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Zusammenfassung 

Die Rolle der Rumpforientierung bei der menschlichen Fortbewegung beim Überqueren von 

gleichmäßigem und unebenem Boden ist sowohl aus theoretischer als auch aus experimenteller 

Sicht trotz ihrer Relevanz für klinische Anwendungen und die Robotik schlecht verstanden. 

Die Ganguntersuchung hat bisher oftmals die Fortbewegung auf ebenem Untergrund bei 

gestörter oder nicht gestörter Haltung oder auf unebenem Untergrund untersucht. Die 

Erforschung der reaktiven und proaktiven Antworten auf interne und externen 

Destabilisierungen, nämlich Haltungs- und Bodenstörungen, hilft uns, die Grenzen unseres 

Bewegungsapparates zu charakterisieren. Das Verständnis der zentralen Gangdynamik, die mit 

der Fortbewegung über unebenen Boden mit Fokus auf die funktionale Rolle des Rumpfes 

verbunden ist, könnte zu einer klareren Identifizierung von Mechanismen führen, die der 

Kontrolle beim Menschen zugrunde liegen. Dies kann Implikationen für die klinische Praxis 

und die Entwicklung von Robotern mit Beinen haben. 

In dieser Arbeit haben wir durch die Erforschung des biomechanischen Verhaltens des 

menschlichen Gehens in Gegenwart einer erwarteten zweifachen Störung, nämlich einer 

Veränderung der Rumpfhaltung und der Bodenhöhe, einen Einblick in die funktionelle Rolle 

des Rumpfes bei der Fortbewegung erhalten. Zuerst präsentiert diese Arbeit den Einfluss der 

Rumpforientierung auf die Beinfunktion mit Betonung auf der Analogie zwischen 

Fortbewegung bei Vögeln und Menschen (Kapitel 2). Durch die Untersuchung der 

menschlichen Beinfunktion beim Gehen unter Veränderung der Rumpfkinematik - bis zur 

maximalen sagittalen Beugung – und durch ihren Vergleich mit jener von kleinen Vögeln, 

haben wir festgestellt, dass das Nachahmen der Haltung der Vögel ein vergleichbares effektives 

Verhalten der Beine trotz unterschiedlicher Körpergröße und Morphologie der segmentierten 

Beine erzeugt. Darüber hinaus zeigte der erstmalige Vergleich zweier einfacher Beinmodelle, 

nämlich Feder und Dämpfer in Serie versus parallele Feder und Dämpfer, dass das erstere 

Modell dem letzteren in der Vorhersage der axialen Beinkräfte während der Standphase des 

Gehens mit verschiedenen Graden der Rumpforientierung überlegen ist. 
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In Kapitel 3 zeigen wir, wie relevante Parameter, die zur Bodenreaktionskraft (GRF) in 

Beziehung stehen (erster und zweiter Peak der vertikalen GRF; Belastungs- und 

Entlastungsgeschwindigkeit; Brems-, Vortriebs- und vertikaler Impuls sowie die Kontaktzeit 

und die Geschwindigkeit) durch Interaktionseffekte zwischen Haltung und Schritt beeinflusst 

werden. Interessanterweise führte die zunehmende Rumpfflexion nicht zu einer großen 

Variation der kinetischen Parameter des Ganges bei der Überquerung von unebenem 

Untergrund. Mit anderen Worten, bei einer erhöhten Rumpfflexion tendierten die Änderungen 

der kinetischen Parameter zwischen den Schritten zu einer Abnahme im Vergleich zum 

aufrechten Gehen auf ebenem Boden. Die Voranpassungen wurden nur beim Gehen mit 

aufrechtem Rumpf im vorbereitenden Schritt vor Bodensenkung beobachtet. Wir behaupten, 

dass der Rumpf genutzt werden könnte, um die Absenkung im Bodenniveau auszugleichen, 

indem er während des Schritts rückwärts gedreht wird. Im Vergleich zu Schritten auf ebenem 

Untergrund wurde beim Schritt auf abgesenkten Boden eine zwei- bis dreifach größere 

Rückwärtsrotation beobachtet. Dieses Resultat war unabhängig von der Oberkörperhaltung 

und könnte möglicherweise ein Resultat des Versuchs sein, die kinetische Energie zu 

kontrollieren, die während des Schrittes gewonnen wurde. Obwohl das Gehen mit einer 

gebeugten Haltung energetisch belastend sein könnte, wurden keine signifikanten Änderungen 

in den schrittbezogenen GRF-Parametern während des unebenen Gehens festgestellt. 

Demzufolge stellte die gebeugte Haltung für die gesunden Probanden keine große 

Herausforderung in Bezug auf die Kontrolle der Fortbewegung dar. 

Schließlich präsentiert Kapitel 4 das adaptive kinematische Verhalten des Gehens gesunder 

Menschen beim Ausgleichen von unebenem Boden mit veränderter Rumpforientierung. Zu 

diesem Zweck wurden die Wechselwirkung zwischen Rumpfhaltung und Schritt auf zahlreiche 

kinematische Parameter analysiert. Diese Parameter bestehen aus Hüft-, Knie- und 

Sprunggelenkwinkeln; effektive Beinlänge und -winkel; vertikale Position des Schwerpunkts 

(CoM), zu den Zeiten des Aufsetzens und Abhebens. Die schrittspezifischen Effekte der 

Haltung auf das kinematische Verhalten des Gangs beim Aufsetzen unterschieden sich von 

denen beim Abheben. Wir argumentieren, dass der Rumpf eine kompensatorische Rolle mit 

einer ausgeprägteren Bewegungsstrategie im vorwärtsgebeugten Gang spielt. Die 

Rückwärtsdrehung des Rumpfes hilft höchstwahrscheinlich beim Ausgleichen der 

Bodenunebenheit. Diese Strategie ist nützlich für die Aufrechterhaltung der vertikalen Position 

des CoM nützlich. Das Beugen des Rumpfes schien die Stabilität der periodischen Bewegung 

nicht zu beeinträchtigen da fast alle kinematischen Parameter nach dem Schritt auf das 

Ausgangsniveau des Bodens wiederhergestellt, das heißt gleich zur ebenen Fortbewegung, 
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waren. Dieser Mechanismus ähnelt der Fähigkeit kleiner Vögel beim Ausgleichen großer 

Störungen in rauem Gelände ihre stark gebeugten Beine zu nutzen.  

Eine kurze Synopsis der wichtigsten Ergebnisse früherer Kapitel (Artikel) wurde in Kapitel 5 

zusammengefasst. Die Ergebnisse dieser Arbeit deuten darauf hin: Erstens, menschliche 

Fortbewegung mit gebeugtem Rumpf teilt einige biomechanische Prinzipien, z.B. die effektive 

Beinfunktion, mit der der Vögel; Zweitens führen Feder und Dämpfer in Serie im Vergleich zu 

parallelen Feder und Dämpfer zu einer besseren Vorhersage der axialen Beinkräfte; Schließlich 

kann die weitere Betonung der freiwilligen Bewegungen des Rumpfes beim Ausgleich von 

Bodenunebenheiten Klinikern und Therapeuten bei der Entwicklung eines effektiveren 

Interventionsprogramms für die Fallprävention helfen, was möglicherweise zu einer erhöhten 

Gangstabilität bei Patienten und älteren Erwachsenen mit schlechten Gangmustern und 

schlechtem Gleichgewicht führt. Allerdings erfordern unsere Erkenntnisse weitere Studien an 

gesunden und pathologischen Populationen, um die Rolle der Haltung mit einem Schwerpunkt 

auf der Rumpfdynamik in der menschlichen Fortbewegung zu evaluieren.  
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Abstract 
 
The role of trunk orientation in human locomotion while crossing even and uneven ground is 

poorly understood from a theoretical and experimental perspective, despite significant 

relevance to clinical and robotic applications. Gait research has often individually investigated 

locomotion on level or uneven surfaces or when posture is disturbed or not. An exploration of 

the reactive and proactive responses to a complex of internal and external destabilizing agents, 

namely postural and ground perturbations, helps us to characterize the boundary constraints of 

our locomotor apparatus. Understanding the key gait dynamics that associated with locomotion 

across uneven ground with an emphasis on the functional role of trunk could lead to a clearer 

identification of mechanisms underlying control in humans with implications for clinical 

practice and the development of the legged robots.  

In this work, we gained more insight into the functional role of trunk in human locomotion 

through the exploration of the biomechanical behavior of human walking in the presence of an 

expected twofold perturbation. First, this work presents the influence of the trunk orientation 

on leg function with stress on the analogy between locomotion in birds and humans (Chapter 

2). By examining the human leg function during walking under changes in the trunk kinematics 

— up to the maximal sagittal flexion — and comparing it to that of small-bodied birds, we 

found that mimicking the birds’ posture induces a comparable behavior in leg function despite 

a different body size and morphology of the segmented legs. Furthermore, comparison of two 

simplified models for the first time, namely spring and damper in series and parallel spring and 

damper, revealed that the former model predicts the axial leg forces superior than the latter 

model during stance phase of walking with various degrees of trunk orientation.  

In Chapter 3, we show how the relevant parameters related to the ground reaction force (GRF) 

involving the first and the second peaks of the vertical GRF; loading and unloading rate; 

braking, propulsive and vertical impulses as well as the contact time and the velocity are 

influenced by the interaction effects between posture and step. Interestingly, increasing trunk 

flexion did not lead to a great deal of variation in kinetic parameters of the gait while traversing 

uneven ground. In other words, with increased trunk flexion, the between-step changes in the 
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GRF kinetic parameters tended to decrease relative to upright walking on level ground. The 

pre-adaptations were observed in the approaching step to the drop merely during walking with 

an upright trunk. We assert that the trunk could be utilized to negotiate the changes in ground 

level by exhibiting a backward rotation during step down. Such backward rotation was 

observed 2- to 3-fold greater than those of level steps, regardless of trunk posture, in an attempt 

possibly to control the kinetic energy gained during stepping down. Although walking with a 

bent posture might be energetically strenuous; however, transforming into a zig-zag-like, 

crouched posture from upright was found not to require significant changes in the between-

step GRF parameters while uneven walking, and neither pose dramatic control challenges to 

the locomotion of able-bodied individuals. 

Finally, Chapter 4 presents the adaptive kinematic behavior of able-bodied walking while 

negotiating uneven ground with altered trunk orientations. To this end, the interaction effects 

between posture and step on numerous kinematic parameters were analyzed. These parameters 

comprised of hip, knee and ankle joint angles; effective leg length and angle; vertical position 

of the center of mass (CoM) at the instants of touchdown and toe-off. The step-specific effects 

of posture on the kinematic behavior of gait at touchdown were found to differ from that of 

toe-off. We argue that the trunk plays a compensatory role with a more pronounced movement 

strategy in trunk-flexed walking during stepping down. Showing a backward rotation, the trunk 

most likely facilitates the negotiation of changes in ground level. This strategy is useful for the 

maintenance of the vertical position of the CoM. Bending the trunk did not seem to impede the 

stability of the periodic movement as almost all kinematic parameters restored to the 

undisturbed path within a range observed during upright walking at the end of the step-up 

following a step-down. This mechanism may resemble the ability of small birds in adjusting 

their crouched legs during locomotion to cope with large perturbations in rough terrain.  

A brief synopsis of main findings of previous chapters (articles) has been summarized in 

Chapter 5. The results of this work suggest: First, human locomotion with an increased trunk 

flexion shares some biomechanical principles, e.g. the effective leg function, with that of birds. 

Secondly, the spring and damper in series performs better than parallel spring and damper in 

predicting the axial leg forces. Finally, further emphasis on the voluntary movements of the 

trunk for negotiating uneven ground may guide clinicians and therapists in developing more 

effective fall-prevention intervention programs, leading possibly to enhanced gait stability in 

patients and older adults with poor gait patterns and balance. However, our findings warrant 
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further studies in both healthy and pathologic populations to evaluate the role of posture with 

an emphasis on trunk dynamics in human locomotion. 
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Chapter 1  
 

1 General introduction  
 

 

1.1 Evolution of bipedalism  

It is astonishing that there is still room to learn about something as apparently straightforward 

as the way we walk. Yet how and why humans evolved to walk bipedally remains of research 

interest. Bipedalism has traditionally been associated to the beginning of humanity’s expedition 

from prey to predator, and from Africa’s Rift Valley to world sovereignty (Radford 2013). 

Bipedality of the earliest-known hominids has been demonstrated (Haile-Selassie 2001; Galik 

et al. 2004), and ample fossil evidence shows that australopithecines habitually walked by at 

least 4.4 million years ago. (Dean 1990; Ward 2002). Bipedal gait is commonly performed by 

humans, birds, and sometimes by apes and monkeys (Alexander 2004; Hirasaki et al. 2004). 

Bipedal posture and locomotion are key distinctive attributes of the earliest known hominins 

(Galik et al. 2004; Zollikofer et al. 2005). Thanks to efficiencies derived from evolution, 

growth and learning, humans are highly adapted for locomotion (Alexander 2003). They are 

adept walkers. Our muscular (Alexander 2003), skeletal (Lovejoy 2005) and neural (Dietz 

2003) systems have evolved and well-suited to locomotion through successive generations. We 

acquire and implement walking coordination strategies across our lifespan (Forssberg 1985) 

and able to cope with new locomotor environments swiftly (Davidson and Wolpert 2005).   

The human musculoskeletal system and human gait have been widely investigated (Rose and 

Gamble 1994). While extensive focus has been placed on the mechanics of discreet human 

walking for its clinical implications (e.g., implant design and surgical intervention), little is 

known about the circumstances under which natural selection formed our frame over the last 

several million years. Laboratory examination of the modern human bipedal posture are often 

not relevant adequately in interpreting such anatomical transformation processes.  
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Comfortable human wandering is believed not to be the primary target of natural selection, our 

frame has presumably been evolved in much more challenging situations, such as traversing 

uneven terrain, escaping predators, or in response to exhaustion-induced circumstances 

(Lovejoy 2005). In other word, the apparent proficiency observed in modern human gait is the 

consequence of the refinement of locomotor skills mastered under more demanding 

circumstances. Attempts to recreate locomotion in early hominins or in other animals help to 

expand our understanding of how anatomical features in humans and earlier bipeds operate in 

different locomotor patterns and therefore to characterize the adaptive capacities and 

limitations of specific morphologies. This warrants studies on human locomotor behavior in 

experiments using e.g. altered postures or movements through complex environments which 

often requires unsteady behavior to maintain stability against perturbations (Lee et al. 2014; 

Qiao and Jindrich 2014).  

1.2 Bipedality in animals, and their differences from humans 

Comparisons of a broader range of bipeds, environments, and terrestrial locomotor techniques 

provide opportunities for the recognition of new research questions. Our understanding of 

evolution of locomotor system in terrestrial taxa has been improved thanks to the abundant 

relevant scientific endeavours (Lauder 1991, 2003). However, literature suggests lack of 

adequate basic data from a diversity of species which in turn restricts further detailed analysis 

of terrestrial locomotion (Kawano and Blob 2013; Birn-Jeffrey and Higham 2014; Blob et al. 

2014; Lee et al. 2014; Qiao and Jindrich 2014). Therefore, data collection comprising of cross-

species biomechanical comparisons and perturbation experiments addressing the performance 

of the locomotor apparatus under the range of behaviours are of research importance.   

In addition to bipedal walking and running in human, some other birds and mammals use two 

legs during locomotion. Birds walk, run on the ground or sometimes use grounded running 

(Rubenson et al. 2004; Hancock et al. 2007). Apes and Japanese macacques sporadically walk 

bipedally (Napier and Napier 1967), kangaroos and a few rodents hop bipedally (Bartholomew 

and Caswell 1951), and some lizards run bipedally (Snyder 1952).  

In the apes’ bent-hip-bent-knee walking, the sagittal trunk flexion is about 20° from vertical 

and the knee is strongly bent at mid-stance, to ~100° in bonobos (D'Août et al. 2002) compared 

with ~170° in human walking. D’Août et al. (2002) also reported a different phase relationship 

between knee and ankle movements from human walking during bipedal or quadrupedal 
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locomotion. In addition, compared with ordinary Japanese macaques, the trained macaques are 

known to walk with more upright trunk and more stable trunk (Hirasaki et al. 2004).  

In chimpanzee, the CoM of the body locates in front of the hip owing to inclined trunk geometry 

(Alexander 2004). Interestingly, the trajectory of the CoM in chimpanzees resembles that of 

humans, i.e. higher during the single-stance phase and lower during the double-stance phase 

(Kimura 1996). Given in the steady state bipedal walking ground reaction force (GRF) vector 

must be vertical and in line with center of mass (CoM) (i.e., relative position of the center of 

pressure (CoP) to the CoM), chimpanzees achieve this by keeping the knee anterior to the hip 

throughout the stance phase. However, both humans and apes are using the whole length of the 

foot, from heel to toe, during ground contact (Alexander 2004). In human walking, the ground 

contact initiates with heel while in chimpanzees it is the lateral midfoot that strikes the ground 

(Vereecke et al. 2003).  

Another taxon that walk with an upright trunk is penguin, but other birds use pronograde 

posture (almost horizontal trunk orientation). Like apes but in a greater extent, trunk geometry 

in most of birds leads to a forward displacement of the CoM relative to hip (Andrada et al. 

2014). Similarly, the knee remains anterior to the hip throughout the stance phase (Alexander 

2004). However, such bipedal locomotion with pronograde posture in small birds is associated 

with some restrictions over the effective leg (connecting hip to CoP) (Andrada et al. 2014) as 

balancing the trunk against gravity, when the CoM is shifted anteriorly, requires increased hip 

extension torques throughout stance (Andrada et al. 2013).  

Lizard sometimes run bipedally, with tilting trunks upward at mean angles of 1–6° during fast 

quadrupedal running and 8–15° during fast bipedal running (Irschick and Jayne 1999). Due to 

long tails, most lizards keep the CoM much closer to the hip. In contrast to apes and birds, the 

hips do not fall behind knees (Alexander 2004). One prominent feature that differentiates 

bipedal locomotion of lizards from that of mammals is that lizards use wider step width. The 

study by Irschick & Jayne (1999b) found the step width of 2.0–2.8 times tibia length in lizards. 

The corresponding value in normal adult human walking is about 0.25 (Donelan and Kram 

2001). 

In general, bipedalism in majority of nonhuman primates is characterized by an inclined trunk, 

crouched hindlimb joints throughout stance phase, and an initial midfoot contact with the 

ground (Wunderlich and Schaum 2007). 
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1.3 Walking in human 

Since a full appreciation of bipedalism requires considering multiple traits, the description of 

human bipedalism is more complicated than its simple definition of “movement performed 

only on two legs,” in dictionary. Indeed, our specific frame or posture is determined by an 

important role of the neuromechanical mechanisms. Furthermore, some typical morphological 

features including: size and shape of the bones of the foot, structure of musculature, and the 

orientation of the human body and head differentiate modern human bipedal posture from our 

ancestors and present-day mammals (Ivanenko et al. 2013). It is only human to use habitually 

an erect bipedal gait with a heel-strike well in front of the body. A linear relationship between 

the time course from initiation of independent locomotion and the adult brain mass, which has 

been documented among 24 different mammalians (Garwicz et al. 2009), suggests: the bigger 

the brain size, the longer the time to initiate walking. Attempts to develop diverse functions 

such as stance, balance and orientation matching locomotor control therefore require 

maturation of large parts of the central nervous system (CNS) (Lacquaniti et al. 2012). 

1.3.1 Bipedal posture  

The interdependency of regulation of posture and locomotion takes place across different levels 

of the CNS, spaning from the motor cortex to the basal ganglia, the brain stem and the spinal 

cord to begin motion by means of arranging required spatial frameworks (Grasso et al. 2000). 

These spatial organizations permit postural adjustments during locomotion (Garcia-Rill 1986; 

Grasso et al. 1999). Furthermore, the activation of mechanisms involved in adjustment of 

postural muscle tone and the spinal stepping generator known as central pattern generators 

(CPGs) are interdependent (Mori 1987). 

Postural tone of the skeletal muscles is believed to be a foundation of habitual human posture 

(Ivanenko et al. 2013). Postural tone is an unconscious, low-amplitude, long-lasting muscle 

tension distributed in a specific pattern along the entire body axis. Experimentally disturbing 

this muscle tension lead to changes in postural orientation (Kluzik et al. 2005; Wright 2011) as 

well as gait parameters (Ivanenko et al. 2006; Selionov et al. 2009). A quotation from 

Sherrington (1906) “posture follows movement like a shadow,” underlines the interaction 

between posture and movement because without an appropriate postural tone execution of fine 

movements are not possible. He believed that the global locomotion might be altered as a result 

of disturbances of tonic activity (Sherrington 1906).  
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Uprightness of the body as a hallmark characteristic of human has two aspects to it: erectness 

of the trunk and bipedality during stance and gait (Ivanenko et al. 2013). The development of 

uprightness cannot be made possible without the sense of balance (Tobias 1992). In addition 

to these two most striking traits of human uprightness, other characteristics of the upright 

posture of man are proposed to be: an arched form of the feet, the relative length of the lower 

limb bones, the size and shape of hip and knee joints, the inside oblique position of the thigh 

bones, the position and structure of the pelvis and chest, shape and orientation of the vertebral 

column, and the structure and orientation of the skull (Wright et al. 2012; Ivanenko et al. 2013).  

1.3.2 Bipedal gait 

Walking and running are two ubiquitous forms of human locomotion (Fig. 1-1). Human 

walking is characterized by a forward and backward oscillation of the upper limbs as well as 

pendulum and inverted pendulum motion of the legs during the swing phase and the stance 

phase, respectively (Fig. 1-2). One gait cycle (two consecutive steps) of walking constitutes 

stance and swing phases. The stance phase is composed of single- and double-support phases 

and the body is raised during the single-support around midstance (Fig. 1-2).  

One feature that further differentiates human walking from other gaits is the profile of the GRF, 

where two vertical peaks (in early and late stance) are distinguished by a trough in midstance, 

owing to a partial unloading from the opposite limb (Winter 1991; Borghese et al. 1996). 

Meanwhile, the trunk is systematically used for both stability and locomotion. Therefore, 

locomotion  — through harmonized interactions between upper limbs, trunk, and lower limbs 

— must satisfy a quiet movements while being tolerant to internal (e.g., body posture) and 

external perturbations (e.g., uneven terrain) (Dietz et al. 1987; Hirschfeld and Forssberg 1991). 
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Fig. 1-1. Biomechanics of human gait.  (A) walking (left) and running (right) kinematics. The CoM 
during walking is located highest at mid-stance (MS) and lowest near toe-off (TO) while during running, the CoM 
reaches the highest elevation during the aerial phase and the lowest at MS, when the hip, knee and ankle are 
flexed. Furthermore, the trunk is also more inclined and the elbow more flexed. (B) represents biomechanical 
contrasts between human gaits. By means of inverted pendulum mechanism during walking forward kinetic 
energy (Ekf) is exchanged for gravitational potential energy (Ep) between heel-strike (HS) and MS; the exchange 
is reversed between MS and TO. However, during running, a mass-spring mechanism generates Ep and Ekf to be 
in phase, so that both minimize between foot-strike (FS) and MS. Modified from Bramble and Lieberman 
(Bramble and Lieberman 2004). 

In human walking, potential energy (Ep) and kinetic energy (Ekf) of body CoM are in 

continuous exchange (Fig. 1-1B). This process of mechanical energy reconversion or energy 

recovery — represented as inverted pendulum mechanism — is known to minimize the 

muscular energy expenditure (Cavagna et al. 1976). Such reduction in energy expenditure is 

considered as one of the key attributes of human walking (Saibene and Minetti 2003). During 

a preferred walking velocity, the efficiency of energy exchange between kinetic and potential 

energy can be nearly 70% (Cavagna et al. 1977). 
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Fig. 1-2. The CoM and the inverted pendulum. The CoM during single support phase is supported, without 
requiring work or force, by the inverted pendulum. The CoM velocity during double support is redirected by each 
leg’s force acting along the leg. Zero net work (positive work by trailing leg and the negative work by leading leg 
on the CoM) during double support is performed to ensure redirection for the next step. Adapted from Arthur D. 
Kuo (Kuo 2007). 

The unique human bipedal gait — as one of the most highly automated motor behavior — and 

heel-to-toe rolling pattern (Bramble and Lieberman 2004) requires a multi-dimensional 

neuromotor organization integrated at various levels of CNS. This involves a specific 

intersegmental coordination, motor patterns, equilibrium, and walking experience when 

learning plantigrade gait at the beginning of independent walking (Forssberg 1985; Ivanenko 

et al. 2007; Dominici et al. 2011; Lacquaniti et al. 2012). Nevertheless, we are able to execute 

compulsory gait techniques such as “stoop-walking,” in some occupational settings, e.g., in a 

low-seam coal mine (Gallagher et al. 2011) or trunk-flexed posture during sport mauvers like 

those adopted in speed skating or ice hockey. 

1.4 The role of trunk in human walking 

Balance during locomotion may be interpreted as a dynamic relationship between the CoM 

trajectory and the base of support which permits the forward progress of the body while 

remaining upright (Winter 1995). An alteration of the trunk posture may cause instability when 

this relationship is subject to some changes (Saha et al. 2008; Leteneur et al. 2009). The trunk 

orientation is realized to influence the kinematics, kinetics and energetics of lower limbs during 

weight bearing activities (Teng and Powers 2015). The trunk segment accounts for 36% of the 

body mass (Winter 2009). Therefore, a small deviation in the trunk posture can affect the 

locations of the CoM and the CoP, and accordingly, the orientation of the GRF vector 

(Oberländer et al. 2012). Depending on walking pattern and velocity, the trunk angle has been 

reported to vary within a range of ±8° about vertical axis in the ordinary gaits (Thorstensson et 

al. 1984; Goh et al. 1998). It has been shown that a forward inclination of the trunk leads to 
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lower knee extensor moments during walking, stair ascent and hop-landing (Asay et al. 2009; 

Oberländer et al. 2012; Leteneur et al. 2013). In general, we can investigate the influence of 

the trunk posture on lower limb dynamics using two approaches: between-subject and within-

subject comparisons.  

A study by Leteneur et al. (2013) found that the difference in the sagittal plane trunk posture 

between natural forward and backward leaners is ~4°. While ankle kinetics exhibited no 

significant group differences, individuals with a forward trunk inclination demonstrated 

significantly greater peak hip extensor moments and lower peak knee extensor moments 

compared with the backward leaners (Leteneur et al. 2013). Similar findings were reported in 

a study by Shimokochi et al (2009), suggesting a relationship between the location of the CoP 

and the kinetics of the lower limbs in a single-leg landing: a more anteriorly located CoP, a 

reduced knee extensor moment and a higher ankle plantar flexor moment. This is because a 

forward displacement of the CoP can be a result of a more forward inclination of the trunk in 

the sagittal plane (Shimokochi et al. 2009). 

The altered kinematics, kinetics and muscle activation patterns during weight-bearing tasks by 

means of experimentally induced changes in the sagittal plane trunk orientation have been 

documented (Grasso et al. 2000; Blackburn and Padua 2008; Saha et al. 2008; Blackburn and 

Padua 2009; Kluger et al. 2014). Grasso et al. (2000), Saha et al. (2008) and kluger at al. (2014) 

investigated adjustments in lower limbs biomechanics during walking with altered trunk 

orientations (i.e., 25° and 50°). These forms of gait were found to be associated with more 

crouched legs, changed GRF patterns and energy absorption/generation at the ankle and hip, 

respectively (Grasso et al. 2000; Saha et al. 2008; Kluger et al. 2014). In addition, the trunk-

flexed gaits lead to significant increases in the activation of gluteus maximus, rectus femoris, 

vastus lateralis, biceps femoris and gastrocnemius (Grasso et al. 2000).  

The influence of the natural trunk orientation on lower limb energetics in runners has also been 

examined (Teng and Powers 2015). The finding of this study showed that an increased energy 

absorption and generation of the knee extensors and decreased energy generation in the hip 

extensors in individuals with a relatively upright trunk posture. On contrary, runners with a 

more anteriorly flexed trunk demonstrate a greater energy generation in the hip extensors and 

reduced energy absorption and generation in the knee extensors. 

In summary, an increase in the trunk flexion during walking, running and landing can influence 

the lower extremity biomechanics. However, the dynamics of lower limb while adopting 
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maximal trunk flexion during walking and crossing uneven ground were not addressed in these 

previous studies. Examining how modifying the trunk orientation in the sagittal plane during 

walking affects the lower limb biomechanics can provide insights into the development of 

control strategies in the bio-inspired bipedal robots, and into fall-preventive measures in 

patients and older adults with diminished postural capacities, as well as into boundary 

constraints associated with human locomotion with implications for the evolution of bipedal 

locomotion. 

1.5 Models: mechanical description of basic dynamics of human 

gait 

Human walking is determined by a greatly multiplex synergy of the force-bearing structures of 

the musculoskeletal system (Wang et al. 2015). Although, human and artificial legs are very 

complex in structure and neural control, their basic mechanical behavior during walking can 

be described using a simplified phenomenological gait model, namely bipedal spring- mass 

model. These models can provide insight into the principles of legged locomotion, and 

eventually give a pivotal guidance for the design and development of legged robots. A spring-

like behavior in human and animal legs during stance, characterized as compliant legs, is 

produced by means of a properly adjusted muscle activation and the synergies across leg 

muscles with passive elastic structures (e.g., tendons) (Geyer et al. 2003). Hence, such behavior 

cannot be described as a simple linear spring. With the motion of the body mass during the 

stance phase of walking, the leg spring is compressed and uncompressed alternately to store 

and return the elastic energy, respectively (Wang et al. 2015). Observed the same compliant 

stance-leg function in walking and running, a bipedal spring–mass model is capable of 

reproducing the stance dynamics of walking (Fig. 1-3). Therefore, walking is known to be a 

bouncing gait like running rather than a stiff-legged inverted pendulum (Geyer et al. 2006). 

This is in contrast with a preceding interpretation of the leg behaviour, suggesting that the leg 

behaves as an inverted pendulum.  
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Fig. 1-3. Reproduction of stance phase GRF patterns by simple inverted pendulum and spring–mass 

models. (A) A simple inverted pendulum generates a poor prediction of the GRF (red) of that observed during 
human walking (black). (B) A more precise reproduction of GRFs by an inverted pendulum model, if the model 
includes a leg spring. (C) The reproduction of pattern of vertical GRF (Fy) and horizontal forces (Fx) in running 
by means of a simple spring–mass model. Using appropriate values for leg spring stiffness and angle of attack, 
absolute values of forces can be matched. Figure modified from Geyer et al. (Geyer et al. 2006) and Roberts et al. 
(Roberts and Azizi 2011). 

The global dynamics of human (Shen and Seipel 2012) and avian (Andrada et al. 2013) 

bipedalism can also be represented using the spring-loaded inverted pendulum (SLIP) model 

which is consisted of a massless springy leg and a point mass. In simulations of bouncing gaits 

by SLIP model the GRF is reproduced in a symmetric pattern. However, in other locomotion 

conditions when, for example in birds with a pronograde trunk posture, the vertical GRF is 

right-skewed and more vertically oriented (Andrada et al. 2013; Andrada et al. 2014), this 

model is unable to reproduce the dynamics of such gaits and to address the problem of the trunk 

stabilization.   

While walking upright poses advantages but also raises new challenges as two-thirds of our 

body mass is located two-thirds of body height above the ground (Winter 1995). A diminished 

base of support, as compared to the quadrupedal locomotion, and an elevated CoM in upright 

bipedal gait are two agents that may lead to an increased instability (Maus et al. 2010). 

Mechanically, such system which resembles an inverted pendulum might be intolerant to 
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perturbation. One solution to enhance the postural stability may be sought through the virtual 

pendulum (VP) concept (Maus et al. 2010). 

According to Maus et al. (2010) it seems that humans benefit from an external support by 

creating a virtual pivot point (VPP) above their CoM (Fig. 1-4A). The VPP— an emergent 

behavior of gait mechanics rather than a deliberate locomotion function— is an intersection 

point above the CoM along the long axis of body where the GRF redirected to by hip torques 

during stance. Based on this, such virtual support is likely adequate to achieve postural stability 

(Maus et al. 2010).  

 

Fig. 1-4. The VPP model. (A). The VPP model consists of a rigid body above two massless leg springs. Hip 
torques (τ) are introduced to redirect the GRFs to a point located above the CoM. This intersection point is termed 
the virtual pivot point (VPP). (B) Modeling an asymmetric leg behavior as parallel spring and damper in a small 
bird (quail) by means of a VPP concept. ϴ, angle between trunk and VPP; α, angle between ground and effective 
leg; k, leg stiffness; c, leg damping; l0, rest length at touchdown; rVPP, distance CoM–VPP (modified from 
Andrada et al. (Andrada et al. 2014)).   

As stated before the postural stability cannot be explored by means of a canonical SLIP model; 

therefore, incorporation of trunk (Maus et al. 2010; Andrada et al. 2014) instead of mass point 

into SLIP model may lead to a better understanding of balancing the trunk in legged 

locomotion. Furthermore, having observed an asymmetric leg function in bird experiments (i.e. 

quails), Andrada et al. (2014) modelled the axial leg behavior as parallel spring and damper 

elements (Fig. 1-4B).  

Unlike upright bipedal gait in humans, birds’ locomotion takes place with an almost horizontal 

trunk posture, i.e. a pronograde posture. Such frame is associated with an anteriorly located 

CoM with respect to the hip (Fig. 1-4B) (Gatesy 1991; Allen et al. 2013) compared with a 

vertically oriented CoM relative to the hip in humans. Under such circumstances, balancing 
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the trunk against gravity leads to increased hip extension torques (Blickhan et al. 2015). 

Therefore, this poses constraints to the effective leg (connecting hip to CoP) function. The 

locomotion with a pronograde posture induces kinematic and kinetic asymmetries in leg 

function, as characterized by longer effective legs and higher forces in the early stance phase 

than lift-off. Such an asymmetric behavior is caused by the trunk orientation whose controlling 

entails damping in the leg (Andrada et al. 2014). 

While the prediction of the axial leg function (the leg length and force in the leg direction) in 

pronograde locomotion of birds was accomplished by including axial damper parallel to the 

spring (Fig. 1-4B) to describe the compliant axial leg function (Andrada et al. 2014), no 

evidence is available in the literature regarding modelling of the leg using different 

configurations, e.g. the model of spring and damper in series. Given different leg models may 

give different predictions with respect to the gait stability, it is of research importance to find 

and examine novel models and theories of legged locomotion, essential to better predict a 

robustly stable legged locomotion of animals and some robots (Geyer et al. 2006; Maus et al. 

2010; Shen and Seipel 2012; Andrada et al. 2014).  

1.6 Implications of perturbation experiments  

To further our understanding of human bipedal locomotion, our investigation must therefore 

not only cover the traditional clinical studies in healthy individuals while level walking, but 

also the adaptive and perturbation studies to examine the human morphology principally. 

Except under professional and certain circumstances (e.g. athletes, laborers, etc.), many of 

human beings rarely exploit their locomotor apparatus completely. Hence, there are still room 

to explore human frame experimentally. Given survival and evolution of living beings 

dependent on the ability to effectively deal with external and internal perturbations, the study 

of motion systems under perturbations can lead to a further identification of their properties 

(Blickhan et al. 2013).  

Understanding changes in gait dynamics and associated compensatory mechanisms caused by 

both internal (posture) and/or external (surface) perturbations can provide insight into 

functional demands of bipedalism, and supply important information to a breadth of 

disciplines, ranging from morphology, physiology, ecology, and evolutionary biology to 

physics and engineering. 

From biological perspective, different body frames can yield divergent dynamics or locomotor 

patterns. For example, although both ostriches and humans are bipeds, differences in body 
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design allow ostriches to exert smaller braking forces than humans during turns (Qiao and 

Jindrich 2014). On the other hand, despite striking morphological disparities between human 

and avian, similar kinematic behaviours such as leg angle and leg length are shared among 

these species while running across uneven ground (Muller et al. 2016). Given such 

observations, we may therefore require a parallel investigation of many levels of biological 

systems and comparative data, and analyses from a broader range of locomotor environments 

to expand our understanding of the terrestrial bipedal locomotion. The study of human walking 

e.g. with a pitched posture proceeding to maximal trunk flexion in an attempt to mimic a 

pronograde locomotion of birds could be an example that provides relevant insights for the 

functional role of trunk in locomotion, and the influence of its orientation on gait dynamics.  

Meanwhile, the experimental studies that permit testing the execution of human apparatus with 

different locomotor postures may shed some light into the evolution of human bipedal 

locomotion. Indeed, an exploration of gait features in a more complex setting, and in response 

to disturbances compared with quiet locomotion may also elicit the functional demands that 

have influenced the evolution of human bipedalism (Sockol et al. 2007; Pontzer et al. 2009; 

Blickhan et al. 2013).  

One of the interesting subjects in engineering sciences is the design and development of 

human-inspired bipedal robots. In the artificial legged systems, the stability under a highly 

dynamic gait is still a challenging functional task (Merker et al. 2011). An advancement in the 

performance of such machines can be made by incorporating the knowledge obtained from the 

extensive analysis of human locomotion. More specifically, the compensatory adaptations that 

manifest in response to the disturbances during human gait can serve as a basis to identify the 

mechanisms underlying a robustly stable gait. Moreover, in the field of prosthetic engineering 

in addition to inter-limb asymmetries (Merker et al. 2011), a better understanding of the intra-

limb leg operation in relation to the trunk geometry may help to guide the development of 

artificial limbs.    
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1.7 Interaction between posture and gait  
 

1.7.1 Clinical perspective  

It would be of clinical interest to identify the impact of variation in postural alignment on gait 

dynamics, given changes in the trunk orientation often occur with some pathological conditions 

or age. For instance, in patients with a lumbar flatback, a forward inclination of the trunk occurs 

(Potter et al. 2004). This in turn induces them to take resort to various forms of kinematic 

adaptations such as hyperextension of the spine and hips (Hasday et al. 1983; La Grone 1988) 

in order to maintain balance and align the trunk over the hip joints (Wasylenko et al. 1983). 

Such deformity in the trunk alignment is associated with a reduced walking capacity over level 

and uneven ground (Farcy and Schwab 1997). In contrast, an inadequate spine and/or hip 

extension often causes a crouched gait (Hasday et al. 1983), characterized by an increased knee 

and hip flexion during the stance phase of gait (Perry and Davids 1992). A decreased ability in 

balance control and a greater risk of fall are also common in patients exhibiting an abnormal 

increase in the anterior concavity of the thoracic spine in the sagittal plane, i.e. kyphosis (Sinaki 

et al. 2005). 

Clinically, a swayback posture during stand and walk has been observed in patients with 

anterior hip pain. A swayback posture is a combination of posterior displacement of the upper 

trunk and an anterior displacement of the pelvis (posterior tilt). As compared to the normal 

posture in which the body's line of gravity passes roughly through the hip, in the swayback 

standing posture this line passes posterior to the hip (Somers, 2001). Thus, the swayback 

posture may be associated with a higher or longer hip flexor moment during walking. This, in 

turn, may lead to repetitive microtrauma and pain. On contrary, in individuals who habitually 

maintained a more forward inclined trunk posture, the hip extensor moment had a longer 

duration and the hip flexor moment had a lower magnitude (Leteneur et al., 2009). Patients 

with various knee pathologies have also been found to exhibit an alteration in the trunk 

kinematics (Asay et al. 2009; Oberländer et al. 2012). Individuals with severe knee 

osteoarthritis, for instance, demonstrate a more flexed trunk posture (6.3°) alongside a greater 

peak hip extensor moments and lower peak knee extensor moments during ascending stair than 

healthy controls  (Asay et al. 2009). 

The motor control of elderly patients may be affected by the impairment of posture — 

characterized by protrusion of the head and an increased thoracic kyphosis — and therefore are 
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at an increased risk of falling and fractures (Ganz et al. 2007; de Groot et al. 2014). Perhaps, a 

forward shift of the body’s CoM in patients with an increased thoracic kyphosis may require 

correcting responses which may limit the ability to cope with perturbations during walking. A 

prolonged sustaining of a bent posture as observed in some elderly females (Balzini et al. 2003) 

found to be associated with some negative clinical implications, such as the vertebral pain, 

muscular deterioration and a diminished motor function.  

1.7.2 Walking on uneven surfaces  

Daily locomotion involves walking and running on constantly changing ground surface 

properties and levels. Our locomotor system is required to continually cope with a variety of 

natural terrains, such as grass, sand or snow and uneven ground like holes, obstacles and curbs 

while maintaining the dynamic equilibrium. Since research focus has often been placed on 

human locomotion over smooth and level surfaces, thus our knowledge of biomechanics of gait 

on uneven ground is limited. However, such understanding could potentially guide the 

development of bio-inspired robots, exoskeletons, prostheses and clinical interventions during 

gait rehabilitation. Gait dynamics vary with environmentally induced perturbations.  

The study by Muller et al. (2014) found walking across uneven ground, i.e. 10 cm drop, requires 

kinetic and kinematic adjustments not only in the perturbed step but also in the preceding step. 

The observed adjustments involved more crouched lower limb, more upright trunk posture and 

an attenuated GRF second peak, as approaching the drop (Muller et al. 2014). By obscuring 

the drop, they further investigated the role of the vision in negotiating uneven ground; they 

found that the visual perception of the perturbation allows feed-forward control mechanisms 

that are not available during the camouflaged drop scenario. This was further identified when 

human walkers demonstrated more pronounced changes in kinematic and kinetic behaviors in 

obscured perturbed steps than visible ones.  

The biomechanics and energetics of walking on uneven terrain, with a continuous 2.5 cm height 

variability, represent an increased energy expenditure of ~28% as compared to walking on a 

smooth terrain (Voloshina et al. 2013). The findings of this study showed while contributions 

from step parameter adjustments and increased muscle activities were slight, such a greater 

energy cost was the result of an increased positive work at the hip and knee joints. 

In a study (Höhne et al. 2011) aimed to examine the effect of impaired plantar cutaneous 

afferent feedback (by means of intradermal injections of an anaesthetic solution) on dynamic 

stability after an unexpected perturbation (a trackway covered by an exchangeable element 
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allowing the surface alterations from hard to soft and vice versa) revealed that the loss of plantar 

sensation does not diminish the adaptational capacity of human locomotor system. 

The other forms of environmental perturbations that can potentially challenge human traversing 

during daily locomotion are slippery surfaces such as wet, icy and soft terrains. Marigold and 

Patla (2002) investigated the reactive recovery responses that are employed to maintain balance 

during an unexpected slip. This study (Marigold and Patla 2002) found that the previous 

experience of the perturbations facilitates the adaptations, and the awareness of the surface 

properties leads to proactive adjustments, allowing a safe accommodation of the slippery 

surface.  

Stepping down on an unexpected elevation during walking is a common task that can cause 

stumbles or falls. It is hypothesized that such a movement would be associated with the loss of 

control over the task and fall would occur, owing to buckling of the leg at landing. This 

assumption was examined in a study (van Dieen et al. 2007) which revealed that in healthy 

young male individuals buckling of the leg does not happen, most likely because of its more 

vertical orientation and thus momentum could not be adequately threatened at landing; 

however, a swift step of the trailing leg prevented the fall. Such mechanism was likely taken 

to counteract the forward linear and angular momentum of the trunk. 

Walking can also be disturbed by an unexpected loss of footing due to a misstep into a hole. 

Impairment of rapid postural responses, key in restoring balance, may cause serious falls and 

injuries (Berg et al. 1997). Therefore, research on risk factors and mechanisms underlying falls 

and fall-prevention strategies is of importance for understanding the reactive responses to 

unexpected perturbations. To address this problem, Shinya et al. (2009) investigated the 

corrective postural responses after an unexpected complete loss of the ground support. 

Restoring balance in response to the perturbation was established using three strategies: (1) 

arousal of the reflexive muscle activities in the ankle plantar- and dorsi-flexors; (2) 

readjustment of the walking rhythm during the perturbed stance phase; (3) continuation of the 

adaptive locomotion to overcome the hole by bending both knees during the swing phase of 

the following steps prior to terminate walking (Shinya et al. 2009).  

While previous studies have extensively addressed the human gait, involving mechanisms of 

the postural control in the context of expected and unexpected changes in the surface 

conditions, interaction of gait and posture, and the dynamics of gait during traversing uneven 

ground; however, our understanding of walking across uneven ground with an altered trunk 

orientation is limited (Fig. 1-5). An identification of challenges that stem from coping with 

such gait conditions as compared to upright bipedal gait may shed light on gait mechanics of 
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individuals with an altered trunk posture with possible implications for identifying fall risk 

factors, and subsequently fall-prevention measures.  

 

 

Fig. 1-5. Human walking across uneven ground while adopting various trunk flexion. 

An alteration of the walking posture imposes certain mechanical constraints on the locomotor 

patterns. During the trunk-flexed gaits legs are more crouched and the pelvis is more posteriorly 

shifted (Saha et al. 2008), which contribute to offset an anterior shift of the CoM. These 

adjustments lead to changes in several kinematic and kinetic variables, as compared with a 

regular upright walking. For instance, a phase lag in the position of the hip relative to the ankle 

joint results in a phase lag in the CoM kinematics which, in turn, causes significant changes in 

the GRF parameters (Saha et al. 2008). Moreover, change in the walking posture, namely 

walking with bent trunk and bent knee, has been found to influence neither the segmental 

kinematic trajectories nor the planar constraint of intersegmental covariation (Grasso et al. 

2000). However, such state is maintained through the compensatory adjustments in gait kinetic 

parameters, the temporal coupling across the oscillating body segments and the muscle 

synergies. Also, a reduced mechanical advantage of the flexed limbs (Biewener 1990) along 

with the energy absorption at the ankle and energy generation at the hip suggest an increased 

mean level of the muscle activity during trunk-flexed gaits. Build upon the relevant studies on 

interaction between posture and locomotion, it is convincible that increasing the sagittal trunk 

flexion during gait is associated with remarkable kinetic, kinematic and energetic changes in 
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the lower limbs. However, our understanding of motor control of human gait in which trunk 

(36% of total body mass) is allowed to be bent fully, is very limited.  

The stability of gait is subject to the trunk orientation and the CoM location. It is of research 

interest to investigate whether creating profound changes in our posture architecture would 

pose significant control challenges to our locomotor system. From control perspective, the 

stability of human bipedal gait is inherently a challenging functional task as two-thirds of body 

weight is centered at around two-thirds of body height above the ground (Winter 1995). The 

manipulation of this demanding task by changing the geometry of the trunk or/and subjecting 

to the external disturbances may add insult to injury. Compared to human upright trunk 

(orthograde), the trunk orientation in small birds is an almost horizontal (pronograde). For 

birds, the stabilization of the pronograde trunk during locomotion requires kinematic and 

kinetic asymmetries in leg function (Andrada et al. 2014). The location of the hip below the 

CoM facilitates a more elastic operation of the leg, leading to a more symmetric kinematic and 

kinetic behavior and the generation of hip extension and flexion moments in human gait. We 

expect mimicking birds’ pronograde locomotion may reproduce the comparable kinematic and 

kinetic behavior in leg function, as a forward shift of the CoM relative to the hip would 

constraints such elastic operation of the leg (Blickhan et al. 2015). Although the shift in the 

placement of hip with respect to the CoM may increase the cost of locomotion since higher hip 

torques would be required to balance the trunk (Storer 1971); however, the pronograde posture 

may ease the problem of stabilization.  

The compliant legs as in small birds is a matter of paradox in terms of economy and stability. 

Running with such compliant, crouched legs is associated with a lower muscle mechanical 

advantage and higher energy costs (McMahon et al. 1987; Biewener 1989; Gatesy 1991). On 

the other hand, as compared to the straight leg posture in human runners, the crouched leg 

posture in birds allow a greater robustness to ground height changes. One model that could 

explain why birds run with compliant legs, suggests the compromises in leg control for stability 

and economy (Daley and Usherwood 2010). Although our anatomy has not evolved for pitched 

postures, but the adaptive capacity of our locomotor apparatus allows maintaining bent postures 

during locomotion. This ability can be tested in experiments to shed new light on how crouched 

posture — biomechanically unfavorable and presumably metabolically expensive — derived 

from the bent trunk in the sagittal plane can influence the leg function and the capability of 

negotiating changes in ground level. Given a more forwardly bent trunk increasingly leads to 

a more crouched whole-body posture and thus the significant variations in kinematic behavior 



19 

 

of walking as compared to regular upright walking, this may cause us to assume that the 

negotiation of changes in ground level with an altered trunk orientation may lead to frail 

unstable gaits. Little is known whether the able-bodied walkers are able to cope with postural 

and setting-derived perturbations through modulation of the kinetic and kinematic 

characteristics of gait. In other words, the literature does not provide any evidence if the able-

bodied walkers have the capability of achieving robustly stable gaits while dealing with a hole 

in ground through dynamic adjustments in locomotor system prior, during and after 

perturbation. Such context-specific biomechanical regulations may involve different kinematic 

behavior between touchdown (TD) and toe-off (TO) moments, because an increase of the 

sagittal trunk flexion leads to a more asymmetric operation of legs. For instance, at TO a shorter 

effective leg with a steeper angle relative to TD would not allow adequate extension of legs. 

Having observed the capability of small birds in adjusting their zig-zag-like configured legs in 

order to cope with large disturbances in ground level (Blum et al. 2011), we hypothesize that 

adopting such crouched postures by human walkers may facilitate the traverse of uneven 

ground using compensatory adjustments in the trunk kinematics during the step-down. In this 

way, they may moderate variations in the CoM height. 

1.8 Dissertation outline 

The examination of locomotion in small birds has demonstrated that the pronograde trunk 

orientation induces prominent intra-limb asymmetries in the axial leg function, namely axial 

leg force and effective leg (connecting hip to Cop) length. However, it is not well understood 

whether these kinematic and kinetic asymmetries caused by the trunk represent general 

constraints on leg function regardless of the specific leg architecture or size of the species. 

Chapter 2 of this work attempts to address this problem through examining: a) the effect of 

imposed trunk flexion on leg function with emphasis on the analogy between locomotion in 

small-bodied bipedal avian and human; and b) comparison between the ability of two simple 

models, namely spring and damper in series and parallel spring and damper, in prediction of 

the axial leg force. The findings of this chapter reveal that an experimentally prescribed 

pronograde posture in able-bodied walking induces asymmetries in effective leg function, as 

characterized by right-skewed vertical GRFs and shorter leg lengths at toe-off comparable with 

the asymmetries found in birds. These similarities between dynamics of locomotion in small 

birds and humans with flexed trunk indicate that the stabilization of the trunk constrains the 

basic leg function regardless the specific leg morphology, at least in the investigated taxa. 

Furthermore, while the parallel spring and damper model has been widely used in 
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biomechanics and robotics to investigate legged locomotion, the model with a spring in series 

with the damper produces better predictions of the leg forces across gaits with various degrees 

of trunk flexion. 

While human perturbation experiments have individually analysed either walking with natural 

and experimentally induced trunk configurations or adaptive and reactive kinematic and kinetic 

mechanisms in pre-perturbation and perturbation steps and have made comparisons with 

animal and avian locomotor behaviour, to our knowledge, kinetic and kinematic adaptations 

when stepping down (perturbation) alongside pre- and post-perturbation steps while 

maintaining different bent postures have not been investigated yet. It is convincible to assume 

that walking with an altered trunk configuration and negotiation of changes in ground levels 

lead to posture- and step-specific main effects on GRF parameters compared with the upright 

posture gait and level walking, respectively. Walking with altered trunk orientations yields 

different patterns of GRF (Grasso et al. 2000; Saha et al. 2008), however it is not given whether 

traversing uneven ground with trunk-flexed postures would demonstrate dissimilar gait 

dynamics than walking with a regular erect trunk. Chapter 3 expands upon this notion by 

examining the interaction effects between changes in trunk posture and step types on walking 

kinetics. Hereto, we demonstrate that gaits with an increase of trunk flexion are increasingly 

associated with reduced kinetic adaptations across steps in uneven ground compared with the 

unperturbed level ground step. Altering the trunk angle is assumed to facilitate lower limb 

kinematic adaptations to changes in ground level. Healthy young participants in this experiment 

were found to exploit this mechanism to counteract e.g. the aligned effects of trunk flexed gait 

and step down on the first GRF peak in the perturbation step and on the second GRF peak in 

the pre-perturbation step to avoid excessive loads and falling, respectively.  

Chapter 4 characterizes the adaptive kinematic behavior of able-bodied walking while 

negotiating uneven ground with altered trunk orientations as a complementary step to the 

Chapter 3. The contents of Chapter 4 indicate that the maintenance of dynamic stability while 

negotiating changes in ground level requires step-specific compensatory kinematic adaptations 

in lower limbs, regardless of the trunk orientation. As compared with regular upright walking, 

the trunk-flexed gaits across uneven ground exhibited: a) more crouched legs, characterized by 

sustained knee flexion during stance; b) a greater TD-TO kinematic discrepancy in effective 

leg (i.e. shorter legs at toe-off); c) a marginally flatter leg angle at TD. Moreover, backward 

rotation of the trunk during step-down seemed to be not only a preventive strategy employed 

by able-bodied participants, possibly, to control angular momentum of the body, but also to 
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moderate changes in the CoM trajectory in trunk-flexed gaits. Finally, at the end of the step-

up, participants demonstrated the restoration of the kinematic parameters to values of the 

unperturbed corresponding steps. These results suggest stability and robustness of the gait in 

able-bodied participants. 

Finally, Chapter 5 summarizes the separate findings of this thesis work to a more coherent 

picture of dynamics of human walking in response to the postural and environmental 

perturbations, and draws general biomechanical and clinical conclusions based on the results. 
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RESEARCH ARTICLE

Increasing trunk flexion transforms human leg function into that of

birds despite different leg morphology
Soran Aminiaghdam*, Christian Rode, Roy Müller and Reinhard Blickhan

ABSTRACT

Pronograde trunk orientation in small birds causes prominent intra-limb

asymmetries in the leg function. As yet, it is not clear whether these

asymmetries induced by the trunk reflect general constraints on the leg

function regardless of the specific leg architecture or size of the

species. To address this, we instructed 12 human volunteers to walk at

a self-selected velocity with four postures: regular erect, or with 30 deg,

50 deg and maximal trunk flexion. In addition, we simulated the axial

leg force (along the line connecting hip and centre of pressure) using

two simple models: spring and damper in series, and parallel spring

and damper. As trunk flexion increases, lower limb joints becomemore

flexed during stance. Similar to birds, the associated posterior shift of

the hip relative to the centre of mass leads to a shorter leg at toe-off

than at touchdown, and to a flatter angle of attack and a steeper leg

angle at toe-off. Furthermore, walking with maximal trunk flexion

induces right-skewed vertical and horizontal ground reaction force

profiles comparable to those in birds. Interestingly, the spring and

damper in series model provides a superior prediction of the axial leg

force across trunk–flexed gaits compared with the parallel spring and

damper model; in regular erect gait, the damper does not substantially

improve the reproduction of the human axial leg force. In conclusion,

mimicking the pronograde locomotion of birds by bending the trunk

forward in humans causes a leg function similar to that of birds despite

the different morphology of the segmented legs.

KEY WORDS: Trunk orientation, Asymmetry, Able-bodied walking,

Posture, Leg model

INTRODUCTION

Bipedal walking and running are the common human gaits.

Humans, birds, and sometimes apes and monkeys use bipedal

locomotion (Alexander, 2004; Hirasaki et al., 2004). In contrast to

most animals, human walking is characterized by an erect trunk

(Grasso et al., 2000), extended limbs during the stance phase (Foster

et al., 2013) and two-peaked vertical ground reaction force (GRF)

patterns (Alexander, 2004; Winiarski and Rutkowska-Kucharska,

2009; Toda et al., 2015). The dynamics of locomotion can be

affected by altering specific gait requirements. For example,

running with flexed knee decreases the vertical stiffness of the

legs relative to normal human running (McMahon et al., 1987).

Although bipedal locomotion in birds and humans seems to be

highly adapted (Alexander, 2004; Müller et al., 2016), the design of

their locomotor systems is drastically different, not only in terms of

segmentation but also for their hip placement with respect to the

centre of mass (CoM) (Gatesy and Biewener, 1991). Unlike human

CoM, which is situated above the hip, owing to a horizontal upper

body orientation (pronograde) in birds, the hip is located posterior to

the CoM (Hutchinson and Allen, 2009). Birds with horizontal trunk

orientation achieve steady-state locomotion using two leg strategies

(throughout the article, ‘leg’ refers to the segment connecting the hip

and the centre of pressure, CoP). The first is a kinematic asymmetry,

i.e. longer legs at touchdown (TD) and shorter legs at toe-off (TO);

the second is a kinetic asymmetry i.e. exertion of greater forces in the

early stance phase and attenuated forces during the rest of stance

phase (a right-skewed GRF pattern) (Andrada et al., 2014).

The human trunk accounts for more than 50% of total body mass;

hence, trunk orientation has a significant effect on the position of the

CoM and human locomotion (de Leva, 1996; Gillet et al., 2003;

Leteneur et al., 2009). The trunk stabilization, basically the task of

balancing an unstable inverted pendulum standing on the hip (Maus

et al., 2010), is an important task in human locomotion. Humans are

able to adopt pitched positions on command, but certainly, our

locomotor system is not tuned to such postures. This ability can be

exploited in experiments using different postures to shed new light

on how trunk orientation can influence the leg function or on the

biomechanically unfavourable, probably metabolically expensive,

posterior position of the hip with respect to the upper body CoM in

birds (Alexander, 1991; Blickhan et al., 2015).

Despite the different morphology of human and bird legs, in both

walking and running, the function of the virtual leg can be described

with surprisingly simple phenomenological gait models (Maus

et al., 2010; Andrada et al., 2014). In a system including a trunk with

inertia, the human leg function could be approximated with a

spring-like telescopic leg and hip torques that keep the trunk upright

(Maus et al., 2010). A spring-like axial leg function may result from

compliant muscles and properly adjusted muscle activation (Geyer

et al., 2003). However, when modelling the pronograde locomotion

of birds, the spring describing the compliant axial leg function (leg

length and force in leg direction) was complemented by axial

damping to successfully explain the axial kinetic and kinematic

asymmetries induced by trunk orientation (Andrada et al., 2014).

Following the principle of parsimony, it is important to find

simple yet well-fitting models of the leg function because they are

convenient and transparent in systematic studies on the influence of

basic parameters on performance. Moreover, such models can be

applied to the investigation of the locomotion stability (Geyer et al.,

2006; Maus et al., 2010; Andrada et al., 2014) or in virtual model

control of complex machines (Sreenath et al., 2011). Dissimilar leg

models may yield different predictions with respect to gait stability.

Although it is common to use a spring and a damper in parallel to

describe the axial leg function (Shen and Seipel, 2012; Andrada

et al., 2014), to the best of our knowledge, a model with a damper in

series with a spring using the same number of parameters has not yet

been employed to investigate the asymmetric axial leg function.Received 14 August 2016; Accepted 17 November 2016
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Gait asymmetries are the key traits of human locomotion

(Dingwell et al., 2010). This is evident in a left–right asymmetrical

behaviour during locomotion in able-bodied participants, even with

equal leg masses (Sadeghi et al., 2000), in temporal and kinematic

parameters (Gundersen et al., 1989), inGRF (Herzog et al., 1989) and

in joint moments (Leteneur et al., 2009). While such inter-limb

asymmetries have been extensively studied in human walking and

also in technical walking systems (e.g. legged robots, prosthetic legs)

(Merker et al., 2011), the intra-limb asymmetries in leg function are

not well understood. In spite of a considerable number of studies on

the potential effect of trunk posture on the human walkers whether as

an imposed trunk posture (Grasso et al., 2000; Saha et al., 2008;

Kluger et al., 2014), the natural inclination of the trunk (Leteneur

et al., 2009, 2013) or age-related flexed posture (McGibbon and

Krebs, 2001; de Groot et al., 2014), little is known about the effects

of trunk orientation on the axial leg function, specifically when

trunk posture is varied across a wide range of angles in the sagittal

plane.

We hypothesize that humans increasingly approximate

asymmetries observed in the axial leg function of birds during the

stance phase, characterized by a right-skewed GRF profile and

increased TD and TO kinematic asymmetries when proceeding

from the orthograde to pronograde trunk orientation. This would

indicate that the trunk posture imposes specific constraints on

bipedal terrestrial locomotion in terms of leg function despite

considerable differences in the detailed morphology of the leg or the

size of the biological systems.We test this hypothesis in able-bodied

participants walking with various trunk orientations. Furthermore,

we investigate whether either leg model, the parallel spring and

damper system or the model with spring and damper in series, gives

a superior prediction of the axial leg function.

MATERIALS AND METHODS

Human subjects

Twelve able-bodied adults (six females, sixmale) aged 26±3.35 years

(mean±s.d.)with average height of 169.75±7.41 cmand averagemass

of 65.08±8.07 kgparticipated in this study. Participants had noknown

musculoskeletal or neurological disorders that could affect their

walking pattern or trunk motion. An informed consent form was

signed by each participant before participation. The experimental

protocol was approved by the local Ethics Committee of the

University of Jena (3532-08/12) and carried out according to the

Declaration of Helsinki.

Instrumentation

Data collection was conducted at the Biomechanics Laboratory at

the Sports Institute within University of Jena. All trials were

recorded with eight cameras (240 Hz) by a 3D infrared system

(MCU1000, Qualisys, Gothenburg, Sweden) and synchronized with

force acquisition by using the trigger of the Kistler software and

hardware. Three consecutive force platforms (9285BA, 9281B,

9287BA; Kistler, Winterthur, Switzerland) embedded in the middle

portion of a 12 m walkway sampled force at 1000 Hz.

A 13 body segment model was defined by 21 markers (spherical

retro-reflective surface, 14 mm). The markers were placed on the

following bony landmarks: fifth metatarsal heads, lateral malleoli,

lateral epicondyles of femurs, greater trochanters, anterior superior

iliac spines, posterior superior iliac spines, L5–S1 junction, lateral

humeral epicondyles, wrists, acromioclavicular joints, seventh

cervical spinous process and middle of the forehead.

Procedure

Participants were asked to walk at self-selected normal walking

speed for each of the four conditions: with their regular erect trunk

alignment (RE), with 30 deg of trunk flexion (TF1), with 50 deg of

trunk flexion (TF2), and with maximal trunk flexion (TF3) (Fig. 1,

Fig. 2A). To produce the most consistent trunk posture across

participants, trunk flexion was achieved by bending from the hips

(Saha et al., 2008). Considering this criterion, the TF3 constituted

the maximum amount of trunk flexion that the participants could

sustain while walking. Trunk angle was defined by the angle

sustained by the line connecting the midpoint between the L5–S1

junction (L5) and the seventh cervical spinous process (C7) with

respect to the vertical (Fig. 1A) (Müller et al., 2014). Practice trials

were permitted to allow participants to accommodate to the

locomotion conditions and secure step onto the force plates in

left–right–left sequence. Trunk angles were compared visually with

adjustable-height cardboard templates by a second examiner prior to

performing of each trial and during gait along the walkway for TF1

and TF2. For TF3, there was no comparison. The templates, drawn

with angles displaying target trunk flexion angles TF1 and TF2,

were hung on a wall parallel to the walkway: one at the beginning

and the other one in the middle of walkway. The participants

accomplished eight trials per condition in which each foot stepped

on a single force plate.

Selected variables and parameters

Gait parameters comprised velocity, stance time, step length, swing

time and cadence. We determined the mean angles of trunk, hip,

knee and ankle throughout the gait cycle (Fig. 1A). The vertical

displacement of CoM was determined by body segmental analysis

using the anthropometric tables of Zatsiorsky–Seluyanov modified

by De Leva relative to the laboratory coordinate system throughout

the stance phase (de Leva, 1996; Gard et al., 2004). Related

parameters were the values of the kinematic variables at the instants

of TD and TO, their range of motion, and their maximal values

(ankle: dorsiflexion and plantarflexion).

We assessed the first peak of the vertical ground reaction force

(VGRF1), the second peak of the vertical ground reaction force

(VGRF2), the peak horizontal braking force (HGRFb) and the peak

List of symbols and abbreviations
αTD, αTO leg orientation at touchdown and at toe-off

BW body weight

CoM centre of mass

CoP centre of pressure

cp, cs damping parameter (parallel spring and serial spring)

Fa axial force

GRF ground reaction force

HGRFb, HGRFp peak horizontal force (braking and propulsive)

IS vertical or support impulses

kp, ks stiffness parameter (parallel spring and serial spring)

L instantaneous leg length

l0 rest length of the leg

ld, ls0 rest length (serial damper and serial spring)
_l, _ld rate of length change (leg and serial damper)

PSD parallel-spring damper

RE regular erect trunk alignment

RMS root mean square

SSD series-spring damper

TD, TO touchdown, toe-off

TF1 30 deg of trunk flexion

TF2 50 deg of trunk flexion

TF3 maximal trunk flexion

VGRF1, VGRF2 vertical ground reaction force (first and second peak)
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horizontal propulsive force (HGRFp). For kinetic analysis, GRF was

normalized to the participant body weight (BW). A vertical GRF

threshold of 0.03 BW was used to determine the instants of TD and

TO at each contact. Furthermore, we determined the duration of the

braking phase relative to the duration of the stance time and calculated

the vertical or support impulses (IS) by integrating the according

force–time curves and the normalized IS to the product of body

weight and the square root of the quotient of leg length and gravity

(Hof, 1996). Leg (Fig. 1B) was normalized to the distance between

the greater trochanter marker and the lateral malleoli marker at the

instant of TD. Leg orientation, angle between leg and ground, at the

instants of TD (αTD, angle of attack) and TO (αTO) was calculated

with respect to the negative x-axis (Fig. 1B).

Data processing and statistics

Kinetic and kinematic data of all successful trials were analysed

using custom written MATLAB (MathWorks) code. The raw

coordinate data were filtered using a fourth-order low-pass, zero-lag

Butterworth filter with 12 Hz cut-off frequency.

The effects of trunk orientation on joint kinematics and kinetics

were evaluated using SPSS (SPSS Inc., Chicago, IL) with a

statistical significance level of 0.05. For all participants, eight trials

were analysed for each trunk posture. The data were categorized

based on the trunk posture (RE, TF1, TF2 and TF3). Prior to

analysis Levene’s test and Kolmogorov–Smirnov test were

performed to examine the equality of variance and normality of

distribution, respectively. If data were parametric, a one-way

ANOVA and paired t-test were used to examine the differences

across gait conditions and in case of a significant difference, post

hoc Bonferroni testing was employed; otherwise, a Wilcoxon

signed-rank test was performed.

Leg models

To determine the axial leg function (Andrada et al., 2014), the

sagittal plane GRF of the leg was projected onto the leg axis. Axial

leg force was modelled in two different ways: parallel spring and

damper elements (PSD), and spring and damper elements in series

(SSD) (Fig. 1B). For the parallel arrangement, the axial force Fa is

A B C

Hip
CoM

L
e
g

ks

cs

α CoP

CoM

C7

L5

Hip

Hip angle

Knee angle Knee

Ankle
Ankle angle

Toe

Trunk angle

Fig. 1. Human and bird locomotion.

(A) Illustration of the definitions of hip,

knee and ankle joints as used in this

study. (B) Side view of one participant

while adopting regular erect (RE, grey),

30 deg trunk flexion (TF1, blue), 50 deg

trunk flexion (TF2, green), maximal

trunk flexion (TF3, red) postures during

level walking gaits and modelling

asymmetric leg function as spring and

damper in series (SSD). CoM, centre of

mass; ks, stiffness parameter of serial

spring; cs, damping parameter of serial

spring; α, leg orientation; CoP, centre of

pressure. Consent to publish images

was obtained. (C) Lateral X-ray

projection of a quail enlarged for

comparison (courtesy of Prof. Martin

S. Fischer, Institute of Systematic

Zoology and Evolutionary Biology with

Phyletic Museum, Friedrich Schiller

University Jena).
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cycle for RE (black), TF1 (blue), TF2 (green) and TF3 (red) level walking gaits (N=12). The grey shaded area represents s.d. of RE gait. RE, regular erect trunk;
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governed simply by:

Fa ¼ kpðl0 � lÞ þ cp_l; ð1Þ

where l and _l are the instantaneous length and the rate of length

change of the leg, respectively, kp is the stiffness of the parallel

spring, l0 the rest length of the leg and cp<0 the damping parameter

of the parallel damper. The first term of the sum is the contribution

of the spring and the right term is the contribution of the damper to

axial force.

For the serial arrangement, Fa is equal in the spring and the

damper, and the sum of the length of the spring ls and the distance

the damper travelled ld equals l. Thus, the force is given by:

Fa ¼ ksðls0 � lsÞ ¼ cs_ld ; ð2Þ

where ks and ls0 are the stiffness and rest length of the serial spring,

cs<0 and _ld are the damping parameter and the rate of length change

of the serial damper, respectively. Hence, ld can be obtained by

integration of:

_ld ¼
ks

cs
� ðls0 � l þ ldÞ: ð3Þ

In simulations, the initial length of the damper was set to zero.

Optimization

We minimized the sum of squared differences between the axial

force that our leg models produced and the measured axial force by

varying the independent spring and damper parameters with the

MATLAB algorithm GlobalSearch. The leg length–time data were

used as input. In both leg models, the rest lengths of the springs were

dependent parameters. They were chosen such that the models

reproduced the force at TD. We set lower bounds and upper bounds

for stiffness and damping values. Stiffness values did not reach

boundaries, yet damping values did reach upper (0 Ns m−1) and

lower bounds (−100,000 Ns m−1) in some cases (especially in

upright walking) for the PSD and the SSD model, respectively. For

the PSD model, a damping value of 0 Ns m−1 indicates that the

Table 1. Spatiotemporal gait parameters

RE TF1 TF2 TF3

Velocity (m s−1) 1.49±0.10 1.60±0.12a 1.65±0.13a 1.63±0.14a

Stance time (s) 0.60±0.04 0.57±0.05a 0.54±0.04a,b 0.54±0.04a,b

Swing time (s) 0.40±0.01 0.39±0.03a 0.38±0.02a 0.38±0.03a

Normalized step length (step length/leg length) 0.96±0.09 0.96±0.08 0.96±0.09 0.96±0.09

Cadence (steps min−1) 118.3±7.29 124.6±10.5a 128.4±10.1a,b 128.4±10.6a,b

Braking phase (% stance phase) 52.1±4.46 44.3±4.98a 41.5±2.93a,b 38.3±2.92a,b,c

Values expressed as means±s.d. a,b,cSignificant differences (P<0.05). RE, regular erect trunk; TF1, 30 deg trunk flexion; TF2, 50 deg trunk flexion; TF3, maximal

trunk flexion.

Table 2. Kinetic and kinematic parameters

RE TF1 TF2 TF3

Kinematics

TrunkTD (deg) 7.70±3.08 32.4±7.20a 47.2±6.30a,b 71.7±7.80a,b,c

TrunkTO (deg) 5.70±2.90 30.9±6.47a 47.6±7.54a,b 71.3±7.16a,b,c

TrunkRoM (deg) 3.37±1.49 7.37±3.75a 9.09±2.90a,b 7.28±2.04a,c

Trunkmax (deg) 8.25±3.09 34.5±6.76a 51.5±7.23a,b 77.1±7.03a,b,c

HipTD (deg) 20.7±4.38 41.7±8.08a 55.0±8.16a,b 77.1±7.27a,b,c

HipTO (deg) −14.4±6.13 10.9±10.8a 23.5±9.50a,b 49.8±9.11a,b,c

HipRoM (deg) 41.2±3.24 39.4±4.14 37.5±4.95a 33.9±5.79a,b,c

Hipmax (deg) 24.9±5.12 47.6±7.81a 60.1±7.92a,b 83.1±5.73a,b,c

KneeTD (deg) 9.32±4.24 10.1±3.87 10.9±5.24 13.6±6.23a,b,c

KneeTO (deg) 35.1±5.49 40.2±6.20a 45.2±6.51a,b 54.02±8.31a,b,c

KneeRoM (deg) 68.3±3.56 66.6±2.78a 67.1±3.07 67.4±3.71

Kneemax (deg) 74.8±3.11 74.4±4.03 75.4±4.99 79.4±8.03a,b,c

AnkleTD (deg) −1.17±2.13 2.16±2.29a 2.15±2.97a 2.42±3.36a

AnkleTO (deg) −11.2±5.69 −6.81±5.11a −4.46±5.18a,b −2.67±6.41a,b

AnkleRoM (deg) 36.3±6.54 29.9±4.77a 27.8±4.62a 28.7±4.63a

Ankle dorsiflexion (deg) 7.25±4.43 8.45±4.25 9.68±4.57a 12.6±5.17a,b,c

Ankle plantarflexion (deg) −29.1±7.76 −21.5±5.76a −18.1±4.90a,b −21.2±7.69a,b

CoMTD (m) 0.87±0.47 0.84±0.39 0.84±0.44a 0.78±0.66a,b,c

CoMTO (m) 0.87±0.43 0.84±0.36a 0.83±0.48a 0.79±0.61a,b,c

CoMRoM* (m) 0.03±0.01 0.04±0.01a 0.03±0.01b 0.03±0.01

CoMmax* (m) 0.89±0.04 0.87±0.03a 0.86±0.04a 0.8±0.05a,b,c

Kinetic data

VGRF1 (N BW−1) 1.21±0.82 1.33±0.14a 1.39±0.40a,b 1.38±0.15a

VGRF2 (N BW−1) 1.15±0.07 0.97±0.10a 0.89±0.11a,b 0.87±0.09a,b

HGRFb (N BW−1) −0.21±0.05 −0.25±0.08a −0.28±0.09a −0.31±0.10a,b

HGRFp (N BW−1) 0.26±0.03 0.24±0.03a 0.22±0.04a,b 0.21±0.04a,b

IS 1.86±0.12 1.76±0.15a 1.70±0.14a,b 1.71±0.14a,b

Values are expressed as means±s.d. a,b,cSignificant differences (P<0.05). RE, regular erect trunk; TF1, 30 deg trunk flexion; TF2, 50 deg trunk flexion; TF3,

maximal trunk flexion; TD, touchdown; TO, toe-off; RoM, range of motion; max, maximal; VGRF1, 1st peak of vertical ground reaction force; VGRF2, 2nd peak of

vertical ground reaction force; HGRFb, peak horizontal braking force; HGRFp, peak horizontal propulsive force; IS, dimensionless vertical or support impulse.

*: measured during stance phase.
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damper produces no force, and for the SSD model, a damping value

of −100,000 Ns m−1 means that the damper barely moved. In both

cases, the PSD and the SSD leg models are in effect reduced to a

spring. To compare the quality of the fit between PSD and SSD

models, we used the root mean square (RMS) values that were

normalized to the maximal axial force of each trial.

RESULTS

Spatiotemporal parameters

Group means and standard deviations for spatiotemporal gait

parameters are listed in Table 1. Except for normalized step length,

significant differences (P<0.05) were found across gait conditions

for the entire gait parameters. As trunk flexion angle increased, an

upward trend can be observed in the velocity and cadence, and a

downward trend in the stance time and swing time. Between TF2

and TF3, there were no significant differences in parameters.

Joint kinematics

Fig. 2A shows the mean pattern of the trunk angle across gait

conditions throughout the gait cycle. The joint kinematics

parameters are shown in Table 2 (classified by postures). When

clustering by posture, differences (P<0.05) among groups were

found for all parameters of interest. Not surprisingly, the greater

the trunk flexion, the larger the hip flexion angle at TD and TO,

and the greater the peak hip flexion angle during the gait cycle.

The hip range of motion decreased with trunk flexion (Fig. 2B,

Table 2).

Knee flexion at TD and TO as well as peak knee flexion increased

with trunk flexion. In contrast, the knee range of motion decreased

marginally with trunk flexion (Fig. 2C, Table 2).

With increased trunk flexion, the ankle tended to be significantly

more dorsiflexed at TD and less plantarflexed at TO (Table 2). Also,

the peak ankle dorsiflexion during stance increased while the peak

ankle plantarflexion during swing was lower for gaits with a trunk-

flexed posture.

The vertical position of the CoM at TO was nearly the same as

that at TD within each gait condition (Fig. 3). However, compared

with RE, the vertical position of CoM at TD and TO decreased

significantly by ∼10% in TF3 (Fig. 3C, Table 2).

Kinetic parameters

Fig. 3 shows the average normalized vertical (A) and anterior–

posterior (B) GRFs at the preferred walking speed for the different

trunk-flexed postures. Although the magnitude of VGRF1 was

significantly higher for trunk-flexed postures, VGRF2 decreased with

trunk flexion by up to 24% in TI3 gait (Table 2). In comparison to

regular erect trunk (RE) gait, HGRFb amplitude increased by up to

47% andHGRFp amplitude decreased by up to 19% in TF3 (Fig. 3A,

Table 2). These resulted in a more asymmetric profile of vertical

GRFs, with the second peaks and valley much less pronounced for

trunk-flexed postures and asymmetric profile of horizontal GRFs,

with higher HGRFb and lower HGRFp (Fig. 3). Moreover, with

increased trunk flexion, the braking phase was systematically

decreased by ∼26% in TF3 gait (Table 2). The support impulse

20 40 60 80 100  

 

−0.1  

0 

0.1  

0.2 

0.3 

A 

20  40  60  80  100  
0  

0.5 

1 

1.4 

% Stance 

B 

20  40  60  80  100

0.75  

0.8 

0.85  

0.9 

0.93 

C 

−0.2

−0.3

C
o
M

 (
m

)

V
e

rt
ic

a
l 
G

R
F

 (
B

W
)

H
o
ri
z
o
n
ta

l 
G

R
F

 (
B

W
)

0 0 0

RE
TF1
TF2
TF3

Fig. 3. Ground reaction forces (GRF) and CoM waveforms for different walking conditions. Shown are ensemble-averaged horizontal GRF (A), vertical

GRF (B) [normalized to participant body weight (BW)] and centre of mass (CoM) (C) for RE, TF1, TF2 and TF3 level walking gaits during the stance phase (N=12).

The contact time is normalized to 100%. The grey shaded area represents the corresponding s.d. RE, regular erect trunk; TF1, 30 deg trunk flexion; TF2, 50 deg
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Table 3. Leg parameters obtained from experimental data

RE TF1 TF2 TF3

Normalized leg length (TD) 1.14±0.35 1.15±0.03 1.15±0.03 1.14±0.03

Normalized leg length (TO) 1.11±0.07 1.1±0.35 1.09±0.35a 1.06±0.35a,b,c

αTD 66.1±4.67 63.6±4.49a 63.4±4.58a 62.9±4.74a

αTO 116.3±3.38 113.9±3.25a 113.9±3.31a 112.5±3.62a,b

αTD, angle of attack; αTO, leg orientation at TO. Values expressed as means±s.d. a,b,cSignificant differences (P<0.05). RE, regular erect trunk; TF1, 30 deg trunk

flexion; TF2, 50 deg trunk flexion; TF3, maximal trunk flexion.
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decreased significantly from 1.86±0.12 in RE by ∼5% to 1.76±0.12

in TF1 and 8% to 1.7±0.14 in TF2 and TF3, respectively (Table 2).

Properties of the leg

Table 3 lists the group mean±s.d. values pertaining to the properties

of the leg across gait postures. Participants showed adaptations

in the leg angle at TD (αTD) and TO (αTO) for the different trunk

angles (Table 3). The leg angle decreased significantly by 4.8%

from 66.1±4.67 deg (RE) to 62.9±4.74 deg(TF3) at TD and by 3.2%

from 116.3±3.38 deg (RE) to 112.5±3.62 deg (TF3) at TO. In other

words, during maximal trunk-flexed gait, the leg displayed a flatter

angle at TD and a steeper angle at TO.

The leg length at TD remained almost unaffected (P=0.514),

whereas the leg length at TO significantly decreased across postures

with increased trunk flexion angle (P<0.001). The leg length

exhibited a strong asymmetry during the stance phase (longer at TD

and shorter at TO; Fig. 4A, Table 3).

The SSD model produced significantly better predictions

of leg axial forces than the PSD model for trunk-flexed

gaits (Fig. 5, Fig. 6). The SSD model fitted axial force in

TF2 better than in other gait conditions (Fig. 5C). The average

deviation of the SSD model force from axial force was

0.16 (RE), 0.11 (TF1), 0.1 (TF2) and 0.13 (TF3) of the

maximal force.

DISCUSSION

An increase of sagittal trunk flexion led to greater kinetic and

kinematic intra-limb asymmetries (Figs 3 and 4). Despite the

considerable differences in leg morphology and size between

humans and birds, able-bodied walking with maximum trunk

flexion (TF3) produces a leg function similar to that found in birds.

Moreover, for all trunk angles, the leg model with spring and

damper in series gives a superior prediction of the axial leg function

(Figs 5 and 6).

The findings of the current study support the hypothesis that the

sagittal trunk posture leads to altered gait parameters and leg

function. Specifically, it was hypothesized that changes in trunk

orientation would result in right-skewed vertical GRF profiles and in

shorter duration of braking relative to the propulsion phase.

Compared with RE gait, vertical GRF tended to be more

asymmetric with increasing trunk flexion (Fig. 3B). In contrast to

the symmetric, M-shaped vertical GRF pattern during RE gait in

humans, vertical GRF approximated the right-skewed profile found

in birds with pronograde trunk orientation (Andrada et al., 2014).

Furthermore, the duration of the braking phase decreased

significantly with trunk flexion (Fig. 3A, Table 2) towards values

found in birds (Andrada et al., 2014). These dynamic similarities

between bird and human trunk-flexed locomotion suggest that the

trunk configuration causes these dynamic asymmetries and that the

leg (connecting hip and CoP) operation is independent of the

specific leg morphology.

While the normalized length of the leg remained unchanged at

TD, with increasing trunk flexion it underwent a significant

decrease at TO. Together with the posterior shift of the pelvis, the

unchanged leg length at TD led to a decrease in the distance between

the CoM and the CoP. In order to prevent toppling or falling over,

TO occurred at a steeper angle in the trunk-flexed gait. Tomaintain a

sufficient step length, the posterior shift of the pelvis is compensated

in part by choosing a flatter angle of attack (leading to a ∼0.02 m

gain in TD position). Still, step time in trunk-flexed walking

remained shorter than in the RE gait, which is also reflected in a

significant decrease of support impulse (Table 2). Consequently, the

braking phase became shorter relative to the propulsion phase with

an increase of trunk flexion, suggesting that the average braking

force must be larger than the average propulsive force to yield zero

impulse in horizontal direction, i.e. to keep locomotion speed

constant. Assuming that an increase in propulsive force is associated

with increased axial leg force, the reduced braking time (Table 2)

leads to the right-skewed vertical GRF profile.

Walking with bent postures was associated with a crouched gait

pattern, characterized by a sustained knee flexion throughout the

stance phase, and an increase in hip flexion and ankle dorsiflexion

(Wren et al., 2005; Saha et al., 2008). This can be explained with a

flatter angle of attack that leads to a decreased height of the hip

above the ground, which in turn yields more flexed limb joints

during trunk-flexed walking. In addition, with increasing trunk

flexion, the angular range of motion decreased across lower limb

joints (Table 2) because in more flexed limbs, smaller angular
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changes are required to achieve similar leg length changes to those

measured in upright walking with extended legs. Since locomotion

with trunk-flexed postures was achieved by bending over at

the waist, the hip joint showed the greatest extent of flexion

throughout the gait cycle in comparison to RE gait (Table 2). With

increasing sagittal trunk flexion, all leg joints were flexed more at

TO owing to the earlier TO at a steeper angle (Table 2). The

kinematic asymmetries in trunk-flexed gait (TD and TO angles and

leg lengths) are in agreement with those found in birds (Andrada

et al., 2014).

Compared with RE walking, in our study, walking with maximal

trunk flexion (TF3) led to ∼10% greater self-selected gait velocity

and cadence, ∼10% shorter stance time and ∼5% shorter swing

duration while the normalized step length remained unchanged. In

our experiment, the task of foot strikes in left–right–left sequence on

three equidistant force plates embedded in the walkway may have

prompted the participants to maintain constant step lengths. With

the same step lengths and lower vertical impulse per step, a higher

cadence is necessary to support the body weight. This in turn

enforces higher speed. Such increased walking speed is not in

agreement with the result observed by Saha et al. (2008), who found

that walking speed does not significantly vary during walking with

trunk-flexed postures. The reason for this inconsistency may be

attributed to different approaches employed to control the trunk

postures. They used a program that allows continuous, real time

estimation of the trunk flexion angle via provision of auditory cues,

which may have required participants to walk slower in order to

maintain their trunk close to the desired angle. In contrast, in our

experiments the trunk angle was checked visually by an

independent examiner, which may have led to less constrained

walking conditions.

It may be speculated that the imposed trunk flexion in TF1 and

TF2 would limit the range of angular excursion throughout the gait.

In contrast, trunk excursions were increased in trunk-flexed gaits

compared with RE gait (Fig. 2A, Table 2). Owing to the posterior

shift of the hip in the forward bent posture, the horizontal leverage of

the CoM with respect to the hip is increased. After TD, the zig-zag

configuration of the leg and body responds with bending (Fig. 2). In

addition, an increased first peak of the ground reaction force

increases the impulse in the first half of the contact. This is

accompanied by increased hip muscle forces necessary to balance

trunk weight in a more bent posture. These increased forces can, in

part, be achieved by a stronger recruitment and by higher passive

forces due to elongation of hip muscles that would contribute to

muscular compliance and hence to oscillations. This argument can,

however, not explain the relatively similar range of motion of the

trunk angle for all trunk-flexed gaits (Table 2).

Kluger et al. (2014) analysed in detail the kinetics and energetics

of lower limb joints in the context of trunk-flexed walking. They

reported increased hip extension torques and hip work, and
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decreased plantarflexion torques and negative work at the ankle

joint during stance phase. In a recent work, Blickhan et al. (2015)

investigated the effect of the hip placement directly below, at, or

above the virtual pivot point (intersection of GRFs above CoM).

They revealed that shifting the hip far posteriorly, as observed in

some birds, can lead to the production of pure extension torques

throughout the stance phase. These results are consistent with large

hip torques and positive work at the hip and negative work at the

tarsometatarsal–phalangeal joint – the functional equivalent of the

ankle joint – in birds (Cavagna et al., 1963). In accordance with the

increased energy dissipation in the ankle joint, our results show that

energy dissipation in the leg in the axial direction increases with the

increase of trunk flexion angle (Fig. 4C). Therefore, the relative

placement of the hip with respect to the CoM is proposed to be an

important measure in the modifications of leg function, and

consequently, for balancing the trunk in legged motion systems

(Blickhan et al., 2015).

The model with a spring in series with the damper produced

better predictions of the leg forces than the parallel spring-damper

model across all trunk-flexed gaits (Figs 5 and 6). Interestingly, in

the case of RE walking, for both models, in many cases the

optimization yielded parameters that corresponded to spring-like leg

behaviour with negligible energy dissipation, and the model

predictions were not significantly different (Fig. 6). This indicates

that the damper does not substantially improve the reproduction of

the human leg forces in walking with upright trunk, which

corroborates the assumption of spring-like leg behaviour in

conceptual models of human walking (Geyer et al., 2006).

Although the parallel spring and damper model has been widely

used in biomechanics and robotics to describe and investigate

legged locomotion (Shen and Seipel, 2012; Andrada et al., 2014),

our results highlight that the serial spring and damper model

is superior in predictions of axial leg force of trunk-flexed

walking. Because the leg models differ in their dynamic

responses, we argue that employing the spring in series with the

damper model may yield altered predictions of the locomotion

stability in birds.

Understanding the interaction between posture and hip

arrangement and their relation to axial leg function may be

relevant in the medical field, in engineering and in explaining the

evolution of a bipedal gait. For example, the observed intra-limb

asymmetries as a consequence of trunk-flexed posture and

associated compensatory mechanisms may be of clinical

relevance for patients exhibiting a disordered gait (Saha et al.,

2008; Doherty et al., 2011; de Groot et al., 2014). Engineers

designing not merely androids but also robot birds and other

creatures (Hyon et al., 2003; Hugel et al., 2011; Zhou and Bi, 2012)

may benefit from the characterization of the axial leg function and

its modelling e.g. for trajectory planning in virtual model control of

bipedal robotic locomotion (Sreenath et al., 2011). Last, but not

least, based on the differences in body size and limb morphology,

the comparison of living avian and human bipeds may facilitate the

interpretation of the evolution of bipedal locomotion (Gatesy and

Biewener, 1991; Hirasaki et al., 2004; Schwartz, 2007; Thorpe

et al., 2007; Foster et al., 2013).

The results of this study highlight the effects of sagittal trunk

orientation on leg function in bipeds and reveals that the spring and

damper in series model is superior in the reproduction of axial leg

function in trunk-flexed gaits. An experimentally prescribed

pronograde posture in able-bodied walking induces asymmetries

in leg function characterized by a right-skewed vertical GRF and a

shorter leg length at TO, which are similar to the asymmetries found

in birds. Considering these similarities in locomotion between bird

and human with trunk flexed, we conclude that the necessity to

stabilize the trunk constrains the basic leg function independent of

the specific leg morphology, at least in the investigated species.
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Effects of altered sagittal trunk orientation on kinetic pattern in

able-bodied walking on uneven ground
Soran Aminiaghdam* and Christian Rode

ABSTRACT

Studies of disturbed human locomotion often focus on the dynamics of

the gait when either posture, movement or surface is perturbed. Yet,

the interaction effects of variation of trunk posture and ground level on

kinetic behaviour of able-bodied gait have not been explored. For 12

participants we investigated the kinetic behaviour, as well as velocity

and contact time, across four steps including an unperturbed step on

level ground, pre-perturbation, perturbation (10-cm drop) and post-

perturbation steps while walking with normal speed with four postures:

regular erect, with 30°, 50° and maximal sagittal trunk flexion (70°).

Two-way repeated measures ANOVAs detected significant

interactions of posture×step for the second peak of the vertical

ground reaction force (GRF), propulsive impulse, contact time and

velocity. An increased trunk flexion was associated with a systematic

decrease of the second GRF peak during all steps and with a

decreased contact time and an increased velocity across steps, except

for the perturbation step. Pre-adaptationsweremore pronounced in the

approach step to the drop in regular erect gait. With increased trunk

flexion, walking on uneven ground exhibited reduced changes in

GRF kinetic parameters relative to upright walking. It seems that in

trunk-flexed gaits the trunk is used in a compensatory way during the

step-down to accommodate changes in ground level by adjusting its

angle leading to lower variations in centre of mass height. Exploitation

of this mechanism resembles the ability of small birds in adjusting their

zig-zag-like configured legs to cope with changes in ground level.

KEYWORDS: Locomotion, Posture, Kinetics, Ground reaction force

INTRODUCTION

On the one hand, the negotiation of changes in the surface such as

compliance, slip, obstacle or drop during walking challenges the

human locomotor system and requires continuous adaptations (Tang

et al., 1998; Marigold and Patla, 2002, 2005, 2008; van Dieen et al.,

2007; Shinya et al., 2009; Müller et al., 2014). On the other hand, the

generation of the ground reaction force (GRF) in human walking is

strongly influenced by the orientation of the trunk (50% of total

human bodymass) owing to its significant effect on the displacement

and acceleration of the body centre of mass (CoM) (Grasso et al.,

2000; Gillet et al., 2003; Marigold and Patla, 2005; Saha et al., 2008;

Leteneur et al., 2009; Kluger et al., 2014; Aminiaghdam et al., 2017).

Understanding changes in gait dynamics and accompanying

compensatory techniques under both internal (posture) and/or

external (surface) perturbations can shed light into functional

demands of bipedalism in various scientific areas. For example,

improved knowledge of the role of the trunk orientation in gait is of

clinical interest as age or some pathological conditions alter trunk

posture and adaptive capacity of the locomotor system (Farcy and

Schwab, 1997; Lin et al., 2000; Sarwahi et al., 2002; Potter et al.,

2004; Malone et al., 2015). Furthermore, the study of human gait with

a crouched posture, i.e. mimicking pronograde locomotion of birds is

of interest for comparative biologists (Gatesy and Biewener, 1991;

Hirasaki et al., 2004; Schwartz, 2007; Thorpe et al., 2007; Foster et al.,

2013; Aminiaghdam et al., 2017). In addition, experimental studies

focused on investigating how human anatomy performs in different

locomotor postures may provide further explanation for interpretation

of the evolution of human bipedal locomotion. In general, exploration

of gait features in a setting with greater variations of posture or ground

level may also elicit the functional demands that have influenced the

evolution of human bipedalism better than walking on uniform

surfaces (Sockol et al., 2007; Pontzer et al., 2009).

Balancing the trunk, basically the functional task of stabilising an

unstable inverted pendulum standing on the hip (Maus et al., 2010),

plays an important role in human locomotion. The trunk has been

suggested to serve as a reference in the control of posture and

movement (Mouchnino et al., 1993; Darling and Miller, 1995;

Massion et al., 1997). Furthermore, a forwardly bent trunk induces a

gravitational moment that can be utilised to generate greater forward

propulsion through the hip (Leroux et al., 2002) which in turn

facilitates walking uphill/climbing stairs or to accelerate. At the same

time, because the trunk is heavy, a forward bent trunk allows vertical

alteration of CoM height (Aminiaghdam et al., 2017; Saha et al.,

2008) when changing the hip angle. For example, when approaching

a drop in ground level duringwalking, an upward rotation of the trunk

during the step-down would increase the distance between CoM and

foot and thus limit changes in CoM height which in turn would likely

lead to reduced changes in kinetic behaviour. Humans might exploit

this mechanism that in some way resembles the ability of small birds

to adjust their zig-zag-like configured legs when coping with ground

level perturbations (Birn-Jeffery and Daley, 2012; Birn-Jeffery et al.,

2014;Müller et al., 2016). In this sense, we expect that the upper body

might be transformed into an active component of the human

locomotor system in trunk-flexed walking.

Studies of perturbed human locomotion often focus on gait

dynamics when either posture, surface or movement is individually

perturbed. A study by Saha et al. (2008) revealed that dynamic

balance during walking with 25° and 50° sagittal trunk flexion in

able-bodied participants is achieved by adjusting lower limb

kinematics to more crouched configurations. They reported a

higher GRF and loading rate during weight acceptance phase and

a lower GRF during pre-swing phase. In a recent study,

Aminiaghdam, et al. (2017) found that proceeding to a horizontalReceived 25 May 2017; Accepted 27 May 2017
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trunk configuration in humans caused similar dynamic intra-limb

asymmetries in leg function as compared with birds. Such

asymmetries, found to be necessary for maintaining dynamic

balance in pronograde gait (Andrada, et al., 2014), were

characterised by a reduction of the effective leg (connecting hip to

centre of pressure) length and the GRF in the pre-swing phase as

compared to the weight acceptance phase (Andrada et al., 2014;

Aminiaghdam et al., 2017). Comparing human and avian running

on uneven ground, Müller et al. (2016) reported that despite striking

morphological disparities these species share some common

kinematic behaviour (i.e. leg angle and leg length) while

negotiating changes in ground level. For walking on uneven

ground, when human walkers encounter a drop, they modulate their

GRF kinetics proportional with the drop height not only in the

perturbation step, but also in the approach step to the perturbation

(Müller, et al., 2014). However, the quality and quantity of the

kinetic and kinematic adaptations or reactions to external

perturbations are context-specific (Müller, et al., 2014; van der

Linden, et al. 2009, 2007). While these studies have analysed

human walking with various trunk configurations or adaptive and

reactive kinetic mechanisms in pre-perturbation and perturbation

contacts and made comparisons with avian locomotor behaviour, to

our knowledge, kinetic and kinematic adaptations when stepping

down (perturbation) and in pre- and post-perturbation steps with

different bent postures have not been investigated yet.

In this study, we investigate kinetic characteristics of the GRF

during the stance phase across three steps in uneven ground, i.e. in

the perturbation and pre- and post-perturbation steps, as a function

of trunk orientation compared with unperturbed step in level

ground. Trunk-flexed gaits and accommodation of changes in

ground levels are expected to lead to posture- and step-specific main

effects on GRF characteristics as compared to the upright walking

and level walking, respectively. We hypothesise a systematic

change in patterns of GRF as a function of walking posture within

each step, however walking with bent postures would demonstrate

reduced kinetic adaptations across steps in uneven ground relative

to the unperturbed level ground step as altering the trunk angle

might facilitate kinematic adaptations to changes in ground level.

For example, we expect that the aligned effects of trunk flexed

gait and step down on the first GRF peak in the perturbation step

and on the second GRF peak in the pre-perturbation step do not

simply add up to avoid excessive loads and falling down,

respectively.

RESULTS

The data analyzed comprises 768 trials with a total of 2304 step

cycles. All healthy young participants on every trial were successful

in maintaining their stability (no falls) while traversing the travel

path with and without drop. Table 1 summarises posture×step

interactions and the main effects of posture and step.

Main effects of posture

With more sagittal trunk flexion (averaging over the steps), the

unloading rate (UR) decreased and, less clearly, the first peak in the

GRF (VGRF1P) increased, while the vertical impulse (VIMP)

decreased (Fig. 1 and Fig. 2A, Table 1). More specifically,

comparing TF3 gait with regular erect (RE) gait, UR decreased

by 21% [to 9.19±0.88 (mean±standard deviation)], VGRF1P
increased by 14% (to 1.48±0.18), and VIMP decreased by 8% (to

1.77±0.16) (Fig. 1 and Fig. 2A). For trunk-flexed gaits the loading

rate (LR) was generally higher than in RE gait, and the highest LR

was observed during walking with 30° sagittal trunk flexion (TF1)

gait (13.8±2.17) with an increase of ∼19% relative to RE gait

(Fig. 2A). By contrast, increased sagittal trunk flexion did not lead

to a change in the braking impulse across gaits (Fig. 2A).

Main effects of step

Only VGRF1P, UR and VIMP showed main effects (Table 1) when

averaging over the postures, and most effects occurred in the

perturbation step (Fig. 2B). Relative to the level step ‘L’, VIMP

increased by 4% (to 1.82±0.15), 7% (to 1.87±0.16) and 9% (to

1.90±0.15) for pre-perturbation step ‘U-1’, perturbation step ‘U0’,

and post-perturbation step ‘U+1’, respectively, VGRF1P increased by

23% (to 1.63±0.10) for ‘U0’, andUR increased by 9% (to 8.13±1.29)

and 10% (to 8.21±1.20) for ‘U0’ and ‘U+1’, respectively (Fig. 2B).

Interaction effects posture by step

Step-dependent effects of posture were detected for the second peak

of the vertical GRF (VGRF2P), propulsive impulse (PIMP), contact

time (TC) and velocity (Table 1). While in RE gait, VGRF2P first

decreased in ‘U-1’ and then increased in ‘U0’, this pattern gradually

reversed with increasing trunk flexion (Fig. 3A). Moreover, the

pronounced differences in propulsive impulse between steps for RE

gait diminished with increasing trunk flexion (Fig. 3B), and

differences in contact time decreased in ‘U0’ (Fig. 3C). While

velocity remained constant in steps ‘L’ and ‘U-1’ in RE gait, it

decreased in trunk-flexed gaits (Fig. 3D).

RE gait showed step-dependent effects for all variables exhibiting

interaction except for velocity (Table 1). In contrast, trunk-flexed

gaits demonstrated step-dependent effects only for TC (Table 1). No

posture-dependent effects were observed for PIMP and only two for

velocity (Table 1). Trunk-flexed gaits consistently showed posture-

dependent effects compared with RE gait for VGRF2P (decrease)

and less consistently for TC (decrease, no effect for TF1) (Fig. 3A,C,

Table 1). Notably, except for two posture-dependent effects on

VGRF2P during steps ‘U0’ and ‘U+1’ in TF3 gait, no effects were

found within trunk-flexed gaits (Table 1). TC and velocity did not

show posture-dependent effects in the perturbation step ‘U0’

(Fig. 3C,D, Table 1).

DISCUSSION

In this study, the adaptive kinetic behaviour of able-bodied walking

while negotiating uneven ground with altered trunk orientations was

investigated. A systematic change of the patterns of GRF as a

function of walking posture and step type was observed (Fig. 1). We

found step-dependent effects of posture for the second peak of the

vertical GRF, propulsive impulse, contact time and velocity (Fig. 3,

Table 1). For these variables, simple main effect analysis showed

that walking with trunk-flexed gait was associated with reduced

changes across steps in uneven ground (perturbation, pre- and post-

perturbation steps) compared with upright walking (Table 1). Main

effects of posture and step categories on able-bodied walking were

observed in the majority of cases, indicating posture- and step-

specific GRF characteristics (Fig. 2). In the following paragraphs,

the individual main effects of posture and step as well as their

interaction effects on the gait kinetics will be discussed in detail.

Posture-dependent kinetic behaviour

Studies on level walking with a trunk-flexed gait have shown that

the alteration of trunk kinematics in sagittal plane leads to

compensatory kinematic adjustments in lower limbs, which in

turn causes changes in the gait kinetics (Saha et al., 2008;

Aminiaghdam et al., 2017). Accordingly, our results highlight

that the GRF profile varies with an increase of sagittal trunk flexion,
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regardless of ground condition (Fig. 1). The vertical GRF profile

tended to be more asymmetric, i.e. greater forces during weight

acceptance and attenuated forces during push-off as the trunk leans

far forward (Fig. 1). Such right-skewed profiles of vertical GRF

exhibited higher weight acceptance loads associated with higher

loading rates, a lower push-off associated with lower unloading rates

and lower vertical impulses (Figs 1 and 3, Table 1). Such behaviour

is consistent with a simple effective leg model of spring-and-

damper-in-series (Aminiaghdam et al., 2017). In that study, we have

shown that the damper right-skews the GRF by increasing forces

after touchdown and decreasing the forces at toe-off leading to an

earlier lift-off. Surprisingly, despite remarkable disparities in the

morphology of segmented legs between human and bird,

experimentally induced pronograde locomotion in human yields

kinematic and kinetic effective leg behaviour comparable to those

found in birds (Aminiaghdam et al., 2017).

Increased loading rates and lower unloading rates have been

found in dysfunctional gait in many studies, for example in patients

with Down syndrome (Wu and Ajisafe, 2014), with knee

osteoarthritis (Farrokhi et al., 2015; Silva Dde et al., 2015), in

elderly female individuals during stair ascent (Hamel et al., 2005) or

obese individuals (Pamukoff et al., 2016), and in loaded gait while

carrying a back pack (Park et al., 2016). Trunk orientation causes

similar effects (Fig. 2A). These changes reflect adaptations of the

gait pattern. For example, in both animals and humans, a swift

transition from stance to swing is actuated by unloading at higher

rates during pre-swing phase (Grillner, 1985; Pearson et al., 1992;

Pang and Yang, 2000). Furthermore, the active ankle push-off is

responsible for initiating the leg swing in humans (Lipfert et al.,

2014). In trunk-flexed walking, this push-off is impaired as judged

from the lower VGRF2P, and the unloading rate is lower (Figs 1 and

3A) than in RE gait. Trunk kinematics therefore may be considered

as a significant criterion for clinicians not only in the assessment of

dysfunctional gait, but also in the design, development and

monitoring of the progression of rehabilitation regimes.

Owing to a shorter contact time, the vertical impulse is

diminished in the trunk-flexed gaits compared with RE gait

(Fig. 2A). This requires a faster swing phase and a higher cadence

to support body weight. Such a decrease in vertical impulse has also

been observed during level walking while adopting the same bent

postures (Aminiaghdam et al., 2017). Moreover, in accordance with

our previous study on trunk-flexed level walking, altered trunk

Table 1. Means and standard deviations of kinetic and gait parameters

Posture P-value/F-value

Step RE TF1 TF2 TF3 Posture Step Posture×Step

VGRF1P (BW) L 1.19±0.08 1.33±0.12 1.38±0.13 1.38±0.14 0.00/17.1 0.00/52.1 0.50/0.76

U-1 1.24±0.08 1.34±0.11 1.40±0.14 1.40±0.14

U0 1.53±0.13 1.63±0.17 1.66±0.20 1.72±0.30

U+1 1.25±0.08 1.36±0.12 1.40±0.14 1.41±0.16

VGRF2P (BW) L 1.15±0.06 0.96±0.10a 0.89±0.10a 0.87±0.07a 0.00/86.6 0.19/1.65 0.00/8.97

U-1 1.06±0.07 0.96±0.11 0.93±0.13a 0.90±0.10a

U0 1.19±0.10 1.01±0.09a 0.92±0.12a 0.86±0.11a,b

U+1 1.20±0.07 1.00±0.08a 0.93±0.10a 0.89±0.09a,b

LR (BW/s) L 10.6±1.70 12.8±1.91 13.5±1.90 12.9±1.72 0.00/9.19 0.13/2.11 0.07/2.37

U-1 12.3±1.46 14.8±2.11 14.4±3.25 12.6±1.80

U0 11.5±1.43 13.5±2.19 12.7±2.63 11.1±1.60

U+1 12.0±2.89 14.7±2.70 14.0±3.34 13.2±2.45

UR (BW/s) L 9.21±1.25 7.87±1.02 6.94±1.16 6.60±1.17 0.00/22.1 0.00/6.06 0.06/3.11

U-1 8.89±1.10 8.47±1.44 7.95±1.39 7.65±1.14

U0 9.90±0.98 9.11±2.61 7.94±1.72 7.20±0.83

U+1 10.0±1.21 8.97±2.67 8.04±1.68 7.51±0.98

VIMP L 1.84±0.12 1.75±0.15 1.70±0.14 1.70±0.13 0.00/23.0 0.00/20.9 0.10/2.04

U-1 1.89±0.13 1.84±0.15 1.80±0.13 1.74±0.15

U0 1.96±0.11 1.88±0.16 1.84±0.15 1.80±0.19

U+1 2.01±0.12 1.91±0.14 1.87±0.13 1.82±0.16

BIMP L −0.10±0.02 −0.10±0.03 −0.09±0.03 −0.09±0.03 0.55/0.71 0.06/3.33 0.07/2.28

U-1 −0.11±0.03 −0.11±0.04 −0.12±0.04 −0.11±0.03

U0 −0.12±0.02 −0.11±0.02 −0.10±0.02 −0.11±0.02

U+1 −0.11±0.02 −0.11±0.02 −0.11±0.02 −0.11±0.02

PIMP L 0.13±0.01 0.12±0.01 0.12±0.02 0.13±0.02 0.30/1.26 0.00/8.13 0.00/6.91

U-1 0.16±0.02 0.15±0.02 0.14±0.02 0.14±0.02

U0 0.11±0.02 0.12±0.02 0.12±0.02 0.13±0.02

U+1 0.13±0.02 0.13±0.02 0.13±0.02 0.13±0.03

TC (s) L 0.62±0.03 0.59±0.03 0.56±0.03a 0.56±0.04a 0.00/28/0 0.00/77.9 0.00/4.55

U-1 0.66±0.03 0.63±0.03 0.61±0.03a 0.59±0.04a

U0 0.59±0.03 0.57±0.04 0.56±0.03 0.55±0.05

U+1 0.67±0.03 0.64±0.04 0.62±0.04a 0.61±0.04a

Velocity (m/s) L 1.49±0.13 1.61±0.15 1.66±0.17a 1.63±0.16 0.00/7.94 0.00/9.14 0.01/3.58

U-1 1.49±0.11 1.50±0.13 1.53±0.16 1.58±0.16

U0 1.59±0.10 1.62±0.11 1.64±0.15 1.65±0.17

U+1 1.48±0.08 1.52±0.10 1.59±0.12 1.62±0.15a

The last three columns show theP-values/F-values for themain effects of posture and step and for the posture×step interaction, respectively. In case of interaction

effect, significant differences from RE, TF1 and TF2 across each step are indicated with ‘a’, ‘b’, and ‘c’, respectively (P<0.05; one-way ANOVA). Accordingly, italic

values indicate significant difference from the unperturbed step ‘L’, bold values from the pre-perturbation step ‘U-1’ and underlined values from the perturbation

step ‘U0’ (P<0.05) for each walking posture (N=12). RE, regular erect trunk; TF1, 30° trunk flexion; TF2, 50° trunk flexion; TF3, maximal trunk flexion; U+1, post-

perturbation step.
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kinematics yielded no change in braking impulse (Fig. 2A, Table 1).

There, we demonstrated that an increased sagittal trunk flexion leads

to a shorter braking phase relative to the propulsive phase and a

greater braking peak force (Aminiaghdam et al., 2017). Hence, the

unchanged braking impulse in uneven walking might be the

consequence of a combination of a rapid deceleration of the body

mass and a greater braking force.

Step-dependent kinetic behaviour

When human walkers become aware of changes in the ground

level, e.g. a drop, they adjust their locomotor strategies in the step

before the perturbation (Müller and Blickhan, 2010; Müller et al.,

2012, 2014, 2016). For the main effect of the step type, our results

revealed a significant effect in the pre-perturbation step only in

case of the vertical impulse (4% increase relative to level step,

Fig. 2B).

The longer flight time associated with the step down led to a

greater VGRF1P (16% increase relative to level step) in the

perturbation step ‘U0’. The greater vertical impulse (9% increase

relative to level step) in this step is largely due to a greater vertical

GRF as contact time did not significantly extend relative to the

level step (Fig. 2B, Table 1). Human walkers with regular upright

posture negotiate visible and camouflaged drops in ground using

the same strategy, i.e. a shorter contact time and a longer double

support (Müller et al., 2014). The observed higher unloading rate

in ‘U0’ (7% increase relative to level step, Fig. 2B) may be due to

an earlier landing after a shorter swing phase of the contralateral

limb on an elevated surface in the subsequent step along with a

slight increase of the vertical GRF at the end of the stance phase

(Table 1).

A greater vertical impulse (9% increase relative to level step,

Fig. 2B) in post-perturbation step ‘U+1’ is the result of a

significantly longer contact time which is required for the

elevation and propulsion of the CoM after the drop (Fig. 2B,

Table 1). Moreover, participants were able to produce a greater

push-off at the end of the stance phase reflected in increased second

peak of the vertical GRF, which led to higher unloading rates (10%

increase relative to level step, Fig. 2B).

Interaction of posture and step

Step-specific effects of gaits with different trunk orientations were

observed for VGRF2P, propulsive impulse, contact time and

velocity (Table 1). As hypothesised, among these variables we

found reduced kinetic adaptations in trunk-flexed gaits across steps

in uneven ground when compared with RE gait (Table 1). This was

in agreement with our hypothesis that, in trunk-flexed gaits, the

trunk could be utilised to negotiate changes in ground level by

straightening during step down. In fact, such straightening is evident

in Fig. 4A. In contrast with one of our hypotheses that aligned

effects of trunk-flexed gait and step-down on the first GRF peak in

the perturbation step do not simply add up to avoid excessive loads,

interaction was not strong enough to yield a significant effect across

all steps.

As for the two kinetic parameters exhibiting interaction, an

increase of trunk flexion led to a decrease in the VGRF2P but no

changes in propulsive impulse across gait postures. In comparison

to RE gait in the step ‘U0’, for example, TF3 gait exhibited 28%

decrease in the VGRF2P (Figs 1 and 3A, Table 1). Owing to an

earlier toe-off at a steeper effective leg angle, the trunk-flexed gait in

human and birds is associated with more flexed leg joints and

decreased effective leg length at toe-off compared with touchdown

(Grillner, 1985; Pearson et al., 1992; Pang and Yang, 2000;

Andrada et al., 2014; Aminiaghdam et al., 2017). In fact, such

kinematic behaviour yields an inefficient push-off reflected in low

VGRF2P. Furthermore, a combination of a longer propulsive phase

and a lower magnitude of the propulsive force in trunk-flexed gaits

resulted in no significant difference in propulsive impulse from

normal walking (Fig. 3B, Table 1). In contrast with RE gait, step-

dependent effects of posture in trunk-flexed gaits on VGRF2P and

propulsive impulse were not observed (Table 1).

For the gait parameters, i.e. contact time and velocity, simple

main effects showed that with increasing deviation of the trunk from

upright, they become shorter and faster, respectively. Surprisingly,

adaptations in the pre-perturbation step led to approximately the

same contact time and speed regardless of trunk orientation in the

perturbation step (Fig. 3C,D, Table 1). Moreover, walking with

different trunk orientations yielded no significant change in velocity

Fig. 1. Ground reaction forces (GRF) for different walking conditions. Shown are ensemble-averaged horizontal and vertical GRFs [normalized to participant

bodyweight (BW)] during unperturbed level step (L, A), pre-perturbation step (U-1, B), perturbation step (U0, C) and post-perturbation step (U+1, D) for RE (black),

TF1 (blue), TF2 (green) and TF3 (red) gaits during the stance phase (N=12). The contact time is normalized to 100%.
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across steps. This was reflected in braking and propulsive impulses

where also no changes were observed during various gait conditions

across steps, except in the approach step to the drop where

propulsive impulse increased in RE gait (Fig. 3B, Table 1). As a

result, individuals performed steady state gaits at each trunk posture.

However, except for TF3, in other gaits human walkers performed

the post-perturbation step with a longer contact time.

Conclusion

Expanded analysis of walking across uneven ground revealed that

GRF parameters were more consistent for trunk-flexed gaits. Pre-

adaptations were more pronounced in the approach step to the drop

in regular erect gait. This observation is tentatively explained with

the role of the trunk. In contrast with walking with upright trunk, in

trunk-flexed gaits the trunk may be used in a compensatory way

during the step-down to accommodate changes in ground level by

adjusting its angle leading to reduced variations in CoM height

during traversing uneven ground. Exploitation of this mechanism

would resemble the ability of small birds in adjusting their zig-zag-

like configured legs to cope with large ground level perturbations.

MATERIALS AND METHODS

Participants

Six males and six females (mean±s.d.; age 26±3.35 years, height

169.75±7.41 cm, mass 65.08±8.07 kg), free from health problems that

could affect their walking pattern and trunk motion, were recruited for this

study. A consent form was signed by each participant before participation.

The experimental protocol was approved by the local Ethics Committee of

the Friedrich Schiller University Jena (3532-08/12) and carried out in

accordance with the Declaration of Helsinki.

Experimental design and measurements

Data collection was conducted at the Biomechanical Laboratory of the

Sports Institute within Friedrich Schiller University Jena. All trials were

recorded with eight cameras (240 Hz) by a 3D infrared system (MCU1000,

Qualisys, Gothenburg, Sweden) and synchronised by using the trigger of

Kistler soft- and hardware. Three consecutive force platforms (9285BA,

9281B, 9287BA, Kistler, Winterthur, Switzerland) embedded in the middle

portion of a 12 m-long walkway and sampled at 1000 Hz. 21 markers

(spherical retro-reflective surface, 14 mm) defined a 13-body segment

model. The markers were placed on the following bony landmarks: fifth

metatarsal heads, lateral malleoli, lateral epicondyles of femurs, greater

trochanters, anterior superior iliac spines, posterior superior iliac spines, L5-

S1 junction, lateral humeral epicondyles, wrists, acromioclavicular joints,

seventh cervical spinous process and middle of the forehead (Aminiaghdam

et al., 2017).

Participants were asked to walk at their self-selected normal walking

speed under four trunk flexion conditions (with no restriction on the arm

movements) across two experimental ground conditions involving a level

walkway and a walkway with a 10-cm drop: self-selected regular erect trunk

alignment (RE), 30° (TF1), 50° (TF2), and maximal trunk flexion (TF3)

(Fig. 4A). One height-variable force plate at the site of the second step and

two ground-level force plates at the site of the first and third steps were set

(Fig. 4B). After walking on the unperturbed uniform track, the variable-

height force plate was lowered by 10 cm and participants walked along the

uneven walkway. Trunk flexion was achieved by bending from the hips,

which allows the most consistent trunk posture among participants (Saha

et al., 2008; Aminiaghdam et al., 2017). Under such definition, the TF3

constituted the maximum amount of trunk flexion that the participants could

adopt while walking (Fig. 4). Trunk angle was defined by the angle

sustained by the line connecting the midpoint between the L5–S1 junction

(L5) and the seventh cervical spinous process (C7) with respect to the

vertical axis of the lab coordinate system (Müller et al., 2014; Aminiaghdam

et al., 2017). Trunk angles were compared visually with adjustable-height

cardboard templates by a second examiner prior to performing of each trial

and during gait along the walkway for TF1 and TF2. For TF3, there was no

comparison. The templates, drawn with angles displaying target trunk

flexion angles TF1 and TF2, were hung on a wall parallel to the walkway:

Fig. 2. Main effects of posture and step. Shown are the mean and standard

deviations (error bars) for the main effects of posture (A) and step type (B) on

the first peak of the vertical GRF, loading rate, unloading rate, braking impulse

and vertical impulse (N=12). Significant differences from RE, TF1 and TF2 as

well as from ‘L’, ‘U-1’, and ‘U0’ are indicated with ‘a’, ‘b’, and ‘c’, respectively

(P<0.05; one-way ANOVA). RE (black), regular erect trunk; TF1 (blue), 30°

trunk flexion; TF2 (green), 50° trunk flexion; TF3 (red), maximal trunk flexion; L,

unperturbed level step; U-1, pre-perturbation step; U0, perturbation step; U+1,

post-perturbation step.
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one at the beginning and the other one in the middle of the walkway (Saha

et al., 2008; Aminiaghdam et al., 2017). Practice trials were permitted to

allow participants to accommodate to the locomotion conditions and to

secure step onto the force plates. Five out of twelve participants were

identified to have a dominant left leg. To eliminate the influence of the

dominant leg (Sadeghi et al., 2000), we instructed all participants to hit

force plates in left-right-left sequence (Müller et al., 2014). Due to

organisational reasons, level and uneven setups as well as repetitions of

trunk orientations were not randomised, but the sequence of flexed trunk

orientations were randomised per participant. The participants

accomplished eight trials per condition in which each foot stepped on a

single force plate.

The following parameters of interest were determined across each step:

the first peak of the vertical GRF (VGRF1P) and the second peak of the

vertical GRF (VGRF2P); loading rate (LR) and unloading rate (UR) as the

slope of vertical GRF between initial heel strike and the VGRF1P and

between the VGRF2P and toe-off, respectively; vertical impulse (VIMP)

by integrating the vertical GRF, braking impulse (BIMP) and propulsive

impulse (PIMP) by integrating the anterior–posterior GRF over the time

that the force was oriented in the posterior and anterior directions,

respectively, and normalised to the product of body weight and the square

root of the quotient of leg length and gravity (Hof, 1996); contact time

(TC) as the time duration between the initial heel strike and toe-off; gait

velocity as mean of horizontal velocity of the L5 marker between the

initial heel strike and toe-off. For kinetic analysis, GRF was normalised to

participant body weight (BW). A vertical GRF threshold of 0.03 BW was

used to determine the instants of the initial heel strike and the toe-off at

each step.

Data processing and statistics

Kinetic and kinematic data of all successful trials were analysed using

custom written Matlab (Mathworks Inc., MA, USA) code. The raw

coordinate data were filtered using a fourth-order low-pass, zero-lag

Butterworth filter with 12 Hz cut-off frequency (Aminiaghdam et al., 2017).

For our normally distributed data, two-way repeated-measures ANOVAs

were implemented with SPSS (IBM SPSS Statistics 22, Armonk, NY, USA)

Fig. 4. Trunk kinematics and human

locomotion diagram. (A) The trunk

kinematics in the sagittal plane across three

level (pale lines) and three uneven steps

(solid lines) with regular erect (RE, black),

30° trunk flexion (TF1, blue), 50° trunk flexion

(TF2, green), maximal trunk flexion (TF3,

red) postures. The shaded area, the second

step across two setups, separates pre- and

post-perturbation steps. (B) Side view of the

instrumented walkway with three

consecutive force plates denoted by U-1

(pre-perturbation step), U0 (perturbation

step) and U+1 (post-perturbation step). The

second force plate (drop) was lower by 10 cm

in walking on uneven ground.

Fig. 3. Posture×step interaction. Shown

are posture×step interactions on the second

peak of vertical GRF (A), propulsive impulse

(B), contact time (C) and velocity (D) (N=12).

Error bars indicate ±standard deviation. RE,

regular erect trunk; TF1, 30° trunk flexion;

TF2, 50° trunk flexion; TF3, maximal trunk

flexion; L, unperturbed level step; U-1, pre-

perturbation step; U0, perturbation step; U

+1, post-perturbation step.
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using two within-participants factors: (1) step category (unperturbed step

‘L’ during level walking; pre-perturbed ‘U-1’, perturbed ‘U0’ and post-

perturbation ‘U+1’ steps during uneven walking), and (2) postures (RE,

TF1, TF2 and TF3). The posture×step interaction was evaluated for each

dependent variable of interest. Post hoc comparisons were performed using

Bonferroni. A P-value of P<0.05 was considered as statistically significant

in all cases. In case of a significant interaction, simple main effects were

used to compare walking postures across each step and steps while walking

with each posture. In case of a non-significant interaction, the main effects

of the posture (averaging across the steps) and the step (averaging across the

postures) were evaluated for each variable of interest using one-way

ANOVA and post hoc comparisons.
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Abstract

Though the effects of imposed trunk posture on human walking have been studied, less is

known about such locomotion while accommodating changes in ground level. For twelve

able participants, we analyzed kinematic parameters mainly at touchdown and toe-off in

walking across a 10-cm visible drop in ground level (level step, pre-perturbation step, step-

down, step-up) with three postures (regular erect, ~30˚ and ~50˚ of trunk flexion from the

vertical). Two-way repeated measures ANOVAs revealed step-specific effects of posture on

the kinematic behavior of gait mostly at toe-off of the pre-perturbation step and the step-

down as well as at touchdown of the step-up. In preparation to step-down, with increasing

trunk flexion the discrepancy in hip−center of pressure distance, i.e. effective leg length,

(shorter at toe-off versus touchdown), compared with level steps increased largely due to a

greater knee flexion at toe-off. Participants rotated their trunk backwards during step-down

(2- to 3-fold backwards rotation compared with level steps regardless of trunk posture) likely

to control the angular momentum of their whole body. The more pronounced trunk back-

wards rotation in trunk-flexed walking contributed to the observed elevated center of mass

(CoM) trajectories during the step-down which may have facilitated drop negotiation. Able-

bodied individuals were found to recover almost all assessed kinematic parameters com-

prising the vertical position of the CoM, effective leg length and angle as well as hip, knee

and ankle joint angles at the end of the step-up, suggesting an adaptive capacity and hence

a robustness of human walking with respect to imposed trunk orientations. Our findings may

provide clinicians with insight into a kinematic interaction between posture and locomotion in

uneven ground. Moreover, a backward rotation of the trunk for negotiating step-down may

be incorporated into exercise-based interventions to enhance gait stability in individuals who

exhibit trunk-flexed postures during walking.

Introduction

In addition to investigating a locomotor system operating in steady-state conditions, the study

of its behavior when coping with perturbations can lead to further identification of the system
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properties [1]. During locomotion, human must not only ensure a forward progression in

accordance with dynamic equilibrium, but is also required to continuously cope with pertur-

bations—such as postural changes, terrain variations, obstacles, drops, etc.—in an anticipatory

fashion through coordinated interactions between different body segments [2, 3]. Maintaining

dynamic stability across uneven ground can be a critical issue to locomotion. The gait is

assumed stable if it returns to a periodic trajectory after being exposed to a perturbation and it

can be considered robustly stable if it can recover from large perturbations [4]. Experimentally

imposed trunk flexion [5–7] and changing ground level [8, 9] have been proposed as two types

of perturbations to human locomotion.

The trunk plays a key role in human locomotion. It may perform as a reference in the con-

trol of posture and movement in upright gait [10, 11]. Stabilizing the trunk, an unstable

inverted-pendulum positioned over the hips [12, 13], is a crucial locomotor task. Due to its

large mass, the trunk orientation has considerable effects on the ground reaction force (GRF)

[14] and the center of mass (CoM) trajectory [5, 7]. The relative position of the hip with respect

to the CoM determines the effective leg (connecting the hip and the center of pressure [CoP])

function [5, 15]. A forward inclination of the trunk can be utilized to generate a greater for-

ward propulsion through the hip in various forms of locomotion involving fast walking, uphill

gait [16] and stepping up [17]. Furthermore, a backward rotation of the trunk has been

observed during step-down, possibly to regulate the whole-body angular momentum [9]. In

[5], we speculated that a dynamic backward trunk rotation during trunk-flexed walking may

reduce the vertical CoM oscillation in walking across uneven ground. If this speculation can

be confirmed, it may find clinical applications benefitting individuals exhibiting trunk-flexed

posture and impaired postural control [18, 19].

Bending the trunk forward in level walking leads to an anterior shift of the CoM with

respect to the hip. This causes a shorter effective leg at toe-off (TO) than at touchdown (TD;

heel strike) [5, 20], and this intra-limb asymmetry increases with trunk flexion [5]. Despite an

unchanged effective leg length [5], trunk-flexed gait is associated with a posterior shift of the

pelvis relative to the CoP [5, 20], together with crouched legs during the stance phase [5, 7].

While many aspects of human locomotion involving the mechanisms of postural control in

the context of unexpected changes in surface conditions [21–26], the effect of trunk posture on

gait [5–7, 18, 27–31], and the kinematic and kinetic adjustments during crossing uneven

ground [8, 9, 32–36] have been extensively studied, little is known about kinetic and kinematic

adaptions in human locomotion over uneven ground with altered trunk orientation. In a

recent study [37] focusing on kinetic adjustments in walking across uneven ground, we found

reduced between-step variations in the GRF patterns with increasing trunk flexion. We expect

the compensatory kinematic strategies that enable the observed reduced between-step kinetic

effects when walking with trunk-flexed gaits across uneven ground. Coping with such gait con-

ditions is likely to present different challenges compared to upright postures. Understanding

these challenges is of clinical interest as age or some pathological conditions can alter the

trunk posture and the adaptive capacity of human locomotor system [38–42].

Considering an altered dynamics of the trunk-flexed gaits from regular upright walking [5–

7, 18, 27, 28, 31], the context-specific kinetic and kinematic adaptations during walking and

the intra-limb kinetic and kinematic asymmetries in leg function at TD and TO as a result of

an increased sagittal trunk flexion [5], this study aims at examining the adaptive locomotor

kinematic behavior in perturbed steps (10 cm visible drop; level step, pre-perturbation step,

step-down, step-up) while walking with three postures (regular erect, with ~30˚ and ~50˚

trunk flexion from the vertical). We expect step-specific effects of imposed trunk posture on

kinematic parameters of human walking, with more pronounced adaptations at TO since a

posterior shift of the hip relative to the CoM during trunk-flexed gaits leads to a shorter
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effective leg at TO than at TD and correspondingly to a flatter leg angle at TD and a steeper

one at TO. Furthermore, we hypothesize that the kinematic adaptations across steps would be

posture-dependent, i.e. more pronounced kinematic adjustments during trunk-flexed gaits

that may be necessary for maintaining balance, and that these adaptations would affect the ver-

tical oscillation of the CoM. Specifically, we hypothesize that participants exploit a backward

rotation of the trunk during step-down to reduce effects of the step-down on the CoM height.

Finally, we expect a robustly stable walking, i.e. an immediate restoration of the kinematic

parameters at the end of the step-up following the step-down, despite alteration in the trunk

posture owing to the adaptive capacity of the locomotor system in young healthy participants.

Materials andmethods

Participants

Twelve (six males, six females) healthy volunteers (mean ± SD; age = 26 ± 3.35 years,

height = 169.75 ± 7.41 cm, mass = 65.08 ± 8.07 kg) with no history of orthopedic (leg length

discrepancy, joint fracture, joint laxity, arthritis), musculoskeletal and neurologic disorders

participated in this study. Lower limb range of motion was not assessed. A consent form was

signed by each participant before participation. The experimental protocol was approved by

the local Ethics Committee of the Friedrich Schiller University Jena (3532-08/12) and carried

out in accordance with the Declaration of Helsinki.

Experimental design and measurements

Kinematic data was collected using eight infra-red Qualisys motion capture cameras

(MCU1000, Qualisys, Gothenburg, Sweden) sampling at 240 Hz. GRFs during walking were

measured at 1000 Hz using three consecutive force platforms (9285BA, 9281B, 9287BA, Kis-

tler, Winterthur, Switzerland), embedded in the middle portion of a 12 m-long walkway. Kine-

matics and GRF data were synchronized by using the Kistler’s external trigger and BioWare

data acquisition software (Kistler Instrument AG, Winterthur, Switzerland). Data collection

was conducted at the Biomechanical Laboratory of the Sports Institute within Friedrich Schil-

ler University Jena. Spherical retro-reflective surface markers (14 mm) were used to track the

motion of the body. A thirteen-body segment model [5] was defined using 21 markers. The

markers were placed on the following bony landmarks: fifth metatarsal heads, lateral malleoli,

lateral epicondyles of femurs, greater trochanters, anterior superior iliac spines, posterior supe-

rior iliac spines, L5-S1 junction, lateral humeral epicondyles, wrists, acromioclavicular joints,

seventh cervical spinous process and middle of the forehead.

Participants were instructed to walk at their self-selected normal walking speed (Fig 1)

(with no restriction on the arm movements) across two experimental ground conditions

involving a level walkway and a walkway with a 10 cm drop for each of the three conditions:

self-selected regular erect trunk alignment (RE), 30˚ (TF1) and 50˚ (TF2) (Fig 2). One height-

variable force plate at the site of the second contact and two ground-level force plates at the

site of the first and third contacts were set (Fig 2A). After walking on the unperturbed level

track, the variable-height force plate was lowered by 10 cm and participants walked along the

uneven walkway. To determine the most consistent trunk posture across participants, trunk

flexion was achieved by bending from the hips [5, 7, 37]. Trunk angle was defined by the angle

sustained by the line connecting the L5 marker (midpoint between the L5–S1 junction) and

the C7 marker (seventh cervical spinous process) with respect to the vertical axis of the lab

coordinate system (Fig 2B) [5, 9, 37]. A co-examiner compared trunk angles (TF1 and TF2)

visually with adjustable-height cardboard templates prior to performing of each trial and dur-

ing gait along the walkway. The templates, drawn with lines displaying target trunk flexion
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angles TF1 and TF2, were hung on a wall parallel to the walkway: one at the beginning and the

other one in the middle of walkway [5, 7, 37]. Participants were encouraged to walk along the

walkway to accommodate to the locomotion conditions and secure step onto the force plates.

The dominant lower limb was defined based on participants’ verbal report of which limb they

use to kick a soccer ball [43]. To simulate the natural situation of arbitrary step-down with

respect to limb dominance [44], we defined a left-right-left sequence thus making sure that

some participants stepped down with the dominant limb (n = 7), some not (n = 5) [9]. Due to

Fig 1. Gait velocity across steps and postures. Simple main effect analysis showed that participants
walked with an increased velocity during gait with 50˚ of trunk flexion (TF2) in unperturbed step (p = 0.02) and
step-up (p = 0.03) as compared to the gait with regular upright posture (RE); however, there were no between
step differences when walking with RE (p = 0.51), TF1 (p = 0.55) and TF2 (p = 0.11). Error bars denote
standard deviation. RE, regular erect trunk; TF1, ~30˚ trunk flexion; TF2, ~50˚ trunk flexion; L, unperturbed
level step; U-1, pre-perturbation step; U0, step-down; U+1, step-up.

https://doi.org/10.1371/journal.pone.0190135.g001

Fig 2. Human locomotion diagram and trunk angle trajectories. (A) Side view of the instrumented
walkway with three consecutive force plates. The second force plate (step-down) was lowered 10 cm during
uneven walking with RE, TF1 and TF2 conditions. (B) Illustration of the definitions of the trunk angle as well as
hip, knee, and ankle joint angles, the effective leg and the leg angle as used in this study. (C) The trunk
kinematics in the sagittal plane across three level steps (blurred curves) and three uneven steps (solid curves)
with regular erect (RE, black), ~30˚ of trunk flexion (TF1, blue) and ~50˚ of trunk flexion (TF2, green) during
walking. The vertical grey and red lines represent TD and TO instants pertaining to the three consecutive
steps during level and uneven walking, respectively. The horizontal grey and red lines highlight the maximum
of the trunk angle in the step ‘U-1’ and the minimum of the trunk angle in the step ‘U0’ for each walking
postures, respectively. L, unperturbed level step; U-1, pre-perturbation step; U0, step-down; U+1, step-up;
CoM, center of mass; α, leg angle; CoP, center of pressure; TD, touchdown; TO, toe-off.

https://doi.org/10.1371/journal.pone.0190135.g002
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organizational reasons, level and uneven setups as well as repetitions of trunk orientations

were not randomized, but the sequence of flexed trunk orientations were randomized per par-

ticipant. While maintaining each gait posture, the participants performed eight successful trials

in which each single force plate was cleanly struck by one foot.

Parameters of interest

The ensemble average of following parameters of interest, in addition to their angular trajecto-

ries throughout stance phase of each individual step, were determined in the sagittal plane: 1)

hip, knee and ankle joint angles (Fig 2B) at the instants of TD and TO; 2) effective leg length,

defined as the length between the hip and CoP (Fig 2B), at the instants of TD (ELTD) and TO

(ELTO); 3) vertical position of the CoM at the instants of TD (CoMTD) and TO (CoMTO) rela-

tive to the ground determined by the body segmental analysis method relative to the laboratory

coordinate system [45, 46]; 4) leg angle, angle between effective leg and ground (Fig 2B), at the

instants of TD (αTD, angle of attack) and TO (αTO) was calculated with respect to the negative

x-axis. A vertical GRF threshold of 0.03 body weight was used to determine the instants of TD

and TO at each contact [5]. The effective leg length and CoM were both normalized to the dis-

tance between the greater trochanter marker and the lateral malleoli marker at the instant of

TD. Backward rotation during step-down was calculated as the difference of the maximum of

the trunk angle in ‘U-1’ and the minimal trunk angle in ‘U-0’ (Fig 2C).

Data processing and statistics

Kinetic and kinematic data of all successful trials were analyzed using custom written Matlab

(Mathworks Inc., MA, USA) code. The raw coordinate data were filtered using a fourth-order

low-pass, zero-lag Butterworth filter with 12 Hz cutoff frequency [5, 37].

Prior to analysis Levene’s test and Shapiro-Wilk test were performed to examine equality of

variance and normality of distribution, respectively. We analyzed all data sets using a two-way

repeated measures ANOVA to examine the effects of the posture (RE, TF1 and TF2) and step

(unperturbed step ‘L’ in level ground; pre-perturbation step ‘U-1’, step-down ‘U0’ and step-up

‘U+1’ across uneven ground) on the vertical position of the CoM, the effective leg length and

angle, and the lower limb joints (hip, knee and ankle) at TD and TO instants. In case of a sig-

nificant interaction, simple main effects were used to compare walking postures across each

step, as well as across steps while walking with each individual posture using one-way ANOVA

and post-hoc comparisons with Bonferroni adjustments for multiple comparisons. In case of a

non-significant interaction, the main effects of the posture and step were evaluated on each

dependent variable of interest. Where Mauchly’s test indicated a violation of sphericity, p-val-

ues and degrees of freedom were corrected using the Greenhouse–Geisser correction factor.

Furthermore, paired t-tests (using mean values per subject) were used to compare backward

rotation of the trunk in level and perturbed (step-down) walking for each trunk inclination.

All statistical analyses were performed with SPSS Statistics 21 (IBM Corporation, New York,

NY, USA). The statistical significance level of all tests was set to p = 0.05.

Results

The data analyzed includes 576 trials with a total of 1728 step cycles. Participants were success-

ful in maintaining their stability (no falls) on every trial while crossing the level and uneven

ground. Table 1 shows the mean trunk angles at TD and TO across steps while maintaining

trunk postures. Mean trunk backward rotations during step down were significantly higher

than those for level steps across all gait conditions (Fig 2C). The backward rotation in RE gait

increased from 3.5 ± 0.8˚ during level walking to 5.7 ± 1.9˚ during step-down (t = 3.89,
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Table 1. Means and standard deviations of kinematic parameters.

Step Posture p-value/F-value

ES

RE TF1 TF2 Posture Step Posture × Step

TrunkTD (deg) L 6.2±3.4 30.4±6.2 47.3±6.9
U-1 6.1±3.3 29.8±6.3 46.6±5.2
U0 5.2±5.6 26.2±6.5 43.8±5.9
U+1 12.6±4.4 32.6±6.7 48.9±3.9

TrunkTO (deg) L 5.0±3.4 29.7±5.1 45.9±7.6
U-1 5.2±5.4 23.9±10.1 43.1±3.9
U0 11.5±5.0 24.2±13.1 49.1±6.2
U+1 7.5±5.4 27.0±11.3 46.2±4.0

Normalized CoMTD L 1.12±0.02 1.10±0.02 1.08±0.02 0.00/120 0.00/144 0.00/5.96

U-1 1.12±0.02 1.07±0.08 1.07±0.02
U0 1.16±0.03 1.14±0.03 1.11±0.03a 0.95 0.96 0.49

U+1 1.06±0.02 1.05±0.02 1.04±0.03
Normalized CoMTO L 1.12±0.02 1.10±0.02 1.08±0.02 0.00/42.5 0.00/105 0.69/0.64

U-1 1.05±0.03 1.02±0.03 1.01±0.03
U0 1.17±0.02 1.15±0.03 1.13±0.03 0.87 0.94 0.09

U+1 1.11±0.04 1.11±0.06 1.08±0.06
Normalized ELTD L 1.14±0.03 1.16±0.03 1.16±0.03 0.01/6.24 0.00/15.1 0.04/3.97

U-1 1.14±0.04 1.15±0.04 1.15±0.03
U0 1.14±0.02 1.14±0.03 1.13±0.03 0.51 0.71 0.39

U+1 1.08±0.02 1.10±0.03 1.10±0.02
Normalized ELTO L 1.12±0.03 1.10±0.02 1.09±0.03 0.00/7.16 0.00/37.3 0.00/5.69

U-1 1.07±0.02 1.04±0.01a 1.01±0.02a,b

U0 1.15±0.03 1.15±0.03 1.14±0.03 0.54 0.86 0.48

U+1 1.10±0.03 1.09±0.04 1.07±0.05
HipTD (deg) L 19.9±3.4 43.3±4.0a 53.5±8.2a,b 0.00/458 0.00/19.5 0.00/28.6

U-1 20.4±3.9 37.4±8.7a 53.5±8.2a,b

U0 15.9±3.4 39.1±8.3a 51.0±6.9a,b 0.99 0.83 0.87

U+1 37.7±4.9 42.7±4.4 53.4±7.2a

HipTO (deg) L -12.4±5.0 11.9±7.4a 24.6±9.9a,b 0.00/145 0.33/1.24 0.00/7.89

U-1 -13.0±8.0 11.0±9.2a 24.9±9.6a,b

U0 -8.0±4.1 11.3±8.9a 20.6±8.5a 0.97 0.23 0.66

U+1 -13.1±6.7 11.7±8.4a 22.9±9.2a

KneeTD (deg) L 9.6±4.0 10.8±3.5 10.7±5.3 0.00/9.37 0.00/31.7 0.00/12.9

U-1 9.7±5.3 10.7±5.6 12.2±5.7
U0 14.1±5.6 15.6±6.0 16.3±5.8 0.70 0.88 0.76

U+1 29.2±5.4 22.8±8.4 21.1±8.1
KneeTO (deg) L 40.5±6.3 45.7±6.5 50.4±6.1a 0.00/9.67 0.00/31.1 0.00/5.27

U-1 51.5±10.6 61.4±9.2 70.6±7.0a

U0 30.7±3.6 30.2±4.5 32.9±4.0 0.70 0.88 0.56

U+1 37.2±10.4 43.6±12.6 50.2±7.0a

AnkleTD (deg) L -1.6±2.3 2.1±2.2a 2.7±1.9a 0.15/2.41 0.88/0.21 0.00/3.72

U-1 -1.5±3.0 1.4±2.5 2.6±2.5a

U0 -2.0±10.9 -4.7±15.2 -8.5±17.3 0.37 0.05 0.48

U+1 1.4±3.1 3.3±2.9 3.1±3.3

(Continued)
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p = 0.003), in TF1 from 4.8 ± 3.4˚ to 14.9 ± 10.9˚ (t = 2.95, p = 0.01) and in TF2 gait from

5.6 ± 2.4˚ to 9.9 ± 3.4˚ (t = 4.62, p = 0.001).

Table 1 summarizes posture×step interactions and the main effects of posture and step on

kinematic parameters. Two-way repeated measures ANOVAs indicated step-specific effects of

the trunk orientation on normalized vertical position of the CoM at TD (CoMTD) (Fig 3H),

normalized effective leg length at TD (ELTD) (Fig 3A) and TO (ELTO) (Fig 3B), hip angle at TD

(HipTD) (Fig 3C) and TO (HipTO) (Fig 3D), knee angle at TD (KneeTD) (Fig 3E) and TO

(KneeTO) (Fig 3F) and ankle joint at TD (AnkleTD) (Fig 3G).

Post-hoc tests revealed no significant differences of ELTD and ELTO between gait postures

during unperturbed level step ‘L’ (Figs 3A, 3B and 4A, Table 1). In the pre-perturbation step

‘U-1’, while ELTD exhibited no significant changes across gait postures and compared to the

corresponding level steps, significantly lower ELTO compared to the level steps was found in

all gait postures with a decreased ELTO by ~3% and ~6% from RE gait to 1.04 ± 0.02 and

1.01 ± 0.02 in TF1 and TF2 gaits, respectively (Figs 3A, 3B and 4B, Table 1). During the step-

down ‘U0’, ELTD remained relatively unchanged as compared to the corresponding level steps

and showed no between gait posture differences. Trunk-flexed gaits (TF1 and TF2) demon-

strated a significantly elongated effective leg at TO (ELTO) after step-down compared with cor-

responding values of both ‘L’ and ‘U-1’ steps with no between gait posture differences (Figs

3A, 3B and 4C, Table 1). Significantly shortened ELTD in the step-up ‘U+1’compared to all pre-

ceding steps in all gait postures with no between gait posture differences was found (Figs 3A

and 4D, Table 1). ELTO demonstrated a significant increase in trunk-flexed gaits relative to the

step ‘U-1’ and a significant decrease compared to the step ‘U0’ regardless of the trunk orienta-

tion (Figs 3B and 4D, Table 1).

The tests of simple main effects revealed that trunk-flexed gaits demonstrated an increased

HipTD and HipTO across all steps with no between step differences except for the RE gait in the

Table 1. (Continued)

Step Posture p-value/F-value

ES

RE TF1 TF2 Posture Step Posture × Step

AnkleTO (deg) L -14.9±6.2 -11.5±2.5 -9.8±4.3 0.29/1.42 0.00/12.3 0.13/1.85

U-1 -2.5±7.2 -2.1±4.4 -2.3±4.6
U0 -18.5±3.0 -16.6±3.2 -13.3±5.5 0.26 0.75 0.31

U+1 -13.7±7.6 -11.8±3.0 -9.5±4.2
αTD (deg) L 66.5±4.6 62.6±5.1 62.2±6.3 0.01/6.52 0.55/0.71 0.37/1.12

U-1 65.0±4.7 63.1±4.4 59.9±7.9
U0 65.6±2.5 63.9±4.4 63.9±3.2 0.52 0.10 0.15

U+1 64.6±2.9 64.0±2.8 63.4±2.7
αTO (deg) L 117±2.7 116±5.9 116±7.3 0.09/2.92 0.00/33.0 0.84/0.44

U-1 119±2.1 120±2.4 120±5.1
U0 120±2.8 119±4.6 120±3.0 0.32 0.84 0.06

U+1 116±2.9 111±3.1 110±2.9

The last three columns show the p-values/F-values and effect size (ES, partial eta squared) of the main effects of posture and step and, the posture×step
interaction, respectively. In case of interaction effect, significant differences from RE and TF1 across each step are indicated with ‘a’ and ‘b’, respectively

(p<0.05). Accordingly, shaded, bold and underlined values indicate the significant difference from the unperturbed step ‘L’, from the pre-perturbation step

‘U-1’ and from the step-down ‘U0’ (p<0.05), respectively, for each walking posture (N = 12). CoM, center of mass; TD, touchdown; TO, toe-off; ELTD,

normalized effective leg length at TD; ELTO, normalized effective leg length at TO; αTD, leg angle at TD; αTO, leg angle at TO; RE, regular erect trunk; TF1,

~30˚ trunk flexion; TF2, ~50˚ trunk flexion; U+1, step-up.

https://doi.org/10.1371/journal.pone.0190135.t001
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step ‘U+1’ where the hip flexion increased by ~18˚ compared to the step ‘L’ (Figs 3C, 3D and

4, Table 1).

For the KneeTD, no between step and between posture differences were found except for the

step ‘U+1’ where the knee flexion dramatically increased in all gait postures compared to the

preceding corresponding steps with no between posture differences (Figs 3E and 4, Table 1).

In the step ‘L’, TF2 gait led to a significant increase of ~10˚ in KneeTO compared to the RE

gait (Figs 3F and 4A, Table 1). Significantly increased KneeTO in the step ‘U-1’ compared to

the corresponding level steps was found regardless of the gait posture with a significant

increase of the ~20˚ in TF2 gait relative to the step ‘L’ (Figs 3F and 4B, Table 1). In the step

‘U0’, the KneeTO decreased across gait postures. Trunk-flexed gaits demonstrated a signifi-

cantly decreased knee flexion compared to the both steps ‘L’ and ‘U-1’ with no between pos-

ture differences (Figs 3F and 4C, Table 1). During the step ‘U+1’, participants increased their

KneeTOwhich was found to be significantly lower from those during ‘U-1’ and significantly

higher from that of step ‘U0’ in trunk-flexed gaits. In this step, TF2 gait was associated with an

increase of ~13˚ in KneeTO compared with RE gait (Figs 3F and 4D, Table 1).

In the step ‘L’, trunk-flexed gaits demonstrated an increased AnkleTD (Figs 3G and 4A,

Table 1). Significantly increased ankle flexion (dorsiflexion) was observed in TF2 gait com-

pared with RE gait in the step ‘U-1’(Figs 3G and 4B, Table 1). TF2 gait was associated with a

significant increase of plantarflexion relative to the steps ‘L’ and ‘U-1’ but not significantly dif-

ferent from RE and TF1 gaits during the step ‘U0’(Figs 3G and 4C, Table 1). In the step ‘U+1’,

AnkleTD showed a significant increase only with respect to the step ‘U-1’ with no between pos-

ture differences (Figs 3G and 4D, Table 1).

As indicated by the analysis of simple main effects, during steps ‘L’ and ‘U-1’, no between step

and between gait posture differences for CoMTDwere found (Figs 3H, 4A and 4B, Table 1). In the

step ‘U0’, trunk-flexed gaits compared with step ‘U-1’ represented a significant increase of CoMTD

with a significant decrease of ~4% to 1.11 ± 0.03 from RE gait to TF2 gait (Figs 3H and 4C, Table 1).

CoMTD demonstrated a significant decrease in the step ‘U+1’ in all gait postures relative to the pre-

ceding corresponding steps with no between gait posture differences (Figs 3H and 4D, Table 1).

Significant main effects of posture for the normalized vertical position of the CoM at TO

(CoMTO) and the leg angle at TD (αTD) and of step for the CoMTO, the leg angle at TO (αTO) and

the ankle joint at TO (AnkleTO) were found (Fig 5, Table 1). For posture factor, as compared to

the RE gait, CoMTOwas decreased by ~2% in TF1 and by ~3% in TF2 (Fig 5A, Table 1), and leg

angle at TD (αTD) was decreased by ~3˚ in TF2 (Fig 5B, Table 1). For the main effect of step,

compared to the step ‘L’, while CoMTO did not significantly change in the step ‘U+1’, in the step

‘U-1’ decreased by ~7% and increased by ~5% in the step ‘U0’ (Fig 5C, Table 1). αTOwas

increased by 6˚ in the steps ‘U-1’ and ‘U0’. In the step ‘U+1’, αTOwas decreased by 10˚ relative to

the steps ‘U-1’ and ‘U0’ and not significantly different from the step ‘L’ (Fig 5D, Table 1).

AnkleTOwas decreased by ~9˚ in the step ‘U-1’ and was increased by ~14˚ and ~8˚ in the steps

‘U0’ and ‘U+1’, respectively, relative to the step ‘U-1’ (Fig 5E, Table 1).

Discussion

Considering the frequent occurrence of trunk-flexed locomotion (e.g. in elderly and patients

with spinal pathologies) and its detrimental effect on gait stability, understanding the role of

Fig 3. Posture×step interaction. (A)Normalized effective leg length at TD, (B) normalized effective leg length at
TO, (C) hip position at TD, (D) hip position at TO, (E) knee position at TD, (F) knee position at TO, (G) ankle
position at TD and (H) normalized CoM position at TD. (N = 12). RE, regular erect trunk; TF1, ~30˚ trunk flexion;
TF2, ~50˚ trunk flexion; L, unperturbed level step; U-1, pre-perturbation step; U0, step-down; U+1, step-up.

https://doi.org/10.1371/journal.pone.0190135.g003
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the trunk in human locomotion is of clinical interest. In this study, we investigated the adap-

tive kinematic behavior of able-bodied walking while negotiating uneven ground with altered

trunk orientations. In line with our hypotheses, we observed step-specific effects of posture on

the kinematic behavior of able-bodied gait in most of the parameters of interest (Table 1). As

compared with regular upright walking, trunk-flexed gaits across uneven ground exhibited: a)

more crouched legs, characterized by sustained knee flexion during stance (Fig 4, Table 1), b)

a greater TD-TO kinematic discrepancy in the effective leg (i.e. shorter legs at toe-off) (Fig 4,

Table 1) and c) a marginally flatter leg angle at TD (Fig 5B, Table 1). Participants rotated their

trunk backwards during step-down regardless of the trunk orientation (Fig 2C). A more pro-

nounced trunk backwards rotation in trunk-flexed walking contributed to the observed ele-

vated center of mass (CoM) trajectories during the step-down (Fig 4C) which may have

facilitated drop negotiation. Finally, at the end of the step-up, participants restored the kine-

matic parameters to the level step values (Fig 4, Table 1), suggesting stability and robustness of

the gait in able-bodied participants.

Kinematic adaptations during the pre-perturbation step (U-1)

Our results partly supported our expectation of the step-specific effect of the trunk posture on

the kinematic behavior of able-bodied walking in the pre-perturbation step. Compared to the

unperturbed step, the participants demonstrated kinematic adjustments only in the effective

leg length and knee angle at TO (Figs 3B, 3F and 4A, Table 1). In preparation to step-down,

individuals increased their knee flexion, and the magnitude of the flexion was proportionally

increased with an increase of the trunk flexion, which led to a shorter effective leg length at TO

(Fig 4B, Table 1). In addition, the ankle angle tended to be more dorsiflexed (main effect) (Fig

5E). These kinematic adjustments in the lower limb resulted in a lower CoM position relative

to the corresponding level steps (Figs 4B and 5C) in preparation to step down. This finding is

consistent with a study by Muller et. al [9], who reported that at the end of the step before a vis-

ible drop during regular upright walking, individuals modulate their knee and ankle flexion

which in turn leads to a lower vertical position of the CoM. Plus, the vertical position of the

CoM lowered proportionally with an increase of the trunk flexion (Fig 5A).

Fig 4. Normalized CoM, normalized effective leg length and lower limb joint angle trajectories. Shown are ensemble-averaged normalized vertical
position of center of mass (CoM), normalized effective leg length, hip, knee, and ankle angles pertaining to (A) unperturbed step (L), (B) pre-perturbation
step (U-1), (C) step-down (U0) and (D) step-up (U+1) in the sagittal plane during the stance phase for RE (black), TF1 (blue) and TF2 (green) (N = 12).
RE, regular erect trunk; TF1, ~30˚ trunk flexion; TF2, ~50˚ trunk flexion.

https://doi.org/10.1371/journal.pone.0190135.g004

Fig 5. Main effects of posture and step. Shown are the main effects of posture on (A) CoM at TO and (B) leg angle at TD, and the
main effect of step on (C) CoM, (D) leg angle and (E) ankle position at TO (N = 12). Significant differences from RE and TF1 are
indicated with ‘*’ and ‘**’, respectively for the posture effect (p<0.05). Significant differences from ‘L’, ‘U-1’, and ‘U0’ are indicated with
‘a’, ‘b’, and ‘c’, respectively for the step effect (p<0.05). RE (black), regular erect trunk; TF1 (blue), ~30˚ trunk flexion; TF2 (green),
~50˚ trunk flexion; L, unperturbed level step (dark grey); U-1, pre-perturbation step (grey); U0, step-down (white); U+1, step-up (light
grey).

https://doi.org/10.1371/journal.pone.0190135.g005
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Comparing the effective leg length between TO and TD in the pre-perturbation step to that

of the unperturbed step, we observed a much shorter effective leg during the pre-perturbation

step due to an increase of the trunk flexion (Fig 4B). In agreement with our previous study [5],

where we reported a kinematic asymmetry in leg function, characterized by a longer effective

length at TD than at TO when transforming posture from upright to almost horizontal orien-

tation, here we found such discrepancy in the effective leg length with a pronounced difference

in the preparatory step. The observed kinematic adjustments in the approach step seemed to

be driven by the visual perception of the perturbation which may have allowed adaptive motor

control strategies.

Kinematic adaptations during step-down (U0)

Comprising approximately 50% of the total body mass [45], a deviation in the trunk orienta-

tion can have a significant effect on the position of the CoM and thus on human locomotion

[5, 7, 14, 27]. Trunk kinematic adjustments during accommodating uneven ground can be

influenced by the height of the drop and the availability of the visual guidance. In downward

step on a camouflaged surface, the trunk backward rotation becomes larger than stepping into

a visible drop and tends to increase proportionally with the drop height [9]. In both upright

trunk gait with straight legs [9] and trunk-flexed gaits associated with crouched legs during

traversing uneven ground, the trunk appears to reduce its angle in a compensatory fashion to

diminish variations in the CoM position. The utilization of this mechanism with a more pro-

nounced adaptation during trunk-flexed gaits resembles the small birds’ locomotion in

exploiting their legs (i.e. a zig-zag-like configuration) to negotiate large terrain perturbations

[47]. The backward rotation of the trunk as found in our young, healthy participants (Fig 2C)

not only contributes to the significantly higher vertical position of the CoM relative to the pre-

perturbation step across trunk-flexed gaits, but may counteract a potential increase in angular

momentum during a step-down (Figs 3H and 4C, Table 1). This opens up new perspectives on

the role of the trunk in locomotion, notably for specific populations e.g. elderly with a forward

inclined trunk orientation [18, 48] or patients who display atypical trunk postures [49]. Thus,

backward trunk rotation when dealing with step-down may reflect an adaptive strategy to

enhance gait stability. To the best of our knowledge, no studies are available whether elderly or

patients with an altered trunk posture already employ this strategy for negotiating downward

steps in unassisted locomotion, e.g. when stepping down from a curb or walking down

inclines.

In the present study, participants landed on a lowered level with almost no significant

changes in the effective leg length (Figs 3A and 4C, Table 1). A more extended ankle compen-

sated the more flexed knee; however, these kinematic adaptations in the step-down were not

significantly different from their counterparts in unperturbed steps. In addition, an increase of

the trunk flexion did not lead to significant changes in knee and ankle joints across gait pos-

tures (Figs 3E, 3G and 4C, Table 1). The only change occurred at the hip: the more flexed the

trunk, the more flexed the hip at TD (Figs 3C and 4C, Table 1). While no step-dependent

effects of posture on the leg angle at TD were observed, walking with 50˚ of trunk flexion

(TF2) was associated with a flatter leg angle across steps (Fig 5B), possibly to compensate for

the loss in the horizontal distance between the CoM and the CoP induced by a trunk flexion.

Moreover, the standard deviation of plantarflexion was much higher for the step-down (U0)

compared with the other steps, indicating that some participants used toe-landing at TD of

step-down (Table 1).

The results partially confirmed our expectation for step-specific effects of posture at TO in

the step-down. The leg configuration at TO was characterized by significant knee and ankle
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extension in order to elongate the leg and to facilitate the restoration of the CoM height during

the following step-up (U+1) across gait postures (Figs 3B and 4C). The main effect of step at

TO revealed a significant increase of leg angle (Fig 5D) and ankle plantar flexion (Fig 5E). The

potential loss in CoM height due to an increased leg angle was overcompensated by the simul-

taneous elongation of the effective leg. In comparison to the preceding step and unperturbed

level step, the discrepancy in effective leg length between TD and TO in the step U0 was mini-

mized, as participants were attempting to launch themselves onto the elevated ground (Fig

4C).

Kinematic adaptations during step-up (U+1)

In agreement with our expectation that step-specific effects of posture would occur and likely

differ between TD and TO instants in the step U+1, individuals exhibited significantly differ-

ent kinematic adaptations at TD from those of other steps (Figs 3 and 4D, Table 1). They

landed on the elevated step (post-perturbation step) with a shortened effective leg at TD as

compared to the corresponding unperturbed steps across gait postures (Figs 3A and 4D,

Table 1). This observation was reflected in significant increases in the knee flexion across gait

postures and a significant increased hip flexion during RE gait (Figs 3C and 4D, Table 1). A

shortened effective leg length led to a lowered vertical position of the CoM across gait postures

relative to the corresponding unperturbed steps; however, the vertical position of the CoM

did not exhibit a significant change with an increase of the trunk flexion (Figs 3H and 4D,

Table 1). The former finding can be attributed to a considerable flexion across lower limb

joints (Table 1) and trunk (Fig 2C) (i.e. crouched posture) during RE gait, walking with a regu-

lar erect trunk, leading to a significant decrease in the CoM height while stepping up immedi-

ately after a visible step-down in ground. Therefore, the second expectation that kinematic

adaptations would become more pronounced with an increase of the trunk flexion was weakly

supported, as individuals attempted to accommodate the immediate recovery step from the

perturbation during trunk-flexed gaits with a kinematic behavior that was not remarkably dif-

ferent from the upright walking. These findings suggest that kinematic adjustments in the

global leg and CoM displacement in the step U+1 tended to be rather step-dependent than

posture-dependent.

Remarkably, for each gait posture, the kinematic parameters returned to the mean values

of the unperturbed corresponding steps at TO (Figs 3 and 4D, Table 1). This may have been

facilitated by moderation of the CoM trajectory during step down (relative height of CoM

increased significantly during step-down, diminishing absolute changes of CoM height), a

strategy that has been suggested to be effective in improving the dynamic stability [50, 51]. The

step-specific effects of posture on walking kinematic parameters indicate that modulation of

the leg posture was necessary to achieve this. Considering that there were no significant

changes in kinematic parameters comparing step-up and the level steps at TO for each gait

posture (Table 1), we assume that the recovery of the gait was achieved at the end of the step-

up, suggesting stability and robustness of the gait. This may have been facilitated by the

sequence of step-down directly followed by step-up and the presence of the visual perception

of the perturbation. We however do not know whether a comparable immediate recovery

would be achieved when stepping down on a permanently lowered level. Moreover, having

observed the kinematic strategy of backward trunk rotation during stepping down while

adopting various trunk orientations alongside other step-specific global kinematic adjustments

in able-bodied gait motivates examining the role of trunk movements in balance-compro-

mised cohorts to see to what extent their control of trunk–accounting for nearly 50% of total

body mass–might be different from that of able walkers.
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Conclusion

In summary, the results of the present study indicate that negotiating changes in ground level

requires step-specific compensatory kinematic adaptations in lower limbs to maintain

dynamic stability regardless of the trunk orientation. These adaptations occur not only at the

end of the step-down, but also at TO of the pre-perturbation step and at TD of the step-up.

Backward rotation of the trunk during step-down was not only a preventive strategy employed

by able-bodied participants possibly to control forward horizontal and angular momentum of

the body, but also to moderate changes in the CoM trajectory in trunk-flexed gaits. The young

healthy participants recovered to steady gait in the step immediately following a downward

step in ground even in the presence of trunk flexion. Trunk-flexed gait is associated with

impaired postural control [18]. The incorporation of exercises with a greater focus on volun-

tary backward rotation of the trunk for negotiating step-down into fall-prevention interven-

tion programs may be useful to enhance gait stability in patients and elderly who exhibit

trunk-flexed postures during walking. Further perturbation experiments on humans with and

without normal trunk posture in comparable conditions will be required to shed further light

on the interaction between the trunk posture and locomotion.
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Chapter 5 
 

5 General conclusion  
 

 

5.1 Summary  
 

In this work, I explored the relationship between changes in posture and biomechanics of 

locomotion during human walking on uneven ground as compared to walking on level ground. 

We gained more insight into the role of trunk orientation in human locomotion, having used 

both mostly empirical and partially model-based approaches. By examining human leg 

function during walking under changes in the trunk kinematics — up to the maximal sagittal 

flexion — and comparing it to that of small-bodied birds, in line with our hypothesis, we found 

that mimicking birds’ posture causes a comparable behavior in leg function, despite the 

different morphology of the segmented legs. In addition, comparison of two simplified models, 

namely spring and damper in series and parallel spring and damper, for the first time, revealed 

that the former model performs superior in the prediction of the axial leg forces during stance 

phase of walking than the latter model. This superiority held true during walking with various 

degrees of trunk orientations (Fig. 5-1G).  

As hypothesized, trunk could be utilized to accommodate changes in ground level by exhibiting 

a backward rotation during step down. Human walkers rotated their trunk backwards during 

step-down (2- to 3-fold backwards rotation compared with level steps regardless of trunk 

posture) are likely to control the kinetic energy they gain during stepping down (Fig. 5-1A). In 

contrast with our expectation, increasing trunk flexion did not lead to a greater variation in gait 

kinetic parameters while traversing uneven ground. Interestingly, the pre-adaptations were 

found essential in the preceding step to the drop when walking with a regular upright trunk. 
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With increased trunk flexion, between-step changes in the GRF kinetic parameters tended to 

decrease relative to upright walking on level ground.  

 

Fig. 5-1. Schematic diagram of human locomotion with various trunk orientations as well as 

relevant kinematic, kinetic, axial leg function and model versus experimental axial forces figures.  
(A) The ensemble-averaged trunk kinematics in the sagittal plane across three level (blurred lines) and 
three uneven steps (solid lines) with different walking postures. The vertical grey and red lines represent 
TD and TO instants pertaining to the three consecutive steps during level and uneven walking, 
respectively. The horizontal grey and red lines highlight the maximum of the trunk angle in the step ‘U-
1’ and the minimum of the trunk angle in the step ‘U0’ for each walking postures, respectively. (B) 
Ensemble-averaged normalized vertical position of the CoM, (C) ensemble-averaged normalized 
effective leg length, ensemble-averaged (D) leg length, (E) axial leg force and (F) axial loop (axial force 
versus leg length). (G) Model forces versus experimental axial force for different walking conditions 
involving normalized ensemble-averaged leg axial force (dashed lines), fit from SSD model (series-
spring-damper, solid black curve) and fit from PSD model (parallel spring-damper, solid grey curve). 
SSD model produces better predictions of leg axial forces in across all gait conditions. (H) GRFs for 
different walking conditions. Shown are ensemble-averaged horizontal and vertical GRFs (normalized 
to participant body weight (BW)) during unperturbed level step and perturbed steps in uneven ground. 
The eensemble-averaged (I) ankle, (J) knee and (K) hip angles in the sagittal plane across the stance 
phase of different steps with various walking postures. The grey shaded area represents s.d. of RE gait. 
The contact time is normalized to 100%. TD, touchdown; TO, toe-off; CoM, center of mass; Ground 
reaction forces, GRFs; k, stiffness parameter of serial spring; c, damping parameter of serial spring; α, 
leg orientation; CoP, center of pressure.  

We argue that the trunk plays a compensatory role with a more pronounced movement strategy 

(i.e., a greater backward rotation) in trunk-flexed walking during stepping-down. This 
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facilitates accommodating changes in ground level by a backward movement regardless of its 

initial orientation (Fig. 5-1A) in an attempt to maintain the vertical position of the CoM (Fig. 

5-1B) and to regulate the relationship between the CoM and the base of support. Able-bodied 

individuals were found to recover nearly all kinematic parameters comprised of the vertical 

position of the CoM (Fig. 5-1B), effective leg length (Fig. 5-1C) and angle as well as hip (Fig. 

5-1I), knee (Fig. 5-1J) and ankle (Fig. 5-1K) joint angles at the end of the step-up. Although 

the transformation of the body posture from the orthograde to the virtually pronograde during 

walking may lead to a substantial muscular demand and mechanical load, however, assuming 

such zig-zag-like crouched posture while traversing uneven ground was found not to require 

significant changes in the GRF parameters. Furthermore, the restoration of the movement 

strategy to the undisturbed path within a range observed during upright walking at the end of 

the set-up following a step-down implies that the stability of the periodic movement does not 

seem to be hampered by bending the trunk. This may resemble the ability of small birds in 

adjusting their crouched legs to cope with irregular terrains (Blum et al. 2011). Based on such 

kinetic and kinematic observations, we believe that, although walking with bent trunk might 

be strenuous, but a robustly stable gait in able walkers suggests that the control of such gait 

may not be difficult.  

5.2 The paradigm of a bent posture 

While walking upright with extended legs is a hallmark feature of human locomotion, the 

adaptability of our locomotor system allows walking with various degrees of trunk orientation 

(Grasso et al. 2000; Saha et al. 2008; Gallagher et al. 2011; Kluger et al. 2014). Unavoidable 

gait postures, e.g. in some occupational settings (as in low-seam coal mines), often do not 

permit upright walking instead require laborers to stoopwalk in order to accomplish their daily 

tasks (Gallagher et al. 2011). Moreover, altered trunk posture might be the consequence of 

degenerative aging process. Flexed posture – characterized by an increased thoracic kyphosis 

– associated with a more variable and less structured gait pattern, and a more irregular trunk 

acceleration pattern has been documented in older adults (de Groot et al. 2014). At a functional 

level in the sport context, incorporation of the sagittal plane trunk inclination during running is 

suggested as an effective strategy to reduce loading at the knee (Teng 2013). 

Control of posture and locomotion are believed to share some common principles of spatial 

organization as their functions are interdependent at different levels of the central nervous 

system (Massion 1992; Lacquaniti et al. 1997). A smooth execution of locomotion requires not 
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only a dynamic equilibrium, but also a continuous adaption to potential threats, such as postural 

changes and uneven ground. To this end, the coordinated interactions between different body 

segments are paramount (Dietz et al. 1987; Hirschfeld and Forssberg 1991). Disturbances, 

conceived as an induced deviation of a desired condition, may be natural either as part of an 

everyday experience or artificial as imposed by experiment. Advancement in our understanding 

of a system properties can be achieved through the study of adaptions and responses of that 

system to disturbances (Blickhan et al. 2013).  

Experimentally induced trunk-flexed postures during walking are associated with 

biomechanical changes in dynamics of lower limbs. A forwardly bent trunk during locomotion 

results in a posterior shift in the hip position with respect to the CoM, leading to more crouched 

lower limbs. Such compensatory kinematic adjustments contribute to maintaining the CoM 

trajectory within the base of support. An increased sagittal trunk flexion, as associated with 

more crouched lower limbs, creates an increased phase lag between hip and ankle joints as 

compared with upright walking. This, in turn, results in a phase lag in the vertical position, 

velocity, and acceleration of the CoM (Saha et al. 2008). However, the trunk-flexed gaits (e.g. 

up to 50° trunk flexion) cause no changes in the shape of the time-normalized waveforms of 

the elevation angles of  the thigh, shank, and foot segments throughout the gait cycle (Grasso 

et al. 2000).  

Given the vertical GRF is corresponding to the vertical acceleration of the CoM, changes in 

the dynamics of the CoM derived from the deviation of trunk from upright is associated with 

the systematic changes in the GRF pattern (Grasso et al. 2000; Saha et al. 2008). Under such 

walking conditions, the amplitude of the first and the second peaks tends to become higher and 

lower, respectively, in a way displaying the patterns intermediate between the typical GRF 

waveforms of walking and running.  

In terms of lower-limb kinetics, supporting the anteriorly flexed heavy trunk up to 50° 

necessitates a significant increased hip extensions and an increased knee joint extensor 

moments earlier in the stance phase (Kluger et al. 2014). With such energetic demands, 

assuming an increased muscular activity that may contribute to a rapid muscular fatigue is 

convincible.  

The measurement of the electromyographic (EMG) activity of the gluteus maximus, biceps 

femoris, rectus femoris, vastus lateralis, lateral gastrocnemius, and tibialis anterior during 

trunk-flexed gaits demonstrates that EMG activity of all above mentioned muscles increases 

relative to a regular walking with an upright trunk (Grasso et al. 2000).  
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The spatio-temporal parameters of the gait are also influenced by changes in the trunk 

kinematics. Our findings reveal that except for a normalized step length, other gait parameters 

vary with an increase of the sagittal trunk flexion; an upward trend in the velocity and cadence, 

and a downward trend in the stance time and swing time. However, increasing the trunk 

orientation from ~50° to a maximum angle in the sagittal plane led to no differences in the 

spatio-temporal gait parameters. An unchanged step length may be attributed to the restrictions 

of the experiment in terms of foot strikes in a left–right–left sequence on the three force-

platforms embedded at the equal distances in the walkway.  

Since an active ankle push-off is responsible for initiating the leg swing in humans (Lipfert et 

al., 2014), a bent trunk during locomotion may interfere with a proper push-off as judged from 

the lower vertical GRF second peak and the unloading rate compared with an upright gait. This 

results in a right-skewed profile of the vertical GRFs (Fig. 5-1H) as characterized by greater 

weight acceptance loads associated with higher loading rates, smaller push-off forces 

associated with lower unloading rates and lower vertical impulses. Under such circumstances, 

for a swift transition from stance to swing, the support of the body weight and the maintenance 

of balance is made possible at a higher cadence, which in turn provokes a higher speed when 

trunk flexion increases. 

5.3 Leg function: human versus avian  
 

The morphological discrepancies and disproportions can affect the modes of locomotion. 

Despite some morphological differences such as femur orientation and an tarsometatarsal shape 

as well as moving posture (digitigrade in birds vs. plantigrade in human), both humans and 

avian use bipedalism. A comparative biomechanical analysis of their locomotion advances our 

understanding of terrestrial locomotion.   

In part of this work, we aimed to explore the biomechanical aspects of human walking while 

mimicking pronograde posture in birds. Human walkers were instructed to reorient their trunk 

to 30°, 50° and maximum flexion in the sagittal plane while walking on both level and uneven 

ground. Build upon our knowledge obtained from the previous study (Andrada et al. 2014) 

where the influence of the pronograde posture on leg function in small birds was scrutinized,  

we were interested in examining the effects of such trunk geometry in human locomotion (Fig. 

5-1). To do so, we investigated the leg function – characterized by effective leg length 

(connecting hip to CoP) and axial leg force (projected GRF onto effective leg vector) – under 

different walking postures. The leg function is linked to the trunk orientation. In humans with 

an erect trunk orientation, the leg can operate in a more elastic and flexible fashion owing to 
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the location of the hip below the CoM. In the human runners, a slightly behind and apparently 

inferior position of the hip relative to the CoM results in a high elastic storage and allows a less 

asymmetric operation of the legs (Blickhan et al. 2015). When this close to a vertical 

arrangement varies by e.g. a forward shift of the trunk orientation, the functional task of 

stability during locomotion induces some constraints on the leg function.   

An increased sagittal trunk flexion led to increasingly greater kinetic and kinematic intra-limb 

asymmetries during level walking (Figs.5-1D and E). The effective leg length which behaved 

independent of walking postures by remaining unchanged at TD tended to become increasingly 

shorter at toe-off by bending the trunk more anteriorly (Figs.5-1C and D). Meanwhile, 

maintaining a sufficient step length during trunk-flexed gaits required a flatter leg angle at TD 

to offset a posterior shift of the pelvis. Walking with increasing trunk flexion is performed by 

a sustained knee flexion throughout the stance phase coupled with an increased hip and ankle 

flexion, leading to a decreased angular range of motion across lower limb joints. In addition, 

in the trunk-flexed gaits, TO occurred swifter at a steeper angle with more flexed lower limb 

joints than in upright walking in order to maintain stability during each step. The kinematic 

analysis of bird’s locomotion also revealed a comparable asymmetric leg function (Andrada et 

al. 2014).  

Proceeding to a maximum trunk flexion transformed the symmetric, M-shaped vertical GRF 

pattern to a right-skewed one, characterized by a higher first peak of the vertical GRF than the 

second one (Fig. 5-1H). Moreover, the braking phase tended to be shorter than the propulsion 

phase. Under such circumstances, walking with a constant locomotion velocity requires the 

greater braking forces than the propulsive forces (i.e., zero impulse in horizontal direction). 

Interestingly, the similar kinetic behavior, interpreted as a kinetic asymmetry, has been found 

in the locomotion of the small birds. A functional task of balancing a heavy trunk during 

locomotion, particularly in a more horizontal posture can substantially affect the stiffness and 

damping properties of the leg. The more anteriorly shifted the trunk, the greater the leg damping 

since counteracting the acceleration of the CoM may necessitate the leg to dissipate energy. In 

a simulation model by Andrada et al. (2014), the damper was found to cause an asymmetric 

profile of the GRFs by exerting greater forces at TD and attenuated forces late in the stance 

phase. This led to an earlier TO. Therefore, a reduced braking time and subsequently the greater 

forces at early stance phase induced by an augmented leg damping in the leg right-skews the 

vertical GRF profile. Given these similarities in the leg function between birds and humans 

(when maintaining a bent trunk) we assert that the maintenance of a bent posture, at least in 



31 

 

these two species, constrains the basic properties of the leg function independent of the specific 

leg morphology. 

5.4 Stability during an expected twofold perturbation 

As mentioned before, the study of the reactive and the proactive responses of biological or 

technical systems to both or either internal and external perturbations helps to advance our 

understanding of how the normal locomotor synergy is adapted to the properties of the 

environment. Our locomotor system is capable of adapting the motor behavior to the disturbing 

environmental conditions in order to minimize the error likelihood however at the cost of 

higher efforts, for example, by means of more rapid corrective movements, an increased 

muscular contraction or altered movement patterns (van Dieën et al. 2003; Emken et al. 2007; 

Franklin et al. 2007; Izawa et al. 2008).  

The postural synergy integrated by the CNS is task- and perturbation-specific. The maintenance 

of the stability — as the most important concern during locomotion — constraints the planning 

and modulation of the motor pattern for achieving the target motor goal (Winter et al. 1990). 

For example, the modulation of e.g. the step length for a proper placement of the foot in 

response to changes in environment requires a prompt synergy of our locomotor system to 

ensure the dynamic stability. Therefore, perturbations might elicit context-specific adaptations 

as they vary in terms of quality and quantity. On the other hand, the quality and the quantity of 

the adaptations are contingent upon the adaptability of a system. In this work, we examined the 

mechanical behavior of human locomotor system in response to the destabilizing agents (i.e., 

altered postures and uneven ground) that could induce a deviation from a desired steady state 

during locomotion. In both experimental and simulation locomotion-focused studies, one of 

the conventional methods to explore the stability and robustness is to study the behavior of a 

system in confrontation with changes in ground levels. The goal of such perturbation 

experiment is to determine, in first place, whether the system is capable of disturbance 

avoidance, and in the second place, what adaptive or/and compensatory mechanisms may 

emerge for accomplishment of the task.  

When envisioning the spatial properties of the ground during locomotion, the visual perception 

of the environment may allow pre-adaptations in our locomotor systems to deal with external 

perturbations (Muller et al. 2014). In fact, incoming visual information from the environment 

is key to the selection of the appropriate responses and eventually a tailored motor response 

programming. The quality of all these involved stages in the information-processing can be 

influenced by the external and the internal conditions. The study of human walking across 
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uneven ground with a regular upright trunk (Muller et al. 2014) has demonstrated the step-

specific kinematic and kinetic adjustments to the variable-height changes in ground level. In a 

preceding step to the hole, the kinematic adjustments are not merely limited to the lower limbs, 

but also involve the trunk. Muller et al. (2014) further showed that obscuring the perturbation, 

which restricts the visually guided preadaptations, leads to the reduced kinematic adjustments 

prior to stepping down into the hole. In the visible perturbed steps (i.e., the drop), the 

individuals land without making considerable kinematic changes at TD; however, the GRF first 

peak systematically increases with the drop height. During step into a camouflaged drop, the 

kinematic and the kinetic adjustments were found to be augmented. For instance, a decrease 

and an increase in trunk angle at TD and TO, respectively, and an increase and a decrease in 

the GRF first and second peaks, respectively are greater than those of walking across visible 

changes in ground level (Muller et al. 2014). This indicates context-specific adaptations in the 

kinematic and the kinetic aspects of human locomotor system. 

To further identify the ability of locomotor apparatus, and to elicit the functional role of the 

trunk, we tested the human bipedal locomotion with various trunk orientations – up to maximal 

sagittal trunk flexion – while traversing a hole in the ground. Specifically, we explored the 

interaction effects between step and posture on a multiple number of kinematic and kinetic 

parameters of human walking. The step-specific effects of posture were more pronounced on 

the kinematic parameters than the kinetic ones. This implies that the maintenance of dynamic 

balance in able-bodied individuals when their trunk orientation deviates from upright during 

uneven walking requires a greater modulation of the leg kinematics. These kinematic 

adjustments led to the lower variations in gait kinetics as we observed the reduced between-

step adjustments in the GRF parameters during trunk-flexed gaits.  

In our study, the control of the trunk movement during the negotiation of a visible drop in 

ground was found imperative in able-bodied walking. Since two-thirds of the total body mass 

is located at two-thirds of the body height from the ground (Winter etal.,1990), alteration of 

the trunk orientation can have a substantial impact on the dynamics of the CoM. During normal 

walking, the CoM lies posterior to the heel at the beginning of the single support, shifts 

anteriorly with the forward momentum of the body and moves toward outside of the base of 

support during the push-off (Winter etal.,1990). Walking, therefore, is described as a 

"continuous process of recovery from a loss of balance" (Murray et al. 1969), and the only way 

to prevent falling is a proper positioning of the swinging foot lateral to and ahead of a forward-

moving CoM. Here, we challenged this functional task in able-bodied walkers not only by re-
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orienting the trunk posture, but also by presenting an expected step-down to human walkers to 

see how these types of perturbations can interfere with a prime functional goal of human 

locomotion, namely stability. To maintain the stability of gait during negotiating a step-down, 

as in stepping from a curb, an increased forward momentum of the body during the descent, 

must be controlled. In our study, the step-specific and more precisely the TD- and TO-specific 

kinematic adjustments, leading to the consistent between-step GRF parameters during trunk-

flexed gaits in uneven ground demonstrated the capacity of the able-bodied walkers to deal 

with such an expected destabilizers factors. In fact, the stability of a periodic movement found 

not to be hampered by increasing the trunk flexion so that the deviation of the kinematic 

trajectories was small and within a range observed during locomotion with an upright trunk. 

Although the young, able walkers in this laboratory experiment successfully executed the tasks 

by returning to the undisturbed path within a following step-up; however, it is unknown how 

individuals with poor gait and balance capacities such as post-stroke, Parkinson and likely older 

adults accommodate changes in ground level and to which extent the recovery from the 

perturbation would be strenuous for them. 

As a consequence, the study of the able-bodied gait in the presence of an expected twofold 

perturbation allowed us to shed some light on the mechanics of the human locomotor system 

and mechanisms underlying the gait stability. Our findings highlighted the functional role of 

the trunk as a measure to accommodate uneven ground. The trunk tended to rotate backward, 

regardless of maintaining various degrees of sagittal trunk flexion, as the body approached the 

drop. We argue that this may be a compensatory mechanism ahead of stepping down that 

contributes to the gait stability by reducing the kinetic energy that the body gains during descent 

(van Dieën et al. 2008; van Dieen and Pijnappels 2009). When it comes to control, the able-

bodied walkers are found capable of regulating the whole-body angular momentum actively 

specific to the task requirements (Silverman et al. 2012). The results of a study by Silverman 

et al. (2012) showed that during able gait the individuals modulate the angular momentun on 

sloped surfaces different than level walking. They asserted that walking on an irregular surface, 

such as a sloped terrain, is associated with a larger range of angular momentum in incline 

walking than level walking. This requires a strict control of the whole-body angular momentum 

to help prevent a slip or fall. In addition, directing the GRFs to a point above the CoM of the 

whole-body (virtual pivot point, VPP) is known to stabilize both upright human gait (Maus et 

al. 2010) and pronograde avian gait (Andrada et al. 2014) such as a physical pendulum. Both 

increasing trunk flexion and stepping downwards could potentially alter the relative position 

of the VPP with respect to the CoM as they increase forward rotation of the system. For 
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instance, a forward shift of the CoM due to trunk bending in the sagittal plane induces larger 

hip extension torques and less flexion torques which in turn leads to an intra-limb asymmetry 

of the GRF patterns, i.e. higher forces early in stance phase and lower forces as approaching 

the toe-off. There, the control of total angular momentum requires smaller and larger lever arms 

of the GRFs with respect to the CoM, respectively. Furthermore, this is associated with an 

intersection point of the GRFs which emerges posteriorly and more superiorly to the CoM of 

the whole-body as compared to upright walking. Having observed the existence of VPP in 

walking with various trunk orientations, but varying in terms of relative position to the whole-

body CoM, this strategy can therefore contribute to the control of the angular momentum 

during motor tasks (Müller et al. 2017).  

Knowing the short and long-term consequences of fall, coupled with devoting significant 

efforts to identifying the risk factors and developing screening and prevention modalities, our 

findings may be of clinical importance for clinician to place more emphasis on the functional 

performance of the trunk during locomotion not only for the evaluation of dysfunctional gait, 

but also in the design, development and monitoring of the progression of the rehabilitation 

programs. At mechanical level, our findings suggest that proceeding to a maximum trunk 

flexion (i.e., zig-zag-like configuration), the upper body seems to be transformed into an active 

component of the human locomotor system by adjusting its angle during the step-down. Such 

a compensatory mechanism as achieved by the global kinematic adjustments, with the aim of 

reducing the variation in the CoM height, manifested to facilitate the negotiation of changes in 

ground level. These results highlight how able-bodied walkers modulate the whole-body 

posture relative to an expected twofold perturbation, and provide a baseline for making 

comparison with individuals with compromised balance derived from postural impairments or 

spinal deformities. 

5.5 Limitation and perspectives for the future studies  

This thesis has focused on the adjustment of posture as a measure for accommodating uneven 

ground to elucidate the role of trunk in human walking. To this end, we developed an empirical 

experiment to explore the walking pattern of the young, able-bodied participants under an 

expected twofold perturbation. To simulate uneven ground in outdoor setting, we used a 

custom-build walkway which allowed us to lower a height-adjustable force-platform by 10-cm 

as a drop. Such experimental designs always involve inherent limits in terms of the reliability 

and quantity of the data that can be collected. Here, due to the experiment setup, our 
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measurement volume was restricted to three consecutive steps and the participants were 

permitted to perform the practice trials prior to the data collection in order to be familiar with 

the task and the setup. Therefore, our evaluations were made only across limited contacts and 

the motor behavior of participants during the experiment was likely influenced by learning 

experience. The locomotion in the real world may elicit different posture and gait control 

strategies than in the laboratory setting. Another limitation concerns the visibility of the 

perturbation. It has been well documented that the availability of visual stimuli can 

substantially affect the quality and the quantity of adaptations to the environmental 

perturbations (Muller et al. 2014). Furthermore, due to the organizational reasons and the 

complexity of executing the strenuous styles of walking with a high number of repetitions (64 

successful trials per subject), our experiment in terms of setup, namely first level walking and 

secondly uneven walking, and the postural task, i.e. an incremental increase of trunk angle, was 

implemented in a fixed and unrandomized fashion. The order effect was thus not avoided. In 

addition, to eliminate the effect of the leg dominance (Sadeghi et al. 2000) on the 

biomechanical adjustments particularly during uneven walking, participants were instructed to 

regulate their consecutive steps in a left-right-left sequence. Build upon the limitations listed 

above, the future studies may simply address or modify these criteria to gain more insight into 

the interaction between posture and locomotion.  

Given the specificity of the neuromechanical responses to the nature of perturbations and the 

locomotion tasks, further research is needed to differentiate the biomechanical behavior of 

human gait (both walking and running) while encountering surfaces with various properties. 

For instance, walking across obscured perturbations, adopting other walking postures, 

introducing gait to various drop or obstacle heights and the presence of unexpected changes in 

ground level all may elicit the mechanical responses that are significantly different from those 

we observed in our work. 

Moreover, additional techniques such as the inverse dynamic for the calculation of the 

energetics of lower limb joints, and the electromyography (EMG) for the measurement of the 

muscular activity as supplementary procedures to the kinematic and the kinetic aspects of the 

gait can provide more analytical depth about the effects of the alteration in posture on lower 

limb dynamics. Using wearable technologies e.g. a tri-axial accelerometer to measure an 

overall and directional trunk acceleration amplitudes as well as the trunk acceleration ratio 

during walking on even and uneven ground may assist us in improving our understanding of 

the role of trunk in the mobility of patients — who exhibit trunk-flexed postures — in 

interaction with changes in ground level. 
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As referred to before, the present work may serve as a basis for the clinical studies on the 

pathological populations who exhibit an altered trunk orientation and might be therefore at a 

higher risk of fall during locomotion. For example, the extension of current insight to the 

clinical biomechanics with a special emphasis on the role of trunk kinematics on dynamics of 

walking in older adults might be of research interest. This may involve investigating the 

adaptive capacities of walking while negotiating various typical terrain perturbations faced by 

older adults during every day locomotion such as an obstacle, a drop or stepping down from 

and stepping up onto a curb. By comparing the proactive and the reactive motor responses of 

the elderly to changes in ground levels with that of the young, healthy counterparts, we may be 

able to characterize the degrees by which the control strategies and the adaptive mechanisms 

may have been influenced by age. Understanding, for instance, the quality of trunk contribution 

to gait dynamics can lead to a better identification of mechanisms underlying fall, as elderlies 

are known to exhibit some degrees of inclined trunk orientation which may in turn reduce their 

ability to respond to perturbations during walking. Therefore, further understanding of the key 

aspects of the gait in elderlies can guide the advancement of the fall prevention strategies and 

the applied clinical interventions. 
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