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Deutsche Zusammenfassung

Die vorliegende Dissertationsschrift leistet einen Beitrag zum Verständnis von technologischem
Wandel und der Entstehung neuen Wissens. Neues Wissen und die Übertragung in neue Tech-
nologien oder die Verbesserung von bestehenden ist ein wesentlicher Treiber wirtschaftlicher
Entwicklung. Das bisherige Verständnis über technologischen Wandel und die Rolle, die Wis-
sensgenerierung und -austausch in diesem Prozess einnimmt, ist jedoch nicht hinreichend aus-
geprägt. Bei technologischem Wandel und der Entstehung neuem Wissens wirken dynamische
Prozesse und Mechanismen auf der Mikro-Ebene, die nicht-linear, akkumulativ und unter Unsi-
cherheit ablaufen. Dabei sind heterogene Akteure und ihre Interaktionen im Innovationsprozess
von zentraler Bedeutung. Akteure verfügen über unterschiedliches Wissen, welches sie in die
Generierung neuen Wissens einbringen und untereinander austauschen. Daraus entstehen neue
Erkenntnisse und Lösungsansätze die technologischen Wandel fördern und dadurch zu wirt-
schaftlichem Wachstum führen können.

Die bisherige Forschung hat die inhärenten Dynamiken der Wissensgenerierung und des
Wissensaustausches nicht hinreichend berücksichtig. Technologien entwickeln sich über die Zeit
weiter, wodurch sich die Bedarfe an Wissen, welches technologische Weiterentwicklung ermög-
licht, ändern. Das Aufzeigen und Verstehen dieser Wissensdynamiken im Innovationsprozess ist
der erste bedeutende Beitrag dieser Dissertationsschrift. Weiterhin befasst sich diese Disserta-
tionsschrift mit den Interaktionen der Akteure im Wissensgenerierungsprozess. Die Akteure im
Innovationsprozess formen Netzwerke des Wissensaustausches, welche zentral für innovative Ak-
tivitäten sind. Vorherige Forschung hat gezeigt, dass sich die Struktur dieser Netzwerke positiv
auf Innovationsaktivitäten auswirken kann. Einen weiteren bedeutenden Beitrag leistet diese
Dissertationsschrift mit der Analyse der Beziehungen von Netzwerken des Wissensaustausches
über verschiedene Aggregationsebenen und wie diese Ebenen einander beeinflussen. Weiterhin
sind diese Netzwerke dynamisch und verändern sich in Größe und Struktur. Wie diese Dyna-
miken induziert werden, insbesondere durch politische Intervention, ist noch nicht hinreichend
erforscht und hierzu möchte diese Dissertationsschrift ebenfalls einen Beitrag leisten. Ein tiefe-
res Verständnis der Prozesse und Mechanismen der Wissensgenerierung und des -austausches
ist notwendig, insbesondere für politische Entscheidungsträger, um bestehende Versagenstatbe-
stände zu beheben oder lenkend in den Innovationsprozess einzugreifen.

Zur exemplarischen Untersuchung der Prozesse und Mechanismen der Wissensgenerierung
und des Wissensaustausches werden zwei Technologien aus der Gruppe der erneuerbaren Energi-
en betrachtet: Photovoltaik (PV) und Windkraft. Beide sind durch multiple Markt- und System-
versagen erheblichen Nachteilen während ihrer technologischen Entwicklung ausgesetzt. Zudem
haben beide Technologien das Potential, Klimaveränderungen entgegenzuwirken, da sie elektri-
sche Energie ohne den Ausstoß klimapotenter Treibhausgase erzeugen können. Vor diesem Hin-
tergrund sind verschiedene Politikmaßnahmen implementiert worden, die sich grob in Demand
Pull (nachfragefördernd), Technology Push (technologiefördernd) und Systemisch (Förderung
der Rahmenbedingungen und der Kooperation), kategorisieren lassen. Diese Instrumente sind
Teil eines Politikmixes, in dem sie gemeinsam Innovations- und Kooperationsaktivität beein-
flussen. Für die einzelnen Instrumente gibt es mannigfaltige empirische Evidenz, dass sie die
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Generierung neuen Wissens unterstützen. Nicht hinreichend untersucht ist jedoch, wie diese In-
strumente einzeln und in Kombination auf den Wissensaustausch und die dafür notwendigen
Netzwerke und Netzwerkstrukturen wirken.

Zur Betrachtung der Wissensgenerierung und des Austausches werden Patent und Publikati-
onsdaten herangezogen. Insbesondere die Nutzung von Patentdaten ist mit erheblichen Proble-
men behaftet. Diese Dissertationsschrift nimmt sich ebenfalls dieser Probleme an und zeigt auf,
dass der Umgang mit Patentdaten erheblicher Sorgfalt bedarf. Forschende sollten die Eigen-
arten dieser Daten verstärkt berücksichtigen, um technologische Veränderungen entsprechend
analysieren und fundierte Politikempfehlungen ableiten zu können.

Kapitel zwei dieser Dissertationsschrift greift das Problem der technologischen Abgrenzung
von Patentdaten auf. Für PV wird in diesem Kapitel eine Abfrageroutine entwickelt, die den
Korpus der relevanten Patentdaten dieser Technologie umfasst und in technologische Teilbe-
reiche unterteilt. Diese Teilbereiche, sogenannte Sub-Trajektorien, erlauben eine genauere Be-
trachtung der Innovationsaktivitäten in dieser Technologie. Diese Sub-Trajektorien, in PV sind
das die verschiedenen Zelltechnologien, entstehen innerhalb der Trajektorie und stehen im tech-
nologischen Wettbewerb zueinander. Sie weisen verschiedene Charakteristika auf, die für eine
Verbesserung der Leistungsfähigkeit oder Kostenreduktion relevant sind. Eine Analyse der Tech-
nologie auf dieser Mikro-Ebene ermöglicht ein genaueres Verständnis des Innovationsprozesses
und der technologischen Weiterentwicklung.

Die Abfrageroutine besteht aus einer Kombination von Patentklassifikationen und techno-
logiespezifischen Schlüsselwörtern. Die Abfrage wird dabei mit zwei etablierten Routinen ver-
glichen, die häufig Anwendung finden, aber keine Unterteilung in Sub-Trajektorien erlauben.
Die vorgestellte Routine erzielt dabei strukturell gleichwertige Abfrageergebnisse, ist jedoch
restriktiver. Deskriptive Betrachtungen der Ergebnisse zeigen, dass die Sub-Trajektorien sich
unterschiedlich entwickeln und insbesondere die aktuell marktdominierende Zelltechnologie die
geringste patentierte Inventionsaktivität aufzeigt. Zudem zeigen sich geografische Unterschie-
de. So fokussieren sich beispielsweise asiatische Länder eher auf neuere Zelltechnologien. Diese
Unterschiede in den Innovationsaktivitäten in den Sub-Trajektorien werden im dritten Kapitel
vertiefend aufgegriffen.

Das dritte Kapitel befasst sich mit der Generierung von neuem Wissen und den dahin-
terstehenden Dynamiken. Ausgehend davon, dass neues Wissen durch die Rekombination von
bisherigem Wissen entsteht, wird in diesem Kapitel untersucht, wie sich der Einfluss der Wis-
sensrekombination auf die Weiterentwicklung einer Technologie über ihren Lebenszyklus hinweg
verändert. Bisherige Studien haben sich aus einer statischen Sicht mit der Wissensrekombinati-
on befasst und verschiedene Mechanismen und Regelmäßigkeiten identifiziert. Allerdings gibt es
erste Erkenntnisse, dass verschiedene Arten von Wissen für die Weiterentwicklung einer Tech-
nologie relevant sind. Diese bisherigen Erkenntnisse werden in diesem Kapitel mit dem Techno-
logielebenszyklusmodell von Anderson und Tushman (1990) verbunden. Dabei wird das Wissen,
welches in eine Technologie eingebracht wird, in verschiedene Arten unterteilt, von denen zu
erwarten ist, dass sie in unterschiedlichen Phasen besonders relevant sind.

Zur Analyse der Rekombination von Wissen wird auf Patentanmeldungen für PV und Wind-
kraft deutscher Erfinder zurückgegriffen. Erfinder dieser Patente sind die Akteure der Wissensre-
kombination und ihre Charakteristika, in dieser Analyse ihre vorherigen inventiven Aktivitäten,
repräsentieren unterschiedliche Arten von Wissen. Dabei werden Erfinder in vier Arten unter-
teilt, Erfinder ohne vorheriges Wissen, Erfinder, die sich auf eine Technologie spezialisiert haben,
Erfinder, die aus technologisch verwandten Bereichen kommen und Erfinder, die vorher in Tech-
nologien aktiv waren, die keinen technologischen Bezug zur betrachteten Technologie haben.
Davon ausgehend, dass verschiedene Arten von Erfindern unterschiedlich zur technologischen
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Weiterentwicklung beitragen, wird empirisch getestet, in welchen Phasen des Technologielebens-
zyklus welche Arten von Erfindern besonders relevant sind.

Es zeigt sich, dass verschiedene Arten von Erfindern und ihr Wissen eine wichtige Rolle ent-
lang des Technologielebenszyklusses spielen. Zwar gibt es Unterschiede zwischen den Technologi-
en, insgesamt bestätigt sich jedoch die Erweiterung des Anderson und Tushman (1990) Modells.
Dabei ist in der Entstehungsphase einer Technologie Wissen, welches von außen eingebracht
wird, besonders relevant. Im weiteren Verlauf der Technologieentwicklung hingegen, erscheint
Wissen von spezialisierten Erfindern, oder Erfinder, die zum ersten Mal innovativ tätig werden,
von besonderer Bedeutung zu sein. Diese Erkenntnisse tragen einerseits dazu bei, technologische
Entwicklungen besser zu verstehen, andererseits können sie von politischen Entscheidungsträ-
gern genutzt werden, um Fördermaßnahmen gezielt an den Entwicklungsstand einer Technologie
anzupassen, etwa durch Förderung heterogener Akteursgruppen bei jungen Technologien.

Die folgenden Kapitel befassen sich explizit mit den Fördermöglichkeiten dieser Technologi-
en. Im vierten Kapitel wird untersucht, wie die verschiedenen Arten von Instrumenten Invento-
rennetzwerke beeinflussen. Dazu werden dieselben Patentdaten wie in Kapitel drei verwendet,
allerdings wird aus Ko-Patentierungen der Erfinder das darunterliegende Erfindernetzwerk re-
konstruiert. In diesen Erfindernetzwerken findet Wissensaustausch zwischen verschiedenen Ak-
teuren statt, welcher förderlich für inventive und innovative Aktivitäten ist. Insbesondere die
Struktur dieser Beziehungen kann sich förderlich auswirken, wenn Wissen zwischen den Akteu-
ren diffundieren kann. Allerdings gibt es erhebliche Markt- und Systemversagen bei der Wei-
terentwicklung dieser Technologien und dem dafür notwendigen Wissensaustausch. Einerseits
die klassischen Marktversagenstatbestände der positiven Spillover aus der Innovationstätigkeit,
die nicht appropriierbar sind, und den negativen externen Effekten konkurrierender Technologi-
en, die nicht entsprechend eingepreist werden. Andererseits gibt es beim Wissensaustausch und
dem gemeinsamen Lernen Probleme der Komplementarität, der Reziprozität und der Interme-
diation. Diese Systemversagenstatbestände werden insbesondere durch Systemische Instrumente
adressiert, welche die Rahmenbedingungen und Anreize zum Wissensaustausch verbessern. Wie
allerdings diese Instrumente auf Netzwerke und Netzwerkstrukturen wirken, ist bisher nicht
näher betrachtet worden.

Mittels empirischer Verfahren wird die Wirkungsweise der verschiedenen Förderinstrumen-
te, Demand Pull, Technology Push und Systemische Instrumente, auf die Größe und Struktur
der Erfindernetzwerke untersucht. Es zeigt sich, dass hier ebenfalls technologische Unterschiede
bestehen. Bei Windkraft haben Technology Push und Systemische Instrumente einen Einfluss
auf die Größe des Netzwerkes, wohingegen für PV nur Technology Push Instrumente die Größe
beeinflussen. Nachfragefördernde Instrumente sind hingegen in beiden Technologien relevant für
die Größe des Erfindernetzwerkes. Gleiches gilt für die Struktur der Netzwerke. Weiterhin zeigen
Systemische Instrumente bei Windkraft ebenfalls einen Effekt auf die Netzwerkstruktur. Tech-
nology Push Instrumente haben hingegen in beiden Technologien keinen Effekt auf die Struktur
der Netzwerke. Diese Instrumente wirken jedoch nicht nur eigenständig, sondern sind Teil eines
Politikmixes, in dem diese Instrumente zusammenwirken. Das Zusammenwirken von Technology
Push und Demand Pull Instrumente hat einen positiven Einfluss auf die Größe der Netzwer-
ke. Systemische und Demand Pull Instrumente wirken zusammen positiv auf die Struktur der
Netzwerke. Dieses positive Zusammenwirken deutet auf die Konsistenz des Politikmixes hin.

Das fünfte Kapitel befasst sich ebenfalls mit der Wirkung von Politikmaßnahmen auf Netz-
werke. In diesem Kapitel verlagert sich der analytische Fokus von der Mikro- auf die Makroebene.
Dabei steht die Frage im Zentrum, wie ein Land seine Einbettung in ein internationales For-
schungsnetzwerk beeinflussen kann. Es wird davon ausgegangen, dass durch Ko-Publikationen
Wissensaustausch stattfindet und dieser auf der Makroebene aggregiert werden kann. Daraus
entsteht ein globales Netzwerk, in dem kooperierende Forscher Verbindungen zwischen verschie-
denen Ländern darstellen. Die Position eines Landes in diesem Netzwerk erlaubt es dem Land an
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globalen Wissensflüssen zu partizipieren und diese in eigene Forschungs- und Entwicklungsbe-
mühungen aufzunehmen. Es wird angenommen, dass ein Land aktiv in diesen Prozess eingreifen
und durch gezielte Politikintervention versuchen kann, die eigene Position zu verbessern. Weiter-
hin kann die in einem Land vorherrschende Forschungsstruktur, also die Kooperation zwischen
den im Land befindlichen Forschungseinrichtungen, ein Umfeld schaffen, welches internationale
Kooperationen begünstigt.

Zur Untersuchung der Faktoren die eine internationale Einbettung beeinflussen können, wer-
den Publikationsdaten für PV herangezogen. Aus diesen Daten wird das globale Kooperati-
onsnetzwerk der Forschenden rekonstruiert und die Einbettung der einzelnen Länder in dieses
bestimmt. Diese Einbettung wird durch zwei Gruppen von Einflussfaktoren erklärt. Einerseits
durch Politikmaßnahmen und andererseits durch die Struktur des nationalen Forschungssys-
tems. Mit der ersten Gruppe von Faktoren wird die zentrale Frage des vierten Kapitels, wie
Politikmaßnahmen, insbesondere Technology Push und Demand Pull Instrumente, Netzwerke
beeinflussen, wieder aufgegriffen. Mit der zweiten Gruppe von Einflussfaktoren wird untersucht,
wie die Ausgestaltung des nationalen Forschungssystems, welches nicht zufällig entsteht, sondern
etwa durch Systemische Instrumente gesteuert, eine bestimmte Struktur annimmt, die interna-
tionale Einbettung beeinflussen kann. Methodisch wird dabei untersucht, wie die verschiedenen
Aggregationsebenen, die Mesoebene und die Makroebene, miteinander in Beziehung stehen.
Untersuchungen wie verschiedene Aggregationsebenen sich gegenseitig beeinflussen, sind in der
ökonomischen Forschung erst am Anfang.

Die Ergebnisse zeigen, dass die Einbettung eines Landes in ein globales Wissensnetzwerk
durch Politikmaßnahmen beeinflusst werden kann. Insbesondere Demand Pull Instrumente för-
dern, wie schon im vorherigen Kapitel gezeigt, eine Steigerung der Kooperationsbeziehungen und
dadurch internationale Einbettung. Interessant ist hier, dass öffentliche Beschaffung, in dieser
Analyse die Anzahl von Satelliten die ein Land besitzt, einen erheblichen Einfluss hat. Andere
Instrumente, etwa Technology Push Instrumente, zeigen hingegen unbestimmte Effekte. Wei-
terhin hat die Struktur des nationalen Forschungssystems einen erheblichen Einfluss. So führt
ein zusammenhängendes nationales Forschungssystem zu einer höheren Einbettung. Hingegen
ist ein auf einen oder wenige Akteure zentralisiertes Forschungssystem unzuträglich für die in-
ternationale Einbettung. Diese Ergebnisse zeigen, dass der Aufbau und die Funktionalität des
Forschungssystems von Bedeutung für den Austausch von Wissen sind und verstärkt in den
Fokus der ökonomischen Forschung und der politischen Gestaltung rücken sollten.

Das letzte Kapitel dieser Dissertationsschrift greift wieder methodische Probleme bei der
Nutzung von Patentdaten auf. Bei der Nutzung von Patentdaten für ökonomische Analysen
bestehen erhebliche Freiheitsgrade bei der Auswahl und Abgrenzung der Patentdaten. Diese
Freiheitsgrade betreffen einerseits die Abfrage der Patentdaten aus entsprechenden Datenban-
ken, andererseits die Unterteilung von Patenten in verschiedene Wertigkeiten. Diverse Studien
haben gezeigt, dass nur ein sehr geringer Teil der angemeldeten Patente großen technologischen
bzw. ökonomischen Wert haben. Diese Qualitätsdimension der Patente eröffnet weitere Flexibi-
lität bei der Auswahl von Patentdaten. Dabei gibt es verschiedene Wege zur Berücksichtigung
der Patentqualität. In dieser Analyse wird die Patentqualität über den Anmeldeprozess der Pa-
tente bestimmt. Zur systematischen Untersuchung wie die Flexibilität bei der Patentauswahl
ökonomische Untersuchungen beeinflussen kann, werden die Studien von Johnstone u. a. (2010)
und Peters u. a. (2012) repliziert. Diese Studien wurden ausgewählt, da sie Maßgebend für die
Analyse von Politikeffekten bei erneuerbaren Energien im Allgemeinen und Solartechnologien
im Speziellen sind. Mit Hilfe der Replikationen mit verschiedenen Patentabgrenzungen wird
untersucht, inwieweit eine systematische oder unbeabsichtigte Ausnutzung der Flexibilität der
Patentabfrage Einfluss auf die Messung von Politikeffekten und daraus abgeleitete Politikemp-
fehlungen haben kann.
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In der Literatur konnten 51 verschiedene Patentabfragen für Solartechnologien identifiziert
werden. Diese lassen sich für sechs verschiedene Patentqualitätsdimensionen abfragen. Daraus
ergeben sich 306 verschiedenen Patentausprägungen, die alle die inventive Aktivität in Solar-
technologien messen sollen. Diese 306 verschiedenen Patentausprägungen werden in einem ersten
Schritt deskriptiv verglichen. Zur Analyse wie diese verschiedenen Patentausprägungen ökono-
mische Effekte beeinflussen, werden die beiden vorher genannten Studien herangezogen. Diese
Studien bestimmen, welchen Effekt verschiedene Politikmaßnahmen auf die Patentanzahl in ei-
nem Land haben. Beide Studien werden mit den 306 verschiedenen Patentausprägungen neu
geschätzt und die Koeffizienten der einzelnen Politikvariablen untersucht. Dafür wird das sog.
Extreme-Bounds Verfahren, welches aus der Wachstumsliteratur stammt, herangezogen, um zu
untersuchen, welche Bandbreite der Politikeffekte vorliegt und wie Robust diese Effekte sind.
Weiterhin erfolgt eine visuelle Analyse mittels sog. Vibrationsgrafiken, welche die Koeffizienten
gegen ihr Signifikanzniveau darstellen. Abschließend kommen Meta-Regressionsverfahren zum
Einsatz, um zu bestimmen, welche Parameter der Patentabfrage Einfluss auf die Größe der
Politikeffekte haben.

Die deskriptive Betrachtung zeigt erhebliche Unterschiede im Umfang und in der Überein-
stimmung der Patentabfragen. Unterschiede zwischen verschiedenen Anmeldeländern sind nur
zwischen den verschiedenen Patentqualitätsdimensionen gegeben. Die Extreme-Bounds Analysen
zeigen, dass die Flexibilität in den Patentabfragen zu erheblicher Unsicherheit bei den Effektgrö-
ßen führt. Für die meisten Politikmaßnahmen lassen sich positiv wie negativ signifikante Effekte
finden. Zudem besteht erhebliche Unterschiede zwischen den verschiedenen Patentqualitätsdi-
mensionen. Insbesondere erteilte Patente haben sehr starke und in einigen Fällen diametrale
Effekte im Vergleich zu anderen Patentqualitätsdimensionen. Die Unsicherheit über Größe und
Richtung der Effekte lässt sich durch eine Auswahl von Qualitativ höherwertigen Abfragen re-
duzieren. Insbesondere der Ausschluss von extremen Patentanzahlen führt zu einer deutlichen
Reduzierung der Bandbreite der Ergebnisse. Für diese restringierte Auswahl zeigen sich für die
Demand Pull und Technology Push Instrumente in beiden Studien robuste Ergebnisse hinsicht-
lich der Richtung der Effekte. Weiterhin zeigen die Meta-Regressionen, dass alle Eigenschaften
der Patentabfrage einen Einfluss haben, dieser aber nicht über alle Politikinstrumente und über
die beiden Studien hinweg einheitlich sind. Insgesamt kann festgehalten werden, dass die Flexi-
bilität bei der Auswahl von Patentdaten erheblichen Einfluss auf ökonometrische Analysen hat
und diese gezielt ausgenutzt werden könnten. Daher sollten Studien basierend auf Patentdaten
ein höheres Maß an Sorgfalt bei der Auswahl der Patentdaten walten lassen sowie umfassen-
de Sensitivitätsanalysen durchführen, die insbesondere verschiedene Patentqualitätsdimensionen
berücksichtigen.

Zusammenfassend liefert diese Dissertationsschrift tiefergehende Einblicke in die Dynamiken
und Mechanismen technologischer Entwicklung. Am Beispiel zwei erneuerbarer Energietechno-
logien wird aufgezeigt, wie sich die Wissensgenerierung über die Zeit verändert, wie Politikmaß-
nahmen auf Netzwerke des Wissensaustausches wirken und welche Probleme bei der Analyse
solcher Zusammenhänge mittels Patentdaten bestehen. Diese Ergebnisse tragen maßgeblich zur
ökonomischen Theoriebildung bei und lassen sich in konkrete politische Handlungsempfehlungen
überführen, insbesondere zur Weiterentwicklung umweltfreundlicher Technologien, zur Vermei-
dung des Klimawandels und für nachhaltiges Wachstum.
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Chapter 1

Introduction

1.1 Knowledge dynamics and technological change

Mankind is inseparably connected to innovation and change. Since the invention of prehistoric
stone tools humans proceed with inventive and innovative activities to increase their welfare.
Thereby humans intervene in the environment to exploit and utilize natural resources and their
exploitative activity increases over time. However, such interferences in the environment have
adverse consequences, which can be cataclysmic for mankind. The largest exploitation of the
environment started with the industrial revolution and the extensive use of fossil fuels. While
this brought about large economic prosperity, at the same time several side effects emerged,
especially pollutions and in result climate change. Climate change is most likely the biggest
threat to mankind in the 21st century (Stern, 2007; IPCC, 2014). Preventing it is a global and
interdisciplinary challenge, in which all scientific disciplines need to contribute (Kates et al.,
2001).

From an economic point of view, the problem of climate change is the global public good
nature of the atmosphere. The atmosphere belongs to everyone and polluting it is without
consequences, or in economic terms, pollutants are not forced to internalize their negative ex-
ternalities. This results in an excessive level of pollution, which needs to be reduced to mitigate
climate change. Standard economics proposes regulatory interventions to ensure allocative effi-
ciency of the market and argues that such an externality can be internalized and the problem
can be solved by a pricing mechanism (Pigou, 1920; Baumol and Oates, 1988). Others argue
that reducing consumption and the respective economic activity and abstaining from further
growth is necessary (Paech, 2005, 2012). A third approach is found in evolutionary economics,
which builds on mankind’s creative and scientific capabilities to induce environmentally friendly
innovations and transformative change (Nelson and Winter, 1982; Kemp and Soete, 1992; Erd-
mann, 1993; Freeman, 1994; van den Bergh, 2007; Cecere et al., 2014). Environmentally friendly
technologies can substitute environmentally harmful technologies and mitigate climate change.
Thereby these technologies provide the opportunity for green, sustainable growth, which is no
longer based on the exploitation of non-renewable resources (OECD, 2011; Jänicke, 2012).

I follow in this thesis the evolutionary thinking in economics and strive to understand how
environmentally friendly technologies develop in particular and aim to contribute to the long-
lasting research endeavors to understand the processes and mechanisms of technological change
in general. Inventive and innovative activities are dynamic and interactive processes of knowl-
edge creation and accumulation (Kline and Rosenberg, 1986) in which novelty is created by
recombining knowledge from a diverse set of actors (Kogut and Zander, 1992; Fleming, 2001;
Savino et al., 2017). However, scientists have been struggling to understand the innovation pro-
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cess and technical change and how it brings about economic change and growth. Some call these
processes the “measure of our ignorance” (Abramovitz, 1956, p. 11), a black box, or declare it
exogenous to economic analysis. Scholars in the field of evolutionary economics, going back to
the early works of Joseph Alois Schumpeter (Schumpeter, 1912), try to understand these pro-
cesses, open the black box and integrate technological change in economic theory (Rosenberg,
1982; Nelson and Winter, 1982; Dosi et al., 1988).

This thesis opens the black bock of technological change with a particular focus on renewable
energy technologies. Since the energy sector is the largest emitter of climate potent gases and
locked into the use of fossil fuels (Unruh, 2000, 2002; Stern, 2007), unlocking the energy sector
and decarbonizing it by a transition towards renewable energies is required to mitigate climate
change. Renewable energies do not only mitigate climate change, but also solve other problems,
such as resource scarcity (Höök and Tang, 2013; Capellán-Párez et al., 2014), provide access to
energy in developing countries which supports eradicating poverty (Casillas and Kammen, 2010;
Yadoo and Cruickshank, 2012), and are an essential means to achieve the sustainable develop-
ment goals (United Nations, 2015). Furthermore, their industrial base contributes to economic
growth and employment (Mazzucato, 2013; REN21, 2016). These favorable characteristics make
their technological development and economic application especially relevant and policy support
has been widely implemented to support development and diffusion of these technologies.

The two promising technologies, solar energy technologies, in particular photovoltaics (PV),
and wind power, are in the focus of my analysis. The energy of both, the sun and the wind,
have been utilized for centuries, but only in the 20th century technologies to create electric
energy out of these natural forces have been invented. Especially after the oil crises, both
technological principles caught the attention of policy makers, since they were considered as
possible substitutes for fossil fuels. However, their cost/performance ratio was very high, which
made the implementation of large-scale support schemes necessary to reduce it. Since then,
they show great dynamics in their technological development. Nowadays, the technologies are
cost competitive with conventional energy sources in most regions and account for the highest
share in newly installed electricity generation capacity (REN21, 2016). The decrease in their
cost/performance ratio goes along with an exponential increase in knowledge generation in the
last decades and increased knowledge exchange on different levels.

While their performance increases and knowledge dynamics are a global phenomenon, espe-
cially Germany is a forerunner in the development and adoption of both technologies. Figure 1.1
depicts key innovation indicators of policy support, knowledge generation, and adoption of PV
and wind power for Germany. Governmental support of R&D in these technologies started in
Germany in 1974, as a reaction to the first oil crisis (Lauber and Mez, 2004) and in 1991 Germany
was among the first countries which implemented a demand inducing feed-in tariff (Jacobsson
and Lauber, 2006). While there where large R&D spendings after the oil crises, inventive output
was low. But especially during the last 20 years, knowledge generation in terms of publications
and patents is highly dynamic and technological change is immanent. Furthermore, Germany
was among the leading markets for these technologies, especially for PV with a world market
share between 30 and 60 percent from 2001 to 2010 (IEA, 2010). These dynamics make these
two technologies particularly interesting to study knowledge generation and exchange as well as
how policy can intervene in the innovation process in Germany and across countries.

For this purpose, the first research objective of this thesis is to analyze the knowledge dy-
namics along technological trajectories, especially knowledge generation by recombination. The
innovation process includes heterogeneous actors and the interactions and knowledge exchanges
among them are of particular relevance for inventive and innovative activity. These interactions
constitute knowledge networks and characteristics of these networks are another important part
of knowledge dynamics, which this thesis sheds light on in its second research objective. Fur-
thermore, since the innovation process is error prone, faces high costs, and uncertainty, policy
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Figure 1.1: Key innovation indicators for wind power and photovoltaics for Germany.

Figure note: Data sources for R&D funding, patents and installed capacity see Chapter 4,
for photovoltaic publication data see Chapter 5 and publication data for wind power was
collected based on the suggestions by Popp (2016b).

intervention is justified and widely implemented. How policy can influence knowledge generation
and especially the underlying network of knowledge exchange is the third research objective of
this thesis. Even though this thesis will not be able to uncover all mechanisms and processes, it
may contribute to understanding knowledge dynamics and technological change in general which
can be integrated in economic theorizing, but also allows to support environmentally friendly
technologies further and accelerate their technological development to mitigate climate change
and foster green growth.

In the following, the three building blocks of knowledge dynamics and technological change
— trajectories, networks and policies – and the corresponding research objectives of this thesis
are discussed on more detail.

1.1.1 Trajectories

Technological change takes place along technological trajectories, which provide solutions for par-
ticular problems (Dosi, 1982). In a trajectory, knowledge and competences accumulate which
provide the means to solve a problem (Dosi and Nelson, 2010, 2013). The knowledge in a tra-
jectory builds the knowledge base of a technology along which the technology evolves. However,
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the knowledge base itself shows certain dynamics and evolves over time (Malerba and Orsenigo,
1996, 2000). This forms a dynamic process in which new knowledge is added to the knowledge
base of a trajectory which can help to provide better solutions to a problem and brings about
technological change. These patterns are an essential part of the micro-foundation of economic
change and translate to the macro level, where they create growth, induce radical changes, and
new paradigms to emerge (Weitzman, 1998; Perez, 2010).

The knowledge accumulation in the trajectory is usually incremental in nature and im-
proves techno-economic characteristics of the artifact or process over time (Dosi, 1982; Dosi
and Nelson, 2013),even though in some cases variation of different solutions can emerge inside
a trajectory and provide new techno-economic opportunities (Durand, 1992). New knowledge is
usually generated by the recombination of existing knowledge (Nelson and Winter, 1982; Olsson,
2000; Fleming, 2001; Arts and Veugelers, 2015). Recombination can take place with knowledge
internal to the trajectory, but especially the in-flow of knowledge from sources external to a tra-
jectory is crucial for its evolution in terms of initiating, redirecting and refreshing the knowledge
accumulation processes (Dosi and Nelson, 2013). The way external knowledge diffuses into a
technology, the source it comes from, and the type of actors involved appear to be core deter-
minants of that technology’s further development (Grant, 1996; Dosi and Nelson, 2013). While
some studies focus on the structure of the knowledge inside a trajectory and show that there are
certain dynamics in the evolution of the knowledge base (Yayavaram and Ahuja, 2008; Krafft
et al., 2011, 2014a) and shifts between different regimes (Maleki and Rosiello, 2014), a better
understanding how the knowledge base evolves and how the respective technologies are shaped is
missing. This is of particular importance, since there is a decline in the recombinatorial success
(Jones, 2009). Ideas are harder to find and more knowledge and other resources are needed to
keep up previous rates of technological change (Bloom et al., 2017).

The first research objective is to uncover dynamics of knowledge generation inside techno-
logical trajectories and how new knowledge contributes to technological development.

1.1.2 Networks

Knowledge recombination is a core component of technological change and it is especially suc-
cessful in teams that are able to combine diverse sets of knowledge (Wuchty et al., 2007; Bercovitz
and Feldman, 2011). Empirical evidence shows that collaboration and networking in R&D in
general lead to a higher research output than individual R&D activities (e.g. Czarnitzki et al.,
2007; Fornahl et al., 2011). Furthermore, theoretical as well as empirical results suggest a pos-
itive influence of increased interaction on performance (Cowan and Jonard, 2004; Powell and
Grodal, 2005; Fritsch and Graf, 2011; Phelps et al., 2012). Corresponding networks of knowl-
edge transfer and learning are essential in the innovation process and constitute one important
driver of technological change (Kline and Rosenberg, 1986; Dosi, 1988; Powell et al., 1996; Ahuja,
2000). Especially the structure of such knowledge networks and the position of actors influences
inventive and innovative performance (Schilling and Phelps, 2007). For example, average inno-
vative performance is higher in well-connected networks (Fleming et al., 2007). Also, the speed
of information diffusion increases with the connectivity of the network and the probability of
knowledge transfer between individuals decreases the longer the paths connecting them (Singh,
2005). This indicates that networks of knowledge exchange are another core component in the
innovation process and influence knowledge dynamics.

Even though knowledge exchange takes place among individual actors, these actors are usu-
ally part of functional units, such as universities, firms and other organizations. These con-
nections at a level of higher aggregation, the meso level, constitute the research system in
which inventive and innovative activities take place (Nelson, 1993; Lundvall, 1992; Carlsson
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and Stankiewicz, 1991). The structure and functionality of the research system is of particular
importance, since they determine knowledge exchange and diffusion (OECD, 1997; Cowan and
Jonard, 2004; Schilling and Phelps, 2007; Cantner and Graf, 2011). While there is a broad
stream of literature which analyzes knowledge flows in and the structure of such research sys-
tems (Phelps et al., 2012), these research systems are not in isolation but are itself part of a
network of higher aggregation. At this macro level of aggregation, national research systems
form interactions and knowledge exchange becomes a global phenomenon (Adams, 2012). In
such a setting, different levels of aggregation interact and structural properties of lower levels
of aggregation can translate to outcomes at higher levels (Dopfer et al., 2004). However, our
understanding of dependencies in such multi-modal networks is limited (Gupta et al., 2007).

The second research objective aims to add to our understanding of knowledge exchange in
networks at different levels of aggregation and their influence on each other.

1.1.3 Policies

While knowledge generation and exchange in knowledge networks are important processes for
technological change and economic growth, there are several failures which hamper these pro-
cesses. These failures affect the innovation process and relate to the costly, complex, and uncer-
tain nature of such activities. These failures can be distinguished in two groups, market failures
and system failures.

Market failures result from problems of resource allocation on markets due to, for example,
asymmetric information, externalities, or public goods. In these cases, intervention in the market
is justified to to improve allocative efficiency. Relevant failures for inventive and innovative
activity are, for example, the partly public good nature of knowledge (Nelson, 1989), which
reduces the appropriability of new knowledge and actors reduce their inventive activity below
the socially optimal level (Arrow, 1962b). However, such spillovers of knowledge from one
actor to others increases inventive performance, if they can be absorbed by others (Cohen and
Levinthal, 1990; Griliches, 1992). In such cases, market interventions such as subsidizing R&D
activities or implementing property rights protection are possible solutions. Another failure,
especially relevant for the substitution of polluting technologies with environmentally friendly
ones to mitigate climate change, are network effects. Network effects result in path dependencies
and possible lock-ins to inferior technologies (David, 1985; Arthur, 1989; Cecere et al., 2014).
Even though new or alternative technologies show certain advantages, the market-dominating
technologies benefit from economies of scale or increasing returns to adoption. In the case of
climate change, this lock-in into fossil fuel technologies is coined carbon lock-in (Unruh, 2000,
2002).

System failures relate to the systemic component of the innovation process and the overall
innovation system. These failures are detrimental to the functionality of the innovation process
and the overall innovation system (OECD, 1997; Carlsson and Jacobsson, 1997; Cantner and
Graf, 2003; Klein-Woolthuis et al., 2005) as well as to the transformation of the system itself
(Weber and Rohracher, 2012). Of particular interest for this thesis are failures with respect to
the knowledge exchange and cooperation in the innovation process. The intended knowledge
transfer between the actors and the underlying network structures can to be affected by failures
of complementarity, reciprocity and intermediation (OECD, 1997; Cantner and Graf, 2003). The
problem of complementarity relates to the question if the actors and the knowledge they possess
fit so that collaboration allows mutual learning (e.g. Cantner and Meder, 2007). Problems of
reciprocity exist if the exchange of knowledge is not based on trust and mutual exchange of
knowledge (e.g. Cantner et al., 2011). Failures of intermediation occur if actors are not aware of
potential cooperation partners (e.g. Cantner et al., 2011). Such failures reduce the intensity of
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knowledge exchange and cooperation in research systems and eventually reduce inventive and
innovative activity.

Environmentally friendly technologies in general and renewable energy technologies in par-
ticular face further disadvantages in their development and adoption compared to competing
technologies, which exert negative external effects on the environment. This general problem
of environmentally friendly technologies was conceptualized by Rennings (2000) and Jaffe et al.
(2005) as the so called double externality problem. It refers to the non-appropriability of basic
research due to spillovers (Arrow, 1962b) as well as the negative externalities of other tech-
nologies, for example CO2 emitting energy production, which are not internalized accordingly
(Pigou, 1920; Baumol and Oates, 1988). However, the double externality problem captures only
a part of the obstacles renewable energies face. The externalities related to the network effects
and the carbon lock-in, the system failures, and the failures in the transition towards an eco-
nomic system based on sustainable principles, constitute a situation of multiple externalities.
Therefore, these technologies are an interesting case to study how policy intervention can in-
crease knowledge generation and exchange and promote technological change and provide means
to mitigate climate change.

Policy instruments that address market and system failures can be classified along the in-
novation process in technology push, demand pull, and systemic instruments. Technology push
instruments intervene at the beginning of the innovation process and directly support inventive
activity. Already Bush (1945) addressed the necessity to subsidize R&D activities to increase
the knowledge stock by reducing the private costs of R&D. While there has been a long debate
about the effectiveness of direct R&D support and its benefits for inventive activity (cf. David
et al., 2000; García-Quevedo, 2004), empirical evidence indicates that direct R&D funding in-
creases inventive output in general (e.g Czarnitzki and Hussinger, 2004; Alecke et al., 2012)
and especially in environmental friendly technologies (e.g. Johnstone et al., 2010; Peters et al.,
2012; Costantini et al., 2015b, 2017). Demand pull instruments intervene at the end of the
innovation process and increase market demand. Schmookler (1962, 1966) postulates that mar-
kets with high expected profitability provide incentives to engage in inventive and innovative
activities. While there were concerns about the nature of the effect (e.g. Mowery and Rosen-
berg, 1979; Kleinknecht and Verspagen, 1990), recent empirical evidence indicates that market
demand induces inventive activity in general (Peters et al., 2012) and especially fosters process
innovations (Fontana and Guerzoni, 2008). In the case of environmentally friendly technologies,
these policies show also strong effects (e.g. Johnstone et al., 2010; Peters et al., 2012; Costantini
et al., 2015b, 2017). To overcome system failures in the innovation process, systemic instruments
are implemented (Smits and Kuhlmann, 2004; Chaminade and Edquist, 2006; Wieczorek and
Hekkert, 2012). Such instruments include the provision of infrastructure, especially to facilitate
learning and knowledge exchange, to enhance cooperation, for example by cluster initiatives, or
to foster cooperation between inventive actors (Smits and Kuhlmann, 2004). The aim of such
policies is to connect heterogeneous actors, such as firms, universities and research institutes, to
create a network of knowledge exchange, encourage learning processes and open up possibilities
of resource and capability sharing. Thereby they affect the rate of knowledge exchange and
consequently influence the speed of knowledge generation and technological change (e.g Fornahl
et al., 2011).

While these different types of instruments interfere in the innovation process and support
and facilitate inventive activity, they are in most cases present simultaneously and interact in
a policy mix (Flanagan et al., 2011; Rogge and Reichardt, 2016). Such a policy mix consists of
multiple components, where the mix of instruments is an important component. The instrument
mix needs to be consistent to support inventive activity. The consistency of the instrument mix
can be assessed by interaction analysis and can have three degrees of interaction: strong, if
the instruments reinforce each other, weak, if the interaction is neutral, and inconsistent if the
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interaction effect is negative. First empirical evidence shows that there is evidence of strong
consistency for the interaction between public procurement and direct subsidies (Guerzoni and
Raiteri, 2015). Such a policy mix and its consistency is of particular importance for environ-
mentally friendly technologies, since they face multiple failures along the innovation process.

There is overall empirical evidence that different types of instruments and a consistent policy
mix are beneficial for knowledge generation and technological change, especially in environmental
friendly technologies. However, there is hardly any empirical evidence how such policies influence
knowledge exchange and collaboration in networks. Since there are several system failures which
are detrimental to knowledge exchange, supporting the formation of collaboration and providing
incentives for knowledge exchange are important in the innovation process. Especially systemic
instruments are designed to overcome such failures, but there is scarce empirical evidence on
the effect of such instruments on knowledge networks and the overall research system.

The third research objective sheds light on the effect of policy instruments and their mix on
knowledge generation and knowledge networks in environmentally friendly technologies.

1.2 Structure of the thesis

This thesis is cumulative and consists of five individual papers which are the core chapters 2-6.
Each chapter sheds light on knowledge dynamics and technological change in renewable energies
from different perspectives. All papers are empirical, however, Chapter 2 and 6 have a method-
ological focus on the use of patent data, while Chapters 3, 4 and 5 use patent or publication
data to better understand the innovation process and inventive and cooperative activity. Special
attention on how policy instruments influence inventive and cooperative activities is devoted to
in the last three chapters. Table 1.1 summarizes the key characteristics of the chapters and each
chapter is summarized in the following.

1.2.1 Chapter 2

The second chapter, “Identifying technological sub-trajectories in photovoltaic patents” deals
with the problem of selecting patent data for economic analysis. The selection of patent data is
a non-trivial task and especially for PV there is no consensus on how to select relevant patents.
This chapter proposes a replicatable and modular search strategy for PV patents. The search
strategy accounts for the sub-trajectories in PV to analyze technological change at the micro
level and is used throughout the thesis.

The PV system is a technological trajectory (Dosi, 1982), which consists of several sub-
trajectories which emerged through micro-radical innovations in the continuum of incremental
and radical innovations (Durand, 1992). These sub-trajectories open up new possibilities for the
technology to improve its cost/performance ratio and allows to overcome physical boundaries
(Sartorius, 2005). Identifying and analyzing these sub-trajectories provides further insights into
the dynamics of technological change, since the sub-trajectories are in most cases in competition
with each other and influence industry structures (Kapoor and Furr, 2015). While there is a huge
variety of selection approaches established in the literature (see Chapter 6 for the implications of
such variety), none of these search strategies accounts for the different sub-trajectories present
in PV, which is necessary to understand technological change in PV at the micro level.

The proposed search strategy uses patent classifications in combination with keywords. The
selection of classifications and keywords for the search strategy follow established procedures
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Chapter 1: Introduction

(Porter et al., 2008; Costantini et al., 2015a). The patents which can be selected with this strat-
egy are compared against two benchmark search strategies. The proposed search strategy per-
forms similarly to established search strategies and structural differences are not present. How-
ever, the search strategy seems to be more restrictive, excluding potentially unrelated patents
from the selection.

Since this chapter is methodological in nature and aims to derive the search strategy, it
provides only descriptive insights in the development of PV sub-trajectories. The descriptive
analysis of the sub-trajectories shows that there are different dynamics between sub-trajectories
and that the market-dominating technology shows hardly any patented inventive activity. There
are also differences between countries, which points towards specialization into sub-trajectories.
Especially Asian countries are frequently patenting in emerging cell technologies. These descrip-
tive results indicate that patenting activity in PV shows dynamics within the trajectory which
influence technological progress, but would be missed at the aggregate level without a separation
into sub-trajectories.

Patent data selected based on this search strategy is used in Chapter 3 and 4. Furthermore, it
is used along other search strategies in Chapter 6 to understand how flexibility in the selection of
patent counts influences policy effects. The search strategy is also used in Herrmann and Töpfer
(2017) and Herrmann (2017). The chapter is single-authored and in preparation for submission.

1.2.2 Chapter 3

The third chapter, “Knowledge recombination along the technology life cycle” aims to under-
stand how recombination of different kinds of knowledge influences the knowledge bases of PV
and wind power along their technology life cycles. Since technological change is a dynamic
process which is intimately related to the technology’s knowledge base, understanding how
knowledge recombination influences the knowledge base from a dynamic point of view provides
further insights on the evolution of technologies.

Anderson and Tushman (1990) propose a cyclical model of a technological life cycle. The
model distinguishes four phases, an era of ferment, the emergence of a dominant design, an
era of incremental change, and a discontinuity, which restarts the cycle. I extend this model to
account for the technology’s knowledge base and proposes different kinds of knowledge, which are
relevant in the life cycle phases. Integrating the mechanisms of knowledge recombination in the
technology life cycle model allows to understand the dynamic nature of technical change in more
detail. While there is first empirical evidence that different kinds of knowledge matter along
the technological development (Krafft et al., 2011, 2014a), no theoretical foundation is provided
explaining how different knowledge influences technological progress over time nor are empirical
results available so far. While knowledge recombination has been studied for several decades
and stylized facts emerged (Savino et al., 2017), studies on the dynamics of recombination have
been absent so far.

Knowledge recombination is analyzed at the inventor level, which has recently moved in the
focus of research (Gruber et al., 2013; Boh et al., 2014; Conti et al., 2014). Since inventors are the
actors which recombine knowledge, their capabilities and previous knowledge is relevant for their
recombinatorial success. Inventors are categorized in four groups according to their previous
inventive activity: New Inventors have no previous inventive history. Specialized inventors have
been active in the same technology. Related inventors gained experience in related technological
fields. Unrelated inventors have previous experience in fields which are not related to wind power
or PV. These inventors and their different inventive history and assumingly different knowledge
and capabilities provide different contribution to the technology’s knowledge base, which also
might differ in the life cycle phases of the technologies.
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To test the success of knowledge recombination by different types of inventors, patents filed by
German inventors are used for the period 1970 - 2006. Recombinatorial success and contribution
to the knowledge base is measured by the patent’s forward citation. Forward citations indicate
how many other inventions build on the patent and can be an indicator for the contribution
of the invention to the knowledge base. The development of the technologies is separated in
different life cycle phases according to their development. There are three phases for wind power
and two phases for PV. In the case of PV, the different sub-trajectories which are identified in
patent data in Chapter 2 are considered as well. Negative binomial regressions are run for each
of these different life cycle phases. Furthermore, rolling-window regressions are proposed as a
new approach to capture dynamics.

The results show that different sources of knowledge matter for technological evolution in
general but differently in the phases of the technology life cycle, mostly in line with the proposed
extension of the Anderson and Tushman (1990) model. Overall, there is a shift over time of
relevance from inventors which have been active in fields outside the technology to inventors
which are specialized in the technology. These results contribute to a deeper understanding
of the evolution of a technology’s knowledge base and which dynamics take place along the
technology life cycle. In previous studies, it is assumed that the mechanisms of knowledge
recombination are static and do not depend on the maturity of the technology. Furthermore, the
understanding that recombination differs in different stages of a technology is crucial for policy
makers to implement relevant policies and support the right actors as well as for management
to pursue the right R&D strategy.

The chapter is single-authored and won ex aequo the Best Student Paper Award at the
16th International Joseph A. Schumpeter Society Conference in Montréal. Currently it is under
review in Industrial and Corporate Change.

1.2.3 Chapter 4

The fourth chapter “Inventor networks in renewable energies: The influence of the policy mix in
Germany” focuses again on inventors, but particularly on their co-inventor network of knowledge
exchange. There is vast evidence that networks of knowledge exchange are crucial for inventive
and innovative activity (Dosi, 1988; Powell et al., 1996; Ahuja, 2000). This chapter addresses the
particular question how size and structure of these networks are influenced by a mix of different
policy instruments which support inventive and cooperative activity.

Technological change and gains in efficiency of wind power and PV are to a large extent
driven by governmental support. This chapter builds on the conclusive evidence that demand
pull and technology push instruments support inventive activity in general and for renewable
energies in particular (e.g. Johnstone et al., 2010; Peters et al., 2012; Wangler, 2013; Nesta
et al., 2014). However, there is lacking evidence how policy in general and these two kinds of
instruments in particular influence knowledge exchange. Besides these two kinds of instruments,
there is a third group of instruments, so called systemic instruments. Systemic instruments solve
system failures such as failures of complementarity, reciprocity and intermediation in knowledge
exchange and mutual learning (OECD, 1997; Cantner and Graf, 2003; Smits and Kuhlmann,
2004). We provide first insights how these instruments influence size and structure of co-inventor
networks. Besides the scarce evidence how these different instruments influence networks, these
instruments furthermore interact in an instrument mix, which is part of a broader policy mix.
Such a policy mix needs to be consistent to support innovative activity effectively (Flanagan
et al., 2011; Rogge and Reichardt, 2016). This chapter also provides some insights on the
consistency of the policy mix.

10
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As in Chapter 3, German inventors which filed patents in PV or wind power are the objects of
analysis. Co-inventor networks are reconstructed based on co-patenting for the period from 1980
until 2011. The effect of demand pull, technology push and systemic instruments is estimated on
size and structure of co-inventor networks. With respect to the systemic instruments, which are
designed to increase collaboration between inventive actors, we disaggregate R&D subsidies into
technology push if they are granted to single organizations and into systemic instruments if they
granted research consortia and assume that they foster collaboration, which can be regarded as
systemic (Smits and Kuhlmann, 2004). With respect to the policy mix, we operationalize the
consistency of the policy mix by interacting different instruments.

This chapter bring together the literature on knowledge networks and innovation policy for
the case of environmental innovations. This provides further understanding of the relationship
between policy instruments and their effect on co-inventor networks and knowledge exchange
in such networks. We can show that the different instruments do not only increase inventive
activity, but also alter the underlying network structure. We find that the network size is
positively affected by technology push and systemic instruments in wind power, whereas in
PV it is only technology push which shows an effect. Demand pull instruments have a strong
positive effect in PV and wind power. The influence of systemic instruments on the structure
of the networks finds support only in the case of wind power, whereas for PV, the results are
inconclusive. Technology push policies do not increase cooperation in wind power at all, while
for PV there is an ambiguous effect. Concerning the effect of demand pull instruments on
collaboration, we find a strong positive influence in both technologies. With respect to the
policy mix, we find that push and pull instruments work hand in hand in increasing network
size. Demand pull and systemic instruments together spur cooperation. Both indicate strong
consistency of the policy mix.

This chapter is co-authored with Uwe Cantner, Holger Graf and Johannes Herrmann. I
contributed significantly to the design of the study, the data collection, the theoretical and
empirical elaborations as well as to the interpretation of the results. The chapter is published
in Research Policy and in the following chapters referred to as Cantner et al. (2016).

1.2.4 Chapter 5

The fifth chapter “International research networks: Determinants of country embeddedness”
focuses again on knowledge exchange in networks, but has a slightly different perspective. While
in Chapter 4 the focus was on the micro level of interaction between inventors, this chapter
focuses on the macro level of aggregation. At this level, countries are embedded in the global
co-authorship network for PV and the position in this network allows access to global knowledge
flows.

The generation and diffusion of knowledge is a collective process and an increasingly global
phenomenon. Collaboration among scientists and researchers has steadily increased during the
last decades and leads to more valuable output than individual research (Wuchty et al., 2007;
Adams, 2013). Especially cooperation with distant partners, which allows access to diverse sets
of knowledge, has a positive effects on performance (Bathelt et al., 2004; Cantner and Rake,
2014; Herstad et al., 2014). These cooperation pattern form a global network of knowledge
exchange, in which a country can be embedded. This embeddedness allows the country access
to global knowledge flows and potentially increases research performance.

We analyze the determinants of embeddedness in the global PV knowledge network, recon-
structed from co-authorship of scientific publications. We argue that the position of a country
in this network is determined by two driving forces: First, by the structure and functionality
of its national research system (Nelson, 1993; Lundvall, 1992; Carlsson and Stankiewicz, 1991)
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and second, by policy intervention to support research and development. With respect to the
research system, we focus particularly on the interaction structure as a determinant of knowl-
edge diffusion within the research system (OECD, 1997; Cowan and Jonard, 2004; Schilling and
Phelps, 2007; Cantner and Graf, 2011; Herstad et al., 2014). Thereby we enter an emerging
research field by relating country level network characteristics – the meso level – to macro level
embeddedness (Dopfer et al., 2004; Gupta et al., 2007). Here, the structure of national networks,
i.e. the functionality of the research system and its set-up, determines international collaboration
and embeddedness. With respect to policy intervention, similarly to Chapter 4, we account for
a variety of instruments that constitute the policy mix for renewable energies.

Our results show positive effects of overall cohesion and connectedness of the national re-
search system on international embeddedness. Countries with a decentralized research network
are internationally more embedded, indicating that diffusion oriented national research systems
are more open towards external knowledge flows. This provides new insights into the func-
tionality of a research system and helps to understand how the design of the research system
influences access to global knowledge flows. Thereby we contribute to the stream of research
on multi-level networks (Gupta et al., 2007) by making use of the multi-level structure of pub-
lication data. With respect to the instruments of the policy mix, we show that the instruments
not only increase research activity, but also positively affect international collaboration and
embeddedness. In particular, demand side instruments seem to be important for research and
collaboration in PV, as has been shown in Chapter 4 and elsewhere for inventive activity (e.g.
Johnstone et al., 2010; Peters et al., 2012). Especially public procurement, proxied by the cu-
mulative number of satellites, shows up as a robust predictor of embeddedness. This result fits
well with the more general argument that governmental demand can increase research activity
(Geroski, 1990; Guerzoni and Raiteri, 2015). Other instruments show ambiguous results and
require further inquiry.

This chapter is co-authored with Holger Graf. I contributed significantly to the design
of the study, the data collection, the theoretical and empirical elaborations as well as to the
interpretation of the results. The chapter is after revisions resubmitted to Research Policy.

1.2.5 Chapter 6

The last chapter “Flexibility in the selection of patent counts: Implications for p-hacking and
policy recommendations” is again methodological and refers back to the problem of patent selec-
tion already discussed in Chapter 2. While using patent data, researchers have great flexibility
in the selection of patent counts. Particularly, high variation is present between different selec-
tion approaches and especially between different patent quality dimensions. To elaborate if the
flexibility in different selection approaches for solar energy technologies has systematic impact
on policy effects, Johnstone et al. (2010) and Peters et al. (2012) are replicated and variation in
policy effects induced by different patent selection approaches is assessed.

Even though patent counts are frequently used as a measure of inventive and innovative
activity, there is little consensus in the literature how relevant patents can be reliably identified.
Chapter 2 already discussed that patents can be searched via different means, but there is also
flexibility with respect to the patent quality dimension used for analysis. Patent quality refers to
the technological and economic value of the invention. This quality or value shows a very skewed
distribution and only a small fraction of patents has meaningful content while the majority of
patents is technologically or economically irrelevant (e.g. Harhoff et al., 1999, 2003). Several
studies account for this by controlling for different patent quality dimensions. However, there is
no consensus how to assess patent quality and which quality dimension to consider. Such a great
variety of search strategies and quality dimension imposes the question how reliable empirical
analysis is with respect to patent data and how policy makers should interpret such results.
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We identified 51 different selection approaches for solar energy technologies which intend to
measure inventive activity in these technologies. We use the research design of Johnstone et al.
(2010) and Peters et al. (2012) to show how flexibility in the selection of patent counts results in
uncertainty about the sizes and even signs of estimated policy effects. We replicate the empirical
setup from these two studies and reestimate their econometric models with the 51 different search
strategies proposed in the literature and for six different patent quality dimensions each. To
assess the variation in the estimated policy effects, we rely on three methods from different
streams of literature. First, we use the concept of extreme-bounds analysis proposed by Leamer
(1983) and prominently applied in the growth literature and elsewhere (Levine and Renelt, 1992;
Sala-i Martin, 1997; Wang, 2010). While extreme-bounds analysis is usually applied to estimate
the extreme-bounds of some key explaining variables when the set of control variables is varied,
we use extreme-bounds analysis to characterize the set of estimates that can be obtained due to
the flexibility in the selection of patent counts, which is the dependent variable in the analyses.
Furthermore, we use vibration plots applied in natural sciences (Patel et al., 2015) to visualize
the estimates and infer on patterns across search strategy, technology and patent quality. These
plots also show how intentional search for significant estimates is possible. Finally, we use meta
regression techniques to assess determinants of coefficient size (Stanley and Jarrell, 1989).

We find that flexibility in the selection of patent counts results in a wide range of estimates for
the effects of policies on patent counts. The uncertainty regarding signs and sizes of these policy
effects is substantial. For almost all policy effects both positive and negative estimates that are
statistically significant can be obtained. With respect to the quality dimension of patents, we
show that especially granted patents show very large and in many cases deviating effects. Using
three different quality subsets reduces the uncertainty, which nevertheless remains substantial.
The different search strategies influence effect sizes, but there is no consistent pattern. However,
the larger the number of patents selected, the lower the estimated policy effect, indicating that
policy effects are targeted.

Overall, we show that flexibility in the selection of patent counts has several implications for
the use of patent data and calls for a careful interpretation of results obtained with patent data,
providing empirical evidence for the warnings made by Griliches (1990). We demonstrate the
potential for conscious and unconscious p-hacking by estimating policy effects on varying patent
counts obtained by different patent selection approaches. Thereby we show how uncertainty in
the estimated policy effects translates into uncertainty for policy makers in how to evaluate the
effectiveness of policy instruments.

The chapter is co-authored with Stephan B. Bruns. I contributed significantly to the de-
sign of the study, the data collection, the theoretical and empirical elaborations, and to the
interpretation of the results. The chapter is in preparation for submission.
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Chapter 2

Identifying technological
sub-trajectories in photovoltaic
patents

2.1 Introduction

Technological progress unfolds along a technological trajectory by accumulation of knowledge
and competences (Dosi, 1982). While the technological trajectory summarizes the means to solve
a specific problem, inside a trajectory sub-trajectories can be present. Such a sub-trajectories
provide the same solution, but via different means or with different performance characteristics
(Durand, 1992). Sub-trajectories emerge in the continuum of incremental and radical innova-
tions and provide opportunities for substantial improvements along the trajectory. Competition
between different sub-trajectories can take place and technological lock-in into inferior outcomes
can emerge, hampering overall technological progress (Arthur, 1989; Cowan and Hulten, 1996).
Furthermore, sub-trajectories can open up new potential for improvements or widen the appli-
cation space of a trajectory (Kash and Rycoft, 2000; Funk, 2003). This makes sub-trajectories
a relevant object to analyze technological change.

The understanding of drivers and mechanism of progress on this micro level of the sub-
trajectory provides further insides on technological progress in general and helps to forecast
future potentials and developments of specific technologies. At this micro level, dynamics can
take place, such the emergence of new sub-trajectories or shifts in the dominating sub-trajectory,
which shapes the development of the overall trajectory (Durand, 1992). Revealing these dynam-
ics can provide valuable insights in the innovation process and drivers of technological change.
However, analyses on the sub-trajectory level are scarce and usually descriptives. Patent data
can be used to empirically assess technological progress along sub-trajectories and provide a bet-
ter understanding of knowledge creation and accumulation. For this end, this chapter proposes
a patent search strategy for photovoltaic (PV) patents, which separates the trajectory in its sub-
trajectories. While there are many search strategies to select PV patents (see Chapter 6), non
of these distinguishes between the different sub-trajectories. PV is a particular good example

Acknowledgments: This chapter benefited from discussions with Uwe Cantner, Josefin Diekhof, Katja Ewert,
Fritz Falk, Holger Graf, Johannes Herrmann, Thomas Kalthaus, Abdolreza Momeni, Carsten Ronning, Susanne
Walter and Christian Weber.
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to study technological change on the sub-trajectory level, since it is highly dynamic and several
sub-trajectories emerged over time, which allow overcoming physical boundaries. Since PV helps
to mitigate climate change, understanding the dynamics in the technological development can
help to accelerate this process and decrease its cost/performance ration further.

The aim of this chapter is to develop a replicable and modular patent search strategy for
PV patents, which allows to distinguish and analyze sub-trajectories. Even though patent data
is a problematic indicator for inventive and innovative activity (Griliches, 1990) and only a
fraction of inventions is patented (Cohen et al., 2000), it allows to infer on patterns of inventive
activity and technological progress. The proposed search strategy is based on keywords and
classification derived using established procedures (Porter et al., 2008; Costantini et al., 2015a).
Based on extensive review of the technical literature, the proposed search strategy distinguishes
the overall PV system into three different cell sub-trajectories and two generic components. A
corresponding list of keywords and classes is derived from the literature and validated by leading
experts. The patents which are selected based on the proposed search strategy are compared
against two benchmark search strategies and the search strategy is comparable in its scope and
coverage, but allows for the more detailed analysis of inventive activity in sub-trajectories.

Descriptive results show that there are differences in the inventive activity between sub-
trajectories. Surprisingly, the market-dominating silicon wafer cell sub-trajectory shows the least
patented inventive activity, while there are changes in intensity between other sub-trajectories
over time. Geographical differences between countries are present. Asian countries, for example,
focus their inventive activity on the emerging cell sub-trajectory, while the USA focuses on the
established thin-film sub-trajectory and inventive activity in Germany focuses on the module
component.

The descriptive results presented in this paper show substantial differences in the dynamics
of the sub-trajectories. The proposed search strategy can be used to analyze how these differ-
ences translates to other economic dimensions. For example, the sub-trajectories can influence
industrial dynamics, as shown by Kapoor and Furr (2015) for entry in the PV industry. Their
findings could be extended by accounting for inventive activities in these sub-trajectories or how
it influences firm survival. With respect to the technological development, Momeni and Rost
(2016) and Park et al. (2015) show that different sub-trajectories emerge over time, but they
do not provide an overall assessment of the technological development, which is possible with
the proposed search strategy. Furthermore, the knowledge dynamics along each sub-trajectory
can be analyzed in more detail, as proposed for example by Jamali et al. (2016) or Lacerda
and van den Bergh (2016) to uncover how knowledge is integrated or shared between the sub-
trajectories.

A better understanding of technological development on the sub-trajectory level has sev-
eral implications for economic research and policy. Using sub-trajectories helps to break up
the dichotomy of radical and incremental innovation, since there are substantial changes in a
trajectory, which need to be considered if technological progress is studied. Here, patent data
can be used to uncover such changes over time. This is especially relevant if sub-trajectories
reach their physical boundaries and active search for alternatives is required. In such a case gov-
ernmental intervention is required to support such search processes. Furthermore, technology
neutral policies can hinder progress, if sub-trajectories with high potential, but initially higher
cost/performance ratio are locked-out from the market, a lock-in into an inferior solution might
occur and have detrimental effects on overall progress of the trajectory. Also, the emergence
of new sub-trajectories needs to be monitored to forge ahead in international competition by
supporting upcoming solutions early on.

The chapter proceeds with a theoretical discussion of the definition and usage of sub-
trajectories in Section 2.2. In Section 2.3 the sub-trajectories and components of the PV system
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are discussed. The patent search strategy is derived in Section 2.4 and analyzed in detail in
Section 2.5. Section 2.6 concludes.

2.2 Technological progress along sub-trajectories

A technology can be characterized by the dynamic accumulation of knowledge and competences
to solve a specific problem (Dosi and Nelson, 2010, 2013). Thereby variation among possible
solutions can exist which constitute a technological paradigm, or as Dosi (1982, p. 152) defines
it: “... we shall define a “technological paradigm” as “model” and a “pattern” of solution of
selected technological problems, based on selected principles derived from natural sciences and
on selected material technologies”. Such a technological paradigm sets boundaries and provides
orientation for research and inventive activity to solve a particular problem. These activities
foster technological process which unfolds along a technological trajectory, which provide the
solution for the problem. This progress is incremental and improves techno-economic character-
istics of the artifact or process over time via accumulation of knowledge (Dosi, 1982; Dosi and
Nelson, 2013). Since multiple technological trajectories can be present in a paradigm, competi-
tion between these can take place (Arthur, 1989). Such a selective competition can result in a
dominant design which defines the paradigm (Abernathy and Utterback, 1978; Murmann and
Frenken, 2006).

While there can be multiple trajectories present in a paradigm, also the technological tra-
jectory can consist of multiple sub-trajectories, which provide the same solution for a problem,
but have different techno-economic characteristics. Such sub-trajectories are introduced along
the trajectory by “micro-radical innovations” (Durand, 1992, p. 363), in “transition patterns”
(Kash and Rycoft, 2000, p. 822) or by “proactive development of technical alternatives” (van de
Poel, 2003, p. 59), which do not alter the trajectory itself, but opens up variation inside through
new solutions to the same problem, with potential to improve the technology further. Thereby
the technological trajectory envelopes the sub-trajectories and represents the frontier of techno-
logical performance (Durand, 1992). As depicted in Figure 2.1, the trajectory is the envelope
curve (solid line) consistent of four sub-trajectories which each improve over time and possibly
outperform one another by decreasing costs and/or increasing performance. However, usually
emerging sub-trajectories have higher costs and/or lower performance than existing ones, but
higher learning rates might be possible, especially if the technological potential of existing sub-
trajectories is exhausted. It is not likely that each sub-trajectory provides the best characteristics
and selection between them takes place, therefore certain sub-trajectories fail or do not improve
as fast as other sub-trajectories (Cowan, 1990; Durand, 1992). Furthermore, the emergence
of sub-trajectories is necessary if the established one reaches its full potential, for example if
physical boundaries restrict further improvement (Sahal, 1985; Kash and Rycoft, 2000). Besides
changes in the cost/performance ratio, these sub-trajectories can increase the application space
or change trade-offs in the product design and can help to establish a dominant design (Funk,
2003).

Analyzing technological progress on the sub-trajectory level helps to understand mechanisms
and drivers in more detail, since patterns at the sub-trajectory level might be indistinguishable
on the trajectory level or unfold only for key components, but exert substantial improvements.
The development of sub-trajectories and their influence on the overall trajectory have been
studied for many technologies, but not always explicitly considered as such. Durand (1992)
uses several examples, such as insulin production, public switching in telecommunication, dy-
namic random access memory, and semiconductors to illustrate that sub-trajectories emerge
frequently and influence the development of the respective trajectory. Their emergence can fur-
thermore rejuvenate a technology if it reaches its technical or physical limits (Sahal, 1985). An
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Figure 2.1: Sub-trajectories in a trajectory.
Source: Adapted from Durand (1992).

example are aircrafts, where moving form propeller to jet engines overcomes aerodynamic limits
(Constant, 1980). Rennings et al. (2013) illustrates the case in which artificial limits are im-
posed on a trajectory by tightening emission regulations in coal-fired power plants. In this case,
sub-trajectories opened up possibilities to further improve performance but at the same time
complying with environmental regulations. In a similar vein, Oltra and Jean (2009) integrate
environmental performance into the assessment of sub-trajectories and show for car engines that
this additional performance measure influences the prospects of a sub-trajectory. Competition
between different sub-trajectories can have detrimental effects on technological progress, if a
lock-in in a inferior sub-trajectory emerges, as shown by Cowan (1990) for nuclear reactor and
Cowan and Hulten (1996) for car engines. However, the opposite effect was shown by Funk
(2003) for the mobile internet, where the emergence of sub-trajectories increases competition
which lead to product innovations and overall expands the application space and broadens the
trajectory.

The emergence of sub-trajectories also influences industry dynamics as shown for the flat
panel display trajectory by Mathews (2005). In the flat panel display trajectory several new
‘generations’ with respect to the production process were introduced over time and changes
in the industry composition are attributed to it, especially entry. Similar effects were found
for the aircraft industry. Bonaccorsi and Giuri (2003) emphasize that different sub-trajectories
exist for different types of customers and firms specialize and learn from the heterogeneity of
sub-trajectories and thereby influence industry composition. Also Durand (1992) stresses this
point and concludes that the emergence of sub-trajectories and the increases in technological
performance increases competition and that firms can ‘surf the waves of change’.

Sub-trajectories are also present in the photovoltaics trajectory. In PV, different cell gen-
erations emerged over time and are in competition with each other. Menanteau (2000) showed
that path-dependency and learning from related knowledge increased efficiency. Due to ex-
hausting technological potential, a lock-in occurred and new sub-trajectories need to overcome
this situation. Sartorius (2005) points out that this lock-in into an inferior PV sub-trajectory
can be overcome if policy support would not be technology neutral but favor the emerging
sub-trajectories that show favorable characteristics and support their progress. Otherwise ac-
cumulation of knowledge would increase the lock-in situation while competition between the
sub-trajectories would foster progress. The competition between the different sub-trajectories
affects also entry decisions in the PV industry. Kapoor and Furr (2015) show that the technology
choice is important for entry.
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Since sub-trajectories are important for technological change in general and particularly in
PV, in the following the PV system and its sub-trajectories are discussed from a technical and
economic point of view to derive a patent search strategy to analyze inventive activity in more
detail.

2.3 Sub-trajectories in the photovoltaic system

2.3.1 Technological components of the photovoltaic system

The PV system consists of three components: The PV cell, the PV module and the balance
of system components (comp. Figure 2.2). The core component is the PV cell, which converts
the sunlight into electricity. The PV cells are encapsulated in a module which connects several
cells and protects them from the environment. The modules need to be connected to and
managed by grid infrastructure, which are so-called balance of system components (BoS). While
the two latter components are generic for every PV system, whereas for the PV cell multiple
technological solutions exist. These different cell types are the sub-trajectories of the overall
PV trajectory. In the technical literature, they are referred to generations and have distinct
technological and economic characteristics (e.g. Green, 2001; Conibeer, 2007; Jayawardena et al.,
2013)1. Currently, three to four different PV cell generations can be distinguished. The first
generation uses crystalline silicon wafer, the second generation uses semiconductor thin-films
and the third generation uses novel materials (here, some authors distinguish further and a
fourth generation seems to emerge, see Jayawardena et al., 2013). These different generations or
sub-trajectories co-exist and research and development is performed in all of them. The different
cell generations emerge at different points in time and their improvement is heterogeneous (see
also Green et al., 2017). In the following, I briefly discuss the different components of the PV
system and the different PV cell sub-trajectories.

Photovoltaic System

Photovoltaic Cell

1. Generation 
Silicon Wafer

2. Generation 
Thin-Film

3. Generation 
Emerging

Module & Encapsulation

Balance of System

Figure 2.2: Components of the photovoltaic system.

The photovoltaic cell The PV cell is the core component of the PV system. The cell absorbs
the sunlight and converts it to electric energy via the photoelectric effect.2 The capacity to
absorb sunlight depends on the material used for the PV cell. Semiconductors, such as silicon,
germanium, or gallium-arsenide, have a so-called band gap, which is the distance between the
valence band and the conducting band, which have free electrons to conduct a current (Sze
1 To be in line with the technical literature, in the following the term generation is used to refer to the different

sub-trajectories.
2 For a more detailed discussion of the following physical principles and components of a PV system see Green

(1982), Fraas and Partain (2010), Fonash (2010) and others.
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and Ng, 2007).3 The photoelectric effect results from the energy content of the photon and the
material’s band gap. If the energy content of a photon is high enough to allow an electron to
move from the valence band to the conducting band, a current emerges. To convert this current
to electricity, the charge needs to be separated and directed to prevent the electron to go back
to its initial state. This separation is usually achieved by a so-called n-p-junction if the same
material is used or a hetero-junction, if the cell consists of different materials (Sze and Ng, 2007).
This junction is usually an electric field created by doping (inserting) different materials in the
absorber layer so that a positive and a negative current are present (Fonash, 2010; Fraas and
Partain, 2010).

Since the material’s band gap is a decisive factor for the conversion of sunlight into elec-
tricity, different materials can be considered based on their band gap. However, the so-called
Shockley-Queisser-limit restricts the conversion for a single band gap cell. This limit sets the
theoretical conversion maximum of sunlight in a material (the limit can be increased if the light
is concentrated) and is based on the material’s band gap (Shockley and Queisser, 1961). This
limit can only be overcome if multiple layers of different materials are combined to absorb dif-
ferent energy contents of photons. This combination of different materials is however restricted
eventually by a thermodynamic limit, which restricts the overall energy conversion (Vos and
Pauwels, 1981).

Three different cell generations can be distinguished so far. They can be described based
on their conversion efficiency, related to the material used, and their costs. Figure 2.3 depicts
the three different cell generations with respect to these two dimensions. The first generation,
silicon wafer cells, are expensive, but also efficient and have reached their physical conversion
limit. The second generation, thin-film cells, are much cheaper in general, but not as efficient
as the first generation. Only the third cell generation can, especially by combining different
materials in multi-junction cells, overcome the Shockley-Queisser limit and at the same time be
cost competitive (see also Green, 2001; Conibeer, 2007, for further discussions). In the following,
the different cell generations are discussed in detail.
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Figure 2.3: Photovoltaic sub-trajectories and their efficiency and physical limits.

Figure note: Source: Conibeer (2007). The ellipses for the cost/efficiency range are
indicative, only for the first generation (green ellipsis) the area is quite accurate, while for the
second generation (yellow area) and third generation (red area) they are based on predictions.

3 Technically speaking, all materials have a band gap, however, conductors (usually metals) have no or a very
small band gap, so electrons can easily move between the band, and insulators have a very large band gap,
making it very difficult for electrons to move between the bands. For further details on the physical principles,
see, for example, Sze and Ng (2007).
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1. Generation: Silicon wafer cells The first PV cell generation emerged in the 1950s and
uses a silicon wafer to absorb light (Chapin et al., 1954). These cells are simple to produce and
knowledge and competences are related to the microelectronic sector (Sze, 1981; Green, 2000).
Since silicon has a favorable band gap, its conversion efficiency is high. However, silicon is an
indirect semiconductor, which requires that the material needs a certain thickness to absorb
and convert the sunlight. Since silicon is a rather expensive material, the costs for silicon wafer
cells are high and cost reductions due to thinner wafers have reached its technical boundaries
(Fraunhofer ISE, 2016). There exist several approaches to fabricate the cell material, which
divides the cells in two groups, mono- or single-crystalline and poly- or multi-crystalline cells.
The mono-crystalline silicon cells are cut out of a single silicon crystal, which is most frequently
produced by the Czochralski process. Poly-crystalline silicon cells consist of silicon which is cast
in ingots from smaller silicon pieces and then cut into cells. A specific technique to produce poly-
crystalline silicon is the so called ribbon silicon, which, however, did not reach the competitive
efficiency levels (Nakayashiki et al., 2006). In general, the poly-crystalline cells can be produced
cheaper, but they have lower conversion efficiency than mono-crystalline cells (Miles et al.,
2005).4

Overall, silicon wafer cells are characterized by high conversion efficiency and high costs.

2. Generation: Thin-film cells The high cost of the first generation cells lead already in
the 1960s to the development of cells, which can be produced cheaper (Fraas and Partain, 2010).
For these kinds of cells, direct semiconductor materials are deposited on a (flexible) substrate
to absorb sunlight. These thin-film cells widens the application space, since they are lightweight
and flexible, which allows integration, e.g. in clothing or other objects. The cell materials can
be divided in two kinds, one relying on the use of amorphous silicon films and another uses
materials from the so called II-VI-, III-V-, and I-III-VI-groups of the periodic table (Miles et al.,
2005; Fraas and Partain, 2010). Amorphous silicon is an alloy of silicon and hydrogen and can
be deposed in very thin layers on a substrate (Miles et al., 2005). However, the cells suffer from
severe degradation in sunlight, the so called Staebler–Wronski effect. To overcome this effect and
to increase the cell efficiency, layers of different absorptive materials are combined to double- or
multi-junction cells. Further variations of silicon thin-films use micro- or nano-crystalline silicon
which assemble closer to the physical characteristics of mono-/poly-crystalline cells but has the
favorable characteristics of a thin-film material.

From the II-VI-group, especially cells which use cadmium-telluride (CdTe) are favorable,
since CdTe has a nearly optimal band gap (Miles et al., 2005). CdTe cells are characterized
by very low production costs and nowadays high efficiency rate (Fraas and Partain, 2010).
Materials from the I-III-VI-group, so called chalcopyrites, are among others copper-indium-
diselenide (CuInSe2) and copper-indium-gallium-diselenide (CuInGeSe2), also called CIS and
CIGS cells. These cells also have already high efficiency and low costs, but contain still expensive
and toxic materials and cells based on copper-zinc-tin-sulfide (CZTS) are a possible replacement.

A particular case are the materials from the III-V-group, which are also semiconducting thin-
films, but very expensive.5 In this group, especially gallium arsenide (GaAs) but also indium-
phosphide (InP) and gallium-antimonide (GaSb) are considered for PV cells. These materials are
expensive, but have favorable characteristics, especially for space applications. These materials
are in most cases combined in multi-junction cells and/or used with a concentrator to focus light
4 The cells receive also further treatment to increase the absorptive capacity. For example, the single crystal

cells are etched to create a surface structure consisting of small pyramids which reflect the light downwards.
Also the cells receive anti-reflection coating to reduce losses (see for further treatments Green, 2000).

5 There is no consensus in the technical literature to which generation these cells should be attributed. Here,
they are attributed to the second generation, since they use traditional semiconducting materials.
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on the cell (Miles et al., 2005). Their terrestrial application is only marginal due to their high
costs (Fraunhofer ISE, 2016).

Overall, thin-film cells for the mass-market are generally characterized by low costs and low
efficiency.

3. Generation: Emerging cells While the first and second generation of PV cells reach
a state of maturity, several other approaches emerged. These emerging cells usually do not
use semiconductors but other materials, which are frequently combined in tandem structures to
increase efficiency (Miles et al., 2005; Conibeer, 2007; Brown and Wu, 2009; Jayawardena et al.,
2013). Most prominent are dye-sensitized solar cells (DSSC) or organic cells. The DSSC were
invented by O’Regan and Grätzel (1991) and utilizes the highly porous structure of titanium-
dioxide (TiO2) which increases the absorptive surface in the cell. Organic or polymer PV cells
use a polymer as an absorber and use the physical principles of organic electronics (Nelson,
2011). Recent approaches use perovskite as an inorganic component in an organic cell and
provide very promising efficiency rates (Kojima et al., 2009). Furthermore, quantum dot cells
which use semiconducting particles of different size to create different band gaps are recently
explored (Baskoutas and Terzis, 2006). Also recently, the introduction of different inorganic
nanomaterials in polymer cells are considered as having the potential to lead to a fourth cell
generation (Jayawardena et al., 2013). Additionally, several materials allow for the production
of semi or fully transparent cells, which extends the range of application to e.g. windows or
screens (Zhao et al., 2014).

Overall, third generation cells are characterized by (potentially) high efficiency and low costs.

Module production and encapsulation The PV cells need to be connected to each other
to form a PV module, which needs encapsulation and further components. Several parts of
the module were improved over time to increase efficiency and to reduce costs. Especially the
electric contacts on the front and back of the cell, as well as the components for encapsulation
were improved substantially. Furthermore, there is great flexibility in where to use a PV module,
such as installment on the ground, integration into a building and mounting on a vehicle or
spacecraft (Fraas and Partain, 2010).6 In principle, these parts of the PV system are generic
and independent from the cell generation used.

Balance of system components The last part of the PV system connects the PV module
to the electricity consumer. Several distinct ways are possible, but usually separated into off-
and on-grid applications. The off-grid applications usually use the direct current produced by
the PV module to either power specific applications or to store the electricity in a battery.
However, the battery itself is not considered, but only the charging component. The on-grid
application usually needs an inverter to convert the direct current into an alternating one (Fraas
and Partain, 2010). Furthermore, there are several ways to optimize the energy production, for
example via tracking systems to follow the sun’s movement (Mousazadeh et al., 2009). The BoS
components are also generic for the PV system.

Overall the PV system consists of three components, while among the PV cell, three or even
more sub-trajectories exist which are in competition among each other. The other two com-
ponents, the module and encapsulation as well as the BoS components are generic components
and are required in every PV system.
6 Some researchers treat this mounting component as an independent part and separate it from the module

encapsulation (e.g. Huenteler et al., 2016b).
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Figure 2.4: Global learning curves for crystalline-silicon wafer and thin-film cells.
Source: Fraunhofer ISE (2016).

2.3.2 Economic dimension of the photovoltaic system

The PV system and the different sub-trajectories can also be evaluated from an economic point of
view. Technological progress in the overall trajectory but also in the different sub-trajectories is
remarkable and allowed PV to be cost competitive with other electricity generating technologies.
Substantial learning effects and steep learning curves are present in PV (Fraunhofer ISE, 2016)
and development follows a generalized Moore’s law (Farmer and Lafond, 2016). For example,
Fraunhofer ISE (2016) calculates a 23% learning rate for the last 35 years for PV modules. Even
though there are several approaches how to estimate learning curves, such as two- or multi-factor
learning curves (Yu et al., 2011), all reveal a strong reduction in module costs and also decrease
of other factors, such as electricity consumption and emissions during production, took place
(Louwen et al., 2016).7 This strong decrease in module prices is immanent in the different cell
generations as well. Figure 2.4 depicts the learning curves for the first and second generation
cells. Both module prices decrease over time, however, the second-generation cells reach the same
price level with only a tenth of the cumulative production of silicon cells. Other components of
the PV system increase in efficiency and decrease in price, too. Fraunhofer ISE (2015) calculates
a learning rate of about 19% per year for small scale PV inverters from 1990 until 2013. Cost
reductions of different components lead to overall cost reductions for PV systems in general but
nowadays the BoS components have a larger share of the PV system costs than the PV modules
(Fraunhofer ISE, 2016).

The efficiency increases and reduction in costs can be partly attributed to strong political
support. Demand as well as supply side policies such as feed-in tariffs, quota systems and R&D
subsidies were in place supporting R&D as well as diffusion (Watanabe et al., 2000; Johnstone
et al., 2010; Peters et al., 2012; Polzin et al., 2015). However, most of these policies were
technology neutral or data about a finer grained support is not available. For Germany, a
distinction of R&D funding for the different PV sub-trajectories is available. Figure 2.5 shows
the governmental R&D subsidies for different research areas. The first PV generation receives
7 For further influences on the cost reductions in PV, see, Nemet (2006), Candelise et al. (2013), or Pillai (2015).
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Figure 2.5: German R&D subsidies for photovoltaic sub-trajectories 2006–2016.
Data source: BMWi (2013, 2017).

most funding and over time the funding for thin-film technologies is reduced in absolute and
relative terms.

Due to efficiency increases and declining prices, the diffusion of PV increased exponentially
in the last decades and nowadays PV contributes substantially to electricity production globally
(REN21, 2015). With respect to the different cell generations used, Figure 2.6 displays the
production shares of first- and second-generation cells over time. The first generation clearly
dominates the market. But among the silicon cells, a shift from mono-crystalline to poly-
crystalline takes place. Second generation thin-film cells play a minor role and account nowadays
for about 10% of overall cell production. Inside the share of thin-film cell technologies, dynamics
take place as well. In the early 2000s, amorphous silicon dominated the thin-film technologies
but was replaced by CdTe over time (Fraunhofer ISE, 2016). Third generation cells as well as
cells with concentrators are produced only in very small amounts and their market share is yet
negligible (Fraunhofer ISE, 2016).

2.4 A patent search strategy for photovoltaic sub-trajectories

The previous section discussed the technological and economic differences between the PV sub-
trajectories and components. In the following, a patent search strategy for the PV system and its
cell sub-trajectories and generic components is developed to be able to analyze inventive activity
in the different sub-trajectories. The development of the search strategy follows established
procedures, especially Porter et al. (2008) and Costantini et al. (2015a). First, different patent
search methods and their advantages and disadvantages are discussed. Second, the development
of the search strategy is elaborated in detail and third, an evaluation and comparison of the
proposed search strategy and two benchmark search strategies are presented to validate the
proposed one.

2.4.1 Patent search strategies

Patent data is stored in databases, usually managed by the respective patent offices. The
selection of patents for economic analysis requires a search strategy to identify relevant patents
in databases. A multitude of approaches exist to search for technology specific patents (see
Abbas et al., 2014, for an overview). The most common and easy to replicate search strategies
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Figure 2.6: Share of annual worldwide photovoltaic cell production.
Source: Fraunhofer ISE (2016).

use either a classification scheme or technology specific keywords as well as the combination of
both (Eisenschitz and Crane, 1986; Dirnberger, 2011; Xie and Miyazaki, 2013).8

Classification schemes are used by patent offices to support the examination process and
to ease their search for prior art (Jaffe and Trajtenberg, 2002). These schemes are structured
according to technological principles and are not designed for economic analysis on a product or
process level (Vijvers, 1990; Costantini et al., 2015a). One frequently used classification scheme
is the International Patent Classification (IPC) managed by the World Intellectual Property
Organisation (WIPO).9 Additionally, recently the Cooperative Patent Classification (CPC) was
introduced, which has a specific classification for emerging cross-sectoral technologies such as PV
(Veefkind et al., 2012). Using a classification scheme is relatively easy and can derive sufficient
results if the desired product or process is exclusively covered by one or multiple classes.10

However, the use of classification scheme to select patents has potential problems. One major
problem emerges if a technological principle is used in several products or processes and using
such a class to select patents might include patents which are not related to the product or
process under consideration. Furthermore, it is also possible that a product or process combines
different technological principles and if a class is not considered, relevant patents are missing.11

A keyword search can deliver sufficient results, if a technology can be described by a set
of specific keywords. However, several problems exist, since keywords can be used for multiple
products or processes not related to the one under consideration. Therefore, keywords need
to be selective to avoid including patents which are not related to the relevant product or
process. Furthermore, patent documents can be intentionally written to avoid specific keywords
8 Other possible approaches use, for example, co-occurrences of classifications or keywords on patents, use a

pre-defined set of patents to train a search algorithm, or use citations from a specific set to retrieve previous
patents (Abbas et al., 2014). However, these approaches are not easily replicable and are sensitive towards the
database used.

9 Further classification schemes are the ones by the United States Patent and Trademark Office (USPTO) or
the Japan Patent Office (JPO). See Held et al. (2011) or Wolter (2012) for comparisons.

10 Such a case are the patents for wind power. The F03D classes cover nearly all relevant patents for wind power.
11 Other problems relate to the classification system itself, such as changes over time or that patent examiners

misclassify a patent or assign too many or too few classes to a patent.
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to keep the invention hidden from competitors or not to reveal all details about the invention.
Also, language differences or differences in the terminology can affect the number of selected
patents (Montecchi et al., 2013).12 A combination of both, a classification scheme and a set of
keywords can mitigate some the above mentioned problems, but is more restrictive than each
one individually.

2.4.2 A new patent search strategy for photovoltaics and its sub-trajectories

In the following, I explain how the proposed search strategy is developed using a combination
of IPCs and keywords to provide an overall search strategy for PV patents and to distinguish
different components and sub-trajectories in the patent data. Similar approaches were proposed
earlier, but they do not sufficiently cover the different cell sub-trajectories and PV components.13

In order to collect the specific keywords and patent classifications for PV, the technical as well
as economic literature was reviewed to define the boundaries of the technology. During this
process, the three different components and the three different cell sub-trajectories are identified
(compare Figure 2.2). Such an in-depth analysis is a crucial part since several other technologies
are very close in the technological space. For example, other means exist to convert sunlight
into electricity, such as concentrated solar power, which collects heat to run a steam engine
and also solar heat collectors are quite similar (see, for a comparison Peters et al., 2011). But
these technologies follow different technological principles and are not related to a PV system.
Furthermore, the core technological principle of PV is the same as for light emitting diodes, but
in the case of PV the light is not emitted, but absorbed.14 Other technologies and products
are also close to PV, such as optical sensors or digital cameras. With respect to the materials
used, semiconductors are essential in the microchip industry as well. Even though there are
spillovers from adjacent technologies (Sze, 1981; Nemet, 2012), the aim of the search strategy
is to understand the development in the different PV sub-trajectories and therefore requires a
sharp distinction from adjacent technologies.

Based on the overall understanding of the technology, IPCs and keywords for the different
components of the PV system and the different cell sub-trajectories are collected. The keywords
and classes are grouped according to the different PV system components and sub-trajectories.
Special attention is given to the different materials and processes used in PV cell production
to avoid inclusion of non-relevant patents if the material or process is used elsewhere. Patent
classifications are selected based on an in-depth review of the IPC system. The scope of the IPCs
is intentionally wider (the 8-digit main group level) than in comparable IPC search approaches.
Since patents assigned to these classes are searched also by keywords, this allows to capture
patents which are misclassified or which are affected by changes in the classification scheme and
would be missed out otherwise.

Overall, six different sets of classes and keywords are identified: the three different cell sub-
trajectories as well as the module and encapsulation and the balance of system components.
For the sub-trajectories, differentiation between the materials is possible, such as mono- and
poly-crystalline cells, but since the sub-trajectory is the level of analysis, such more product like
12 Additionally, patent databases are not always complete and titles, abstracts, or other content can be missing

which leaves out potentially relevant patents.
13 For example, Liu et al. (2011) and Breyer et al. (2013) distinguish different PV-cell materials but do not take

into account other components of the PV System. Jang et al. (2013) select patent for different parts of the
PV value chain. Jamali et al. (2016) use the recently introduced Cooperative Patent Classification (CPC) to
distinguish between different PV generations, but here other components of the PV system are neglected.

14 A light emitting diode uses a semiconductor and via a n-p-junction light is emitted (see Schubert, 2006, for a
technical discussion).
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separation is not considered in more detail, but possible.15 However, there are cases where the
patent document does not have enough information to attribute it to any of the sub-trajectories
or components. A residual category is introduced for all patents which are related to the PV
system in general, but cannot be attributed. There are at least three reasons for a patent
not being able to be assigned to the different components. The first could be that the list of
keywords miss certain aspects and the respected keywords are not included. Second, the patent
is intentionally written to avoid certain keywords to disguise them from competitors. The third
reason is incomplete data, since patents can be stored with missing information and have, for
example, only a title which could be very simple, such as “photovoltaic cell” and no abstract
is present to infer about the actual content of the patent. Since these patents are nevertheless
relevant, they are included in this residual category.

The sets of IPCs and keywords for each component and cell sub-trajectory was validated
in an iterative process by leading experts in the field covering different parts of the PV system
and having a background in academia and practice.16 The final list of IPCs and keywords is
presented in Appendix 2.7.1.17

2.4.3 Evaluation and comparison with benchmark search strategies

To evaluate the quality of the proposed search strategy in terms of scope and coverage, the
patents which can be selected by the proposed search strategy are compared with two other
leading patent selection approaches, the WIPO Green Inventory for PV (GI) and the Coop-
erative Patent Classification for PV (CPC).18 For this purpose, patent data is extracted from
the Worldwide Patent Statistical Database (PATSTAT) (EPO, 2014).19 Patents from 1970 un-
til 2011 are selected. Two different patent quality dimensions are considered: priority patent
applications, which includes first filings of patent applications and triadic patents, which are
applications jointly filed at the USPTO, JPO and the EPO, which are considered to be very
valuable patents (Grupp, 1996; Dernis et al., 2001).

There are in total 49,171 priority patents in the proposed search strategy, while there are
129,253 priority patents based on the GI and 57,508 priority patents based on the CPC (comp.
Table 2.1). While there is a difference in the magnitude, structural differences in the development
over time are not present (comp. Figure 2.7). The proposed selection and the selection based on
the CPC have nearly the same development over time. The development of the Green Inventory
follows the same pattern, but with a greater magnitude. The results for the higher valued
triadic patents is similar in its development. The overall triadic patent count is smaller, with
2,952 from the proposed search strategy, 9,865 for the Green Inventory and 3,577 in the CPC.
The development over time is different between priority and triadic patents. Especially the
15 The list of IPCs and keywords in Table 2.3 contains for each cell sub-trajectory two sets. The silicon wafer

cells can be separated in mono- and poly-crystalline cells, the thin-film cells in silicon thin-film and cells using
materials from the II-VI-, III-V-, and I-III-VI-groups, and the emerging cells can be separated in organic cells
and cells with inorganic materials.

16 Personal interviews to validate the different keywords and IPCs for the components and sub-trajectories took
place in November 2014 in Jena, or via phone or email. Documentation is available on request.

17 The SQL-code to use the search strategy is available on request.
18 Both search strategies are widely used in the literature, the WIPO Green Inventory for example in Lei et al.

(2013), Martinez et al. (2013), Choi and Anadn (2014), Gallagher (2014), Groba and Cao (2015), and the
CPCs for example in Bointner (2014), Stek and van Geenhuizen (2015), Leydesdorff et al. (2015), Diederich
and Althammer (2016), Glachant and Dechezleprêtre (2016), Jamali et al. (2016).

19 Patents are selected by first searching for the respected classes and keywords in all patents in the database and
then selected based on the patent’s DOCDB patent family the priority patent. This approach allows capturing
patents where title or abstract are only available for family members.
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Figure 2.7: Comparison of different patent search strategies for photovoltaics over time.

Table 2.1: Priority patent overlap between different search strategies.

Absolute overlap Relative overlap

Proposed GI CPC Proposed GI CPC

Proposed 49,171 Proposed — 0.839 0.744
GI 41,268 129,253 GI 0.319 — 0.410
CPC 36,564 52,963 57,508 CPC 0.636 0.921 —
Note: In the right table, the bold diagonal represents the number of patents per search strategy
while the lower triangle represent the absolute overlap between two search strategies.

surge of priority patents the last years is not present for triadic patents20 but there is again no
structural difference between the search strategies.

A closer evaluation of the selected patents reveals that the overlap between different search
strategies is considerable.21 About 84% of the patents from the proposed search strategy are
included the GI search strategy, while, on the other hand, only 32% of the patents in the GI
are also in the proposed selection. However, the GI selects a very large number of patents
overall. With respect to the CPC, the proposed selection contains 75% of the patents which
can be selected by the CPC, while the CPC contains about 64% of the patents that are selected
by the proposed search strategy. A comparison between the GI and the CPC reveals that the
CPC is nearly (92%) a complete subset of the GI, but far more restrictive. Overall, there are
35,197 patents which are selected by all three approaches. If the overlap is considered for triadic
patents, the share of patents from the proposed search strategy in the GI and CPC search
strategies increases marginally (comp. Table 2.4 in the Appendix).

Further differences between the search strategies can be found in their technological coverage.
Each patent has one or several classes assigned to it. On average, the patents selected by the
proposed search strategy have 2.6 classes per patent, while patents selected by the GI have
3.5 classes and the CPC patents have 3.0 classes per patent. Since all search strategies use a
pre-defined set of classes, calculating the share of classes that should be covered and classes that
20 The decline in the last year stems from the delay in the patent offices procedures.
21 The overlap between the different search strategies is calculated by P atentsA∩P atentsB

P atentsA
. For example, the share

of patents from the proposed search strategy that are also in the Green Inventory is: 49,171∩129,253
49,171 = 41,268

49,171 =
0.839.
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are not covered, gives an idea how widespread the patents are in the technological space. If we
assume that the more concentrated the search is on the technological landscape, the better it is
to distinct the technology from other technologies. To get an idea how well a search strategy
selects the patents, I calculate the share of classes which are not in the pre-defined set over
all classes obtained by the respective search strategy. The higher this share, the broader are
the patents distributed on the technological landscape. The share of non pre-defined classes is
for the proposed search strategy 29%, while it is 67% for the GI and 65% for the CPC. This
conveys that the proposed search strategy discriminates better between relevant and irrelevant
patents. However, we need to keep in mind that the initial set of relevant classes is larger for
the proposed search.

Figure 2.9 in the Appendix depicts a graphical representation of of the technological land-
scape by the classification co-occurrences of the priority patents. The figure displays in blue
the classes (at the group level) which were used to query the patent data and in red are classes
which are also on these patents. The classes are connected to each other if they co-occur on the
same patent. The size of the nodes represents the number of this co-occurrences per class (in
log transformation). The proposed selection has a large fraction of blue nodes in the landscape
representing the relevant IPCs. Red nodes are only peripheral and not that large. The land-
scape derived from the Green Inventory has many more red nodes of considerable size. The CPC
landscape however has only one central blue node, which is the Y02E 10 group which covers all
PV patents. However, there are also many other classes which co-occur on these patents.

With respect to the country coverage by the different search strategies, Figures 2.10 and 2.11
in Appendix 2.7.2 depict country shares of priority and triadic patents over time.22 No structural
differences between the three search strategies are immanent, indicating that the use of keywords
does not bias the selection of patents. Japan has the highest share of priority patents, which is
related to their patent regulations in the past, which allowed only one claim per patent, while
other patent offices allowed broader patents. This inflation of patents declined after regulation
changed in 1988 (Sakakibara and Branstetter, 2001). The second and third countries are the
USA and Germany. In recent years, Asian countries, especially South Korea and China, gain
remarkable shares as well. With respect to the triadic patents, the USA has the highest share,
but it declines over time. Japan is second, followed by Germany. Asian countries have hardly
any triadic patents. Especially for China, hardly any triadic patents are filed. de la Tour et al.
(2011) attribute this lack of filing patents internationally to the low quality of Chinese patents,
since Chinese firm use patents to signal the government that they are inventive rather then to
protect their inventions.

Overall, the proposed search strategy does not structurally differ from the two benchmark
search strategies in terms of development over time and country coverage. However, the absolute
number is much lower compared to the GI, which seems to be broader in its technological
coverage. The proposed search strategy as well as the CPC are more focused on the core
PV patents. Therefore the proposed search strategy is comparable to the benchmark search
strategies, but has the advantage to distinguish the sub-trajectories, which are analyzed in the
following.

2.5 Sub-trajectories in photovoltaic patents

Based on the proposed search strategy, it is possible to analyze the development of the differ-
ent sub-trajectories over time. The disaggregated patent data for the different components and
sub-trajectory is given in absolute and relative terms for the priority patents in Figure 2.8 and
22 A patent is assigned to a country based on the patent office of the priority filing.
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Figure 2.8: Absolute and relative number of priority patents per sub-trajectory.

for triadic patents in Figure 2.12 in Appendix 2.7.3. However, there are hardly any differences
between the two patent quality definitions. We observe a steady increase in absolute inventive
activity in all sub-trajectories, especially in the last years. With respect to the relative devel-
opment, it is surprising to see that the share of the silicon cell sub-trajectory is very low and
invariant over time. Even though it increases in absolute numbers, its relative share is very
small. This is also remarkable since these cells clearly dominate the market and have high learn-
ing rates. With respect to the thin-film sub-trajectory, there is an increase in inventive activity
in the 1970s and 1980s when the majority of patents where filed for this sub-trajectory. However,
from the 1990s onwards, the relative share of thin-film patents declines, but is still about three
times as high as for the silicon cell sub-trajectory. The emerging cell sub-trajectory starts to get
relevant shares from the 1990s onwards, especially with the introduction of the Grätzel-Cell and
follow up inventions. Nowadays they have even a higher share than the thin-film cells, indicating
in which direction further inventive activity will unfold.

With respect to the module and encapsulation component, there is also an increase in inven-
tive activity. This increase can be related to the fact that especially the silicon cells have reached
their physical boundaries and cost reductions and increases in efficiency can only be achieved
if the whole module is improved, for example, by reducing the size of the electronic contacts
which reduces the absorptive area of the cells. The share of the Balance of System component
does not change over time, even though a steep learning curve is present (Fraunhofer ISE, 2015).
Unfortunately, there is a considerable share of patents which cannot be attributed to the differ-
ent components and sub-trajectories. However, this share declines over time and shifts between
the different components can maybe be attributed to the increase in patents which can assigned
to sub-trajectories. The overall development trend of sub-trajectories should not be affected by
unassigned patents.

If we turn to the different countries and their inventive activity in sub-trajectories (Table 2.2),
we can observe several differences between the countries. As indicated earlier, the countries differ
in their patenting intensity, but there is also a focus of some countries on specific sub-trajectories.
For example, while priority patents for silicon cells account for about 3% in most countries, in
China these cells account for nearly 10% of their patenting activity. Another example are thin-
film cells, where the US has a quite high share of 27% of these patents in its patenting activity,
while, for example, Germany has only half of that amount. However, Germany has a high share
of patents for the module and encapsulation. Emerging cells have about twice the share among
priority patents in Asian countries compared to the US and Germany, indicating their direction
of research. Furthermore, it is noteworthy that there is hardly any differences between the
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Table 2.2: Priority patents per country and sub-trajectory from 1970-2011.

Absolute per sub-trajectory Relative per sub-trajectory

US DE JP KR CN RoW US DE JP KR CN RoW

Silicon cells 165 102 660 262 727 183 3% 3% 3% 4% 9% 3%
Thin-film cells 1,434 501 4,833 1,438 1,294 991 27% 14% 24% 21% 16% 19%
Emerging cells 482 271 3,167 1,324 1,495 628 9% 8% 16% 19% 19% 12%
Module 1,019 1,135 3,417 1,355 1,096 1,259 19% 32% 17% 20% 14% 24%
BoS 465 260 1,546 408 886 483 9% 7% 8% 6% 11% 9%
Unassigned 1,831 1,288 6,482 2,150 2,424 1,712 34% 36% 32% 31% 31% 33%

Total 5,396 3,557 20,105 6,936 7,922 5,255 100% 100% 100% 100% 100% 100%

share of unassigned patents across countries, indicating that there seems to be no bias between
countries but also not between sub-trajectories.

If we consider the distribution of triadic patents (Table 2.5 in the Appendix), the absolute
numbers are greatly reduced, especially for China where less than 1% of all patents are filed
in the tree patent offices. The overall distribution of patenting activity inside the countries is
similar as for priority patents. However, remarkable is the high share of triadic patents for the
module component for Japan, which exceeds the high share of Germany. There are also some
changes for China. Even though the total number of triadic patents is very low, half of them are
for emerging cells, indicating that China tries to secure their inventive activity in this promising
sub-trajectory internationally.

Overall, the proposed search strategy for the different PV sub-trajectories reveals that there
are surprising differences in the development. First, the currently prevailing sub-trajectory,
silicon wafer cells, shows the smallest share of patents among the whole PV system, despite its
market domination and political support. However, this might not be that surprising, since this
sub-trajectory reached its physical limits and improvements in efficiency are nearly exhausted or
incremental. However, inventive efforts might have switched to the module production, which
could reduce costs further for modules using this cells. The development of thin-film cells is more
dynamic and increased in relative inventive activity until the 1990 and decreases since then, when
the emerging cell technologies achieved a break through with the Gräzel-cell. Nowadays inventive
activity is focused on this emerging cell sub-trajectory, since it allows to overcome the physical
limits of the other sub-trajectories. There are also geographical differences in inventive activity
in the different sub-trajectories. For example the US focuses inventive activity on the thin-film
sub-trajectory, while Germany focuses on inventive activity in modules. Asian countries seem
to focus on emerging cells.

2.6 Conclusion

The aim of this chapter is to propose a modular and replicable patent search strategy for the
photovoltaic system and its sub-trajectories, since existing search strategies are not able to
distinguish PV patents on this micro-technological level. For this purpose, the search strategy
is developed following established procedures (Porter et al., 2008; Costantini et al., 2015a) and
allows to distinguish different components of the pv system, as well as the different cell sub-
trajectories. The search strategy provides similar results as the commonly used WIPO Green
Inventory and the newly introduced CPC Classification for emerging technologies, but the search
strategy allows to analyze the technological development of the different sub-trajectories. The
analysis of the development of sub-trajectories provides a better and finer-grained understanding
of technological progress in PV. Surprising results are revealed, especially that the prevailing
sub-trajectory, silicon wafer cells, has the lowest share of patenting activity, even though it
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dominates the market. This indicates that inventive activity in this cell sub-trajectory is either
incremental in nature or kept secret. Further dynamics, such as the emergence of new cell
technologies, which shifted the focus of inventive activity away from thin-film cells, are revealed.
Also differences between countries and their focus on sub-trajectories are uncovered. Here, Asian
countries seem to focus on emerging technologies, which have high potential in the future.

The proposed search strategy opens up further avenues for more detailed analysis of the
development of the PV system and its sub-trajectories. For example, evaluations of policy in-
struments with the help of patent data needs to be reconsidered, since effects of demand inducing
policies might be overstated, since inventive activity in the dominant cell technology is the low-
est. Furthermore, it is possible to analyze in more detail the source of efficiency improvements
and factors affecting the learning curve of PV. First descriptive results show high inventive
activity in the module component, but not at the cell sub-trajectory. Also the emerging cell
sub-trajectory increases its share substantially, which can be used to forecast further technologi-
cal progress. In Chapter 3 I can show that knowledge recombination by German inventors differs
between sub-trajectories, indicating that different competences and knowledge are required for
the different sub-trajectories. The possibility to analyze the technological development in more
detail can also be useful for studies on the firm and industry level, since technological choice
of firms has an effect on its entry (Kapoor and Furr, 2015) and possibly on its survival. With
respect to industrial policy, knowing how different sub-trajectories emerge and develop are key
determinants for a competitive advantage.

Besides the direct implications on understanding technological progress in the PV system, an-
alyzing sub-trajectories reveals interesting patterns and should be considered in other technolo-
gies as well. The concept of sub-trajectories and their emergence, for example via micro-radical
innovations (Durand, 1992), helps to understand determinants of progress in more detail. Even
though there are several examples of detailed analysis, studies using patent data have neglected
this dimension so far. Promising cases are for example sub-trajectories in battery technologies,
which emerged over time and provide different characteristics to store electricity and are a vital
part to transform the energy system.

However, there are also several shortcomings with the proposed search strategy. First, the
keywords and classes do not cover patents which will emerge in the future and updating the
search strategy is necessary over time. Also there is a considerable share of patents which is
not assigned to the different sub-trajectories, which only gives indication of the distribution of
patents per sub-trajectory. Increasing data quality or using different databases could mitigate
this shortcoming. Lastly, even though the scope of the search strategy is broad, there are
certainly patents which are not considered.

2.7 Appendix

2.7.1 The search strategy for photovoltaic sub-trajectories

The combination of IPCs and keywords for the search strategy is presented in Table 2.3. The
patent documents are searched for the keyword in title and abstract while restricted to the
specific IPCs. The keywords and IPCs are grouped by their sub-trajectory to reduce the overlap
with other adjacent sub-technologies and should be searched accordingly. The “_” and the “%”
symbol are used as wildcards for single and multiple characters.
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Table 2.3: List of IPCs and keywords for the photovoltaics search strategy.

Sub-trajectory IPCs Keyword combination

Silicon wafer H01L 21% ((%monocrystalline_silicon% | %monocrystal_silicon% | %crystal_silicon% |
cells H01L 31% %silicon_crystal% | %silicon_wafer% ) + (%photovoltai% | %solar% ))

C30B 15% | %back_surface_passivation% | (%pyramid% + %etching% + %silicon% )
C01B 33% ((%polycrystalline_silicon% | %multicrystalline_silicon% | %poly_Si% | %polysilicon%)

C30B 15% + (%photovoltai% | %solar% )) | (%ribbon% + (%photovoltai% | %solar% | %silicon% ))
C30B 29% | (%edge_defined_film_fed_growth% + %silicon%) | %Metal_wrap_through% |
H01L 21% %emitter_wrap_through% | %ribbon_growth%
H01L 31%

Thin-film C23C 14% ((%chemical_vapour_deposition% | %PECVD% | %physical_vapour_deposition% | %PVD% |
cells C23C 16% %solid_phase_crystallization% | %laser_crystallization% | %nanocrystalline% | %microcrystalline%)

H01L 21% + (%photovoltai% | %solar% | %silicon% )) | ((%tandem% | %amorphous_silicon% |
H01L 27% %silicon_substrate% | %silicon_film%) + (%photovoltai% | %solar%)) | %staebler_wronski%
H01L 29%
H01L 31%

C23C 14% ((%cadmium_telluride% | %CdTe% | %copper_indium_diselenide% | % CIS % | %CuInSe% |
C23C 16% %indium_tin_oxide% | %gallium_arsenide% | %GaAs% | %roll_to_roll% | %surface_textur% |
H01L 21% %thin_film% | %thinfilm%) + (%photovoltai% | %solar%)) | %copper_indium_gallium_diselenide% |
H01L 25% %CuInGeSe% | %CIGS% | %copper_zinc_tin_sulfide% | %CZTS% | %kesterite%
H01L 27%
H01L 29%
H01L 31%

Emerging C08K 3% ((%dye_sensiti% | %titanium_oxide% | %titanium_dioxide% | %TiO2% | %organic% | %polymer%)
cells C08G 61% + (%photovoltai% | %solar)) | %gr_tzel% | %graetzel% | %hybrid_solar_cell%

H01B 1%
H01G 9%
H01L 21%
H01L 31%
H01L 51%
H01M 14%

H01G 9% ((%quantum_dot% | %perovskite% | %organic_inorganic% | %plasmon% | %nanowire% |
H01L 31% %nanoparticle% | %nanotube%)) + (%photovoltai% | %solar))
H01L 51%
H01M 14%

PV modules H01L 21% ((%anti_reflection% | %encapsulat% | %back_contact% | %buried_contact% | %bypass_diode% |
H01L 25% %rear_surface_protection% | %back_sheet% | %building_integrat% | %mounting_system%)
H01L 27% + (%photovoltai% | %solar)) | %solar_panel% | %photovoltaic_panel% | %solar_modul% |
H01L 31% %solar_cell_modul% | %photovoltaic_modul% | %solar_cable% | %photovoltaic_wire% |
H01R 13% %solar_array% | %photovoltaic_array% | %BIPV% | %solar_park% | (%spacecraft% +
H02N 6% (%photovoltai% | %solar_cell%))
H02S 20%
H02S 30%
B64G 1%
E04D 13%

BoS F21S 9% ((%off_grid% | %nverter% | %DC_to_AC% | %DC_AC% | %MPP% | %grid_connected%) +
G05F 1% (%photovoltai% | %solar%)) | ((%Tracking% | %Tracker% | %Energy_management%) +
H01L 31% (%photovoltai% | %solar_cell%)) | (%maximum_power_point% + %track%) |
H02J 3% %anti_islanding_protection% | %solar_charge% | %solar_powered%
H02J 7%
H02M 3%
H02M 7%
H02S 10%
H02S 40%
H02S 50%

Unassigned B64G 1% (%photovoltai% | %solar_cell%)
C01B 33%
C08K 3%
C08G 61%
C23C 14%
C23C 16%
C30B 29%
C30B 15%
E04D 13%
F21S 9%
G05F 1%
H01B 1%
H01G 9%
H01L 21%
H01L 25%
H01L 27%
H01L 29%
H01L 31%
H01L 51%
H01M 10%
H01M 14%
H01R 13%
H02J 7%
H02M 7%
H02N 6%
H02S 99%
H02S 20%
H02S 30%
H02J 3%
H02M 3%
H02S 10%
H02S 40%
H02S 50%
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2.7.2 Search strategy evaluation

Table 2.4: Triadic patent overlap between different search strategies.

Absolute overlap Relative overlap

Proposed GI CPC Proposed GI CPC

Proposed 2,952 Proposed — 0.867 0.763
GI 2,560 9,865 GI 0.260 — 0.316
CPC 2,251 3,121 3,577 CPC 0.629 0.873 —
Note: In the right table, the bold diagonal represents the number of patents per search strategy
while the lower triangle represent the absolute overlap between two search strategies.

Table 2.5: Triadic patents per country and sub-trajectory from 1977-2011.

Absolute per sub-trajectory Relative per sub-trajectory

US DE JP KR CN RoW US DE JP KR CN RoW

Silicon cells 28 21 30 8 1 25 3% 5% 4% 4% 2% 4%
Thin-film cells 291 100 211 56 10 141 34% 22% 25% 29% 20% 24%
Emerging cells 119 69 118 58 24 98 14% 16% 14% 29% 49% 17%
Module 125 107 222 18 2 102 15% 24% 27% 9% 4% 18%
BoS 43 24 49 7 3 29 5% 5% 6% 4% 6% 5%
Unassigned 248 127 198 50 9 184 29% 28% 24% 25% 18% 32%

Total 853 447 828 197 49 578 100% 100% 100% 100% 100% 100%
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Figure 2.9: Classification co-occurrence for different search strategies.

Figure note: The nodes represent the IPC or CPC classes at the group level, while the edges
represent the co-occurence of classes on a patent. The size of the nodes as well as the edges is
log-transformed.
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Figure 2.10: Country share of priority patents for different search strategies over time.
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Figure 2.11: Country share of triadic patents for different search strategies over time.

2.7.3 Sub-trajectories in triadic patents
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Figure 2.12: Absolute and relative number of triadic patents per sub-trajectory.
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Chapter 3

Knowledge recombination along the
technology life cycle

3.1 Introduction

Technologies evolve by the inducement of new knowledge into the knowledge base, which is
the result of the recombination of already existing knowledge and artifacts (Schumpeter, 1912;
Nelson and Winter, 1982; Dosi and Nelson, 2010, 2013). While there is an extensive stream of
literature exploring the factors of recombinatorial success at the firm level (Kogut and Zander,
1992; Savino et al., 2017), the influence of knowledge recombination on the technology knowledge
base and its evolution over time is so far neglected. It is well known that technologies evolve
along their knowledge base, which itself shows certain dynamics and evolves over time (Malerba
and Orsenigo, 1996, 2000). Besides internal knowledge accumulation, the in-flow of knowledge
from sources external to a technology is crucial for its evolution in terms of initiating, redirecting
and refreshing the knowledge accumulation processes (Dosi and Nelson, 2013). The way external
knowledge diffuses into a technology, the source it comes from, and the type of actors involved
appear to be core determinants of that technology’s further development (Grant, 1996; Dosi and
Nelson, 2013).

The evolution of a technology can be stylized along a life cycle. Anderson and Tushman
(1990) propose a cyclical model of a technological life cycle (TLC). The model distinguishes
four phases, an era of ferment, the emergence of a dominant design, an era of incremental
change, and a discontinuity, which restarts the cycle. This TLC model has been widely used to
analyze technological development and is extended into various dimensions, for example covering
the influence of cognitive factors (Kaplan and Tripsas, 2008), specific phases (Murmann and
Frenken, 2006) or the level of granularity (Taylor and Taylor, 2012). However, knowledge, the
technology’s knowledge base, and the influence of different types of knowledge along the TLC
are so for neglected from a theoretical and empirical perspective. While there is first empirical

Acknowledgments: Previous drafts of the chapter were presented at the European Meeting on Applied Evo-
lutionary Economics 2013 in Sophia Antipolis, the 2014 SPRU DPhil Day in Brighton, the 15th International
Conference of the International Joseph A. Schumpeter Society in Jena, the 5th Governance of a Complex
World conference 2016 in Valencia, and at the 16th International Joseph A. Schumpeter Society Conference
2016 in Montreal where it received the best student paper award. The chapter benefited from discussions by
and with Stephan B. Bruns, Uwe Cantner, Alex Coad, Holger Graf, Johannes Herrmann, Max-Peter Menzel,
Francesco Quatraro, Giorgio Triulzi, Antonio Vezzani, Susanne Walter.
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evidence that different kinds of knowledge matter along the technological development (Krafft
et al., 2011, 2014a), no theoretical foundation is provided explaining the underlying factors
and processes. The aim of the chapter is to close this gap by extending the Anderson and
Tushman (1990) model and proposing how recombination of different kinds of knowledge shapes
a technology over its life cycle. The extension states that in each TLC phase different sources
of knowledge are required for successful recombination and technological progress.

The proposed extension of the Anderson and Tushman (1990) model is empirically tested for
wind power (WP) and photovoltaics (PV) in Germany for the period from 1970 until 2006. After
the oil crises in the 1970s both technologies were considered as means to reduce the dependency
on fossil fuels and to combat climate change (Jacobsson and Johnson, 2000). Since then, severe
effort has been put forward to enhance the technologies and both are nowadays competitive
with incumbent technologies (REN21, 2016). These makes them ideal cases to analyze how
technologies evolve and mature over a life cycle. The period covers several TLC phases and
allows to draw conclusions how knowledge recombination patterns change over time. Patent data
is used to proxy the technological knowledge base, while inventors and their inventive experience
are used to characterize different sources of knowledge. Patent’s forward citations are taken as
recombinatorial success and proxy the contribution to the knowledge base (Carpenter et al.,
1981; Harhoff et al., 1999, 2003; Jaffe and de Rassenfosse, 2016). Negative binomial regressions
are run for the overall period as well as for the different TLC phases to estimate the effect
of different sources of knowledge. Furthermore, rolling-window regressions are introduced as a
novel approach to capture dynamics over time.

The results show that different sources of knowledge matter for technological progress in
general but differently in the phases of the TLC, mostly in line with the theoretical model. For
the overall technological development, inventors which possess specialized knowledge are most
influential. In WP also de-novo inventors matter, who induce knowledge which has not been
used before as well as inventors who were previously active in unrelated technologies. Along
the phases of the TLC, the era of ferment in WP is mainly shaped by inventors with unrelated
knowledge but relevance shifts over time towards specialized and de-novo inventors. In PV, the
era of ferment is shaped by several types of inventors, but here also a shift towards specialized
inventors takes place over time. The rolling-window regressions provide a more detailed picture
and show how different kinds of inventors and their knowledge is relevant over time.

These results contribute to a deeper understanding of the evolution of a technology’s knowl-
edge base and which dynamics take place along the TLC. The understanding how knowledge
matter in different stages of a technology is crucial for policy maker to implement relevant
policies and support the right actors as well as for management to pursue the right R&D strat-
egy. Furthermore, the theoretical contribution by the extension of the Anderson and Tushman
(1990) model provides a general framework to understand technological evolution and the re-
spective knowledge dynamics as well as the influence of knowledge from different origins and
its integration success into the knowledge base. This complements previous work and allows
a more holistic approach to understand technological development along the technology’s life
cycle. From a methodological point of view, the utilization of previous patents of inventors
to distinguish different sources of knowledge allows to analyze long term developments, which
can not be captured, for example, by surveys (Conti et al., 2014). Additionally, rolling-window
regressions prove to be a useful approach to shed light on dynamics of technological progress in
a continuous manner.

In the following, Section 3.2 reviews the literature about knowledge base, knowledge recom-
bination, and their relevance for technological progress and integrates these concepts into the
TLC model, providing the theoretical framework for the empirical analysis. Section 3.3 intro-
duces WP and PV as the technologies under consideration and discusses how they develop over

37



Chapter 3: Knowledge recombination along the technology life cycle

time. Section 3.4 presents the data, econometric approach and the results. The last Section
discusses findings and concludes.

3.2 Knowledge recombination along the technology life cycle

3.2.1 The technology’s knowledge base

The notion of a knowledge base describes a set of knowledge, practices and routines attributed
to an object of observation, such as a firm, a technology or a country. The relevance of the
knowledge base has been studied extensively at the micro (firm) level (e.g. Nesta and Saviotti,
2005; Krafft et al., 2014a; Roper and Hewitt-Dundas, 2015), but also on more macro dimensions
such as the regional (e.g. Leydesdorff and Fritsch, 2006; Cantner et al., 2010), and the country
level (e.g. King, 2004; Leydesdorff et al., 2006). The knowledge base is of central importance for
innovative activity at the firm level (Nesta and Saviotti, 2005; Antonelli and Colombelli, 2013)
and for firm survival (Colombelli et al., 2013). Concerning the knowledge base of a technology,
the understanding how the knowledge base shapes technological development is scarce. While
some studies focus on the structure of the knowledge inside an industry and show that there
are certain dynamics in the knowledge base evolution (Yayavaram and Ahuja, 2008; Krafft
et al., 2011, 2014a) and shifts between different regimes (Maleki and Rosiello, 2014), a general
understanding how the knowledge base evolves and how the respective technologies are shaped
is missing.

The evolution of the knowledge base is driven by knowledge accumulation and introducing
new knowledge into it (Malerba and Orsenigo, 1996). This new knowledge stems from the
recombination of previously existing knowledge, either from within the knowledge base, or from
outside. The idea of knowledge recombination was already proposed by Schumpeter (1912) using
the phrase “Neue Kombinationen”. This recombination basically leads to a never ending cycle, as
Arthur and Polak (2006, p. 23) put it: “New technologies are never created from nothing. They
are constructed—put together—from components that previously exist; and in turn these new
technologies offer themselves as possible components—building blocks—for the construction of
further new technologies.” This continuous knowledge recombination extends and refreshes the
knowledge base with new contributions of previously existing knowledge, which can be utilized
to create new products, improve processes and foster economic growth (Weitzman, 1996, 1998).

The process of knowledge recombination an increasingly complex (Jones, 2009) and uncertain
task (Fleming, 2001). Several determining factors for success have been identified at the firm
level (e.g. Kogut and Zander, 1992; Savino et al., 2017). For example, the previous or stock
of knowledge which the firm possess is of importance (Liyanage and Barnard, 2003) as well
as its characteristics in terms of structure and complementarity (Dibiaggio et al., 2014). The
recombination of knowledge present in the firm is relevant as well as the reconfiguration of
existing combinations (Carnabuci and Operti, 2013). Also the combination of new and old
knowledge is important for technological advancement (Nerkar, 2003). Especially, the ability
to tap on new or external sources of knowledge which can be integrated in the knowledge
base is relevant (e.g. labor mobility, hiring specific labor, acquisitions, collaboration, suppliers,
customers, ...; see Savino et al., 2017, for an overview).

Knowledge recombination takes place across the knowledge space. A technology can be
viewed as a specific area of the knowledge space which constitutes its knowledge base. If knowl-
edge is recombined within such a knowledge base, it can be considered specialized, since it
combines parts of knowledge, which is already familiar. The relation between a technology and
knowledge which is outside its knowledge base can be characterized by the distance or proxim-
ity in the knowledge space. The distance is relevant, for example, in collaborations, where the
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decision to collaborate is influenced by the distance between partners in the knowledge space
(e.g. Cowan et al., 2007; Baum et al., 2010) or the overlap of firms’ knowledge bases (Rosenkopf
and Almeida, 2003). The knowledge distance for recombination can be constructed either in
a continuous way using patent classifications to calculate Euclidean distances or classification
overlaps (e.g. Breschi et al., 2003; Benner and Waldfogel, 2008; Bar and Leiponen, 2012; vom
Stein et al., 2015), or using binary categories such as related and unrelated knowledge. Applying
this binary approach, Nemet and Johnson (2012) show that the use of related knowledge (they
use the term “near”) leads to more valuable inventions, in terms of forward citations. Youn
et al. (2015) distinguish knowledge in “broad” and “narrow” to analyze general recombinatorial
patterns for US patents and show that there is an increase of “narrow” recombinations over
time.

3.2.2 Knowledge and the technology life cycle

The knowledge base of a technology is central to a technology’s evolution. Malerba and Orsenigo
(1996, p. 470) propose that the knowledge base itself is dynamic and “changes in Schumpete-
rian patterns occurring during a technology and an industry life cycle”. These changes in the
knowledge base occur because different kinds of knowledge enter the knowledge base and their
contribution to technological development might be conditioned on the stage of the technology.
The process of technological evolution can be modeled by a technology life cycle (TLC) similar
to the product or industry life cycle. In the TLC neither the actual product is of importance, nor
the structure of the firms in the industry, but the application of the technology (see Taylor and
Taylor, 2012, for a discussion of the differences). With the technology as the unit of observation,
the TLC allows to understand how different kinds of knowledge expand the knowledge base over
time.

There are several approaches to model a TLC. According to Taylor and Taylor (2012) these
approaches can be generally distinguished into cyclical models based on the Anderson and Tush-
man (1990) model presenting a macro view on the technology and models using a S-curve depict-
ing the technical progress, usually in terms of cumulative diffusion or technical improvements
over time. The S-curve models are closely related to the product life cycle covering a embry-
onic, growth, maturity, and aging stage (Taylor and Taylor, 2012). These stages are frequently
applied to patent data to elaborate in which state a specific technology is (Haupt et al., 2007).
In the cyclical model by Anderson and Tushman (1990), a new discovery or breakthrough opens
up new technological opportunities or trajectories and starts an era of ferment. This phase is
followed by a phase in which a dominant design emerges and a main trajectory is established.1
After the emergence of a dominant design, an era of incremental change follows in which the
technology incrementally evolves along the trajectory until a new technological discontinuity
disrupts the technology and the cycle begins again.

While the TLC has been studied frequently in general, so far the underlying knowledge
dimension which shapes technological progress has been widely neglected. However, with a
focus on the knowledge base, which constitutes a technology, there might be differences in the
kind of knowledge which is necessary to alter and extend the knowledge base in different phases
of the TLC. While it is widely accepted that a discontinuity in the knowledge base creates a new
trajectory leading to a new technology (Dosi, 1982), there is no general model how different kinds
of knowledge influences technological development over the TLC. There is the general concept
1 While Anderson and Tushman (1990) rather see the emergence of a dominant design and a new discontinuity

as a point in time, its more a short phase in which these phenomenon emerge, get recognized and development
adapts towards it, especially on the technology level, which has different characteristics than the product level.
See also Van de Ven and Garud (1993) or Kaplan and Tripsas (2008), who talk about the convergence towards
a dominant design.
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of exploration and exploitation (March, 1991) and the tendency to move from the former to the
latter over time (Utterback and Abernathy, 1975; Klepper, 1996) along with the emergence of
a dominant design (Utterback and Abernathy, 1975; Murmann and Frenken, 2006). However, a
theoretical framework to integrate knowledge into the different phases of the TLC is missing.

Some empirical analyses try to understand how knowledge matters along the TLC and shape
the evolution of a technology. Antonelli et al. (2010) use the co-occurrence of technological classes
within patent applications to shed light on the dynamics of knowledge recombination for infor-
mation and communication technologies, but do not consider a life cycle. Krafft et al. (2011)
use social network analysis to elaborate on the relationship in co-occurrence of technological
classes and show that in biotechnology the search process changes from exploration to exploita-
tion in the recombination process. Krafft et al. (2014a) use the properties of the biotechnology
and telecommunication knowledge base to elaborate on the phases of exploration and exploita-
tion. They show that sectoral differences can be attributed to the phases of the knowledge
base. Furthermore, Krafft et al. (2014b) explore the relationship between the structure of the
biotechnology knowledge base and technological alliances along the TLC. They find that during
the evolution of the biotechnology, search pattern become less random and more organized and
knowledge becomes more related. However, they point out that along a trajectory this sequence
is not always the case.

In the following, the missing link between the evolution of a technology’s knowledge base
and the phases of the TLC is established by extending the Anderson and Tushman (1990) TLC
model. In each phase of the TLC the relevance of different sources of knowledge is derived
and how these knowledge can alter and extend the knowledge base.2 The result is summarized
in Figure 3.1, which expands the initial graphical representation by Tushman and Rosenkopf
(1992) with the relevant knowledge in each phase.

1. Era of ferment: The era of ferment starts the development of a new technology, following
the discovery of a new technological principle, technological disruption, or scientific discov-
ery (Anderson and Tushman, 1990; Tushman and Rosenkopf, 1992). The new technology
is not well understood and uncertainty prevails about the technology’s characteristics and
applications (Kaplan and Tripsas, 2008). The knowledge base is rather small and unstruc-
tured (Krafft et al., 2011). Here, experimentation and exploration are the main inventive
activities (March, 1991). First applications are derived and (product) variation is high
(Van de Ven and Garud, 1993). Niche markets emerge or are created, in which experi-
mentation can take place to gain further understanding of the technology and required
characteristics (Kemp et al., 1998).
Since in the era of ferment the knowledge base is small and unstructured, related and
unrelated knowledge from other technological fields is important. This external knowledge
is induced into the knowledge base and supports the development of the technology by
recombination with existing knowledge already present in the knowledge base. This related
and unrelated knowledge is able to provide new combinatorial possibilities from different
fields and experimenting with new ways of applications and characteristics are possible.
However, due to the high technological uncertainty, failure is very likely (Fleming, 2001).

2. Dominant design: The emergence of a dominant design is characterized by increasing
economies of scale and scope, network externalities and standardization (Utterback and
Abernathy, 1975; Arthur, 1989; Anderson and Tushman, 1990; Klepper, 1996; Murmann
and Frenken, 2006). The knowledge base becomes broader and structured which supports

2 The proposed extension can also be adapted to other models of the TLC, for example the S-shape development
proposed in Haupt et al. (2007) or Cetindamar et al. (2016). See also Taylor and Taylor (2012) who try to
unify the different approaches of a TLC.
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the emergence of the dominant design (Krafft et al., 2011). There are several factors on
the firm and environmental level, which are influential as well (Suarez, 2004), such as the
emergence of institutions which facilitate knowledge exchange among actors (Kaplan and
Tripsas, 2008). The dynamics in the knowledge base play also a role, since the structure
of the knowledge base changes and becomes denser (Krafft et al., 2011).
The knowledge base is enhanced with knowledge from related fields, which share the same
principles and allow useful recombinations to establish wider levels of application for the
dominant design (Murmann and Frenken, 2006). At the same time, the number of variation
is reduced so a single trajectory emerges and development focuses along this trajectory
(Metcalfe, 1995). Here, specialized and detailed knowledge about the core principles of
the technology is relevant to increase performance and application opportunities to expand
the number of possible adopters.

3. Era of incremental change: After the emergence of a dominant design, incremental
change by solving rather small problems along the technological trajectory takes place
(Dosi, 1982; Sahal, 1985; Anderson and Tushman, 1990). Here, the knowledge base is
large and detailed, the technological principles are well understood and the dominant
design is working. This era is characterized by exploitation of the knowledge base by
localized search along the trajectory (Nelson and Winter, 1982; Levitt and March, 1988).
Incremental improvements occur in a routinized way (Henderson and Clark, 1990) and
inertia exists towards switching direction of search (Kaplan and Tripsas, 2008). Social,
political and organizational routines are established as well (Tushman and Rosenkopf,
1992). Nevertheless, certain dynamics still exists along the trajectory (Funk, 2009; Dokko
et al., 2012; Lee and Berente, 2013).
In the era of incremental change, specialized knowledge is necessary to solve the incre-
mental problems, which allow further progress. Very detailed knowledge and experience
is necessary for the incremental improvements. But also new knowledge might be relevant
for further progress. New knowledge might come from a new generation of scientists and
researchers, who are not primed towards a specific concept or way of thinking and can
integrate their new ideas. Since over time specific educational facilities are established,
which provide detailed training in the field, this new knowledge can come up in the era of
incremental change (Baumol, 2004; Vona and Consoli, 2015).

4. Technological discontinuity: The emergence of a technological discontinuity disrupts
the technology and might establish a new trajectory. In this phase, the knowledge base is
exhausted and technical opportunities are scarce. The disruption is usually assumed to be
exogenous to the technology (Dosi, 1982; Tushman and Anderson, 1986). It can occur if
the technology reaches its natural limits (Sahal, 1985), the opportunity space for further
improvement is exhausted (Fleming, 2001; Adner, 2004) or customers radically shift their
preferences (Tripsas, 2008). However, recently the idea that the discontinuity can emerge
out of the incremental improvements, which become radical by accumulation (Funk, 2009),
or social interaction (Dokko et al., 2012) is discussed.
In this stage, the exhausted knowledge base can be rejuvenated by a disruption, which can
open up new recombinatorial possibilities. For the further evolution of the knowledge base
unrelated knowledge is most likely to refresh the technology in a disruptive way. Radi-
cal new ways of recombination can emerge out of these new opportunities. Furthermore,
new unexploited ideas and knowledge can induce the discontinuity, especially if accumu-
lated over time. If the unrelated or new knowledge gets successfully recombined with the
knowledge base, a rejuvenation of the technology takes place and the life cycle starts again.
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Technological discontinuity

  • New science
  • Breakthrough/revolutionary technology
  • Radical performance improvement

  Unrelated knowledge
  New knowledge

Dominant design

  • Industry standard emerges
  • Well-established preferences
  • Economies of scale and scope

  Specialized knowledge
  Related knowledge

Era of ferment

  • Technical uncertainty
  • High variation
  • Ambigious user preferences

  Related knowledge
  Unrelated knowledge

Era of incremental change

  • Retention
  • Incremental technological progress

  Specialized knowledge
  New knowledge

Figure 3.1: Technology life cycle phases and respective relevant knowledge.
Source: Own extention based on the initial representation by Tushman and Rosenkopf (1992).

3.2.3 Inventors and knowledge recombination

To understand the evolution of a technology, it is crucial to determine which factors influence
the evolution of the underlying knowledge base. Since the knowledge is embodied in people,
the inventor, who is able to create new and recombine existing knowledge, is the core deter-
minant for the evolution of the knowledge base. The individual person possess knowledge and
competences, especially tacit ones, which are relevant for recombination and technological ad-
vancement (Grant, 1996; Mascitelli, 2000). The inventor can gain and use his knowledge from
learning-by-doing, experimentation and application (Arrow, 1962a). This extends the inven-
tor’s stock of knowledge and makes the inventor more effective in future inventive activity in
recombination (Conti et al., 2014), but with diminishing returns to novelty (Audia and Goncalo,
2007; Conti et al., 2014). However, the process of recombination is influenced by uncertainty
about the usefulness of the outcome of the recombination process (Fleming, 2001) and specific
characteristics of the inventor play an important role for recombinatorial success.

Several findings reveal which inventor characteristics lead to successful recombinations and
inventions. Gruber et al. (2013) show that the kind of education an inventor received influences
the ability to combine knowledge from different fields. They show that scientists are better in
integrating distant knowledge than engineers. Besides the kind of training the inventor receives,
also the breadth and depth of the knowledge the inventor possess has an influence, as shown by
Boh et al. (2014), while Conti et al. (2014) find that the previous inventive activity positively
influences new inventions. In addition to that, Mohammadi and Franzoni (2014) show that for
scientists knowledge relatedness influences the technological value of inventions. Meyer (2006)
demonstrate that scientists in nanotechnology, who invent at the same time are more effective
than non-inventing scientists. Scandura (2013) shows that the success of inventors is influenced
by the type of knowledge they use. She shows based on survey data that combining scientific
and market knowledge enhances inventive output.

While the characteristics of the inventor are of importance, the origin in the knowledge space
may also play a role. Mobile inventors, which enter a technology from outside the technologies’
knowledge domain, may alter a technology’s knowledge base and enhance recombination possi-
bilities. Those inventors can transport or spill over their knowledge about a specific technology
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to a new one by moving between technologies and industries and carrying their knowledge and
experience with them (Song et al., 2003; Hoisl, 2007). By entering a technology, in terms of cre-
ating an invention in this field, the knowledge these people possess may increase the knowledge
base of the technology they move into. It can be assumed that during the process of invention,
the knowledge an inventor holds is recombined with knowledge present in the technology that
the inventor moves to and increases the knowledge base, especially if the invention is followed
up by other inventors. This transfer of knowledge is important for the technology’s progress and
shapes the direction into which a technology may develop (Schoenmakers and Duysters, 2010).
Here, the distance in the knowledge space plays a role again, since these inventors can originate
from related technologies, which are near or familiar with the technology, or from unrelated
technologies, which do not share common principles. Their movement from one technological
field to another allows them to combine their previous knowledge with the one present in the
technology’s knowledge base they move into.

Based on the different characteristics and technological origin of inventors, inventors can be
distinguished into four different groups based on their inventive experience. The characteristics
these inventors have may influence their success of recombination, especially in different phases
of the TLC. The distinction between different kinds of inventors can be drawn from the inventor’s
personal knowledge and the knowledge base of a technology.

1. New Inventors: Inventors may have no inventive experience, which implies that their
first invention contributes to the technology’s knowledge base. They may have gotten
educational training in this field (Vona and Consoli, 2015), but have no experience with
inventive activities yet. They can be customers who want specific features or characteristics
of a technology and introduce them on their own (von Hippel, 1976, 1988; Bogers et al.,
2010) or the classical tinkerer (Bettiol et al., 2014). They have the advantage that they
are not primed by any previous inventive activity and can bring novel and unexploited
ideas with them. However, they lack experience and tacit knowledge in inventive activity
and may not fully understand the technology.

2. Specialized Inventors: Specialized inventors have contributed to the technology’s knowl-
edge base by previous inventive activity. Due to their repetitive inventive activity, they
benefit from learning-by-doing (Arrow, 1962a) and have accumulated knowledge in the
technology which gives them a deep understanding of the technology (Conti et al., 2014).
They are able to see opportunities for further improvement of the technology or their
previous inventions. However, it can be assumed that they face diminishing returns of
success, since they might follow an exploitative path, as suggested by Audia and Goncalo
(2007).

3. Related Inventors: Related inventors have contributed to a technological field, which is
related to the technology they move to. They have previously invented in fields related
to the technology or underlying technological principles. These inventors are familiar
with the technological field and can transfer related knowledge from other technologies
or technical applications to the knowledge base under consideration. These inventors are
able to recombine their previous knowledge with the knowledge already present in the
knowledge base. Uncertainty about the recombinatorial success should be low, but radical
contributions are not that likely.

4. Unrelated Inventors: Unrelated inventors show no inventive background, which is re-
lated to the technology’s knowledge base. These inventors generated inventive output in
unrelated technologies and changed their field of inventive activity. By the shift from one
technology to another, they carry with them specific knowledge from the former field of ac-
tivity which may not be present in the technology’s knowledge base and they may combine
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this knowledge with the knowledge present already in the knowledge base. However, the
knowledge they possess for recombination might be difficult to integrate into knowledge
present in the technology and unsuccessful recombinations are likely (Fleming, 2001).

These different types of inventors are the carrier of specific knowledge and can by their
inventive activity recombine their knowledge with the knowledge present in a technology. In
line with the extension of the Anderson and Tushman (1990) model, they provide the necessary
new knowledge, which influences the technological progress along the TLC. In the following the
extended model and the influence of different kinds of inventors along the technology life cycle
is tested with renewable energy technologies in Germany.

3.3 Technology life cycles in renewable energy technologies

3.3.1 Wind power and photovoltaics in Germany

To test the proposed extension and the effect of different sources of knowledge along the TLC,
wind power (WP) and photovoltaics (PV) are chosen from the field of renewable energies. In the
light of emerging environmental problems such as climate change, but also resource scarcity and
rising energy consumption, alternative energy technologies are demanded. Since the oil crises
in the 1970s, renewable energy technologies, especially WP and PV, emerge and diffuse in the
electricity market (Jacobsson and Johnson, 2000). During the last 40 years, these technologies
underwent a remarkable development to catch up with incumbent technologies in terms of
efficiency and cost competitiveness. The evolution of these technologies is driven by inventions
and knowledge accumulation extending the knowledge base of the technologies. Nowadays, WP
and PV are cost competitive and contribute a substantial share of electricity in several countries
(REN21, 2016).

While the technologies develop globally, in the following the situation in Germany from 1970
until 2012 is considered. Germany can be seen as a forerunner for both technologies due to high
inventive activity, installed capacity, and policy support. The German government implemented
various policy instruments to support the development and served in some period as the largest
market (Lauber and Mez, 2004). Figure 3.2 shows the R&D expenditures as well as the diffusion
(by annually installed capacity) of both technologies over the last 40 years as well as the main
demand policies. Over time, there is a shift from direct R&D subsidies to demand inducing
policies, which create a niche market for the technologies and supported their diffusion. This
favorable environment helped the technologies to develop and the different instruments induced
inventive activity (Johnstone et al., 2010; Wangler, 2013; Cantner et al., 2016).

3.3.2 Technology life cycle phases in wind power and photovoltaics

Several attempts to distinguish technological phases for WP and PV are proposed in the lit-
erature, which mimic the TLC but also to some extend an industry life cycle. For example,
Bergek and Jacobsson (2003) distinguish two phases in the worldwide WP development, a phase
of experimentation from about 1975 until 1989 and a phase of turbulence and growth from 1990
until 1999. Wilson (2012) derives similar phases for the development in Denmark. Harborne
and Hendry (2009) argue, that even though a dominant design seemed to emerge in the end
of the 1980s, variation and experimentation is still high at the end of the 1990s. According to
Huenteler et al. (2016b), WP follows a complex-products and systems life cycle (Davies, 1997)
and a dominant design emerges already in the late 1980s. Since then WP is in the era of in-
cremental change. Hemmelskamp (1998) does not analyze a TLC in particular, but points out
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Figure 3.2: Policy instruments supporting wind power and photovoltaics in Germany.
Data source: Cantner et al. (2016).

that even two dominant designs emerge for small and large scale wind turbines in the middle
of the 1990s. For Germany, the development for WP can according to Bruns et al. (2009) and
Bruns and Ohlhorst (2011) be distinguished in a pioneering phase from 1975 to 1985, followed
by a rethinking/adopting framework period until 1990, succeeded by a breakthrough period
until 1995. Then a three year transitory setback period is proposed, followed by a second boom
period until 2002. After 2002, consolidation in the industry took place and according to them a
divergence of the trajectory takes place.

PV can according to Peters et al. (2012) be distinguished in three phases on the global level.
The period 1974-1985 is a first boom phase, followed by a stagnation phase until 1994 and from
1995 onwards a second boom phase. Huenteler et al. (2016b) analyze the technology in detail and
conclude that PV follows a mass-produced goods life cycle (Abernathy and Utterback, 1988) and
a dominant design emerges in the early 1990s. Since then, PV is in the era of incremental change.
For the development specifically in Germany, Jacobsson et al. (2004) distinguish the development
of PV in two phases, a first until 1989 which they consider a science-based experimentation phase
and a growth phase from 1990 until 2001. Bruns et al. (2009) distinguish the development of PV
in five phases. They attribute the period 1970-1985 as a pioneering phase, followed by a phase
with reduced private and public R&D until 1991, when a demand inducing policy instrument
was implemented, which allowed first larger scale tests. From 1994 till 1998 was a phase of slow
down and uncertainty, followed by a breakthrough phase form 1999 until 2003, and from 2004
onwards a booming phase.

Since there is no clear distinction of the TLC phases in the literature, the technologies are
separated in phases based on the diffusion and the political support they received in Germany
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(see Fig. 3.2).3 For this purpose the distinction between demand-pull and technology-push
policies is useful (Mowery and Rosenberg, 1979), since the policy support changed over time
towards more demand oriented support. Several studies show that policy instruments decisively
influenced the technological development, especially demand pull policies (Johnstone et al., 2010;
Wangler, 2013; Cantner et al., 2016). These policies induced demand for the technologies which
reaped economies of scale and helped to establish a dominant design.

In the case of WP, the technological development can be separated into three phases until
today.4 The era of ferment starts in Germany around 1970 and lasts until 1995. This period
covers the experimental phase in the beginning of the 1980s where the large scale pilot turbine
GROWIAN was constructed but failed in operation (Bergek and Jacobsson, 2003). However,
first successful small scale applications were supported by the 100/250 MW wind program in
the end of the 1980s which proved the technological feasibility (Harborne and Hendry, 2009).
Additionally, the first feed-in tariff was introduced in 1991 and supported technology independent
diffusion of renewable energy (see Bergek and Jacobsson, 2003; Bruns et al., 2009, for a detailed
discussion of the policy instruments). These instruments created a niche market which provided
opportunities and testing ground for commercial applications. The emergence of a dominant
design took place from 1996 until 2000 and is characterized by massive up-scaling of the turbine
size and a surge in installed capacity in Germany due to demand policies. The turbine design
converged to a three blade rotor facing the wind with a variable-speed gearbox (Harborne and
Hendry, 2009; Milborrow, 2011; Huenteler et al., 2016b). This so called Danish-design is used
in nearly all wind turbines until today. The era of incremental change starts in 2001 and is
characterized by a reduced annual installed capacity, but increasing exports and further up-
scaling. The focus of inventive activity switched to other components, such as mounting and
encapsulation or grid connection of turbines (Huenteler et al., 2016a), which are not fundamental
to the technical principle. Also offshore turbines are developed and installed, however they do
not substantially differ from onshore turbines and a discontinuity seems not to emerge yet.

In the case of PV5, the era of ferment covers the years from 1970 until 1997 and is charac-
terized by massive R&D subsidies and first experimental demand policies which create a niche
market (Jacobsson et al., 2004). In this phase various actors engaged in PV R&D and re-
search institutes were founded, providing scientific infrastructure and public funding allowed
experimentation with the technology (Jacobsson et al., 2004; Herrmann and Töpfer, 2017). The
emergence of a dominant design lasts from 1998 until about 2006 and covers the vast increase
in installed capacity due to implemented demand policies and cost reductions. The 100,000 roof
program created favorable economic conditions to install PV and the later introduced renewable
energy source act substantially improved the investment conditions and created strong market
demand, which provided secure grounds to invest in R&D. During this period, manufacturing
capacity and automation of production processes were established, which lead to severe cost
3 Since technological development unfolds over time, retrospective identification of phases is difficult and depends

on the point in time the distinction is made. This explains the above variation in periods and assessments in
the future will most likely derive different phases than the ones distinguished in the following. However, there
are methods available to distinguish TLC phases based on patent data (e.g. Haupt et al., 2007; Lizin et al.,
2013; Chang and Fan, 2016), but this approach is neglected since the same data will be used to explain changes
in the phases later on.

4 In the case of WP it is hard to track a discontinuity, which opened up the trajectory. The underlying tech-
nological principle is used for several hundred years in wind-mills to create mechanical energy. The first wind
turbine to produce electricity was constructed in 1888 and the technology was used in small scale until 1950
but then disappeared in favor of other technologies until its renaissance after the oil crises (Shepherd, 1994;
Nielsen, 2010).

5 The photovoltaic effect was discovered already in 1839, but the first conventional photovoltaic cell was developed
in 1954 (Chapin et al., 1954). This can be seen as the emergence of the trajectory. However, due to high costs,
application was limited and PV was mainly used to power satellites and off-grid applications (Perlin, 2002).
Only after the oil crises, PV was seriously considered for large scale electricity production.
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reductions and economies of scale. From 2007 onwards, the era of incremental change begins
with reduced policy support and international competition for German PV cell producers.

However, in PV the phases represent only a general pattern of the trajectory, since there are
several PV sub-trajectories with respect to the different cell types, as discussed in the previous
Chapter 2. For example, the emerging cell sub-trajectory, are still in an emerging state and their
efficiency and costs are far from silicon wafer or thin-film cells. The sub-trajectories emerged
at different points in time and are in different phases of the development (see for example Lizin
et al., 2013, who look at the life cycle of organic PV cells).6

Table 3.1: Overview of the technology life cycle phases for wind power and photovoltaics.

Wind power Photovoltaics
Era of ferment 1970-1995 1970-1997
Dominat design 1996-2000 1998-2006
Era of incremental change 2001- 2007-

3.4 Econometric approach

In the following, the extended TLC model is empirically tested for the TLC of WP and PV.
Using negative-binomial regression the effect of different sources of knowledge on the success
of knowledge recombination is tested. Data, variables, and the econometric approach are ex-
plained next, followed by the results. Descriptive statistics and correlations can be taken from
Appendix 3.6.2 and 3.6.3.

3.4.1 Data and variables

3.4.1.1 Patent data

The technological advancement and evolution of the renewable energy technologies and their
knowledge base can be observed in patent data. Patents are, despite their broadly discussed
disadvantages, a good proxy for inventive activity and a technology’s knowledge base (Griliches,
1990; Hall and Harhoff, 2012). Even though only a part of all inventions are patented (Arundel
and Kabla, 1998; Cohen et al., 2000), the codification of knowledge in a patent allows other
inventors to utilize the knowledge and build upon it.

Patent data for the analysis is retrieved from the Worldwide Patent Statistical Database
(PATSTAT) (EPO, 2014). Patents for WP and PV are extracted by a combination of technology
specific IPC (International Patent Classification) classes and keywords (see Appendix 3.6.1 for
details). All priority filings by German inventors in the period from 1970 to 2011 are considered.
A patent is selected if at least one of its inventors resides in Germany. Since the database
contains missing information on the inventor’s country code, the country code was manually
added if conclusive evidence is provided (e.g. German address). The overall data set comprises
3,765 WP patents and 3,589 PV patents. However, for the following analysis, only a subset until
2006 is considered, since the patents need some time to receive forward citations. For the set
until 2006, there are 1,984 WP patents and 1,691 PV patents which are the units of analysis.
6 It could also be argued that the presence of sub-trajectories indicates that no dominant design emerged yet.

But these sub-trajectories have also partly different fields of application from application in space to integration
in textiles or windows and are hardly competing in their specific field of application. Furthermore, physical
boundaries will eventually prevent progress in the market-dominating sub-trajectory and other sub-trajectories
will most likely outperform them.
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Figure 3.3: Wind power and photovoltaics patents by German inventors.

3.4.1.2 Dependent variable: Forward citations

The success of knowledge recombination and the contribution of a patent to the knowledge
base can be approximated by the forward citations it receives. A forward citation of a patent
is a citation of this patent by another patent, which considers the cited patent as prior art.
The general assumption is that the more forward citations a patent receives, the more valuable
in technological terms it is for the evolution of a specific technology (Carpenter et al., 1981;
Trajtenberg, 1990; Harhoff et al., 1999, 2003; Czarnitzki et al., 2011; Jaffe and de Rassenfosse,
2016). If a patent receives many citations it can even be considered radical or breakthrough
(Ahuja and Lampert, 2001; Conti et al., 2014) while if it receives no citations, it is most likely
that the recombination was a failure and the patent has no value for the knowledge base or
further inventions.

The forward citations are collected on the patent family level in the first five years after
the priority application (Bakker et al., 2016). This five year truncation is used to grant all
patents the same time span to receive citations and avoid a bias towards older patents (Lanjouw
and Schankerman, 2004). Forward citations added by examiners are not considered separately,
even though they indicate higher importance of the cited patent (Alcácer and Gittelman, 2006;
Yasukawa and Kano, 2014). Figure 3.4 displays the number of forward citations. The number
is highly skewed and about 33% of the PV and 40% of the WP patents receive no citation in
the first five years after application. On average, WP receives about 2.6 citations and PV 2.7
citations per patent in the first five years after application in the sample.

3.4.1.3 Independent variables: Type of inventor

To understand the influence of different sources of knowledge on the technological evolution, the
inventors on the patent are assigned to the four different groups elaborated in section 3.2.3. Since
the assignment to the different groups is sensitive to the data quality, cleaning up the patent
data is necessary. The inventor names were manually harmonized by correcting obvious typos7,
7 There have been different algorithms proposed to clean patent data (Raffo and Lhuillery, 2009; Miguélez and

Gómez-Miguélez, 2011) but they were not able to provide appropriate results. However, there are several sets
of harmonized inventor names, but these sets were either not available for different application offices or were
specified for a certain group of inventors, such as scientists.
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Figure 3.4: Distribution of forward citations per patent.

academic titles or name order, controlling for patent applicant, address and year of application,
to avoid inflating the number of inventors.8 In total there are 1,675 unique inventors on WP
patents and 2,203 unique inventors on PV patents.

All filed patents for each inventor are collected from PATSTAT to construct the inventor’s
patenting history (similar to Jones, 2009). This patenting history is used to determine the type
of inventor. The inventors can be assigned to the four different groups. The first group, New
Inventors, are those without previous patenting experience, so there is no patenting history. The
second group of inventors, Specialized Inventors, contains inventors who patented previously only
in the respective technology. For the third and fourth group of inventors, who have an inventive
history in either related or unrelated technologies, the distinction becomes a bit different: The
field of former patenting activity of an inventor is indicated by the IPCs his previous patents are
assigned to. The inventor is considered to be related to the technology, so a Related Inventor, if
one of the IPCs in the personal portfolio has also been used in the respective technology before,
if not, the inventor is considered an Unrelated Inventor.9 The IPCs of all previous patents in WP
or PV are collected over time and compared to the inventor’s patenting history.10 If any of the
inventor’s patents coincides with an IPC which is already used in the technology, the inventor
belongs to Related Inventors. This approach allows a dynamic change of the criteria for Related
Inventors and Unrelated Inventors if new concepts are introduced into the knowledge base. The
first time an IPC is introduced by an inventor in the technology, it is no longer unrelated to the
technology but related.11

The distinction between Related Inventors and Unrelated Inventors is influenced how de-
tailed the technological relatedness is constructed. The minuteness of detail of the technological
relatedness can be proxied by the hierarchical nature of the IPC classification. The IPC classes
consists of 8 different fields, e.g. physics or electricity. These fields have several classes and
subclasses (about 640, usually referred to as four-digit IPC class). Several studies use these
four-digit IPC class to distinguish between different technological fields (e.g. Nemet and John-
son, 2012). There are furthermore also groups (about 7,000) and subgroups (more than 70,000)
8 Technically, the different person-IDs from the PATSTAT database for one person are attributed to one unique

identifier used to describe the inventor.
9 If an inventor has patented in related and unrelated fields, the inventor is assigned to the Related Inventors.
10 Patents from 1965 until 1969 are used to create an initial set of ICP classes, otherwise the first inventors would

be unrelated by default.
11 Since this is a rather strong assumption, a robustness test is done where the inventor is assigned to the related

or unrelated group if the patent belongs to a similar technology field or not. See section 3.4.4.
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Figure 3.5: Share of inventor types per technology over time.

which represent more fine grained distinctions of the technology. In the current case, the level of
groups is used to assign the inventors to the related and unrelated category. Using the subgroup
level would drastically reduce the related group, since there would be no overlap on a higher
level, while using only the subclasses would drastically reduce the unrelated group, since general
technological principles would be the same in most cases.

The share of the different kinds of inventors over time is presented in Figure 3.5. In both
technologies, New Inventors are the largest group. This is persistent over time, indicating
that there is a high number of new people starting inventive activity in these technologies.
Furthermore, since inventions are a rare event, a considerable amount has only one invention, or
they change their focus and continue their inventive activity in other domains (Menon, 2011).
Related Inventors are the second biggest group in both technologies. But in WP Unrelated
Inventors have a high share in the early years, indicating an experimental phase. Specialized
Inventors are the smallest group in both technologies, indicating that specialization on one
technology does not take place that much. Further information about the number of patents
per inventor and the overall number of inventors is provided in Appendix 3.6.4.

To better understand the effect of separating different kinds of inventors, intermediate groups
are created to see the effect if the inventors are separated into the different types. Two interme-
diate groups are constructed: First Experienced Inventors who are all the inventors who have
patenting history, (sum of Specialized Inventors, Related Inventors and Unrelated Inventors) to
test if it matters if an inventor has previous experience. The second group, Knowledable Inven-
tors, are the inventors who come from outside the technology’s domain and patented in related
and unrelated fields (sum of Related Inventors and Unrelated Inventors).
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3.4.1.4 Control variables

While the source of knowledge embodied in inventors and their success of recombination has an
influence on the received forward citations, other influential factors may be related to the patent
itself. In the following, the relevant control variables are discussed.12

Team Size: An influential factor for the success of a patent, and also for knowledge recombi-
nation, is invention in teams. Patents invented in teams have a higher technological value than
inventions by a single inventor (e.g. Wuchty et al., 2007; Jones, 2009). The number of inventors
on the patent is the aggregation of the different types of inventors.

Foreign Inventors: International collaboration has a positive effect on research and inven-
tive activity in general (Adams, 2013; Kerr and Kerr, 2015). Patents might be invented in
international teams and inventors from other countries are counted.

IPC Classes: The technological breadth of the patent influences its technological importance.
More basic patents, which can be applied to different kinds of technologies, might me more
relevant for future development than highly specified patents (Lerner, 1994). To approximate
the breadth of the patent, the number of IPC groups a patent comprises is counted.

Family Size: The size of the patent family the patent belongs to is considered to be relevant
for the technological importance of a patent. The bigger the family of a patent, which means
that the priority patent is registered in other patent offices as well, the higher the number of
forward citations (Putnam, 1996; Lanjouw et al., 1998; Harhoff et al., 2003). Here, the size of
the DocDB family is calculated (Martínez, 2011).

Backward Citations: The previous knowledge the inventor used to create the patent may
influence the technological value of a patent (Harhoff et al., 2003). However, it can be the case
that patents with many backward citations are rather incremental compared to patents with no
or only a few backward citations (Lanjouw and Schankerman, 1999).

Granted Patent: If the patent is granted is usually a good indicator for its novelty and
relevance (Guellec and van Pottelsberghe de la Potterie, 2000).

PCT Patent: If a patent is filed under the Patent Cooperation Treaty (PCT) the technolog-
ical value can be higher (Guellec and van Pottelsberghe de la Potterie, 2000).

New Combination: A patent can introduce a new IPC class into the knowledge base which has
not been used in the technology. This might be a new combination which can be of higher value.
Arts and Veugelers (2015) use a similar idea to capture previously uncombined technologies. The
dummy variable is constructed by comparing all previous IPCs used in the technology and the
patent under consideration.

USPTO: Patents filed at the United States Patent and Trademark Office (USPTO) receive
usually a higher number of forward citations, since the USPTO requires to indicate all prior art
which could be relevant and this leads to a higher number of forward citations than a patent
from the German or European patent office would receive (Michel and Bettels, 2001; Nagaoka
et al., 2010).
12 Besides the variables presented, there are several other which could have been considered, but are not used

due to several reasons. For example, triadic patents are indicators of high value (Dernis and Khan, 2004;
Sternitzke, 2009), but they are highly correlated with the family size and in favor of the family size neglected.
Cited non-patent literature is also frequently used, but the data has hardly any such references and is according
to Harhoff et al. (2003) only relevant in for pharmaceutical and chemical patents. Claims per patent are also
frequently counted (Lanjouw and Schankerman, 1999), but most patents are filed at the German patent office,
which does not publish the number of claims.
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Year Effects: Year dummies capture time variant effects such as macroeconomic changes,
political support, patent legislation changes or other factors which may influence patenting
activity and quality in a specific year. Furthermore, the variable captures also the effect that
due to the general increasing patenting trend younger patents have a larger pool of patents
which could cite them.

PV sub-trajectories: For PV, the technology is more complex and consists of different com-
ponents and sub-trajectories, which develop intertwined with each other. There are different
approaches to utilize the photovolatic effect based on different light-absorbing materials. The
first cell sub-trajectory uses silicon wafer to generate electricity, while over time the thin-film
sub-trajectory emerged and nowadays a sub-trajectory for emerging cells is present. Since the
sub-trajectories emerge at different points in time, they might require different kinds of inven-
tive activity and have overlapping life cycle phases. To account for this, the patents for PV are
distinguished into PV Modules, which is a generic component for all cell type and deals with the
overall construction and installation of the cell, and the actual PV Cells, which can be further
distinguished based on their material into Silicon Wafer Cells, Thin-Film Cells and Emerging
Cells. However, not all patents can be attributed to a specific technology. A detailed elaboration
about sub-trajectories in PV is given in Chapter 2.

3.4.2 Econometric approach

The dependent variable, the forward citations per patent, measures the success of the knowledge
recombination and the resulting technological contribution to the knowledge base. Since forward
citations are a rare event, the count data is over-dispersed (the variance exceeds the mean of the
data). This requires a negative binomial regression model (Cameron and Trivedi, 1986; Hilbe,
2011). These models are commonly used for patent data. Since the patent is the object of
analysis (i), the data set is cross sectional but has time information. The stylized regression
model is

Forward Citationi = βInventor Typesi + γControlsi + ϵi (3.1)

where β is a vector of the coefficients of the estimated effects of the different inventor types
and γ is a vector of the estimated effects of control variables.

In the following, there seven models for WP and six models for PV are used to estimate
the effect of the different types of inventors on the forward citations. The first four models (see
Section 3.4.3.1) cover the full period and are used to elaborate the relevance of the different
inventor types in general. The first model uses only the Team Size of the inventor team to esti-
mate if the number of inventors on a patent has an effect. In the second model, the inventors are
separated into New Inventors and Experienced Inventors to see if it makes a difference if previ-
ous knowledge is present. The third model separates the Experienced Inventors into Specialized
Inventors which only invent in the respective technology and Knowledable Inventors which have
experience in other fields. Model four furthermore separates the Knowledable Inventors into
Related Inventors and Unrelated Inventors to estimate if the kind of previous knowledge has an
effect. In the case of PV, two alternatives are estimated as well, which distinguishes PV in sub-
trajectories. Model 4a controls for patents which belong to PV Modules and PV Cells. Model
4b separates the PV Cells further into Silicon Wafer Cells, Thin-Film Cells and Emerging Cells
to account for different developments of PV sub-trajectories.

The next models (see Section 3.4.3.2) cover the different periods of the TLC derived in
Section 3.3. In models five to seven for WP the first three stages of the TLC are analyzed. For
PV, only two periods are considered. Model five covers the period 1970-1997 and model six
1998-2006. Again, distinction between the PV module and cell sub-trajectories are made.
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Since the proposed sub-periods in the last models are static and results could be sensitive to
the exact separation of periods, rolling-window regressions are used to illustrate the importance
of different types of inventors over time. Rolling-window regressions (alternatively called moving-
window regressions) are usually applied to time series data to analyze if structural changes occur
in a specific subsample of a time-series (Fama and MacBeth, 1973; Nyakabawo et al., 2015).
The approach uses a fixed window of years sequentially from the start to the end of the overall
observation period by dropping one year from the end and adding one to the beginning. In
the current case, a time-series is not present, but based on the filing year of the patent, time
periods can be constructed. When using this method, the selection of the window of years
is of importance and has to make a trade-off between the accuracy of the effect, the power
of the estimation, and the coverage of the relevant period. This is especially a problem for
time-series (see Pesaran and Timmermann, 2005, for a discussion), but not necessarily for the
current case, since multiple observations are present in each period, providing sufficient power.
However, if the selected time period is too short, overall time variant effects which are otherwise
captured by year dummies might influence the result. In the following a time period of eight
years is considered covering a sufficient large time period and power per window. Furthermore,
robustness tests for five and eleven years are provided in Section 3.4.4.

3.4.3 Results

3.4.3.1 Overall influence of different inventor types

The regression results for the influence of different types of inventors for WP and PV can be taken
from Table 3.2. In the case of WP, the first model, the baseline, illustrates the overall influence of
patent characteristics on forward citations. As suggested in the literature, most control variables
influence the number of forward citations positively except PCT Patent, which is not significant.
However the negative effect of New Combination is surprising. The introduction of a new IPC
class into the technology seems to have a negative effect on the contribution to the knowledge
base. This indicates that the extension of the knowledge base by bringing in new principles
seems not to contribute. This is however in line with the argumentation by Fleming (2001), who
claims that recombination is risky and may lead to failure. The negative effect can also indicate
that the trajectory is already defined and integrating further technological principles in the
knowledge base does not provide useful recombinations. In model 2 the inventors are separated
into New Inventors and Experienced Inventors. We see that both have a strong positive effect,
indicating that both sources of knowledge are relevant. This effect sustains if the Experienced
Inventors are further separated in Specialized Inventors and Knowledgeable Inventors in model 3.
However, in model 4 the separation of the Knowledgeable Inventors reveals that only Unrelated
Inventors are weakly significant, while the Related Inventors do not play a significant role in
WP. In all models also Foreign Inventors contribute, indicating that international knowledge
spillover are relevant for the technological development.

The regression results for PV show that in the baseline model 1, the results are nearly sim-
ilar to the ones for WP, but here, Granted Patent is not significant. Again, New Combination
is negative significant, indicating that inducing new principles into the PV knowledge base is
also not successful or necessary. Model 2 shows that in PV New Inventors seem not to play
a role, but Experienced Inventors. This indicates that recombination in PV is only successful
if inventors possess previous experience and knowledge. Model 3 presents the distinction be-
tween Specialized Inventors and Knowledgeable Inventors. Both are significant, but especially
the Specialized Inventors are of importance, indicating that knowledge accumulation seems to
matter more than a diverse set of knowledge. In model 4 we see that only Specialized Inven-
tors contribute to the technological development and the distinction between Related Inventors
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and Unrelated Inventors seems not to explain recombinatorial success. However, controlling for
different sub-trajectories in model 4a and 4b reveals that Related Inventors have a weak sig-
nificant effect, indicating that sub-trajectories interfere with each other and that the relevance
of related knowledge is conditioned on the sub-trajectory. Contrary to WP, Foreign Inventors
do not matter and inventive activity for PV in Germany does not benefit from international
collaboration.

Overall, different sources of knowledge are relevant and the distinction reveals that knowl-
edge embodied in different types of inventors influences recombinatorial success. There are
differences between the technologies as well. While in WP New Inventors have a significant
effect, they do not matter in PV. Also the kind of knowledge from domains external to the
technology’s knowledge base matters. While in WP Unrelated Inventors are able to provide
useful recombinations, in PV Related Inventors are successful. Also the difference concerning
Foreign Inventors is remarkable. However, the systemic difference between WP and PV on the
technological level has also been shown by Cantner et al. (2016) and Huenteler et al. (2016b),
but not with respect to the relevant knowledge.

3.4.3.2 Technology life cycle phases

In this section, the phases of the TLC are analyzed and regression results are presented in
Table 3.3. For WP, model 5 shows the era of ferment in which New Inventors and especially
Unrelated Inventors play a significant role. While it was proposed in the extended TLC model
that Related Inventors and Unrelated Inventors are decisive in this phase, only Unrelated Inven-
tors seem to be able to successfully integrate distant knowledge into the knowledge base. The
significance of New Inventors is interesting, since it shows that the technology benefited from
inventors which started their inventive activity in WP. Here, anecdotal evidence supports the
results. Inventors in the era of ferment were tinkerers and engineers who wanted to improve
environmental conditions and provide technical alternatives to conventional energy production
(Simmie et al., 2014). Concerning the control variables, IPC Classes and Backward Citations
lose their significance as well as the negative effect of New Combination compared to the full
model. Interestingly, Foreign Inventors have a negative effect, indicating that knowledge from
other countries lead to a reduction in recombinatorial success. Here, it could be that German
inventors follow their own trajectory and concepts developed in other countries seem not to be
relevant in this phase.

Model 6 presents the results for the emergence of the dominant design. Here, New Inventors
as well as Specialized Inventors are decisive. It was however supposed that Specialized Inventors
and Related Inventors are relevant sources of knowledge in this phase. The results indicate that
the dominant design in WP emerges out of the established trajectory and rely on acquired and
accumulated knowledge and does not need further knowledge from related fields. Concerning
the control variables, Foreign Inventors still have a negative coefficient, but the size of the effect
decreases. Interestingly, PCT Patent shows a significant negative effect.

In the era of incremental change, presented in model 7, again New Inventors and Specialized
Inventors play a significant role, which is in line with the proposed model. Additionally, Related
Inventors are able to integrate knowledge from adjacent technologies into the WP knowledge
base. This could hint towards an upcoming discontinuity maybe related to offshore WP. There is
some evidence that the struggling German ship-building industry diversifies in offshore WP and
provides competences for the development of offshore turbines and components (Fornahl et al.,
2012). In this phase, Foreign Inventors have a positive significant effect, possibly integrating
knowledge which is not present in the knowledge base yet and increases the knowledge base.
The other control variables show no unusual pattern, except Granted Patents, which is no longer
significant.
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Chapter 3: Knowledge recombination along the technology life cycle

For the different phases of the TLC in PV, model 5 and 6 present the results for the era of
ferment and the emergence of a dominant design. Model 5 indicates that only New Inventors
contribute to technological development. However, controlling for different sub-trajectories in
model 5a and 5b reveals that also Specialized Inventors and Related Inventors have a positive
effect. Unrelated Inventors, as proposed, do not matter, but New Inventors as well as Spe-
cialized Inventors do. A diverse set of knowledge is integrated in the knowledge base in this
phase. Related literature shows that especially in the 1980s and 1990s a diverse set of actors
(firms, research institutes, universities, ...) engage in PV R&D (Jacobsson et al., 2004) and the
Fraunhofer Institute for Solar Energy Systems ISE was founded, which is until today central
in Germany’s PV research (Herrmann and Töpfer, 2017). Furthermore, contrary to WP, PV
had in the era of ferment various applications to power off-grid solutions from calculators to
satellites (Perlin, 2002; Jacobsson et al., 2004). This diverse areas of application could explain
the different sources influencing the technology, especially at the sub-trajectory level where ei-
ther costs (mass production) or efficiency (space application) are relevant. The control variables
show except from the very large coefficient for PCT Patents no unusual results and are invariant
towards controlling for sub-trajectories. Similar to the overall results, Foreign Inventors have
no significant effect.

During the emergence of the dominant design, only Specialized Inventors contribute to the
technological development, irrespectively controlling for sub-trajectories or not. Contrary to
the theoretical expectation, Related Inventors do not matter. The shift towards the Specialized
Inventors from experimentation in knowledge recombination to a more routinized inventive
process could be a result of the complexity of PV. If the basic principle of the material to
convert radiation into electricity is understood, improvements require a sound understanding of
the material to improve it further. This specialized knowledge seems to be generated according
to Jacobsson et al. (2004) by inventors in research institutes and universities. Considering the
control variables, it is interesting to see that the negative effect of New Combiantions is not
significant anymore.

Overall it is eminent that the knowledge relevant to advance the technologies changes over
time from an explorative way to a more exploitative or routinized approach as suggested by
March (1991). Partially in line with the proposed model, the relevant sources shift from knowl-
edge outside the knowledge base towards knowledge present in the knowledge base over the
course of the TLC. In WP the era of ferment is influenced from knowledge provided by New
Inventors and Unrelated Inventors and in PV New Inventors, Specialized Inventors and Related
Inventors. The dominant design is shaped in both cases by Specialized Inventors, in WP also by
New Inventors. Related Inventors as proposed in the model do not matter in both cases. The
era of ferment in WP is as proposed influenced by New Inventors and Specialized Inventors, but
also by Related Inventors which could lead the way towards a discontinuity. Noteworthy is also
that in WP Foreign Inventors become important over time, indicating that either knowledge
from outside the country’s domain becomes relevant, or inventors emigrate but still collaborate
with German inventors.

3.4.3.3 Rolling-window regressions

The dynamics along the technological development can be analyzed more fine grained by rolling-
window regressions. They allow to analyze changes in the effect of different types of inventors
over time. The rolling-window regressions use an eight-year window sequentially from the start
to the end of the overall observation period by dropping on year from the end and adding one
to the beginning. For WP, model 4 is used and for PV model 4b to estimate the rolling-window
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Figure 3.6: Eight year long rolling-window regression results for wind power and photovoltaics.
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regressions. Figure 3.6 presents the results for WP and PV graphically.13 The coefficients for
the different inventors of the regressions are plotted along with the 10% confidence intervals
for each eight-year period.14 To test the proposed TLC model, the time periods in which the
respective inventor type should have an effect are non-shaded in Figure 3.6. Since the periods
are overlapping, the transition periods are symbolized by an increasing brightness, indicating
the increasing relevance of the respective inventor type.

In the rolling-window regressions for WP, New Inventors should have an effect in the era of
incremental change, which begins in 2001. There is however a significant effect already from the
end of the 1980s onward which is persistent until the end of the observation period, indicating
that fresh knowledge is constantly recombined and introduced into the knowledge base. Shedding
more light on the results from the analysis of the TLC phases, we see that in the era of ferment
New Inventors do not matter for about the first 15 years, but have a substantial effect onward,
which is partly captured by the regression of the complete era of ferment. The influence of New
Inventors can be the result of the changing approach towards WP in Germany after the failure
of the GROWIAN project. Since this large scale wind turbine failed, focus was put on small
scale turbines and new actors entered the technology (Bergek and Jacobsson, 2003). Specialized
Inventors are supposed to be relevant in the emergence of the dominant design and the era of
incremental change. The results show how these inventors become relevant from the beginning
of the 1990s onwards and contribute substantially to the technological development until the
end of the observation period. Besides two periods in the 1980s, they are not relevant in the era
of ferment. Here, the results are in line with the results from the TLC regressions.

Related Inventors should play a role in the era of ferment and the emergence of the dominant
design. In the era of ferment they have a significant effect only in a few periods and even reduce
the number of forward citations a patent receives in some periods covering the emergence of
the dominant design. Only towards the end of the observation period, the Related Inventors
become slightly significant and seem to play a role again, which is also shown in the TLC
regression. The rolling-window regressions reveal a significant negative effect in some periods
which is unnoticed in the TLC regressions. Unrelated Inventors are supposed to have an effect
in the era of ferment. The results show basically no effect at all. Only in some periods in the era
of ferment, the coefficient is close to significant. This contrasts the results from the regression
for the era of ferment, which finds an effect. However, the number of observation is low in
these rolling-window regressions, which could explain that a significant effect does not show up.
Towards the end of the observation period, there is no effect of these inventors at all, indicating
that knowledge from outside the technology’s domain does not matter and Unrelated Inventors
seem not to disrupt the technology until then.

In PV, only the first two stages can be analyzed in which New Inventors are not supposed
to have an influence. Concerning the results, this seems to be the case. Only in a few periods in
the beginning of the 1990s there is a significant positive effect. This small effect is also present
in the TLC regression conducted earlier. Specialized Inventors are supposed to matter while
the dominant design emerges. Here, we can see an increase of the effect in this period in line
with the model. In the earlier periods, there are only a few periods in which these inventors are
relevant as well.

Related Inventors should have an influence in both periods. However, the results indicate
only a few periods where these inventors actually have a significant effect. While the TLC
regressions show that in the era of ferment the Related Inventors have a quite strong effect,
13 The variation in the plotted graph is the result of the drop of observations from the last year and the inclusion

of the added year. Furthermore, the number of observation changes, which also influences the regression results.
This implies that each period can be considered on its own, but changes from one period to another should be
interpreted with caution.

14 Sensitivity tests for five and eleven years are discussed in Section 3.4.4.
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the rolling-window regressions reveal that in the different periods the effect is not that strong,
however this might be influenced by the low number of observations in each window. Unrelated
Inventors are supposed to successfully recombine their knowledge in the era of ferment. The
results indicate that especially in the early years this is the case, but over time this effect
vanishes. However, the TLC regression finds no effect in the era of ferment at all, neglecting the
effect in the early years of this phase.

Overall, the rolling-window regression provide further insights into the technological devel-
opment. In both technologies we see shifts of relevance of different inventors over time. For WP,
we can observe that New Inventors and Specialized Inventors become relevant, New Inventors
even much earlier than expected. Also in line with the model, but only partially significant in
the era of ferment, are Related Inventors and Unrelated Inventors. Contrary to the expectation,
Related Inventors have a negative effect while the dominant design emerges. In PV the results
are in general not that pronounced, but partially in line with the model. New Inventors play
basically no role, as expected, and Specialized Inventors only have a significant effect while the
dominant design emerges. Related Inventors should have an effect along the whole observation
period, but show only a significant effect in some periods. Unrelated Inventors show as expected
an effect early on, but not during the whole era of ferment. The results of the rolling-window
regression mirror pretty much the results of the TLC phases in WP, while in PV there are some
differences which show up in the era of ferment and are not captured by the TLC regressions.

3.4.4 Robustness

Several robustness test are performed concerning the distinction of inventors, possible team
effects and the rolling-window length (see Appendix 3.6.5). The distinction of the inventors
into Related Inventors and Unrelated Inventors is based on the presence of the IPCs in the
knowledge base of the technology. This criterion changes over time as the knowledge base
grows. A robustness test is done to see if this distinction and the change of classification
criteria influences the overall results. The assignment of inventors to the two groups is in
the following exogenously imposed using technology fields based on an extended version of
the OST-INPI/FhG-ISI technology nomenclature classification (OECD, 1994; Schmoch, 2008).
This classification contains five main technological fields and 35 subgroups. The subgroups
provide the possibility to assign the inventor type according to the general field of previous
application. To distinguish between Related Inventors and Unrelated Inventors, inventors which
possess experience in the technological field “electrical machinery, apparatus, energy” for both
technologies, and “engines, pumps, turbines” for WP and “semiconductors” for PV are assigned
to be Related Inventors. These fields cover the underlying principles of the technologies and
most IPCs of the WP and PV patents are assigned to these fields. If inventors do not have
experience in these fields, they are supposed to be Unrelated Inventors.

Table 3.9 shows the results for WP and PV for model 4 and the TLC phases. For WP, we
see in model 4 that the Unrelated Inventors are no longer significant. In the first phase of the
TLC, the effect of Unrelated Inventors becomes stronger, but surprisingly New Inventors are
no longer significant. In the second phase, the Unrelated Inventors become significant again,
however, with a negative coefficient. In the last phase, no changes occur. In PV, Model 4b
shows basically no differences, while in the era of ferment Specialized Inventors loose their weak
significance. In the second phase, no changes occur. In general the results show that there is
some sensitivity towards the distinction between Related Inventors and Unrelated Inventors, but
the effects are only marginal and do not affect the overall pattern.

While the results show that different kinds of inventors are relevant for successful knowledge
recombination along the TLC, inventive activity is increasingly conducted in teams (Wuchty
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et al., 2007). While the general trend of increasing team size over time is captured by the
year dummies, the team composition is not accounted for. The effect of team composition
and heterogeneous teams on knowledge recombination and creativity is an increasing stream of
literature (Singh and Fleming, 2010; Uzzi et al., 2013; Lee et al., 2015). To account for possible
effects of team composition, interactions between the different kinds of inventors are estimated.

The results of the interaction of different inventors are presented in Table 3.10. In general,
the average team size is rather low with 1.4 for WP and 2.1 in PV and heterogeneous teams
are a rare event, as shown in Figure 3.8. For WP, accounting for different interactions does not
change the results in the model 4, but increases the coefficients. The interactions are mostly
negative and significant, indicating that knowledge recombination in heterogeneous teams does
not increase the invention’s usefulness in general. In the era of ferment, the results do not
change neither, but here the interaction between Related Inventors and Unrelated Inventors is
positive and significant, indicating that in this phase combining knowledge from different fields
external to the technology fosters technological development. The phase in which the dominant
design emerges shows deviating results. New Inventors and Specialized Inventors are no longer
significant and Related Inventors are negative and significant. The interaction terms however
show that again Related Inventors and Unrelated Inventors but also Specialized Inventors and
Related Inventors are positive and significant. In this phase, the team composition really seem
to matter and influence the emergence of the dominant design. However, the number of team
compositions is very low. For example the very large and negative coefficient of Specialized
Inventors and Unrelated Inventors is striking, but this team composition occurs only three
times. The era of incremental change shows again no deviation and the interactions are mostly
negative and significant.

In the case of PV, there are differences in the model 4b. Here, New Inventors and Unrelated
Inventors become significant as well. Concerning the interactions, there is a negative, significant
effect of the combination of New Inventors and Unrelated Inventors. This indicates that their
joint inventive activity produces less valuable patents as if they invent on their own. Specialized
Inventors and Related Inventors keep their positive and significant effect. In the era of ferment,
we observe that Specialized Inventors and Related Inventors are no longer significant, but Un-
related Inventors become significant. However, non of the interactions is significant. This result
is quite puzzling. In the emergence of the dominant design, there are no deviations from the
initial model. Here, also the interaction New Inventors and Unrelated Inventors has a negative
effect.

Overall the general results seem to be robust towards the inventor interaction and the effect of
heterogeneous teams matter in WP for the emergence of the dominant design and in PV for the
era of ferment. In most cases heterogeneous teams exhibit a negative effect which is contrary
to the previous findings in the literature. Especially in PV controlling for team composition
reveals effects for New Inventors and Unrelated Inventors in the full model. Furthermore, there
are some hints that also the effect of team composition changes along with the TLC, but a more
detailed analysis is left for further research.

The rolling-window regression provided interesting insights about the dynamics over time.
However, the effects might be dependent on the length of the time window. Shorter time periods
should increase the volatility, since the number of observation is decreased and opposing effects
might not be averaged out. Longer time windows will increase power and outlier effects are not
that pronounced. To illustrate and analyze the sensitivity of the previously applied eight-year
window, a five-year as well as an eleven-year window are estimated to capture more short term
as well as long term patterns. The results are presented in Appendix 3.6.5.

As expected, with a shorter time window the results are more volatile and not as often
significant as in the eight-year case. Here, the lower number of observation per regression is a
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problem and the first five periods are omitted because they cannot be reliably estimated. The
overall pattern however stays in both technologies the same. In the eleven-year case the volatility
of the coefficients is smaller and also the confidence intervals are smaller. However, the overall
results converge and smaller changes are not that frequent anymore. In general the results stay
the same as in the eight-year case.

3.5 Discussion and conclusion

The aim of the paper is to understand how recombination of different kinds of knowledge ex-
tends the knowledge base of a technology along its life cycle. For this purpose, from a theoretical
perspective, the Anderson and Tushman (1990) model is extended to integrate different kinds
of knowledge in the technology life cycle (TLC) phases. The proposed model extension is em-
pirically tested for the TLC of wind power (WP) and photovoltaics (PV) in Germany. Different
kinds of knowledge are proxied by inventors’ patenting experience. This experience can be ab-
sent in case of new inventors, specialized in the technology or earned by inventive activity in
related or unrelated fields. Overall, the results indicate that different kinds of knowledge matter
along the TLC and are partly in line with the theoretical elaborations. While it has been pro-
posed that the utilization of knowledge changes from exploration towards exploitation over time
(March, 1991; Klepper, 1996), the results presented here reveal a more detailed picture of the
utilization of knowledge along the TLC. The different phases of the TLC are characterized by
specific knowledge and even inside the phases, relevant sources of knowledge change, providing
a more detailed picture compared to previous empirical findings (Krafft et al., 2011, 2014a).
The results help to better understand the process of knowledge recombination, technological
development and provides relevant insides for policy and management.

Summarizing the results reveals technological differences in the relevance of knowledge for
technological advancement, but the general expected shift of different sources of knowledge over
time is evident. For the overall technological development from 1970 until 2006 specialized
knowledge is relevant in both technologies. While WP is also influenced by new and unrelated
knowledge, PV benefits from related knowledge, indicating first technological differences. In the
era of ferment, WP requires unrelated knowledge as expected, however, not related knowledge.
In PV its the opposite: related knowledge is relevant, but unrelated not. While PV uses the
same material as the semiconductor technologies which explains the strong influence of related
knowledge, WP seems not to have such an adjacent technology which it can benefit from, but
relies on unrelated knowledge from other fields instead. Furthermore, both technologies benefit
from new knowledge and PV also from specialized knowledge, indicating that a diverse set
of knowledge is required for technological development in this phase. The emergence of the
dominant design is as expected highly influenced by specialized knowledge in both technologies.
However, related knowledge, as proposed in the model, does not matter. In WP, also new
knowledge is of importance. The era of incremental change can only be observed in WP and is as
proposed highly influenced by new and specialized knowledge. Furthermore, related knowledge
contributes to some extend, maybe paving the way towards a discontinuity in offshore WP. The
results are overall robust to an alternative distinction between related and unrelated knowledge,
as well as controlling for team composition.

Rolling-window regressions, introduced as a new method in this stream of literature, reveal
a finer-grained picture of the relevance of different kinds of knowledge along the TLC. They
allow to observe the effect of different sources of knowledge in a continuous way and are not
bound to the pre-defined phases of the TLC. In general, the relevance of different kinds of
knowledge varies over time similar to the TLC phases. However, the rolling-windows reveal
some differences. In WP, the earliest windows show that no specific kind of knowledge seems
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to matter, but this could be attributed to the rather small sample size in the early periods. In
the beginning of the 1980s related and unrelated knowledge have an effect in some windows,
which is in line with the theoretical proposition. However, not noticed in the TLC regression,
related knowledge has a negative effect in some periods later on. New knowledge becomes
relevant from the 1990s onwards and some years later specialized knowledge as well. These
time nuances cannot be observed in normal regressions. In PV, new knowledge matters hardly
for technological development. Specialized knowledge is very relevant towards the end of the
observation period and an increasing trend is observable. Related and unrelated knowledge is
relevant in some periods in the era of ferment, but the magnitude is smaller than suggested in
the normal regressions. Since the effects of different kinds of knowledge vary over time and are
not always in line with an imposed distinction of TLC-phases, using rolling-window regression to
determine the TLC phase of a technology can be used as new way to characterize technological
development in a continuous way.

These findings help to better understand the development of both technologies and their in-
novation process. As shown previously, WP and PV show different patterns in their development
(e.g. Cantner et al., 2016; Huenteler et al., 2016a). This holds also for knowledge, which is used
for technological advancement. Especially in WP it is evident that various kinds of knowledge
are recombined to generate useful inventions. In line with qualitative evidence (Bergek and Ja-
cobsson, 2003; Fornahl et al., 2012; Simmie et al., 2014), external knowledge and competencies
refresh the knowledge base continuously over time. In PV, knowledge accumulation is the main
diving force and specialization on the technology seems to be key for successful inventive activ-
ity. Since PV became a mass-market product over time, technological advancement is rather
incremental (Huenteler et al., 2016b), where this specialized knowledge is of particular impor-
tance. However, in PV different sub-trajectories are present and developing simultaneously, but
have partly different areas of application. They have their own life cycle, as previously shown
by Lizin et al. (2013) for organic PV cells. In WP these different technological concepts are not
present, but as shown by Huenteler et al. (2016a) the design hierarchy matters and the focus
on different components changes over time. For both technologies further research is necessary
to provide a more detailed understanding how knowledge is relevant for technical progress in
different sub-trajectories or components.

From a theoretical perspective, integrating a knowledge related dimension in the Anderson
and Tushman (1990) model joins the TLC concept with research on knowledge recombina-
tion and with research concerning inventor’s personal characteristics. The proposed framework
proved useful to analyze knowledge and knowledge recombination along the TLC and has im-
plications for further research. First, the paper provides a theoretical foundation and empirical
evidence for a more profound understanding of the relevance of knowledge along the TLC and
that recombinatorial patterns change over time. Previously, these dynamics have not been con-
sidered, but different kinds of knowledge seem to be decisive for recombinatorial success and
technological development in the TLC phases. Second, the results show that the technology’s
knowledge base is shaped over time by different kinds of knowledge. Knowledge accumulation
and refreshing the knowledge base with knowledge from outside the technology’s knowledge do-
main are necessary, but conditioned on the TLC phase. This provides some implications for
studies on industrial dynamics. The dynamics in a sector’s underlying technology allow to in-
fer towards the life cycle of the sector as well, since here actors transform the knowledge into
products. This knowledge is however generate by a diverse set of actors, such as research in-
stitutes, universities, users, tinkerers and knowledge is not bound to the firm. Integrating the
overall TLC in studies on industrial dynamics helps to understand how technologies and the
related sector and firms co-evolve. Third, the personal characteristics of inventors seems to be
relevant for knowledge recombination. This dimension was absent in previous studies on knowl-
edge recombination and the actual persons involved in the recombinatorial process need further
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research. Fourth, the chosen technologies provide new cases besides the commonly used biotech
and ICT studies considered for knowledge recombination. Using WP and PV, it is demonstrated
that the success of recombination is technology dependent and expanding the set of considered
technologies enhances the general understanding of recombinatorial processes.

From a methodological point of view, using rolling-window regressions provide an interesting
approach to track dynamics over time and should be included in the toolbox for research on
dynamics in economics of innovation. Furthermore, the use of inventor’s previous patents to
reason about the embodied knowledge and experience seems to provide interesting possibilities
to observe aggregated phenomena but also individual inventive biographies. However, here
manual data cleaning was necessary and applying it to larger scale studies requires higher data
quality. Nevertheless, this approach has several advantages compared to surveys, which are
limited in size and time period and reachability of inventors.

The results lead to several policy and managerial implications. First, different kinds of knowl-
edge are relevant in different phases of technological development. These changing requirements
need to be considered in instrument and funding decisions for policy makers. While the effect of
different types of policy instruments has been studied previously (Mowery and Rosenberg, 1979;
Peters et al., 2012; Cantner et al., 2016; Rogge and Reichardt, 2016), the effect of instruments
in specific phases of the TLC needs to be on the policy maker’s agenda as well. If policy aims
to support R&D of a technology in the era of ferment, funding should be granted to actors
from diverse fields, while increasing the efficiency along the established trajectory, specialized
actors should be in the focus. The same principle holds for firms and their decision whom to
hire for inventive activity. Second, technological development is not a uniform process across
technologies but different kinds of knowledge are relevant for each technology. The technology
inherent differences need to be considered, which is however a difficult task for policy making.

The analysis faces certain shortcomings and limitations, which leave room for further re-
search. First, the proposed framework has been only applied to two technologies in Germany.
Here, further technologies and broader geographical coverage are necessary. Also, not all phases
of the TLC could be analyzed due to the technologies’ nature. Applying this approach to tech-
nologies which faced a discontinuity would shed light on this phase as well. The Framework
can also be refined and extended to capture other dimensions of knowledge, such as tacit com-
ponents or search behavior. Second, there are several areas which could not be explored in
more detail, such as the team composition, which seems to matter partly and changes along the
TLC. Sub-trajectories play a role in the TLC and a more detailed analysis could provide further
insights on technological development. Third, the analysis relies on patent data only and not all
inventions are patented. To complement the understanding of knowledge recombination along
the TLC, other sources such as publication data, related product characteristics or interviews
with inventors can be considered to overcome limitations of patent data.
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3.6 Appendix

3.6.1 Patent selection approach

The WP and PV patents were queried from Patstat (EPO, 2014) by combining IPC classes
and keywords. The title and abstract of patent documents are searched for the keyword while
restricted to the specific IPC classes. The selection criteria for WP is based on the suggestions
from the WIPO Green Inventory for wind power and own elaboration. For PV, search strategy
developed in Chapter 2 is used. However, the balance of system component is excluded from
the analysis, since it covers a partly different technological approach and could interfere with
the aim of the analysis. The keywords and IPCs are grouped for specific sub-trajectories. The
“_” and the “%” symbol are used as wildcards for single and multiple characters.
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Table 3.4: List of IPCs and keywords for patent search strategies.

Technology IPCs Keyword combination

Wind power
F03D%

H02K 7/18 (%wind% + (%turbine% | %power% | %mill% | %energ%))
B63B 35/00
E04H 12/00

Photovoltaics
Silicon wafer H01L 21% ((%monocrystalline_silicon% | %monocrystal_silicon% | %crystal_silicon% |
cells H01L 31% %silicon_crystal% | %silicon_wafer% ) + (%photovoltai% | %solar% ))

C30B 15% | %back_surface_passivation% | (%pyramid% + %etching% + %silicon% )
C01B 33% ((%polycrystalline_silicon% | %multicrystalline_silicon% | %poly_Si% | %polysilicon%)

C30B 15% + (%photovoltai% | %solar% )) | (%ribbon% + (%photovoltai% | %solar% | %silicon% ))
C30B 29% | (%edge_defined_film_fed_growth% + %silicon%) | %Metal_wrap_through% |
H01L 21% %emitter_wrap_through% | %ribbon_growth%
H01L 31%

Thin-film C23C 14% ((%chemical_vapour_deposition% | %PECVD% | %physical_vapour_deposition% | %PVD% |
cells C23C 16% %solid_phase_crystallization% | %laser_crystallization% | %nanocrystalline% | %microcrystalline%)

H01L 21% + (%photovoltai% | %solar% | %silicon% )) | ((%tandem% | %amorphous_silicon% |
H01L 27% %silicon_substrate% | %silicon_film%) + (%photovoltai% | %solar%)) | %staebler_wronski%
H01L 29%
H01L 31%

C23C 14% ((%cadmium_telluride% | %CdTe% | %copper_indium_diselenide% | % CIS % | %CuInSe% |
C23C 16% %indium_tin_oxide% | %gallium_arsenide% | %GaAs% | %roll_to_roll% | %surface_textur% |
H01L 21% %thin_film% | %thinfilm%) + (%photovoltai% | %solar%)) | %copper_indium_gallium_diselenide% |
H01L 25% %CuInGeSe% | %CIGS% | %copper_zinc_tin_sulfide% | %CZTS% | %kesterite%
H01L 27%
H01L 29%
H01L 31%

Emerging C08K 3% ((%dye_sensiti% | %titanium_oxide% | %titanium_dioxide% | %TiO2% | %organic% | %polymer%)
cells C08G 61% + (%photovoltai% | %solar)) | %gr_tzel% | %graetzel% | %hybrid_solar_cell%

H01B 1%
H01G 9%
H01L 21%
H01L 31%
H01L 51%
H01M 14%

H01G 9% ((%quantum_dot% | %perovskite% | %organic_inorganic% | %plasmon% | %nanowire% |
H01L 31% %nanoparticle% | %nanotube%)) + (%photovoltai% | %solar))
H01L 51%
H01M 14%

PV modules H01L 21% ((%anti_reflection% | %encapsulat% | %back_contact% | %buried_contact% | %bypass_diode% |
H01L 25% %rear_surface_protection% | %back_sheet% | %building_integrat% | %mounting_system%)
H01L 27% + (%photovoltai% | %solar)) | %solar_panel% | %photovoltaic_panel% | %solar_modul% |
H01L 31% %solar_cell_modul% | %photovoltaic_modul% | %solar_cable% | %photovoltaic_wire% |
H01R 13% %solar_array% | %photovoltaic_array% | %BIPV% | %solar_park% | (%spacecraft% +
H02N 6% (%photovoltai% | %solar_cell%))
H02S 20%
H02S 30%
B64G 1%
E04D 13%

Unassigned B64G 1% (%photovoltai% | %solar_cell%)
C01B 33%
C08K 3%
C08G 61%
C23C 14%
C23C 16%
C30B 29%
C30B 15%
E04D 13%
F21S 9%
G05F 1%
H01B 1%
H01G 9%
H01L 21%
H01L 25%
H01L 27%
H01L 29%
H01L 31%
H01L 51%
H01M 10%
H01M 14%
H01R 13%
H02J 7%
H02M 7%
H02N 6%
H02S 99%
H02S 20%
H02S 30%
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3.6.2 Decriptive statistics

Table 3.5: Descriptive statistics for wind power and photovoltaics.

Tech. Min. Median Mean Max. SD
Forward Citation WP 0 1 2,628 103 6,202

PV 0 1 2,723 41 4,008
New Inventors WP 0 0 0,546 6 0,753

PV 0 1 0,820 10 1,053
Specialized Inventors WP 0 0 0,208 4 0,475

PV 0 0 0,260 4 0,574
Related Inventors WP 0 0 0,362 6 0,633

PV 0 1 0,808 8 1,052
Unrelated Inventors WP 0 0 0,221 4 0,454

PV 0 0 0,136 3 0,379
Team Size WP 1 1 1,384 8 0,886

PV 1 2 2,132 13 1,465
Experienced Inventors WP 0 1 0,791 7 0,776

PV 0 1 1,205 8 1,129
Knowledable Inventors WP 0 0 0,583 7 0,715

PV 0 1 0,944 8 1,075
Foreign Inventors WP 0 0 0,047 7 0,405

PV 0 0 0,108 5 0,477
IPC Classes WP 1 2 2,042 10 1,343

PV 1 2 2,381 10 1,414
Backward Citations WP 0 2 3,236 171 7,307

PV 0 3 4,263 154 6,388
New Combination WP 0 0 0,148 1 0,355

PV 0 0 0,225 1 0,418
Family Size WP 1 1 3,033 35 4,682

PV 1 1 2,957 31 3,059
PCT Patent WP 0 0 0,011 1 0,102

PV 0 0 0,008 1 0,091
Granted Patent WP 0 0 0,29 1 0,454

PV 0 0 0,357 1 0,479
USPTO WP 0 0 0,027 1 0,161

PV 0 0 0,018 1 0,132
PV Modules PV 0 0 0,215 1 0,411

PV Cells PV 0 0 0,167 1 0,373
Silicon Wafer Cells PV 0 0 0,021 1 0,142

Thin-Film Cells PV 0 0 0,100 1 0,300
Emerging Cells PV 0 0 0,054 1 0,227
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Chapter 3: Knowledge recombination along the technology life cycle

3.6.4 Inventor types

In this section, more detailed information about the number of the different kinds of inventors,
their patents and team composition are presented. Table 3.8 shows the number of different types
of inventors. These numbers do not sum up to the total number of inventors, since the inventor
type can change over time, for example if a New Inventor continues his inventive activity and
becomes a Specialized Inventor.

Table 3.8: Number of inventors of wind power and photovoltaic patents.

Wind power Photovoltaics
New Inventors 1083 1387
Specialized Inventors 413 440
Related Inventors 596 920
Unrelated Inventors 560 677

Figure 3.7 displays the number of patents each inventor possesses in the technologies. The
very skewed distribution is common for patent data (Menon, 2011) and scientific output in
general (Lotka, 1926). It is not possible to infer from the number of patents to the type of
inventor. Related Inventors and Unrelated Inventors can have only one patent or inventors,
which start and continue their inventive activity have more than one patent. Remarkably is the
WP inventor with 127 patents. This inventor is Aloys Wobben, founder of the German wind
turbine manufacturer Enercon.
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Figure 3.7: Number of wind power and photovoltaics patents each inventor possess.
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Chapter 3: Knowledge recombination along the technology life cycle

Figure 3.8 depicts the team composition in WP and PV. A edge between two different kinds
of inventor is established if they are present on the same patent. The loops for each inventor
consists of patents invented by only one type of inventor, regardless of the amount (patents with
only one inventor are included in the loop as well). WP has hardly any heterogeneous teams
and most patents are filed by one or multiple inventor of the same type. In both technologies,
teams comprising New Inventors and Related Inventors as well as New Inventors and Specialized
Inventors are the most frequent.

Wind power Photovoltaics

New Inventors

Specialized Inventors

Related Inventors

Unrelated Inventors

Foreign Inventors

New Inventors

Specialized Inventors

Related Inventors

Unrelated Inventors

Foreign Inventors

Figure 3.8: Team structures in wind power and photovoltaics.
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3.6.5 Robustness tests
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Figure 3.9: Five year long rolling-window regression results for wind power and photovoltaics.
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Figure 3.10: Eleven year long rolling-window regression results for wind power and photo-
voltaics.
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Chapter 4

Inventor networks in renewable
energies: The influence of the policy
mix in Germany

Co-authored with Uwe Cantner, Holger Graf and Johannes Herrmann

4.1 Introduction

During the last decades, the global capacity for electric power generation by renewable sources
(excluding hydropower) increased substantially from 85 GW in 2004 to 657 GW in 2014 (REN21,
2015). In Germany, the share of renewable energies in electric power production reached 27% in
2014 (BMWi, 2015). This development is mainly driven by political support and technological
progress in the specific technologies. Several studies have shown that policies and environ-
mental regulations are important drivers of innovative activities in environmental technologies,
especially in renewable energies (Johnstone et al., 2010; Grau et al., 2012; Peters et al., 2012;
Wangler, 2013; Dechezleprêtre and Glachant, 2014; Costantini et al., 2015b). In particular,
inventive activities, largely induced by policies for wind power (WP) and photovoltaic (PV)
technologies, increased tremendously over the last decades.

Policies have been implemented in an attempt to influence the development and diffusion
of renewable power generation technologies (RPGT), especially PV and WP, from different
directions. Demand pull instruments affect innovative activities indirectly by creating demand
for RPGT, e.g. through feed-in tariffs (FIT) or investment support, and thus increase market
size. Technology-push instruments directly affect inventive and innovative activities by means of
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R&D subsidies or through performing public R&D in research institutes. Systemic instruments,
such as cooperative R&D programs, clusters or infrastructure provisions, provide support for
collaboration and knowledge transfer (Smits and Kuhlmann, 2004). The combination of these
policies constitutes an instrument mix,1 which needs to be consistent to support fully innovative
activity.

With respect to technology push policies, while their influence on investments in R&D is
quite clear, two important aspects of policy impact are less obvious. First, while demand pull
instruments increase incentives to invest in production facilities, do they also increase incen-
tives for innovation and investment in R&D? And if so, is it an immediate effect or rather a
consequence of the change in market size and structure? Regarding the second aspect, it is com-
mon knowledge that internal investments in R&D are only one input in the innovation process.
External knowledge, captured through technological spillovers, increases the knowledge-base of
innovative actors and therefore has a positive influence on innovation output (Cassiman and
Veugelers, 2006). Several channels of technological spillovers have been identified in the eco-
nomics of innovation, with personal contact through cooperation or job mobility being one of
the most important (Singh, 2005; Breschi and Lissoni, 2009; Edler et al., 2011). These modes of
interaction constitute a network of actors, being either organizations or individuals. Networks
of knowledge exchange are widely viewed as a central driver for inventive activity and it is most
likely that they are affected by different policies as well (Cantner and Graf, 2011; Phelps et al.,
2012; Broekel et al., 2015). What we do not know is how the mix of policies influences the
structure of these networks.

The aim of this research is to understand how the different instruments of the policy mix as
well as the consistency of this mix influence the process of invention and innovation in WP and
PV. We focus on Germany because of the strong political support for renewable energies and the
high share of German inventors in these specific industries. In addition, Germany represented
a good fraction of the world market for RPGTs in our observation period (1978–2012). This
is especially true for PV, where Germany represented between 30 and 60 per cent of the world
market from 2001 to 2010 (IEA, 2010). Our approach adds three important aspects to the
existing literature. First, in addition to the level of inventive activity, we put the focus on the
structure of relations within the network of collaboration. Second, regarding policy instruments,
we distinguish between R&D subsidies that are granted to single organizations and research
grants aimed at fostering collaboration and which can, therefore, be regarded as systemic (Smits
and Kuhlmann, 2004). Third, we test for the consistency of a set of instruments within a policy
mix. Here, the effects of single policy instruments as well as of changes in the policy mix
on networks of cooperation are studied by mapping co-inventor networks in the PV and WP
industries in Germany.

We use patent applications in WP and PV by German inventors to reconstruct co-inventor
networks and estimate the effects of several policies as well as their mix on the size and structure
of these networks. By and large, the size of the networks is increased by technology push as well
as systemic instruments, whereas demand pull policies seem especially effective in PV. The struc-
ture of the co-inventor networks is driven by systemic instruments, especially in WP. For both
technologies, surprisingly, demand pull policies are very important in facilitating collaboration.
The mix of these instruments shows strong consistency in most cases.

The remainder of this chapter is organized as follows: in the following section, we give a
short review of the literature on innovation networks and innovation policy and derive respec-
tive hypotheses. In section 4.3, a short overview of relevant policy instruments in Germany is
1 The terms instrument mix and policy mix are not clearly defined and sometimes are used interchangeably.

Here we rely on the distinction by Rogge and Reichardt (2016), where the instrument mix is an essential part
of a broader policy mix.
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provided. Section 4.4 describes the data and our empirical approach. Section 4.5 presents our
results and discusses their robustness. In the last section, we discuss our findings and conclude.

4.2 Policy influence on innovation, collaboration and networks

4.2.1 The innovation–network nexus

Inventive activity, and innovative activity in general, is an interactive process of knowledge
creation and accumulation (Kline and Rosenberg, 1986) in which novelty is created by combining
knowledge from a diverse set of actors (Kogut and Zander, 1992). This knowledge re-combination
is especially successful in teams that are able to combine diverse sets of knowledge (Wuchty
et al., 2007; Bercovitz and Feldman, 2011). Corresponding networks of knowledge transfer and
learning constitute one important driver of innovation (Dosi, 1988; Powell et al., 1996; Ahuja,
2000). These networks can be studied by the use of social network analysis, which maps actors
and their relations in the context of innovation and knowledge transfer.2 Knowledge transfer
can be traced through different types of networks, such as co-authorship networks (e.g. Barabasi
et al., 2002; Newman, 2004; Moody, 2004; Acedo et al., 2006), co-invention (e.g. Balconi et al.,
2004; Fleming and Frenken, 2007; Casper, 2013), university-industry research collaborations
(e.g. Balconi et al., 2004; Ponds et al., 2010; Guan and Zhao, 2013) and industry collaborations
(e.g. Ahuja, 2000; Hagedoorn, 2002; Schilling and Phelps, 2007).

The motives to engage in collaborations and to exchange knowledge are manifold (Cant-
ner and Graf, 2011) and the objective is to increase the inventive and innovative performance.
Indeed, as empirical research finds, collaboration and networking in R&D in general lead to
a higher research output than individual R&D activities (e.g. Czarnitzki et al., 2007; Fornahl
et al., 2011). While there are relatively few studies on the relation between network structure
and its performance, theoretical as well as empirical results suggest a positive influence of in-
creased interaction (Powell and Grodal, 2005; Fritsch and Graf, 2011; Phelps et al., 2012). The
speed of information diffusion increases with the connectivity of the network and the probabil-
ity of knowledge transfer between individuals decreases the longer the paths connecting them
(Singh, 2005). Average innovative performance is higher in well-connected networks (Fleming
et al., 2007). Analyzing these networks helps us to understand how knowledge is generated and
distributed and the way in which it affects the actors in the networks.

4.2.2 Policy instruments fostering innovation and collaborations

4.2.2.1 Rationale for policy intervention

Due to the costly and uncertain nature of inventive and innovative activity, policy intervenes
to enhance and increase research and development activities. Furthermore, there are several
market failures that hamper inventive and innovative activity, such as knowledge externalities
or technological lock-ins and path dependencies (Arthur, 1989; Griliches, 1992; Cecere et al.,
2014).

Concerning cooperation in R&D, the implied knowledge transfer between the actors and the
underlying network structures tends to be affected by system failures of complementarity (Do
the diverse piece of knowledge and hence the actors behind fit together?), reciprocity (Is the
network based exchange of knowledge governed by trust and reciprocity?) and intermediation
2 See Borgatti and Foster (2003) for a general overview of social network analysis and Cantner and Graf (2011)

for an overview and application in the context of innovation networks.
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(Are the eventual network partners aware of all potential cooperation partners?). Answering a
“no” to any one of these questions leads to a rationale for policy intervention in order (i) to reduce
the monetary risk of non-complementarity and/or non-reciprocity and (ii) to bear the costs of
searching for appropriate partners (Carlsson and Jacobsson, 1997; Klein-Woolthuis et al., 2005;
Cantner et al., 2011). In this context, various types of policies may have different influences on
network formation, thereby affecting the rate of knowledge transfer and consequently influencing
the speed at which technologies are developed. For example, R&D subsidies are frequently and
increasingly awarded only if actors collaborate on these projects to overcome such failures and
incentivize joint research efforts (Broekel and Graf, 2012).

Furthermore, environmentally friendly innovations generate positive externalities for society
by reducing emissions and resource extraction that cannot be fully internalized. Therefore, these
eco-innovations are subject to a double or multiple externality problem (Rennings, 2000; Jaffe
et al., 2005; Cecere et al., 2014).

To deal with these externalities, and to directly or indirectly foster inventive activity various
instruments originating from different policy fields can be implemented. The main fields are
innovation policy, where policy needs to address the underinvestment in R&D due to spillovers
and non-excludability of new knowledge, path dependency, lock-ins and network effects; en-
vironmental policy, which deals with the negative external effects concerning emissions from
conventional technologies; and climate policy which focuses especially on the adverse effects of
greenhouse gas emissions.3 A broad set of instruments from these fields supports and induces
environmental innovations to overcome these externalities and increases innovation and the dif-
fusion of clean technologies (Jaffe et al., 2002; Kemp and Pontoglio, 2011; Costantini and Crespi,
2013; Groba and Breitschopf, 2013). These sets of instruments can be conventionally classified
in technology push and demand pull instruments. Furthermore, there is an increasing attention
towards instruments affecting the above mentioned failures related to the systemic nature of
the innovation process (Smits and Kuhlmann, 2004; Wieczorek and Hekkert, 2012), so called
systemic instruments.

On this basis, we are interested in how the mix of these instruments influences inventive
activities in environmentally friendly technologies. Taking into account the importance of coop-
eration in those activities, we focus on networks of inventive activity and formulate hypotheses
regarding their size and structure. The former reflects the attractiveness of the system in terms
of the number of inventive actors, while the structure is of particular importance for the potential
knowledge transfer within networks (Cowan and Jonard, 2004; Schilling and Phelps, 2007).

4.2.2.2 Technology push instruments

There are several measures directly targeted at overcoming the above mentioned externalities
and enhancing inventive activity. The most prominent instruments directly influencing inventors’
activity are R&D subsidies or other means, such as tax incentives, to reduce the private costs
of R&D activities. In his seminal report, Bush (1945) addressed the necessity to fund directly
R&D activities to increase the knowledge stock and to increase research cooperation between
actors. Since then, there has been a long debate about the effectiveness of direct R&D support
and its benefits for inventive activity (cf. David et al., 2000; García-Quevedo, 2004). Growing
empirical evidence indicates that direct R&D funding increases inventive output (e.g Czarnitzki
and Hussinger, 2004; Alecke et al., 2012), despite frequent concerns regarding crowding-out of
private R&D investments (see Zúñiga-Vicente et al., 2014, for a review).
3 Of course, other policy fields also influence inventive activity, such as energy policy in general, industrial policy

or trade policy.
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Several empirical studies have analyzed the effect of direct R&D subsidies in environmentally
friendly technologies, especially renewable energies. Most of them use patent data as an output
of the R&D process and estimate how R&D subsidies influence patenting activity. Johnstone
et al. (2010) estimate for a panel of 25 countries that public R&D expenditure fosters inventive
activity, especially in WP and PV. Wangler (2013) as well as Böhringer et al. (2014) focus their
analyses on inventive activity in Germany and find that public R&D expenditure has a positive
effect on inventive activity. Costantini et al. (2015b) find no positive effect for mature biofuel
technologies, but a positive effect for less mature technologies that are still in the early stage of
development. Costantini et al. (2017) show for a panel of 23 OECD countries that technology
push policies increase inventive performance in energy efficiency technologies. However, Nesta
et al. (2014) find no significant effect of public R&D expenditure on green patents.

With our focus on collaboration and networking in R&D, we extend these analyses by looking
at the effects of technology push instruments on inventor networks. First, since patents are the
basis for the size of the co-inventor network, we expect that technology push instruments foster
inventive activity and thereby increase the size of the network.

Hypothesis 1. Technology push instruments increase the size of the co-inventor network

Second, concerning the structure of inventor networks, we do not expect an effect of individ-
ual funding. Technology push instruments are not designed to influence connectivity within the
network, since by its very nature individual R&D funding does not aim at encouraging coopera-
tion. In addition, inventors working for private companies may be concerned about secrecy and
may prefer not to cooperate to inhibit an outflow of knowledge. This leads us to the following
hypothesis:

Hypothesis 2. Technology push instruments have no effect on cooperation within the co-
inventor network

4.2.2.3 Systemic instruments

Systemic instruments are designed to provide support at the systemic level of inventive activ-
ity and reduce system failures (Chaminade and Edquist, 2006; Wieczorek and Hekkert, 2012).
This includes the provision of infrastructure, especially to facilitate learning and knowledge
exchange, to enhance cooperation, for example by cluster initiatives, or to foster cooperation
between inventive actors (Smits and Kuhlmann, 2004). The aim of such policies is to connect
different actors, such as firms, universities and research institutes, to create a network of knowl-
edge transfer, encourage learning processes and open up possibilities of resource and capability
sharing. The most common systemic instrument is subsidizing research collaboration with the
requirement to involve different actors in a R&D project. Such cooperative grants lead to higher
inventive output compared to individual grants (e.g Czarnitzki et al., 2007; Fornahl et al., 2011).

Concerning the effect of systemic instruments on inventive activity, Branstetter and Sakak-
ibara (1998, 2002); Czarnitzki and Fier (2003) and Czarnitzki et al. (2007) find that firms that
participate in publicly funded R&D consortia have a higher inventive output than non-funded or
non-participating firms. Fornahl et al. (2011) find that R&D funding for German biotech firms
has only a minor effect on inventive output, while collaborative R&D funding increase inventive
output to some extent. Falck et al. (2010) show that a cluster initiative in Bavaria, Germany,
increased the amount of innovation and eased the access to foreign knowledge for participating
firms. Indirect support of networking within a Japanese cluster policy has been shown to be
effective in increasing innovative output (Nishimura and Okamuro, 2011).

In view of this evidence and parallel to the analysis of technology push instruments, we are
interested in the effects of systemic instruments on co-inventor networks. Since many types
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of systemic instruments provide financial support for joint R&D activity, they should increase
inventive activity similar to technology push instruments. Furthermore, by providing incentives
to form cooperation with (often) previously unknown partners, they could increase the size of
the network by attracting new actors to these technologies. Hence, we suggest the following
hypothesis:

Hypothesis 3. Systemic instruments increase the size of the co-inventor network

The instruments at the systemic level are especially designed to increase the connectivity
inside the network. They attract new actors to the network and integrate them by providing
incentives to establish linkages. Even though evidence on the link between systemic instruments
and network formation is scarce, some studies find positive effects of collaborative R&D funding
or cluster policies on collaboration (Giuliani and Pietrobelli, 2011; Nishimura and Okamuro,
2011; Cantner et al., 2014). In view of this evidence, we propose the following hypothesis:

Hypothesis 4. Systemic instruments increase cooperation inside the co-inventor network

4.2.2.4 Demand pull instruments

The notion of a demand effect on inventive and innovative activity was introduced by Schmookler
(1962, 1966), who postulates that markets with high expected profitability provide incentives to
engage in inventive activity. This relationship has been widely discussed in the literature (e.g.
Mowery and Rosenberg, 1979; Kleinknecht and Verspagen, 1990) with recent empirical evidence
indicating that market demand induces inventive output in general (Peters et al., 2012) and
especially fosters process innovations (Fontana and Guerzoni, 2008).

Environmentally friendly technologies compete with incumbent technologies that have cost-
advantages due to negative externalities and path-dependencies and are therefore left with sub-
optimal market shares from a societal perspective. To establish demand for these technologies,
a protected niche marked is required that allows the technologies to emerge and improve (Kemp
et al., 1998; Nill and Kemp, 2009). Demand pull instruments can create such niche markets
and provide incentives for firms to enter the market or to innovate and expand production
capacity. With revenues generated on this market, firms can grow to appropriate economies
of scale and learning effects that allow the development of more efficient production processes
or investment in new machinery (Arrow, 1962a; Peters et al., 2012; Lindman and Söderholm,
2012); thereby they reduce production costs and generate revenues, which can be re-invested in
R&D (Nemet, 2009; Hoppmann et al., 2013). Different demand inducing policies can be thought
of, such as public procurement, demand subsidies, deployment policies, and fiscal incentives, or
soft instruments such as standards and labels or initiatives to reduce information asymmetries
(Edler, 2010).

The effect of niche markets for environmentally friendly technologies has been observed in
case studies and broader empirical settings. For energy efficiency technologies, Costantini et al.
(2017) find that a general energy tax, which induces demand for energy efficiency applications,
increase inventive output. In a case study on PV module producers, Hoppmann et al. (2013)
show that an increase in market size also increases the innovative investments, with gained
revenues being partly reinvested. Nemet (2009) finds the opposite effects for WP in California,
where demand policies did not trigger non-incremental inventions. In an econometric framework,
Johnstone et al. (2010) show that feed-in tariffs have only a significant effect for solar technologies
and a negative effect for WP on inventive output, while certificates and obligations increase
inventions in general. Costantini et al. (2015b) show that demand induces innovation and,
especially for less-mature technologies, price-based demand instruments enhance invention more
than quantity-based ones. Peters et al. (2012) consider domestic and foreign demand policies
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for PV and find that both have an effect on inventive output. Wangler (2013) finds that an
increase in market size has a positive effect on inventive activity in Germany.

As stated above, the evidence for the effect of demand pull instruments on invention is
inconclusive and apparently technology dependent. We assume that demand pull instruments
may have an indirect effect on the size of co-inventor networks. First and foremost, they establish
markets and/or increase market size. Furthermore, with a larger market, more actors will see an
opportunity to serve that market. Hence, with inventive activity being a prerequisite for survival
in the market, due to the increased competition, indirectly more inventions are induced. Hence,
for the size of inventor networks we suggest:

Hypothesis 5. Demand pull instruments increase the size of the co-inventor network

Demand pull instruments increase the number of actors, but we have no good reason to expect
that they change cooperative behavior within the network. While an increasing number of actors
positively affects the number of potential partners, it might at the same time increase the fear
of unintended knowledge spillovers if competition becomes fiercer. Therefore we hypothesize for
the structure of inventor networks:

Hypothesis 6. Demand pull instruments have no effect on cooperation in the co-inventor net-
work

4.2.3 Consistency of the instrument mix

All the above mentioned instruments seem relevant for increased inventive activity and are
frequently implemented simultaneously, thereby constituting an instrument mix for innovation.
In the literature, it is acknowledged for quite some time that such a mix of instruments is
necessary to increase inventive activity, especially for eco-innovations (Mowery and Rosenberg,
1979; Kemp et al., 1992).

Recently, the interaction, interdependency and possible coordination failures within the in-
strument mix for innovation have caught the attention of researchers. Several theoretical con-
tributions argue that the optimal reduction of emissions is achieved by emission control policies
combined with the direct support of inventive activity (see Lehmann, 2012, for a survey). Con-
cerning the interaction of implemented instruments to support inventive activity, the evidence is
scarce.4 Buen (2006) shows for WP in Denmark and Norway that supply and demand subsidies
should be implemented at the same time and be predictable over time to create an environ-
ment in which actors can successfully engage in inventive activity. Bérubé and Mohnen (2009)
show for a sample of Canadian firms that the presence of tax credits as well as R&D subsidies
increase inventive output more than tax credits alone. Guerzoni and Raiteri (2015) find for a
sample of European firms that, if supply and demand side policies positively interact, innovation
expenditures are highest.

Various conceptualizations of a broader policy mix have been proposed. Within the innova-
tion system approach, Borrás and Edquist (2013) suggest how an instrument mix with systemic
characteristics should be designed. Flanagan et al. (2011) emphasize several dimensions (pol-
icy space, governance space, geographical space and time) of innovation policy mix interactions
on various levels. A recent conceptualization of the policy mix is proposed by Rogge and Re-
ichardt (2016), who argue that the instrument mix is part of a wider policy mix for innovation.
4 There is distinct stream of literature focusing on instrument mixes in environmental policy in general (e.g.

OECD, 2007) and the interaction of the EU ETS and the diffusion policies for renewable energies and their
emission reduction in particular (e.g. Sorrell et al., 2003; del Río González, 2007; del Río, 2010; Lehmann,
2012).
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This policy mix consists of different elements that capture the policy strategy to define certain
objectives, the instruments used to achieve the strategies’ objectives, and the mix of these instru-
ments. These elements furthermore have certain characteristics. A particularly important one
is the consistency of the elements in the policy mix that includes, among others, the consistency
between the instruments and their interaction.

According to Rogge and Reichardt (2016), the consistency of the instrument mix can be
assessed by interaction analysis and can have three degrees of interaction: strong, if the instru-
ments reinforce each other, weak, if the interaction is neutral, and inconsistent if the interaction
effect is negative. They argue that due to the conflicting objectives, perfect consistency may not
be possible (Flanagan et al., 2011), and may sometimes not even be desirable (Quitzow, 2015).
Costantini et al. (2017) show how an inconsistent mix of instruments, characterized by an excess
of implemented instruments, can deter inventive performance in energy efficiency technologies.
They find that if too many policies are implemented, complexity increases and inconsistencies
emerge that reduce inventive performance. Guerzoni and Raiteri (2015) find strong consistency
for the interaction between public procurement and direct subsidies. Inventive expenditures of
firms are found to be higher if the instruments interact compared with the sum of the individual
effects of both instruments.

Based on the previous empirical findings, we argue that market demand must be present
to encourage inventors to engage in R&D activity. Here, we expect that demand pull interacts
with technology push instruments and enhances the size of the network. Both policies create
incentives: demand pull instruments promise customers for products based on each technology
and technology push instruments lower barriers to the pursuit of R&D activities. Expecting
strong consistency, we can formulate the following hypothesis:

Hypothesis 7. The size of the co-inventor network is positively affected by the interaction of
demand pull and technology push instruments

A similar line of reasoning can be put forward regarding the structure of the network. Mar-
ket demand is required for actors to engage in R&D activity. Systemic instruments provide
incentives to collaborate on R&D, especially between previously unknown partners. We expect
that the interaction between the two instruments increases the connectivity inside the network
and therefore shows strong consistency.

Hypothesis 8. Collaboration within the co-inventor network is positively affected by the inter-
action of demand pull and systemic instruments

4.3 Policies for renewable energy in Germany

The development of RPGT and especially WP and PV received broader attention in the 1970s
in reaction to the oil crises and due to the growing awareness of resource depletion and envi-
ronmental concerns in society. Governmental support of R&D in these technologies started in
Germany in 1974 (Lauber and Mez, 2004). This development has been accompanied and pushed
by various policy initiatives. They are designed to aim at technological improvement and cost
competitiveness directly via subsidizing R&D activities leading to cost reduction, or indirectly
via feed-in-tariffs, i.e. guaranteeing a cost covering price that induces demand and allows reaping
scale and learning economies by increased production. The rationale for such policies is seen in
the initially low competitiveness of the new compared to incumbent technologies as well as in
the external effects associated with these infant technologies (Painuly, 2001).

While both technologies were at an infant stage when policy support in Germany started,
there are noteworthy differences between them. Windmills as a source of mechanical energy
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have long been known and even though modern WP installations differ greatly from traditional
windmills, the concept of using wind as a source of energy was familiar (see Shepherd, 1994,
for a historical review). Furthermore, many auxiliary technologies that were used to develop
wind turbines could be adapted from other fields (e.g. wind tunnels in aviation), which may ease
technological progress. The first photovoltaic cell was only introduced in 1954 and provided
a new way of utilizing solar energy. While there was not much previous knowledge to build
on, photovoltaic applications benefitted from simultaneous developments within the emerging
semiconductor industry (Sze, 1981). This leads to differences in efficiencies and production costs,
which partly explains political support patterns described below.

4.3.1 Technology push instruments

For RPGTs in Germany, the main technology push instrument is R&D funding by the German
federal government. Federal R&D spending is documented in the German Förderkatalog (2014),
a database containing all federal granted research projects from 1968 until today (see Broekel and
Graf, 2012, for a detailed description of the database). We identify research projects relevant for
the technologies under concern by conducting a keyword search.5 Overall, funding can be divided
into funding for individual research projects at an institute or a company and collaborative
research projects. We separate these two kinds of funding since they have different effects and
select for the technology push instrument only projects attributed to one recipient. We collect
the data from 1978 until 2011, which covers 259 research projects with a total amount of e283.4
million in WP and 590 projects with a total of e934.9 million in PV (in 1995 Euros).6

Overall funding as well as its breakdown into individual and cooperative funding is depicted in
Fig. 4.1. Regarding the respective overall funds, we observe similar patterns for both technologies
with an early first maximum around 1980 (WP) and 1990 (PV), followed by a decline that lasts
for several years and a sharp increase during the 2000s.

Individual funding in both technologies follows the same pattern most of the years but the
upsurge during the last years is not as pronounced as in overall funding due to a policy shift
towards cooperative funding. However, between the two technologies, there are also some notable
differences with respect to the timing and the amount of funding. Spending for PV reaches its
maximum ten years later than WP which reflect differences in the maturity of these technologies.
The Government also seems to perceive a greater need for funding or puts higher expectations
in PV, since the maximum level of spending on PV is about five times higher than on WP. In
general, spending for PV is more volatile than for WP.

4.3.2 Systemic instruments

Systemic instruments support the research infrastructure by facilitating learning and knowl-
edge exchange, enhancing cooperation, or fostering cooperation between inventive actors (Smits
and Kuhlmann, 2004). In Germany, institutional funding for research institutes such as the
Fraunhofer Institute for Solar Energy Systems ISE or the establishment of dedicated chairs at
universities are examples of this type of instrument. Furthermore, cooperative research projects
(“Verbundforschung”) are widely used to connect public actors with partners from industry and
5 The keywords used are: “wind”, “pv”, “photovoltai*”, “solar”. We remove projects not directly relevant for

inventive activity, such as energy related educational programs, as well as projects that focus on upstream
technologies, but not on WP and PV directly, manually from the dataset. Furthermore, funding for demand
pull instruments, especially the 100/250 MW wind program, are removed as well.

6 The project grants are equally distributed over the project duration to account for the length of the project.
This means, if e1 million is granted to a research project running for five years, we allocate e0.2 million per
year.
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Figure 4.1: Federal funding of research projects in wind power and photovoltaics.
Source: Own calculation based on Förderkatalog (2014).

also among each other. Cluster policies such as the funding of the SolarValley fall into this
category as well.

We select grants for cooperative research also from the Förderkatalog (2014).7 There are
216 cooperative research projects for PV and 55 for WP in the timespan from 1978 until 2011.
The amount of funding for the projects was e35.1 million for WP and e344.2 million for PV,
respectively (see Fig. 4.1). Cooperative research grants were introduced in WP and PV at the
beginning of the 1980s, and especially in PV it had a substantial and increasing share in the
following years with a short period of decline during the early 1990s. By 2011, more than half
of overall funding in PV was granted to cooperative projects. In WP, the systemic instrument
was not frequently applied until 2000. Afterwards, cooperative funding increased and by 2011
it accounted for one third of total funding in WP.

4.3.3 Demand pull instruments

In the beginning of the development of RPGT in the 1970s, demand pull instruments did not
play a major role. Only some local demonstration programs were in place, trying to overcome
the cost disadvantages especially faced by PV (Jacobsson and Lauber, 2006). These agreements,
most of the time between municipal services and the installation owner, granted a payment per
electricity unit in relation to production costs. With the Electricity Feed-in Law (“Stromein-
speisungsgesetz”), the first German FIT, a profound demand side policy was introduced in 1991.
This national law granted renewable energy producers a fixed feed-in tariff of 90% of the regular
customer’s electricity price (computed on the price two years before the granting year) for WP
and PV. This fixed price permitted RE producers to sell their electricity to the grid operators,
which were obliged to purchase. This removed market and price uncertainty for RPGT. The in-
centives were sufficient for WP to diffuse, but did not create high demand for PV, due to the low
7 We identify collaborative grants by the term “Verbundforschung” in the project title, which is specifically used

to describe these cooperative grants. This also includes funding for clusters.
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Figure 4.2: Main demand pull instruments for wind power and photovoltaics in Germany.
Source: Own elaboration based on Bruns et al. (2009).

FIT compared to the high system costs of PV (Jacobsson and Lauber, 2006). This overarching
policy was continued by the Renewable Energy Sources Act (“Erneuerbare Energien Gesetz”,
EEG) in 2000, which extended the FIT and distinguished further between different kinds of
technologies and increased the support for PV and other technologies (see Hoppmann et al.,
2014, for the development of the EEG, especially for PV). The EEG was amended several times
to differentiate further between technologies and to adjust for unexpected cost reductions.

Besides these main instruments, which created a stable environment for investments in
RPGT, other demand inducing policies were in place. For WP, the 100/250 MW wind pro-
gram supported the diffusion of WP as well. The program started in 1989 and granted the
owner of a wind turbine either an investment support or an additional payment for each unit
of electricity feed into the grid. This could be combined with the Electricity Feed-in Law and
created strong incentives to invest in WP. In 1996, the program ended, covering about 1,500
installations with 350 MW installed capacity (see Durstewitz et al., 2000, for an evaluation).

Similar demand supporting programs were in place for PV. In 1991, the 1,000 roof program
was enacted, which provided PV installations support of 70% of installation costs. Until 1994,
2,250 installations were installed and created the biggest market for PV installations in Europe
(Kiefer and Hoffmann, 1994). In 1999, a second program to support the diffusion of PV was
introduced, the 100,000 roof program. The program also granted investment subsidies, but only
up to 30% of the investment costs, and provided interest reduced loans for PV installations. The
program was a big success and was amended to keep up with the demand for support (Bruns
et al., 2009). Eventually, the program ended in 2003 and was integrated in the amended version
of the EEG in 2004. An overview of the most important demand pull instruments and their
amendments is provided in Fig. 4.2.

4.4 Data and empirical strategy

To test our hypotheses, we run a set of OLS time series regressions, which estimate the effect of
different of policy instruments and their mix on the development of the size and the structure of
co-inventor networks. In the following, we explain how the networks for WP and PV are derived
from patent data, continue with the policy instruments and control variables (see Table 4.1),
and describe our empirical strategy.

85



Chapter 4: Inventor networks in renewable energies

4.4.1 Dependent variables: co-inventor networks

4.4.1.1 Reconstructing co-inventor networks from patent data

We use patent data to identify cooperation at the inventor level. The dataset for the analysis
is retrieved from the Worldwide Patent Statistical Database (PATSTAT) (EPO, 2014). Subsets
for WP and PV are extracted by a combination of technology specific IPC (International Patent
Classification) classes and keywords (the same data and search strategy is used as described in
Chapter 3 and the corresponding Appendix 3.6.1). We consider all priority applications in the
timespan from 1980 to 2011. The dataset consists of 3,985 patents for WP and 3,763 patents
for PV invented by German inventors. A patent is selected if at least one of its inventors resides
in Germany. After extensive manual cleaning of the dataset, controlling for patent applicant,
address and year of application, the final dataset consists of 3,603 unique WP and 4,761 PV
inventors. The development of the patents and inventors over time can be seen in Fig. 4.3.

We use a social network approach to reconstruct and analyze the structure and evolution
of the undirected inventor networks in the two technologies. For the reconstruction of inventor
networks, we link inventors via joint patents. If two or more inventors are named on the same
patent (co-invention), we assume that they have collaborated and exchanged knowledge during
the process of invention (Breschi and Lissoni, 2004). The technology specific networks are
constructed using 3-year moving windows to account for persistence, while also allowing for
decay of the linkages (Fleming et al., 2007; Schilling and Phelps, 2007). These moving windows
help to map the invention process, because the patent is just the point in time when the result
occurs, while the inventive process itself is continuous and interaction between the actors takes
place before filing the patent and might persist afterwards.

4.4.1.2 Development of network structures over time

Based on the inventor networks, different properties can be observed concerning their size and
structure (Fig. 4.3). Looking at the size of the networks based on the underlying patent data, we
can observe a steady increase in patents over time, rather exponentially during the last years.
The nodes in the network, which represent the individual inventors, show a similar pattern.
The edges in the network, which represent the number of connections between the inventors,
increase as well. Average team size, i.e. the number of inventors per patent, shows a significant
difference between the technologies. The average team in PV is larger than in WP by about
one inventor per patent throughout most of the periods. The gap becomes smaller during the
last observations, but still accounts for 0.5. This could partly be caused by the existence of very
successful individual inventors in WP, for example, the founder of the German wind turbine
company Enercon, Aloys Wobben, who filed about 3.5% of all WP patents in the observed time
period on his own.

The change of the network structure over time can be described by statistics that measure
characteristics of the network as a whole or describe the individual position of network actors.
A broad overview of these measurements and detailed calculations can be found in Wassermann
and Faust (1994). Concerning network structure, the mean degree, which is the average number
of edges per node, shows an upward development, indicating an increase in cooperative behavior
over time. However, in both networks, density, i.e. the share of active links in all possible links,
decreases over time. Since density is a function of network size, this fact is not surprising,
because the size of the network, in terms of nodes, is increasing over time as well. In the first
years of observation, density is much higher in the PV-network than in the WP-network, but, by
the end of our observation period, both are equal. Degree centralization, which accounts for the
concentration of edges across the nodes, is in both technologies quite volatile but has no trend,
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indicating that no actor is important or dominates the network. The largest component in the
network, which represents the largest group of connected inventors, has a surprisingly low share
and is quite volatile in both technologies. However, in both networks, the share of the largest
component increases over time, indicating an increased potential for knowledge diffusion in the
network.
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Figure 4.3: Structural properties of co-inventor networks in wind power and photovoltaics.
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4.4.1.3 Operationalization

For the econometric analysis we use two network measures as dependent variables. The size
of the network is given by the number of nodes, i.e. the number of distinct inventors, which
indicates the intensity and variety of inventive activity in the respective fields. Since the time
series for WP and PV show an exponential trend, we use the first difference of network size,
∆Nodes.

We use Mean Degree, calculated as the average number of collaboration partners, as a very
simple and easy to interpret measure of network structure. Since it is independent of network
size, it is superior to density and many other measures of network structure in the context of
our study.

4.4.2 Policy variables

The operationalization of technology push (TP) and systemic instruments (SYS) is straightfor-
ward, since they are provided as monetary values (see Sections 4.3.1 and 4.3.2). We aggregate
annual funding to three-year moving windows to account for the duration of the inventive pro-
cess, with some projects taking more time to produce patentable output than others. We take
first differences of the three-year moving windows to estimate the effect of changes in the funding
policy.

To operationalize demand pull instruments (DP), we use the logarithm of annually installed
capacity in Germany in MW per year. Since neither of the technologies analyzed was cost com-
petitive with fossil fuel technologies during the observed time period, we assume that invest-
ments in installed capacity are only undertaken because of an effective demand pull instrument
(Klaassen et al., 2005; Peters et al., 2012; Wangler, 2013; Dechezleprêtre and Glachant, 2014).
Data on installed capacity is taken from Bergek and Jacobsson (2003) for the period before 1990
for WP and for PV from Jacobsson et al. (2004) and for 1990 onwards from BMWi (2015) for
both technologies (see Fig. 4.4). This approach, however, does not differentiate between different
possible causes for an increase in installed capacity.

4.4.3 Control variables

We control for other factors than policy measures that could influence inventive activity in
RPGT. To account for a general increasing trend in patenting, we collect all patents filed at the
German patent office and take the first differences (∆Patents). We also account for the overall,
increasing trend in cooperation (Wuchty et al., 2007) by calculating mean Team Size for all
German patents.8 Furthermore, we use inflation adjusted changes in the crude oil price index
(∆Oilprice) provided by the Federal Statistical Office of Germany (Destatis, 2014) to account
for an induced innovation effect by increasing fuel prices (see Popp, 2002). We also control
for the size of (potential) Export Markets and thereby also capture effects of foreign policies
(Peters et al., 2012; Dechezleprêtre and Glachant, 2014; Costantini et al., 2017). To be precise,
we take the logarithm of the global annual installations of WP in MW and the global annual
production of PV in MW (Earth Policy Institute, 2014a,b) and subtract the respective new
installed capacities in Germany.
8 We use mean team size instead of mean degree since the latter is impossible to calculate due to the large

number of German inventors and the related issues with name disambiguation. We also calculated the mean
degree of a co-inventor network based on a random sample of 5% of all German patents. The correlation
between the two is 0.99 so that we believe this is a viable proxy.
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Figure 4.4: Annually installed capacity in wind power and photovoltaics in MW.
Data source: Bergek and Jacobsson (2003), Jacobsson et al. (2004) and BMWi (2015).

4.4.4 Econometric approach

4.4.4.1 Estimation strategy

We use OLS time series regressions to estimate the effect of the different policy instruments and
their interaction on the size and structure of the network. We estimate ten different models to
test the effect of the policy instruments on the two dependent variables in two technologies. The
general functional form is as follows:

∆Nodest

MeanDegreet

}
= α + β policiest−x + γ controls + ϵ (4.1)

We add variables to see their effect and apply different lags, denoted by t − x (see Sec-
tion 4.4.4.2 for a discussion of the lag structure). The first three models test whether funding
in general affects inventive activity, policies is just the aggregate of TP and SYS, and DP is
included with different lags to replicate the setup of previous studies (e.g. Johnstone et al., 2010;
Peters et al., 2012; Nesta et al., 2014).

The fourth and all subsequent models use TP and SYS individually. In models 5 and 7,
we again include DP with the respective lag structure. In models 6 and 8, we account for the
export market instead of domestic demand. Due to problems of multicollinearity, we cannot
include DP and Export Market in the same model.

We explicitly model the instrument mix in the last two models by including an interaction
term between single instruments. The interaction term is supposed to grasp the type of consis-
tency of the instrument mix. Model 9 introduces an interaction between TP and DP, while the
last model employs an interaction between DP and SYS.
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The correlation between the variables is not critical (see Appendix 4.7.1) except for Team
Size, DP and Export Market, which can therefore not be used in the same models. Also, the
variance inflation factors show no critical values, except for the interaction term in model 10.

According to the Breusch-Pagan test (Breusch and Pagan, 1979), we have heteroscedasticity
in the error terms in most models. In addition, the Durban-Watson test (Fox, 2008) reveals
autocorrelation in the error terms. To account for this, we use heteroscedasticity and auto-
correlation consistent covariance matrices (HAC) (Newey and West, 1987; Andrews, 1991) to
calculate standard errors.

Due to the time series nature of our variables, we apply a unit root test (Elliott et al., 1996)
to test for non-stationarity. We cannot reject non-stationary in the dependent variables and
DP. For the dependent variables, we provide alternative specifications that are stationary in
Section 4.5.3. They show that non-stationarity does not bias our general results. While it would
be possible to transform the DP variable in a way that is stationary (e.g. the growth rate of
newly installed capacity), we would lose a lot of valuable information. Apart from that, we
believe that the explosive growth in demand is what is particular about this instrument and is
the basis for its effectiveness. Due to its very nature, it is not possible to model the effect of the
DP variable as a one-time shock to the time series. However, this has to be considered while
interpreting the results.

4.4.4.2 Lag structures

Analyzing the influence of a specific policy instrument on inventive activity requires consider-
ing time lags between the introduction of the instrument and the realization of an inventive
output (see Hall et al., 1986, for a general discussion). Were this not the case, the policy in-
strument would rather influence the propensity to patent already existing inventions, instead of
incentivizing inventive activity (Scherer, 1983).

Various lag structures have been proposed in the context of environmental innovations and
RPGTs in particular. Brunnermeier and Cohen (2003) use no lag structure to estimate the
effect of R&D expenditures on inventive output in environmental innovation, yet their results
are robust to one and two years lags as well. Johnstone et al. (2010) also use no lags in their
analysis. Peters et al. (2012) use one, three and five year lags for R&D spending, but abandon
lags since their initial model provides the best fit. Wangler (2013) employs no lag for public
R&D spending and a positive lag for installed capacity. A positive lag means that actors either
anticipate future policies or have expectations regarding the future impact of existing policies
and adjust their inventive activities accordingly. Böhringer et al. (2014) use a one year lag for
R&D investments and no lag for installed capacity.

We decided to lag TP and SYS by one year. Most DP instruments were intensively discussed
in the public before introduction (e.g. Hoppmann et al., 2014), so that the actors could anticipate
policies well before their introduction and change their inventive behavior (anticipation effect).
Therefore, for DP, we introduce a foresight of one year, which has also been used by Wangler
(2013). In addition, a long term effect of a DP instrument, such as a FIT, would be generation
of profits, which can be invested in inventive activity that shows success only some years later
(resource effect).9 Therefore, we assume four years to be a reasonable time span for new research
projects to result in patentable output. For the interaction terms, we consider only the resource
effect and lag DP by four years.10 While thinking about optimal lag structures, one has to
9 Nemet (2009) as well as Hoppmann et al. (2013) provide detailed evidence for the existence of both types of

effects.
10 We also considered interactions between TP and DP with the one year negative lag (anticipation), but overall,

these models had a poorer fit.
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consider that any specification of a lag structure is subject to noise. This is especially so in the
case of inventive activities and somewhat accounted for by our reconstruction of networks with
three-year moving windows. It is therefore unlikely that we find a single lag structure which
clearly outperforms all other options. We provide robustness checks accounting for a series of
lag structures in Section 4.5.3.

4.5 Results: policy impact on network size and structure

4.5.1 Size of the network

The size of the network is given by the number of nodes, which represent individual inventors
and could be interpreted as the attractiveness of the research field.11

In the first three models for WP (Table 4.2), we observe that an increase in overall funding
(TP+SYS) is associated with an increase in the number of nodes in the network. More effective
DP policies, however, do not seem to be important for the stimulation of inventive activities,
independent of the lag structure. The differential impact of the instrument mix on innovation
in different technologies becomes clear by comparing the results for WP with those for PV
(Table 4.3). Network size in PV is largely explained by effective DP, whereas we find almost
no effect of funding. Comparing the two different lags shows that the resource effect provides a
better model fit than the anticipation effect.

The individual effects of TP and SYS in model 4 are positive and significant in WP, while
in PV only SYS increases network size. Also, the overall fit of the model is nearly zero for PV,
indicating that R&D subsidies do not contribute significantly to the technological development.
This confirms the hypotheses 1 and 3 for WP but not for PV. Including DP with different lags
in models 5 and 7 shows similar coefficients as in models 2 and 3 but the anticipation effect for
DP turns significant in WP. In PV, TP becomes significant, indicating that conventional R&D
funding needs to be accompanied by DP. Here we can confirm the hypothesis 5 for PV but not
for WP.

Comparing the models that differentiate between TP and SYS with the ones that do not
shows that the model fit improves especially in WP but to a lesser extent in PV, which is due to
the dominance of DP instruments in PV. In models 6 and 8, we account for the fact that firms
in both industries are engaged on international markets and include the size of export markets.
Again, the anticipation effect and the resource effect are strong predictors of network size in
PV, but only the anticipation effect proves significant in WP. It is worth noting that including
international demand instead of national demand (DP) leads to a better model fit in WP. In
PV, comparing the models with anticipation effect (5 and 6), explanatory power is higher when
we control for the Export Market. When it comes to the resource effect (models 7 and 8), the
domestic market (DP) has a higher explanatory power than the Export Market.

The interaction of different instruments, especially between TP and DP, are used to eval-
uate the complementarity between the instruments, i.e. the consistency of the instrument mix.
Acknowledging this interrelation between policies strongly improves the model fit in all cases
analyzed. The interaction between TP and DP is significant for both technologies, which in-
dicates that both policy instruments complement each other in attracting inventive activities,
which is in line with hypothesis 7. We also find a significant positive effect of the interaction
11 The results for changes in the number of patents instead of nodes are very similar. Respective results are

available upon request.
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between DP and SYS in model 10 in WP, while in PV, this effect is negative. This negative ef-
fect in PV could indicate that the combination of demand pull and systemic instruments mainly
strengthens already existing actors and therefore makes entry into the industry more difficult.

4.5.2 Structure of the network

To analyze changes in the structure of the networks, we focus on the mean degree, which accounts
for the intensity of collaboration. In this section, we test the effect of different policy instruments
on the mean degree.

The first three models show in the case of WP (Table 4.4) and PV (Table 4.5) that both
an increase of overall R&D funding (TP+SYS) and of DP increase the mean degree. From
models 1 and 4, we can infer that changes in the network structures are not independent from
the overall trend towards increased collaboration but controlling for this trend still leaves room
for unexplained variation of the mean degree.

Models 4 to 8 differentiate between TP and SYS. As in the regressions in the previous section,
this increases the explanatory power of our models only for WP but not for PV. The results
for WP strongly support our hypotheses 2 and 4, since SYS is always positive and significant,
while TP shows no influence on the mean degree. In PV, these relationships are not robust and
strongly depend on the model specification. Overall, demand plays an important role in both
technologies for stronger interaction in R&D. These findings are contrary to our expectations in
6, where we assumed that DP has no effect on network structure.

The joint effect of SYS and DP in model 10 is positive and significant for both technologies.
This supports hypothesis 8, indicating that these instruments complement each other and form
a consistent policy mix fostering collaboration in R&D. Concerning the interaction of TP and
DP in model 9, we find no significant effect in WP but a significant negative one for PV. This
result is somehow puzzling, but may indicate that an increase in TP provides companies with
sufficient resources to perform R&D on their own, thereby reducing the incentive to engage in
R&D collaboration.

4.5.3 Robustness checks

There might be concerns about endogeneity, especially reverse causality in the models explaining
the size of the networks. It could be possible that policy makers react to an exogenous growth
of the number of inventors by investing more into the specific technologies,12 or that both
phenomena are influenced by an unobserved variable that is exogenous to our model. We partly
account for this issue by imposing a lag structure on our models, which implies a distinct
direction of causality (Nesta et al., 2014). In addition, we check if any of our explanatory
variables are correlated with the error term of our regressions, which could indicate endogeneity
issues (Hayashi, 2000). This is not the case in any of our models. An instrumental variables
approach has been put forward as a method to deal with possible endogeneity (Angrist et al.,
1996; Brynjolfsson et al., 2009; Peters et al., 2012; Nesta et al., 2014). Peters et al. (2012) use
the funding for one technology as an instrument for the other technology. However, due to
the low number of observations, instrumental variable estimations are not reliable in our case
(Crespo-Tenorio and Montgomery, 2013).

Concerning the imposed lag structure, we test the sensitivity of our results to different lags
by estimating all possible lag combinations on the intervals [0, 3] for TP and SYS and [-1, 4]
12 The reverse causality issue for mean degree is not that likely, since the cooperation intensity has only since

recently been on the policy maker’s agenda.

93



Chapter 4: Inventor networks in renewable energies

T
ab

le
4.

2:
O

LS
-r

eg
re

ss
io

n
re

su
lts

fo
r

∆
N

od
es

w
in

d
po

w
er

as
de

pe
nd

en
t

va
ria

bl
e.

M
od

el
1

M
od

el
2

M
od

el
3

M
od

el
4

M
od

el
5

M
od

el
6

M
od

el
7

M
od

el
8

M
od

el
9

M
od

el
10

In
te

rc
ep

t
54

.7
36

**
*

8.
40

5
19

.3
04

32
.5

72
**

*
-1

2.
75

1
-9

4.
68

0
6.

01
7

-1
3.

54
1

-2
5.

18
6

14
.5

63
(1

3.
01

2)
(2

8.
26

1)
(1

8.
52

8)
(1

1.
71

1)
(2

6.
02

8)
(5

8.
94

0)
(2

0.
04

5)
(3

5.
63

2)
(1

8.
43

8)
(1

3.
69

1)
(T

P+
SY

S)
t−

1
19

.4
37

**
*

15
.2

59
**

14
.0

30
**

(5
.1

05
)

(5
.8

83
)

(6
.1

06
)

T
P t

−
1

13
.0

84
**

*
9.

04
0*

8.
10

1*
*

9.
38

7*
10

.4
10

**
-3

.6
42

10
.2

08
**

(4
.2

28
)

(4
.7

13
)

(3
.8

77
)

(4
.7

29
)

(4
.2

00
)

(3
.0

25
)

(3
.8

93
)

SY
S t

−
1

45
.5

49
**

*
41

.1
83

**
*

29
.0

82
**

37
.9

66
**

*
36

.5
83

**
*

38
.1

20
**

*
-1

7.
65

6
(9

.7
04

)
(1

1.
22

8)
(1

3.
47

2)
(1

3.
39

1)
(1

2.
70

5)
(1

1.
94

4)
(1

2.
93

6)
D

P t
+

1
8.

82
0

8.
67

0*
(5

.4
58

)
(4

.5
03

)
D

P t
−

4
8.

54
0

7.
04

0
9.

83
6*

*
2.

86
9

(5
.4

25
)

(4
.9

19
)

(3
.7

46
)

(3
.5

08
)

D
P t

−
4

×
T

P t
−

1
3.

16
8*

**
(0

.7
92

)
D

P t
−

4
×

SY
S t

−
1

9.
83

9*
**

(2
.3

37
)

∆
O

ilp
ric

e t
−

1
-0

.0
33

-0
.4

00
-0

.5
44

-0
.2

96
-0

.6
54

-0
.9

92
-0

.6
86

-0
.4

30
-0

.3
70

-1
.4

00
**

(0
.7

07
)

(0
.5

78
)

(0
.5

59
)

(0
.9

72
)

(0
.8

67
)

(0
.6

19
)

(0
.8

19
)

(0
.9

17
)

(0
.6

86
)

(0
.6

42
)

∆
Pa

te
nt

s t
-0

.0
67

-0
.3

91
-0

.3
00

0.
24

6
-0

.0
76

0.
06

4
0.

01
6

0.
13

3
0.

38
8

0.
16

8
(0

.2
78

)
(0

.3
98

)
(0

.3
73

)
(0

.2
51

)
(0

.3
08

)
(0

.2
87

)
(0

.3
24

)
(0

.2
36

)
(0

.3
85

)
(0

.2
37

)
Ex

po
rt

M
ar

ke
t t+

1
17

.7
40

*
(8

.9
49

)
Ex

po
rt

M
ar

ke
t t−

4
8.

11
7

(5
.7

42
)

A
dj

.
R

2
0.

62
7

0.
66

2
0.

67
4

0.
69

7
0.

73
5

0.
77

1
0.

72
7

0.
72

0
0.

80
9

0.
82

2
O

bs
.

29
29

29
29

29
29

29
29

29
29

M
ax

.
V

IF
1.

13
4

1.
94

2
2.

09
5

1.
74

2
1.

94
2

2.
69

6
2.

15
7

2.
22

4
4.

31
3

9.
97

0
F-

Va
lu

e
16

.6
63

14
.6

92
15

.4
53

17
.1

15
16

.5
37

19
.8

37
15

.9
24

15
.3

82
20

.7
37

22
.4

83
A

IC
31

4.
08

7
31

2.
04

1
31

0.
99

3
30

8.
82

9
30

5.
71

8
30

1.
51

0
30

6.
57

1
30

7.
34

6
29

6.
97

2
29

4.
97

0
R

ob
us

t
st

an
da

rd
er

ro
rs

(H
A

C
)

in
pa

re
nt

he
sis

.
Si

g.
at

**
*

0.
01

,*
*

0.
05

,*
0.

1
le

ve
l.

94



Chapter 4: Inventor networks in renewable energies

T
ab

le
4.

3:
O

LS
-r

eg
re

ss
io

n
re

su
lts

fo
r

∆
N

od
es

ph
ot

ov
ol

ta
ic

s
as

de
pe

nd
en

t
va

ria
bl

e.

M
od

el
1

M
od

el
2

M
od

el
3

M
od

el
4

M
od

el
5

M
od

el
6

M
od

el
7

M
od

el
8

M
od

el
9

M
od

el
10

In
te

rc
ep

t
33

.2
58

-6
3.

28
6*

*
-4

9.
28

9*
*

19
.9

79
-6

1.
19

0*
-2

13
.6

92
**

*
-4

4.
43

1*
-1

97
.6

62
**

*
-2

5.
03

4*
-6

8.
09

7*
**

(2
3.

62
0)

(3
0.

44
2)

(2
2.

49
6)

(3
2.

86
7)

(3
2.

65
9)

(5
9.

25
6)

(2
1.

62
4)

(6
6.

07
2)

(1
2.

12
7)

(1
9.

62
8)

(T
P

+
SY

S)
t−

1
4.

64
4

4.
62

7*
*

3.
25

7*
**

(3
.3

39
)

(1
.8

08
)

(1
.0

44
)

T
P t

−
1

4.
25

5
4.

88
8*

*
4.

12
2*

*
3.

48
0*

*
5.

09
5*

1.
50

1*
4.

79
4*

**
(2

.8
24

)
(2

.3
23

)
(1

.8
58

)
(1

.2
98

)
(2

.5
15

)
(0

.8
31

)
(1

.3
49

)
SY

S t
−

1
7.

55
8*

**
2.

66
4

0.
02

9
0.

67
8

1.
78

6
1.

96
0

7.
81

8*
*

(2
.0

95
)

(2
.5

59
)

(2
.8

11
)

(2
.4

59
)

(2
.6

62
)

(2
.1

88
)

(3
.3

50
)

D
P t

+
1

25
.3

63
**

*
27

.1
62

**
*

(6
.9

50
)

(8
.9

93
)

D
P t

−
4

39
.4

87
**

*
42

.5
52

**
*

29
.5

95
**

*
49

.0
17

**
*

(6
.9

01
)

(8
.6

49
)

(5
.7

84
)

(7
.5

10
)

D
P t

−
4

×
T

P t
−

1
2.

34
4*

**
(0

.5
19

)
D

P t
−

4
×

SY
S t

−
1

-1
.3

03
**

*
(0

.4
20

)
∆

O
ilp

ric
e t

−
1

1.
16

8
-0

.8
67

-1
.1

01
*

1.
32

8
-1

.1
19

-1
.4

46
**

-1
.4

12
*

-0
.9

37
-0

.7
42

-1
.2

29
(1

.2
14

)
(0

.5
52

)
(0

.5
45

)
(1

.1
70

)
(0

.7
14

)
(0

.6
49

)
(0

.7
77

)
(0

.8
75

)
(0

.9
61

)
(0

.7
45

)
∆

Pa
te

nt
s t

0.
93

6
1.

58
9*

*
1.

63
1*

**
1.

30
1*

*
1.

38
9*

1.
04

3*
1.

37
6*

**
1.

07
0*

1.
24

7*
**

1.
87

2*
**

(0
.7

00
)

(0
.7

68
)

(0
.5

28
)

(0
.5

77
)

(0
.7

59
)

(0
.5

44
)

(0
.4

31
)

(0
.6

23
)

(0
.2

42
)

(0
.5

53
)

Ex
po

rt
M

ar
ke

t t+
1

46
.0

48
**

*
(1

0.
98

0)
Ex

po
rt

M
ar

ke
t t−

4
54

.1
08

**
*

(1
7.

02
0)

A
dj

.
R

2
0.

04
6

0.
57

5
0.

72
5

0.
04

5
0.

57
2

0.
67

7
0.

73
7

0.
51

8
0.

82
6

0.
79

6
O

bs
.

29
29

29
29

29
29

29
29

29
29

M
ax

.
V

IF
2.

06
4

2.
14

6
2.

13
8

2.
44

4
2.

44
5

2.
69

8
2.

57
9

2.
58

0
2.

68
3

7.
13

1
F-

Va
lu

e
1.

45
1

10
.4

72
19

.4
36

1.
32

7
8.

47
5

12
.7

60
16

.7
01

7.
02

0
23

.0
97

19
.2

61
A

IC
35

9.
12

0
33

6.
48

8
32

3.
88

7
35

9.
98

0
33

7.
48

0
32

9.
26

1
32

3.
32

7
34

0.
90

2
31

2.
13

1
31

6.
61

7
R

ob
us

t
st

an
da

rd
er

ro
rs

(H
A

C
)

in
pa

re
nt

he
sis

.
Si

g.
at

**
*

0.
01

,*
*

0.
05

,*
0.

1
le

ve
l.

95



Chapter 4: Inventor networks in renewable energies

T
ab

le
4.

4:
O

LS
-r

eg
re

ss
io

n
re

su
lts

fo
r

M
ea

n
D

eg
re

e
w

in
d

po
w

er
as

de
pe

nd
en

t
va

ria
bl

e.

M
od

el
1

M
od

el
2

M
od

el
3

M
od

el
4

M
od

el
5

M
od

el
6

M
od

el
7

M
od

el
8

M
od

el
9

M
od

el
10

In
te

rc
ep

t
-4

.4
11

**
*

0.
33

6*
**

0.
40

5*
**

-3
.7

54
**

*
0.

22
0

-1
.0

71
**

*
0.

35
0*

**
0.

19
2

0.
33

5*
**

0.
40

0*
**

(0
.7

25
)

(0
.0

26
)

(0
.0

25
)

(0
.7

68
)

(0
.1

97
)

(0
.1

86
)

(0
.0

91
)

(0
.2

63
)

(0
.0

91
)

(0
.0

80
)

(T
P+

SY
S)

t−
1

0.
06

5*
**

0.
09

6*
*

0.
06

1*
*

(0
.0

23
)

(0
.0

36
)

(0
.0

27
)

T
P t

−
1

0.
01

2
0.

02
3

0.
01

4
0.

01
0

0.
03

4
-0

.0
07

0.
01

4
(0

.0
20

)
(0

.0
28

)
(0

.0
14

)
(0

.0
18

)
(0

.0
36

)
(0

.0
17

)
(0

.0
14

)
SY

S t
−

1
0.

35
0*

**
0.

43
7*

**
0.

19
3*

**
0.

33
6*

**
0.

31
9*

**
0.

31
7*

**
0.

06
1

(0
.0

45
)

(0
.0

65
)

(0
.0

33
)

(0
.0

46
)

(0
.1

03
)

(0
.0

51
)

(0
.0

77
)

D
P t

+
1

0.
14

7*
**

0.
13

1*
**

(0
.0

24
)

(0
.0

34
)

D
P t

−
4

0.
17

5*
**

0.
14

9*
**

0.
15

1*
**

0.
13

1*
**

(0
.0

14
)

(0
.0

21
)

(0
.0

20
)

(0
.0

21
)

D
P t

−
4

×
T

P t
−

1
0.

00
6

(0
.0

05
)

D
P t

−
4

×
SY

S t
−

1
0.

04
6*

**
(0

.0
13

)
∆

O
ilp

ric
e t

−
1

0.
00

0
0.

00
2

0.
00

0
0.

00
2

0.
00

4
0.

00
0

0.
00

2
0.

00
8

0.
00

3
-0

.0
01

(0
.0

03
)

(0
.0

03
)

(0
.0

03
)

(0
.0

04
)

(0
.0

06
)

(0
.0

02
)

(0
.0

04
)

(0
.0

07
)

(0
.0

03
)

(0
.0

03
)

Te
am

Si
ze

t
2.

72
9*

**
2.

32
2*

**
(0

.3
89

)
(0

.3
75

)
Ex

po
rt

M
ar

ke
t t+

1
0.

28
4*

**
(0

.0
26

)
Ex

po
rt

M
ar

ke
t t−

4
0.

13
3*

**
(0

.0
48

)
A

dj
.

R
2

0.
76

5
0.

60
9

0.
79

1
0.

90
2

0.
82

5
0.

94
3

0.
91

8
0.

74
5

0.
92

0
0.

94
0

O
bs

.
30

30
30

30
30

30
30

30
30

30
M

ax
.

V
IF

1.
23

8
1.

11
5

1.
25

7
1.

34
4

1.
25

3
1.

82
0

1.
36

5
1.

64
2

2.
20

1
9.

72
5

F-
Va

lu
e

32
.4

43
16

.0
71

37
.4

75
67

.6
69

35
.1

72
12

1.
08

0
82

.0
87

22
.1

75
68

.1
16

91
.1

42
A

IC
30

.8
03

46
.0

40
27

.3
39

5.
39

5
22

.7
69

-1
0.

92
0

0.
04

8
34

.0
65

-0
.1

15
-8

.3
48

R
ob

us
t

st
an

da
rd

er
ro

rs
(H

A
C

)
in

pa
re

nt
he

sis
.

Si
g.

at
**

*
0.

01
,*

*
0.

05
,*

0.
1

le
ve

l.

96



Chapter 4: Inventor networks in renewable energies

T
ab

le
4.

5:
O

LS
-r

eg
re

ss
io

n
re

su
lts

fo
r

M
ea

n
D

eg
re

e
ph

ot
ov

ol
ta

ic
s

as
de

pe
nd

en
t

va
ria

bl
e.

M
od

el
1

M
od

el
2

M
od

el
3

M
od

el
4

M
od

el
5

M
od

el
6

M
od

el
7

M
od

el
8

M
od

el
9

M
od

el
10

In
te

rc
ep

t
-1

.6
17

1.
94

1*
**

2.
04

9*
**

-1
.5

00
1.

93
8*

**
1.

30
0*

**
2.

04
8*

**
1.

37
8*

**
2.

00
1*

**
2.

07
5*

**
(1

.0
30

)
(0

.1
19

)
(0

.0
96

)
(0

.9
79

)
(0

.0
95

)
(0

.2
61

)
(0

.0
97

)
(0

.3
16

)
(0

.0
90

)
(0

.0
93

)
(T

P+
SY

S)
t−

1
0.

02
3*

**
0.

01
3*

0.
00

7
(0

.0
07

)
(0

.0
06

)
(0

.0
06

)
T

P t
−

1
0.

02
1*

*
0.

01
3*

0.
01

2
0.

00
7

0.
01

7*
0.

01
3*

0.
00

6
(0

.0
09

)
(0

.0
07

)
(0

.0
08

)
(0

.0
07

)
(0

.0
09

)
(0

.0
07

)
(0

.0
07

)
SY

S t
−

1
0.

02
6*

**
0.

01
1

0.
00

7
0.

00
5

0.
01

4*
*

0.
00

0
-0

.0
09

(0
.0

06
)

(0
.0

08
)

(0
.0

07
)

(0
.0

08
)

(0
.0

07
)

(0
.0

06
)

(0
.0

12
)

D
P t

+
1

0.
13

0*
**

0.
13

2*
**

(0
.0

23
)

(0
.0

20
)

D
P t

−
4

0.
18

3*
**

0.
18

6*
**

0.
22

5*
**

0.
17

1*
**

(0
.0

31
)

(0
.0

34
)

(0
.0

33
)

(0
.0

29
)

D
P t

−
4

×
T

P t
−

1
-0

.0
07

**
*

(0
.0

02
)

D
P t

−
4

×
SY

S t
−

1
0.

00
3*

(0
.0

02
)

∆
O

ilp
ric

e t
−

1
0.

00
4

0.
00

3
0.

00
3

0.
00

4
0.

00
2

0.
00

3
0.

00
2

0.
00

6
0.

00
1

0.
00

2
(0

.0
03

)
(0

.0
02

)
(0

.0
02

)
(0

.0
03

)
(0

.0
02

)
(0

.0
03

)
(0

.0
02

)
(0

.0
04

)
(0

.0
03

)
(0

.0
02

)
Te

am
Si

ze
t

1.
94

7*
**

1.
88

6*
**

(0
.4

90
)

(0
.4

63
)

Ex
po

rt
M

ar
ke

t t+
1

0.
19

7*
**

(0
.0

40
)

Ex
po

rt
M

ar
ke

t t−
4

0.
23

1*
**

(0
.0

63
)

A
dj

.
R

2
0.

66
7

0.
78

6
0.

80
7

0.
65

7
0.

77
9

0.
75

8
0.

80
0

0.
66

3
0.

82
9

0.
80

9
O

bs
.

30
30

30
30

30
30

30
30

30
30

M
ax

.
V

IF
1.

07
0

1.
07

8
1.

16
4

1.
25

2
1.

34
3

1.
42

2
1.

43
5

1.
33

4
2.

44
1

4.
56

8
F-

Va
lu

e
20

.3
39

36
.6

04
41

.3
91

14
.8

66
26

.5
52

23
.6

79
29

.9
97

15
.2

53
29

.1
79

25
.6

14
A

IC
20

.4
76

7.
12

0
4.

10
5

22
.1

93
8.

97
8

11
.7

28
5.

98
2

21
.6

47
2.

00
1

5.
32

7
R

ob
us

t
st

an
da

rd
er

ro
rs

(H
A

C
)

in
pa

re
nt

he
sis

.
Si

g.
at

**
*

0.
01

,*
*

0.
05

,*
0.

1
le

ve
l.

97



Chapter 4: Inventor networks in renewable energies

for DP (see Appendix 4.7.2). In general, the estimated coefficients imply that our results would
also hold for most other tested lag structures even though they do not always provide the best
model fit.

With respect to the data’s time series nature, non-stationarity might be an issue. All vari-
ables except Mean Degree and Team Size enter our regressions as first differences.13 Our depen-
dent variables are non-stationarity and we create alternative, stationary dependent variables to
investigate whether the non-stationarity biases our results: for ∆Nodes, we divide the number
of inventors in each technology by the overall number of German inventors and take the first
difference. This represents change in the share of inventors in this technology in all German
inventors and captures the changing attractiveness of the respective technology relative to all
technologies. We divide the Mean Degree by the Team Size of all German patents to capture
the propensity to cooperate in WP and PV relative to all technologies in Germany.

We re-estimate models 5 and 7 with our altered dependent variables. Models 5 and 7
were chosen because these models include all our explanatory variables with no interactions.14

Table 4.6 shows that the results change very little, only in model 5 for Relative Mean Degree
in PV is the TP variable insignificant and, for both models, the overall model fit is drastically
reduced. However, since the new dependent variables do not have exactly the same meaning as
the original ones, we consider these small deviations unproblematic. These results indicate that
the non-stationarity of our dependent variable does not bias our general findings.

Table 4.6: OLS-regression robustness results with new dependent variables.

∆Share of Inventors Relative Mean Degree

Wind power Photovoltaics Wind power Photovoltaics

Model 5 Model 7 Model 5 Model 7 Model 5 Model 7 Model 5 Model 7
Intercept -0.002 0.000 -0.003 -0.002 0.206** 0.239*** -0.054* -0.038

(0.002) (0.002) (0.002) (0.001) (0.079) (0.044) (0.032) (0.026)
TPt−1 0.000* 0.000* 0.000** 0.000* 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SYSt−1 0.000*** 0.000*** 0.000 0.000 0.000*** 0.000*** 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
DPt+1 0.001*** 0.002*** 0.039*** 0.016**

(0.000) (0.001) (0.013) (0.007)
DPt−4 0.001 0.004*** 0.046*** 0.020**

(0.000) (0.001) (0.009) (0.009)
∆Oilpricet−1 0.000 0.000 0.000 0.000 0.001 0.000 -0.001 -0.001

(0.000) (0.000) (0.000) (0.000) (0.002) (0.002) (0.001) (0.001)
Adj. R2 0.799 0.784 0.550 0.693 0.791 0.869 0.156 0.122
Obs. 29 29 29 29 30 30 30 30
Max. VIF 1.697 1.814 1.427 1.525 1.253 1.365 1.427 1.525
F-Value 28.853 26.454 9.550 16.781 28.490 48.991 2.291 1.974
AIC -236.157 -234.088 -197.466 -208.540 -32.906 -46.821 -48.472 -47.341
∆share of inventors is the first difference of the ratio between the number of inventors in each technology and
the overall number of German inventors. Relative Mean Degree is the ratio of Mean Degree in the respective
technology and Team Size in Germany.
Robust standard errors (HAC) in parenthesis. Sig. at *** 0.01, ** 0.05, * 0.1 level.

13 Recall that DP is operationalized as the log of annual installments, which is the first difference of cumulative
installments.

14 We do not include ∆Patents and Team Size in these regressions. Both are control variables meant to account
for the general development in Germany, which are part of the dependent variables.
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4.6 Discussion and conclusions

This study attempts to shed light on the influence of the German policy mix with its constituting
instruments and their consistency on the size and the structure of co-inventor networks in wind
power (WP) and photovoltaics (PV) in Germany. We go beyond previous and related studies
by focusing explicitly on co-inventor networks and not merely on the number of patents (e.g
Johnstone et al., 2010; Wangler, 2013; Böhringer et al., 2014; Nesta et al., 2014). Such networks
of knowledge transfer and learning have been identified as important drivers of innovation (Dosi,
1988; Powell et al., 1996; Ahuja, 2000). Several theoretical as well as empirical studies suggest a
positive influence of increased interaction on innovation performance (Powell and Grodal, 2005;
Fritsch and Graf, 2011; Phelps et al., 2012). Our main contribution in this respect is to analyze
the effects of policy on interaction within co-inventor networks. For this purpose, we refer to
the existing literature on technology push and demand pull policies, and extend the analysis by
accounting for systemic instruments, specifically designed to foster cooperation and knowledge
transfer. In addition, we provide insights regarding the consistency of the policy mix, by looking
at the interaction of these policy instruments (Rogge and Reichardt, 2016). While most related
studies are based on a panel of several countries, we focus solely on Germany. The reason for
this choice of study design lies in the availability of more fine grained funding data that allows
for the identification of the systemic instrument.

Despite this different approach, our general results are in line with previous studies on policy
effects of push and pull instruments in RPGT. As in Johnstone et al. (2010); Wangler (2013)
and Böhringer et al. (2014), we find positive effects of technology push on innovation activities
(contrary to the findings by Nesta et al., 2014). Similar to Wangler (2013) and Peters et al.
(2012) and partly in line with Johnstone et al. (2010), we show that demand pull policies play
an important role in facilitating inventive activity. However, the effect is technology dependent,
and seems to be very influential in PV but less pronounced in WP (also in line with Johnstone
et al., 2010).

In particular, we find that the network size, i.e. the number of actors active in the technology,
is positively affected by technology push and systemic instruments in WP, whereas in PV it is
only technology push which shows an effect. Demand pull instruments, such as the EEG,
have a strong positive effect in PV in creating resources for inventive activity (resource effect),
but also by allowing the actors to anticipate policy effects, e.g. in terms of upcoming market
opportunities for their products. In the case of WP, this anticipation effect seems to be relatively
more important. This phenomenon has also been discussed by Nemet (2009) and Hoppmann
et al. (2013) and seems to be a relevant force for technological development. Considering the
international context, export market dynamics are closely correlated with domestic demand
in Germany. Such an apparently aligned behavior might be a response to international CO2
reduction targets or result from international policy learning. In line with Peters et al. (2012) and
Dechezleprêtre and Glachant (2014) these export market dynamics also play a role in WP and
PV, where actors anticipate market opportunities abroad and increase their inventive activities.
In the case of PV, our results indicate a resource effect via export markets.

Our hypothesis regarding the influence of systemic instruments on the structure of the net-
works finds support only in the case of WP, whereas in PV, the results are inconclusive. As
expected, technology push policies do not increase cooperation in WP at all, while for PV, the
effect is ambiguous. Concerning the effect of demand pull instruments on collaboration, we find
a strong positive influence in both technologies. This is quite surprising, since demand pull
policies are not designed to support collaboration. One possible explanation could be the pres-
ence of an increased number of potential cooperation partners with complementary knowledge
and capabilities. In a similar vein, the increase in market size might allow for more specializa-
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tion, thereby increasing the benefits of cooperation when combining different sets of knowledge
(Cantner and Meder, 2007).

Concerning the policy mix, we find that push and pull instruments work hand in hand in
increasing network size, while pull and systemic instruments together spur cooperation. These
results indicate the necessity of market demand to reap the full potential of technology push
and systemic instruments. Our findings indicate strong consistency of the analyzed instruments
in the policy mix. However, we also find some inconsistencies. Pull and systemic instruments
interact in a way that seems detrimental to network size in PV. Apparently, this combination
of instruments favors existing actors rather than attracting new ones. In a similar fashion, a
combination of push and pull instruments works against collaboration in PV and rather favors
individual research activities. Therefore, our results question the relevance of technology push
to enhance cooperation. Since this instrument does not aim at fostering cooperation, but rather
provides sufficient resources to conduct R&D without cooperation, this seems quite plausible.
Apparently, we look at two, at least partly conflicting measures of system performance, since it
might be difficult to sustain the level of average cooperation intensity in times of fast network
growth. There might well be a tradeoff between policy goals that shows in the above mentioned
inconsistencies, which is not necessarily to be judged negative (Quitzow, 2015).

Based on our empirical findings, we can derive several suggestions for policy: First, imple-
menting a mix of policies goes beyond a single instrument in fostering innovation, at least in
infant technologies. Second, demand inducing policies should be designed to create resources for
inventive actors to enlarge their research activities, but also provide stable perspectives regard-
ing future market opportunities. Third, cooperation activity should be supported by specific
instruments and existing instruments should be evaluated concerning their effect on coopera-
tion – some policies affect cooperation, even though it is not their objective. Fourth, all these
policies form a mix that ought to be consistent in providing incentives to engage in R&D and
especially collaborative activities as well as in supporting market creation. However, our results
are technology specific. These differences may be related to the technologies’ state of develop-
ment, their relative competitiveness, market dynamics and differences concerning the nature of
these technologies, which need to be considered when implementing a certain policy instrument
within a policy mix (Huenteler et al., 2016b).

From a research perspective, we contribute the following insights: First, we bring together the
literature on innovation networks and policy support in the context of environmental innovation.
This helps to understand better the relationship between policy instruments and their effect on
invention networks and the knowledge transfer in these networks. Second, we can show that
certain policies do not only increase inventive activity, but also alter the underlying network
structure. The effects of policies on network structure are still poorly understood and we provide
first insights as to the types of policies that actually have an effect. Third, we demonstrate that
public R&D funding can have different effects if it contains systemic components that successfully
support network formation. Finally, with respect to the policy mix for innovation, we provide
a simple approach to operationalize aspects of its consistency, which gives insights about how
different policy instruments interact.

However, this study leaves room for improvement and extension. We consider only the situa-
tion in Germany; extending the scope of the analysis for a panel of countries and/or a broader set
of technologies may lead to further insights on the effect of the different policy instruments and
their interaction. Unfortunately, more fine grained data that would allow us to identify funding
as technology push or systemic is, to our knowledge, not readily available for other countries.
Concerning the systemic instruments, institutional funding to public research institutes and uni-
versities is not included in our analysis, neither are non-monetary policy instruments such as
changes in patent law, the education system, grid access or other market design instruments,
which need to be taken into account to understand fully the effect of systemic instruments.
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Moreover, the role of potential export markets could be explored in more detail by account-
ing for interdependencies between national RPGT policies. Also, the consistency of the policy
mix needs further empirical investigation. Here, more empirical applications in different coun-
tries and technologies are required to generalize our findings. From a methodological point of
view, using instrumental variables would be desirable, which would be possible with a panel of
countries.
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4.7.2 Lag structure

Fig. 4.5 shows for all four dependent variables overall model fit (AIC) and the effect of the
respective policy instrument depending on different lag structures. For any given lag of the
respective policy instrument, we perform regressions with all possible lag variations of the other
instruments, thereby modifying the benchmark model 5 (Tables 4.2-4.5). Positive coefficients are
displayed with a ‘+’, negative ones with a ‘-’ and those insignificant with a ‘⃝’ (the significance
threshold is a p-value ≤ 10%). For example, in the case of ∆Nodes in WP, we see that TP is
almost always positive for lags of 0 and 1, regardless of the lags of the other variables. However,
TP is always insignificant for lags of 2 or 3. Furthermore, the model fit seems to be slightly
better for lag of 0 according to the AIC.
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Figure 4.5: Sensitivity analysis of lag structures as variations of regression model 5.
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Chapter 5

International research networks:
Determinants of country
embeddedness

Co-authored with Holger Graf

5.1 Introduction

The generation and diffusion of knowledge is a collective process and an increasingly global phe-
nomenon. Collaboration among scientists and researchers has steadily increased during the last
decades and leads to more valuable output than individual research (Wuchty et al., 2007; Adams,
2013). While geographically proximate partners are typically preferred, it is especially collab-
oration with distant partners, which allows access to diverse sets of knowledge with positive
effects on performance (Bathelt et al., 2004; Cantner and Rake, 2014; Herstad et al., 2014). Col-
laboration with international partners leads to embeddedness in the global knowledge network.
Here, embeddedness “refers to the process by which social relations shape economic action”
(Uzzi, 1996, p. 674), and “research on embeddedness [...] advances our understanding of how
social structure affects economic life” (Uzzi, 1997, p. 48). Being embedded in a network can
therefore be understood as the position within a network in terms of connections to other actors
(Wanzenböck et al., 2014, 2015). As such, embeddedness in the global knowledge network pro-
vides better access to knowledge with positive effects on inventive and innovative performance
(Powell et al., 1999) and should therefore be considered as a policy objective.
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a poster at the 16th International Joseph A. Schumpeter Society Conference 2016 in Montreal and at the
The 2nd EAEPE RA [X] ‘Networks’ Workshop 2016 in Bochum. We are grateful for discussions by and with
Muhammad Ali, Uwe Cantner, Robin Cowan, Dirk Fornahl, Johannes Herrmann, Frieder Kropfhäußer, Bastian
Rake, and Friedrich Thießen, as well as three anonymous reviewers.
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Chapter 5: International research networks: Determinants of country embeddedness

With the rising importance of international research communities, countries strive to be
integrated in global knowledge networks to access external knowledge and thereby secure tech-
nological and economic progress (Adams, 2012). While the importance of access to international
knowledge flows has been emphasized for a long time (Bush, 1945), only in the past decades,
policy put an emphasis on fostering access to and integration into global knowledge networks.
Prominent examples include the establishment of an European Research Area, support of sci-
entist mobility (via several programs, e.g. Marie Skłodowska-Curie, Fulbright, Erasmus+), and
distinct national strategies or policies to engage in international collaboration (see Park and
Leydesdorff, 2010; Kwon et al., 2012, for the example of South Korea).

In this paper, we analyze the determinants of countries’ embeddedness in the global pho-
tovoltaics (PV) knowledge network. We argue that the position of a country in this network
is determined by two driving forces: First, by the structure and functionality of its innovation
system (Nelson, 1993; Lundvall, 1992; Carlsson and Stankiewicz, 1991) and second, by active
policy intervention to support research and development. With respect to the innovation sys-
tem, we focus particularly on the interaction structure as a determinant of knowledge diffusion
within the research system (OECD, 1997; Cowan and Jonard, 2004; Schilling and Phelps, 2007;
Cantner and Graf, 2011; Herstad et al., 2014). This argument is related to the links between
micro, meso, and macro levels of economic analysis (Dopfer et al., 2004). Here, the structure
of national networks, i.e. the functionality of the research system and its set-up, determines
international collaboration and embeddedness. With respect to policy intervention, we account
for a variety of instruments that constitute the policy mix for renewable energies (Flanagan
et al., 2011; Rogge and Reichardt, 2016). As such, we explore whether policy can create an
environment conducive to international collaboration and increased embeddedness within the
international research network.

Our empirical study is based on co-authorship information on scientific publications. This
allows us to exploit the multimodal structure in publication data and link the national research
network structure to the position of a country in the international research network. Scientific
publications are an established tool for the measurement of knowledge generation or to track
characteristics of the innovation process and collaboration intensity (Katz and Martin, 1997;
Glänzel and Schubert, 2005). We focus on PV because it is a highly dynamic technology, which
received strong governmental support and tackles a global problem by mitigating climate change.
While there is a growing literature evaluating the effect of policies on innovation and diffusion
in PV (e.g. Watanabe et al., 2000; Johnstone et al., 2010; Peters et al., 2012; Polzin et al.,
2015; Cantner et al., 2016), there are to our knowledge no studies dealing with the influence of
different policy measures on the embeddedness in international research network in general and
not for PV in particular.1 We derive hypotheses about the effect of national network structures
and policy interventions on countries’ embeddedness and test them by OLS-panel regressions
for a large sample of countries with scientific publications in the period from 1980 until 2015.

In line with Huang et al. (2013) or Du et al. (2014), we observe a steady increase in col-
laboration within the global PV research network. While a small group of countries remains
central throughout all years, some countries catch up whereas others lose relative positions in
the network. With respect to the determinants of embeddedness, we find positive effects of
overall cohesion and connectedness of the national research system. Among OECD countries,
the effect is not that pronounced because they all have well established and internationally
embedded research systems (Choi, 2012). Countries with a decentralized research network are
internationally more embedded, indicating that diffusion oriented national research systems are
more open towards external knowledge flows. With respect to the instruments of the policy
1 Several bibliometric studies focus on PV publications from different perspectives (Dong et al., 2012; Huang

et al., 2013; Du et al., 2014; Cho et al., 2015; Popp, 2016a,b) but not with respect to the determinants of
international collaboration or embeddedness.
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mix, demand side instruments seem to be important for research and collaboration in PV, as
has been shown elsewhere for inventive activity (Johnstone et al., 2010; Peters et al., 2012) and
collaboration in Chapter 2 (in the following referred to as Cantner et al., 2016). In particular,
public procurement, proxied by the cumulative number of satellites, shows up as a robust pre-
dictor of embeddedness. This result fits well with the more general argument that governmental
demand can increase research activity (Geroski, 1990; Edler and Georghiou, 2007; Aschhoff and
Sofka, 2009; Guerzoni and Raiteri, 2015). With respect to direct R&D subsidies, we find am-
biguous results. They seem only to encourage collaboration with already well embedded actors.
The general commitment to mitigate climate change induces higher connectivity only for OECD
countries.

Our research contributes in several ways to the literature. We propose a novel approach to
measure the functionality of a research system and show its influence on system performance,
i.e. the relationship between meso structure and macro performance. Furthermore, we provide
insights on how the determinants of embeddedness depend on its operationalization. Our results
show that instruments of innovation policy not only increase research activities, but have effects
on international collaboration and embeddedness. Lastly, we add public procurement to the
already established instrument mix for renewable energies.

In the following Section 5.2, we review the related literature and derive hypotheses. In
Section 5.3, we first describe the publication data and then the international as well as the
national collaboration networks. In Section 5.4, we present the econometric study where we
estimate the effects of the national network structure and different policies on the embeddedness
of countries. We discuss our results and conclude in Section 5.5.

5.2 Literature review and research objectives

5.2.1 Networks of scientific collaboration

Knowledge generation is a cumulative and interactive process in which the relations between
actors are key for knowledge exchange and diffusion (Dosi, 1988; Powell et al., 1996; Ahuja, 2000).
The continuous increase in collaboration during the last decades has – amongst others – been
attributed to an increasing specialization and division of labor because of the cumulative and
dispersed nature of knowledge (Jones, 2009). There is vast empirical evidence that collaborative
research leads to more valuable output than individual research (e.g. Adams et al., 2005; Wuchty
et al., 2007; Adams, 2013). However, researchers who collaborate, as documented e.g. by co-
authorship, do not just add their individual expertise for a joint output but also exchange
information and learn from each other (Breschi and Lissoni, 2004).

Not only the intensity of collaboration has increased in science, but also the geographical
distance between co-authors. By drawing on 21 million publications across all fields of science,
Waltman et al. (2011) show that the average collaboration distance per publication has increased
from 334 kilometers in 1980 to 1553 in 2009. For Europe, Hoekman et al. (2010) find a dimin-
ishing effect of geographical proximity on co-publishing with territorial borders becoming less
relevant. The reasons for this trend are manifold. The decline in travel cost, improvements in
communication technologies and the rise of English as the common language in science have been
put forward (Waltman et al., 2011). The globalisation of science is also driven by an increase
in migrant scientists who typically have larger international research networks (Scellato et al.,
2015).

The aggregate structure of collaboration is analyzed in what we refer to as knowledge net-
works. Co-authorship networks, where authors are treated as nodes connected by joint pub-
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Figure 5.1: The multimodal network structure.

lications are a prime example for such knowledge networks (Glänzel and Schubert, 2005). In
one research stream, knowledge networks are analyzed to identify universal structures, such as
small world properties, or to test hypotheses regarding processes of network formation, such
as preferential attachment or homophily (Newman, 2001; Barabasi et al., 2002). Besides their
structural properties, networks are also of interest because they provide information about the
position of individual nodes among a group of actors. Central positions might indicate impor-
tance or power in a network by controlling information flows between otherwise unrelated actors
(Freeman, 1979). Some positions within the knowledge network might give an advantage for
accessing novel, external knowledge. Given that external knowledge is a highly valuable input
for processes of invention and innovation, a second research stream is concerned with the ques-
tions regarding the influence of network positions on performance. Based on various types of
knowledge networks, this field of research produced substantial empirical evidence showing that
direct but also indirect connections matter for innovation performance (for reviews see Ozman,
2009; Cantner and Graf, 2011; Phelps et al., 2012; Hidalgo, 2016).

5.2.2 Networks as multimodal structures

While interaction and learning takes place among individuals, networks are analyzed at more
aggregated levels to study interaction between groups of actors, such as organizations, indus-
tries, regions, or countries (Glänzel and Schubert, 2005). A critical assumption for such an
aggregation is that knowledge and information are transmitted within those larger entities. At
the organizational level, one is interested in collaborations between organizations (affiliations
of the researchers) while knowledge flows within these organizations are assumed to be exis-
tent but usually not explicitly taken into account (Adams et al., 2005; Cantner and Graf, 2006;
Guan et al., 2015a). Aggregation can also account for the geographical dimension as in stud-
ies on international collaboration, shedding light on knowledge flows between different regions
(Wanzenböck et al., 2014, 2015) or countries (Owen-Smith et al., 2002; Wagner and Leydesdorff,
2005a; Cantner and Rake, 2014).

Figure 5.1 displays the different levels or modes of networks that are used in the present
study. Raw publication data is on the micro level and provides information about co-authorship
between individuals. Information about the affiliation of researchers is used for aggregation on
the meso level. These networks between organizations on the country level provide insights on the
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structure of national research and innovation systems. By using information on the home country
of organizations, global networks represent the macro level of international collaboration. The
position of countries within these networks provides valuable information about international
embeddedness in terms of participation in scientific communities and the potential to access
global knowledge flows.

The relationships and interactions between different levels of aggregation have recently been
empirically tested. The underlying assumption of such analyses is that the network structures
at different levels of aggregation influence each other (Gupta et al., 2007). For example, Guan
et al. (2015b) analyze the influence of countries’ positions in the global innovation network on
the performance of actors in city level networks. In a similar vein, Paruchuri (2010) shows that
inventor performance is influenced by the positions in intra- and interfirm networks.

5.2.3 Linking national research networks and global embeddedness

In the following, we derive hypotheses regarding the relation between the meso structures and
macro embeddedness. Research networks on the national level can be thought of representing
countries’ research systems where different types of actors, such as universities, research in-
stitutes, companies, or governmental agencies interact in various ways. Collaboration on this
level is determined by incentives, norms, or specific cultures towards collaboration which might
differ between research fields and/or technologies, but also between countries (Lundvall, 1992;
Malerba, 2002; Wuchty et al., 2007). While the cultural and technological determinants are
typically beyond the reach of policy measures, there are several ways in which policy can shape
the interaction structure by means of incentives, norms, and regulations (Smits and Kuhlmann,
2004). As such, the structure of the national research network is the result of a long term process
driven by path dependencies and guided by political influence.

In theory, the choice to collaborate should only be based on scholarly ground, however, this
is typically not the case. Scholars are biased towards collaboration with partners that speak
the same language or are proximate with respect to geographical or institutional dimensions
(Boschma, 2005; Hoekman et al., 2008). Choices are also influenced by norms, habits, and rou-
tines. In an institutional environment where collaboration is the norm and past experience tells
that collaboration is beneficial, the probability to collaborate can be expected to be higher than
in one that rewards and/or exemplifies individualism. Therefore, if a country is characterized
by a high level of collaboration on the national level, we expect the likelihood to cooperate on
the international level to be higher as well.

Hypothesis 9. The intensity of national collaboration positively affects countries’ international
embeddedness.

The mission vs. diffusion dichotomy in science and innovation policy can help us understand
the relationship between international embeddedness and centralization (or concentration) of
the national research system. According to Ergas (1987), countries can promote a technology
either for reasons of national sovereignty and international competitiveness (mission) or to deal
with market failures (diffusion). Countries that pursue mission oriented strategies are typically
characterized by few strong actors (national champions) (Ergas, 1987). If the strategic goal is
to advance knowledge mainly within the country, there is a quite natural reluctance to share
knowledge internationally. If, on the other hand, the policy goal is to solve a global problem, the
international diffusion of knowledge should be most welcome. In that context, Owen-Smith et al.
(2002) argue, that the decentralized organization of public research in the U.S. was relevant for
their central position within the international life sciences knowledge network. Therefore, we
expect countries with a centralized research system to be less open to international collaboration
and less embedded in the international research network.
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Hypothesis 10. Centralization of the national research network negatively affects countries’
international embeddedness.

Functioning research systems are characterized by the ability to generate knowledge spillovers
(Carlsson and Stankiewicz, 1991; Hekkert et al., 2007). A prerequisite for knowledge diffusion
and spillovers is the connectivity of the network as captured for example by the share of actors in
the largest component (Fleming and Frenken, 2007). We expect that in such integrative systems,
internal as well as external openness go hand in hand due to a general, learned capability of
collaboration and networking (Bathelt et al., 2004; Graf, 2011). Therefore, we propose that
highly connected national research systems are more prone to international collaboration than
fragmented ones.

Hypothesis 11. Connectivity within the national research system positively affects countries’
international embeddedness.

5.2.4 Policy influence on international embeddedness

PV is considered an environmentally friendly technology, which generates electricity without
emitting CO2 or other harmful substances. However, it was only until recently that PV became
cost competitive with conventional electricity generating technologies. Therefore, governments
intervene to foster R&D in PV to increase efficiency and to decrease production costs. In general,
there are several approaches to support research activity and technological development within
the broader policy mix (Flanagan et al., 2011; Rogge and Reichardt, 2016). The main instru-
ments relate to demand pull or technology push policies (Mowery and Rosenberg, 1979). There
is a growing theoretical and empirical literature in innovation and environmental economics
which tries to understand how these policy interventions affect innovative output, especially in
environmentally friendly technologies (see Jaffe et al., 2002; Kemp and Pontoglio, 2011; Groba
and Breitschopf, 2013, for reviews). In the case of scientific research and collaboration, evalua-
tions of such interventions are scarce and focuses on direct funding only.2 In the following, we
derive hypotheses regarding the influence of different policies towards renewable energies and
PV in particular on the international embeddedness of countries in the global research network.

Technology push instruments are motivated by positive externalities or technological spillovers
which lead to underinvestment in R&D. R&D subsidies are a classic example of such policies as
they foster research activities by public and private actors (Arrow, 1962b; OECD, 1997). Several
studies show that R&D subsidies increase inventive activity (Watanabe et al., 2000; Johnstone
et al., 2010; Peters et al., 2012; Wangler, 2013) and networking (Cantner et al., 2016) in PV
research. Concerning effects of technology push instruments on publications in general, Crespi
and Geuna (2008) find that on the macro level expenditures on higher education research and
development increase research output, while Popp (2016a) shows that direct funding increases
research output in energy research, especially in solar energy, but with a considerable time lag.
Concerning the effect of such policies on collaboration and network structures, there is only
limited evidence for the collaboration intensity at the micro (researcher) level. Based on sur-
vey data, Bozeman and Corley (2004) and Lee and Bozeman (2005) find that the availability of
grants leads to larger researcher teams and more collaboration. In a similar vein, Ubfal and Maf-
fioli (2011) find that Argentinian researchers who received a grant are better integrated in the
scientific community. Adams et al. (2005) find that federally funded R&D increases the number
of papers, team size per publication, as well as international cooperation for US universities.

Hypothesis 12. International embeddedness of countries increases with the amount of funding
towards research and development.
2 However, several studies focus on the micro (researcher) or meso (institute) level and find usually a positive

effect of funding on publication output (see Ebadi and Schiffauerova, 2013, for a review).
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Demand pull policies increase demand by creating (niche) markets for new or infant tech-
nologies (Kemp et al., 1998; Nill and Kemp, 2009). Thereby, they attract companies to engage
in production and benefit from economies of scale and learning-by-doing effects. If firms are
profitable, they generate internal funds to conduct research and inventive activities which also
contribute to the advancement of a technology. Investment subsidies, quota systems, or feed-in-
tariffs are typical examples for such policies. In the case of PV, countries implemented different
approaches to support commercialization of PV, which in most cases also increased inventive
activity (Johnstone et al., 2010; Peters et al., 2012; Wangler, 2013) and research collaboration
(Cantner et al., 2016). Public procurement is another form of demand pull policy which has
shown positive effects on R&D activities (Geroski, 1990; Edler and Georghiou, 2007; Guerzoni
and Raiteri, 2015). In the case of public procurement, governments create demand for societal
needs and acts as a lead user by asking for sophisticated products with clearly defined char-
acteristics. In the case of PV, the government was the first customer for PV cells to power
satellites and space applications (Oliver and Jackson, 1999; Petroni et al., 2010; West, 2014),
which can be considered public procurement. Since PV cells for aerospace needed to be as effi-
cient as possible, research was conducted to fulfill advanced requirements and provide efficiency
improvements until today.

Hypothesis 13. International embeddedness of countries increases with the amount of effective
demand pull policies.

Besides these targeted instruments, the Kyoto Protocol can also be considered as a policy
instrument, which should encourage research and development in PV. Ratifying the Kyoto Pro-
tocol shows commitment towards emission reduction and, especially for the Annex B countries,
it has binding targets (UNFCC, 1997). Since one way to achieve these targets is PV, countries
might increase their research effort and engage in international collaboration after ratifying the
Protocol. Some studies show indeed that the ratification of the Kyoto Protocol fosters inventive
activity for PV (Johnstone et al., 2010) and renewable energies in general (Nesta et al., 2014).
Furthermore, the Kyoto Protocol contains instruments which foster international collaboration
and knowledge transfer (Dechezleprêtre et al., 2008). These instruments, namely the clean de-
velopment mechanism and joint implementation, increase international collaboration and form
networks of knowledge transfer by itself (Kang and Park, 2013), which can lead to scientific
collaboration between countries as well.

Hypothesis 14. International embeddedness of countries is larger after ratifying the Kyoto
Protocol.

5.3 Scientific collaboration networks

5.3.1 Data: photovoltaic publications

Publications are frequently used to measure output and collaboration at early stages of the
research and innovation process. We collect data on PV publications from Thomson Reuters
Web of Science Core Collection.3 The sample consists in total of 106,836 publications from 1946–
2015 written by authors from 146 countries covering various scientific fields. Figure 5.2a depicts
the number of publications over time. An exponential growth in the number of publications
which indicates the increased pervasiveness of PV research during the last decades is evident.
3 The query used is photovoltai* or solar cell* in the title, abstract and keywords section on August 22nd

2016. Since we focus our research on PV only, we decided to be conservative and refrain from using more
general search terms, such as “solar*” to minimize false positives at the cost of higher coverage. Only articles,
proceedings papers, reviews or book chapters are considered. More than 98% of the publications are in English.
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Table 5.1: Number of publications and international collaboration by country 1980–2015.

Country Publications Share International collaboration
per publication

China 21,380 16.7% 1.266
USA 18,790 14.6% 1.451

Japan 9,196 7.2% 1.329
South Korea 8,985 7.0% 1.319

Germany 8,648 6.7% 1.662
India 5,728 4.5% 1.344

Taiwan 4,787 3.7% 1.214
United Kingdom 4,688 3.7% 1.837

France 3,851 3.0% 1.828
Spain 3,447 2.7% 1.739

Rest of World 38,843 30.3% —
Total 128,343 100,0% 1.256

In the following analysis, we restrict the sample to the years from 1980 until 2015 since there
are only few publications before 1980. Furthermore, policy makers started to put more emphasis
on PV research as a response to the oil crises in the 1970s and research took off globally. In the
sample from 1980 to 2015, 105,809 publications are included. We use information on affiliations
as provided by Web of Science to assign papers to organizations and countries. Most publications
are from China, the USA, and Japan (see Table 5.1) but also European countries are among the
top publishing countries.4

Concerning international collaboration, i.e. publications of co-authors with affiliations lo-
cated in different countries, there are on average 1.26 different countries involved in each publica-
tion. European countries, especially the United Kingdom, France, and Spain are more frequently
involved in international collaboration than Asian countries, especially Taiwan and China which
are less collaborating internationally. Concerning the development over time, depicted in Fig-
ure 5.2b, there is a steep increase around 1996, which is most likely related to our original
data source. The information on author affiliations in the Web of Science is more reliable from
1996 onwards. Keeping this potential problem in mind but in line with Adams et al. (2005),
we observe an increasing trend in international collaboration with some notable differences be-
tween countries. Asian countries, especially Taiwan and China, do not collaborate extensively
internationally and stay roughly at the same level. European countries frequently engage in
international collaborations and increase their international activity over time. This increase for
the European countries could be related to the common labor market and the EU-Framework
programmes, which require pan-European collaboration.

5.3.2 International research network

Before analyzing the determinants of embeddedness, we have to understand the structure and
dynamics of scientific collaboration between countries. We employ methods of social network
4 Since the main focus of this paper is on collaboration, we do not calculate publication shares in case of

international collaborations. Therefore the total number of publications per country does not match the
total number of publications. Furthermore, we do not control for the quality of publications since our focus
is on collaboration patterns and restricting the sample to some top journals would not represent the whole
collaboration network. We also do not limit the scope of papers to specific research fields, since technological
and social progress are interlinked.
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Figure 5.2: Photovoltaics publications and international collaboration.

analysis (see Wassermann and Faust, 1994) to elaborate on the countries’ collaboration pattern
and embeddedness in the international research network. To analyze the networks over time, we
use three-year moving windows. Thereby we account for persistence and decay of collaboration,
since the date of publication is just a point in time, while the actual collaboration existed
before and maybe persisted after the publication (Fleming et al., 2007; Schilling and Phelps,
2007).5 We reconstruct undirected international research networks using publications from 1980
until 2015, i.e. the first network covers the period 1980 to 1982 and the last network covers
2013 to 2015 leading to 34 overlapping observation periods. Figure 5.3 displays three of these
reconstructed international networks and illustrates how the network changes in terms of size
and connectedness.
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Figure 5.3: International research network for three periods.

Figure note: Node size is a function of the node’s degree. Colored nodes refer to the
countries presented in Figure 5.6.

We calculate several indicators to describe the development of the international collaboration
network over time (see Figure 5.4). The number of nodes (i.e. countries), which indicates the
size of the network, increases steadily (see Figure 5.4a). The mean degree measures the average
number of connections per node, i.e. the number of distinct co-authoring countries. Here, we see
5 There is no consensus among network researchers regarding the correct length of the window. Some assume

only the publication year (Wagner and Leydesdorff, 2005b), others three (Li et al., 2014a), five (Li et al., 2013),
or seven years (Fleming and Marx, 2006), and some do not account for a link decay at all (Breschi and Catalini,
2010). While this decision certainly influences the level of network metrics, it does not affect the direction of
change. Therefore, it is up to the researcher to balance the trade-off between networks of higher density and
connectedness on the one side and more observations over time on the other.
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Figure 5.4: Evolution of the international research network.

a steady increase, indicating that on average countries become increasingly embedded within the
global network. The declining number of components also shows that the countries are getting
increasingly interconnected and hardly any country performs research without international
collaboration by the end of our observation period. This can also be seen in the share of
isolates, countries which are not connected to another country, which diminishes drastically (see
Figure 5.4b).

Concerning the importance of different countries in the network, we use the concept of net-
work centralization. These measures are less concerned with the overall connectedness but rather
with the specific structure of relations and relative positions of nodes. We use two centralization
measures to account for the concentration of linkages on few nodes (degree centralization) and
the dependence on nodes that connect many other nodes (betweenness centralization) proposed
by Freeman (1979). Both measures are equal to 1 in a star network, in which all nodes are
connected to one central node but not among each other, and take a value of 0 for networks
without prominent positions, such as a ring or a complete graph. In Figure 5.4b, we present
degree and betweenness centralization for the network. Degree centralization increases con-
stantly over time, indicating that there are some countries that are way more interconnected
than the average. The development of betweenness centralization shows that the concentration
of knowledge flows increases during the early periods but diminishes throughout the last periods.
Additionally, transitivity indicates the likelihood that adjacent nodes of a node are connected.
For the global network, we see that except for the early phase transitivity increases constantly.
Apparently, countries increasingly form densely connected clusters. Network density, which is
the share of all present connections in all possible connections, increases despite network growth,
indicating an over-proportional increase in linkage formation.

Regarding countries’ positions within the global network, we focus on three measures of
embeddedness. Degree, flow betweenness, and k-core are different concepts of centrality and
embeddedness, all related to the number of connections. Degree is a simple count of the number
of connections irrespective of their intensity, while flow betweenness considers the intensity but
also the relative position within the whole network (Freeman et al., 1991). The k-core of a graph
is the maximal subgraph in which every node has at least degree k (Seidman, 1983). Higher
values indicate membership in an increasingly cohesive subgroup which forms the network core.

Figure 5.5 and Table 5.2 show a simple example to point out the differences between the
three concepts. Nodes A and B in the example have the same degree, both are connected to four
other nodes. But if we consider flow betweenness, we see that node B is much more central than
A. B is better connected to its neighboring nodes than A, which puts B in a better position in
the network to access external knowledge. However, it has to be noted that degree is limited by
the number of nodes in the network, while flow betweenness is more or less unrestricted. This
measure not only accounts for the number of collaboration partners (A still has more access to
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Figure 5.5: Example network.

Table 5.2: Example data.

Node Degree Flow Betweenness K-Core
A 4 18 3
B 4 36 3
C 4 12 3
D 2 4 2
E 3 10 3
F 1 0 1

knowledge than the other nodes) but also for the quality of cooperation partners. The k-core
tells us if a node is member of the network core or rather of its periphery. Here, we see that
nodes A, B, C, and E form the core in which every node has a degree of at least three, while D
and F are in a more peripheral position.

Figure 5.6 depicts the development of publications and the three measures of embeddedness
for the top ten countries over time. The number of publications is highest for the USA until
2010, when China takes over the lead. In general, there is a strong increase in the number of
publications from Asian countries. Besides China, also South Korea, India, and Taiwan catch
up. Japan is among the most publishing countries since early on, but is eventually outmatched
by China, South Korea, and most recently by India. The same holds true for Germany.

With respect to measures of embeddedness, degree shows an interesting development (the
maximum for degree is limited by the size of the network, see Figure 5.4a). Surprisingly, Spain
has the highest degree in some of the early periods but is again overtaken by the USA, which
together with Germany has most connections over time. Both are connected to about 70%
and 60% respectively of all countries in the last period. Furthermore, the USA and European
countries have a higher degree than Asian countries for most of the time, and especially Taiwan
is lagging behind. A similar pattern can be observed for flow betweenness, where the USA and
Germany have the highest values. However, in the last periods, China catches up and ranges
among the top three countries. This indicates that China, even though it has a lower degree
than the presented European countries, is well embedded in terms of access to knowledge flows.
However, again, Taiwan is least embedded among the top ten countries, surpassed by India and
Japan. The k-core shows no surprising development. Over time all high publishing countries
join the core group within the network. There is very little variation over time and besides
Taiwan, all ten countries quickly connect to the central core.

So far, we exemplified general trends of network development by looking at the top ten
publishing countries. To analyze the underlying dynamics for all countries, we compare their
relative position in the network over time. We rank all countries according to their degree in
period 2003–2005 and compare this ranking with the periods 2008–2010 and 2013–2015. This
gives us a Salter-Curve like representation of the dynamics in the network (see Figure 5.7). We
see that at the top of the ranking the changes are marginal, while there is quite some turbulence
in the middle. Among the top actors, especially Mexico is loosing its position, while most of the
other countries hold their positions. Qatar, the United Arab Emirates, Serbia, and Malaysia
are the countries which improve the most. Some other Arab countries improve their position as
well. The top 15 as well as the 15 countries with the largest movement in the ranking are shown
in Appendix 5.6.1.
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Figure 5.6: Publications and network measures for top ten publishing countries.

5.3.3 National research networks

In the following, we focus on the structure of interaction within each country. Information on
author affiliations allows us to reconstruct national research networks. Here, nodes represent
different organizations, such as universities, research institutes, or companies and edges represent
joint publications of researchers with different affiliations.6 We reconstruct national research
networks for all countries in our sample. Again, we present network measures for the top ten
publishing countries in Figure 5.8 to illustrate the general patterns of research activity and
network development.

We observe an exponential increase in network size, indicating that more organizations
emerge and engage in PV research. But there are notable differences between countries. While
China and India experienced vast growth especially in the latest periods, other countries, most
notably the United Kingdom, show hardly any increase in the number of actors. Concerning
the connections among these actors in the research system, mean strength (degree, weighted by
the intensity of the connection) is increasing in all countries. Especially actors in Taiwan and
South Korea are very well connected. This is remarkable, since they are not that well connected
internationally, as shown above (Table 5.1 and Figure 5.6). Another interesting case is India,
which shows a very large increase in the number of nodes, but not with respect to mean strength,
which indicates that there might be some deficits in domestic collaboration. In general, Asian
countries seem to have a higher degree of internal interaction than European countries in the
last periods.

Further indicators add to our understanding of the development of structural differences
between national research networks. Degree centralization accounts for the concentration of links
6 Since we are interested in the structure of national research systems (and use its structural properties to explain

global network positions, i.e. international collaboration in Section 5.4), we exclude cooperation partners in
foreign countries. Furthermore, since the affiliation data is quite noisy, we consider only the organization name
and neglect information about departments or other subsidiary information.

116



Chapter 5: International research networks: Determinants of country embeddedness

R
an

k 
of

 c
ou

nt
rie

s'
 d

eg
re

e

G
er

m
an

y
F

ra
nc

e
U

S
A

U
ni

te
d 

K
in

gd
om Ita

ly
Ja

pa
n

N
et

he
rla

nd
s

S
pa

in
S

w
ed

en
S

w
itz

er
la

nd
R

us
si

a
B

el
gi

um
A

us
tr

al
ia

C
hi

na
A

us
tr

ia
M

ex
ic

o
In

di
a

Is
ra

el
P

ol
an

d
F

in
la

nd
C

an
ad

a
G

re
ec

e
U

kr
ai

ne
C

ze
ch

 R
ep

ub
lic

S
ou

th
 K

or
ea

B
ra

zi
l

C
yp

ru
s

E
gy

pt
R

om
an

ia
B

el
ar

us
A

rg
en

tin
a

Li
th

ua
ni

a
H

un
ga

ry
B

ul
ga

ria
S

lo
va

ki
a

C
ub

a
A

lg
er

ia
D

en
m

ar
k

Ir
el

an
d

Tu
rk

ey
N

ew
 Z

ea
la

nd
M

or
oc

co
Ta

iw
an

P
or

tu
ga

l
S

au
di

 A
ra

bi
a

S
lo

ve
ni

a
E

st
on

ia
T

ha
ila

nd
V

ie
tn

am
C

hi
le

Ir
an

Jo
rd

an
Tu

ni
si

a
S

in
ga

po
re

S
ou

th
 A

fr
ic

a
S

ri 
La

nk
a

B
an

gl
ad

es
h

C
ol

om
bi

a
Le

ba
no

n
La

tv
ia

P
ak

is
ta

n
M

ol
do

va
E

th
io

pi
a

A
rm

en
ia

In
do

ne
si

a
U

ru
gu

ay
U

zb
ek

is
ta

n
Ta

jik
is

ta
n

P
er

u
O

m
an

K
uw

ai
t

To
go

V
en

ez
ue

la
Li

ec
ht

en
st

ei
n

A
ze

rb
ai

ja
n

K
en

ya
Li

by
a

Z
am

bi
a

Ta
nz

an
ia

S
er

bi
a 

M
on

te
ne

g
M

al
ay

si
a

N
or

w
ay

C
ro

at
ia

N
ig

er
ia

S
en

eg
al

Ir
aq

B
ah

ra
in

S
yr

ia
Ic

el
an

d
B

ru
ne

i
Yu

go
sl

av
ia

S
er

bi
a

Lu
xe

m
bo

ur
g

C
am

er
oo

n
Iv

or
y 

C
oa

st
U

ni
te

d 
A

ra
b 

E
m

ira
te

s
Tu

rk
m

en
is

ta
n

Q
at

ar
K

az
ak

hs
ta

n
P

hi
lip

pi
ne

s
C

os
ta

 R
ic

a
G

ha
na

B
ur

ki
na

 F
as

o
N

ep
al

N
ig

er
S

ud
an

U
ga

nd
a

M
al

aw
i

R
eu

ni
on

Ja
m

ai
ca

Z
im

ba
bw

e
Ye

m
en

E
cu

ad
or

B
ot

sw
an

a
F

iji
B

ar
ba

do
s

B
os

ni
a 

&
 H

er
ce

go
vi

na
B

ol
iv

ia
Le

so
th

o
M

al
ta

M
au

rit
an

ia
M

au
rit

iu
s

M
on

go
lia

P
al

es
tin

e
B

en
in

C
ap

e 
V

er
de

M
ac

ed
on

ia
M

ya
nm

ar
N

ic
ar

ag
ua

G
eo

rg
ia

A
lb

an
ia

M
on

te
ne

gr
o

P
ar

ag
ua

y

130

120

110

100

90

80

70

60

50

40

30

20

10

1

Rank in Period 2003−2005 
Rank in Period 2008−2010 
Rank in Period 2013−2015 

Figure 5.7: Rank changes of the degree of countries.
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Figure 5.8: Properties of the national research networks for top ten publishing countries.

in the network. There is no clear trend but we observe quite some variation between countries.
Especially Taiwan, China, and South Korea appear to have a more centralized research systems
in PV than e.g. Germany, India, the USA, or France. The share of actors in the main component
is another indicator for the structure of the network and accounts for its connectivity. It takes
the size of the largest component over the size of the network.7 This measure increases in all
7 The share of actors in the main component is sensitive for small networks and can lead to extreme values as

seen in the first periods.

117



Chapter 5: International research networks: Determinants of country embeddedness

countries from the mid 1990s onwards indicating that the networks become less fragmented over
time with the potential for knowledge flows between an increasing number of national actors.

5.4 Explaining embeddedness in the international research net-
work

5.4.1 Variables

To test our hypotheses on the influence on embeddedness, we use four sets of variables: depen-
dent variables to describe international embeddedness of countries in the global PV research
network and independent variables characterizing the national networks, national policies re-
lated to PV and climate change, as well as controls. We conduct the analysis for the period
1980–2015, a robustness check for the sub-period 1997–2015 is discussed in Section 5.4.4. Since
we use three-year moving windows for international and national network measures, a period
serves as an observation and the starting year of the period refers to the year of observation.
So the first period 1980–1982 is the observation for 1980 and the second period, 1981–1983 is
the observation for 1981. Summary statistics of the variables are presented in Table 5.3. The
correlations between variables are documented in Appendix 5.6.3.

Dependent Variables – International embeddedness

The three dependent variables degree, flow-betweenness, and k-core (as discussed in Section 5.3.2)
measure countries’ international embeddedness and access to knowledge flows. The three net-
work variables emphasize different aspects of international embeddedness, i.e. how well a country
is connected to other countries and how important a country is in terms of knowledge transfer
between other countries.

National network variables

We use three properties of the national research networks as explanatory variables to account
for the characteristics of the respective innovation systems (see Section 5.3.3). Mean strength
measures the intensity of interaction, degree centralization indicates the concentration of link-
ages, i.e. the importance of ‘national champions’, and the share in main component accounts for
the overall potential of knowledge flows inside the country.

Policy variables

Several variables are used to operationalize national policies towards PV in particular and climate
change mitigation in general. To account for technology push policies towards PV research, we
use PV R&D expenditures by the government in Mio US$ (IEA, 2016). However, this information
is only available for some OECD countries and not for all years. Whenever only a few years of
observation for a country are missing, we interpolate R&D data and add a dummy to control
for a possible effect of interpolation (PV R&D Exp. interp. Dummy). Furthermore, we use the
logarithm of annually installed PV capacity in MW (IEA, 2016), as a proxy for demand pull
policies. Since PV is only recently price competitive, any installation must have been somehow
subsidized by the government. This measure is frequently used in the literature because it
accounts for the effectiveness of a variety of demand inducing policy instruments (Peters et al.,
2012; Wangler, 2013; Cantner et al., 2016). Additionally, we use data on satellites to proxy
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Table 5.3: Variable descriptive statistics, 1980–1982 until 2013–2015.

Min. Median Mean Max. SD Obs.
Dependent variables
Degreet 0.000 7.500 13.887 87.000 15.591 1540
Flow Betweennesst 0.000 189.000 1210.045 45521.000 3305.788 1540
K-Coret 0.000 6.000 8.115 27.000 7.097 1540
Publicationt 1.000 9.000 59.379 3371.000 202.121 1413
National network variables
Mean Strengtht−3 0.000 0.800 1.258 16.264 1.613 1540
Degree Centralizationt−3 0.000 0.109 0.117 0.667 0.110 1540
Share in Main Componentt−3 0.033 0.429 0.436 1.000 0.221 1540
National policy variables
Kyoto Ratificationt−1 0.000 1.000 0.508 1.000 0.500 1540
Cum. Number of Satellitest−1 0.000 1.000 84.232 3412.000 429.341 1540
Installed PV Capacityt−1 0.000 0.336 1.562 9.138 2.241 437
PV R&D Exp.t−1 0.000 8.754 27.928 395.660 47.136 437
PV R&D Exp. interp.
Dummyt−1

0.000 0.000 0.071 1.000 0.257 437

Controls
GDP per Capitat−1 428.150 17173.502 20053.469 164136.454 16325.668 1540
EU Membershipt−1 0.000 0.000 0.281 1.000 0.450 1540

public procurement in PV, since satellites were the first major application of PV and require
until today the highest efficiency, which is achieved by constant research activity (Oliver and
Jackson, 1999; Petroni et al., 2010; West, 2014). We use the cumulated number of satellites
deployed over time8 to proxy the effort and commitment of a country towards the aerospace
sector. Kyoto Ratification is a dummy variable which takes a value of 1 in each year in which a
country has ratified the Kyoto Protocol and 0 otherwise. It serves as an indicator for countries’
commitment towards emission reduction.

Control Variables

We use the GDP per Capita provided by the Penn World Table (Feenstra et al., 2015) to
account for countries’ general state of development. Furthermore, we expect that the common
EU research area fosters collaboration between European research partners (Defazio et al., 2009)
and control for EU Membership.

5.4.2 Estimation strategy

We conduct our analysis using unbalanced OLS-panel regressions controlling for country and
time fixed effects to account for the differences between countries but also for time effects such
as general economic circumstances. Since we are interested in the causal effect of the policies, we
lag the national network variables by three years and policy variables by one year. This allows
to estimate the effect of these variables on the position within the network of the following three
years.9 To account for heteroscedasticity, we report robust standard errors. Indexing countries
by i and time by t, the generic regression model is the following:
8 The data was collected from http://satellitedebris.net/Database/LaunchHistoryView.php on May 2nd

2015.
9 As explained in Section 5.3.2, networks are reconstructed for overlapping three-year moving windows. A lag

of three years leads to no overlap between different networks.
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Embeddednessit = β1Network Structureit−3 + β2Policyit−1 + β3Controlsit−1 + FEi + FEt + ε

For each of the three measures of embeddedness (1-3), we estimate three models (a-c).
Model a includes 99 countries for which network and policy variables are available. Models b
and c include only the 18 OECD countries for which installed PV capacity and PV R&D ex-
penditures are available.10 Model b estimates model a for the smaller OECD sample to see if
differences in coefficients between models a and c are due to the inclusion of additional variables
or because of the smaller sample.

5.4.3 Results

With three dependent variables and three specifications, we end up with nine regression models
to analyze the effects of national network structure and policy intervention (Table 5.4). In the
following, we discuss the results for the three different measures of embeddedness separately
followed by an overall summary of the results.

Degree: The factors influencing international embeddedness as measured by a country’s degree
are estimated in models 1a-c. In model 1a, the three national network measures show significant
effects in the expected direction. With respect to the policy variables, there is an effect from
procurement proxied by the cumulated number of satellites but not by the Kyoto Ratification,
which accounts for an overall commitment to mitigate climate change. If the sample is reduced
to the 18 OECD countries, there is a significant effect of the Kyoto Ratification but mean
strength does not play a role. After including additional policy variables in model 1c, the effect
of share in main component is not significant anymore. With respect to the additional policy
variables, installed PV capacity positively influences embeddedness while, surprisingly, PV R&D
expenditures have a significant negative effect.

Flow Betweenness: Flow betweenness is analyzed in models 2a-c. In model 2a the results are
similar to model 1a for degree, with differences only in the controls. If the number of countries
is reduced to the OECD sample in model 2b, mean strength is again no longer significant. The
additional policy variables in model 2c result in a loss of significance of the national network
measures as well. As above, installed PV capacity is positive, and contrary to degree, PV R&D
expenditures have a positive significant effect.

K-Core: In the case of k-core, model 3a reveals that only national collaboration in terms of
mean strength and degree centralization have a significant influence on membership in a higher
level core of the global knowledge network. The models 3b and 3c show opposite signs for
cumulated number of satellites and installed PV capacity and non of the other variables are
significant. The reason lies in the properties of this measure of embeddedness. Since the central
core of the network is composed of many, highly interrelated countries (35 countries by the end of
our observation period), nearly all 18 OECD countries included in the two models enter the core
at some point, so that there is very little variation in the dependent variable (see Figure 5.6). As
such, this measure of embeddedness does not discriminate between the most central countries
as much as degree and flow betweenness. This is also indicated by the small adj. R2, which is
about an order of magnitude smaller than in most of the other regressions. We therefore abstain
from interpreting the models 2b and 2c in the following.
10 These OECD countries are: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Italy, Japan,

the Netherlands, Norway, Portugal, South Korea, Spain, Sweden, Switzerland, Turkey, and the USA.
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Summary: Overall, international embeddedness in the global research network is strongly
influenced by the structure of the national research network as well as by national policies. As
hypothesized for mean strength in H 9, intense collaboration within the national research network
increases international embeddedness. However, this holds only true for models that include the
large set of countries, regardless of how embeddedness is measured. For the models which cover
only 18 OECD countries, this relationship does not hold. Centralization of the national research
system is detrimental for embeddedness and H 10 gains support in all models with the large
country sample and also for degree and partly for flow betweenness in the OECD sample. This
indicates that countries with centralized PV research activity and focus on ‘national champions’
are on average less embedded in the international network. Concerning the functioning of
the national research system, H 11 assumes that connectedness as measured by share in main
component has a positive effect on embeddedness. This argument finds support in the degree
model as well as in the flow betweenness for the large sample of countries and partly in degree
and flow betweenness for the OECD sample. In general, the national network structure seems to
be a good predictor of international embeddedness, especially if a larger population of countries
is considered and in the absence of additional policy variables.

With respect to the influence of governmental intervention, H 12 assumes that direct R&D
subsidies increase embeddedness. However, our results are inconclusive. There is a negative
effect if embeddedness is measured by degree and a positive effect on flow betweenness. Ap-
parently, research funds are not used to establish new connections per se, but to establish or
intensify connections to well embedded countries. In line with H 13, demand side policies have
a very robust positive effect on embeddedness. This holds for demand side policies as proxied
by installed PV capacity and also for public procurement as proxied by the cumulated number
of satellites. Hypothesis 14 assumes that the Kyoto Ratification induces activities to foster re-
newable energies, which might show in an increased embeddedness in the global PV research
network. However, this hypothesis is only supported in the degree models for the 18 OECD
countries. This might be explained by the differential binding effect of the Kyoto Protocol. In
the whole sample, many developing or less developed countries signed the Kyoto Protocol with-
out having to commit to emission reductions, whereas for the 18 OECD countries it unfolds its
binding effect. While, overall, governmental interventions influence international embeddedness,
the instruments differ in their effects. Market creation by means of demand side policies seems
more effective for international embeddedness than the provision of research funds or a general
commitment to mitigate climate change.

5.4.4 Robustness tests

We conduct two robustness tests for the econometric analysis. First, we deal with the less
reliable publication data in early years by analyzing a subset for later periods only. Second, we
use the number of publications as a measure for the overall research output. Publications are
the underlying data for the networks so that it serves as a benchmark for the regressions on
international embeddedness.

As mentioned in section 5.3.1, the way Web of Science stores affiliation data changed around
1996. Furthermore, with the disbandment of the Soviet Union, several countries left the sample
and new ones emerged. To account for such effects beyond the already present time fixed
effects, we perform regressions with a subsample of the data covering the periods 1997–1999
to 2013–2015. The results as well as the correlations and descriptive statistics are presented in
Tables 5.8, 5.10, and 5.11 in the Appendix. The regression results for this shorter but more
reliable period are quite stable and there are only marginal differences to the results presented
above. There are only two changes worth discussing: In Model 1c the share in main component
becomes significant and in Model 2c degree centralization as well. Both differences strengthen
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our argument with respect to the importance of the national network structure. Since the
networks in early periods are very small and sparse they are a less reliable indicator of research
system structure.

Our measures of embeddedness are based on the co-authorship of scientific publications.
As such, countries can only be embedded in the international research network if they publish
research articles. We therefore perform the same regressions as above on the number of publi-
cations11 to find out whether the effects of policies differ between embeddedness and research
output (see Table 5.5). Without any difference, embeddedness would merely be a side-effect
of increased output. Overall, the results do not differ much. Characteristics of the research
system, especially mean strength and degree centralization, as well as the technology push and
demand pull policies influence both, embeddedness and output. However, there are also some
noteworthy differences which make us confident that certain policies and system characteristics
are relatively more important for embeddedness than for publication output. The functionality
of the research system as measured by the share in main component seems irrelevant for the
number of publications but not for embeddedness. Kyoto Ratification increases the number
of international partners but has no influence on the number of publications. This indicates
that acknowledging greenhouse gas emissions as a global societal problem induces international
collaboration.

5.5 Discussion and conclusion

In the present study we analyzed the global research network in PV based on an original dataset
of scientific publications to describe its evolution between 1980 and 2015 and to identify the
determinants of a country’s embeddedness in the international research network. Regarding the
determinants of embeddedness, we derived a set of hypotheses on the influence of characteristics
of the national research system and instruments of the policy mix for renewable energy and
tested them for a large sample of countries.

With respect to the evolution of structural properties of the global PV research network, we
observe that research output and the resulting network of international research collaboration are
constantly growing. This highlights the global awareness regarding renewable energies and PV
in particular as possibilities to mitigate climate change, but also with respect to existing market
opportunity worth exploiting (Oliver and Jackson, 1999; Zheng and Kammen, 2014). Especially
Asian countries catch up and overtake European countries in terms of research output, indicating
that the increase in PV production during recent years (Zheng and Kammen, 2014) goes hand
in hand with increased research activities. We also observe an increase in collaboration over
time, which is not specific to PV but a general trend in research and innovation activities
(Wuchty et al., 2007; Adams, 2012). However, there are some notable differences between
countries. While European countries collaborate quite frequently with international partners,
Asian countries conduct most of their research domestically. This might be related to cultural
differences, geographic proximity, or national strategies (Luukkonen et al., 1992). There is not
only a surge in research output, but also in terms of the number of actors, which indicates
that an increasing number of countries engage in PV research. The reasons should be found
in environmental awareness as well as improved market opportunities and industrial policies
(Stern, 2007; Mazzucato, 2013).

Countries which engage in PV research are quickly embedded in the global research network
and the number of connections per actor increases steadily. Thereby the network becomes
11 Since we use this specification to check the robustness of our results, rather than to measure research perfor-

mance, we abstract from using citation-weighted publication shares, or similar, more sophisticated measures
of scientific performance.
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Table 5.5: OLS-panel regression results for country publications, years 1980–2013.

Publication
Model 4a Model 4b Model 4c

Mean Strengtht−3 71.778*** 33.643 34.000**
(18.964) (21.388) (16.872)

Degree Centralizationt−3 -400.025*** -493.474*** -347.866***
(76.716) (164.580) (102.799)

Share in Main Componentt−3 50.452 95.843 -11.818
(36.195) (94.653) (95.295)

Kyoto Ratificationt−1 -31.847 -82.040 -49.425
(29.124) (82.440) (45.677)

Cum. Number of Satellitest−1 0.947*** 0.901*** 0.962***
(0.191) (0.105) (0.054)

Installed PV Capacityt−1 30.850**
(14.065)

PV R&D Exp.t−1 1.253***
(0.277)

PV R&D Exp. interp. Dummyt−1 -51.828
(59.005)

GDP per Capitat−1 -0.002 -0.009 -0.007
(0.002) (0.006) (0.005)

EU Membershipt−1 -56.518*** -0.247 7.973
(20.382) (35.980) (23.693)

Country fixed effects yes yes yes
Time fixed effects yes yes yes
Adj. R2 0.307 0.415 0.521
n 97 18 18
T 34 34 34
N 1413 421 421
df 1276 363 360
Robust standard errors in parentheses. Sig. at *** 0.01, ** 0.05, * 0.1 level.

increasingly connected, suggesting that the global system functions well and allows for knowledge
diffusion. However, there seems to be an ongoing centralization process, such that some countries
form a highly interconnected core. The network periphery is characterized by a substantial
degree of turbulence. Some countries, such as Mexico, Russia, and the Netherlands move towards
the network periphery, despite a doubling of their number of connections. Others improved
their relative position in the network, especially countries in the MENA region due to strategic
decisions taken by their governments (Griffiths, 2013). Also Malaysia, which only recently
engaged in PV research due to overall political commitment, moved among the top countries
(Muhammad-Sukki et al., 2012). The increase in centrality of some Asian countries, especially
China, Taiwan, South Korea, and India, is fairly moderate. Even though they nowadays publish
most of the research in PV they are not among the most central countries. As such, by giving
priority to national partnerships, they do not fully exploit their knowledge sourcing potentials.

In the regressions, embeddedness is measured by three concepts of network centrality which
emphasize different aspects of knowledge access. The number of collaborating countries, as
measured by degree, as well as the relative position and intensity of collaboration, as measured
by flow betweenness, lead to coherent results, generally in line with our predictions. Membership
in a highly connected core, as measured by k-core, shows to be a less convincing measure of
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embeddedness. To explore the determinants of international embeddedness, we employ two sets
of country characteristics.

With the first set of factors we enter an emerging research field by relating country level net-
work characteristics – the meso level – to macro level embeddedness (Dopfer et al., 2004; Gupta
et al., 2007). While there are some studies concerned with the effects of network structure on
performance (e.g. Verspagen and Duysters, 2004; Uzzi et al., 2007; Fritsch and Graf, 2011), only
few studies relate different levels of networks in a research or innovation context (Gupta et al.,
2007; Paruchuri, 2010; Guan et al., 2015b). We argue that the structure of national networks
should be interpreted as characteristics of the national research system that are also subject to
decisions taken by policy makers (Carlsson and Stankiewicz, 1991; Lundvall, 1992; Smits and
Kuhlmann, 2004; Hekkert et al., 2007). The results are – at least partly – sensitive to the
centrality concept used to measure embeddedness. Cohesion and connectedness of the national
network positively influence international embeddedness. However, the effects are not that pro-
nounced for OECD countries which are in general internationally well embedded and all have
well established and functioning research systems (Choi, 2012). Centralization of the national
network, i.e. a focus on ‘national champions’, shows to be detrimental for embeddedness. This
implies that diffusion oriented research systems in which actors are well connected, diverse, and
decentralized are supportive of international embeddedness. However, the establishment of an
institutional systems conducive for such structures is certainly influenced by policy intervention
and strategic decisions of governments (Ergas, 1987). Overall, our empirical results show that
country level network structures are highly relevant for international embeddedness.

The second set of factors is comprised of national policies towards PV and climate change in
general. Thereby, we add to the broad literature that analyzes effects of policy on environmen-
tally friendly innovation (e.g. Popp, 2002; Newell, 2010; Kemp and Pontoglio, 2011; Acemoglu
et al., 2012) and the more recently upcoming literature on the policy mix for innovation (Flana-
gan et al., 2011; Rogge and Reichardt, 2016). Our results indicate that policy instruments have
a differential effect on international embeddedness. R&D expenditures for PV are the most
direct way to support research activity (Adams et al., 2005; Popp, 2016a) and international
cooperation (Adams et al., 2005; Ebadi and Schiffauerova, 2013). Our results for R&D expen-
ditures are mixed and sensitive to measure of embeddedness. They show a negative effect on
the embeddedness in terms of degree, but have a positive effect if the relative position of coun-
tries in the network is considered. This implies that R&D expenditures are used to establish or
intensify connections to well embedded countries rather than to establish connections to previ-
ously unrelated countries. In addition, there might be an indirect effect of R&D expenditures
on international embeddedness. Since R&D grants have been found to increase collaboration
within the country (Adams et al., 2005; Cantner et al., 2016) they help to establish a structure
of the national research network which is conducive to international collaboration. Demand pull
policies are a very robust predictor of international embeddedness. Even though they are not
designed to foster international R&D and collaboration, they apparently provide incentives and
create an environment that strengthens international research activities. In addition to market
creating demand pull instruments, such as quotas or feed-in-tariffs, we also analyzed the effects
of public procurement, which is highly relevant for innovative activity (Edler and Georghiou,
2007; Guerzoni and Raiteri, 2015). In our case, since we use the cumulative number of satel-
lites to proxy procurement, this type of policy should be more relevant in the early years of
the technology than during the last decades. However, procurement shows to be a very strong
predictor of performance and international embeddedness not only in the long period 1980–2015
but also for the period 1997–2015. This hints at long term first-mover advantages and since
spacecraft development is frequently conducted in multinational projects, it might well explain
its effects on international embeddedness (Moloney et al., 2014). The commitment to mitigate
climate change indicated by ratifying the Kyoto Protocol seems only to increase the number
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of international cooperations for the sample of OECD countries. This seems reasonable, since
these countries have binding reduction targets whereas in the whole sample many countries do
not need to reduce their emissions. Overall, policy instruments have an effect on international
embeddedness and knowledge exchange, which has so far been neglected from discussions about
an effective policy mix (Flanagan et al., 2011; Rogge and Reichardt, 2016).

Based on these results, we recommend policy makers to consider the following propositions.
First, the general setup of the national research system should be higher on the policy maker’s
agenda to secure integration in international research communities and to embed a country in
such networks. There has been discussions about systemic instruments which support functions
of a research system (Smits and Kuhlmann, 2004; Hekkert et al., 2007; Wieczorek and Hekkert,
2012). These instruments can be used to create a diffusion oriented research system and em-
bed countries in international networks. This seems to be especially relevant for non-OECD
countries, which are developing their research capacity. Steering the research system into a dif-
fusion oriented would increase the collaboration with international researchers. Second, policy
instruments which are supposed to increase research activity also increase collaboration and in-
ternational embeddedness. These partially unintended effects should be taken into consideration
by policy makers and fostered to increase the effect of instruments. A striking example are the
EU-Framework programs, which encourage international collaboration and increase access to
global knowledge flows. In a same vein, a well-tailored mix of different instruments should be
implemented to not only increase research performance, but also support access to international
knowledge flows. Thereby the policy support should include (pre-)commercial support as well
as classical R&D support.

This chapter contributes to several streams of research. First, a novel approach to measure
the functionality of a research system is proposed and used to understand how the design of the
research system influences global connectivity. While we treat the drivers of the national research
network setup as a black box, we encourage further research to understand how this is shaped,
for example deliberately by systemic instruments (Smits and Kuhlmann, 2004; Wieczorek and
Hekkert, 2012; Cantner et al., 2016). Second, by making use of the multi-level structure of
publication data in our analysis, we contribute to the emerging stream of research on multi-
level networks (Gupta et al., 2007). We show that the meso level influences structures on the
macro level, as proposed in theoretical discussions (Dopfer et al., 2004). Third, we provide novel
insights how actor’s embeddedness in a network is influenced. We operationalize embeddedness
in three different ways and use several possible determinants, which extend the determinants that
have been used previously (Wanzenböck et al., 2014, 2015). Lastly, with respect to the effect
of different innovation policy instruments, we show that these instruments not only increase
research activity, but also positively affect international collaboration and embeddedness. This
dimension is so far neglected in the discussion of the effect of different policy instruments.
Thereby we add public procurement to the already established set of instruments and extend
the discussion about the composition of the instrument mix for renewable energies (Flanagan
et al., 2011; Rogge and Reichardt, 2016).

As with any research, this chapter is not without limitations and some of them might affect
the interpretation of our results more than others. Publication data is far from perfect to
measure collaboration: the intensity of collaboration is not accounted for, collaboration might
not be properly reflected in co-authorship, or affiliation information is incomplete (for further
issues with publication data, see Katz and Martin, 1997; Laudel, 2002; Glänzel and Schubert,
2005). Unfortunately, our analysis suffers from incomplete data, especially concerning R&D
expenditures and demand pull instruments. These policy indicators are only available for a small
– and certainly not random – subset of countries. Increasing the scope of data coverage would
increase the reliability of our results. Finally, since we focus on a highly specific technology
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in which policy plays an important role, we expect that especially our estimates on national
policies are sensitive to the technology which limits generalizability.

In future research it would be important to understand how the different policies interact
within the broader policy mix to affect network structures. This would require to take a deeper
look at the policy strategies and goals as well as the consistency and stringency of the mix (Rogge
and Reichardt, 2016). Another issue regards the interplay between meso structure and macro
embeddedness. Here, we assumed that this is a one-directional relationship where the meso
influences the macro. However, there might well be a reverse link so that macro embeddedness
influences the way linkages on the meso level are formed. A thorough analysis of these feedbacks
and interdependencies remains another challenge for future inquiry.
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5.6 Appendix

5.6.1 Ranking of countries

Table 5.6: Rank of the degree of the top 15 countries.

Rank
2003-05

Degree
2003-05

Degree
2008-10

Degree
2013-15

∆ Rank
03-05–
08-10

∆ Rank
03-05–
13-15

Rank
2013-15

Germany 1 45 65 76 0 -2 3
France 2 43 54 73 -1 -3 5
USA 3 42 63 87 1 2 1
United Kingdom 4 36 53 78 0 2 2
Italy 5 34 44 68 -1 -1 6
Japan 7 30 42 64 0 -1 8
The Netherlands 7 30 34 54 -7 -10 17
Spain 9 26 47 73 4 4 5
Sweden 9 26 36 50 -1 -11 20
Switzerland 10 24 39 55 1 -4 14
Russia 11 22 25 49 -7 -11 22
Belgium 12 21 31 56 -4 0 12
Australia 13 19 27 54 -4 -4 17
China 15 18 35 65 3 8 7
Austria 15 18 23 54 -7 -2 17

Table 5.7: Rank of the degree of the 15 most increasing countries.

Rank
2003-
05

Degree
2003-
05

Degree
2008-
10

Degree
2013-
15

∆ Rank
03-05–
08-10

∆ Rank
03-05–
13-15

Rank
2013-
15

Qatar 133 na 1 28 28 89 44
United Arab Emirates 133 na 3 27 51 87 46
Serbia 133 na 10 19 85 73 60
Malaysia 91 0 18 50 60 71 20
Kazakhstan 133 na 1 15 28 65 68
Philippines 133 na 1 11 28 58 75
Luxembourg 133 na 8 10 76 56 77
Norway 91 0 15 32 52 51 40
Costa Rica 133 na 1 5 28 45 88
Ghana 133 na 1 5 28 45 88
Croatia 91 0 7 25 31 39 52
Saudi Arabia 49 5 18 61 18 39 10
Iraq 91 0 2 25 2 39 52
Burkina Faso 133 na 1 4 28 38 95
Nepal 133 na 1 4 28 38 95
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5.6.2 Descriptives small dataset

Table 5.8: Descriptive statistics of the periods 1997–1999 until 2013–2015.

Min. Median Mean Max. SD Obs.
Dependent variables
Degreet 0.000 11.000 16.535 87.000 16.219 1231
Flow Betweennesst 0.000 336.000 1498.846 45521.000 3640.156 1231
K-Coret 0.000 9.000 9.717 27.000 7.035 1231
National network variables
Mean Strengtht−3 0.000 1.000 1.490 16.264 1.716 1231
Degree Centralizationt−3 0.000 0.133 0.134 0.667 0.113 1231
Share in Main Componentt−3 0.060 0.475 0.462 1.000 0.218 1231
National policy variables
Kyoto Ratificationt−1 0.000 1.000 0.636 1.000 0.481 1231
Cum. Number of Satellitest−1 0.000 0.000 76.253 3412.000 426.535 1231
Installed PV Capacityt−1 0.000 1.423 2.331 9.138 2.442 284
PV R&D Exp.t−1 0.000 8.239 24.297 395.660 43.405 284
PV R&D Exp. interp. Dummyt−1 0.000 0.000 0.092 1.000 0.289 284
Controls
GDP per Capitat−1 428.150 15585.486 20702.082 164136.454 17460.171 1231
EU Membershipt−1 0.000 0.000 0.265 1.000 0.441 1231
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Chapter 6

Flexibility in the selection of patent
counts: Implications for p-hacking
and policy recommendations

Co-authored with Stephan B. Bruns

6.1 Introduction

Patent counts have a long tradition in economics as a measure of inventive and innovative activity
and to elaborate on technological change. Specifically, patent counts are used to understand
drivers of innovative activities, how innovative activities in turn influence economic activities
and, more generally, to analyze knowledge-technology relationships including the evolution of
technologies (see Pavitt, 1985; Basberg, 1987; Griliches, 1990; Nagaoka et al., 2010; Hall and
Harhoff, 2012, for surveys of the literature). However, there is little consensus on how relevant
patents can be identified and which quality dimension of patents should be considered. In this
study, we explore how the flexibility in the selection of patent counts transmits to uncertainty
in econometric estimates of policy effects.

Patent counts are frequently used to evaluate policies designed to foster inventive and in-
novative activities.1 Based on the induced innovation concept (Hicks, 1932; Acemoglu, 2002),
different kinds of policy instruments can be implemented to induce such activities. These in-
struments can be distinguished in technology push and demand pull instruments (Bush, 1945;
Schmookler, 1966; Mowery and Rosenberg, 1979). The effects of these policy instruments on
patent counts have been studied especially for environmentally friendly technologies. Recent

Acknowledgments: We are grateful to Nick Johnstone for providing us data and estimation code for John-
stone et al. (2010) and to Volker Hoffmann and Michael Peters for providing us data on the policy variables
of Peters et al. (2012). Previous drafts of the chapter were presented at the OECD IP Statistics for Decision
Makers Conference 2015 in Vienna, at the Ruhr-Universtiy Bochum, the 10th European Meeting on Applied
Evolutionary Economics in Strasbourg and the ZEW Mannheim Energy Conference 2017. We are grateful
for discussions by and with Rudi Bekkers, Uwe Cantner, Holger Graf, Maximilian Göthner, Dietmar Harhoff,
Christian Pigorsch, Muhammad Faraz Riaz, Karoline Rogge.

1 Inventive and innovative activities describe different parts of the innovation process. While inventive activity
refers to the discovery or creation of new knowledge, which results, for example, in a patent, the innovation
brings this discovery to the market. In the following we refer to inventive activity if it is related to patented
output and to innovation if the process is considered.
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contributions are, for example, Aghion et al. (2016) who use patent counts to show that higher
tax-inclusive fuel-prices spur inventive activities in the clean auto industry. Calel and Deche-
zleprêtre (2016) use patent counts to analyze if the European Union Emissions Trading System
induces inventions in low-carbon technologies.

With respect to climate change, solar energy technologies are of particular importance mir-
rored by extensive and differentiated policy support that these technologies received to induce
inventive and innovative activities. Solar energy technologies can be divided into photovoltaics
(PV) and concentrated solar power (CSP). There are two seminal contributions to this literature
that are at the center of our analysis. Johnstone et al. (2010) uses patent counts for solar energy
technologies (PV and CSP combined) and tests how different policy instruments affect inventive
activities. Peters et al. (2012) explicitly test if domestic or foreign technology push or demand
pull policies influence inventive activities in photovoltaics.2

While Griliches (1990) urgently warns about the possible misuse of patent data, there is no
systematic analysis how the flexibility in the selection of patent counts can influence econometric
analysis.3 The patent selection process can be divided into two parts: The search strategy and
the quality dimension of patents. The search strategy refers to how patents are selected based
on their content. Here, several approaches are possible. The most frequent ones use either
a classification system or use keywords to search for in the patent documents. Thereby the
classifications or keywords target a specific technology, which is an important part of the search
strategy. The quality of patents refers to the skewed distribution of patent value and the large
number of patents with low novelty contents (e.g. Harhoff et al., 2003). Several approaches are
possible to attain a minimum level of patent quality for economic analysis (e.g. Harhoff et al.,
2003; Squicciarini et al., 2013). We focus in the following on the most prominent and basic
approach that distinguishes patents into six quality groups based on their filing and granting
procedure (i.e. priority filings, granted patents, claimed priorities, PCT filings, transnational
filings, and triadic filings). As different combinations of search strategies and quality dimensions
of patents may appear plausible in analyzing policy effects, uncertainty in estimated policy effects
is likely to be introduced.

This uncertainty in estimated policy effects may ease to engage in what was recently coined
p-hacking (Simonsohn et al., 2014). Hacking the p-value refers to uncertainty in model selection
which can be used to select models that ‘work’, that is, they provide estimates that fulfill
the research’s prior and usually support a hypothesis, while those models that did not ‘work’
remain unreported (Bruns and Ioannidis, 2016). Hacking the p-value is eased if flexibility in
patent selection approaches transmits to a wide range of estimated policy effects from which
statistically significant and hypothesis-confirming estimates can be selected. Presumably, only
a small share of researchers is willing to engage in a deliberate search for estimates that ‘work’.
But researchers face substantial uncertainty which patent selection approach is best to proxy
inventive activity in a specific technology or industry and, thus, it is natural to explore the results
for multiple patent selection approaches. It becomes p-hacking if the researcher is influenced by
2 With respect to renewable energy technologies in general, Johnstone et al. (2010) also analyzes other types of

renewable energy technologies. Several follow up studies exist to further understand policy effects on patent
counts. For example, Dechezleprêtre and Glachant (2014) study the effect of domestic and foreign demand
pull policies for wind power, Nesta et al. (2014) investigate the effect of polices and competition for renewable
energies in general and Costantini et al. (2015b) analyze the effects of technology push and demand pull policies
on biofuel patents.

3 There is a debate in the literature how relevant patents can be selected. Several recommendations exist
concerning the search strategy and the quality dimension of patents. However, there is neither a consensus
nor a systematic evaluation how the selection approach of patents influences the econometric results. So far,
only Colombelli et al. (2015) point out the possibility of a bias due to different selection approaches, while
de Rassenfosse et al. (2014) show how focusing only on filings from one patent office can bias econometric
results.
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motivated reasoning (Kunda, 1990) and only reports the estimated policy effects that ‘work’ as
(s)he believes them to be the best proxies after seeing the estimates.

Empirical evidence suggests that such selective reporting is widespread in empirical eco-
nomics. Brodeur et al. (2016) use more than 50,000 estimates extracted from the American
Economic Review, Quarterly Journal Economics and Journal of Political Economy to demon-
strate that 10-20% of the marginally significant p-values are inflated, that is, non-significant
p-values are inflated to become marginally significant p-values. Ioannidis et al. (2017) show that
many studies in economics suffer from low power and point estimates are overstated to obtain
statistical significance.

The large flexibility in the selection of patent counts and the possibility of p-hacking has
several implications for policy makers, who use econometric studies to design or justify policy
interventions. p-hacking may lead to statistically significant policy effects, although a genuine
policy effects is absent, or it may overstate the effect of a policy intervention potentially resulting
in misallocation. Since patent data is frequently used to assess policy interventions that aim to
increase inventive activity, a careful assessment is needed how the selection of patent counts can
influence such policy evaluations.

The contribution of this article is threefold. First, we analyze to what extend patent counts
of various patent selection approaches vary by using solar energy technologies as an example.
We identified 51 different search strategies for solar energy technologies in the literature. These
different search strategies aim to be generic in capturing the inventive activity in the different
solar energy technologies (PV, CSP, or both). We show how patent counts obtained by these 51
search strategies differ in magnitude, overlap and country coverage. Second, we analyze to what
extend the flexibility in the selection of patent counts transmits to variation of econometric
estimates of policy effects with direct implications for p-hacking and evidence-based policy.
To this end, we use as best-practice research designs the two main studies that analyze policy
effects on inventive activity in solar energy technologies: Johnstone et al. (2010) and Peters et al.
(2012). In these best-practice research designs, patent counts are used as dependent variables
and various policy variables are considered as explanatory variables. We estimate both best-
practice research designs for all 306 types of patent counts (51 search strategies and for six patent
quality dimensions each). We characterize the distribution for each estimated policy effect by
using extreme-bounds analysis (Leamer, 1983; Levine and Renelt, 1992), the share of positive
estimates, and vibration plots that relate the size of the estimated coefficient to statistical
significance (Patel et al., 2015). Third, we analyze which characteristics of the patent selection
approaches determine the sizes of estimated policy effects using meta-regressions (Stanley and
Jarrell, 1989).

The magnitudes of patent counts obtained by the 51 different search strategies for solar
energy patents show severe differences. The overlap of the selected patents across the search
strategies varies at the technological level, especially between PV and CSP, while the country
coverage is nearly uniform across search strategies. The different patent quality dimensions
seem to only affect the magnitude of patent counts, while relative patent counts across search
strategies tend to be robust. The sensitivity analysis reveals that the different selection ap-
proaches result in substantial uncertainty regarding the sign, size, and statistical significance of
many estimated policy effects for the two best-practice research designs. We obtain for nearly
all policy variables positive as well as negative estimates that are statistically significant. When
we consider subsets of the selection approaches based on quality considerations such as journal
impact factor, citations of the underlying study, or correction for outliers, then for some of the
policy effects the uncertainty is reduced. In fact, our analysis reveals that the core findings of
the two studies that are used as best-practice research designs can be supported in terms of the
signs of the core estimated policy effects. Moreover, our results reveal that characteristics of the
search strategies are key determinants of the sizes of estimated policy effects.
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Our results demonstrate the need for more sensitivity analysis and a careful motivation and
documentation of why a specific search strategy and patent quality dimension is chosen. This
will help to improve reliability and credibility of econometric evaluations of policy instruments
that aim to foster inventive activities and is an essential step towards evidence-based policy.

The chapter proceeds by describing the two main elements of patent selection approaches.
Section 6.3 describes and analyzes the 51 different selection approaches that we identified from
the literature. Section 6.4 presents our empirical strategy and the results of our assessment
regarding uncertainty in estimated policy effects and the determinants of policy effect sizes.
Section 6.5 discusses our results and the last Section concludes.

6.2 Selection of patent counts

6.2.1 Search strategies for technology specific patents

Patent selection approaches consist of two elements: the search strategy that aims to be generic
for a given technology and the patent quality dimension that describes the value of the patent
in terms of technological or economic value.

The search strategy defines how the relevant patents for a specific technology or product can
be selected from patent databases that are managed by various patent offices. Patent offices
manage their databases to fulfill their needs – to search for prior art and to clarify the relevance
and novelty of the patents they examine.4 The patent search for specific technologies, products,
or processes for economic analysis is possible by several strategies. The common strategies to
select patents are based on patent classification systems, keywords, or their combination (Eisen-
schitz and Crane, 1986; Dirnberger, 2011; Xie and Miyazaki, 2013).5 However, each strategy
has several advantages and disadvantages which need to be considered when selecting patent
counts.

A patent office uses a classification system to support the examination process and classifies
patents according to underlying technological principles (Jaffe and Trajtenberg, 2002). Common
classification systems are the International Patent Classification (IPC) managed by the World
Intellectual Property Organisation (WIPO) or the recently introduced Cooperative Patent Clas-
sification System (CPC).6 Classification systems are not designed to distinguish specific products
or fulfil the economist’s needs. This causes problems analyzing specific technologies, products, or
processes which combine different technological principles. For the use of classification systems
to search for patents, the respective classifications which describe the specific product or process
need to be identified. Here, some issues emerge, since a technological principle can be used for
different products or describes different phenomena (Vijvers, 1990; Costantini et al., 2015a).7
Using classifications might include patents which are not related to the product or process under
consideration. This can be referred to as a type I error. Additionally, it is also possible that a
4 Besides the databases managed by patent offices there are several commercial databases specialized in patent

search (Palangkaraya, 2010).
5 Besides these strategies, there are several other ways, for example, classification co-occurrences, use of a pre-

defined set of patents to train an algorithm to identify specific keywords, or use of citations from a specific set
to retrieve previous patents (Benson and Magee, 2013; Abbas et al., 2014).

6 There are further classification systems introduced by patent offices, see Held et al. (2011) or Wolter (2012)
for comparisons.

7 For example, the principle of light absorption is characteristic for PV; but also digital cameras or other products
refer to this technological principle.
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product or process combines different technological principles and if these classifications are not
considered, relevant patents are missing. This can be referred to as a type II error.8

Keywords are frequently used to search for patents as well. If a product or technology can
be described by a set of technology specific unique keywords, this approach can deliver reliable
results. Several issues exist, since keywords can be used in various technologies or products not
related to the technology under consideration, resulting in a type I error.9 Furthermore, a type
II error occurs if patent documents are written in a way to avoid specific keywords to keep the
invention hidden from competitors. Language differences between patent offices can also reduce
the number of selected patents if the keywords do not account for multiple languages or different
terminologies used in different countries (Montecchi et al., 2013). In addition, patent databases
are not always complete so that missing titles, abstracts, or other content do not allow searching
in all relevant patents. The combination of classifications and keywords can reduce type I errors,
but cannot avoid type II errors.

6.2.2 Patent filing procedures as indicator of patent quality

The second element of patent selection approaches is the quality dimension. Patents contain
codified knowledge, which should be new, non-obvious and applicable. However, the economic
and technological value or quality of this knowledge is hard to determine (Griliches, 1990).
Several studies tried to estimate the values or qualities of patents (e.g. Schankerman and Pakes,
1986; Harhoff et al., 2003) and usually find a skewed distribution with a few very valuable
patents and many patents with no or little economic value or technological novelty. There are
several indicators which can be used to assess patent quality (Squicciarini et al., 2013). One
basic indicator is the patent office in which the patent is filed and if it is granted. Since filing
in specific or multiple patent offices is expensive, a patent of higher quality or economic value
will go through specific filing routes. This is especially relevant if patent counts are used for
international comparisons of inventive activities, where heterogeneity in patent offices can bias
results and, thus, patents should be counted on a comparable quality basis (Lanjouw et al.,
1998; Dernis et al., 2001; van Pottelsberghe de la Potterie, 2011). In the following, we discuss
the six different demarcations of patents that are used in this study and their potentials to infer
on the qualities and international comparability of inventive outputs.

The baseline to count patents is to consider all priority filings (first filings) filed at na-
tional patent offices. Several shortcomings are attributed to this approach. There are differences
between the national patent offices, which can influence the propensity to patent, such as appli-
cation fees and procedures. Due to this, patents can be quite heterogeneous in terms of quality
if different costs to file a patent exist (Atal and Bar, 2010; van Pottelsberghe de la Potterie,
2011; de Rassenfosse and van Pottelsberghe de la Potterie, 2011, 2013).10

Granted patents meet some basic quality criteria, since they successfully underwent ex-
amination at a national patent office. The criteria to grant a patent, however, differ between
8 Other problems relate to the classification system, such as changes over time or that patent examiner misclassify

a patent or assign too many or too less classes to a patent.
9 For example, silicon is one of the widely-used materials in PV cells, but it is also used in other semiconductor

devices. Furthermore, the product or process can be a non-crucial part of an invention and would be considered
as well. In the case of PV, it could be that an electronic device uses a PV cell as power source, even though
the invention does not contribute to the PV development at all.

10 Furthermore, this approach follows the implicit assumption that all the patents, which are applied at a certain
national office are invented in the respective country. However, this is not always the case and a geographical
bias exists, such that especially many applications filed at the United States Patent and Trademark Office
are invented in neighboring countries (Griliches, 1990; Harhoff et al., 2009; OECD, 2009). To reduce such
bias in international comparisons, patents can be attributed to countries based on the inventor’s residence
(de Rassenfosse et al., 2013).
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countries, which is reflected in the granting rates (Ordover, 1991), variation in the examination
procedures (Lemley and Sampat, 2012), and granting decisions that are not equal across patent
offices (Palangkaraya et al., 2011; de Rassenfosse et al., 2016). See also (Eckert and Langinier,
2014) for further issues related to the granting processes and international comparability.

Claimed priorities refer to patents which have one or several secondary filings at other
patent offices claiming a priority filing under the Paris Convention (OECD, 2009). The applicant
will only consider an application in a second or more jurisdictions if the patent has the potential
to generate revenues to cover these additional costs (OECD, 2009; Haščič and Migotto, 2015).
This results in a patent family with members from at least two patent offices. The size of the
patent family is a frequently used indicator of patent value (Putnam, 1996; Lanjouw et al., 1998;
Harhoff et al., 2003).

PCT filings are applications under the Patent Cooperation Treaty (PCT) which allows filing
a unified application at designated national offices. PCT was introduced in 1970, but it took some
time until the procedure was widely accepted and especially in early years only a few applications
were filed (OECD, 2009). PCT applications can be of higher value than applications at only the
national patent office and allow better international comparability (Grupp and Schmoch, 1999;
Guellec and van Pottelsberghe de la Potterie, 2000).

Transnational filings comprise patents either filed via a PCT procedure or filed at the
European Patent Office (EPO) (Frietsch and Schmoch, 2010). Both ways of application can
impose higher costs on the applicant than national applications and this reduces low-quality
applications. They also allow for international comparisons.

Triadic filings are patents with family members filed at the Japan Patent Office (JPO)
and the EPO and granted at the United States Patent and Trademark Office (USPTO) (Grupp,
1996; Dernis et al., 2001).11 These patents are considered of high value due to the imposed costs
of filing in these three jurisdictions (Dernis and Khan, 2004; OECD, 2009). They are frequently
used for international comparisons, since they have no home country bias (Criscuolo, 2006).

6.3 Selections of patent counts for solar energy technologies

There is a growing interest in the development of solar energy technologies. Numerous studies use
patent data to understand how solar energy technologies develop over time, which determinants
influence their developments and especially how policy effects influence the innovation process.
Such studies use patent counts or derive further indicators based on patent counts, but they
differ in the search strategy used to select the respective patent data.12

Solar energy technologies can be divided into two very different technologies. Photovoltaics
(PV) uses a photovoltaic cell for a direct conversion of sunlight into electricity. Concentrated
solar power (CSP) uses a thermodynamic cycle where a collector stores thermal energy in an
absorber to utilize the heat for (residential) heating or to use a heat engine to convert heat
into electric energy, usually by steam power. Although PV and CSP are often referred to as
solar energy technologies, both technologies differ in their applicability, scalability and costs
(Peters et al., 2011). The underlying technological principles differ significantly and this results
in differences in the innovation process. The patent search needs to consider these technological
differences, especially if patent counts are used for country comparisons, since some countries
11 There is a discussion about relaxing this strong definition and include national patent offices in Europe or Asia

as well (Sternitzke, 2009).
12 However; there are two frequently used search strategies. The WIPO provides a so called “Green Inventory”

which states a list of IPCs for PV and CSP. Furthermore, the CPC has distinct classes for PV and CSP
(Veefkind et al., 2012).
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focus on CSP, others on PV, or on both technologies. This translates also to policy evaluations,
since countries can implement policies which are not technological neutral.

We performed a literature search and identified 51 distinct search strategies that are used to
select solar energy technology patents (see Table 6.1 and Appendix 6.7.1).13

These selection approaches differ with respect to the search strategy employed (classifica-
tions, keywords, or both) and the solar energy technology considered (PV, CSP, or solar). Search
strategies intend to be generic for a given technology as documented by several search strategies
being used in multiple studies (see Appendix 6.7.1). In Table 6.1 we present the search strate-
gies found in the literature disaggregated by the search strategies employed and technologies
considered.

Table 6.1: Number of search strategies used in the literature.

PV solar CSP Total

Classifications 7 12 6 25
Keywords 11 3 2 16
Both 9 0 1 10

Total 27 15 9 51

We use the Worldwide Patent Statistical Database (PATSTAT) (EPO, 2014) to select patent
counts based on the 51 search strategies. For each search strategy, we obtain patent counts for
the six patent quality dimensions outlined in Section 6.2.2 (priority filings, granted patents,
claimed priorities, transnational, PCT, as well as triadic filings).14 We restrict the data to the
period 1978-2005 and to 23 countries15 to be consistent with the two studies that we use as
benchmark research designs for our analysis (see Section 6.4.1). We present summary statistics
for the overall patent counts of the different selection approaches in Table 6.2. Figure 6.1 depicts
the number of priority filings for each search strategy. They are both based on patent counts
aggregated over all 23 countries and the period 1978–2005.

Table 6.2: Summary statistics and correlations for 51 search strategies.

No. of patents Correlations
min median mean max sd Priority Granted Claimed Transnat. PCT Triadic

Priority 2,942 20,946 56,426 714,877 135,769.7 1
Granted 1,714 7,511 20,695.6 266,964 50,625.6 0.9997 1
Claimed 737 3,762 11,912.6 160,060 30,553 0.9991 0.9996 1
Transnat. 440 2,377 5,837.7 64,619 12,530.9 0.9938 0.9944 0.9943 1
PCT 290 1,411 3,210.3 34,083 6,629.4 0.9913 0.9926 0.9925 0.9994 1
Triadic 110 1,109 3,393.6 42,822 8,237.3 0.9967 0.9973 0.9977 0.9983 0.9968 1

13 We consider only search strategies which used classification (IPC or CPC), keywords or both. We did not
consider strategies using classification or keyword co-occurrences (e.g. Liu et al., 2011; Choe et al., 2013),
USPTO classifications (e.g. Popp, 1997; Huang et al., 2011; Benson and Magee, 2013; Dong et al., 2013; Guan
and Yan, 2016), parts of the technologies (e.g. Tseng et al., 2011; Lizin et al., 2013; Chen and Pham, 2014) and
in some cases strategies are not provided (e.g. Watanabe et al., 2001; Marinova and Balaguer, 2009; Breyer
et al., 2013). Certainly, there are more search strategies used in the literature.

14 We selected patents by first searching for the respected classifications and/or keywords in all patents in the
database and then selected based on the patent’s DOCDB Patent Family the priority patent. This approach
allows us to capture patents where title or abstract are only available for family members. Patents are assigned
to a country based on the patent office of the priority filing. Other approaches use the inventor’s address, but
not all patents contain this information. There are concerns that using the patent office as a proxy for location
of inventive activity, however for our means it is sufficient, since a possible bias would be present across all
selection approaches.

15 These countries are: Australia, Austria, Belgium, Canada, Denmark, France, Finland, Germany, Greece, Italy,
Japan, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal, Republic of Korea, Spain, Sweden,
Switzerland, United Kingdom, and United States of America.
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Figure 6.1: Patent counts for priority filings of the 51 search strategies.

Figure note: ‘Class’ refers to the use of IPC or CPC classifications and ‘Key’ refers to the
use of keywords.

The summary statistics in Table 6.2 as well as Figure 6.1 illustrate huge differences between
the search strategies. For priority filings, the maximum number of patents is 243 times larger
than the minimum indicating severe flexibility in the number of patents that can be obtained
by different search strategies. Particularly, search strategies that use classifications can result
in extreme patent counts as indicated by both the maximum and minimum of patent counts
stemming from search strategies based on classifications (Wu and Mathews (2012) and Guan
and Yan (2016)). The number of patent counts selected varies substantially across different
patent quality dimensions, but the numbers of patents across patent quality dimensions are
almost correlated by one, indicating that while the total number of identified patents varies
with patent quality the relative number of patents identified by a given search strategy remains
constant (see Appendix 6.7.2 for triadic patents and the Supplementaries 6.8.1 for the other
quality dimensions).

Moreover, the degree of overlap between the sets of identified patents for the various search
strategies differ as shown in Figure 6.2. We measure overlap between two search strategies by the
number of patents that are identified by both search strategies and then divide by the number
of patents identified by the first search strategy. For example, the overlap of patents between
a search strategy based on the CPCs for PV and a search strategy based on the WIPO Green
Inventory for PV is 94% with respect to the total of patents in the CPCs for PV and only 34%
with respect to the WIPO Green Inventory for PV. This indicates that a search strategy based
on the WIPO Green Inventory for PV contains nearly all PV patents, which can be selected by
the CPCs for PV, but the WIPO Green Inventory for PV contains a large portion of patents
which are not considered in the CPCs for PV.

The geographical distribution of patents identified by the 51 different search strategies is
depicted as the share of priority patents per country in Figure 6.3. Most patents are filed at the
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Figure 6.2: Overlap of priority filings between the 51 search strategies.

Figure note: Each horizontal line is calculated by P atentsA∩P atentsB
P atentsA where PatentsA refers to

the search strategy on the horizontal axis and PatentsB to the different search strategies on
the vertical axis. The lower the overlap between two search strategies, the darker the
corresponding area.

Japan Patent Office across all search strategies (more than 65% on average). This high share is
related partly to the filing procedure at the Japan Patent Office, which allowed only one claim
per patent until 1988 (Sakakibara and Branstetter, 2001). Other countries with a considerable
average share are the US (14%), Germany (10%), South Korea (3%), France (3%) and Great
Britain (1%). However, if triadic patents are considered (see Figure 6.10 in Appendix 6.7.2), the
US has the highest average share with 37% followed by Japan (27%), Germany (17%), France
(6%), Great Britain (3%) and South Korea (2%). For the average share of all patent quality
dimensions per country across the 51 selection approaches see Figure 6.11 in Appendix 6.7.2.
Comparing average country shares between the solar energy technologies shows that the Japanese
share is highest for PV and lowest for CSP search strategies, while for other countries the shares
are either stable or increase slightly for solar and CSP. This pattern is persistent across patent
quality dimensions.16

16 The average share for Japanese priority patents is 70% for PV, 62% for Solar and 56% for CSP. In the case of
triadic patents, the Japanese share is 29% for PV, 27% for Solar and 22% for CSP.
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Figure 6.3: Share of countries for priority filings between the 51 search strategies.

Figure note: The horizontal axis refers to the 23 countries in our sample while the vertical
axis depicts the different search strategies. The darker the area, the lower is the share of a
country in the patent selection. Black represents no patent at all.

6.4 Assessing uncertainty in estimated policy effects

6.4.1 Benchmark research designs

We use the research designs of two leading studies in the field of policy evaluations of renewable
energy policies as benchmark research designs for our analysis. These studies are Johnstone
et al. (2010) and Peters et al. (2012) which are cited more than 700 and 100 times according
to google scholar, respectively.17 Both are key contributions to the analysis of policy effects on
inventive activity, especially for the demand pull – technology push nexus. Patent counts are
used in both studies to measure inventive output which is induced by different policy variables.
We use these studies to systematically analyze the variation of estimates that can be obtained
due to the large variety of patent selection approaches in terms of search strategy, patent quality
dimension and different solar energy technologies.

Both studies use an unbalanced panel of countries and apply a negative binomial model with
country fixed effects to estimate how patent counts are influenced by policy and other variables.
Johnstone et al. (2010) consider 23 countries for the period 1978-2003 (N=418), while Peters
et al. (2012) cover 15 countries for 1978-2005 (N=374). The search strategy of Johnstone et al.
17 See Appendix 6.7.1.
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(2010) uses several IPCs covering technical principles of PV and CSP. They consistently refer
in their analysis to solar energy technologies. Peters et al. (2012) also use IPCs, but they focus
explicitly on PV and are restrictive in their search strategy, including only a few classifications.
With respect to the patent quality dimension, Johnstone et al. (2010) use patents filed at the
EPO and assign the patents via the inventors’ address to countries using fractional counts.
Peters et al. (2012) consider three different quality dimensions, namely triadic filings18, claimed
priorities and all priority filings. For the first two, they assign patents to countries via the
inventor’s address without fractional counting. For the latter, they use the patent office of the
priority filing.

In both studies, several policy variables are considered to test their effects on patent counts.
Johnstone et al. (2010) use nine different policy variables; three continuous and six dummy
variables. The continuous variables are R&D expenditures for solar energy technologies, feed-in
tariff levels for solar energy, and renewable energy certificate (REC) targets for renewable energy
in general. R&D expenditures serve as a technology push instrument while the other two can
be seen as demand inducing mechanisms. The other six variables capture the introduction of
several other instruments supporting renewable energies in general, which cannot be measured
continuously (Kyoto protocol, investment incentives, tax measures, guaranteed price, voluntary
programs, and obligations).

Peters et al. (2012) use six variables to capture demand pull and technology push instruments.
They use R&D expenditures for PV to account for technology push. R&D expenditures are
divided into three groups: domestic R&D expenditures, continental R&D expenditures and
intercontinental R&D expenditures to capture domestic and foreign policy effects on domestic
inventive activity. Annually installed PV capacity is used to proxy a demand pull effect. Again,
annually installed capacity is divided into domestic, continental and intercontinental to estimate
the effects of domestic and foreign demand pull policies.

For our analysis, we reproduce the econometric setups of both studies based on their original
data. We are able to fully reproduce the analysis of Johnstone et al. (2010).19 For Peters et al.
(2012), we can reproduce the descriptive statistics of the explanatory variables but we do not
have the patent data to reproduce their full analysis.20

6.4.2 Variation in econometric estimates

We assess the variation in estimated policy effects by estimating the regression models of John-
stone et al. (2010) and Peters et al. (2012) for all 306 patent selection approaches (51 search
18 Peters et al. (2012) deviate from the OECD definition of triadic patents and follow Sternitzke (2009). They

use “Patent families with publications in at least Germany or the European Patent Office, Japan or China,
and the US” (Peters et al., 2012, P 1301, FN 8).

19 The estimates in Johnstone et al. (2010) are obtained by using STATA. We can replicate the exact point
estimates and model characteristics by using R. However, we cannot replicate the robust standard errors
provided by STATA. We use “vcovHC = HC1” from the ‘sandwich’ package and the standard errors are very
similar but tend to be larger. In three cases they are 10% larger and in only two cases the standard errors
are smaller. This deviation of standard errors affects the inference by turning investments incentives and the
dummy for Great Britain from significance at the 0.1 level to non-significance.

While replicating the study of Johnstone et al. (2010) we noticed that a dummy for New Zealand was missing
in the estimated regression for solar patents. Adding this dummy and using R for the estimation leads to two
changes for the policy variables. Tax measures turn from non-significant to negative significant and guaranteed
price from significant to non-significant.

20 We replicated this study with patent counts based on their search strategy and our point estimates are in the
same ballpark. We cannot reproduce the exact patent data of Peters et al. (2012) since they deviate from
the OECD triadic patent definition and use a different database (INPAFAMDB - International Patent Family
Database) to obtain their patent counts.
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strategies and for each search strategy six patent quality dimensions). The stylized regression
to assess the variation in the econometric estimates is given by

Patsq = Pjβjsq + Cjγjsq + µj + ϵjsq (6.1)

where s = 1, ..., 51 is an index for search strategies and q = 1, ..., 6 is an index for patent
quality dimensions. The research design of Johnstone et al. (2010) is denoted by j = 1 and the
research design by Peters et al. (2012) is denoted by j = 2. The research design comprises the
study specific policy variables, Pj , control variables, Cj , and country fixed effects, µj , including
the study specific set of countries and the time horizon considered. The vector of interest is
βjsq that corresponds to the policy variables in Pj . We analyze how β̂jsq varies if the dependent
variable, Patsq, is varied where β̂jsq is the estimate of βjsq.21

We use two approaches to describe the variation in β̂jsq. First, we use Extreme-Bounds
Analysis (EBA) that was originally suggested by Leamer (1983) to analyze the robustness of
empirical findings with regards to varying assumptions in the estimation process, such as the
variation of control variables. EBA has been prominently applied to the growth literature
(Levine and Renelt, 1992; Sala-i Martin, 1997) but also to other fields (e.g. Moosa and Cardak,
2006; Wang, 2010). While EBA is usually applied to estimate the extreme bounds of some key
explanatory variables when the set of control variables is varied, we use EBA to characterize
the set of estimates that can be obtained due to the flexibility in the selection of patent counts,
which is the dependent variable in the analysis. Let β̂

(k)
jsq denote the coefficient for the kth policy

variable in β̂jsq. For each of the two research designs j, the lower extreme bound for β̂
(k)
jsq is

defined as the smallest value of β̂
(k)
jsq − 2σ

(k)
jsq where σ

(k)
jsq is the standard error of β̂

(k)
jsq. The upper

extreme bound for β̂
(k)
jsq is defined as the largest value of β̂

(k)
jsq +2σ

(k)
jsq. By subtracting and adding

the standard error the range of obtainable estimates also includes the uncertainty introduced by
sampling variability.

Moreover, we further characterize the variation in β̂
(k)
jsq by using the share of positive β̂

(k)
jsq

that is given by 1
sq

∑51
s=1

∑6
q=1 1(β̂(k)

jsq > 0) where 1(β̂(k)
jsq > 0) is an indicator function that is 1 if

β̂
(k)
jsq > 0. This measure of variation is less conservative compared to the use of extreme bounds

as it ignores uncertainty that is introduced by sampling variability.

Second, we visualize the variation in β̂
(k)
jsq by using vibration plots that relate the point

estimate of β
(k)
jsq to a transformation of its p-value (Patel et al., 2015; Bruns and Ioannidis, 2016).

These vibration plots help to assess the potential for p-hacking by illustrating, for example,
whether statistically significant positive and negative estimates can be obtained for the same
policy effect.

As a robustness check, we use subsets of the search strategies as search strategies of weak
quality may result in extreme estimates of βjsq. The first subset addresses outliers according
to the sum of priority patents that is identified by a given search strategy. As discussed in
Section 6.3, some search strategies identify small sums of patents while other search strategies
identify huge sums of patents. We remove search strategies based on trimming the distribution
of total priority patens, that is, we remove search strategies that result in the 10% largest
21 Note that search strategies usually aim to be generic for a given technology. In this case variation in β̂jsq is

mainly caused by measurement error while the true effect, βjsq, may be the same for some s. For the sample
sizes considered in the benchmark research designs, measurement error in combination with a preferential
publication of statistically significant estimates can easily result in overstated effect sizes (Loken and Gelman,
2017). The quality dimension of patents can capture different aspects of inventive activity (e.g. national vs
international). In this case, variation in β̂jsq may be mainly caused by variation in the true effect, βjsq.
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and 10% smallest sum of priority patents. The second subset that we consider consists of
search strategies that stem from studies with at least 20 citations according to google scholar.22

As studies of high quality that were published recently may not have obtained more than 20
citations yet, we consider a third subset with search strategies from studies that are published
in journals which have a Source Normalized Impact per Paper (SNIP) factor that is larger than
1.5. Source normalizations are essential as the search strategies are published in journals of
various disciplines, such as economics, management and engineering.

6.4.3 Explaining the variation in econometric estimates

Finally, we identify determinants of the variation in β̂
(k)
jsq by using meta-regressions. This ap-

proach follows Stanley and Jarrell (1989) who suggested meta-regressions to identify the sources
of variation in estimates. While meta-regressions are typically applied to synthesize estimates
of multiple studies, we apply meta-regressions to the estimated policy effects obtained by the
use of various dependent variables as outlined in Section 6.4.1. We estimate

β̂
(k)
jsq = Tδ

(k)
1j + Sδ

(k)
2j + Qδ

(k)
3j + log(PPs)δ(k)

4j + ϵ
(k)
jsq (6.2)

where β̂
(k)
jsq denotes the vector of point estimates for policy variable k of research design j for

all 306 patent selection approaches that results from s = 1, ..., 51 search strategies and q = 1, ..., 6
patent quality dimensions. T contains two dummy variables. The first is one if PV was used
in search strategy s and zero otherwise. The second is one if CSP is used in search strategy s
and zero otherwise. S also contains two dummy variables. The first is one if keywords are used
in search strategy s and zero otherwise and the second is one if keywords in combination with
classifications are used in search strategy s and zero otherwise. Q contains five dummy variables
that are one if either granted, claimed, PCT, transnational, or triadic patents are used and zero
otherwise. Hence, the baseline is the case where the search strategy is based on classifications
for the technology solar using priority patents. We also include the log of the number of priority
patents, log(PPs), of search strategy s to control for the breadth of the search strategy.

6.4.4 Results

6.4.4.1 Extreme-Bounds Analysis

The results of the EBA disaggregated by technology and patent quality for the research design
of Johnstone et al. (2010) are presented in Table 6.3. For nearly all policy variables, the lower
extreme-bounds are negative and the upper extreme-bounds are positive indicating substantial
uncertainty regarding the signs of most estimated policy effects. However, the shares of positive
estimates are large for many estimated policy effects and even become one in many cases for
solar and CSP, where the number of patent selection approaches is smaller compared to PV. But
policy effects that show a large share of positive estimates for some patent quality dimension
also reveal small shares of positive estimates for other patent quality dimensions. For example,
the variable R&D expenditures has a large share of its estimates positive for all priority patents
and granted patents while this share is smaller particularly for triadic patents. These results
can hint to the fact that R&D subsidies are granted nationally and international markets are
not that relevant for the inventors. The results for granted patents are more puzzling, especially
for the variable feed-in tariff levels, where the point estimate is nearly always negative for all
three technologies, while for the other quality dimensions the point estimates are nearly always
22 See Appendix 6.7.1 for the corresponding search strategies.

144



Chapter 6: Flexibility in the selection of patent counts

positive. Generally, results are similar across different technologies, particularly between solar
and CSP, while substantial differences occur across patent quality dimensions.

Alternatively, if we disaggregate the results of the EBA by technology and search strategy
(Table 6.8 in Appendix 6.7.3), the extreme bounds are never of the same signs and the share
of positive point estimates is often similar across technologies and search strategies for a given
policy variable. As will be revealed in the next section by the use of vibration plots, these
findings occur as the estimates often cluster by the patent quality dimension resulting in more
mixed findings when the results of the EBA are disaggregated by patent quality dimensions.

As robustness checks, we restrict the sample according to the three quality subsets and
present the results disaggregated by technology and patent quality dimension (see Supplemen-
taries 6.8.2). For the trimmed subset, the share of positive estimates is one in many cases and
for several policy variables, the upper and lower bounds have the same signs, especially for solar
and CSP. The subset based on citations shows a similar pattern, but in several cases the shares
of positive estimates are lower, even though the number of search strategies is substantially
smaller than in the trimmed subset. The subset based on the SNIP is comparable with the
subset based on citations, but in several cases shares of positive estimates are even lower.

For Peters et al. (2012), the results of the EBA disaggregated by technology and patent
quality dimension are shown in Table 6.4.23 The extreme bounds are again of opposing signs in
the vast majority of cases and the results across technologies are similar, particularly for solar
and CSP, while PV shows in many cases higher shares of positive estimates. But the results are
this time also similar across patent quality dimensions. Granted patents show only in a few cases
opposing results compared to the other patent quality dimensions, especially for intercontinental
capacity. Moreover, the policy variable domestic capacity tends to have a large shares of positive
point estimates across all patent quality dimensions and the three technologies. For the policy
variable domestic R&D funding, this is only true for PV while there is high variability in the
share of positive point estimates in the case of solar and CSP. Patent quality dimensions, which
are attributed to higher valued patents (PCT, transnational, triadic) show in most cases higher
shares of positive point estimates than patent quality dimensions that are attributed to lower
valued patents.

We again disaggregate the results of the EBA by search strategy and technology and the
lower and extreme bounds are again never of the same signs indicating that the estimates cluster
by patent quality dimension rather than by search strategy (Table 6.9 in Appendix 6.7.3).

The robustness checks show again that the trimmed subset increases the share of positive
estimates and again in some cases the lower and upper extreme bound are always of the same
signs (see Supplementaries 6.8.2). The other two subsets have in general more uncertainty with
respect to the direction of the effect. But, in a few cases, they show lower and upper extreme
bounds of the same signs which is not the case in the trimmed subset. However, there are
considerably less search strategies in these subsets compared to the first one.

Overall, the EBA points to substantial uncertainties regarding the signs and sizes of most
policy effects. The findings are particularly unstable across the different quality dimensions of
patents, though this is less true for the research design of Peters et al. (2012).

6.4.4.2 Vibration plots

As an alternative presentation of the variation of econometric estimates, we use vibration plots
that relate the size of the estimated coefficient to a transformation of its p-value. The vibration
23 The estimation procedure in R does not converge for three models. All of these models use triadic patents.

We excluded these three triadic patent counts from the analysis.
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plots for Johnstone et al. (2010) are given in Figures 6.4 and 6.5. The first column shows
vibration plots for the full results while the second column presents vibration plots for the
subset of search strategies obtained by trimming the distribution of the sums of priority fillings.
The third column represents the trimmed subset and only search strategies for solar patents as
this is the technology that was used in the original analysis of Johnstone et al. (2010). This
column can be interpreted as a robustness test of the initial study.

The vibrations plots demonstrate how the estimated policy effects tend to cluster by the
patent quality dimensions. Particularly, granted patents tend to form clusters but also priority
and claimed patents form clusters in some cases. For example, estimates for the coefficients of
R&D expenditures form two clusters if patent counts with either priority or granted patents are
used. Both clusters represent positive and statistically significant estimates, while the estimates
obtained by using other quality dimensions center around zero and tend to be non-significant.
For feed-in tariff levels, the estimates obtained by the use of granted patents form a cluster
with negative estimates, while many of the estimates obtained by the use of PCT patents show
substantially larger estimates compared to the estimates that are obtained by the use of other
patent quality dimensions. Similar clustering is observable for guaranteed price and voluntary
programs. Interestingly, there is a considerable share of positive significant estimates for higher
quality patent counts (PCT, transnational, triadic) for REC targets and investment incentives,
but these high shares of positive and statistically significant policy effects do not tend to occur
for solar. With respect to the search strategies, visual inspection does not permit to identify
systematic patterns but the analysis of the determinants of policy effect sizes in the next section
will demonstrate that these systematic patterns exist.

The vibration plots based on the trimmed subset demonstrate that some of the more extreme
estimates disappear indicating that outliers in terms of patent counts seem to result in somehow
more extreme estimates of policy effects. If we further reduce the set of patent counts to search
strategies for solar patents, negative estimates tend to disappear with granted patents being a
notable exception. Ignoring granted patents, almost all of the estimates for the two key policy
variables, that is, R&D expenditures and feed-in tariff levels, are positive indicating that the core
results of Johnstone et al. (2010) are robust in terms of the signs of the policy effects. However,
substantial uncertainty remains about the effect sizes. The estimates can be interpreted as
semi-elasticities and, thus, flexibility in the selection of patent counts results in uncertainty
about an increase of solar patents between -0.26% and +4.64% for an additional billion of R&D
expenditures. For feed-in tariffs, the range of effects is –0.032% to +0.042% for an additional
US cent/kWh of the feed-in tariff.

The vibration plots for Peters et al. (2012) are presented in Figures 6.6 and 6.7. For this
research design, estimates based on the use of granted and PCT patents often form clusters. For
example, for continental R&D funding estimates based on the use of PCT patents tend to be
positive and substantially larger than estimates based on other patent quality dimensions, while
estimates based on granted patents tend to be negative. With respect to the search strategy,
systematic patterns are again hard to detect in the vibration plots, but they exist as analyzed
in the next section.

The trimmed subset results again in some of the more extreme estimates to disappear. The
focus on search strategies for PV, which is the technology analyzed in the original study, reveals
that the estimates for the two key policy variables, that is, domestic R&D funding and domestic
capacity, are almost exclusively positive indicating that the core results of Peters et al. (2012)
are robust with respect to the signs of the effects as well. Similar to the research design of
Johnstone et al. (2010), uncertainty regarding the effect sizes remains. The coefficients in Peters
et al. (2012) can be directly interpreted as elasticities as the policy variables are considered in
logs. The effect of increasing domestic R&D funding by 1% on the number of PV patents ranges
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Figure 6.4: Vibration plots for the research design of Johnstone et al. (2010) (1/2).

Figure note: The y-axis displays −log10(p − value). Thus, all estimates above the solid line
are statistically significant at the p = 0.05 level. “All” covers 306 coefficients, “Trimmed” 234
coefficients and “Trimmed+Solar” 66 coefficients.

149



Chapter 6: Flexibility in the selection of patent counts

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

−0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

Tax measures (All)

Estimate

−
lo

g1
0(

p)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

1%50%99%

1%
50%

99%

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

−0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

Tax measures (Trimmed)

Estimate

−
lo

g1
0(

p)

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

1%50%99%

1%
50%

99%

●

●

●

●

●
●

●

●

−0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

Tax measures (Trimmed+Solar)

Estimate

−
lo

g1
0(

p)

●

●

●

1%50%99%

1%
50%

99%

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●
●

● ●

●●
●

●

−1 0 1 2 3

0
1

2
3

4
5

6

Guaranteed price (All)

Estimate

−
lo

g1
0(

p)

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

1%50%99%

1%

50%

99%

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●
●

−1 0 1 2 3

0
1

2
3

4
5

6
Guaranteed price (Trimmed)

Estimate

−
lo

g1
0(

p)

●●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

1%50%99%

1%

50%

99%

●
●

●●
●●
●

●

−1 0 1 2 3

0
1

2
3

4
5

6

Guaranteed price (Trimmed+Solar)

Estimate

−
lo

g1
0(

p)

●

●

●

1%50%99%

1%

50%

99%

●

●

●

●

●●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●
●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8

Voluntary programs (All)

Estimate

−
lo

g1
0(

p)

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●●

●●

●●

●
●●

1%50%99%

1%

50%

99%

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8

Voluntary programs (Trimmed)

Estimate

−
lo

g1
0(

p)

●

●

●

●

●

●●
●

●●

●

●

●●

●●

●●

●
●●

1%50%99%

1%

50%

99%

●

●

●

●

●●●●

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8
Voluntary programs (Trimmed+Solar)

Estimate

−
lo

g1
0(

p)

●

●

●

1%50%99%

1%

50%

99%

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

−0.5 0.0 0.5 1.0 1.5

0
2

4
6

Obligations (All)

Estimate

−
lo

g1
0(

p)

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●●
●●

●●

●

1%50%99%

1%

50%

99%

● ● ● ●Priority Granted Claimed PCT Transnational Triadic Classif. Keywords Classif. + Keywords

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

●●

●

−0.5 0.0 0.5 1.0 1.5

0
2

4
6

Obligations (Trimmed)

Estimate

−
lo

g1
0(

p)

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●●

●

1%50%99%

1%

50%

99%

●
●

●

●
●

●
●

●

−0.5 0.0 0.5 1.0 1.5

0
2

4
6

Obligations (Trimmed+Solar)

Estimate

−
lo

g1
0(

p)

●

●
●

1%50%99%

1%

50%

99%

Figure 6.5: Vibration plots for the research design of Johnstone et al. (2010) (2/2).

Figure note: The y-axis displays −log10(p − value). Thus, all estimates above the solid line
are statistically significant at the p = 0.05 level. “All” covers 306 coefficients, “Trimmed” 234
coefficients and “Trimmed+Solar” 66 coefficients.
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Figure 6.6: Vibration plots for the research design of Peters et al. (2012) (1/2).

Figure note: The y-axis displays −log10(p − value). Thus, all estimates above the solid line
are statistically significant at the p = 0.05 level. “All” covers 303 coefficients, “Trimmed” 231
coefficients and “Trimmed+PV” 125 coefficients.

between -0.026% and 0.87% and the effect of increasing capacity by 1% between -0.0042% and
0.38%.

Overall, the vibration plots demonstrate considerable uncertainty about the sizes and signs
of the estimated policy effects. For almost all policy variables, both positive and negative
estimates that are statistically significant can be obtained. Uncertainty regarding the signs of
the estimated coefficients is greatly reduced for the core policy variables if outliers are excluded
and only search strategies are considered for the technology analyzed in the original study.
However, uncertainty regarding the estimated policy effect sizes remains.

6.4.4.3 Determinants of estimated effect sizes

While the EBA results reveal a wide range of effect sizes, in the following we estimate the
determinants of this variation in effect size. For the research design of Johnstone et al. (2010),
the results on the determinants of the estimated policy effect sizes are reported in Table 6.5. If
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Figure 6.7: Vibration plots for the research design of Peters et al. (2012) (2/2).

Figure note: The y-axis displays −log10(p − value). Thus, all estimates above the solid line
are statistically significant at the p = 0.05 level. “All” covers 303 coefficients, “Trimmed” 231
coefficients and “Trimmed+PV” 125 coefficients.

search strategies for PV rather than for solar are used, the semi-elasticity of R&D expenditures
decreases by 0.911 while the semi-elasticity of feed-in-tariff levels increases by 0.014. This is
well in line with how the policy instruments are used to support the different technologies;
R&D expenditures were mostly used to foster research activity for solar technologies in general,
while feed-in tariff levels are usually available for PV only. For most other policy variables,
using a search strategy for PV increases the semi-elasticities as well. The use of keywords or
keywords in combination with classifications does not have an effect on the semi-elasticity of
R&D expenditures and only the use of keywords decreases the semi-elasticity of feed-in-tariffs by
0.009. Generally, the use of keywords or the use of keywords in combination with classifications
tends to reduces in most cases the semi-elasticities. This is because the classifications either
do not capture all the relevant patents or the classifications are too broad, including too many
patents which inflates the estimation results. As shown before, patent quality dimensions are
decisive for the effect sizes. For R&D expenditures, the semi-elasticity is increased by 1.721
if granted patents are used instead of priority ones. At the same time, using other quality
dimensions, the semi-elasticity decreases, for example by 1.269 in the case of triadic patents.
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For feed-in-tariff levels, the use of granted patents decreases the semi-elasticity by 0.034 while
the use of PCT patents increases the semi-elasticity by 0.043. The highly significant influence
of using granted patents on the effect size is also present for all other policy variables and in
some cases even with a reversed sign compared to the other patent quality dimensions.

In the case of Peters et al. (2012), results on the determinants of estimated effect sizes are
reported in Table 6.6. Since all variables enter the regression for Peters et al. (2012) in logs,
the coefficients can be interpreted as elasticities. Search strategies for PV increase the elasticity
for domestic R&D funding by 0.123 while search strategies for CSP decrease the elasticity by
0.116. For domestic capacity, surprisingly, PV search strategies reduce the elasticity by 0.044
while for all other variables it increases it. The elasticity for domestic R&D funding increases
with keywords and keywords in combination with classifications by 0.054 and 0.135 respectively.
The effect size of domestic capacity is only affected negatively by search strategies based on
keywords. The elasticities of the other variables are in most cases also reduced compared to
classification searches. The patent quality dimension shows interesting pattern. For domestic
R&D funding and domestic capacity, all quality dimensions increase the elasticity, strongest each
for granted patents, with an increase of 0.261 and 0.268 respectively. For the other variables,
there are mixed results, but higher quality dimensions (PCT, transnational, triadic) usually show
positive effects. Again, granted patents showing deviating results, especially for intercontinental
capacity, where the elasticity is reduced by 0.217 while PCT increases it by 0.086.

Overall, the regression results often have a high adjusted R2, indicating that the selection
approach is a fundamental determinant for the effect size. Thereby the number of patents which
are selected by a search strategy seem to systematically reduce the effect size. With respect to
the search strategies, some generalizable patterns across variables and studies emerge, as well
as interesting effects for the individual variables, which can be related to the instrument they
proxy or technology they are implemented for. The patent quality dimension has however in
most cases the largest effect, especially the use of granted patents.

6.5 Discussion

6.5.1 Uncertainty in estimated policy effects

Our analysis demonstrates substantial uncertainty in econometric estimates of policy effects that
is introduced by the flexibility of patent selection approaches. We identify 51 search strategies
for solar energy technologies used in the literature and consider six different patent quality
dimensions. The different search strategies lead to severe differences in overall patent counts and
the overlap of patents among these search strategies varies considerably. While the distribution
of patents across countries does not vary much between search strategies, it does considerably
if different patent quality dimensions are considered.

Using the research designs of Johnstone et al. (2010) and Peters et al. (2012), we find that
flexibility in the selection of patent counts results in a wide range of estimates for the effects of
various policy instruments on patent counts. The uncertainty regarding signs and sizes of these
policy effects is substantial as for almost all policy effects both positive and negative estimates
that are statistically significant can be obtained. Using three different quality subsets reduces
this uncertainty. Uncertainty regarding the signs of the core policy variables is substantially
reduced if we exclude search strategies that result in the 10% smallest and 10% largest number
of priority fillings. Interestingly, this is not necessarily the case if we reduce the set of search
strategies to those that were published in articles with at least 20 citations or journals with
a source normalized impact per paper factor of at least 1.5. This suggests that outliers with
respect to the number of selected patents are a main contributor to the uncertainty regarding
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Table 6.6: Determinants of estimated effect sizes for Peters et al. (2012) research design.

Domestic Continental Intercont. Domestic Continental Intercont.
R&D funding R&D funding R&D funding capacity capacity capacity

Intercept 0.497*** -0.321*** -0.014 0.310*** 0.377*** 0.269***
(0.063) (0.067) (0.125) (0.044) (0.034) (0.058)

CSP -0.116*** -0.085*** -0.078* -0.084*** -0.036*** 0.035*
(0.020) (0.021) (0.039) (0.014) (0.010) (0.018)

PV 0.123*** 0.168*** 0.179*** -0.044*** 0.033*** 0.051***
(0.017) (0.018) (0.033) (0.012) (0.009) (0.015)

Class.+Key. 0.135*** 0.022 -0.146*** -0.008 0.015 -0.163***
(0.020) (0.021) (0.039) (0.014) (0.010) (0.018)

Keywords 0.054*** 0.054** -0.237*** -0.045*** -0.003 -0.118***
(0.016) (0.017) (0.031) (0.011) (0.008) (0.014)

Granted 0.261*** -0.002 -0.201*** 0.268*** -0.040*** -0.217***
(0.022) (0.023) (0.043) (0.015) (0.011) (0.020)

Claimed 0.041’ -0.024 0.130** 0.096*** -0.048*** 0.033’
(0.022) (0.023) (0.043) (0.015) (0.011) (0.020)

PCT 0.165*** 0.354*** 0.325*** 0.182*** 0.069*** 0.086***
(0.022) (0.023) (0.043) (0.015) (0.011) (0.020)

Transnational 0.127*** 0.108*** 0.497*** 0.070*** -0.044*** 0.039*
(0.022) (0.023) (0.043) (0.015) (0.011) (0.020)

Triadic 0.219*** 0.153*** 0.578*** 0.080*** -0.015 -0.043*
(0.022) (0.023) (0.043) (0.015) (0.012) (0.020)

No. of patents -0.053*** 0.010 -0.015 -0.019*** -0.033*** -0.014**
(0.006) (0.006) (0.011) (0.004) (0.003) (0.005)

Adj. R2 0.712 0.707 0.666 0.619 0.541 0.582
Obs. 303 303 303 303 303 303

Standard errors in parentheses. Sig. at the ‘ 0.1, * 0.05, **0.01, ***0.001 level.
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the signs of many policy effects and these outliers are not necessarily published in journals with
low impact factors or articles with only a few citations.

For the research design of Johnstone et al. (2010), we can demonstrate that the use of search
strategies that focus on the identification of PV patents lead to higher estimates of many policy
effects compared to search strategies that aim to identify solar or CSP patents. This indicates
that the policy variables considered in Johnstone et al. (2010) seem to encourage inventive
activity particularly in PV and not solar in general, which is the study’s original technology
choice. This is consistent with the findings for Peters et al. (2012) where estimates of policy
effects are in most cases larger if search strategies for PV patents are considered compared
to search strategies for solar patents. With respect to patent quality dimensions, we observe
deviating results between Johnstone et al. (2010) and Peters et al. (2012). In the former, patent
quality dimensions for higher value patents (PCT, transnational, triadic) result in many cases
to a decrease in effect sizes while for Peters et al. (2012) we usually find an increase in effect
sizes. Estimates of policy effects for granted patents, however, seem to follow no clear pattern,
but show usually larger and in some cases opposing effects than obtained for the other quality
dimensions.

We identify characteristics of patent selection approaches as key determinants of policy effects
sizes as indicated by large adjusted R2. All characteristics, that is, search strategy, technology,
patent quality dimensions, and the total number of identified patents matter. However, none of
the characteristics has a systematic influence on all policy effects besides the number of patents
which is selected by a given search strategy. If the number of selected patents increases, the
effect size is systematically reduced. This indicates that the policy effects are targeted towards
the technology and do not increase patenting in general, which is likely to be measured if the
search strategy is too broad.

Since the different patent quality dimensions are responsible for a substantial amount of
variation in estimated policy effects, previous studies may need to be interpreted with caution
or even reassessed as most studies present results only for one quality dimension. Many pre-
vious studies use granted patents from the US, but granted patents result in estimated policy
effects that often deviated substantially from those estimates obtained by other patent quality
dimensions. While there is certainly a theoretical meaning behind the different patent quality
dimensions, a rigorous sensitivity analysis may help to improve reliability and credibility.

Nevertheless, we find that the core results of Johnstone et al. (2010) and Peters et al. (2012)
tend to be fairly robust if we consider a subset of search strategies that excludes outliers and
additionally focus on the respective technologies analyzed in the original studies, even though
effects are larger for PV in the case of Johnstone et al. (2010). Especially the two variables
measuring technology push and demand pull effects have in most cases a very high share of
positive and statistically significant estimates. This is in line with the theoretical considerations
on induced innovation.

6.5.2 Implications for p-hacking and policy recommendations

The flexibility of patent selection approaches does not only lead to severe uncertainty with
respect to the sizes and significances of estimated policy effects, but also opens up the possibility
to deliberately search for results that confirm a hypothesis of interest. The vibration plots
intriguingly show that for almost all policy effects, positive and negative estimates that are
statistically significant can be obtained. Moreover, our analysis of the determinants of the effects
sizes reveals that characteristics of the patent selection approaches explain a large fraction of the
observed variation in estimated policy effects. Hence, (small) changes to the selection approach
can be used to alter the estimated policy effect until the hypothesis of interest is confirmed.
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Since patent data for many patent offices and in various forms is nowadays easily available, the
deliberate search comes at very low costs.

Although uncertainty opens up the possibility for deliberate p-hacking, we do not belief
that empirical research is dominated by researchers that intentionally search for estimates that
fulfil their prior beliefs. p-hacking may occur in a much subtler form. Researchers are usually
aware of the vast range of estimates that can be often obtained for an effect of interest and
they may be affected by motivated reasoning (Kunda, 1990) when they choose to present the
empirical model that ‘makes sense’ according to prior beliefs. There is empirical evidence that
such selective reporting is widespread in empirical economics research (Brodeur et al., 2016).

Moreover, our findings reveal that some policy effects show a considerably large share of
positive estimates while the lower extreme bound was negative and the upper extreme bound was
positive. For example, the core variables in Johnstone et al. (2010) (R&D expenditures and feed-
in tariff levels) and Peters et al. (2012) (domestic R&D funding and domestic capacity) have in
most cases a share of positive estimates of one or close to one. This finding particularly occurred
if we use a subsample based on quality considerations, especially the subsample that excludes
outliers with respect to the number of selected patents. These findings connect to a recent study
by Ioannidis et al. (2017), who show that empirical economics research is characterized by low
power. This means that the utilized sample sizes are too small to detect an effect that is likely
to exist. Low power may incentivize authors to p-hack in order to find a statistically significant
effect. Though one may argue that the harm of p-hacking is limited if indeed a true effect exist,
the point estimate becomes exaggerated which may mislead policy makers. These exaggerations
of effect sizes due to p-hacking can be substantial as shown by Ioannidis et al. (2017).

Policy conclusions have to be drawn carefully as effects sizes are likely to be exaggerated
which may result in misallocation. Moreover, previous studies focus on presenting and discussing
statistical significance and neglect the importance of economic significance (McCloskey and Zil-
iak, 1996; Cumming, 2014). The economic significance of the policy variables varies considerable
between the different patent selection approaches, especially with respect to the patent quality
dimension.

A rigorous documentation of why a specific search strategy is used and why certain quality
dimensions are considered needs to be implemented to reduce measurement errors and the
potential for p-hacking. Particularly, the quality dimensions of patents need more attention.
Peters et al. (2012) can be seen as a good example how to deal with different patent quality
dimensions since they demonstrate the flexibility of their results with respect to three patent
quality dimensions. However, such robustness tests towards different measures of patent quality
are not common, even in top economics journals.

6.6 Conclusions

We show that flexibility in the selection of patent counts has several implications for the use of
patent data and calls for a careful interpretation of results obtained with patent data, providing
empirical evidence for the warnings made by Griliches (1990). We demonstrate the potential for
conscious and unconscious p-hacking by estimating policy effects based on varying patent counts
obtained by different patent selection approaches that vary by search strategy, patent quality
dimension, and the type of solar technology considered. Thereby we show how uncertainty in
the estimated policy effects translates into uncertainty for policy makers in how to evaluate the
effectiveness of policy instruments.

We use Johnstone et al. (2010) and Peters et al. (2012) as benchmark research designs for
our comprehensive analysis of variation in estimated policy effects. To this end, our analysis
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includes a replication of these studies with a systematic sensitivity analysis. We can show that
the key findings of the two studies tend to be robust which is good news given the large amount
of alternative patent counts considered in our analysis. These robust results are also in line
with the theoretical arguments that technology push and demand pull policies induce inventive
activities.

Implications of our results concern the careful use of patent data. The many researchers’
degrees of freedom to select patent data requires an elaborated selection approach which should
be agreed on among researchers. Furthermore, a careful interpretation of results in light of
the search strategy and patent quality dimension used is necessary. Therefore, we recommend
improving the reliability of studies that use patent counts and patent data in general by system-
atic documentation of the search strategy and sensitivity analysis especially with respect to the
patent quality dimensions. Moreover, a consensus in the literature which selection approaches
should be used and which approaches result in undesirable effects would greatly reduce flexi-
bility and increase comparability between different studies. It is essential to use patent quality
dimensions that fit to the research question as we have demonstrated that this has a substantial
influence on the econometric estimates.

We have analyzed how flexibility in patent selection approaches transmits to variation in
estimated policy effects for a very simple case, the count of patents per country/year. Patent
data, however, is used for more sophisticated analysis relying on the patent’s content and fur-
ther meta information. For example, patent data is frequently used to assess technological or
economic performance, to map knowledge flows, to reconstruct innovation networks, or analyze
other economic relationships. Such studies are most likely subject to greater flexibility in their
results than the two present cases which rely on simple patent counts.

While we use a specific technology for our analysis, the difference in search strategies for
solar energy technologies, the underlying problem of flexibility is very likely to be present in
other technology studies using patent data. For example, similar problems are likely to exist
in studies that analyze new and emerging technologies, which are not well captured by specific
classifications or keywords, such as biotechnology or nanotechnology.

With respect to the flexibility in patent selection approaches, we focus on three different
dimensions: the search strategy, the patent quality dimension as well as technological ambiguity.
There are, however, further aspects which may increase flexibility, for example, the underlying
database used. Also patent quality can be operationalized in different ways, such as weighting
by patent citations. Here flexibility is manifold calling for further assessment.
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6.7 Appendix

6.7.1 Solar energy technology search strategies

Table 6.7: Solar energy technology search strategies used in the literature.
Paper Tech. Search Priority SNIP Citations Also used in

strategy filings
CPC Classification PV PV Class. 24,617 Bointner et al. (2013); Bointner

(2014); Stek and van Geenhuizen
(2015); Leydesdorff et al. (2015); Wu
and Hu (2015); Bäckström et al.
(2014); Diederich and Althammer
(2016); Breul et al. (2015); Glachant
and Dechezleprêtre (2016); Jamali
et al. (2016)

WIPO Green Inventory PV PV Class. 67,305 Lei et al. (2013); Martinez et al.
(2013); Groba and Cao (2015); Choi
and Anadn (2014); Gallagher (2014)

Böhringer et al. (2014) PV Class. 688,292 11 Diederich and Althammer (2016)
Guan and Yan (2016) PV Class. 2,942 3.126 1
Peters et al. (2012) PV Class. 8,088 3.126 120 Diederich and Althammer (2016)
Popp et al. (2011) PV Class. 22,511 1.851 205 Brunel (2016)
Wu and Mathews (2012) PV Class. 714,877 3.126 60 Wu (2014)
Binz et al. (2017) PV Class. + Key. 16,161 1.653 0
de la Tour et al. (2011) PV Class. + Key. 37,352 1.653 177
FRINNOV (2009) PV Class. + Key. 10,587
Haller (2007) PV Class. + Key. 22,109
Kalthaus (2017) PV Class. + Key. 17,926 3 Cantner et al. (2016); Herrmann and

Töpfer (2017); Kalthaus (2016);
Herrmann (2017)

Kazuyuki and Takanori (2014) PV Class. + Key. 8,954
Lei et al. (2012) PV Class. + Key. 17,329 0.128 1 Lei et al. (2013)
Li et al. (2014b) PV Class. + Key. 11,571
Wang and Chiu (2010) PV Class. + Key. 12,228 0.113 2
Andersson and Jacobsson (2000) PV Keywords 17,756 1.653 126
Bettencourt et al. (2013) PV Keywords 11,931 1.044 36
Chen et al. (2010) PV Keywords 24,803 0.289 3 Huang et al. (2013)
Han and Niosi (2016) PV Keywords 13,736 1.889 1
Jang et al. (2013) PV Keywords 19,721 1.318 6
Jang et al. (2013)a PV Keywords 101,334 1.318 6
Lee et al. (2012) PV Keywords 5,833 1.846 19 Lee and Lee (2013); Geng and Ji

(2016); Wong et al. (2014, 2016)
Myong (2014) PV Keywords 74,890 3.109 5
Rai et al. (2013) PV Keywords 6,155 3 Venugopalan and Rai (2015)
Shibata et al. (2010) PV Keywords 12,775 1.752 71
Zheng and Kammen (2014) PV Keywords 19,139 1.653 54
CPC Classification Solar Solar Class. 37,420 Marin and Lotti (2017); Calel and

Dechezleprêtre (2016)
WIPO Green Inventory Solar Solar Class. 98,668 Albino et al. (2014); Colombelli et al.

(2015); Marin and Lotti (2017);
Kruse (2016); Kruse and Wetzel
(2016)

Dechezleprêtre et al. (2009) Solar Class. 20,946 27
Dechezleprêtre et al. (2011) Solar Class. 22,324 2.028 209 Costantini and Mazzanti (2012);

Wurlod and Noailly (2016)
Guan and Yan (2016)a Solar Class. 4,588 3.126 1
Johnstone et al. (2010) Solar Class. 38,350 0.954 721 Noailly and Shestalova (2017);

Noailly and Smeets (2012); Noailly
and Ryfisch (2015); Braun et al.
(2010); Ayari et al. (2012);
Zachmann et al. (2015); Dalmazzone
and Corsatea (2012); Diederich and
Althammer (2016)

Nesta et al. (2014) Solar Class. 23,946 1.795 70 Diederich and Althammer (2016)
Noailly et al. (2010) Solar Class. 19557 4 Noailly (2012); Costantini et al.

(2014, 2015c)
Pillu (2009) Solar Class. 27,171 2 Pillu and Koléda (2009)
Popp (2001) Solar Class. 96307 1.145 197
Popp et al. (2013) Solar Class. 35,632 1.145 12 Popp (2016b)
Wangler (2013) Solar Class. 23,946 0.866 23 Corsatea (2014)
Jamasb and Pollitt (2011) Solar Keywords 31,601 3.126 61
Jamasb and Pollitt (2015) Solar Keywords 47,483 1.653 9
Margolis and Kammen (1999b) Solar Keywords 25,437 7.478 202 Margolis and Kammen (1999a)
CPC Classification CSP CSP Class. 14,004 Wu and Hu (2015)
WIPO Green Inventory CSP CSP Class. 34,239
Braun et al. (2011) CSP Class. 14,402 1.653 28
Braun et al. (2011)a CSP Class. 195,172 1.653 28
Gallagher (2014) CSP Class. 5,319 32
Tseng (2014) CSP Class. 8,657
Lanjouw and Mody (1996) CSP Class. + Key. 13,062 3.126 681
Lee et al. (2012)a CSP Keywords 43,880 1.846 19 Lee and Lee (2013); Geng and Ji

(2016)
Wong et al. (2014) CSP Keywords 4,693 1.653 7 Wong et al. (2016)
Citation counts from google scholar were collected on January 14th 2017.
A search strategy receiving an “a” indicates a second search strategy used in a paper.
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6.7.2 Patent counts analysis for triadic patents
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Figure 6.8: Patent counts for triadic filings of the 51 search strategies.

Figure note: ‘Class’ refers to the use of IPC or CPC classifications and ‘Key’ refers to the
use of keywords.
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Overlap of triadic patents
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Figure 6.9: Overlap of triadic filings between the 51 search strategies.

Figure note: Each horizontal line is calculated by P atentsA∩P atentsB
P atentsA where PatentsA refers to

the search strategy on the horizontal axis and PatentsB to the different search strategies on
the vertical axis. The lower the overlap between two search strategies, the darker the
corresponding area.
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Country shares for triadic patents
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Figure 6.10: Share of countries for triadic filings between the 51 search strategies.

Figure note: The horizontal axis refers to the 23 countries in our sample while the vertical
axis depicts the different search strategies. The darker the area, the lower is the share of a
country in the patent selection. Black represents no patent at all.
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6.8 Supplementary materials

6.8.1 Patent counts analysis for granted, claimed, PCT, and transnational
filings
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Figure 6.12: Patent counts for granted filings of the 51 search strategies.

Figure note: ‘Class’ refers to the use of IPC or CPC classifications and ‘Key’ refers to the
use of keywords.
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Figure 6.13: Overlap of granted filings between the 51 search strategies.

Figure note: Each horizontal line is calculated by P atentsA∩P atentsB
P atentsA where PatentsA refers to

the search strategy on the horizontal axis and PatentsB to the different search strategies on
the vertical axis. The lower the overlap between two search strategies, the darker the
corresponding area.
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Figure 6.14: Share of countries for granted filings between the 51 search strategies.

Figure note: The horizontal axis refers to the 23 countries in our sample while the vertical
axis depicts the different search strategies. The darker the area, the lower is the share of a
country in the patent selection. Black represents no patent at all.
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Figure 6.15: Patent counts for claimed filings of the 51 search strategies.

Figure note: ‘Class’ refers to the use of IPC or CPC classifications and ‘Key’ refers to the
use of keywords.
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Figure 6.16: Overlap of claimed filings between the 51 search strategies.

Figure note: Each horizontal line is calculated by P atentsA∩P atentsB
P atentsA where PatentsA refers to

the search strategy on the horizontal axis and PatentsB to the different search strategies on
the vertical axis. The lower the overlap between two search strategies, the darker the
corresponding area.
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Figure 6.17: Share of countries for claimed filings between the 51 search strategies.

Figure note: The horizontal axis refers to the 23 countries in our sample while the vertical
axis depicts the different search strategies. The darker the area, the lower is the share of a
country in the patent selection. Black represents no patent at all.
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Figure 6.18: Patent counts for PCT filings of the 51 search strategies.

Figure note: ‘Class’ refers to the use of IPC or CPC classifications and ‘Key’ refers to the
use of keywords.
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Figure 6.19: Overlap of PCT filings between the 51 search strategies.

Figure note: Each horizontal line is calculated by P atentsA∩P atentsB
P atentsA where PatentsA refers to

the search strategy on the horizontal axis and PatentsB to the different search strategies on
the vertical axis. The lower the overlap between two search strategies, the darker the
corresponding area.
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Figure 6.20: Share of countries for PCT filings between the 51 search strategies.

Figure note: The horizontal axis refers to the 23 countries in our sample while the vertical
axis depicts the different search strategies. The darker the area, the lower is the share of a
country in the patent selection. Black represents no patent at all.
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Figure 6.21: Patent counts for transnational filings of the 51 search strategies.

Figure note: ‘Class’ refers to the use of IPC or CPC classifications and ‘Key’ refers to the
use of keywords.
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Figure 6.22: Overlap of transnational filings between the 51 search strategies.

Figure note: Each horizontal line is calculated by P atentsA∩P atentsB
P atentsA where PatentsA refers to

the search strategy on the horizontal axis and PatentsB to the different search strategies on
the vertical axis. The lower the overlap between two search strategies, the darker the
corresponding area.

174



Chapter 6: Flexibility in the selection of patent counts

Country shares for transnational patents

AT
AU
BE
CA
CH
DE
DK
ES
FI

FR
GB
GR

IT
JP
KR
LU
NL
NO
NZ
PL
PT
SE
US

C
P

C
 C

la
ss

ifi
ca

tio
n 

P
V

W
IP

O
 G

re
en

 In
ve

nt
or

y 
P

V
B

öh
rin

ge
r 

et
 a

l. 
(2

01
4)

G
ua

n 
an

d 
Ya

n 
(2

01
6)

P
et

er
s 

et
 a

l. 
(2

01
2)

P
op

p 
et

 a
l. 

(2
01

1)
W

u 
an

d 
M

at
he

w
s 

(2
01

2)
B

in
z 

et
 a

l. 
(2

01
7)

de
 la

 T
ou

r 
et

 a
l. 

(2
01

1)
F

R
IN

N
O

V
 (

20
09

)
H

al
le

r 
(2

00
7)

K
al

th
au

s 
(2

01
7)

K
az

uy
uk

i a
nd

 T
ak

an
or

i (
20

14
)

Le
i e

t a
l. 

(2
01

2)
Li

 e
t a

l. 
(2

01
4)

W
an

g 
an

d 
C

hi
u 

(2
01

0)
A

nd
er

ss
on

 a
nd

 J
ac

ob
ss

on
 (

20
00

)
B

et
te

nc
ou

rt
 e

t a
l. 

(2
01

3)
C

he
n 

et
 a

l. 
(2

01
0)

H
an

 a
nd

 N
io

si
 (

20
16

)
Ja

ng
 e

t a
l. 

(2
01

3)
Ja

ng
 e

t a
l. 

(2
01

3)
a

Le
e 

et
 a

l. 
(2

01
2)

M
yo

ng
 (

20
14

)
R

ai
 e

t a
l. 

(2
01

3)
S

hi
ba

ta
 e

t a
l. 

(2
01

0)
Z

he
ng

 a
nd

 K
am

m
en

 (
20

14
)

C
P

C
 C

la
ss

ifi
ca

tio
n 

S
ol

ar
W

IP
O

 G
re

en
 In

ve
nt

or
y 

S
ol

ar
D

ec
he

zl
ep

re
tr

e 
et

 a
l. 

(2
00

9)
D

ec
he

zl
ep

re
tr

e 
et

 a
l. 

(2
01

1)
G

ua
n 

an
d 

Ya
n 

(2
01

6)
a

Jo
hn

st
on

 e
t a

l. 
(2

01
0)

N
es

ta
 e

t a
l. 

(2
01

4)
N

oa
ill

y 
et

 a
l. 

(2
01

0)
P

ill
u 

(2
00

9)
P

op
p 

(2
00

1)
P

op
p 

et
 a

l. 
(2

01
3)

W
an

gl
er

 (
20

13
)

Ja
m

as
b 

an
d 

P
ol

lit
t (

20
11

)
Ja

m
as

b 
an

d 
P

ol
lit

t (
20

15
)

M
ar

go
lis

 a
nd

 K
am

m
en

 (
19

99
b)

C
P

C
 C

la
ss

ifi
ca

tio
n 

C
S

P
W

IP
O

 G
re

en
 In

ve
nt

or
y 

C
S

P
B

ra
un

 e
t a

l. 
(2

01
1)

B
ra

un
 e

t a
l. 

(2
01

1)
a

G
al

la
gh

er
 (

20
14

)
T

se
ng

 (
20

14
)

La
nj

ou
w

 a
nd

 M
od

y 
(1

99
6)

Le
e 

et
 a

l. 
(2

01
2)

a
W

on
g 

et
 a

l. 
(2

01
4)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.23: Share of countries for transnational filings between the 51 search strategies.

Figure note: The horizontal axis refers to the 23 countries in our sample while the vertical
axis depicts the different search strategies. The darker the area, the lower is the share of a
country in the patent selection. Black represents no patent at all.
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Chapter 7

Conclusion

This thesis contributes to our understanding of knowledge dynamics and technological change,
particularly for environmentally friendly technologies. The overarching research aims of this
thesis are to uncover dynamics of knowledge generation along technological trajectories, to
improve our understanding of knowledge exchange in networks, and to analyze effects of policy
instruments and their mix on knowledge generation and exchange. In the five core Chapters 2-6,
the innovation process is analyzed with respect to these three objectives, using the example of
wind power and solar energy technologies, especially photovoltaics (PV). These technologies are
of special interest, since they bear the possibility to transform the carbon-based economic system
into a sustainable one, mitigate climate change, and foster green growth. Furthermore, these
technologies face several market and system failures, which makes analyzing their innovation
process and the effect policies have on this process particularly interesting for economic analysis
and provides valuable insights for policy makers.

To reveal and understand knowledge dynamics and knowledge exchange, this thesis itself was
an interactive process, which recombines various streams of literature, different data sources,
and methods from different fields to create new knowledge. In the following, I summarize key
findings and overarching results, formulate policy recommendations, and point out avenues for
further research.

7.1 Main findings and contributions

With respect to the first research objective of this thesis, to uncover dynamics of knowledge
generation within technological trajectories, Chapter 3 provides valuable insights. I developed a
theoretical framework in which knowledge recombination is dynamic and was able to show that
its empirical application provides new insights on knowledge recombination. In previous studies,
it is assumed that the mechanisms of knowledge recombination are static and do not depend on
the maturity of the technology. However, I can show using patent data for wind power and PV
that different sources of knowledge for recombination are relevant for technological progress in
different phases of the technology life cycle. This dynamic analysis reveals that different kinds
of knowledge, internal but especially external to the trajectory, influence technological progress
and the relevance of different sources of knowledge changes along the technology life cycle. The
results show some differences between the technologies, but external knowledge is of particular
relevance in the emergence and early stage of the technologies, while over time, recombination of
knowledge internal to the technologies fuels technological progress. The results provide a more
profound understanding of the relevance of knowledge dynamics along the technology life cycle
and how recombinatorial patterns change over time.
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Chapter 7: Conclusion

Further knowledge dynamics inside the PV trajectory are revealed using the notion of sub-
trajectories proposed by Durand (1992). In Chapter 2, sub-trajectories were identified using
patent data for PV, which provide more insights into the dynamics within the trajectory. The
analysis at this micro-technological level shows that the focus of inventive activity changed
between sub-trajectories over time, which would have been averaged out in an analysis at the
aggregate level of the trajectory. Furthermore, descriptive results show that patenting intensity
differs between sub-trajectories. Countries focus their research activities on particular sub-
trajectories, most likely to seek a competitive advantage. In Chapter 3, sub-trajectories for
PV show different patterns of knowledge recombination since they are in different phases of
their life-cycle. While such sub-trajectories are relevant for technological development, they
also translate to other economic dimensions, such as industrial dynamics, where, for example,
Kapoor and Furr (2015) can show that entry patterns differ by PV sub-trajectory. Therefore,
using sub-trajectories to understand technological change provides further insights and helps to
understand micro patterns as the ones discovered for technological change, but they can and
should be applied elsewhere in economics.

Since knowledge generation seldomly takes place in isolation, the second research objective
of this thesis aims to add to our understanding of knowledge exchange in networks. Networks of
knowledge exchange are a pervasive phenomenon in the innovation process and actors participat-
ing in such networks increase their innovative performance. Even though knowledge exchange
takes place between individuals, different levels of aggregation of collaboration and knowledge
exchange are analyzed. The micro level of collaboration is analyzed in Chapter 4 by looking at
networks of patent inventors in wind power and PV, whereas Chapter 5 considers the meso and
macro levels, using co-authorship information from PV publications. While Chapter 4 allows to
compare the development of the wind power and PV networks in Germany, Chapter 5 allows to
compare developments across countries. Both chapters help to better understand the structure,
dynamics, and interplay between networks of knowledge exchange on different levels of aggre-
gation, the functionality of the innovation process, and the influence of policy intervention on
networks of knowledge exchange.

Results show that on all levels of aggregation, an increase in network size and connectivity
among actors is prolific, which indicates increasing potential for knowledge exchange. However,
on the micro level, there are differences between technologies. The level of connectivity is higher
in PV than in wind power and inventor teams are much smaller in wind power than in PV. This
indicates that the nature of the innovation process differs between the technologies and hints
towards lower complexity in the innovation process for wind power. Furthermore, in both net-
works, there is very low concentration on specific actors and the networks are highly fragmented,
even though consolidation takes place over time. At the meso level, where national research or-
ganizations establish connections by co-authoring PV publications, notable differences between
countries exist. In general, Asian countries show fast growing national research networks, which
are in most cases centralized and have a high degree of repeated interactions. Western countries
show a lower increase in network size, but the national networks are less centralized and show
more fragmentation than the Asian ones, even though fragmentation is reduced over time for
all countries. At the macro level, the position of countries in the global network, the countries’
embeddedness, is important, since it allows to participate in global knowledge flows. While
over time the network increases and more countries engage in PV research, connections among
countries become more frequent, the network becomes denser, and there are hardly any uncon-
nected countries. This indicates that the global system functions well and allows for knowledge
diffusion. But there seems to be an ongoing centralization process, such that some countries
form a highly interconnected core. At the same time, the network periphery is characterized by
a substantial degree of turbulence.
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Chapter 7: Conclusion

These network dynamics are interesting per se and found also in the literature, explaining
the cause of such dynamics has been, so far, a challenging and widely neglected task. In both
Chapters, 4 and 5, factors influencing the network size and structure as well as the position of
actors in the network are analyzed. With respect to the macro embeddedness of countries in the
global research network, two groups of determinants are identified: the structure of the national
research network and policy interventions. The first group of determinants considers the inter-
action structures of the research network at the meso level, which account for the knowledge
diffusion within the research system. A national research system which functions well in terms
of possible knowledge diffusion might create an environment beneficial for international collab-
oration and increases embeddedness. This group of determinants is related to the links between
micro, meso, and macro levels in economics (Dopfer et al., 2004), which is an emerging theme in
empirical analysis (Gupta et al., 2007; Guan et al., 2015b). Results show for three concepts of
network centrality, which emphasize different aspects of knowledge access, embeddedness is in-
creased by an overall cohesion and connectedness of the national research system. Furthermore,
countries with a decentralized research network are internationally more embedded, indicating
that diffusion oriented national research systems are more open towards external knowledge
flows. This shows that the establishment of an institutional system, which is well connected
and conducive for knowledge diffusion can be an objective for policy intervention and strategic
decision-making of governments. Preventing a research system from being fragmented or dom-
inated by a few key actors can increase the overall functionality and increase access to global
knowledge flows. The overall structure and functionality of the national research system should
therefore be higher on policy makers’ agenda to increase inventive and innovative activity.

The second set of determinants relates to the third research objective of this thesis and sheds
light on the effect of policy instruments and their mix on knowledge networks. This set consists
of various policy instruments that constitute the policy mix for renewable energies (Flanagan
et al., 2011; Rogge and Reichardt, 2016). Policy might create an environment conducive to inter-
national collaboration and increased embeddedness within the international research network.
While there is a broad literature on the effects of policies on knowledge generation, no study so
far considered the effect on the characteristics of knowledge networks. Using a set of four dif-
ferent policy instruments, results show differential effects on international embeddedness. R&D
expenditures for PV show mixed effects and are sensitive to the measure of embeddedness. A
positive effect is present if the relative position of countries in the network is considered, which
implies that R&D expenditures are used to establish or intensify connections to well embedded
countries. Demand pull policies show robust positive effects on international embeddedness.
Especially the effect of public procurement is interesting, since it does not only increases in-
ventive and innovative activity, but also fosters interaction and facilitates knowledge exchange.
The ratification of the Kyoto Protocol seems only relevant for countries which have binding re-
duction targets. Overall, policy instruments have an effect on international embeddedness and
knowledge exchange, which has so far been neglected from discussions about an effective policy
mix for innovation.

Similar effects of different instruments and the policy mix are uncovered on the micro level
of inventor networks. In Chapter 4, the effect of demand pull, technology push, and systemic
instruments as well as their interaction on size and structure of inventor networks is analyzed.
The effects are again dependent on the technology, but overall there are significant effects for all
policy variables on size and structure of the networks. Domestic as well as foreign demand pull
and technology push instruments have positive effects on the size of both networks. Systemic
instruments show an effect only for wind power. With respect to the structure of the network,
systemic instruments, which are especially designed to induce cooperation, show a positive ef-
fect for wind power, whereas for PV the effect is inconclusive. Technology push policies do
not increase cooperation in wind power at all, while for PV, the effect is ambiguous. Demand
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pull instruments show a strong positive influence on collaboration in both technologies. With
respect to the interaction of instruments in the policy mix, push and pull instruments work hand
in hand in increasing network size, whereas pull and systemic instruments together spur coop-
eration. These findings point towards strong consistency of the policy mix. Nevertheless, some
inconsistencies are present in the interaction between pull and systemic instruments, which is
detrimental to network size in PV. Apparently, this combination of instruments favors existing
actors rather than attracting new ones. In a similar vein, a combination of push and pull instru-
ments works against collaboration in PV and rather favors individual research activities. Here,
further research is required to understand the cause and consequences of the effects of different
interactions. Nevertheless, policy makers need to be aware of the complexity of interactions in
the policy mix, which can either spur innovative activity or be detrimental to it.

While strong support for the existence of demand pull and technology push effects is found
throughout this thesis, in the literature some contributions question the existence of such effects
for knowledge generation in renewable energies. To explore if these effects are persistent and
why deviating results are obtained in the literature, the last chapter performs a sensitivity and
robustness analysis of Johnstone et al. (2010) and Peters et al. (2012). Since researchers have
great flexibility in using patent data, especially with respect to the search strategies and choice
between different patent quality dimensions, Chapter 6 explores implications of these flexibilities
on estimated policy effects. 51 different selection approaches for solar energy technologies are
identified in the literature and used for a sensitivity analysis of both studies. The flexibility in
the selection of patent counts results in a wide range of estimates for the effects of policies on
patent counts. There is substantial uncertainty regarding signs and sizes of policy effects. For
almost all policy effects both positive and negative estimates that are statistically significant can
be obtained. Especially patent quality contributes to the uncertainty in the effect size, but also
other influential factors can be identified, especially the overall number of selected patents. Using
three different quality subsets of patent selections reduces the uncertainty, which nevertheless
remains substantial. If furthermore the respective technologies of the studies are used, the core
findings of both studies can be supported in terms of the direction of policy effects. However,
there still remains potential uncertainty for policy makers about the effectiveness of the policy
instruments, since the size of the effects varies considerably. Furthermore, the great flexibility in
the selection of patent counts opens up the possibility of scientific misconduct. Therefore, more
rigorous documentation and sensitivity tests are required and results should be supported with
evidence from other sources, such as qualitative data to sustain scientific credibility for the use
of patent data and to inform policy makers correctly.

7.2 Policy implications

The findings in this thesis have several implications for policy makers, especially to accelerate
technological progress in environmentally friendly technologies. In general, policy effects are
technology specific, which might be related to the technology’s state of development, its relative
competitiveness, market dynamics, and the specific nature of its innovation process. There-
fore, technological differences need to be considered when implementing a policy instrument or
designing the overall policy mix for innovation.

First of all, understanding that technologies differ, that recombinatorial success requires dif-
ferent sources of knowledge at different stages of a technology life cycle, and that even within
a technological trajectory several possible solutions exists is relevant for the implementation of
targeted policies. Policies supporting R&D activities need to account for these particularities
in the innovation process. A one-size fits all solution could lead to misallocation of resources,
foster lock-in into inferior technologies, or slow down technological progress. For example, in the
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case of PV, it is immanent that the current market-dominating sub-trajectory cannot overcome
physical limits and therefore the emerging sub-trajectory, which has more favorable physical
characteristics, need to be supported for sustained technological progress in PV. However, as
shown in Chapter 2, the German government, for example, supports R&D activities especially
in the market-dominating sub-trajectory and not in the emerging one. Overall, widening sup-
port schemes to cover emerging technologies, include heterogeneous actors along the innovation
process and along the technological development is required and calls for tailor made policy mix
for innovation. This would allow to accelerate technological progress by integrating different sets
of knowledge and opens up new technological opportunities. This is not only a requirement for
innovation in environmentally friendly technologies, but a pervasive challenge for policy makers.

With respect to the effect of policy instruments on the innovation process, the robustness
analysis in the last chapter provides evidence that demand pull and technology push instruments
foster inventive activity. However, policy makers should be careful in assessing the magnitude
of the effects and ask for a variety of results, stemming from different data sources and meth-
ods. Nevertheless, both types of instruments should be implemented, especially simultaneously,
since they complement each other in the innovation process. Furthermore, there are effects of
instruments which have not been considered in greater detail by policy makers. Both types
of instruments also intervene on the exchange of knowledge and increase collaboration. These
partly unintended effects on the underlying research system have been neglected so far from
policy discussions and should be considered when implementing or assessing such policies and
harnessed actively. For this purpose, systemic instruments, which are particularly relevant to
increase collaboration and bring together relevant actors, should be higher on the policy makers
agenda. Policy makers can use these instruments to foster interaction and deliberately shape
the research system.

Furthermore, the overall structure and performance of the research system needs to move
in the center of policy makers’ attention. Research in isolation is detrimental to inventive and
innovative activity and scientific evidence about the benefit of interaction in research is over-
whelming. Avoiding fragmentation of different groups of actors and decentralizing the research
system can increase the system’s functionality and foster innovation performance. One partic-
ular positive effect is the access to global knowledge flows, which can be integrated in national
research activities. Systemic instruments can be used to intervene in the system structures and
create a diffusion oriented research system which helps to increase knowledge exchange and
eases access to external knowledge. The participation in and the integration of global knowl-
edge flows is of particular importance to engage in the challenges imposed by climate change
and sustainability issues, since solutions cannot be achieved in isolation.

In the same vein, policy makers need to coordinate the implementation of policy instruments
and consider the overall policy mix for innovation. For the case of Germany, the results reveal
that in some cases the policy mix is consistent, especially in providing incentives to engage in
R&D and collaborative activities, as well as in supporting market creation. However, there are
also detrimental effects due to the presence of multiple instruments. Policy makers need to
assess in more detail how different policy instruments influence each other to increase overall
efficiency. Providing a tailor-made policy mix, which supports inventive and innovative activity
along the innovation process, but also on the system level is required, to accelerate technological
change and foster a transition towards environmentally friendly technologies. Thereby the set
of instruments should include a great variety of instruments to support different actors. For
example, the policy support should include (pre-)commercial support as well as classical R&D
support and experimentation with other forms of instruments, which open up the innovation
process for heterogeneous actors.
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7.3 Limitations and further research avenues

While this thesis provides new insights and perspectives on knowledge dynamics and techno-
logical change, several restrictions and assumptions had to be made, which can be relaxed in
further research. Furthermore, some derived insights open up new directions for research and
the results presented here can be better integrated in economic theorizing and can be seen as a
starting points for further scientific endeavors.

First, the analyses in this thesis are based on the level of the technology and leave out a closer
look at how economic actors, in particular firms, engage in innovative activity. Shifting the level
of analysis from the technology level to the firm level can deepen our understanding how firms
engage in knowledge recombination and how their usage of knowledge changes over time. This
would allow to link the insights on knowledge dynamics gained on the technology level with
industrial dynamics and explain how knowledge influences industry structures over time. While
there are several contributions with respect to previous knowledge and the influence on entry
and survival, accounting for the dynamic nature of knowledge and the evolution of industries
over time is missing so far.

Second, the insights into the relationships between knowledge networks on different levels of
aggregation provide a novel perspective on the functionality of research systems. Nevertheless,
the results are most likely technology specific and a broader inquiry is necessary to understand
how these different levels of aggregation interact, which kind of network structures are relevant
for knowledge exchange between different levels of aggregation, and especially how the relation-
ship translates into inventive and economic output. These insights would help to extend our
understanding of innovation systems and its functions. Furthermore, they would be particular
relevant for policy makers, which could use systemic instruments, or design new instruments, to
shape the research system accordingly and increase inventive and innovative performance.

Regarding policy intervention on networks, the effects are still ambiguous and the analy-
ses conducted capture only a small fraction of possible interventions and outcomes. In most
cases, policies had an effect on size, structure, or embeddedness, however, conclusive evidence
requires more cases and different instruments to be analyzed. Thereby most instruments were
not designed to effect knowledge exchange and assessing the magnitude of these effects and how
they contribute to inventive output should be analyzed to fully account for the effect of policy
intervention. Furthermore, the use of systemic instruments increases over time, but a holistic
assessment of their effects on inventive and innovative outputs as well as on the functionality of
the research system is absent so far. Providing these assessments would allow to use them more
precisely and help to design a more comprehensive and consistent policy mix.

With respect to the policy mix, the scope of analysis was limited and calls for further
assessment of the consistency of the policy mix. Furthermore, other dimensions of the mix were
neglected in this thesis, but are worth assessing from a theoretical and empirical perspective.
While in this thesis a basic approach to operationalize the consistency of the policy mix is used,
developing new empirical approaches to capture the policy mix and its dimensions provides
a challenging task for further research, but it is essential for calibrating the policy mix for
innovation.

The results obtained in Chapter 6 show that patent data imposes several methodological
problems and challenges for economic research and in particular for evidence based policy eval-
uations. As shown, the severe flexibility in the use of patent data can be detrimental to the
credibility of econometric results. A larger scale effort has to engage in analyzing the problem
of flexibility in observational research in general and particularly for patent data. Further ev-
idence how sensitive economic analysis is with respect to patent data and which determinants
can influence results can help to assess the credibility of previous findings. Based on a deeper
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understanding of cause and consequences of flexibility in the use of patent data, researchers as
well as other stakeholders should engage the problem. Best practice guidelines should be formu-
lated, to keep up the credibility of results obtained with such data and to inform policy makers
correctly in the future. Furthermore, replication studies should be encouraged in economics to
guarantee robustness and credibility of economic research, since such studies are nearly absent
in economics so far (Duvendack et al., 2016; Mueller-Langer et al., 2017).

Lastly, the insights provided here increase our understanding of the innovation process.
While these findings can be used to accelerate the development of environmentally friendly
technologies, the particular problem regarding climate change and sustainability is on the system
level. Translating the insights of the innovation process to the system level and providing a
better understanding of transformation processes of whole systems requires further research.
In the wake of climate change, we need to understand how to govern a transition towards an
environmentally friendly and sustainable economic system more than ever.
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