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Multiobjective Optimization ∗

Jana Thomann †and Gabriele Eichfelder ‡

28.02.2018

Abstract

This paper presents a new trust region method for multiobjective heterogeneous
optimization problems. One of the objective functions is an expensive black-box
function, for example given by a time-consuming simulation. For this function
derivative information cannot be used and the computation of function values in-
volves high computational effort. The other objective functions are given analytically
and derivatives can easily be computed. The method uses the basic trust region ap-
proach by restricting the computations in every iteration to a local area and replacing
the objective functions by suitable models. The search direction is generated in the
image space by using local ideal points. It is proved that the presented algorithm
converges to a Pareto critical point. Numerical results are presented and compared
to another algorithm.

Key Words: multiobjective optimization, trust region method, derivative-free algorithm,
heterogeneous optimization, Pareto critical point

Mathematics subject classifications (MSC 2010): 90C29, 90C56, 90C30

1 Introduction

Multiobjective optimization problems can be found in various fields, such as engineer-
ing, medicine, economics or finance [30, 15, 32, 1] where several conflicting objectives are
optimized. An additional difficulty can arise if some of the objectives are not given analyt-
ically, but are a black box because they are the result of an experiment or a simulation run.
This can include a long evaluation time for every function value and hence the number of
function evaluations needs to be reduced. Black box functions can be smooth functions,
that is derivatives do exist, but are not available with reasonable efforts. Hence using
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derivative information should be avoided and therefore many solution methods from the
literature [14, 19, 20, 21] are not applicable.
In this paper we focus on smooth multiobjective optimization problems with so-called
heterogeneous functions, i.e. the objective functions differ in certain aspects affecting the
optimization process. There are different kinds of heterogeneity and various reasons why
it can occur, this is discussed in [23, p.125f]. The heterogeneity considered in this paper
is the different amount of information available for the functions and the computation
time. For one of the objectives the function values are only obtained with high computa-
tional effort and derivatives are not available with reasonable effort. Such a function can
be, for instance, a computationally expensive black-box function, not given analytically,
but only by a time-consuming simulation. The other functions are given analytically and
derivatives are easily available. These functions will be called cheap in contrast to the
expensive function. Such multiobjective optimization problems with heterogeneous and
expensive black box functions arise for example in engineering or medicine [33, 18, 31].
For instance in Lorentz force velocimetry [33] the task is to find an optimal design of a
magnet which minimizes the weight of the magnet and maximizes the induced Lorentz
force of the magnet. While the first objective is an analytically given function, in general
the second one can only be determined by a time-consuming simulation. According to [23,
p.124] heterogeneous problems with expensive functions also occur in imaging techniques
in interventional radiology [18]. Whereas one objective is the sum of squared differences
and therefore analytically given, the other objective is described by physical models for
fluids and diffusion processes given by an implicit differential equation.
In the literature there are a lot of solution methods for multiobjective optimization prob-
lems and one common approach is scalarization, that is combining the objectives to ob-
tain a scalar-valued function and optimize this surrogate problem with known methods for
scalar optimization problems. Among numerous scalarization approaches, e.g. [12, 16, 27],
the weighted sum approach is a commonly known and used method. Every objective is
assigned a positive weight - a scalar constant - and the weighted sum of all objectives is
optimized. A problem for this approach and also for every scalarization technique is that
whenever one of the objectives is an expensive function, the high computational effort
affects the whole method. If there is an analytically given function which is easy and
quick to compute this has no impact. Hence such scalarization methods cannot exploit
heterogeneity of objective functions and therefore neglect some information.
Other methods for multiobjective optimization problems, like the generalized steepest de-
scent method [14, 20] or the generalized Newton method [19] need derivative information
and are therefore not applicable to heterogeneous problems where the derivatives are not
available with reasonable efforts. Approximating the derivatives is not an option due to
the expensive black-box functions. Either the obtained approximation would not be viable
or too many function evaluations would be necessary.
However, there are also derivative-free methods in multiobjective optimization and a
very common approach, both in scalar and multiobjective optimization, is direct search
[2, 10, 11]. This approach only needs function values and there are several versions and
realizations such as the basic DMS [11] or BIMADS [3] for biobjective bound constrained
problems where the structure of the objective functions is absent or unreliable. A dis-
advantage of these methods is the fact that the performance deteriorates if the number
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of variables increases [26]. However, the main drawback when applying such methods to
heterogeneous problems is again that the expensive function would ’dominate’ the proce-
dure. The heterogeneity is not considered and not all information given is used during the
optimization process, namely the derivative information of the cheap functions.
Another approach on which derivative-free methods are based on is the trust region method
[6, 7, 8, 9, 10]. There are also multiobjective realizations of this approach [29, 36]. Trust
region methods are not initially designed for expensive functions but can easily be adapted
to them. It is an efficient and flexible approach for which many theoretical properties are
documented in the literature. A basic generalization of such a method to multiobjective
problems based on derivative information is given in [36]. They proof convergence to a
Pareto critical point using a characterization of such points that is also used in multi-
objective descent theory [14, 20]. The needed assumptions are derived from the scalar
version of trust region approaches and the convergence analysis follows the strategy and
structure of the proof from the basic scalar approach [8] closely. However, this method
needs derivative information and in the nonsmooth case the Clarke subdifferential is used.
Hence this approach is not suitable for the heterogeneous problems presented here where
using derivative information of the expensive function shall be avoided.
Unlike this in [29] a trust region algorithm is presented for biobjective expensive problems
where derivative information is absent for both objectives. The algorithm uses a scalar-
ization technique and approximates the Pareto front. The authors prove convergence to a
Pareto critical point. This algorithm is applicable to heterogeneous problems but would
again neglect some information given for the cheap functions.
So far there are no solution methods for heterogeneous multiobjective problems that can
exploit the differences of the objective functions. This paper will present a new trust
region method that can regard heterogeneity. Like [36] we use the idea of generalizing the
trust region approach to a multiobjective problem, but our algorithm differs in computing
the descent direction and not needing the gradient of the objectives. The search direc-
tion is computed in the image space by using a local ideal point. The differences in the
determination of the search direction affect the convergence analysis such that it is not
transferable from other trust region approaches without significant modifications. Still,
we can use the same strategy to prove convergence to a Pareto critical point as [36] also
using the characterization of such points from [20]. Since we also follow closely the basic
scalar idea of trust region methods, the convergence analysis is also related to that in the
scalar case [8].
The paper is organized as follows. The basic theory is presented in section 2 followed
by the description of the multiobjective trust region method in section 3 and the conver-
gence analysis in section 4. Numerical details and modifications for the implementation
of the Algorithm are discussed in section 5, experimental results are in section 6 and the
conclusions follow in section 7.

2 Problem statement and basic definitions

The optimization problem considered in this paper is described by

min
x∈Rn

f(x) (MOP )
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with f(x) = (f1(x), ..., fq(x))
�. The objective functions fi : Rn → R are assumed to

be twice continuously differentiable for all i = 1, ..., q and maxi=1,...,qfi(x) is assumed to
be bounded from below. The function f1 is a so-called expensive function, which is not
given analytically but only by a time-consuming simulation. The simulation only gives
function values, derivative information is not available with reasonable effort and therefore
not used. The other objective functions fi, i = 2, ..., q, are so-called cheap functions,
which are analytically given, easy to compute and derivatives are easily available. For
defining solutions of (MOP ) we use the optimality concept for multiobjective optimization
problems according to [25].

Definition 2.1 A point x ∈ R
n is called efficient (solution) for (MOP ) (or Pareto op-

timal), if there exists no point x ∈ R
n satisfying fi(x) ≤ fi(x) for all i ∈ {1, ..., q} and

f(x) �= f(x).
A point x ∈ R

n is called weakly efficient (solution) for (MOP ) (or weakly Pareto optimal),
if there exists no point x ∈ R

n satisfying fi(x) < fi(x) for all i ∈ {1, ..., q}.
These concepts can be restricted to local areas. Accordingly, a point x ∈ R

n is called locally
(weak) efficient for (MOP ) if there exists a neighborhood U ⊂ R

n with x ∈ U such that x
is (weakly) efficient for (MOP ) in U .

Obviously every efficient point is weakly efficient. The following concept [20] gives a
necessary condition for weak efficiency.

Definition 2.2 Let f = (f1, ..., fq) be totally differentiable at a point x ∈ R
n. This point

is called Pareto critical for (MOP ), if for every vector d ∈ R
n there exists an index

j ∈ {1, ..., q} such that ∇xfj(x)
�d ≥ 0 holds.

This concept is a generalization of the stationarity notion for scalar optimization prob-
lems. Consider such a scalar problem by setting q = 1 for (MOP ) and let x ∈ R

n be a
Pareto critical point according to the above definition. Then it holds ∇xf(x)

�d ≥ 0 for all
d ∈ R

n. Hence it holds ∇xf(x) = 0n and the standard stationarity notion for the scalar
valued case is obtained.
The following lemma shows that Pareto criticality is a necessary condition for locally weak
efficiency, see for example [20, 25].

Lemma 2.1 If x̄ ∈ R
n is locally weak efficient for (MOP ), then it is Pareto critical for

(MOP ).

The following lemma gives a characterization of Pareto critical points and comes from
multiobjective descent methods [14, 19, 20].

Lemma 2.2 Let fi : R
n → R be continuously differentiable functions for all i = 1, ..., q.

For the function
ω(x) := −min

‖d‖≤1
max
i=1,...,q

∇xfi(x)
�d (1)

the following statements hold.

(i) The mapping x 
→ ω(x) is continuous.

(ii) It holds ω(x) ≥ 0 for all x ∈ R
n.
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(iii) A point x ∈ R
n is Pareto critical for (MOP ) if and only if it holds ω(x) = 0.

The solutions of the optimization problem in (1) have some helpful properties.

Lemma 2.3 Let x ∈ R
n be an arbitrary but fixed point and let dω denote a solution of the

optimization problem stated in (1).

(i) If x is not Pareto critical for (MOP ) then dω is a descent direction for (MOP ) at
the point x, i.e. there exists a scalar t0 > 0 such that it holds fi(x + t dω) < fi(x)
for all t ∈ (0, t0] and for all i ∈ {1, ..., q}.

(ii) There exist scalars αi ∈ [0, 1] for i ∈ {1, ..., q} with
∑q

i=1αi = 1 and μ ≥ 0 such
that it holds dω = −μ

∑q
i=1αi∇xfi(x). If x is not Pareto critical for (MOP ) it holds

‖d‖ = 1. If x is Pareto critical for (MOP ) it holds dω =
∑q

i=1αi∇xfi(x) = 0.
Furthermore it holds ω(x) ≤ ‖∑q

i=1 αi∇xfi(x)‖.
Proof. Statement (i) follows from the definition of Pareto criticality and descent directions.
To prove statement (ii) reformulate (1) to

min
{
t ∈ R | ∇xfi(x)

�d ≤ t for all i = 1, ..., q and ‖d‖ ≤ 1
}
. (2)

Let (tω, dω) denote a solution of (2) and firstly let x be not Pareto critical for (MOP ). Then
it follows from the KKT conditions, that there exist scalars αi ∈ [0, 1] with

∑q
i=1αi = 1

and μ ≥ 0 such that it holds

dω = −μ

q∑
i=1

αi∇xfi(x) with μ =
1

‖∑q
i=1αi∇xfi(x)‖ and ‖d‖ = 1. (3)

If x is Pareto critical, then the zero vector is a solution of (2) and the KKT conditions imply
the existence of constants αi ∈ [0, 1], i ∈ {1, ..., q}, with ∑q

i=1αi = 1 and
∑q

i=1αi∇xfi(x) =
0.
Furthermore let (tω, dω) be a solution of (2). As it is an equivalent reformulation of (1) it
holds −tω = ω(x). This implies ∇xfi(x)

�dω ≤ tω for all i ∈ {1, ..., q} and therefore

ω(x) = −tω = −
q∑

i=1

αitω ≤ −
q∑

i=1

αi∇xfi(x)
�dω.

If x is not Pareto critical for (MOP ), then (3) holds and it follows

ω(x) ≤ −
q∑

i=1

αi∇xfi(x)
�dω = μ

∥∥∥∥∥
q∑

i=1

αi∇xfi(x)

∥∥∥∥∥
2

=

∥∥∥∥∥
q∑

i=1

αi∇xfi(x)

∥∥∥∥∥ .
If x is Pareto critical for (MOP ) it holds

∑q
i=1αi∇xfi(x) = 0 and ω(x) = 0 and the above

inequality is also fulfilled.

In the following we will use the inequality relations < and ≤ for vectors in a compo-
nentwise manner. For a, b ∈ R

n we write a ≤ b if it holds ai ≤ bi for all i ∈ {1, ..., n}.
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3 Algorithm description

The basic trust region concept [8, 10] is constructed for unconstrained scalar optimization
problems with a twice continuously differentiable objective function bounded from below.
It is an iterative method which approximates the function by suitable models in every
iteration. These models are supposed to be easier than the original function and are
used to compute a sufficient decrease. Furthermore the model and the computations are
restricted to a local area in every iteration. This area is called trust region and is defined
by

Bk := B
(
xk, δk

)
=

{
x ∈ R

n | ∥∥x− xk
∥∥ ≤ δk

}
(4)

using the current iteration point xk, the so-called trust region radius δk > 0 and the eu-
clidean norm ‖·‖ := ‖·‖2. Further information about the choice of other norms can be found
in [8]. Now consider a multiobjective optimization problem of the form of (MOP ) with
f1 being an expensive, simulation-given function. The multiobjective method presented
in this paper is an iterative approach as well and in every iteration k ∈ N each objective
function fi with i ∈ {1, ..., q} is replaced by a suitable quadratic model mk

i : Rn → R

which satisfies the interpolation condition

fi(x
k) = mk

i (x
k), (5)

see subsection 3.1 for detailed information. As a surrogate for (MOP ) the problem

min
x∈Rn

mk(x) (MOPm)

is considered in every iteration k. Furthermore the computations are restricted to a local
area, the trust region Bk as defined in (4). The search for a sufficient decrease in the
function values is realized by computing the ideal point pk = (pk1, ..., p

k
q)

� defined by
pki = minx∈Bk

mk
i (x) for all i = 1, ..., q. These subproblems need to be solved in every

iteration. However, they are only quadratic problems with simple constraints and therefore
any quadratic solver can be used. Also a trust-region approach is possible, see for example
[4] for solving trust region subproblems. The ideal point pk gives a direction for decreasing
the model functions and, depending on the quality of the approximations, also the original
functions. The aim is to move as far as possible - as far as the trust region allows - into
the direction of pk. The trust region functions not only as a guarantee that the models
are good enough approximations, but also as a step size control. Moving towards the ideal
point is realized by the Pascoletti-Serafini scalarization [28] given by

min t
s.t f(xk) + t rk −mk(x) ∈ R

q
+

t ∈ R

x ∈ Bk

(PS)

with rk := f(xk) − pk ∈ R
q
+, p

k the ideal point of mk in Bk and mk = (mk
1, ...,m

k
q)

� the
model functions. This scalarization is also known as Tammer-Weidner functional [22].
Note that it holds f(xk) = mk(xk) in every iteration k due to the interpolation conditions
(5). The problem (PS) minimizes, in case rk ∈ intRq

+, the weighted Chebyshev distance
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between the set mk(Bk) and the point f(xk) with weights wi = 1/rki for i ∈ {1, ..., q}.
Solving (PS) we obtain the trial point xk+, a candidate for the next iteration point.
Figure 1 illustrates the idea in the biobjective case with q = 2 and

(
tk+, xk+

)
being the

solution of (PS). The image of the trial point xk+ is marked black.

mk
2

mk
1

mk(Rn)

mk(Bk)

rk

mk(xk)

pk
C1

C2

C1 = mk(xk) + t rk − R
2
+

C2 = mk(xk) + tk+ rk − R
2
+

Figure 1: Pascoletti-Serafini scalarization (PS)

Analogously to the scalar trust region method [8, 10] the trial point xk+ is only accepted
as next iteration point if a condition describing the improvement of the function values is
met. We use the same approach as [36] defining the functions

φ(x) := max
i=1,...,q

fi(x) and φk
m(x) := max

i=1,...,q
mk

i (x) (6)

to examine if

ρkφ :=
φ(xk)− φ(xk+)

φk
m(x

k)− φk
m(x

k+)
(7)

is bigger than a given positive constant. In this case there is a guaranteed descent in at
least one component. A detailed discussion of this multiobjective condition for the trial
point acceptance test can be found in subsection 3.3.
The trust region algorithm for heterogeneous multiobjective problems TRAHM is formu-
lated in Algorithm 1. It describes a new trust region approach which differs from the
previously known methods by the computation of the search direction. In TRAHM the
direction is determined in the image space by using the local ideal points of the model
functions. As input a starting point, some parameters and the objective functions are
needed, whereby f1 is expensive and fi are cheap for all i ∈ {2, ..., q}. Hence also the used
model functions differ, which is explained in detail in subsection 3.1.
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Algorithm 1 TRAHM

Input: functions fi, i = 1, ..., q, initial point x0, initial trust region radius δ0, values for
the parameters 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1
Step 0: Initialization

Set k = 0 and compute initial model functions mk
i for i = 1, ..., q

Step 1: Ideal Point
Compute pk = (pk1, ..., p

k
i )

� by pki = minx∈Bk
mk

i (x) for i = 1, ..., q
Step 2: Trial Point

Compute (tk+, xk+)� by solving (PS)
min

{
t ∈ R | f(xk) + t(f(xk)− pk)−mk(x) ∈ R

q
+, x ∈ Bk

}
Step 3: Trial Point Acceptance Test

If tk+ = 0 or φk
m(x

k)− φk
m(x

k+) = 0 set ρkφ = 0

Otherwise compute fi(x
k+), i = 1, ..., q, and ρkφ = φ(xk)−φ(xk+)

φk
m(xk)−φk

m(xk+)

If ρkφ ≥ η1 set xk+1 = xk+, otherwise set xk+1 = xk

Step 4: Trust Region Update

Set δk+1 ∈
⎧⎨
⎩

[γ1δk, γ2δk] ρkφ < η1
[γ2δk, δk] η1 ≤ ρkφ < η2
[δk,∞) ρkφ ≥ η2

Step 5: Model Update
Compute new model mk+1

i for i = 1, ..., q, set k = k + 1 and go to Step 1

The choice of the parameters η1, η2, γ1 and γ2 can of course be problem-dependent, but
according to [8] reasonable values are η1 = 0.01, η2 = 0.9 and γ1 = γ2 =

1
2
.

3.1 Model functions

In basic trust region methods quadratic models are most commonly used to replace the
original functions. The subproblem of minimizing the model function can then be solved
by quadratic methods. Hence in our algorithm we also replace the functions by quadratic
models, even the cheap functions which are analytically available. A quadratic model
m : Rn → R for a function g : Rn → R is given by

m(x) = g(y) +∇xg(y)
� (x− y) +

1

2
(x− y)� H (x− y)

with m(y) = g(y) for a fixed point y ∈ R
n and H a symmetric approximation to ∇xxg(y).

This is only possible if the function is twice continuously differentiable and the derivative
information is available. Since this is the case for the cheap functions fi, i = 2, ..., q, in our
context, we use the so-called Taylor model mk

i (x) = mT (x; fi, x
k). It is a quadratic model

defined by

mT (x; fi, x
k) := fi(x

k) +∇xfi(x
k)�

(
x− xk

)
+

1

2

(
x− xk

)� ∇xxfi(x
k)
(
x− xk

)
(8)

in every iteration k ∈ N using the current iteration point xk (i = 2, ..., q). For such models
it always holds ∇xm

k
i (x

k) = ∇xfi(x
k). However, this kind of model cannot be used for
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the expensive function due to the high computational effort this would entail. To obtain a
quadratic model as well we use interpolation based on quadratic Lagrangian polynomials.
To build such a model m1 : R

n → R for the expensive function f1 let P2
n denote the space

of polynomials of degree less than or equal to two in R
n. It is known that the dimension

p of this space is given by p = (n + 1)(n + 2)/2. Given a basis ψ = {ψ1, ..., ψp} of P2
n,

every polynomial g ∈ P2
n is defined as g(x) =

∑p
i=1αiψi(x) with α ∈ R

p some suitable
coefficients. For the interpolation of the expensive function f1 let Y = {y1, y2, ..., yp} ⊂ R

n

be a set of interpolation points for which the interpolation conditions

m1(y
i) = f1(y

i)

are required to hold true for all i = 1, ..., q. For the basis ψ we choose the basis of quadratic
Lagrange polynomials li ∈ P2

n, i = 1, ..., p, defined by

li(y
j) =

{
1 , if i = j
0 , else

.

Hence the expensive function f1 is replaced in every iteration k ∈ N by the model

mk
1(x) = mL(x; f1, Yk) :=

p∑
i=1

f1(y
i)li(x)

with a set of interpolation points Yk = {y1, y2, ..., yp} ⊂ Bk from the current trust region
and xk ∈ Yk. The interpolation points are not randomly chosen from the trust region but
are computed such that they satisfy a quality criterion called well poisedness. This concept
will not be explained here but can be found in detail in [10]. Since Lagrange polynomials
are not only compatible with this concept, but most commonly used for measuring well
poisedness, they are chosen as an interpolation basis here.
Another option for building models in the trust region scheme are radial basis functions
(RBFs). This is described for scalar trust region methods in [37].

3.2 Computing the trial point

For computing the trial point xk+ in step 2 of TRAHM the auxiliary optimization problem
(PS) is used given by

min
{
t ∈ R | f(xk) + t rk −mk(x) ∈ R

q
+, x ∈ Bk

}
.

Due to the interpolation conditions it holds f(xk) = mk(xk) in every iteration k ∈ N.

Remark 3.1 Let xk be not Pareto-critical for (MOPm). According to Lemma 2.1 xk is
not locally weakly efficient for (MOPm) and, as xk ∈ intBk, also not weakly efficient
for minx∈Bk

mk(x). Thus, xk cannot be an individiual minimum of one of the functions
mk

i , i ∈ {1, ..., q}, on Bk, hence for the direction rk of (PS) it holds rki = mk
i (x

k) −
minx∈Bk

mk
i (x) > 0 for all i ∈ {1, ..., q}.

The optimization problem (PS) has some useful properties, which can be found in
detail and with proof in [15, Th. 2.1].
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Lemma 3.1 space filler

(i) If (t̄, x̄) is a minimal solution of (PS) then x̄ is weakly efficient for minx∈Bk
mk(x).

(ii) If (t̄, x̄) is a local minimal solution of (PS) then x̄ is locally weakly efficient for
minx∈Bk

mk(x).

(iii) If x̄ is a weakly efficient solution for minx∈Bk
mk(x) and rk ∈ intRq

+, then (0, x̄) is a
minimal solution of (PS).

Another property of (PS) is stated in the following lemma.

Lemma 3.2 Let xk be not weakly efficient for minx∈Bk
mk(x). For every minimal solution

(t̄, x̄) of (PS) it holds t̄ ∈ [−1, 0).

Proof. Let (t̄, x̄) be a minimal solution of (PS). Since (0, xk) is always feasible for (PS),
it holds t̄ ≤ 0. Due to xk being not weakly efficient for minx∈Bk

mk(x) there exists a point
x̃ ∈ Bk with mk(x̃) < mk(xk). This also implies rk = mk(xk)−minx∈Bk

mk(x) > 0. Then
there exists a scalar t > 0 with mk(xk) − t rk −mk(x̃) > 0. Hence (−t, x̃) is feasible for
(PS) and it holds t̄ < 0.
Now suppose t̄ := −1−s < −1 with s > 0. Resulting from the constraints of (PS) it holds
pk −mk(x̄) ≥ s rk. Again due to xk being not weakly efficient and thus rk > 0 it follows
pk > mk(x̄) which contradicts the definition of pk. Consequently, it holds t̄ ∈ [−1, 0).

3.3 Trial point acceptance test

Step 3 of TRAHM is the trial point acceptance test which uses the quotient ρkφ =

(φ(xk) − φ(xk+))/(φk
m(x

k) − φk
m(x

k+)) with the functions φ(x) = maxi=1,...,q fi(x) and
φk
m(x) = maxi=1,...,q mk

i (x) from (6). Due to the determining of xk+ it always holds
φk
m(x

k)−φk
m(x

k+) ≥ 0. Furthermore, as long as xk is not weakly efficient for minx∈Bk
mk(x)

there exists a point x̃ ∈ Bk with mk(x̃) < mk(xk), see also the reasoning in the proof of
Lemma 3.2. Together with the definition of the trial point it follows φk

m(x
k)−φk

m(x
k+) > 0

as long as xk is not weakly efficient.
Supposed it holds ρkφ > 0 which implies φ(xk) − φ(xk+) > 0. Then there exist indices

i, j ∈ {1, ..., q} such that 0 < fi(x
k) − fj(x

k+) ≤ fi(x
k) − fi(x

k+) holds. Therefore the
trial point xk+ guarantees a descent in at least one component of f . In TRAHM xk+ is
accepted if ρkφ is bigger than a strictly positive constant η1 to assure not only a decrease
in at least one component but to guarantee that this decrease is ”sufficient”.
In the case ρkφ < 0 there exist indices i, j ∈ {1, ..., q} with 0 > fi(x

k) − fj(x
k+) ≥

fj(x
k)− fj(x

k+). This implies an increase in at least one component of f . Hence the trial
point is not accepted as next iteration point.
Now assume ρkφ = 0. This implies tk+ = 0, φk

m(x
k)− φk

m(x
k+) = 0 or φ(xk)− φ(xk+) = 0.

If it holds tk+ = 0, then according to Lemma 3.1 (i) xk is a weakly efficient point for
minx∈Bk

mk(x). If the model is a good approximation to the original function, xk is a lo-
cally weak efficient point for (MOP ). By setting ρkφ = 0 in this case the trust region radius
will be reduced and the model will be updated to affirm the model information. If the
model was reliable the trust region will also shrink in the next iterations and therefore the

10



radius will converge to zero. If the model was not reliable then there will be a subsequent
iteration in which the trial point produces a sufficient decrease.
If it holds φk

m(x
k) − φk

m(x
k+) = 0 there exist indices i, j ∈ {1, ..., q} fulfilling mk

j (x
k) ≤

mk
i (x

k) = mk
j (x

k+) ≥ mk
i (x

k+), so either there is no decrease in at least one component
or the points xk and xk+ are incomparable. In this case the trial point is rejected and the
trust region radius is reduced. The same line of argument, but for the original functions,
applies if φ(xk)− φ(xk+) = 0 holds.
For the convergence analysis in section 4 some assumptions are needed and will be ex-
plained there in detail. We want to anticipate Assumption 4.6 here because it clarifies the
trial point acceptance test. This assumption ensures a sufficient decrease in every iteration
of the form of

φk
m(x

k)− φk
m(x

k+) ≥ κφω(x
k)min

{
ω(xk)

βφ
k

, δk

}

with ω(x) from (1), κφ ∈ (0, 1) and βφ
k > 0. Due to Lemma 2.2 it holds ω(x) = 0 if

and only if the point x is Pareto critical for (MOP ) and according to Lemma 2.1 Pareto
criticality is a necessary condition for local weak efficiency. If it holds φk

m(x
k)−φk

m(x
k+) = 0

this bound implies ω(xk) = 0. This gives another reason for setting ρkφ equal to zero if

φk
m(x

k)− φk
m(x

k+) = 0 holds.

4 Convergence

In the following a convegence proof for TRAHM to a Pareto critical point of the opti-
mization problem (MOP ) is presented and for these results some assumptions on the
original and the model functions are needed. All these assumptions are connected to the
commonly used assumptions in the scalar trust region and derivative-free optimization
context [8, 10, 34] or in multiobjective trust region methods [29, 36]. As stated within the
problem description in section 2, the functions fi are assumed to be twice continuously
differentiable for all i ∈ {1, ..., q} and φ(x) = maxi=1,...,qfi(x) is assumed to be bounded
from below. Furthermore, for every index i ∈ {1, ..., q} and for every iteration k ∈ N

the model functions mk
i are assumed to be quadratic and twice continuously differentiable

functions. The model is assumed to be exact in the current iteration point xk, that is it
holds

mk(xk) = f(xk) (9)

in every iteration k ∈ N. This holds true for every interpolation model which uses xk as
interpolation point and also for the model functions presented in subsection 3.1. For the
cheap functions also the gradients shall coincide in the current iteration point, that is it
holds

∇xm
k
i (x

k) = ∇xfi(x
k) (10)

for all i ∈ {2, ..., q} and for all k ∈ N. This is fulfilled for the Taylor model, which is used
for the cheap functions as explained in subsection 3.1. These general assumptions will
be used throughout the convergence analysis in this section. In addition to these basic
assumptions some further assumptions are necessary. Besides, a matrix norm compatible

11



with the used vector norm is necessary. Since we use the Euclidean norm, we consider the
Frobenius norm as matrix norm.

Assumption 4.1 For every index i ∈ {1, ..., q} the Hessian of the function fi is uniformly
bounded, that is there exists a constant κuhf i

> 1 fulfilling

‖∇xxfi(x)‖ ≤ κuhf i
− 1

for all x ∈ R
n. The index ’uhf i’ stands for upper bound on the Hessian of fi.

Remark 4.1 Assumption 4.1 together with the mean value theorem implies that the func-
tions ∇xfi : Rn → R

n are Lipschitz continuous for all i = 1, ..., q. It follows that the
function ω defined in (1) is uniformly continuous, see also [36].

Assumption 4.2 For every index i ∈ {1, ..., q} the Hessian of the model function mk
i

is uniformly bounded for all iterations k ∈ N, that is there exists a constant κuhmi
> 1

independent of k fulfilling ∥∥∇xxm
k
i (x)

∥∥ ≤ κuhmi
− 1

for all x ∈ Bk. The index ’uhmi’ stands for upper bound on the Hessian of mi.

Furthermore as in every model-based solution method it is important to assure a good
local accuracy of the model functions in every iteration. For this purpose we use the
common notion of validity which can be found for example in [8].

Definition 4.1 Let i ∈ {1, ..., q} and k ∈ N be indices. A model function mk
i : R

n → R is
called valid for the function fi : R

n → R in the trust region Bk =
{
x ∈ R

n | ∥∥x− xk
∥∥ ≤ δk

}
,

if there exists a constant κcndi > 0 such that∣∣fi(x)−mk
i (x)

∣∣ ≤ κcndiδ
2
k

holds for all x ∈ Bk. The index ’cnd’ stands for conditional error.

Generally, in the trust region approach validity is assumed for the models. In our
context we can even prove this for the models of the cheap functions.

Lemma 4.1 Suppose Assumptions 4.1 and 4.2 hold. In every iteration k ∈ N the model
mk

i is valid for fi in Bk for all i ∈ {2, ..., q}, that is it holds∣∣fi(x)−mk
i (x)

∣∣ ≤ κcndiδ
2
k

for all x ∈ Bk and κcndi := max
{
κuhf i

, κuhmi

}− 1 > 0.

Proof. Due to the functions fi being twice continuously differentiable it follows from Tay-
lor’s theorem for every h ∈ R

n with ‖h‖ ≤ δk,

fi(x
k + h) = fi(x

k) +∇xfi(x
k)�h+

1

2
h�∇xxfi(ξ

k
i )h

12



with ξkij ∈ [
xk
j , x

k
j + h

]
for j ∈ {1, ..., n} and for i ∈ {2, ..., q}. Since the model functions

mk
i are quadratic functions it holds

mk
i (x

k + h) = mk
i (x

k) +∇xm
k
i (x

k)�h+
1

2
h�∇xxm

k
i (x

k)h

for every h ∈ R
n with ‖h‖ ≤ δk and for all indices i ∈ {2, ..., q}. Moreover it holds

∇xm
k
i (x

k) = ∇xfi(x
k) for all i ∈ {2, ..., q} due to (10) which is given for the Taylor model

(8). Using the triangle inequality it follows for every x ∈ Bk

∣∣fi(x)−mk
i (x)

∣∣ ≤ 1

2
‖h‖2 (∥∥∇xxfi(ξ

k
i )
∥∥+

∥∥∇xxm
k
i (x

k)
∥∥) ≤ δ2k

(
max

{
κuhf i

, κuhmi

}− 1
)

with the constants κuhf i
and κuhmi

from Assumptions 4.1 and 4.2. Then the statement of
the lemma holds for κcndi := max

{
κuhf i

, κuhmi

}− 1 > 0.

For the expensive function such a result is not provable, thus and like in the standard
trust region approach we assume validity.

Assumption 4.3 In every iteration k ∈ N the model mk
1 is valid for the function f1 in

Bk, that is there exists a constant κcnd1 > 0 independent of k such that it holds for all
x ∈ Bk ∣∣f1(x)−mk

1(x)
∣∣ ≤ κcnd1δ

2
k.

The accuracy of the model is also reflected in the gradients. For the cheap functions
mk

i , i ∈ {2, ..., q}, the equality ∇xm
k
i (x

k) = ∇xfi(x
k) is required for all iterations k ∈ N,

see (10). This is fulfilled in our context as we use the Taylor model (8). For the expensive
function f1 the following Lemma holds regarding the gradient. Such a statement is also
proved in standard trust region approaches and can be found for example in [8]. Due to
the problem-dependent constants we give a short proof.

Lemma 4.2 Suppose Assumptions 4.1, 4.2 and 4.3 hold. Then there exists a constant
κeg > 0 such that it holds ∥∥∇xf1(x

k)−∇xm
k
1(x

k)
∥∥ ≤ κegδk.

for all k ∈ N. The index ’eg’ stands for error of gradient.

Proof. Analogous to Lemma 4.1 and similar to [8, Th. 9.1.1] it follows by using Taylor’s
theorem, (9) and the triangle inequality∣∣∣(∇xf1(x

k)−∇xm
k
1(x

k)
)�

h
∣∣∣ ≤ ∣∣f1(x)−mk

1(x)
∣∣+ 1

2
‖h‖2 ∥∥∇xxf1(ξ

k)−∇xxm
k
1(x

k)
∥∥

≤ κcnd1δ
2
k +max

{
κuhf1

− 1, κuhm1 − 1
}
δ2k

for every h ∈ R
n with ‖h‖ ≤ δk and x := xk + h ∈ Bk. It holds ξki ∈ [

xk
i , x

k
i + h

]
for

i ∈ {1, ..., n} and the constants κuhf1
, κuhm1 and κcnd1 are from Assumptions 4.1, 4.2

and 4.3. Setting h := δk
∇xf1(xk)−∇xmk

1(x
k)

‖∇xf1(xk)−∇xmk
1(x

k)‖ the statement of the Lemma follows with the

constant κeg := κcnd1 +max
{
κuhf1

, κuhm1

}− 1 > 0.
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This lemma guarantees that whenever the trust region radius is small enough, the
gradient of the model is a good approximation for the original gradient ∇xf1(x

k). In
addition to this result, the approximation of the gradient of the expensive function in
the current iteration point xk shall be good enough to ensure reliability whenever Pareto
critical points are approached. Such points are characterized by the function ω(x) =
−min‖d‖≤1 maxi=1,...,q∇xfi(x)

�d defined in (1). Analogously we define

ωm(x) := −min
‖d‖≤1

max
i=1,...,q

∇xm
k
i (x)

�d (11)

for the model functions.

Assumption 4.4 There exists a constant κω > 0 such that it holds for every iteration
k ∈ N ∣∣ωm(x

k)− ω(xk)
∣∣ ≤ κω ωm(x

k).

This assumption ensures that whenever the iteration point xk is Pareto critical for
(MOPm) or close to such a point, this is also satisfied for the original optimization prob-
lem (MOP ). The convergence proof in this section is based on the characterization of
Pareto critical points by the function ω. It will be proved that TRAHM produces a se-
quence of iterates with ω converging to zero. For this purpose, a sufficient decrease condi-
tion for the iteration points is necessary. Such a sufficient decrease condition is commonly
used in trust region approaches, both in scalar and multiobjective versions [8, 10, 29, 36].
It is based on the idea of minimizing along a descent direction, either for the individual
functions or in the multiobjective way given by the function ω.
In the scalar approach [8, 10] a backtracking strategy is used to obtain the trial point
xk+. Instead of minimizing the function along the steepest descent direction exactly, the
Armijo linesearch is used to approximate it. An analogous strategy, but transferred to
the multiobjective case by using the function ω, is used in [36]. In [29] the objectives are
considered individually in addition to a scalarization and therefore several trial points are
computed. They are compared to the results of minimizing along the steepest descent
directions of the individual functions. Each trial point is assumed to provide a sufficient
decrease for the corresponding function compared to this point.
The method presented in this paper does not use derivative information for the expensive
function and also does not consider the functions individually or a scalarized problem as a
surrogate, but computes a direction for decreasing the function values in the image space by
the ideal point. Therefore the reasoning for a sufficient decrease condition differs from liter-
ature. Still we can use the strategy of comparing the trial point to the result of minimizing
along a multiobjective descent direction. For this purpose an assumption regarding the
optimization problem (PS) given by min

{
t ∈ R | mk(xk) + t rk −mk(x) ∈ R

q
+, x ∈ Bk

}
is

necessary which is prepared by the following lemma.

Lemma 4.3 Suppose Assumption 4.2 holds. Let rk = mk(xk)− pk be the search direction
of (PS) defined by the ideal points pki = minx∈Bk

mk
i (x) for i = 1, ..., q. In every iteration

k ∈ N with xk being not Pareto critical for (MOPm) it holds for every i ∈ {1, ..., q}
1

2

∥∥∇xm
k
i (x

k)
∥∥min

{∥∥∇xm
k
i (x

k)
∥∥

βk
i

, δk

}
< rki ≤ δk

∥∥∇xm
k
i (x

k)
∥∥+

1

2
δ2k (κuhmi

− 1)
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with βk
i := 1 +

∥∥∇xxm
k
i (x

k)
∥∥ and κuhmi

> 1 from Assumption 4.2.

Proof. Let i ∈ {1, ..., q} denote an index and k ∈ N an iteration with xk being not Pareto
critical for (MOPm). By Lemma 2.1 it follows ∇xm

k
i (x

k) �= 0. Consider the normed
steepest descent direction for mk

i in xk defined by dsdi := − (∇xm
k
i (x

k)
)
/
(∥∥∇xm

k
i (x

k)
∥∥).

From Taylor’s theorem and the Cauchy Schwarz inequality it follows

rki = mk
i (x

k)− min
x∈Bk

mk
i (x) ≥ mk

i (x
k)− min

|t|≤δk
mk

i (x
k + t dsdi)

= mk
i (x

k)− min
|t|≤δk

(
mk

i (x
k) + t∇xm

k
i (x

k)�dsdi +
1

2
t2d�sdi∇xxm

k
i (x

k)dsdi

)

= max
|t|≤δk

(
−t∇xm

k
i (x

k)�dsdi − 1

2
t2d�sdi∇xxm

k
i (x

k)dsdi

)

> max
|t|≤δk

(
t
∥∥∇xm

k
i (x

k)
∥∥− 1

2
t2βk

i

)

with βk
i = 1 +

∥∥∇xxm
k
i (x

k)
∥∥. The possible candidates for the solution of the above

maximization problem are t1 =
∥∥∇xm

k
i (x

k)
∥∥ /βk

i and t2 = δk if t1 > δk. By calculating
the function values for these candidates it follows

rki > min

{
1

2

∥∥∇xm
k
i (x

k)
∥∥2

βk
i

, δk
∥∥∇xm

k
i (x

k)
∥∥− 1

2
δ2kβ

k
i

}
. (12)

The second term is obtained if it holds δk < t1. Thus, by estimating it the lower bound of
the lemma follows by

rki > min

{
1

2

∥∥∇xm
k
i (x

k)
∥∥2

βk
i

,
1

2

∥∥∇xm
k
i (x

k)
∥∥ δk

}
. (13)

For the upper bound let minx∈Bk
mk

i (x) = mk
i (x̃) with x̃ := xk + t d, |t| ≤ δk and ‖d‖ = 1.

From Taylor’s theorem and the Cauchy Schwarz inequality it follows

rki = mk
i (x

k)− min
x∈Bk

mk
i (x) = mk

i (x
k)−mk

i (x̃)

= −t∇xm
k
i (x

k)�d− 1

2
t2d�∇xxm

k
i (x

k)d

≤ |t| ∥∥∇xm
k
i (x

k)
∥∥ ‖d‖+ 1

2
t2 ‖d‖2 ∥∥∇xxm

k
i (x

k)
∥∥ .

This implies with Assumption 4.2

rki ≤ δk
∥∥∇xm

k
i (x

k)
∥∥+

1

2
δ2k (κuhmi

− 1)

for every i ∈ {1, ..., q}.
As stated in Remark 3.1 it holds rk > 0 as long as xk is not Pareto critical for (MOPm).

Then according to the lemma above the following assumption on the search direction rk

is reasonable which means that rk is neither too flat nor too steep.
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Assumption 4.5 There exists a constant κr ∈ (0, 1] such that it holds for every iteration
k ∈ N with xk being not Pareto critical for (MOPm)

min
i=1,...,q

rki

max
i=1,...,q

rki
≥ κr. (14)

To formulate a sufficient decrease condition for the iterates of TRAHM consider

dω ∈ argmin
‖d‖≤1

max
i=1,...,q

∇xm
k
i (x

k)�d (15)

a solution of (11). If xk is not a Pareto critical point for (MOPm), then according
to Lemma 2.3 applied to (11) dω is a descent direction for the multiobjective problem
(MOPm) at the current iteration point xk. Therefore it will provide a descent also in the
trust region Bk. Furthermore there exist scalars αi ∈ [0, 1], i ∈ {1, ..., q}, with ∑q

i=1αi = 1
and μ ≥ 0 such that

dω = −μ

q∑
i=1

αi∇xm
k
i (x

k) (16)

holds with ‖dω‖ = 1. Now consider the auxiliary function g(x) =
∑q

i=1αim
k
i (x

k) and
minimize g along its normed steepest descent direction dω starting from xk.

Lemma 4.4 Let k ∈ N be an iteration with xk not being Pareto critical for (MOPm).
Let g : Rn → R be the quadratic function defined by g(x) :=

∑q
i=1αim

k
i (x) with constants

αi ≥ 0, i ∈ {1, ..., q} from (16). Furthermore define xc by g(xc) := min|t|≤δkg(x
k + t d) with

d := −∇xg(x
k)/

∥∥∇xg(x
k)
∥∥ and set βk

g := 1 +
∥∥∇xxg(x

k)
∥∥. Then it holds

g(xk)− g(xc) ≥ 1

2

∥∥∇xg(x
k)
∥∥min

{∥∥∇xg(x
k)
∥∥

βk
g

, δk

}
. (17)

Proof. The normed steepest descent direction for g at xk is given by dω = −∇xg(x
k)/

∥∥∇xg(x
k)
∥∥

defined in (16). Since all model functions are quadratic it follows from Taylor’s theorem

g(xk + t dω) = g(xk) + t∇xg(x
k)dω +

1

2
t2d�ω∇xxg(x

k)dω

for every t ∈ R . Define βk
g :=

∥∥∇xxg(x
k)
∥∥ + 1 > 0. The Cauchy Schwarz inequality

implies together with calculations and estimations analogous to (12) and (13) in the proof
of Lemma 4.3

g(xk)− g(xc) = g(xk)− min
|t|≤δk

g(xk + t dω)

= max
|t|≤δk

(
−t∇xg(x

k)�dω − 1

2
t2d�ω∇xxg(x

k)dω

)

≥ max
|t|≤δk

(
t
∥∥∇xg(x

k)
∥∥− 1

2
t2βk

g

)

≥ min

{
1

2

∥∥∇xg(x
k)
∥∥2

βk
g

,
1

2

∥∥∇xg(x
k)
∥∥ δk

}

which gives the inequality of the lemma.
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Remark 4.2 If xk is Pareto critical for (MOPm) no steepest descent for the function g
in Lemma 4.4 exists. In this case we set xc = xk and due to ∇xg(x

k) = 0 the inequality
(17) still holds.

With these findings a first decrease condition for the iteration points of TRAHM can
be formulated.

Lemma 4.5 Suppose Assumptions 4.2 , 4.4 and 4.5 hold. Let xk+ be the solution of
(PS) and let φk

m(x) = maxi=1,...,q mk
i (x) be defined as in (6). Furthermore define βk

φ :=

maxi=1,...,q

∥∥∇xxm
k
i (x

k)
∥∥ + 1. Then there exists a constant κ̃φ ∈ (0, 1) independent of k

and for each k ∈ N an index j = j(k) ∈ N such that it holds

φk
m(x

k)− φk
m(x

k+) ≥
(
1

2

)j

κ̃φω(x
k)min

{
ω(xk)

βk
φ

, δk

}
. (18)

Proof. Let (tk+, xk+) ∈ R
1+n be the solution of the auxiliary problem (PS) given by

min
{
t ∈ R | f(xk) + t rk −mk(x) ∈ R

q
+, x ∈ Bk

}
. Firstly, let xk be not Pareto critical for

(MOPm). Then according to Lemma 3.2 and Remark 3.1 it holds tk+ ∈ [−1, 0) and
rk > 0 defined by rki = mk

i (x
k) −minx∈Bk

mk
i (x) for i ∈ {1, ..., q}. Due to the constraints

of (PS) it holds
mk

i (x
k)−mk

i (x
k+) ≥ −tk+rki > 0

for every index i ∈ {1, ..., q}. Together with the definition of the function φk
m it follows

− tk+ = |tk+| ≤ mk
i (x

k)−mk
i (x

k+)

rki
≤ φk

m(x
k)−mk

i (x
k+)

min
j=1,...,q

rkj
(19)

for all i ∈ {1, ..., q}. Let dω ∈ argmin‖d‖≤1 maxi=1,...,q ∇xm
k
i (x

k)�d be a solution of the
optimization problem from (11). Then according to Lemma 2.3(ii) applied to (11) there
exist scalars αi ∈ [0, 1], i ∈ {1, ..., q}, with ∑q

i=1αi = 1 and μ ≥ 0 such that ‖dω‖ = 1
and (16) holds, that is dω = −μ

∑q
i=1αi∇xm

k
i (x

k). For the resulting function g(x) =∑q
i=1αim

k
i (x) and the corresponding point xc = xk + τ dω with |τ | ≤ δk Lemma 4.4 and

therefore (17) holds. Furthermore it holds for βk
g from Lemma 4.4

βk
g =

∥∥∇xxg(x
k)
∥∥+ 1 ≤

q∑
i=1

αi

∥∥∇xxm
k
i (x

k)
∥∥+ 1 ≤ max

i=1,...,q

∥∥∇xxm
k
i (x

k)
∥∥+ 1 = βk

φ

which implies with (17) from Lemma 4.4

g(xk)− g(xc) ≥ 1

2

∥∥∇xg(x
k)
∥∥min

{∥∥∇xg(x
k)
∥∥

βk
φ

, δk

}
. (20)

Due to xc ∈ Bk and dω being a descent direction for (MOPm), see Lemma 2.3(i) for (11),
there exists a scalar t such that (t, xc) is feasible for (PS). According to [17] there exists
a smallest scalar tc such that (tc, xc) is feasible for (PS) and it follows

− tc = |tc| = min
i=1,...,q

mk
i (x

k)−mk
i (xc)

rki
≥

min
i=1,...,q

(
mk

i (x
k)−mk

i (xc)
)

max
i=1,...,q

rki
. (21)
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Due to tk+ being the minimal value of (PS) it holds |tc| ≤ |tk+| which implies together
with (19) for the index i with mk

i (x
k+) = φk

m(x
k+), (21) and Assumption 4.5

φk
m(x

k)− φk
m(x

k+) ≥ κr min
i=1,...,q

(
mk

i (x
k)−mk

i (xc)
)
. (22)

Since it holds
∑q

i=1αi = 1 and (tc, xc) is feasible for (PS) it follows for the function g
defined in Lemma 4.4

g(xk)− g(xc) =

q∑
i=1

αi

(
mk

i (x
k)−mk

i (xc)
) ≥ min

i=1,...,q

(
mk

i (x
k)−mk

i (xc)
)
> 0.

This inequality together with (20) implies the existence of an index j ∈ N such that

min
i=1,...,q

(
mk

i (x
k)−mk

i (xc)
) ≥ (

1

2

)j ∥∥∇xg(x
k)
∥∥min

{∥∥∇xg(x
k)
∥∥

βk
φ

, δk

}
(23)

holds and therefore it follows from (22) and the definition of g

φk
m(x

k)− φk
m(x

k+) ≥ κr

(
1

2

)j
∥∥∥∥∥

q∑
i=1

αi∇xm
k
i (x

k)

∥∥∥∥∥min

⎧⎪⎪⎨
⎪⎪⎩

∥∥∥∥ q∑
i=1

αi∇xm
k
i (x

k)

∥∥∥∥
βk
φ

, δk

⎫⎪⎪⎬
⎪⎪⎭

for every iteration k ∈ N with xk being not Pareto critical. If xk is Pareto critical for
(MOPm), then it holds ωm(x

k) = 0 and the solution of (11) is dω = 0. Therefore it holds∑q
i=1 αi∇xm

k
i (x

k) = 0, see Lemma 2.3(ii). Due to xk+ being the solution of (PS) it holds
φk
m(x

k)− φk
m(x

k+) ≥ 0 and the above inequality is also satisfied.
Furthermore, it holds according to Lemma 2.3(ii) ωm(x

k) ≤ ∥∥∑q
i=1αi∇xm

k
i (x

k)
∥∥

and from Assumption 4.4 it follows

ωm(x
k) ≥ 1

1 + κω

ω(xk)

with 1/(1 + κω) ∈ (0, 1). Then it holds for every iteration k ∈ N

φk
m(x

k)− φk
m(x

k+) ≥ κ̃φ

(
1

2

)j

ω(xk)min

{
ω(xk)

βk
φ

, δk

}

with κ̃φ := κr/(1 + κω)
2 ∈ (0, 1).

This Lemma gives a decrease condition for the trial point xk+ obtained by TRAHM in
terms of a lower bound for the difference φk

m(x
k)− φk

m(x
k+). This lower bound is strictly

positive as long as xk is not Pareto critical for (MOP ) and therefore ensures a decrease
in this case. Thus, the following assumption is reasonable to ensure a sufficient decrease
in every iteration.

18



Assumption 4.6 There exists a constant κφ ∈ (0, 1) such that it holds for every iteration
k ∈ N

φk
m(x

k)− φk
m(x

k+) ≥ κφω(x
k)min

{
ω(xk)

βk
φ

, δk

}

with βk
φ = maxi=1,...,q

∥∥∇xxm
k
i (x

k)
∥∥+ 1.

This lower bound on the difference φk
m(x

k) − φk
m(x

k+) is essential for the convergence
analysis and formulates a sufficient decrease. In every trust region approach, e.g. [8,
36], such an assumption is used and following this general approach we proved as well a
motivation for the sufficient decrease assumption. Provided Assumption 4.6, the remaining
of the convergence analysis of TRAHM follows the scalar trust region methods [8, 10]
closely. Consequently it is also similar to the convergence analysis of the multiobjective
trust region method in [36], which is based on the scalar considerations. The structure of
the proof is transferable - with some modifications due to the differences in the methods
- and convergence to a Pareto critical point of (MOP ) can be proved for TRAHM.

Remark 4.3 Due to Assumption 4.2 it holds in every iteration k ∈ N for the constant βφ
k

from Assumption 4.6

βφ
k = max

i=1,...q

∥∥∇xxm
k
i (x

k)
∥∥+ 1 ≤ max

i=1,...q
κuhmi

.

Lemma 4.6 Suppose Assumptions 4.1, 4.2 and 4.3 hold, then it holds∣∣φ(xk+)− φk
m(x

k+)
∣∣ ≤ κcndδ

2
k

in every iteration k ∈ N with κcnd := maxi=1,...,qκcndi > 0 and the corresponding constants
from Lemma 4.1 and Assumption 4.3.

Proof. For the difference on the left-hand side it holds

∣∣φ(xk+)− φk
m(x

k+)
∣∣ =

{ ∣∣fi(xk+)−mk
i (x

k+)
∣∣ (i)∣∣fi(xk+)−mk

j (x
k+)

∣∣ (ii)

with indices i, j ∈ {1, ..., q} and i �= j. In case (i) it follows
∣∣φ(xk+)− φk

m(x
k+)

∣∣ ≤ κcndiδ
2
k

due to xk+ ∈ Bk, Lemma 4.1 and Assumption 4.3. Now consider case (ii) and assume
fi(x

k+) − mk
j (x

k+) > 0. Due to the definition of φ, Lemma 4.1, Assumption 4.3 and

xk+ ∈ Bk it holds
∣∣φ(xk+)− φk

m(x
k+)

∣∣ ≤ ∣∣fi(xk+)−mk
i (x

k+)
∣∣ ≤ κcndiδ

2
k. Next assume

fi(x
k+)−mk

j (x
k+) < 0. Then it holds again according to the definition of φ, Lemma 4.1,

Assumption 4.3 and xk+ ∈ Bk∣∣φ(xk+)− φk
m(x

k+)
∣∣ = − (

fi(x
k+)−mk

j (x
k+)

) ≤ −fj(x
k+) +mk

j (x
k+) ≤ κcndjδ

2
k.

This implies
∣∣φ(xk+)− φk

m(x
k+)

∣∣ ≤ maxi=1,...,qκcndiδ
2
k.

In the following every point xk+1 is given by TRAHM as a result of iteration k ∈ N.
Either the trial point is accepted and it holds xk+1 = xk+ or it is discarded and xk+1 = xk.
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For the further considerations the iterations of TRAHM are classified according to their
outcome using the constants 0 < η1 ≤ η2 < 1 from the description of the algorithm in
section 3. An iteration is called successful, if it holds ρk ≥ η1 and the set of indices of all
successful iterations is denoted by

S :=

{
k ∈ N

∣∣∣∣ρkφ =
φ(xk)− φ(xk+)

φk
m(x

k)− φk
m(x

k+)
≥ η1

}
.

Similarly the set of indices

V :=
{
k ∈ N | ρkφ ≥ η2

} ⊆ S

denotes the set of very successful iterations and all iterations k with ρkφ < η1 are called
unsuccessful. With this classification of iterations the following Lemma illustrates the
behavior of TRAHM for non-Pareto critical iteration points.

Lemma 4.7 Let k ∈ N be an iteration and suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5
and 4.6 hold. Suppose furthermore that xk is not Pareto critical for (MOP ) and

δk ≤ κφ(1− η2)ω(x
k)

κe

(24)

with κe := maxi=1,...,q max {κcndi, κuhmi
} > 0 and κφ ∈ (0, 1) from Assumption 4.6. Then

it holds k ∈ V, that is iteration k is very successful, and δk+1 ≥ δk.

Proof. Consider the non-Pareto critical point xk and the corresponding iteration k. Ac-
cording to Lemma 2.2 it holds ω(xk) > 0 and due to η2, κφ ∈ (0, 1) it holds κφ(1−η2) < 1.
By (24), the definition of κe and Remark 4.3 it follows

δk ≤ κφ(1− η2)ω(x
k)

κe

<
ω(xk)

κe

≤ ω(xk)

max
i=1,...,q

κuhmi

≤ ω(xk)

βφ
k

. (25)

According to Assumption 4.6 it holds

φk
m(x

k)− φk
m(x

k+) ≥ κφω(x
k)min

{
ω(xk)

βφ
k

, δk

}
= κφω(x

k)δk.

Now consider ρkφ =
(
φ(xk)− φ(xk+)

)
/
(
φk
m(x

k)− φk
m(x

k+)
)
the trial point acceptance quo-

tient defined in (7). Due to the interpolation condition (9) it holds φk
m(x

k) = φ(xk) and
from Lemma 4.6, the definition of κe and (24) it follows

∣∣ρkφ − 1
∣∣ = ∣∣∣∣φk

m(x
k+)− φ(xk+)

φk
m(x

k)− φk
m(x

k+)

∣∣∣∣ ≤
δk max

i=1,...,q
κcndi

κφω(xk)
≤ δkκe

κφω(xk)
≤ 1− η2.

This implies ρkφ ≥ η2 and therefore k ∈ V . According to the trust region update in step 4
of TRAHM in section 3 it holds for the new trust region radius δk+1 ≥ δk.
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The next lemma shows that whenever the function ω is strictly positive, so is the trust
region radius. Hence as long as no Pareto critical point is being approached the trust
region radius is bounded from below by a strictly positive constant.

Lemma 4.8 Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 hold. Suppose further-
more that there exists a constant κlbω > 0 such that ω(xk) ≥ κlbω holds for every iteration
k ∈ N. Then there exists a constant κlbδ > 0 such that δk ≥ κlbδ holds for all k ∈ N.

Proof. Assume that for every κ > 0 there exists an index k ∈ N with δk < κ. Consider

κ :=
γ1κφκlbω(1− η2)

κe

with the constants γ1 ∈ (0, 1) from TRAHM and κφ, κe defined in Assumption 4.6 and
Lemma 4.7. Let k0 be the first iteration with δk0 < κ. Then it holds δk0 < δk0−1 and
according to the trust region update in step 4 of TRAHM it holds γ1δk0−1 ≤ δk0 . These
two inequalities imply

δk0−1 <
κφκlbω(1− η2)

κe

≤ κφω(x
k0−1)(1− η2)

κe

.

Because of the assumption on ω(xk0−1) and Lemma 2.2 xk0−1 is not Pareto critical for
(MOP ). Therefore the preconditions of Lemma 4.7 are satisfied and it holds k0 − 1 ∈ V
and δk0−1 ≤ δk0 . This contradicts δk0 < δk0−1 and therefore the initial assumption.

With the preceeding results it can be proved that in case of finitely many successful
iterations TRAHM converges to a Pareto critical point.

Lemma 4.9 Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 hold and TRAHM has
only finitely many successful iterations k ∈ S = {k ∈ N | ρkφ ≥ η1}. Then there exists an

index j ∈ N such that it holds xk = xk+1 for all k ≥ j and xj is a Pareto critical point for
(MOP ).

Proof. Let k0 be the index of the last successful iteration. Then all subsequent iterations
are unsuccessful, i.e. ρkφ < η1 for all k > k0. Step 3 of TRAHM ensures xk0+1 = xk0+j for
all j ∈ N. Since all iterations are unsuccessful for sufficiently large k ∈ N, the choice of
the constants 0 < γ1 ≤ γ2 < 1 and the trust region update in step 4 imply limk→∞δk = 0.
Assume that xk0+1 is not a Pareto critical point for (MOP ). Then Lemma 4.7 implies that
there exists a successful iteration whose index is larger than k0. This is a contradiction to
k0 being the last successful iteration. Hence xk0+1 is Pareto critical for (MOP ).

Now we consider the case that TRAHM has infinitely many successful iterations.

Lemma 4.10 Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 hold and TRAHM has
infinitely many successful iterations k ∈ S. Then it holds

lim inf
k→∞

ω(xk) = 0.

21



Proof. Suppose it holds lim infk→∞ ω(xk) �= 0. Then without loss of generality there exists
a sequence

{
ω(xk)

}
and a constant ε > 0 with ω(xk) ≥ ε for all k ∈ N. According to

Lemma 4.8 there exists a constant κlbδ > 0 such that δk ≥ κlbδ holds for all k ∈ N. From
Remark 4.3 it follows

βφ
k ≤ max

i=1,...,q
κuhmi

≤ max
i=1,...,q

{κuhmi
, κcndi} = κe

for every iteration k ∈ N given the constants κuhmi
, κcndi and κe from Assumption 4.2,

Lemma 4.1, Assumption 4.3 and Lemma 4.7. Consider a successful iteration k ∈ S. Then
it holds ρkφ ≥ η1 and it follows from Assumption 4.6

φ(xk)− φ(xk+) ≥ η1
(
φk
m(x

k)− φk
m(x

k+)
) ≥ η1κφω(x

k)min

{
ω(xk)

βφ
k

, δk

}

≥ η1κφεmin

{
ε

κe

, κlbδ

}
.

For every successful iteration it holds xk+1 = xk+, thus, summing over all successful
iterations gives

φ(x0)− φ(xk+1) =
k∑

j=0,j∈S
φ(xj)− φ(xj+1) ≥ σkη1κφεmin

{
ε

κe

, κlbδ

}

with σk being the number of successful iterations up to iteration k. Since there are infinitely
many such iterations in S, it holds limk→∞σk = ∞. Hence the difference between φ(x0) and
φ(xk+1) is unbounded. This is a contradiction to the general assumption that φ is bounded
from below. Consequently, the initial assumption is false and it holds lim infk→∞ ω(xk) =
0.

The following theorem is the main result about convergence of TRAHM. It shows that
the algorithm produces a sequence of iterates with ω converging to zero. According to
Lemma 2.2 this characterizes Pareto criticality.

Theorem 4.1 Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 hold. Then TRAHM
produces a sequence of iterates

{
xk
}
with

lim
k→∞

ω(xk) = 0.

If the sequence {xk} has accumulation points, then every of these points is a Pareto critical
point for (MOP ).

Proof. If TRAHM has only finitely many successful iterations k ∈ S, then according to
Lemma 4.9 the sequence of iterates

{
xk
}
converges to a Pareto critical point of (MOP ).

By Lemma 2.2 it follows limk→∞ω(xk) = 0.
Now consider the case if there are infinitely many successful iterations k ∈ S. Assume
that there exists a subsequence of successful iterates {tj} ⊂ S with

ω(xtj) ≥ 2ε > 0 (26)
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for some constant ε > 0 and for all j. By Lemma 4.10 it follows that for all tj there exists
a first successful iteration lj > tj satisfying ω(xlj) < ε. Then there is another subsequence
indexed by {lj} such that

ω(xk) ≥ ε for tj ≤ k < lj and ω(xlj) < ε. (27)

Consider the subsequence whose indices are in K := {k ∈ S | ∃ j ∈ N : tj ≤ k < lj} ⊆ S,
where tj and lj belong to the two subsequences defined above. For every successful iteration
it holds ρkφ ≥ η1 and xk+1 = xk+. The definition of ρkφ, the fact K ⊆ S, Assumption 4.6,
Remark 4.3 and (27) imply for k ∈ K

φ(xk)− φ(xk+1) ≥ η1
(
φk
m(x

k)− φk
m(x

k+1)
) ≥ η1κφεmin

{
ε

κe

, δk

}
. (28)

The sequence
{
φ(xk)

}
is monotonically decreasing and bounded from below. Hence{

φ(xk)
}
is convergent and it holds limk→∞φ(xk)− φ(xk+1) = 0 which implies

lim
k→∞,k∈K

δk = 0.

Thus, the second term dominates the minimum in (28) and it holds for k ∈ K sufficiently
large

δk ≤ 1

η1κφε

(
φ(xk)− φ(xk+1)

)
and consequently for j sufficiently large

∥∥xtj − xlj
∥∥ ≤

lj−1∑
i=tj ,i∈K

∥∥xi − xi+1
∥∥ ≤

lj−1∑
i=tj ,i∈K

δi ≤ 1

η1κφε

(
φ(xtj)− φ(xlj)

)
.

Again, because the sequence
{
φ(xk)

}
is monotonically decreasing and bounded from below

it holds limj→∞ 1
η1κφε

(
φ(xtj)− φ(xlj)

)
= 0 and thus

lim
j→∞

∥∥xtj − xlj
∥∥ = 0.

Since ω is uniformly continuous due to Assumption 4.1, see Remark 4.1, it follows

lim
j→∞

∣∣ω(xtj)− ω(xlj)
∣∣ = 0.

This is a contradiction to the definition of the sequences {tj} and {lj} in (27) which implies
with (26) that

∣∣ω(xtj)− ω(xlj)
∣∣ ≥ ε holds. Consequently, no subsequence satisfying (26)

can exist and it holds limk→∞ω(xk) = 0.
Let x̄ be an accumulation point of the sequence {xk} produced by TRAHM and assume
that it is not a Pareto critical point for (MOP ). Then according to Lemma 2.2 it holds
ω(x̄) > 0. This is a contradiction to limk→∞ω(xk) = 0 and hence every accumulation
point of {xk} is Pareto critical for (MOP ).

The convergence result can also be proved if all the objectives are expensive functions.
Of course assumptions like Assumption 4.3 are then needed for all functions.
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5 Numerical details and modifications of the algo-

rithm

The Algorithm as presented in section 3 is formulated for the theoretical considerations
in section 4. For the numerical realization some modifications can be made.

5.1 Stopping criterion

For the implementation of TRAHM a suitable stopping criterion is needed. Since one of
the objectives is expensive regarding the evaluation time it is reasonable to set a maxi-
mum number of allowed function evaluations and stop the algorithm when this number is
reached.
Furthermore TRAHM is designed to reduce the trust region radius whenever there is no
sufficient decrease possible with the current model functions. Moreover Lemma 4.7 assures
that whenever the current iteration point xk is not Pareto critical and the trust region
radius falls below a fraction of ω(xk), the radius will not decrease in the next iteration.
Additionally, according to Lemma 4.8, the trust region radius is bounded from below as
long as xk is not a Pareto critical point. Hence if the trust region radius is small enough
in terms of being smaller than a suitable constant εtr > 0 the algorithm can stop.
The Pascoletti-Serafini scalarization (PS) is used to compute the search direction in every
iteration. According to Lemma 3.2 the solution tk+ of (PS) is strictly negative as long as
xk is not weakly efficient for (MOPm). Thus, if the models are reliable approximations
the algorithm can stop if tk+ is equal to zero.

5.2 Trust region update

The update rule for the trust region radius in TRAHM uses the general formulation from
the literature, see for example [8, 36]. For the implementation it is specified as

δk+1 =

⎧⎨
⎩

1
2
δk ρkφ < η1

δk η1 ≤ ρkφ < η2
2δk ρkφ ≥ η2

.

5.3 User-given information

The presented method is only a local method producing one efficient solution of several
efficient solutions of the considered multiobjective problem. Primarily, the ideal point
determines the outcome of TRAHM. Instead of computing the individual minima of the
model functions mk

i , i ∈ {1, ..., q}, in every iteration k ∈ N, a strictly lower bound is also
sufficient. All the findings about TRAHM presented in section 4 also hold if the ideal
point pk is replaced by a point p̃ with p̃i < pki = minx∈Bk

mk
i (x) for all i ∈ {1, ..., q}.

In this context user-given information can be included. In some applications the user
has additional information about the optimization problem, such as a ’working solution’.
Furthermore in most applications there is a preference for the solution or a desired result
that may be unrealizable. Yet, this kind of information can be included in TRAHM by
replacing the ideal point by this user-given desired point p̃.
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5.4 Saving computation time

In methods for expensive black box optimization the main strategy for saving computation
time is reducing the number of expensive function evaluations. In the context of this paper
one option is to update the model for f1 only in iterations in which the approximation by
the model was too poor, that is it holds ρkφ < η1. Otherwise the old model of iteration k
is reused in the next iteration. Furthermore in every iteration interpolation points need
to be computed for the model of the expensive function f1. Instead of recomputing them
in every iteration every point situated in the current trust region and not violating the
quality criterion of well poisedness can be reused.

5.5 Constrained optimization problems

TRAHM is only formulated for unconstrained problems, but box constraints can easily
be added without affecting the method. The subproblems of computing the ideal point in
step 1 of TRAHM can still be solved quickly even with box constraints. For including such
constraints into the computation of the trial points it is possible to use projection methods
as suggested in basic trust region methods, see [8]. For the implementation we do not use
this approach but include the box constraints into the Pascoletti Serafini scalarization.
Still, these auxiliary optimization problems are easy to solve.

6 Experimental results

TRAHM has been implemented in Matlab (version 2017a) with the modifications and
stopping criteria described in section 5 and tested for several biobjective problems. All
considered problems are test problems and do not involve an actual expensive function.
Furthermore the test problems are both self-chosen and from the literature [24, 13, 35, 5].
Among them are quadratic and nonquadratic functions, convex and nonconvex problems,
either unconstrained or with box constraints.
Since TRAHM computes only one solution and does not approximate the set of Pareto
critical points, the results are compared to the weighted sum scalarization of (MOP ) with
equal weights w1 = w2 = 0.5. For convex problems every efficient point can be computed
by a weighted sum with suitable weights. For nonconvex problems only a subset of the
efficient points can be computed, but still the test results can be used to compare the
needed amount of function evaluations.
To solve the surrogate scalar problem the algorithm EFOS (Expensive Function Opti-
mization Solver) [34] is used. This is a solution method for expensive, simulation-based
scalar optimization problems which also uses the trust region approach. The purpose of
this solution method also is to save computation time and reduce the number of function
evaluations. Thus, it is very well suited as a comparative method. As a stopping criterion
a criticality measure using the gradients of the model functions is applied in conjunction
with a validity criterion for the models.
Both algorithms were tested on ten convex problems and eight nonconvex problems with
different starting points. For all convex test problems TRAHM is successful and produces
a Pareto critical point, mostly an efficient point. Even for most of the nonconvex problems
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a Pareto critical point, often an efficient point, is computed.
As expected due to the weighted sum approach EFOS often computes the individual min-
ima of the objective functions or the exact tradeoff between the two functions, whereas
TRAHM is capable of finding points from different areas of the Pareto front. However,
a more important aspect is the number of function evaluations and TRAHM often needs
significantly less function evaluations than EFOS. In general the test results show that
TRAHM can save computation time.
Exemplarily, we want to present some test results for two selected test problems. The first
test example is a self-chosen convex problem defined by

min
x∈Rn

(
f1(x)
f2(x)

)
= min

x∈Rn

(
1
2
x2
1 + x2

2 − 10x1 − 100
x2
1 +

1
2
x2
2 − 10x2 − 100

)
. (A)

For all starting points of this test example both algorithms produce efficient points.
TRAHM needs 9-11 function evaluations and therefore significantly less than EFOS which
needs 13-78. Figure 2 shows one result for TRAHM on the left-hand side and for EFOS
on the right-hand side. The starting point is marked orange and the solution is marked
yellow. The image set is represented by scattered gray points and the evaluated points
are marked black. This example illustrates the effect of the trust region concept used in

Figure 2: Test run for TRAHM and EFOS for test problem (A)

TRAHM. For EFOS, the evaluated points are spread in the image space and more evalua-
tions are needed. By contrast, the local trust regions in TRAHM have the effect that the
model is only built on points near to the current iteration point. Furthermore this figure
shows that in TRAHM the model was not actualized very often, but could be reused for
several iterations. It also illustrates the trust region as a step size control since in the last
iterations the step size increased. Apparently the model was reliable also in bigger and
shifted trust regions.
To illustrate how good TRAHM also works for nonconvex problems we want to consider
the test problem ”Lis” [5] defined by

min
x∈Ω

(
f1(x)
f2(x)

)
= min

x∈[−5,10]×[−5,10]

(
8
√

x2
1 + x2

2
8
√
(x1 − 0.5)2 + (x2 − 0.5)2

)
. (B)
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For all starting points of this test example both algorithms produce Pareto critical points,
mostly even efficient points. Since (B) is a nonconvex problem the weighted sum approach
with EFOS gives as expected a point close to the individual minimum of f2 as a solution.
Still, TRAHM clearly saves function evaluations by using 10-34 evaluations in the different
test runs, whereas EFOS needs 77-101. In Figure 3 again the result of one test run for
TRAHM is shown on the left-hand side and for EFOS on the right-hand side. In this
example the starting point marked orange is already close to the Pareto front. Figure 3
illustrates this for the image space, but it is also reflected in the domain. EFOS needs
evaluations from nearly the whole domain and image space, whereas TRAHM does not
spread the evaluations that much.

Figure 3: Test run for TRAHM and EFOS for test problem (B)

7 Conclusions

This paper presents the new multiobjective trust region me-thod TRAHM. The objective
functions can be heterogeneous and besides analytically given functions also expensive,
simulation-given functions can be considered. The algorithm can also be modified to
consider only expensive functions. Even then the presented approach is new due to the
direction that is used to compute the next iteration point. This direction is computed by
using local ideal points and an auxiliary optimization problem for the model functions.
Thus, starting from the initial point a new point is generated - if possible - that decreases
every function value of the models. The connection to the original functions is made by
suitable validity assumptions on the model functions. Generally, no derivative informa-
tion is necessary and hence the algorithm is well suited for expensive functions for which
derivative information is absent or not available with reasonable effort. Since different
model functions are used for different types of objective functions, e.g. simulation-given
or analytically given functions, heterogeneity of the objective functions can easily be con-
sidered.
It is proved that the sequence of iterates

{
xk
}
produced by TRAHM converges to a Pareto
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critical point in terms of ω(xk) converging to zero. The test runs confirm the theoretical
findings by showing that TRAHM computes Pareto critical points. Mostly, these points
are even efficient points. Furthermore TRAHM is capable of computing points from dif-
ferent parts of the Pareto front. The numerical experiments also show that TRAHM can
significantly save computation time due to the local trust regions and the updating of the
model functions only if necessary.
In future work modifications for TRAHM will be developed to exploit the heterogeneity of
the objective functions even more. With regard to practical applications also user-given
information already described to some extent in subsection 5.3 shall be regarded. So far
TRAHM computes only one solution. The aim also is to spread the points during the
computations and to obtain several Pareto critical points in consideration of the compu-
tational effort. For all these purposes some heuristic strategies will be considered which
make use of the cheap functions to a larger extent.
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