10−4 2.37 1.30·10−3 1.93
64 4 1.22·10−6 3.79 2.34·10−3 2.17 4.55·10−6 4.40 2.60·10−5 2.53 3.55·10−4 1.87
128 4 8.29·10−8 3.88 4.27·10−4 2.45 2.07·10−7 4.45 6.32·10−6 2.03 9.30·10−5 1.93
256 4 5.44·10−9 3.92 2.26·10−5 4.24 8.02·10−9 4.69 1.45·10−6 2.11 2.45·10−5 1.92
512 4 3.57·10−10 3.93 9.76·10−8 7.85 3.70·10−10 4.43 3.35·10−7 2.12 6.31·10−6 1.96

16 6 3.01·10−6 - 4.44·10−2 - 2.65·10−3 - 2.60·10−4 - 2.02·10−3 -
32 6 6.14·10−8 5.61 1.01·10−2 2.13 1.72·10−4 3.94 4.92·10−5 2.40 4.79·10−4 2.07
64 6 1.16·10−9 5.72 2.27·10−3 2.15 9.89·10−6 4.12 9.38·10−6 2.39 1.34·10−4 1.83
128 6 2.42·10−11 5.58 4.21·10−4 2.43 5.30·10−7 4.22 2.28·10−6 2.03 3.62·10−5 1.89
256 6 5.03·10−13 5.58 2.67·10−5 3.97 1.27·10−8 5.38 5.30·10−7 2.10 9.38·10−6 1.95
512 6 2.56·10−14 4.29 8.23·10−8 8.34 7.40·10−11 7.42 1.19·10−7 2.14 2.40·10−6 1.96

than the expected rate of convergence when the WENO reconstruction is applied.

This is again caused by the fact that a larger number of cells decrease the effective

area, in which the reconstruction is performed. Although our errors are slightly higher

than in [Qiu and Shu, 2005], the same effect is present in their results. For the SV

method we find again second order convergence, as expected.

Smooth 1D SRHD

We now consider the GRHD conservation law eqs. (2.35-37) without source terms,

α = 1, βi = 0 and γij = δij, for simulating the special relativistic test case, i.e. flat

spacetime. Regarding the EOS, we chose an ideal gas EOS and set Γ = 5
3
. As a first

test, we consider a smooth sine wave propagating with constant speed:

ρ(x, t) =1 + 0.2 sin(2π(x− vxt))

vx(x, t) =0.2

p(x, t) =1 (4.9)

inside the periodic 1D domain x ∈ [−1, 1] divided into N1 uniform grid patches.

Viewing the summed L1 errors for all primitive variables and convergence rates

(Tab. 4.3), we again find the convergence rate of the DG scheme to be N + 1. We
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Table 4.3: Comparison of numerical methods introduced in Chapter 3: Errors and conver-
gence orders for the smooth special relativistic setup (4.9) for different polynomial order N
and numbers of grid patches N1. We chose M = 5 for the WENO tests and uSV = 0.9 for the
DG+SV run. In DG setup (a) the analytic mass matrix (3.58) was used, while in DG setup
(b) the mass lumped version (3.57) is employed.

DG (a) DG (b) DG + WENO-3 DG + WENO-5 DG + SV SV only
N1 N L1 error order L1 error order L1 error order L1 error order L1 error order L1 error order
16 1 4.64·10−3 - 5.86·10−2 - 2.11·10−2 - 2.71·10−2 - 7.09·10−2 - 7.85·10−2 -
32 1 9.79·10−4 2.24 1.54·10−2 1.92 7.71·10−3 1.45 9.05·10−3 1.58 2.15·10−2 1.72 2.73·10−2 1.52
64 1 2.38·10−4 2.03 3.90·10−3 1.98 1.52·10−3 2.34 1.95·10−3 2.21 6.86·10−3 1.64 1.03·10−2 1.40
128 1 5.93·10−5 2.00 1.01·10−3 1.93 2.58·10−4 2.55 3.45·10−4 2.49 1.95·10−3 1.81 2.99·10−3 1.78
256 1 1.48·10−5 2.00 2.59·10−4 1.97 5.48·10−5 2.23 5.82·10−5 2.56 5.45·10−4 1.84 8.24·10−4 1.86
512 1 3.70·10−6 2.00 6.49·10−5 1.99 1.15·10−5 2.24 1.04·10−5 2.47 2.04·10−4 1.41 2.22·10−4 1.89
16 3 2.27·10−5 - 5.75·10−5 - 3.80·10−2 - 2.72·10−3 - 2.14·10−2 - 2.66·10−2 -
32 3 1.71·10−6 3.73 2.94·10−6 4.28 1.59·10−2 1.25 6.41·10−5 5.40 7.10·10−3 1.59 1.06·10−2 1.32
64 3 7.29·10−8 4.55 1.81·10−7 4.02 3.12·10−3 2.35 1.16·10−6 5.78 2.00·10−3 1.82 3.03·10−3 1.80
128 3 4.71·10−9 3.95 1.10·10−8 4.03 4.52·10−4 2.78 2.00·10−8 5.85 5.28·10−4 1.92 8.23·10−4 1.88
256 3 2.93·10−10 4.00 6.85·10−10 4.00 1.62·10−5 4.80 5.62·10−10 5.15 1.43·10−4 1.87 2.23·10−4 1.88
512 3 1.85·10−11 3.98 4.30·10−11 3.99 1.33·10−7 6.92 2.98·10−11 4.23 3.79·10−5 1.91 5.92·10−5 1.91
16 5 2.87·10−8 - 5.52·10−8 - 4.45·10−2 - 7.53·10−3 - 1.20·10−2 - 1.67·10−2 -
32 5 4.61·10−10 5.96 9.84·10−10 5.81 1.76·10−2 1.33 3.63·10−4 4.37 3.37·10−3 1.83 5.15·10−3 1.69
64 5 6.35·10−12 6.18 1.52·10−11 6.01 4.61·10−3 1.93 7.11·10−6 5.67 9.19·10−4 1.87 1.39·10−3 1.88
128 5 3.65·10−13 4.12 4.55·10−13 5.06 7.21·10−4 2.67 1.02·10−7 6.11 2.44·10−4 1.91 3.81·10−4 1.87
256 5 4.59·10−13 - 3.90·10−13 0.22 2.48·10−5 4.86 5.87·10−10 7.44 6.58·10−5 1.89 1.01·10−4 1.90
512 5 5.43·10−13 - 5.39·10−13 - 1.12·10−7 7.78 1.26·10−12 8.85 1.72·10−5 1.93 2.68·10−5 1.92

collaborated with the authors of [Kidder et al., 2016] who published SpECTRE, a

task-based DG code for relativistic astrophysics. We compare numerical results from

both codes for this specific example, which is an important code validation. Looking

at Tab. B.1 in [Kidder et al., 2016] and Tab. IV in [Bug1], we find excellent agreement

between the two codes. Comparing actual numbers, the difference is not larger than

≈ 5·10−12. During this code comparison, we realized that using the analytic mass

matrix leads to smaller errors than those from the mass lumped (diagonal) matrix

scheme, as expected. However, the difference is comparatively small for higher order

N . This is evident from columns DG (a) and DG (b) in Tab. 4.3. Looking at all other

columns of this table, the observations from the former scalar PDE tests are confirmed

for the case of a system.

The smooth flow SRHD setup is also a convenient testbed for the mass conservation

properties of the scheme. In Sec. 3.2, we also discussed the importance of numerically

fulfilling the metric identities. The following test substantiates this hypothesis. We

again prepare smooth initial data

ρ(x, z, t = 0) =1 + exp

[
−x

2 + z2

0.252

]
v(x, z, t = 0) =(0.1, 0.0, 0.3)

p(x, z, t = 0) =1, (4.10)

that propagates with constant speed over the 2D domain x2 + z2 < 4. This domain is

covered by the curvilinear bamps grid. Revisiting the GRHD equations eqs. (2.35-37),
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Figure 4.4: Testing mass conservation and influence of metric identities on the DG scheme.
Top: The relative baryonic mass change for polynomial order N = 3, different number of grid
patches Nsub and different methods to calculate the Jacobian. When the metric identities are
fulfilled numerically (solid line), mass conservation violation is rapidly decreasing to machine
precision as resolution is increased. Bottom: The dynamics of the smooth flow density ρ for
initial data (4.10) and Nsub = 3. The subpatch boundaries are marked by the thick black
lines.

we see that the variable D fulfills a strict conservation law, i.e. the baryonic mass

Mb :=

ˆ
Ω

√
γρWd3x

SRHD
=

ˆ
Ω

ρWd3x (4.11)

does not change over time, as long as no matter leaves the domain Ω. By evolving

initial data (4.10), we test the numerical conservation of baryonic mass and show the

results in Fig. 4.4. Obviously, conservation is improved by increasing the resolution,

i.e. increasing the number of subpatches N1 = N3 = Nsub. Apart from that, we

see a clear improvement of mass conservation when a Jacobian that exactly fulfills

the metric identities is used (solid lines). Compared to the analytical Jacobian

(dotted lines), mass conservation is orders of magnitude better for high resolution.

Even though the pulse is traveling through strongly distorted grid patches, mass
conservation is perfectly fulfilled up to machine precision already for Nsub = 12.

From these test examples, we can conclude that the DG and the SV scheme do

clearly show the expected convergence behavior, as long as the numerical solution is

smooth. In the case of Burgers equation, convergence rates drop as a shock develops.

In the following subsection, we want to give a closer investigation of the shock

capturing techniques.
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Figure 4.5: The one-dimensional special relativistic Riemann problem. For all runs we
chose N = 3, N1 = 100, an ideal gas EOS with Γ = 5/3 and M = 50 for the troubled cell
indication. Top: Numerical evolution of initial data (4.12) with the SV method (density:
red, velocity: green, pressure: blue), time proceeds from dark to light colored lines. Middle:
The troubled cells in a spacetime diagram for the DG+WENO-5 method, indicated by black
points. Horizontal lines are color coded in accordance with the top panel, indicating the
times at which the numerical solution for ρ is shown. Bottom: Numerical results using the
DG+WENO-3 (dots), DG+WENO-5 (crosses) and the SV method (diamonds), compared to
the analytical solution (black line) at t = 0.4.

SRHD shock tests

Again for the GRHD conservation law eqs. (2.35-37) in flat spacetime, we consider

the one-dimensional Riemann problem

(ρ, vx, p)(x, t = 0) =

(10, 0.0, 13.33) x < 0

(1, 0.0, 10−7) x ≥ 0,
(4.12)

on the domain x ∈ [−1, 1]. The analytical solution for this problem in the context

of SRHD is given by [Martí and Müller, 1994]. This is considered a standard test

for shock capturing schemes and we can directly compare our results with [Zhao

and Tang, 2013; Radice and Rezzolla, 2011]. Qualitatively, the evolution shows a
shock wave traveling through a low density medium (see top panel of Fig. 4.5). The

analytical solution consists of a left traveling rarefaction wave, a contact discontinuity

and the right traveling shock wave. During our tests, we observe the troubled cell
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indicator to work reliably (see middle panel of Fig. 4.5). The subpatches containing

shocks, discontinuities or kinks in the solution are marked as troubled. After a

timestep, only 10-25% of all cells are troubled cells for M = 50. In all other cells

the pure DG scheme is used for the evolution. This ratio directly depends on the

parameter M , that characterizes the modified minmod function (3.63). As expected,

choosing a lower M leads to a larger number of troubled cells. In the shock tube

tests, we use the SV method globally (instead of hybrid DG+SV), because DG fails

for all threshold values ρSV, as the shock is not restricted to low density regions.

Looking at the bottom panel of Fig. 4.5, we see that the computed solution agrees

nicely with the analytical solution for the three different shock capturing methods

(WENO-3, WENO-5 and SV). We usually apply the reconstruction methods on the

conserved quantities. However, in the 1D and 2D SRHD shock tests, the results are

slightly improved by reconstructing the characteristic variables. Fewer cells are then

marked as troubled and shocks are sharper in the numerical simulation. This is also

apparent from Fig. 4.6, where conservative reconstruction is directly compared with

characteristic reconstruction for the two-dimensional cases. The necessary left and

right eigenvectors are given in [Banyuls et al., 1997; Rezzolla and Zanotti, 2013]. All

wave features of the analytical solution are well resolved. The numerical solution

shows no oscillatory artifacts at discontinuities. This comes at the price of clear

smoothing effects close to the shocks and kinks. From these tests we see that the

smoothing effect is smaller for the DG+WENO-5 than for the DG+WENO-3 evolution.

This is somehow expected from the higher order of the reconstruction. However, the

SV method appears to resolve the shocks slightly better than either WENO method.

To conclude the tests in flat spacetime, we consider two-dimensional special

relativistic shock problems: One as a 2D generalization of the formerly presented 1D

Riemann problem

(ρ, vx, vz, p)(x, z, t = 0) =



(0.03515, 0, 0, 0.163) x ≥ 0, z ≥ 0

(0.1, 0.7, 0, 1) x < 0, z ≥ 0

(0.5, 0, 0, 1) x < 0, z < 0

(0.1, 0, 0.7, 1) x ≥ 0, z < 0

, (4.13)

and a vortex sheet problem

(ρ, vx, vz, p)(x, z, t = 0) =



(0.5, 0.5,−0.5, 5.0) x ≥ 0, z ≥ 0

(1, 0.5, 0.5, 5.0) x < 0, z ≥ 0

(3.0,−0.5, 0.5, 5.0) x < 0, z < 0

(1.5,−0.5,−0.5, 5.0) x ≥ 0, z < 0

, (4.14)
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Figure 4.6: Two-dimensional special relativistic shock problems. For all runs we chose N = 3,
N1 = N3 = 100, an ideal gas EOS with Γ = 5/3 and M = 50 for the troubled cell indication.
Top: The two-dimensional shock problem (4.13). Bottom: The vortex problem (4.14). For
the shock capturing, the SV (top row), WENO-3 (middle row) and WENO-5 (bottom row)
methods are used. Time evolution is shown from the left to the right for three different
times. For the DG+WENO methods, the final state at t = 0.8 is shown with reconstruction
applied on the (i) conservative variables; (ii) characteristic variables. Density (color coding
and contour lines), velocity field (arrows) and troubled cells (shaded circles) are depicted.
Adapted from [Bug1].
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on the domain (x, z) ∈ [−1, 1] × [−1, 1]. We found these two test cases in [Zhao

and Tang, 2013]. We again tested the DG+WENO-3, DG+WENO-5 and the SV

scheme. Fig. 4.6 shows that all these shock capturing methods give qualitatively

the same results. During the evolution of both setups all initial discontinuities are

captured by the troubled cell indicator (shaded circles). As in the one-dimensional

tests, we apply the SV scheme globally. In the case of the shock problem (top part of

Fig. 4.6), the SV method resolves steep gradients better than the traditional WENO

reconstruction. This becomes most noticeable in the “mushroom cloud” area around

x = z = −0.2. However due to the larger computational expenses of the SV method

and its application on the whole grid, the SV scheme is a factor of ≈ 2.4 times slower

than the DG+WENO methods. For the vortex test (bottom), all methods are again

able to resolve the structure properly. The SV method gives more accurate results,

i.e. shocks remain sharp and spatially local, but is again ≈ 3.2 times slower than the

DG+WENO implementations. When we compare columns (a) and (b) in Fig. 4.6,

we see that characteristic reconstruction gives much cleaner results, particularly in

the vortex tests. The conservative reconstruction almost fails around x = z = 0

and many more cells are marked troubled. We can directly compare our results

from the characteristic reconstruction runs with those in [Zhao and Tang, 2013].

The numerical solution and the distribution of troubled cells looks qualitatively very

similar.

4.2 Spherical accretion
As a first application away from flat space, we chose the steady state solution

for the accretion of matter onto a black hole [Michel, 1972]. This solution is still

smooth and the spacetime is assumed to be static. In our tests, we will therefore only

evolve the matter variables on a fixed curved spacetime background. In what follows,

we denote this the Cowling approximation [Cowling, 1941]. Although this example

constitutes only a slight increase of complexity compared to the previous tests, it

allows us to validate the correct implementation of non-trivial metric quantities.

Initial data

In [Michel, 1972], the equations of motion for a spherical symmetric flow of

matter towards a compact object have been solved for a static spacetime. Since this

solution is also static, it serves us as both initial data for the simulation and the

analytic solution for error estimates. We want to give the main steps of its derivation.

We start again from the conservation laws of mass and energy,

∇µρu
µ = ∂r

(√
−gρur

)
= 0, ∇µT

µ
0 = ∂r

(√
−gT r0

)
− Γν0µT

µ
ν = ∂r

(√
−gT r0

)
,

(4.15)
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where (2.27) and the exclusive dependence on the radial coordinate r is used. The

last equality is found by exploiting symmetry and time-independence of T µν . With

the perfect fluid energy-momentum tensor (2.21), the integrated equations

√
−gρur = C1 = const (4.16)

√
−gρhuru0 = C2 = const (4.17)

and the combined equation

h2u2
0 = C3 = const (4.18)

are obtained. As the background spacetime, the Schwarzschild solution in Kerr-Schild

coordinates is considered:

ds2 = −
(

1− 2M

r

)
dt2 +

4M

r
dtdr +

(
1 +

2M

r

)
dr2 + r2dΩ2. (4.19)

From that and the normalization of uµ one finds

u0 =
√
−gtt + (ur)2,

√
−g = r2 sin θ (4.20)

for this metric. Furthermore, the 3+1 quantities are easily read off from (4.19):

α =

√
r

r + 2M
, βr =

2M

r + 2M
, βr =

2M

r
, γij = diag

(
1 +

2M

r
, r2, r2 sin2 θ

)
.

(4.21)

It turns out that the equations of motion, eqs. (4.16-18), are characterized by a critical

point and only solutions that pass through this point are physically meaningful. This

can be seen by plugging (4.20) into eqs. (4.16-18) and differentiating. The form

dur

ur

(
V − (ur)2

1− 2M
r

+ (ur)2

)
+
dr

r

(
2V − M

r
(
1− 2M

r
+ (ur)2

)) = 0 (4.22)

with V = dh
dρ

ρ
h

is obtained, suggesting that at the critical point both bracketed expres-

sions should be zero to guarantee monotone inflow. Given a critical point at radius rc,

this determines the radial inflow velocity at rc,

urc =
M

2rc
, (4.23)

and some properties of the matter via

Vc =
M

2r
(
1− 2M

r
+ (ur)2

) =
(urc)

2

1− 3(urc)
2
. (4.24)
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Choosing the polytropic EOS p = KρΓ yields

h = 1 +
KΓρΓ−1

Γ− 1
, V =

KΓρΓ(Γ− 1)

KΓρΓ + (Γ− 1)ρ
⇒ K =

V (Γ− 1)

(Γ− 1− V )ΓρΓ−1
, (4.25)

so that by specifying K, the critical density at rc is predetermined. In our tests

however, we specify the critical density ρc and compute K in accordance with (4.25).

The complete preparation of initial data is done as explained in [Papadopoulos and

Font, 1998] and goes as follows: i) Choose (rc, ρc) and Γ for the polytropic gas; ii)

Compute urc from (4.23) and K from eqs. (4.24,25); iii) Compute the constants C1

and C3 from eqs. (4.16,18); iv) Apply a Newton-Raphson root finder to solve (4.18)

for ur:

f(ur) = h2u2
0

(4.16)
=

1 +
KΓ

(
ρc

r2cu
r
c

r2ur

)Γ−1

Γ− 1


2 [

1− 2M

r
+ (ur)2

]
− C3; (4.26)

v) Once ur and C1 are known, all other hydrodynamical quantities can be determined

by

ρ =
C1

r2ur
, p = KρΓ, ε =

p

(Γ− 1)ρ
, (4.27)

and from the 3+1 split of uµ (see Sec. 2.1, making use of the components of nµ)

vr =
ur

αu0
+
βr

α
. (4.28)

Test results

We consider two test cases: i) Static accretion, i.e. evolution of initial data

(4.27,28). Since these are static, no fields should change during the evolution. The

changes in the hydrodynamical fields are used as an error estimate. This test can

be done with a pure DG method, since all fields stay smooth during the evolution;

ii) Dynamical accretion, i.e. preparation of a low density fluid in the whole do-

main and injection of a high density fluid from the outer boundary, corresponding

to (4.27,28). After a short transition time, the numerical solution tends to the static

solution (4.27,28) and we can again compare both to obtain an error measure. For

this test shock capturing methods have to be employed. It was also considered a test

case in [Radice and Rezzolla, 2011].

We use the first scenario, the static accretion, as a test for the pure DG method.

Although the physical setup is spherically symmetric, we employ a two-dimensional

grid setup and the axisymmetric cartoon method. Following this approach, we can

additionally check the DG method on a curvilinear grid. To cut the singularity out of

the domain, we establish only outer shell grids and omit the inner cube and transition
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Figure 4.7: Static accretion test results for two-dimensional pure DG runs with the axisymmet-
ric cartoon method. Left: Logarithmic Density (color coding) and velocity field (arrows) are
shown for polynomial order N = 3 and 16 radial and angular grid patches, N1 = N2,3 = 16,
at time t = 300. The plot is qualitatively identical to an initial data plot, because quantities
change only marginally. Right: Numerical errors for different polynomial order N and number
of grid patches N1 = N2,3. The solid line is the absolute difference of the numerical solution
and the initial solution for ρ, integrated over the domain (L1 norm). The dashed lines are
scaled according to (N + 1)-th order convergence.

shell patches of the bamps grid. There is no need for specific boundary conditions at

the inner boundary r = 1.8, because all characteristic fields are outgoing there. On

the outer boundary r = 20, we just enforce the analytical solution. The grid setup

and the numerical solution at t = 300 for a N = 3, N1 = N2,3 = 16 run is shown in

the left part of Fig. 4.7. Qualitatively, all hydrodynamical fields do not change during

the evolution, as expected for a static solution. A more precise comparison with the

analytic solution is shown in the right panel of Fig. 4.7. Taking the difference in the

density as an error measure, we see clean convergence of order N +1. This is another

confirmation that the DG method has been implemented correctly on curvilinear

grid patches, obviously giving expected convergence orders for smooth solutions.

Furthermore, we verified the method for a non-trivial background spacetime.

In the second test scenario, the dynamical accretion, we combined DG with the

different shock capturing methods. The numerical grid is again the reduced bamps

grid, consisting only of outer shells. For this test, we exploit the full symmetry of the

system and use the effectively one-dimensional spherical cartoon method. As initial

data, we fill the whole domain with a low density gas ρ = 1.28·10−6, set the fluid
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Figure 4.8: Dynamical accretion test with the spherically symmetric cartoon method: A
constant high density fluid inflow is modeled at the outer boundary r = 20. Results from runs
with polynomial order N = 3 are shown. Top: Time evolution for the inflow case. Depicted
is the density ρ from the DG+WENO-3 simulation with M = 0, time increases from red to
blue. Middle: The troubled cells in a spacetime diagram for the DG+WENO-3 method (green
circles) and the DG+SV method with ρSV = 9·10−3 (black dots). Horizontal lines are color
coded in accordance with the top panel, indicating the times at which the numerical solution
for ρ is shown. Bottom: Numerical errors for different shock capturing methods and number
of grid patches N1. The solid line is the absolute difference of the numerical solution and
the static solution for ρ, integrated over the domain (L1 norm). The dashed lines are scaled
according to fourth order convergence.

velocity to zero and calculate pressure and internal energy according to a polytropic

EOS. On the outer boundary, we impose the analytical solution. The dynamics of the

infalling matter is depicted in the top panel of Fig. 4.8. All shock capturing methods

are able to provide a stable evolution of the dynamical accretion. From the middle

panel of Fig. 4.8, we see that the troubled cell indicator follows the inwards traveling

shock successfully. After the transient, when the static solution is reached, no cells

are marked troubled and the pure DG scheme is applied again. We compare the

numerically obtained static solution with (4.27,28). As seen from the bottom panel

of Fig. 4.8, the high convergence order of the DG scheme is recovered as the solution
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reaches stationarity. This observation is independent of the used shock capturing

method. The observation that there is no effect of the the lower order schemes at

the end could again be due to the fact that all characteristic speeds are non-zero.

Effectively, all lower order artifacts are just “transported” off the grid (comparable to

the advection test, see Fig 4.2).

4.3 Stable neutron star
As a next step towards real astrophysical application of the code, we consider a

single static neutron star. We make use of the simplest solution of the Einstein field

equations containing matter, the Tolman-Oppenheimer-Volkoff (TOV) solution [Tolman,

1939; Oppenheimer and Volkoff, 1939]. The solution is entirely determined by the

central density ρc of the star under a prescribed EOS. For each EOS, there exists

a maximal ρc, up to which the configuration is in stable equilibrium. Above this

threshold, stars are in unstable equilibrium and either collapse to a black hole or

migrate to a stable configuration when perturbed. We consider these unstable TOV

stars in Sec. 4.4. TOV solutions in general are spherically symmetric and time

independent. Therefore, the Einstein equations turn into a set of ordinary differential

equations (ODEs), dependent only on a radial coordinate r. We obtain the TOV

solution numerically, by integrating this ODE system to very high accuracy with a

Runge-Kutta method, see details below. Like in the spherical accretion tests, we again

compare the evolved solution to this initial solution for an error estimate.

Numerical solution of the TOV equations

We want to give a short summary on how we prepare the TOV solution numerically.

Some parts of this derivation can be found in [Carroll, 2003; Wald, 1984]. Starting

from the Schwarzschild metric in Schwarzschild coordinates

ds2 = −e2φdt2 + e2ψdr2 + r2dΩ2, (4.29)

and the perfect fluid energy-momentum tensor (2.21), the Einstein equations take

the form:

8π(ρh− p)e2φr2 = e2(φ−ψ)
[
2rψ′ − 1 + e2ψ

]
8πpr2 = e−2ψ

[
2rφ′ + 1− e2ψ

]
8πp = e−2ψ

[
φ′′ + (φ′)2 − φ′ψ′ − ψ′ − φ′

r

]
. (4.30)

Since both, Gµν and Tµν are diagonal for this problem, we expect maximally four

independent equations. Furthermore, the equations originating from θθ- and ϕϕ-

component are identical up to factor sin2 θ, which reduces the system to the three
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equations (4.30). The EOS, which relates ρ,p and h, closes the system. Therefore

the three unknown functions in (4.30) are the metric potentials φ(r) and ψ(r), and

one of the hydrodynamical quantities p(r), ρ(r) or h(r). From the conservation of

energy-momentum (2.1b), we gain an additional useful equation

p′ + ρhφ′ = 0. (4.31)

The remaining system can be substantially simplified by replacing the potential ψ

with the gravitational mass m(r)

1− 2m

r
:= e−2ψ. (4.32)

Substituting this into the first two equations of (4.30) and employing (4.31) yields

three of the final four ODEs, that are solved to prepare the TOV solution numerically:

m′ = 4π(ρh− p)r2, φ′ =
4πpr3 +m

r (r − 2m)
, p′ = −ρh4πpr3 +m

r (r − 2m)
. (4.33)

In principle, solving these three equations would be sufficient to gain valid initial

data for a spherically symmetric static star. However, the standard approach is to

choose coordinates, such that the spatial part of the metric is explicitly conformally

flat. This simplifies its setup in Cartesian coordinates significantly. We transform the

radial coordinate and introduce the isotropic radius r̄ = r̄(r), so that

ds2 = −e2φdt2 + e2ψ̄
(
dr̄2 + r̄2dΩ2

)
= −e2φdt2 + e2ψ̄

(
dx̄2 + dȳ2 + dz̄2

)
. (4.34)

Comparing the two metrices (4.29) and (4.34), we find two new equations which

characterize the coordinate transformation:

e2ψ̄r̄2 = r2, e2ψ̄dr̄2 = e2ψdr2. (4.35)

Combining these two relations and (4.32) yields the differential equation

dr̄

r̄
=

(
1− 2m

r

)− 1
2 dr

r
=

1−
(
1− 2m

r

) 1
2(

1− 2m
r

) 1
2

dr

r
+
dr

r
, (4.36)

where we split the singular term after the first equality into a regular (m ∼ r3) and

a singular (but analytically integrable) part. This step is important for a successful

numerical integration to find r̄(r). From (4.36) we gain through analytical integration
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ln(r̄)−ln(r̄(r0))−ln(r)+ln(r0) = ln
( r̄
r

)
−ln

(
r̄(r0)

r0

)
=

ˆ r

r0

1−
(
1− 2m

r

) 1
2

r
(
1− 2m

r

) 1
2

dr (4.37)

In the limit r0 → 0, the term r̄(r0)/r0 is positive and regular. The specific ratio for the

limit r0 → 0 is freely specifiable and can be absorbed in an integration constant C:

r̄ = rC exp

ˆ r

0

1−
(
1− 2m

r̃

) 1
2

r̃
(
1− 2m

r̃

) 1
2

dr̃

 (4.38)

At the surface of the star, r = R, the hydrodynamical fields tend to ρ → 0, p → 0,

h→ 1 and m→M , where M is the total gravitational mass of the star. Outside the

star, these fields do not change and (4.36) is analytically integrated:

r̄ =
1

2

(√
r2 − 2Mr + r −M

)
. (4.39)

Here, the integration constant has been fixed, so that the two radii agree at infinity.

With this last ingredient, we can summarize the established TOV star initial data

procedure:

We set

m(0) = 0, φ(0) = 0, p(0) = p(ρc), λ(0) = 0 (4.40)

and numerically integrate the following ODEs by an adaptive stepsize Runge-Kutta

method of order four:

m′ = 4π(ρh− p)r2, φ′ =
4πpr3 +m

r (r − 2m)
, p′ = −ρh4πpr3 +m

r (r − 2m)
λ′ =

1−
(
1− 2m

r

) 1
2

r
(
1− 2m

r

) 1
2

dr

(4.41)

Once the pressure p approaches zero, we shrink the stepsize to get an accurate result

for the star surface R. We store the values M = m(R), Φ = φ(R) and Λ = λ(R). For

r ≥ R, we set the metric variables according to the Schwarzschild metric of mass

M . Furthermore, an atmosphere is modeled as a gas with comparably low density

ρatm � ρc:

m = M, φ =
1

2
ln

(
1− 2M

r

)
, p = p(ρatm), r̄ =

1

2

(√
r2 − 2Mr + r −M

)
.

(4.42)

This density is chosen small, but non-zero, in order to prevent the primitive recon-

struction from being singular. As a last step, we fix the constants of integration in
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Table 4.4: Configurations for single, non-spinning neutron star code tests. Only when solving
for initial data, a polytropic EOS with Γ = 2, K = 100 is considered. In the actual time
evolutions, an ideal gas EOS with Γ = 2 is employed.

Configuration Gravitational Mass Radius Central density
STOV 1.40M� 9.59 ≡ 14.16 km 1.28·10−3≡ 7.90·1014 g

cm3

UTOV 1.45M� 5.84 ≡ 8.62 km 8.00·10−3≡ 4.93·1015 g
cm3

order to match the solutions for r < R and r ≥ R by assigning

φ← φ− Φ +
1

2
ln

(
1− 2M

R

)
, r̄ ← r

2R

(√
R2 − 2MR +R−M

)
exp(λ− Λ)

(4.43)

for r < R. The metric potential ψ̄ can be easily recovered from (4.35) for all r. The

final 3+1 quantities are:

α = exp(φ), βi = 0, γij =
r̄2

r2
ηij. (4.44)

All these data fields are stored with respect to the radius r. Since we need the data at

an arbitrary isotropic radius r̄, an interpolation is necessary and the data arrays have

to be of sufficiently fine resolution.

Influence of the stellar surface

As mentioned before, an artificial atmosphere is usually imposed in numerical

relativity simulations of neutron stars. During the test phase of our implementation,

we found that this atmosphere has crucial influence on the whole scheme. To

substantiate this statement, we performed an evolution of the very same TOV star

configuration STOV (see Tab. 4.4), including and excluding its surface from the

numerical domain. In the first case, we set ρatm = 1.28·10−11 for r ≥ R. In the second

case, the TOV solution (4.41) is fixed at the outer grid boundary. For these tests, the

spacetime is still considered static, i.e. we work in Cowling approximation. In both

setups, a spherically symmetric cartoon DG method of different polynomial order N is

used for the evolution. The results are shown in Fig. 4.9. As in the spherical accretion

test, we used the difference between numerical and analytical density solution as an

error indicator. For the evolutions of the interior of the star, depicted in the three

left columns of Fig. 4.9, we see the expected convergence behavior for this error. We

can again confirm, that the DG method enables convergence of order N + 1, also

for a general relativistic setup with non-trivial background spacetime. For N = 5,

saturation is quickly reached, as the error decreases to ∼ 10−11 for N1 = 32. However,

in the evolution of the entire star, convergence is obviously corrupted. A close look

at the corresponding pointwise convergence order plot in Fig. 4.9 (bottom right)



72 CHAPTER 4. CODE TESTS

0 200 400 600 800
t

0

2

4

6

8

10

r

0

1

2

3

4

5

6

101

10−3

10−7

10−11

||ρ
n
−

ρ
(t

=
0)
|| 1

Inner star N = 1

0 200 400 600 800
t

Inner star N = 3

0 200 400 600 800
t

Inner star N = 5

0 200 400 600 800
t

Full star N = 3

N1 = 8 N1 = 16 N1 = 32 N1 = 64 N1 = 128

Figure 4.9: Code tests for the configuration STOV in Cowling approximation with the
spherically symmetric cartoon method. In the three left columns, the interior of the star is
simulated with analytic outer boundary conditions. The star surface is not inside the domain.
Each column represents a polynomial order N of the DG scheme. The rightmost column
shows a realistic setup of the whole star including its surface. It is surrounded by a low
density atmosphere ρatm = 1.28·10−11. Top: Numerical errors for different number of grid
patches N1. The solid line is the absolute difference of the numerical solution and the initial
solution for ρ, integrated over the domain (L1 norm). The dashed lines are scaled according
to (N + 1)-th order convergence. Bottom: Pointwise convergence in a spacetime diagram.
The numerical errors from the N1 = 16, 32 runs were used to determine the convergence
order. The star surface is indicated by the dashed line.

reveals, that initial high order convergence in the stars interior is completely gone

after t ∼ 50. The same effect is even more visible for higher resolution runs, as shown

in the bottom left plot of Fig. 4.10. After that point in time, no clear convergence

order can be read off. The same impression is visible from the integrated errors (top

row in Fig. 4.9), which are unstructured compared to the runs that do not take the

star surface into account. From these tests, we draw the conclusion that a naive DG

setup is not able to perform stable evolutions of entire neutron stars without further

modification. As in other NR codes, the artificial atmosphere seems to be a major error

source, leading to a fast loss of high order convergence. We think that two strategies

could cure this issue: i) The application of shock capturing techniques, which is the

way we follow in this thesis; ii) A numerical grid, that is carefully adapted to the

star surface. This would include the solution of the initial free-boundary problem

for an generic neutron star surface, which is - to the best of our knowledge - not yet

available.

TOV star tests in Cowling approximation

We again perform an evolution of the configuration STOV as in the previous

subsection, but combine the DG scheme with the WENO-3, WENO-5 and SV shock

capturing methods. The entire star with surface and artificial atmosphere is con-

sidered. These runs are similar to the main test discussed in [Bug1], although not
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Figure 4.10: Code tests for the configuration STOV with the spherically symmetric cartoon
method and polynomial order N = 3. The columns represent different shock capturing
strategies that we employ additionally to the DG scheme. For the WENO schemes, a troubled
cell parameter M = 1·10−5 was used, while for the SV scheme we set ρSV = 1.28·10−4. Top:
Mass conservation as indicated by the relative baryonic mass change. Middle: Numerical
density error. Both are shown for different number of grid patches N1. The dashed lines are
scaled according to second order convergence. Bottom: Pointwise convergence in a spacetime
diagram. The numerical errors in the density from the N1 = 128, 256 runs were used to
determine the convergence order.

completely identical. In [Bug1], we set all y- and z-derivatives equal to zero, while in

this work, real spherical symmetry via the cartoon method is enforced. The results

for these runs are shown in Fig. 4.10. All tests employ a DG method of order N = 3.

As a reference, we show again the pure DG case, i.e. the first column in Fig. 4.10 is

identical to the last column in Fig. 4.9. As an additional error indicator, we monitor

again the conservation of the baryonic mass (4.11). The pointwise convergence is

estimated from high resolutions N1 = 128, 256. As mentioned before, convergence

is clearly lost through the interaction with the stellar surface if no shock capturing

is used. That said, all of the shock capturing methods considered seem to cure this

problem partially. At least second order convergence in both the density error and

the mass conservation is achieved if DG is combined with one of these methods. Also

in the pointwise convergence plots we can confirm, that convergence is not decaying

over time, if shock capturing is active. Comparing the errors, SV and WENO-5 give

lower errors than the WENO-3 reconstruction. However, these methods are also

significantly slower (see Tab. 4.5 for a running time comparison of full GR TOV simu-

lations). While the WENO-3 (WENO-5) method is a factor 1.14− 1.22 (1.27− 1.42)

slower than pure DG, the hybrid DG+SV method comes with large overhead of a
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Figure 4.11: Code tests for the configuration STOV with the axisymmetric cartoon method
(top panel) and in full 3D (bottom panel) with polynomial order N = 3. The columns
represent different shock capturing strategies that we employ additionally to the DG scheme.
For the WENO schemes, a troubled cell parameter M = 1·10−5 was used, while for the hybrid
DG+SV scheme we set ρSV = 1.28·10−4. Top row: Mass conservation as indicated by the
relative baryonic mass change. Bottom row: Numerical density error. Both are shown for
different number of grid patches N1. The dashed lines are scaled according to second order
convergence.

factor 2.13−2.60. The main bottleneck is the conversion of the 50 spacetime variables,

which are only available at the collocation points, to SV averages. These are required

to calculate the source terms for the SV scheme. The running times increase by a

factor of ∼ 4 when N1 is doubled, as expected for one-dimensional simulations.

So far all neutron star tests have been performed with the spherically symmetric

cartoon method, i.e. in one spatial dimension. As a technical test we evolved the same

configuration STOV in 2D, with the axisymmetric cartoon method, and in full 3D. The

results of these runs are summarized in Fig. 4.11. Looking again at baryonic mass

conservation and density error, we see that the WENO shock capturing methods allow

stable long-term simulations in 2D and 3D. These methods again show convergence

of second order. As in the previous one-dimensional runs, the errors are slightly

higher for the WENO-3 method as compared to WENO-5. In the hybrid DG+SV

methods, instabilities at the DG/SV interfaces occur, which ultimately lead to a failure

of all 2D and 3D simulations. The 3D runs break after shorter simulation time than

the 2D runs. For both second order convergence can be observed up to the crash.

We discussed the reason for these instabilities at the end of Sec. 3.3.2. The naive

implementation of the DG/SV interface in bamps does not respect the conservation
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Table 4.5: Comparison of code running time in seconds for full GR TOV star evolutions up to
t = 1000. Runs were done with the spherically symmetric cartoon method and polynomial
order N = 3. A desktop machine with 32 GB of memory and 4 4.00 GHz Intel i7 cores was
used. Comparison of different shock capturing strategies and number of grid patches N1.

N1 DG DG + WENO-3 DG + WENO-5 DG + SV
16 24.57 51.90
32 83.43 94.94 105.50 189.38
64 300.50 367.74 428.73 752.17
128 1175.94 1366.16 1589.13 3063.96
256 4763.36 5488.51 6394.64 11835.02

and outflow conditions as defined in [Kopriva, 1996]. Applying the mortar method as

in [Choi, 2015] would be a possible solution. Simulations are stable and convergent

when no DG/SV interface is present (i.e. when SV is used everywhere, see left column

in Fig. 4.11). Moreover, hybrid DG+SV simulations turned out to be stable in 1D. As

the DG/SV interface is only one point in one-dimensional runs, our method and the

mortar method are identical in this case. Both facts support our assumption about

the source of the observed instabilities in two and three dimensions.

Performing spherically symmetric neutron star simulations in full 3D is obviously

wasteful regarding code running times. Comparing the DG+WENO-3 runs, the

spherically symmetric cartoon simulation is ∼ 100 times faster than the axisymmetric

cartoon and ∼ 20000 times faster than the full 3D counterpart. Comparing methods,

the DG+WENO-3 method is 1.41 (6.50) times faster than the DG+WENO-5 (SV

only) method in 3D, and 1.63 (2.26) times faster than the DG+WENO-5 (SV only)

method in 2D. Obviously, the time consuming conversion of DG polynomial values to

SV averages leads to an unacceptable overhead in a fully three-dimensional hybrid

DG+SV method.

Fully general relativistic stable TOV star test

As a last stable, non-rotating star test, we want to discard the Cowling approx-

imation and evolve the fully general relativistic coupled system of spacetime and

matter. The initial configuration is again STOV. We employ the full bamps code and

evolve the spacetime variables with the pseudospectral penalty method, while the

matter variables are treated with DG and shock capturing methods. For the GHG

system, we use the damping parameters γ0 = 0.1, γ2 = 1, γ3 = γ4 = 0.5. Besides

the density deviation and the mass conservation, we can use the GHG constraints

Cα (see Sec. 2.3) as an error measure. According to [Lindblom et al., 2006], the

time derivative tµ∇µC0 is closely related with the Hamiltonian constraint H, which

is usually used as an error indicator in NR. Similarly, tµ∇µCi is related to the mo-
mentum constraint Mi. These four constraints naturally emerge from a 3+1 split

of the Einstein field equations, which decompose into 4 constraint equations and 6
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Figure 4.12: Code tests for the configuration STOV in full GR with the spherically symmetric
cartoon method and polynomial order N = 3. The columns represent different shock
capturing strategies that we employ additionally to the DG scheme. For the WENO schemes,
a troubled cell parameter M = 1·10−5 was used, while for the SV scheme we set ρSV =
1.28·10−4. First row: Mass conservation as indicated by the relative baryonic mass change.
Second row: Numerical density error. Third row: The GHG constraint tµ∇µC0, as an indirect
measure for the Hamiltonian constraint. Fourth row: The GHG constraint C0. All error
measures are shown for different number of grid patches N1. The dashed lines are scaled
according to second order convergence. Bottom: Pointwise convergence in a spacetime
diagram. The numerical errors in the density from the N1 = 128, 256 runs were used to
determine the convergence order.

evolution equations for the extrinsic curvature Kij. We show all these error measures

in Fig. 4.12. Qualitatively, the data look similar to those of the Cowling approximation

runs. We still observe second order convergence in all error indicators and for all

shock capturing methods. The only exception is the highest resolution run for the

DG+WENO-3 method, where convergence in tµ∇µC0 seems to fail. We have no

plausible explanation for this behavior, especially since all other error measures do

not show this lack of convergence. We can only assume, that it is caused by the finite

atmosphere level or the initial data interpolation onto the bamps grid. Apart from this,

the code evolves the full GR setup as expected. Comparing the pointwise convergence

graphs with those of the Cowling approximation runs, the plots look almost identical.

The evolution of the matter variables seems to be almost unaffected by engaging the

spacetime evolution in bamps. The one-dimensional full GR runs are a factor ∼ 2.3

(∼ 2.0) slower than their Cowling counterparts, when WENO-3 (WENO-5) is active.

For the SV method, this factor is only ∼ 1.2, as the hybrid DG+SV approach is more

time consuming than WENO reconstruction. All code running times for these tests
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are listed in Tab. 4.5.

4.4 Unstable neutron star

In this section, we again consider a TOV solution (4.41), but choose a high central

density ρc so that the star is in unstable equilibrium. We denote this configuration

as UTOV in Tab. 4.4, modeled as an ideal gas with Γ = 2, κ = 100 and an artificial

atmosphere ρatm = 1.28·10−12. Although this solution is still static, small perturbations

of the numerical solution lead to non-trivial dynamics of the system [Font et al., 2002]:

Either the star collapses to a black hole, or it migrates to a stable star configuration

of the same mass. This initial setup is considered a first fundamental test in many

studies on numerical relativity codes [Cordero-Carrión et al., 2009; Bernuzzi and

Hilditch, 2010; Radice and Rezzolla, 2011; Thierfelder et al., 2011]. Also in this

work, it constitutes the first dynamical, fully general relativistic testbed. For the

GHG system, we use the damping parameters γ0 = 0.1, γ2 = 1, γ3 = γ4 = 0.5. To

trigger the dynamics, we reduce the density to 94% of its actual value and update

the other hydrodynamical fields according to the EOS. Of course, this procedure is

clearly violating the constraint equations. However, our results are qualitatively very

close to the solutions shown in [Font et al., 2002; Cordero-Carrión et al., 2009], in

which the constraint equations were satisfied. The density modification causes the

star to migrate from a compact R = 5.84 = 8.62 km, ρc = 7.52·10−3= 4.63·1015 g
cm3

configuration to a less compact R ≈ 8.5 = 12.55 km, ρc ≈ 8.80·10−4= 5.41·1014 g
cm3

configuration within ∆t = 1000 = 4.93 ms. This migration process is dominated by

shock waves in density and internal energy, which rapidly dissipate energy as the

star oscillates and finally settles to the stable equilibrium. An impression of the time

evolution is given in Fig. 4.13. The evolution with the spherically symmetric cartoon

method is depicted in the top panel of the figure, while in the bottom part, data

from the axisymmetric cartoon runs is shown. The whole evolution is spherically

symmetric and we again perform the axisymmetric cartoon run only for technical

testing. As the simultaneous evolution of the GHG system is required and boundary

conditions should be applied on spherical surfaces, the evolution can not be done on

a central box grid in 2D. We use the standard bamps cubed-ball grid, which is why

we can only apply the SV method for shock capturing in the axisymmetric cartoon

runs. Looking again at the mass conservation in both, one- and two-dimensional

runs, we observe that mass is conserved only up to a certain time t ≈ 300. This is

due to the finite numerical grid and corresponds to the time, when the first shock

wave reaches the outer grid boundary. The second snapshot in Fig. 4.13 shows the

system shortly prior to that. Until t ≈ 300, the error in mass conservation converges

again with second order. Furthermore, second order convergence is observed for
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Figure 4.13: Code tests for the configuration UTOV in full GR with the spherically symmetric
cartoon method (top panel) and the axisymmetric cartoon method (bottom panel) with
polynomial order N = 3. Top panel first row: Time evolution of the density for t ∈ [0, 1000] at
7 evenly distributed times. Top panel second to fourth row: The columns represent different
shock capturing strategies that we employ additionally to the DG scheme. For the WENO
schemes, a troubled cell parameter M = 1·10−5 was used, while for the SV scheme we set
ρSV = 1·10−3. Second row: Mass conservation as indicated by the relative baryonic mass
change. Third row: The GHG constraint Cx. Fourth row: The GHG constraint tµ∇µCx, as
an indirect measure for the momentum constraint Mx. Bottom panel rows: The same error
measures as in the top panel, listed for the axisymmetric cartoon runs with the DG+SV
method. Bottom panel snapshots: The dynamics of the migration test. Logarithmic density
(color coding) and velocity (arrows) are depicted for Nsub = 32. The patch boundaries are
marked by the thick black lines. All error measures are shown for different number of grid
patches. The dashed lines are scaled according to second order convergence.
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the GHG constraint Cx in all runs. For the runs in 1D, we realized that very high

resolution is necessary for a successful simulation with WENO methods. If we chose

N1 too small, these methods just damp the sharp star profile too drastically. At these

high resolutions, we see no clear convergence behavior in the tµ∇µCx constraint. We

expect that this is due to the comparatively big constraint violation in the modified

initial data. For lower resolution, as in the two-dimensional runs, convergence is

slightly clearer. In all simulations we observe that the convergence of this constraint

changes periodically in time. This can be explained by the repetitive emission of

shock waves in density and internal energy. These form a discontinuity inside the

numerical domain, so that only first order convergence can be expected (e.g. third

bottom snapshot in Fig. 4.13). As soon as the shock leaves the grid, second order

convergence is regained (e.g. fourth bottom snapshot in Fig. 4.13). As a last remark,

we want to comment on the stability of the hybrid DG+SV method in these runs.

It appears to be stable for this setup, but as the star density is below ρSV = 1·10−3

almost everywhere for t > 500, the SV method is employed in large parts of the grid

and DG/SV interfaces are rare. Therefore, these runs are in no contradiction to the

previously observed instabilities in the higher dimensional DG+SV method.

4.5 Rotating neutron star

In the last section of this chapter, we want to present a test beyond spherical

symmetry: the rotating neutron star (RNS). With this setup, we return to stationary

solutions of GRHD, although only axisymmetric. Furthermore, this testbed provides

steep velocity gradients, as the surface of the star moves with ∼ 0.15c for our configu-

ration. Unfortunately, the computation of RNS initial data is not as straightforward

as for the TOV star. So far, no analytical consistent solution for interior and exterior

of a RNS is known. Several numerical methods for RNS initial data computation are

discussed in the comprehensive work [Stergioulas, 2003]. The general approach is to

either use a slow rotation approximation [Hartle, 1967; Hartle and Sharp, 1967] or

to solve the full Einstein equations (2.1c) in a Newton-Raphson like approach [But-

terworth and Ipser, 1976]. In the latter method, the spin of the neutron star is

slightly increased with each iteration step. In each such step, the linearized Einstein

equations are solved. In this work, we compute the RNS initial data with the code

presented in [Stergioulas and Friedman, 1995], which is based on the integral form

of these equations [Komatsu et al., 1989]. The code computes the RNS solution on a

sufficiently high resolved r − cos(θ)−grid, so that it can be interpolated to the bamps

grid as in the TOV case. As in all other neutron star tests, an ideal gas EOS with

Γ = 2, κ = 100 and an artificial atmosphere ρatm = 1.28·10−15 is employed.

As the RNS solution is stationary, we can again compare the numerical solu-
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Figure 4.14: Code tests for a rotating neutron star in Cowling approximation with the
axisymmetric cartoon method and polynomial order N = 3. Left: Density (color coding) and
velocity field (perpendicular to plane) are shown for N1 = N3 = 128 grid patches, at time
t = 1000, i.e. after 2.4 revolutions. The plot is qualitatively identical to an initial data plot,
because quantities change only marginally. Right: Error measures for different number of grid
patches N1,3 and shock capturing strategies that we employ additionally to the DG scheme.
For the WENO schemes, a troubled cell parameter M = 1·10−5 is used, while for the hybrid
DG+SV scheme we set ρSV = 1.28·10−4. Top rows: Numerical density error. Bottom rows:
Mass conservation as indicated by the relative baryonic mass change. The dashed lines are
scaled according to second order convergence.

tion with the initial data for an error estimate. This is depicted for the Cowling

approximation simulations in Fig. 4.14. Furthermore, the density and velocity pro-

file of a neutron star with a central density ρc = 1.28·10−3 and revolution time

of τ = 416.49 = 2.05ms after 2.4 rotations is shown. These profiles change only

marginally during evolution. Note that the star is tidally deformed due to its rota-

tion. As a reference, the star surface of a TOV star with the same gravitational mass

M = 1.47M� is marked by the gray dashed line. Focusing on the errors shown in

the right part of Fig. 4.14, all observations are compatible with the two-dimensional

stable TOV evolutions. The DG+WENO methods and the standalone SV method

are able to perform stable and second order convergent simulations of the rotating

neutron star. The hybrid DG+SV method tends to fail, because of the simplistic

interface implementation that we already discussed. Up to the point of failure, the

hybrid method is also second order convergent. As in the other tests, the errors from

the DG+WENO-3 runs are slightly bigger than those from the DG+WENO-5 or SV

runs.



Chapter 5

Neutron star head-on collision

As a proof of principle we perform a neutron star merger simulation with our im-

plementation and extract the emitted gravitational waves. These final tests also

constitute a new type of simulation which is now accessible to the bamps code: the

collision of two compact objects. Besides the evolution strategies discussed in this

work, an initial data solver for elliptic equations was developed and integrated in

bamps by Hannes Rüter [Bug3]. The method will be explained as one of the main

topics in his Ph.D. thesis. In this work, we only want to give a basic overview on

the initial data solution. First, we motivate the elliptic equations, that have to be

solved in order to obtain valid initial data. A 3+1 split of the Einstein field equations

yields four constraint equations on the induced metric γij and the extrinsic curvature

Kij. However, it is unclear which of their components should be freely specifiable

and which are constrained. A successful formulation of the constraint equations is

the conformal thin sandwich approach [York, 1999]. This is based on a conformal

decomposition of γij = ψ4γ̄ij and Kij = ψ−2Āij + 1
3
Kψ4γ̄ij, so that γ̄ij, ∂tγ̄ij, K, and

α are freely choosable, while four equations are solved for the conformal factor ψ and

βi. As we chose an initially flat conformal metric γ̄ij = δij and furthermore Kij = 0,

pi = 0, the shift equation is trivially solved by βi = 0. The last remaining equation for

ψ is

0 = ∂i∂
iψ + 2πEψ5 (5.1)

with E = ρhW 2 − p. With the solution of (5.1), the initial metric is easily obtained as

γij = ψ4δij. To solve the elliptic equation (5.1), it is reduced to a first order system

0 = δij∂irj + 2πEψ5,

0 = ∂iψ − ri, (5.2)
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and “evolved” in analogy to the Jacobi method [Press et al., 1986] as

∂tψ = δij∂irj + 2πEψ5,

∂tri = ∂iψ − ri. (5.3)

This relaxation can be performed with the same pseudospectral method and on the

same numerical grid which is usually used for evolutions in bamps. The grid patch

boundary conditions are again implemented as penalties (see. Sec. 3.1, eq. (3.19)).

The outer boundary conditions are more delicate, especially if Dirichlet boundary

conditions have to be imposed, see [Bug3] for details. In our case Robin boundary

conditions are applied, i.e. the conformal factor is assumed to take the form

ψ ' 1 +
A

r
(5.4)

in the limit of large r. From this expression, the derivatives si∂iψ and si∂irj can

be determined at the boundary and imposed via the Bjørhus method. As an initial

guess for ψ and as initial data for ρ, p, ε and α we chose two superposed TOV

stars. These stars are centered in the x-y-plane and shifted on the z-axis by d
2

and

−d
2
, respectively. In our example runs, we chose this initial distance of the star

centers to be d = 80 = 118.15 km. In isolation, the stars would have a radius

r = 10.33 = 15.28 km and equal gravitational masses M1 = M2 = 0.56M�. For the

EOS, we chose a polytropic EOS with K = 80, Γ = 2 for the initial data and an ideal

EOS for the evolution. The initial matter velocity field is set to zero and the artificial

atmosphere value is chosen ρatm = 1.28·10−15.

We employ the pure SV method to evolve the matter variables. As observed in

the test section, the hybrid DG+SV approach requires conservative DG/SV interfaces

to guarantee stable evolutions. On the other hand, DG+WENO methods are only

implemented for box grids, but spherical boundaries are needed to impose proper

boundary conditions for the GHG system. As depicted in the snapshots at the bottom

of Fig. 5.1, the neutron stars start falling towards each other. After t ≈ 400 = 1.97 ms,

the outer stellar layers touch and the stars come into contact. At t ≈ 485 = 2.39 ms,

the stellar cores merge and a maximum density (four times larger than the initial

central density of the stars) is reached. At t ≈ 600, 0.57 ms later, the first shock

waves of low density matter with high internal energy pass the outer boundary of

the numerical grid at r = 148 km. Several consecutive shock waves transfer matter

out of the numerical domain, so that mass conservation is not expected to hold from

this point in time. Also at t ≈ 600 = 2.96 ms, the maximum of gravitational radiation

would be measured at r = 148 km. To extract a gravitational waveform from the data,

we follow the formalism explained in section 3.3 of [Bishop and Rezzolla, 2016]. An
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Figure 5.1: The head-on collision of two neutron stars with equal mass M1 = M2 = 0.56M�
in full GR, employing axisymmetric cartoon method and SV scheme for the matter treatment.
First row: (2, 0) mode of the Ψ4 gravitational waveform, rescaled according to the finite
extraction radius at r = 100 = 148 km. Inset: Magnification of the same waveform around its
maximum. Waveform data of the highest resolved run is shown as a line, while data from
lower resolution runs are marked by crosses. Second row: Mass conservation as indicated by
the relative baryonic mass change. Third row: The GHG constraint tµ∇µC0, as an indirect
measure for the Hamiltonian constraint H. Fourth row: The GHG constraint C0. Bottom
snapshots: The dynamics of the head-on collision. Logarithmic density (color coding) and
velocity (arrows) are depicted for Nsub = 32. The patch boundaries are marked by the thick
black lines. All error measures are shown for different number of grid patches. The dashed
lines are scaled according to second order convergence.

orthonormal null tetrad is built as

lµ =
1√
2
(nµ + eµr ) , kµ =

1√
2
(nµ − eµr ) , m̄µ =

1√
2

(
eµθ − ieµϕ

)
(5.5)

from the normal vector n and the spherical polar coordinate basis er, eθ, eϕ. Note that

the latter vectors are normalized with respect to γij, e.g. it is γijeire
j
r = 1. Then, we

define the Newman-Penrose scalar ψ4 [Newman and Penrose, 1962], which describes
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Performance-Computing cluster “ARA” of the Friedrich Schiller University Jena. The compute
nodes are each equipped with two 12 core 2.2 GHz Intel Xeon processors and 128 GB RAM.
For a short simulation of final time t = 10, code running time and corresponding simulation
speed are depicted. Ideal scaling is indicated by black dashed lines.

gravitational radiation in the asymptotic limit, as:

ψ4 = −Cαβµνk
αm̄βkµm̄ν , (5.6)

with the Weyl tensor Cαβµν . As ψ4 transforms like a spin-weight −2 field under tetrad

rotations of m, m̄, we project ψ4 onto the spherical harmonics of spin-weight −2,

−2Ylm to analyze the individual modes (l,m). For the head-on collision we expect

(and confirm) that the (2, 0) mode is the dominant contribution to the gravitational

waveform. The extracted waveform is qualitatively consistent with a similar black

hole setup in [Sperhake et al., 2007]. After t ≈ 1600 = 7.88ms the system is in a

slightly oscillating single neutron star configuration. At the end of the simulation

at t = 4000 = 19.71ms, a stable star has formed and all fields are changing only

marginally. In Fig. 5.1, we also monitored the GHG constraints throughout the full

merger process. These converge again with second order, except for a time period

shortly after the contact of the stars, when the dynamics are dominated by strong

shocks and discontinuities in all matter fields.

As a last benchmark, we tested the scaling behavior of our implementation on

the High-Performance-Computing cluster “ARA” of the Friedrich Schiller University

Jena. We evolved again the neutron star head-on collision, but only up to final time

t = 10 and measured the code running time for different number of processes (or

cores). More specifically, we registered the time that the slowest process used for the

evolution (no grid/project setup, initial data loading, etc.). The results are shown in

Fig. 5.2. The scaling of the code is close to ideal in the whole tested range. The only

exception is a scaling factor of 1.4 when the process number is doubled from 16 to 32.

This is because each “ARA” node has 24 cores, so that for all larger process numbers,

communication between nodes has to be taken into account.



Chapter 6

Numerical experiments with a dual
foliation

As a first numerical test for the novel DF formalism [Hilditch, 2015] (see Sec. 2.4),

we considered the scalar wave equation in flat spacetime:

�ψ = −∂2
Tψ + ∂i∂

iψ = 0. (6.1)

Employing hyperboloidal coordinates and using the DF approach, we want to place

the outer boundary of the computational domain at future null infinity. The main

idea is to treat the wave equation as usual in the cube and transition region of the

grid (see Fig. 3.2, Fig. 6.1). However, in the outer shells, hyperboloidal coordinates

and the DF formalism are employed. The results of this test are presented in [Bug2].

In this chapter, we focus on the derivation of the numerical evolution system and on

the actual implementation steps that were necessary in the bamps code. It should

serve as an comprehensible example on the application of the DF formalism.

Derivation of the DF equations of motion

We start from a first order reduction of the wave equation (6.1) in Cartesian coor-

dinates Xµ = (T,X i), with π := −∂Tψ, φi := ∂iψ and the corresponding reduction

constraint Ci = ∂iψ − φi:

∂Tψ + π = 0

∂Tπ + ∂iφi = 0

∂Tφi + ∂iπ − γ2Ci = 0. (6.2)

The γ2 term is a constraint damping term and has been included to relate this

wave equation testbed with the future application - the GHG equations (2.44) - as

closely as possible. For the next steps, the use of hyperboloidal coordinates and
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the compactification, the radial direction is treated in a special way. This is why

we have to transform (6.2) to adapted coordinates, which are exactly the local

patch coordinates ui introduced in Sec. 3.1. Just for this chapter and for the sake

of consistency with [Bug2], we rename the index of these coordinates from i to i′

and reserve the index i for hyperboloidal coordinates. In local patch coordinates

Xµ′ =
(
T,R, θA

′), we find

∂Tψ + π = 0

∂Tπ + ∂i
′
φi′ + φi′∂

jJ i
′
j = 0

∂Tφi′ + ∂i′π − γ2Ci′ = 0. (6.3)

or in matrix form

∂T

 ψ

π

φi′


︸ ︷︷ ︸

u

=

 0 0 0

0 0 −γj′k′

γ2δ
j′

i′ −δ
j′

i′ 0


︸ ︷︷ ︸

Aj′

∂j′

 ψ

π

φk′

+

 −π
−Sπ

−γ2φi′


︸ ︷︷ ︸

S

, (6.4)

where we introduced the abbreviation

Sπ := φi′∂
jJ i

′
j =

2

R2

(
φRR +

[
1 + (θ1′)2 + (θ2′)2

] [
θ1′φθ1′ + θ2′φθ2′

])
. (6.5)

This form now complies with the desired form of the “uppercase” PDE (2.53) when

we set A = 1, Bi′ = 0. Therefore, (2.46) directly implies W = α. The specific choice

of coordinates for the outer shells given by eqs. (3.8,9) leads to a block structure of

the flat metric:

γj
′k′ =

(
1 0

0 qθ
A′θB

′

)
, qθ

A′θB
′

:=
1 + (θ1′)2 + (θ2′)2

R2

(
1 + (θ1′)2 θ1′θ2′

θ1′θ2′ 1 + (θ2′)2

)
.

(6.6)

Once we give a concrete coordinate transformation, we can easily apply the DF recipe

as derived in Sec. 2.4. As suggested, we want to use hyperboloidal coordinates

xµ =
(
t, r, θA

)
as the lowercase coordinate system on the outer shells. The coordinate

transformation is of the form:

T (t, r) = t+H(R(r)), R(t, r) = R(r) = Ri +
r −Ri

Ω(r)
, θA

′
= δA

′

A θ
A, (6.7)

where H is called the height function and Ω is called the compress function. Ri is the

radius, at which outer shells and transition shells share a boundary. The compress

function allows for a compactification, i.e. to “squeeze” the infinite spatial domain
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Figure 6.1: The DF approach as adapted to the bamps grid layout: In the inner region
r = R < Ri (blue), the evolution equations are given in global Cartesian coordinates,
treated as described in Sec. 3.1. In the outer shells (red), the novel DF scheme is employed.
Hyperboloidal coordinates and a spatial compactification are used. The gray circles are
circles of uniformly increasing Cartesian radius. The coordinate radius r = S is mapped to
R = ∞. The blue (red) arrows denote the type a (b) inner-to-outer (shell-to-shell) patch
communications, that require a non-trivial transformation step for the tensor variables (see
text).

into a finite coordinate interval. We choose

Ω(r) = 1−
(
r −Ri

S −Ri

)n
(6.8)

with the compactification exponent n = 2. Eq. (6.8) fulfills R(Ri) = Ri and maps

r = S to R =∞ (gray circles in Fig. 6.1). Interestingly, the explicit form of the height

function itself is not needed for this application. However, its derivative enters the

numerical scheme. Demanding unit outgoing radial coordinate lightspeed, one finds

the condition H ′ = 1−R′−1 for H ′. The Jacobians for the transformation are given

by

Jµ
′
µ =

1 H ′R′ 0

0 R′ 0

0 0 12

 , Jµµ′ =

1 −H ′ 0

0 1
R′

0

0 0 12

 . (6.9)
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Equating this to (2.52), we immediately read off the lowercase boost vector,

vr = −H
′R′

W
, vθA = 0, (6.10)

and from that the lowercase shift,

βr = −W 2H
′

R′
, βθ

A

= 0. (6.11)

Then using the T -t-component of the Jacobian, we get 1 = W
A

(α− βivi) and together

with the expressions for shift and boost vector this yields

W 2 =
1

1−H ′2
. (6.12)

In the same way, we find the uppercase boost vector,

VR =
α

W
H ′ = H ′, VθA′ = 0, (6.13)

and the vanishing combination

W

(
vi − βi

α

)
= 0. (6.14)

The spatial part of the Jacobian is simply Φi
j′ = diag(R′−1, 1, 1). Now everything is

in place to write down the DF transformed PDEs (2.56). We calculate the matrix(
1 + Aj′Vj′

)
and its inverse:

(
1 + Aj′Vj′

)−1

=


1 0 0 0

0 1 −H ′ 0

γ2H
′ −H ′ 1 0

0 0 0 12


−1

=


1 0 0 0

− γ2H′2

1−H′2
1

1−H′2
H

1−H′2 0

− γ2H′

1−H′2
H′

1−H′2
1

1−H′2 0

0 0 0 12

 .

(6.15)

Eq. (2.56) simplifies to

∂tu =
(

1 + Aj′Vj′
)−1 (

ARR′−1∂ru + AθA
′

δθ
A

θA
′∂θAu + S

)

= −
(

1 + Aj′Vj′
)−1


π

R′−1∂rφR + qθ
A′θB

′
δAA′∂θAφθB′ + Sπ

R′−1∂rπ + γ2 (φR −R′−1∂rψ)

δAA′∂θAπ + γ2

(
φθA′ − δAA′∂θAψ

)

 . (6.16)

Performing the matrix multiplication gives the final DF evolution system for the outer

shells as implemented in the bamps code. Note that the derivatives are taken with re-
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spect to the lowercase (hyperboloidal) coordinates, while the tensor components (e.g.

φi′) are still with respect to the uppercase coordinate basis. We already emphasized

this feature in the introductory section 2.4. The full outer shell evolution system is:

∂tψ =− π

∂tπ =− 1

1−H ′2
(
R′−1∂rφR + qθ

A′θB
′

δθ
A

θA
′∂θAφθB′ + Sπ

)
− H ′

1−H ′2
(
R′−1∂rπ − γ2

(
R′−1∂rψ − φR +H ′π

))
∂tφR =− H ′

1−H ′2
(
R′−1∂rφR + qθ

A′θB
′

δθ
A

θA
′∂θAφθB′ + Sπ

)
− 1

1−H ′2
(
R′−1∂rπ − γ2

(
R′−1∂rψ − φR +H ′π

))
∂tφθA′ =− δθA

θA
′∂θAπ + γ2

(
δθ

A

θA
′∂θAψ − φθA′

)
. (6.17)

Of course, the same system can be derived by straightforwardly using the full Jacobian

Jµµ′. Nevertheless, the DF approach is adapted to the 3+1 picture and gives a

geometrical interpretation of this transformation. Moreover, it allows to the evolution

of the Jacobian, i.e. to change the properties of the coordinate system dynamically

during the evolution. In [Bug2] the dynamic lightspeed control for the DF GHG

system is derived as a possible future application of this mechanism.

Implementation

To evolve (6.17) forward in time, the spatial derivatives are again calculated

using the pseudospectral method (see Sec. 3.1). However, now these derivatives

(with respect to the local patch coordinates) can be directly used without a Jacobian

multiplication. This is different to what is the usual approach in bamps and what is

still done in the inner part of the domain, where a global Cartesian coordinate basis

is employed. This seems like an advantage, but comes with an additional difficulty:

Since in (6.17) tensor components are given in a patch type dependent local basis,

these valences have to be transformed for the patch-to-patch communication. In

particular since the outer shells are different mappings of the master patch, the

“angular” coordinates have different meanings on patches with different orientation.

We denote this shell-to-shell communication as type b in Fig. 6.1. The same issue

occurs for the communication between the inner part of the domain and the outer

shells. Here the Cartesian components of tensors have to be converted to the local

patch components and vice versa. We denote this inner-to-outer communication as

type a in Fig. 6.1. Of course, both these transformations are straight forward and

rather simple for this example. We just want to list it as one additional feature that

had to be added to the code infrastructure. For type a, the covector components
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Table 6.1: Listing of matrices for the transformation step during patch-to-patch communi-
cation in the DF scheme. In the top part of the table, the matrices M for the shell-to-shell
(type b) communication (6.19) are listed, depending on target and source patch orientation.
The local “angular” coordinates θ1, θ2 are those of the target patch. In the bottom row of
the table, the permutation matrices for the inner-to-outer (type a) communication are given
according to (3.11).

Source
Target

O+
x O−

x O+
y O−

y O+
z O−

z

O+
x - -

(
0 +1
−1 −θ1

) (
0 −1

+1 θ1

) (
−θ2 −1
+1 0

) (
θ2 −1
+1 0

)
O−
x - -

(
0 +1
−1 θ1

) (
0 −1

+1 −θ1
) (

−θ2 +1
−1 0

) (
θ2 +1
−1 0

)
O+
y

(
−θ2 −1
+1 0

) (
θ2 −1
+1 0

)
- -

(
0 +1
−1 −θ1

) (
0 −1

+1 θ1

)
O−
y

(
−θ2 +1
−1 0

) (
θ2 +1
−1 0

)
- -

(
0 +1
−1 θ1

) (
0 −1

+1 −θ1
)

O+
z

(
0 +1
−1 −θ1

) (
0 −1

+1 θ1

) (
−θ2 −1
+1 0

) (
θ2 −1
+1 0

)
- -

O−
z

(
0 +1
−1 θ1

) (
0 −1

+1 −θ1
) (

−θ2 +1
−1 0

) (
θ2 +1
−1 0

)
- -

P i
j

1 0 0
0 1 0
0 0 1

 −1 0 0
0 −1 0
0 0 1

 0 0 1
1 0 0
0 1 0

  0 0 1
−1 0 0
0 −1 0

 0 1 0
0 0 1
1 0 0

  0 −1 0
0 0 1
−1 0 0



transform as φi = P j
iJ
k
jφk and φi = J j iP

k
jφk subject to the master patch Jacobian

for transformation eqs. (3.8,9)

Jji =
(
1 + (θ1)2 + (θ2)2

)−3/2


(
1 + (θ1)2 + (θ2)2

)2 −rθ1 −rθ2

θ1
(
1 + (θ1)2 + (θ2)2

)2
r
(
1 + (θ2)2

)
−rθ1θ2

θ2
(
1 + (θ1)2 + (θ2)2

)2 −rθ1θ2 r
(
1 + (θ2)2

)
 ,

Jji =
(
1 + (θ1)2 + (θ2)2

)−1/2
r−1

 r rθ1 rθ2

−
(
1 + (θ1)2 + (θ2)2

)
θ1 1 + (θ1)2 + (θ2)2 0

−
(
1 + (θ1)2 + (θ2)2

)
θ2 0 1 + (θ1)2 + (θ2)2

 ,

(6.18)

and a permutation of coordinates (3.11). The permutation matrices depend on the

shell orientation and are listed in Tab. 6.1. In type b, the shell-to-shell communication,

the local patch components from the source shell patch have to be transformed to

local patch components of the target shell patch with a different orientation. The first

local patch coordinate r has the same meaning on all shell patches, independent from

the orientation. Therefore, its transformation is trivial and the mapping is given by:

φtarget
i =

(
1 0

0 M

)
φsource
j . (6.19)

However, the mapping M of the “angular” components is non-trivial and depends on

both source and target shell orientation. We list these matrices in Tab. 6.1 as well.
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Although the equations of motion (6.17) have regular coefficients on the right hand

side, they are formed from divergent quantities as r → S. Therefore care is needed in

the implementation if we are to maintain accuracy and avoid “NaNs”. Fortunately

the complete equations can be built from the following regular combinations as

implemented in bamps:

1

R
=

(r − S)(r − 2Ri + S)

r2Ri +R3
i − r(3R2

i − 2RiS + S2)

r→S→ 0,

1

R′
=

(r − S)2(r − 2Ri + S)2

(Ri − S)2(r2 − 2rRi + 2R2
i − 2RiS + S2)

r→S→ 0,

R′

R2
=

(Ri − S)2(r2 − 2rRi + 2R2
i − 2RiS + S2)

(r2Ri +R3
i − r(3R2

i − 2RiS + S2))2

r→S→ 2

(S −Ri)2
. (6.20)

Since the height function is related to R′, we also find

R′−1

1−H ′2
= − R′

2R′ − 1

r→S→ −1

2
,

H ′R′−1

1−H ′2
=

R′ − 1

2R′ − 1

r→S→ 1

2
. (6.21)

By choosing the constraint damping to falloff as γ2 ∼ R−1, all expressions in (6.17)

have a regular limit, except for the terms containing Sπ. Looking at (6.5), the

dominating φR coefficient is proportional to R′/R, which diverges as r → S. Luckily,

we can express the field φR in terms of ingoing and outgoing characteristic φR =
1
2
(u+ − u−) and make use of the characteristic fields falloff u+ ∼ R−1, u− ∼ R−2,

which exactly compensates the divergent coefficient. We apply L‘Hôspital’s rule to

find

− 2

R(1−H ′2)
φR =

R′2

R(1− 2R′)
(u+ − u−)

r→S→ ∂r(u
+)

2
=

1

2
∂r(π + φR)

− 2H ′

R(1−H ′2)
φR =

R′(R′ − 1)

R(2R′ − 1)
(u+ − u−)

r→S→ ∂r(u
+)

2
=

1

2
∂r(π + φR). (6.22)

This is implemented in the obvious way by adjusting the sources at, and only at

null-infinity r = S.

Numerical test

With regard to the future application - the extraction of gravitational waves at

future null-infinity - we test our DF implementation with a pure (2, 2) mode wave

excitation. The initial data is given by

ψ(r, θ, ϕ) =

√
15

32π
exp

[
−
(
r − r0

σ

)2
]

sin2 θ cos 2ϕ√
1 + R(r)2

, (6.23)
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Figure 6.2: Wave equation evolution with a dual foliation. Top: Convergence of the norm of
the constraints Ci′ as resolution is increased in our wave equation experiments. Bottom: The
basic dynamics of ψ in the plane y = 0, starting with initial data (6.23). We see that initially
there is a pulse traveling outwards which is absorbed at null-infinity, the outer boundary
of the plot. After traveling inwards the second pulse also propagates off of the grid. This
evolution was performed in full 3D with 193 points per patch. The patches each consist of
one grid. Their boundaries are marked by the thick black lines

where θ and φ are standard spherical coordinates and should not be confused with

the shell coordinates θ1, θ2. Furthermore, the radii r and R(r) in (6.23) denote the

distance to another origin, than the grid origin. For the present full 3D tests, we

shifted this origin for the initial data to x = 1.0, y = 0.3, z = 0.5. We further chose

r0 = 3, σ = 0.6, the constraint damping parameter γ2 = 1 and the grid measures

Ri = 4.5, S = 7.5. We want to emphasize that since the outer boundary r = S

represents future null-infinity, no outer boundary conditions are required. The tests

were performed on a desktop machine with 32 GB of memory and 8 4.00GHz Intel i7

cores. We run the code in parallel with 4 MPI instances. With our standard setup, a 3D

run with polynomial degree N = 20 per dimension computes at roughly 27 time units

per hour. The dynamics of a typical evolution with initial data (6.23) are presented in

Fig. 6.2. The wave propagates out and leaves the domain through null-infinity almost

without reflection. We find that the expected fall-off of the field at the outer boundary
is violated as differs slightly from zero. This effect however converges exponentially

with resolution. The outgoing wave does leave behind a small amount of noise which

we see as Ci′ constraint violation. Also this violation converges exponentially with

resolution as demonstrated in Fig. 6.2. Since our asymptotics requires a constraint

damping parameter γ2 falloff as R increases, a concern may be that the constraint



93

damping scheme is ineffective in these evolutions. However, from our tests we still

find effective constraint damping.

In extended numerical tests, we also investigated the influence of spectral fil-

ters, regularization, source terms and other than n = 2 compactification exponents.

In [Bug2], all these additional influencing factors of the scheme are discussed in

full detail. However, a crucial remark on filtering should be given within this thesis:

Using the filter in all directions, which is expected to be necessary for nonlinear

problems, we find that the method is unstable. We suspected and confirmed, that this

is caused by the fact that the radial filter does not respect the expected falloff of the

fields. Therefore, a more carefully constructed radial filter should be used in future

applications.
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Chapter 7

Conclusion

Summary

In this thesis, a new numerical method for the simulation of neutron stars in

full general relativity was implemented and tested. It is based on a pseudospectral

penalty method for evolving the spacetime variables, as presented in [Weyhausen,

2014; Hilditch et al., 2016], and a DG scheme in combination with HRSC techniques

for the matter evolution. We thus extended the existing bamps code to make it

applicable for GRHD simulations.

At the first stage of implementation we reproduced standard results, e.g. for advec-

tion and burgers equation and the equations of SRHD. In these tests we confirmed a

clean convergence order N+1 for DG schemes with maximal polynomial order N and

smooth solutions. During a collaboration with the authors of [Kidder et al., 2016],

we found that the analytic mass matrix in a DG method leads to smaller numerical

errors than those from a mass lumped (diagonal) matrix. For low order DG schemes,

this can result in ∼ 20 times smaller errors. We further confirmed that numerically

satisfying the metric identities is crucial for the mass conservation property of a DG

scheme, as stated in [Teukolsky, 2015a].

We implemented two different strategies to capture shocks in matter simulations:

WENO limiting in the context of DG methods [Qiu and Shu, 2005; Zhao and Tang,

2013] and the SV evolution [Radice and Rezzolla, 2011]. We found that both

approaches allow the treatment of special relativistic shock problems. In the case of

WENO limiting, the well-definedness of ideal reconstruction weights is non-trivial.

We gave a proof that in a WENO-(2w + 1) method these weights are well-defined

almost everywhere in the DG element, except for at most w + 1 points.

In our static spacetime single neutron star tests, we found that a stable, convergent

simulation of these systems is not feasible with a pure DG scheme. The stellar surface

and the artificial atmosphere in neutron star simulations are responsible for instabili-

ties when a pure DG method is employed. Combining it instead with the WENO or SV

95
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method allows for stable simulations with convergence order ∼ 2 [Bug1]. In our tests,

the SV method lead to smaller (similar) errors as compared to the corresponding

WENO-3 (WENO-5) runs. On the other hand, the SV method comes at significantly

higher computational cost. Furthermore, we observed instabilities in the hybrid

DG/SV approach due to the neglect of conservation at DG/SV interfaces [Kopriva,

1996].

Apart from the one-dimensional non-rotating neutron star runs in Cowling ap-

proximation, we extended our code and performed tests in higher dimensions (3D

TOV star), for rotating stars (RNS) and for truly dynamical systems in full GR (mi-

gration test, head-on collision). Throughout these tests we confirmed second order

convergence for baryonic mass conservation, Hamilton and momentum constraint

and the GHG constraints. We exploit geometric symmetries in our simulations by

employing the cartoon method. Therefore, code running times for the setups in this

thesis are usually not longer than a few hours.

We showed that binary systems of neutron stars can be evolved with the bamps

code. We used the pseudospectral penalty method for the spacetime evolution

and the SV method to evolve the matter variables. For these runs, the scaling

of our implementation on a High-Performance-Computing cluster is close to ideal

scaling. Furthermore we extracted the corresponding gravitational wave signal for

the coalescence.

In order to improve the gravitational wave extraction in future NR codes, we

accomplished the first implementation of the DF formalism [Hilditch, 2015]. It

enabled us to evolve the flat spacetime wave equation on a numerical grid, which

extends to future null infinity. Testing our implementation, we were able to obtain

stable and converging simulations of the wave equation on compactified hyperboloidal

shells [Bug2]. Those can be seen as both, a proof of principle of the DF approach and

a prototype application, aiming for the DF implementation of the GHG equations.

Future prospects

Besides the advances presented in [Zumbusch, 2009; Radice and Rezzolla, 2011;

Teukolsky, 2015a; Kidder et al., 2016], this thesis can be seen as another step

towards a DG framework in NR. However, still more work has to be done to compete

with established and optimized finite volume/difference codes. Obviously in our

implementation a stabilization of the DG/SV method is desirable as the next short-

term goal. This can be realized by implementing the mortar method as in [Choi,

2015]. Furthermore, the multidimensional reconstruction in the SV method should

be improved as discussed in Sec. 3.3.2. As a last step, the implementation of a

more elaborate troubled cell indicator for the SV method would then enable a hybrid

DG/SV evolution of binary neutron stars.
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As we found the DG-WENO methods to be fast and reliable in our shock capturing

tests, a generalization to curvilinear grids is another possible mid-term goal. This is

an inevitable step towards the BNS simulation with DG-WENO methods, as it requires

a two-dimensional grid with spherical surface. This generalization is ambitious, as

the effects of the multidimensional WENO reconstruction on the code efficiency are

unclear.

Although shock capturing methods were necessary in our implementation and

a pure DG method was not sufficient for convergent neutron star simulations, we

suppose that this is not generally true. A numerical grid adapted to the neutron star

surface might enable pure DG neutron star simulations in the future. However, this

would involve the proper analytical treatment of the matter/vacuum phase transition

at the star surface. A first step towards a better understanding of the characteristic

behavior of the GRHD equations in the vacuum limit can be done by means of the DF

formalism [Bug3].

The DF formalism itself is still in the early stages of development, but could

become a main utility in future NR. An obvious application is the GHG evolution on

compactified hyperboloidal shells and the extraction of gravitational waves at future

null infinity. Of course, a full DF GHG implementation is only feasible with a lot of

effort. One of the first steps in that direction would be the implementation of a radial

filter that respects the expected falloff of the solution.
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Appendix

A Recovery of the primitive variables

What we describe in this appendix is adopted from [Martí and Müller, 1996;

Thierfelder et al., 2011]. The conserved variables (D, pi, τ) for the matter evolution

can be expressed by the primitive variables (ρ, ε, p, vi) through the following mapping:

W (vi) =
(
1− vivi

)− 1
2 (A.1)

D = ρW (A.2)

pi = ρhW 2vi (A.3)

τ =
(
ρhW 2 − p− ρW

)
(A.4)

Because of the typical non-linearity introduced by the relativistic Lorentz factor W ,

we can not find an analytical inversion of this mapping. Instead, we recover the

primitive variables using the following relations:

pip
i =

(
ρhW 2

)2
v2 = (τ +D + p)2 v2 =: A(p)2v2 (A.5)

W (p)2 =
1

1− v2
=

A2

A2 − pipi
,

dW

dp
= − pip

i√
A2 − pipi

3 (A.6)

ρ(p) =
D

W
,

dρ

dp
=

Dpip
i√

A2 − pipiA2
(A.7)

ε(p) = h− 1− p

ρ
=

A

ρW 2
− 1− p

ρ
=

1

D

(
A

W
−D − pW

)
(A.8)

dε

dp
=

1

D

p pip
i√

A2 − pipi
3 . (A.9)

Since we managed to express ρ and ε as functions of p and the conserved variables,

we can apply a root finding procedure on

f(p) = pEOS (ρ(p), ε(p))− p (A.10)
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to find p. We employ a Newton-Raphson algorithm

p(i+1) = p(i) − f(p)

f ′(p)
(A.11)

f ′(p) =
dpEOS

dρ

dρ

dp
+
dpEOS

dε

dε

dp
− 1, (A.12)

and use as p(0) either the pressure value of the previous timestep, or a value so that

A2 − pipi is positive. From what we derived above, we can immediately find ρ and ε

from p and furthermore

vi =
pi

A
. (A.13)

If ρ is smaller than some freely specifiable threshold 100ρatm at some point in the

primitive recovery, we set ρ = ρatm to avoid unphysical values in the density. Of

course, the implementation of this artificial atmosphere is unphysical by itself and

leads to additional numerical errors. Therefore, ρatm should be chosen as small as

possible.

B Derivation of the GHG representation of the Ricci

tensor

The most complicated part in verifying (2.39) is the bookkeeping of all contrac-

tions of gµν and its first derivatives. Thus, we introduce the following abbreviations:

A1
µν = gαβgδεgµα,δgνβ,ε, A2

µν = gαβgδεgµα,δgνε,β, (B.14)

Bµν = gαβgδεgµα,δgβε,ν , (B.15)

C1
µν = gαβgδεgµα,νgβδ,ε, C2

µν = gαβgδεgµα,νgδε,β, (B.16)

Dµν = gαβgδεgαδ,µgβε,ν , (B.17)

E1
µν = gαβgδεgµν,αgβδ,ε, E2

µν = gαβgδεgµν,αgδε,β. (B.18)

We also use

∂α
(
gµβgβν

)
= 0 ⇒ gµν,α = −gµβgνδgβδ,α. (B.19)
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For the left hand side of (2.39) (the Ricci tensor) we evaluate the terms:

∂αΓαµν =
1

2
gαβ (gνβ,µα + gµβ,να − gµν,αβ) +

1

2
gαβ,α (gνβ,µ + gµβ,ν − gµν,β)

(B.19)
=

1

2
gαβ

(
2gα(µ,ν)β − gµν,αβ

)
− 1

2

(
2C1

(µν) − E1
µν

)
(B.20)

∂µΓααν =
1

2
gαβgαβ,µν +

1

2
gαβ,µ gαβ,ν

(B.19)
=

1

2
gαβgαβ,µν −

1

2
Dµν (B.21)

ΓαµνΓ
β
βα =

1

4
gαβgδε

(
2gβ(µ,ν) − gµν,β

)
gδε,α =

1

4

(
2C2

(µν) − E2
µν

)
(B.22)

ΓβµαΓανβ =
1

4
gβδgαε (gαδ,µ + gµδ,α − gµα,δ) (gβε,ν + gνε,β − gνβ,ε)

=
1

4

(
Dµν − 2A1

µν + 2A2
µν

)
. (B.23)

We express the terms of the right hand side of (2.39) as:

∇(µΓν) =∂(µg
αβΓν)αβ − Γδ(µν)g

αβΓδαβ

=
1

2
gαβ

(
2gα(µ,ν)β − gαβ,µν

)
+

1

2
gαβ(µ|

(
2g|ν)α,β − gαβ,|ν)

)
− Γδµνg

αβΓδαβ

(B.19)
=

1

2
gαβ

(
2gα(µ,ν)β − gαβ,µν

)
− 1

2
gαδgβε

(
2gδε,(µgν)β,α − gδε,(µ|gαβ,|ν)

)
−

1

4
gαβgδε (gµδ,ν + gνδ,µ − gµν,δ) (gαε,β + gβε,α − gαβ,ε)

=
1

2
gαβ

(
2gα(µ,ν)β − gαβ,µν

)
− 1

2

(
2B(µν) −Dµν

)
−

1

4

(
4C1

(µν) − 2C2
(µν) − 2E1

(µν) + E2
µν

)
(B.24)

gαβgδεΓµαδΓνβε =
1

4
gαβgδε (gµα,δ + gµδ,α − gαδ,µ) (gνβ,ε + gνε,β − gβε,ν)

=
1

4

(
2A1

µν + 2A2
µν − 4B(µν) +Dµν

)
. (B.25)

Finally, we verify the relation for the Ricci tensor

Rµν =∂αΓαµν − ∂µΓααν + ΓαµνΓββα − ΓβµαΓανβ

=
1

2
gαβ

(
2gα(µ,ν)β − gµν,αβ − gαβ,µν

)
−

1

4

(
4C1

(µν) − 2E1
µν −Dµν − 2C2

(µν) + E2
µν − 2A1

µν + 2A2
µν

)
=− 1

2
gαβgµν,αβ +

(
∇(µΓν) +

1

2

(
2B(µν) −Dµν

)
+

1

4

(
4C1

(µν) − 2C2
(µν) − 2E1

(µν) + E2
µν

))
− 1

4

(
4C1

(µν) − 2E1
µν −Dµν − 2C2

(µν) + E2
µν − 2A1

µν + 2A2
µν

)
=− 1

2
gαβgµν,αβ +∇(µΓν) −

1

4

(
2A1

µν + 2A2
µν − 4B(µν) +Dµν

)
+A1

µν

=− 1

2
gαβgµν,αβ +∇(µΓν) + gαβgδε (gµα,δgνβ,ε − ΓµαδΓνβε) . (2.39)
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C Derivation of the explicit Gauss-Legendre-Lobatto

mass matrix
We denote the Legendre polynomials as Pi and their analytical and numerical

inner product with respect to Gauss-Legendre-Lobatto nodes and weights as

ˆ 1

−1

PiPjdx =
2

2i+ 1
δij := hiδij,

N+1∑
k=1

Pi(xk)Pj(xk)ωk =:< Pi, Pj >=: γiδij.

(C.26)

Because numerical integration is exact up to order 2N − 1, hi = γi for i < N , whereas

γN = 2
N
6= hN . Next, we decompose the Lagrange polynomials `i along the Legendre

polynomial basis `i = akiPk and get for the unknown coefficients:

Pj(xi)ωi =< `i, Pj >= akjγj ⇒ aji =
ωi
γj
Pj(xi) (C.27)

⇒ `i(x) = ωi

N∑
k=0

Pk(xi)Pk(x)

γk
. (C.28)

We calculate the mass matrix Mij as

Mij =

ˆ 1

−1

`i`jdx = ωiωj

N∑
k,l=0

Pk(xi)Pl(xj)hkδkl
γkγl

(C.29)

= ωiωj

N∑
k=0

Pk(xi)Pk(xj)

γk
+ ωiωj

(
hN
γ2
N

− 1

γN

)
PN(xi)PN(xj) (C.30)

= ωj`i(xj) + ωiωj

(
hN
γ2
N

− 1

γN

)
︸ ︷︷ ︸

=:α

PN(xi)PN(xj) (C.31)

= ωjδij + αωiPN(xi)ωjPN(xj) (C.32)

It is straightforward to verify, that for a matrix of the form M = A + u ⊗ vT , the

corresponding inverse is given by

(
M−1

)
= A−1 − (A−1u)⊗ (A−1v)

T

1 + vTAu
. (C.33)

For the mass matrix, A is diagonal and therefore trivial to invert. For the final result,

as used in the code we gain:

(
M−1

)ij
=
δij
ωj
− αPN(xi)PN(xj)

1 + αγN
=
δij
ωj

+
N + 1

2
PN(xi)PN(xj). (3.58)
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Zusammenfassung

Diese Arbeit dokumentiert die Implementierung und Überprüfung einer neuen nu-

merischen Methodik zur allgemeinrelativistischen Simulation von Neutronensternen.

Hierbei wurden die GHG-Gleichungen mit Hilfe einer pseudospektralen Penalty-

Methode diskretisiert, um die Metrik-Variablen zu evolvieren. Zur Behandlung der

hydrodynamischen Variablen wurde sowohl eine diskontinuierliche Galerkin-Methode,

als auch ein Finite-Volumen-Verfahren auf krummlinigen Gittern implementiert.

Zusätzlich wurden dem Code Techniken zur Schockerkennung und -behandlung

hinzugefügt.

Diese Bestandteile wurden in umfangreichen Tests validiert. Hierbei wurden

numerische Fehler in der Massenerhaltung, in der Einhaltung von physikalischen

Zwangsbedingungen und im Vergleich mit analytischen Lösungen betrachtet. Die

zugehörigen Konvergenzordnungen aller Methoden wurden untersucht. Dabei wurde

eine Konvergenzordnung ∼ 2 bei aktiver Schockbehandlung und mögliche Konver-

genzordnungen > 2 für die reine diskontinuierliche Galerkin-Methode festgestellt.

Weiterhin wurde bestätigt, dass die numerische Einhaltung der metrischen Identitäten

essentiell für die Massenerhaltung in Fluiddynamik-Simulationen ist.

Mit Hilfe der reinen diskontinuierlichen Galerkin-Methode konnten physikalische

Systeme ohne Schocks, wie etwa die Michel-Bondi-Akkretion, erfolgreich simuliert

werden. Bei Neutronensternsimulationen hingegen wurden numerische Instabilitäten

an der Sternoberfläche und ein Verlust der Konvergenz beobachtet. Erst eine aktive

Schockbehandlung erlaubte die stabile und numerisch konvergente Simulation von

statischen, rotierenden oder oszillierenden Neutronensternen.

Dank der vorgestellten Modifikationen des bamps Codes ist dieser nun in der Lage,

die frontale Kollision zweier Neutronensterne zu simulieren. Neben der Extraktion

des zugehörigen Gravitationswellensignals wurde die Simulation genutzt, um das

nahezu ideale Skalierungsverhalten der Rechenzeit von bamps aufzuzeigen.

Abschließend wurde der neuartige Duale-Blätterung-Formalismus angewandt, um

die Wellengleichung auf einem numerischen Gitter zu lösen, welches die lichtartige

Zukunftsunendlichkeit beinhaltet. Wir zeigen erste erfolgreiche Tests dieses Ver-

fahrens, welches in Zukunft zur genaueren Extraktion von Gravitationswellen aus

numerischen Simulationen genutzt werden könnte.
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