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Abstract

The Saint Venant Equations (SVEs) are frequently used to describe flow in open

channel/river. On the one hand, models based on SVEs require huge data for pa-

rameterization as well as large computation time in order to simulate flow behavior.

On the other hand, simplified models are an often-chosen technique for model based-

control without eliminating the key dynamic attributes. The Adaptive Time Delay

model (ATD) expands the application scope of the previous time delay models by

simulating the flow using a prismatic trapezoidal geometry. In this approach, the

mathematical derivation of the ATD model and the linearized Saint Venant model

(SVEs) are defined. The transfer functions of the ATD model and the complex hy-

draulic model (SVEs) are derived by Laplace transformation. The Taylor expansion

technique is used to find cumulants of the two transfer functions and the time con-

stant and time delay of the ATD model as functions of the complex hydraulic model

parameters. Another innovation is the coupling of the ATD model with the reser-

voir model in order to simulate the backwater effect. The reach is fundamentally

separated into two parts: upstream uniform flow area and downstream backwater

area. The length of both areas is relied on flow rate and downstream condition.

The model parameters are thus the functions of both flow rate and the length of the

areas. The third contribution of the dissertation is a method to identify parameters

of ATD model from a complex hydraulic model. Initially, the typical hydrograph

of an extreme flood event is generated by the method of characteristic hydrograph

analysis. Secondly, the typical outflow is simulated by the complex hydraulic model

to determine the flow behavior. Then those data are used to estimate parameters

of ATD model by a optimization technique. The application of the new method

is presented by the case study of optimal control of a hydropower plant cascade.

The advantage of this is that the ATD model is able to describe the system dynam-
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Abstract

ics. All of extensions are then integrated in the ‘WaterLib’ tool box by MATLAB

SIMULINK for water system simulation.
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Zusammenfassung

Die Saint Venant Gleichungen (Englisch: Saint Venant Equations; SVEs) wer-

den sehr häutig eingesetzt, um das Fließverhalten im offenen Kanal / Fluss zu

beschreiben. Einerseits benötigen Modelle, die auf den SVEs basieren, sehr viele

Daten für die Parametrierung und auch große Rechenzeiten, um das Fließverhalten

zu simulieren. Andererseits sind vereinfachte Modelle eine oft angewandte Technik,

um komplexe hydrodynamische Modelle für die modellbasierte Steuerung einzuset-

zen ohne die wichtigsten dynamischen Attribute zu vernachlässigen. Das adaptive

Zeitverzögerungsmodell (Englisch: Adaptive Time Delay; ATD) erweitert den An-

wendungsbereich des bisher eingesetzten Zeitverzögerungsmodells durch Simulation

des Durchflusses mit einer prismatischen Trapezgeometrie. In dieser Arbeit wird die

mathematische Herleitung des ATD-Modells aus dem linearisierten Saint Venant-

Modell (SVEs) dargestellt. Die Übertragungsfunktionen des ATD-Modells und des

komplexen hydraulischen Modells (SVEs) werden mittels Laplace-Transformation

abgeleitet. Es wird die Taylor-Reihen-Entwicklung verwendet, um die Kumulanten

der beiden Übertragungsfunktionen zu finden, und um daraus die Zeitkonstante

und Totzeit des ATD-Modells als Funktionen der komplexen hydraulischen Modell-

parameter abzuleiten.

Eine weitere Neuerung ist die Kopplung des ATD-Modells mit dem Reservoir-

Modell, um den Effekt des Rückstaus zu simulieren. Das Gerinne ist dabei grundsätz-

lich in zwei Teile unterteilt: der stromaufwärtige gleichförmige Durchflussbereich

und der stromabwärtige Rückstaubereich. Die Länge ist abhängig von der Fließge-

schwindigkeit und dem stromabwärtigen Zustand. Die Modellparameter sind damit

Funktionen sowohl der Fließgeschwindigkeit als auch der Länge der genannten Bere-

iche. Der dritte Beitrag in dieser Dissertation ist ein Verfahren, um Parameter

des ATD-Modells anhand eines komplexen hydraulischen Modells zu identifizieren.
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Zusammenfassung

Zunächst wird die typische Hydrographie eines extremen Hochwasserereignisses durch

das Verfahren der medianen Hydrographanalyse erzeugt. Zweitens wird der typische

Abfluss durch das komplexe Hydraulikmodell simuliert, um das Abflussverhalten zu

bestimmen. Dann werden diese Daten verwendet, um Parameter des ATD-Modells

durch ein Optimierungsverfahren zu ermitteln. Die Anwendung der neu entwickelten

Verfahren wird am Beispiel der optimale Steuerung einer Staustufenkaskade gezeigt.

Der Vorteil ist, dass das ATD-Modell die Systemdynamik sehr gut beschreiben kann.

Alle Modellerweiterungen, die in dieser Arbeit vorgestellt werden, wurden in die Wa-

terLib Toolbox von der MATLAB SIMULINK zur Simulation von Wassersystemen

integriert.
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Chapter 1

Introduction

1.1 Motivation of the study

River flow modeling plays an important role to solve a variety of problems, for

example in water allocation. Rivers do not only supply water for agriculture, do-

mestic use, and industry but also to preserve wildlife environment. Surplus water

in rivers causes flood. This natural disaster critically impacts on a large part of the

population on earth causing loss of human lives and damage to properties. While,

deficiency of water over a long period of time, normally a season or a year, results in

drought which has severe affects on agriculture, life expectancy, and the economic

performance of countries. Furthermore, the occurrence of the phenomenon are more

frequent over the years due to climate change. Hence, a fact is that water source

has to be stored and allocated effectively.

The efficient management of a water system brings numerous benefits, such as

reliability and resiliency. In terms of navigation, water level monitoring and con-

trol are necessary. The lowest water depth must be maintained so that boats can

navigate safely. On the other hand, the water level is not allowed to exceed the

maximum value so that boats can pass under the bridges. Another type of wa-

ter system management is reservoir cascade control which is performed to reach

multi-objectives: electricity production, flood protection, and so on. Therefore, it

is crucial to investigate and simulate the flow dynamics of the distribution system.

Water flow propagation is very significant for hydraulic engineers to develop

several methods for its analysis and simulation. The characteristics of physical

1



Chapter 1. Introduction

phenomena including river morphology, initial condition and flow can be spatially

and temporally described by a function of flow rate and water level. In his research,

Saint Venant derives a hyperbolic system expressed by partial differential equations

to describe the one dimensional flow in open channels (Saint-Venant, 1871). Because

of the inexistence of analytical solutions, a wide range of numerical approaches to

solve these equations have been developed, such as the method of characteristics,

finite difference schemes, finite element schemes, finite volumes schemes, and spectral

(finite) volume schemes. Base on this, several software solutions that simulate the

flow dynamics exists such as HECRAS, MIKE 11, and SOBEK. These software

solutions are able to describe the flow behavior in complex river system with high

accuracy, but require an enormous input data as well as huge computation effort.

For practical purposes, numerous efforts have been made to simplify the full

SVEs in order to reduce computation time and data demand while ensuring a rea-

sonable result. These include the well-known classical methods such as the Hayami

model (Hayami, 1951), Muskingum model (Cunge, 1969), Kalinin-Milyukov method

(Apollov et al, 1964) which are usually used to simulate the outflow of a certain river

reach quickly. Particularly, reduced models for control purposes are increasingly re-

quired and developed in recent years. A few typical models include the Integrator

Delay Method (ID) by (Schuurmans et al, 1995, 1999b), Integration Delay Zero

(IDZ) by (Litrico and Fromion, 2004a), and the Integrator resonance model (IR)

(van Overloop et al, 2010, 2014). Automatic control then is simply implemented

based on the model.

The potentials in advancement and applications of the simplified model for mod-

eling water flow in rivers as well as in open channels for controller design propel the

work of this dissertation.

1.2 Objectives

This research aims at improving the existing time delay based model so that the

model can be used to simulate all hydraulic situations applied in optimal control

and a number of improvements includes:

1. Extend the adaptive time delay (ATD) model for prismatic trapezoidal cross

2



Chapter 1. Introduction

section of channel to simulate narrow natural streams.

2. Develop a new flow routing model with backwater effect by coupling the ATD

model with a reservoir model. Then, the ATD model is able to simulate a

river with different downstream boundary conditions.

3. Develop a method to determine parameters of the ATD model for a river reach

with arbitrary river characteristics. River geometry and geology significantly

influences the flow through the roughness coefficient, which consequently in-

fluence the time delay and time constant.

4. Prove the applicability of ATD model in optimal control of a water system by

carrying out optimal control of a hydropower cascade

5. Supplement the existing WaterLib toolbox with newly developed dynamic flow

routing models.

1.3 Thesis contribution

The scientific contributions of this research leans directly to the objectives and are

remarked as follows:

• An advancement of a simplified flow routing model is proposed. It is an Adap-

tive Time Delay model that expands the application scope of the available

time delay model (TD) by simulating the flow using a prismatic trapezoidal

geometry.

• A new method for routing flow with backwater effect is introduced. It is a

coupling of ATD model and reservoir model which is able to simulate the

unsteady non-uniform flow.

• A complex hydraulic model based on the discretized SVEs can simulate flow

and water level accurately, however, the discretization requires an enormous

computation time, hence is not applicable for using controller design. This

thesis suggests an approach to simplify a complex hydrodynamic model with-

out eliminating the key dynamic attributes, and is inevitable for model-based

control.

3



Chapter 1. Introduction

• Another contribution is presented to improve the operation regimes of co-

ordinated reservoir cascades by applying the ATD model in simulating and

optimizing the system. It is actually a replacement for the complex hydraulic

model by an adaptive time delay (ATD) model. The cutting- edge point is

that the ATD model is able to quickly predict the system dynamics both in

simulation and optimization.

1.4 Outline of the thesis

Each consecutive chapter is systematically dedicated to one of the mentioned topics.

For each problem, a method will be proposed and rigorously examined. In chapter

2, a general picture of hydraulic models for open channel flows is given. At first, the

chapter is devoted to the establishment of the Saint Venant Equation (SVEs) for

flow dynamics. A number of key assumptions are made to simplify the complexities

of nature of flow in a open channel. Flow is then analyzed by applying theory of

Reynold transport theorem and control volume approach (Crowe, 2009) according

to the law of conservation of mass and momentum. The mathematical description of

the SVEs are obtained from the analysis afterwards. The initial and boundary condi-

tion to limit the system are also introduced. The available solutions of the SVEs are

mentioned in two categories: numerical approaches and reduced model approaches.

The advancements of time delay model as a simplified model for the SVEs are ad-

dressed in chapter 3. In chapter 4, the reduced model is further developed in order

to describe the flow behavior with the downstream backwater effect. Chapter 5

introduces a procedure for estimating the parameters of ATD model from complex

hydrodynamic model is described. The advancement of the method is rigorously

proved by a case study. An utilization of ATD model for optimal control strategy

of a hydropower cascade is introduced in chapter 6. Firstly, the system including

two hydropower plants and a transition river reach is mathematically illustrated by

two reservoirs models and a ATD model for the reach. Using the method in chapter

5, parameters of ATD model are estimated. Secondly, the energy production of the

cascade is maximized by optimization. The nonlinear programming is applied to

optimize the energy production of the system. A case study is used to prove the

4
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method and demonstrated promising results. In chapter 7, the implementation of

the newly developed tools into WaterLib toolbox is described. Finally, main achieve-

ments and some limitations and outlooks for future developments are summarized

in the conclusions.
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Chapter 2

State of the art

2.1 The Saint Venant equation

2.1.1 Assumption of the model

The channel flow is basically a free surface fluid dynamics driven by gravitational

force. According to principles of fluid mechanics, the flow is attributed as: a fluid

element on which all the forces affecting balanced to the pressure on the stream flow

of atmospheric pressure; flow boundaries can adapt to the given flow conditions; flow

extreme variability caused by geometrical shape and resistance (Sturm, 2010). Those

characteristics make the flow unsteady and non uniform. To describe this issue,

the principle of continuity and momentum represented by two partial differential

equations is applied, in which the continuity equation is used when the flow variable

is continuous while the momentum equation is required for discontinuities, such as

surges or tides. To derive these governing equations, the following assumption are

introduced (Sturm, 2010; Chaudhry, 2007):

• Water in river is shallow with hydrostatic vertical pressure distribution;

• The channel bottom slope is small so that the longitudinal profile of river bed

is relative to the horizontal;

• The channel is prismatic, as a result, the cross section and channel bottom do

not change spatially;

• The bottom elevation is stable and unchanged with time;

6
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• The flow is described as one dimensional resulting in (a) the water level is

horizontal across any cross section such that the transverse velocity is ignored;

(b) the velocity and the shear stress take average value for a whole cross

section;

• The bed friction is unchanged in unsteady flow as well as steady flow and

calculated by Manning or Chezy equations.

2.1.2 Continuity equation

On the basis of the conservation of mass, the general continuity equation (Crowe,

2009) is a result of analyzing a mass transition of a matter by the Reynold transport

theorem and control volume approach. It states that the accumulation rate of mass

in the control volume is balanced with the net outflow rate of mass through the

control surface. Applying the theory to a moving fluid particle in open channel

whose fixed volume has depth y, and length ∆x as in figure 2.1,

Figure 2.1: Control volume for derivation of continuity equation

the continuity equation is expressed that the net volume out of control surface in

a time interval ∆t is balanced to change of volume in that time step (Sturm, 2010):

∂Q

∂x
∆x∆t− q∆x∆t = −∂A

∂t
∆x∆t (2.1)

By dividing ∆t∆x, and ∆t → 0, ∆x → 0, the differential form of the equation

is presented

∂A

∂t
+
∂Q

∂x
= q (2.2)

7
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It is denoted that Q is the flow rate, A is the cross sectional area, q is the lateral

flow, B is the top width, q is the lateral flow distributed along the length of control

volume ∆x.

2.1.3 Momentum equation

Derivation of the momentum equation for a fluid particle is also based on the

Reynolds transport theorem and control volume approach following the conservation

of momentum. In stead of mass of matter, the force of motion which is described by

the second law of Newton is used. The principle is that the rate of change of mo-

mentum in a control volume of the particle, and the outflow net momentum through

control surface must be equal to the resultant force acting on it (Crowe, 2009). As

in figure 2.2 adopted from (Sturm, 2010), the control volume of flowing fluid matter

with acting forces is presented.

Figure 2.2: Control volume approach for derivation of momentum equation

From that, the momentum equation is formulated as in (Sturm, 2010):

Fpx + Fgx − Fsx = Momcv +Momcs −Momextra (2.3)

The the left side of equation 2.3 is summation of forces acting on the fluid particle:

• the resultant force of hydrostatic pressure at both sides of the control volume

in the x direction

Fpx = Fp1 − Fp2 = − ∂

∂x
[γycA] ∆x = −∂y

∂x
γA∆x (2.4)

8
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• the gravitational force Fgx in the x direction. The terms sinθ is approximated

by a bed slope tan θ ≈ S0 due to a small value of slope.

Fgx = γA∆xS0 (2.5)

• the boundary shear force between water and cross section surface in the x

direction.

Fsx = τ0P∆x (2.6)

The right side of the equation 2.3 is the summation of momentum of the particle:

• the time rate of change of momentum in control volume

Momcv =
∂

∂x

[∫
A

ρvxdA

]
∆x =

∂

∂x
[V A] ρ∆x (2.7)

• the net outflow rate of momentum through surface of the control volume

Momcs =
∂

∂x

[∫
A

ρv2
xdA

]
∆x =

∂

∂x

[
ξρV 2A

]
∆x (2.8)

• the extra momentum flux from lateral flow in control volume

Momextra = ρqvL∆x cos Φ (2.9)

Replace equations 2.4 to 2.9 for 2.3, and dividing by ρ∆x, for ∆x→ 0 to obtain

∂Q

∂t
+

∂

∂x

(
ξ
Q2

A

)
+

∂

∂x
(gycA) = gA (S0 − Sf ) + qv cos Φ (2.10)

The momentum equation 2.10 is built according to the conversation rule for an

prismatic open channel, in which, Q = AV is the flow rate; Sf=τ0/(γR) is the

friction slope; τ0 is the mean shear stress; A is the wetted area; P is the wetted

perimeter; R = A/P is the hydraulic radius; ξ = 1 is the momentum correction

coefficient; q is the lateral flow per unit length, and the direction of q is at the angle

of φ with respect to x direction; vx is the velocity of a flow particle in direction x.

Both equations 2.2 and 2.10 are 2 components of the Saint Venant Equations. In
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case, the lateral flow q = 0, the representation of the SVEs are obtained (Saint-

Venant, 1871)

∂A

∂t
+
∂Q

∂x
= 0 (2.11)

∂Q

∂t
+
∂Q

2
/A

∂x
+gA

∂Y

∂x
+gA (Sf − Sb) = 0 (2.12)

Sf =
Q2n2

A2R4/3
(2.13)

It is denoted that V is the mean velocity of a whole cross sectional area; Y is the

water depth; n is the Manning coefficient; Sb is the bed slope; and g is gravitational

acceleration, L is length of the river reach. The solutions of those equation is

discussed in the next section

2.1.4 Initial and Boundary condition

Initial condition

In the computation of flow dynamics in open channels, a specified time for beginning

the simulation is essential. The flow condition at the starting time is defined as an

initial condition, i.e, flow rate Q0 and water level Y0 at time step t = 0 are referred

to as initial conditions.

Boundary condition

The boundary condition must be specified at all of the open ends of the river system

in order to limit the studied physical system. There are different categories of the

conditions as follows: a given flow data (discharge or water level), a rating curve, a

junction, or a hydraulic structure (Brunner, 1995). These boundary conditions are

illustrated in figure 2.3, and discussed in detail.

1. A given flow data: consists of the flow hydrograph, the stage hydrograph, the

flow and stage hydrograph at upstream or downstream end of river which are

used to model river flow.
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2. A rating curve: presents a relationship between water level and discharge at

a cross section: Q = f(y).

3. A junction is the place where confluence and effluence of flow exists. If energy

loss is minor and the difference in velocity head is small, the water level of

reaches at junction must be equal, and sum of discharge entering the junction

should be equal to the sum of discharge leaving the junction.

4. A hydraulic structure: a weir or gate is installed on a river in order to control

the flow to respond with a specific purpose.

Figure 2.3: Boundary conditions for flow simulation
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2.2 Solutions for the Saint Venant Equation

2.2.1 Numerical methods

Method of characteristics

The approach is fundamentally a graphical procedure to integrate parial differential

equations (PDE). The SVEss equations are transformed into a set of 4 ordinary

differential equations (ODE) which are then expressed in its characteristic plane

(x − t). The ODEs are only valid along characteristic curves consisting of positive

curve C+ and negative curve C− as shown in the plots of equation 2.14 in figure 2.4.

Physical meaning of flow is well explained based on these characteristic curves. The

equations are numerically solved by the method of intervals and characteristic grid.

In spite of several published applications to open channel flows such as (Stoker, 2011;

Abbott, 1966, 1979; Lai, 1986), the approach is more helpful in understanding the

wave propagation and the determination of boundary conditions than in deriving

solutions (Chaudhry, 2007).

dx

dt
= V±c (2.14)

Figure 2.4: Positive and negative characteristics curves
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Finite difference method

The finite difference method (FDM) has been extensively used to solve the nonlinear

partial differential equation such as the SVEs (Abbott, 1979; Harley, 1967; Fread,

1985; Garcia and Kahawita, 1986; Stoker, 1957). Considering a function f(x, t)

with two dependent variables: x as spatial variable, and t as temporal variable. The

function is then described by the curve on the x− t plane in figure 2.5a. Also, the

geometry calculation of basic approaches including forward, backward and central

FDM are shown in the figure (Chaudhry, 2007). The finite difference grid is indicated

in figure 2.5b which is divided along the x axis and t axis with interval ∆x and ∆t.

Based on the initial conditions and boundary conditions, the solution of the f is

derived. The method is categorized as explicit FDM and implicit FDM.

Figure 2.5: Finite different approximation

In terms of the explicit FDM, the spatial partial derivatives (variables) depend

explicitly on those at the known time step. Many schemes have been introduced for

the solution of SVEs due to its simplicity and fast computation, however, the method

encounters instability when the size grid spacing goes beyond the satisfaction of the

Courant condition (Courant et al, 1967). To improve this weakness, sort of typical

schemes are presented such as Lax Diffusive scheme, Leapfrog scheme, Lax Wendroff

scheme, Predictor Corrector methods, Flux-Splitting scheme (Sturm, 2010). Three

forms in executing explicit FDM are follow:

• Backward: ∂f
∂x

=
fki −fki−1

∆x

• Forward: ∂f
∂x

=
fki+1−fki

∆x

• Central: ∂f
∂x

=
fki+1−fki−1

∆x
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Regarding the implicit FDM, the spatial partial derivatives are evaluated at the

new time step. The method is not restricted by time step condition so that it is

suitable for simulating a large scale system. Typical schemes have been utilized in

analysis of open channel flow: Preismann scheme, Beam and Warming scheme, and

Vasilive scheme. Three ways to implement implicit FDM are as follow:

• Backward: ∂f
∂x

=
fk+1
i −fk+1

i−1

∆x

• Forward: ∂f
∂x

=
fk+1
i+1 −f

k+1
i

∆x

• Central: ∂f
∂x

=
fk+1
i+1 −f

k+1
i−1

∆x

Other numerical approaches

Although a finite element method (FEM) is usually applied to two or three dimen-

sional simulation, a few researches proved that it can effectively approximate the

solution of SVEs. At first, the FEM based on the Galerkin method is introduced in

(Cooley and Moin, 1976) in order to approximate the unsteady flow in open chan-

nel. The scheme returns a stable and convergent result as well as the stability is

also validated. Other applications include: (Szymkiewicz, 1991; Hughes et al, 1989;

Versteeg and Malalasekera, 2007). However, it still is not commonly used in river

flow simulation because the model encounters many difficulties when dealing with

low stability of the model (Chaudhry, 2007).

A finite volume method (FVM) based on the application of Riemann solvers have

also been used to solve the SVEs numerically. As in (Crossley et al, 2003), local

time stepping strategies are executed in FVM to approximate the solution of SVEs.

The reduction in computational time, error of control and increase accuracy of the

solution in a certain range are considered as benefits of the method. The feasibility

of the scheme for flow propagation in open channel with downstream boundary

condition is demonstrated by (Cozzolino et al, 2011, 2014a,b). Application of FVM

to debris flow transportation is recently published in (D’Aniello et al, 2015; Cozzolino

et al, 2016).

Regarding the spectral method, it is viewed as a significant advancement of

types of discretization methods for partial differential equations (Canuto et al, 2012;

Wang, 2002). An application to model surface water bodies, such as rivers, lakes
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are common (Cozzolino et al, 2012). Nevertheless, problems arise in the application

if the boundary conditions are non-periodic (Chaudhry, 2007).

An alternative has been introduced as smoothed particle hydrodynamics (SPH)

which is a numerical mesh-free method based on Lagrangian formulation, which

approximate the free surface flow (Monaghan, 1992; Liu and Liu, 2010). The per-

formance of SPH is well presented and validated by several case studies: dam-break

flow(Zhou et al, 2004) and turbulent flow simulation (Violeau and Issa, 2007; Violeau

and Rogers, 2016).

The boundary-element method has been more commonly used in the areas of

solid mechanics and acoustics problem than the fluid mechanics (Liggett, 1984; Breb-

bia and Dominguez, 1994; Camacho and Barbosa, 2005). The approach successfully

approximate the flow dynamics by using the representation of the Navier Stokes

equations according to velocity and making use of the penalty function method.

Even though the workability and validity of the approach is shown in several studies

(Camacho and Barbosa, 2005; Tosaka et al, 1985), it is not effective if applied to

time dependent systems Chaudhry (2007).

In summary, approaches of numerical scheme are applied to solve a discretized

one dimensional SVEs in space and time. Most of numerical algorithm used for 1D

hydrodynamic model has to satisfy the stability condition which is known as the

Courant requirement (Courant et al, 1967). Applying an explicit scheme for flow

simulation needs a small time step which consumes large computation effort. Others

use implicit or semi-implicit schemes which ensure the stability with a large time

step. Some schemes result in unconditionally stable solutions such as Preismann

method and Runge Kutta method. The major advantages are the applicability to

several kinds of channels, and maintaining the nonlinear attribute of the system.

In addition, these scheme can be used for real time control purposes, where the

control time step is much larger than the simulation time step (Xu, 2013). The

main limitations are large computation time. In case of using this implicit or semi-

implicit scheme, the wave damping is also a drawback, although it needs to be

eliminated in real-time control (Catalano et al, 2003; Xu, 2013).
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2.2.2 Simplified methods for flow routing

Whilst the fully dynamic SVEs are numerically solved in the previous section, this

section introduces simplified approaches in which a few terms are ignored, or dif-

ferent representations are used in order to derive an acceptable result and save

computational effort as well as serve for other purposes. These models includes as

follows:

Firstly, reservoir routing technique only utilizes the continuity equation to prop-

agate flow from storage facilities (lake, reservoir, pond, detention basin) towards

downstream (Chaudhry, 2007; Sturm, 2010). The water level in reservoir is as-

sumed to be horizontal. The change between inflow I and outflow O is equal to the

change of storage capacity ϑ as in equation 2.15. In order to route the flow through

storage facilities, the equation is numerically integrated.

dϑ

dt
= I −O (2.15)

The second is a river routing model that is also known as the Muskingum model.

Similar to the concept of reservoir routing, the storage capacity ϑ in a river reach

is expressed as function of inflow I and outflow O accompanied with 2 additional

coefficients: the storage constant or travel time of flood wave K, and the dimen-

sionless weighting factor X (0 ≤ X ≤ 1). Both coefficient may be determined from

recorded flow data; or may be estimated by optimization technique. In terms of

the Muskingum-Cunge method, two coefficients K and X are determined by ap-

proximating the kinematic wave equation. For simplicity, this relation is assumed

as linear shown in equation 2.16. In some circumstances, the nonlinear relationship

in equation 2.17 is required to accurately account for the nonlinearity in storage

and flow. The exponent factor m is determined during calculation. It has been

commonly applied and innovated in river flow simulation, for instance, by (Bhuyan

et al, 2015; Franchini et al, 2011; O’Sullivan et al, 2012).

ϑ = KO +KX(I −O) (2.16)

ϑ = K[XIm + (1−X)Om] (2.17)
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In terms of the kinematic wave model, the continuity equation and a reduced

form of momentum equation are applied to simulate downstream flow. Due to

the negligence of the inertia and pressure terms in momentum equation, the flow

becomes unsteady and uniform by which the bed slope Sb is equal to the friction

slope Sf , Sb = Sf . The model expressed in equation 2.18 describes the movement

of the kinematic wave in river through the rate of change of discharge Q in response

to t and x. The kinematic wave velocity is C = dQ/dA (Seddon, 1900). The

attenuation of outflow purely relies on the characteristic of numerical method and

does not the reflects physical phenomenon of the wave. Extensive applications have

been published for flow routing in channel networks (Haltas and Kavvas, 2009),

solution of kinematic wave for overland flow (Cundy and Tento, 1985) and others.

∂Q

∂t
+ C

∂Q

∂x
= 0 (2.18)

Another well known method is the diffusive wave routing which is also a combina-

tion of the continuity and a simplified momentum equation. In terms of simulation,

the inertia term is excluded whereas the pressure term is taken into account. The

model is described by equation 2.19. Two coefficients: diffusion D = f(Q) and

celerity C = f(Q) which define physical behaviors of flow are obtained by observed

hydrographs. The model is extended for several practical purposes, for example,

simulation of river flow with uniform and concentrated lateral flow in (Fan and Li,

2006), approximating the parabolic wave accounting for downstream boundary con-

dition and uniform flows in (Cimorelli et al, 2013, 2014). Moreover, the theory of

Hayami is originally recognized as an analytical solution of diffusive wave model

with an assumption of constant celerity and diffusivity, and without lateral flow.

Since many years, improvement of Hayami model for simulating and controlling

open channel flow has been presented, e.g., in (Bolea et al, 2010a; Moussa, 1996;

Wang et al, 2014).

∂Q

∂t
+D

∂Q

∂x
− C∂

2Q

∂x2
= 0 (2.19)

Last but not least, the Kalinin-Miliyukov method defines a characteristic river

reach by assuming that a discharge at a cross section of a reach is not influenced by
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lateral flow (Kalinin and Milyukov, 1957). Then, a whole river can be approximated

by a series of characteristic reaches. The discharge is also a linear function of water

storage within that reach. According to (Szilagyi, 2006), the outflow h is derived as

in equations 2.20a-c.

h (t) = k
(kt)I−1

Γ (I)
e−kt (2.20a)

Q (t) = kϑ (t) (2.20b)

Γ (I) =

∫ ∞
0

ςI−1e−ςdς (2.20c)

where h is a discharge of characteristic reach known as instantaneous unit hydro-

graph (IUH); k is a constant coefficient of linear relationship of discharge Q and

storage ϑ; t is the time; I is the number of equal characteristic reach; Γ is the

complete gamma function; and ς is the dummy variable. A further development by

(Nash, 1957) is known as Kalinin-Miliyukov-Nash model (KMN). A linear reservoir

model (equation 2.16) is defined as a characteristic reach that is connected in series

to approximate the flow behavior. Each reach is characterized by equation 2.20b.

Furthermore, the method is formulated in state space representation for forecasting

stream flow (Szilagyi, 2003, 2006).

Empirical method for controller design

Methods apply previous knowledge of the system to build a hydrodynamic model

for control purpose. Fundamentally, this approach is a selection between black box

models and grey box models (Ljung and Glad, 1994).

In terms of black box models, the relationship of inflow and outflow of river sys-

tem is achieved without the insight of physics. An illustration is that a stochastic

model named Auto Regressive with Exogenous Input (ARX) is used to simulate

downstream flow of river system by (Elfawal-Mansour et al, 1981; Sepulveda and

Rodellar, 2005). The application of ARX is then presented and validated against

measured data from Guira de Melena irrigation canal (Perez et al, 2008). Another

approach use Linear Parameter Varying (LPV) for modeling irrigation and being val-

idated by (Bolea et al, 2009, 2010b). A few researches in (Abdelmoumène Toudeft,

1996; Toudeft, 1995) use artificial neural network (ANN) for simulating canals or
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rivers. In general, these types are costly and difficult for identification phase when

the model of the system is at design stage.

Regarding the grey box models, they need some prior information of physical

system to select the suitable model structures for simulation. The prior knowledge

usually comes other from previous experience, or from experiment. As a research

in (Weyer, 2001), a grey box model is developed for a irrigation canal system where

input of the model is gate positions while output is water level over the gate. A

channel stretch between two gates is considered as a pool. The prior information is

known from measurements data: water level at upstream and downstream. To de-

termine the model parameters, the procedure of system identification which consists

of experimental design, model structure determination, parameter estimation, and

model validation is introduced. The model is then obtained and validated for both

high and low flow of Haughton Main Channel that presented a very good result. The

model for combination of undershot and overshot gates is also developed by (Eurén

and Weyer, 2007). An advancement is made by (Foo et al, 2010; Ooi and Weyer,

2008) that uses the linearized SVEs for modeling water level in canal pool or in river

instead of executing experiments from measured data as previous researches. In ad-

dition, a combination of experiment design for defining time delay, and the SVEs

have proved its advantage (Foo et al, 2014). In case of enough measured data, the

experiment can return a very good results while the SVEs are helpful in situations

of data shortage. The approach is validated in case studies such as Haughton Main

Channel Weyer (2008), Broken River (Foo et al, 2014; Ooi et al, 2011) and applied

for not only overshot gate but also undershot gates (Eurén and Weyer, 2007) and

for a large scale modeling of irrigation area (Cantoni et al, 2007).

State space representation of SVEs

With a system representation in state space, the number of states and disturbances

are significantly reduced whereas still ensuring the model accuracy. For that reason,

the SVEs model can be used as internal model for controller design. The linear
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finite state space model is (Malaterre and Baume, 1998)

 x(k + 1) = Ax(k) +Bu(k) +Bpp(k)

y = Cx(k)
(2.21)

Where x is state vector, y is the controlled variable vector, u is input vector, p is

vector of perturbation, A, B, Bp and C are constant matrices of appropriate dimen-

sions, k is index. This expression in time domain broadens the applicability for many

control approaches over former model in frequency domain. For instance, a linear

quadratic (LQ) optimal control theory, or a model predictive control (MPC) need

an internal model with state space presentation for optimization. In addition, the

model can be formulated by aggregating different SISO transfer functions between

inputs and outputs variables.

The SVEs are usually not used for controller design due to the expensive com-

putation. Hence, the model must be simplified while maintaining the accurate pre-

diction. Proper orthogonal decomposition (POD) is a powerful tool for deriving a

low order model from dynamical process. The decomposition can be applied for

temporal and spatial domain. Accompanied with POD, the snapshot technique is

used to discretize the procedure of POD in temporal domain. Application of POD

with a snapshot approach to obtain the simplified state space model of both linear

SVEs and transport equation has been presented in (Xu, 2013). The method takes

snapshots of an off-line simulation model and arranges a two point spatial correla-

tion matrix. Each snapshot is a column of state vector in which consists of water

level and solute concentration in a combined water quantity and quality model. As

many snapshots are taken as more flow ranges are covered in the reduced model.

In addition, taking more snapshots does not considerably increase the computation

time.

An alternative approach of POD for simplifying hydraulic model is presented in

(Breckpot et al, 2012a). The model aims at describing the flow of river with and

without hydraulic structure at outlet. The idea is a combination of a linear SVEs

model for simulating flow dynamic in a reach and nonlinear model for flow through

gate (LN model) in order to produce a good result. This hybrid model is then sim-

plified by using POD and Galerkin projection, in which the POD helps to obtain the
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set of suitable orthonormal basis vectors from experimental data whereas Galerkin

projection is applied to reduce the model order. In case of river network modeling,

the supplement of reservoirs, junctions, and gates defines different boundaries for

each river reach leading to distinct LN models. Afterwards, the whole system is

then approximated with a linear state space model in order to serve for designing

controller. In this case, it is noted that gate discharges are considered as controlled

variables instead of the positions in order to save computation time. After the

discharge is optimized, the conversion is made based on the gate equation. The

technique is applied to serve for control technique as Linear Quadratic Regulator

(LQR), and Model Predictive Control (MPC) in (Breckpot et al, 2012b; Breckpot

and Moor, 2012).

A formulation of state space models for river networks using the SVEs and the

constraint at junctions has been presented in (Rafiee Jahromi, 2012). The state

variables: flow rate Q, and water level H. Firstly, the linearized SVEs are discretized

by the Lax diffusive scheme for the internal grid points. The scheme must be stable

according to the Courant condition (Courant et al, 1967). At the boundaries of the

grid, the data must be also determined by the method of specified time intervals

(Chaudhry, 2007). In which, the characteristic equation is established, the unknown

variable at the boundary grid point are then predicted by using those equations.

The method can be applied to a whole river network. However, it is essential to

supplement the internal boundary conditions at a tributary of a river network as

mentioned in figure 2.3. The model is used to estimate flow rate and stage for a

river network (Hofleitner et al, 2013; Rafiee et al, 2009, 2011).

An updated research comes from (Szilagyi and Laurinyecz, 2012) named the

discrete linear cascade model (DLCM). Fundamentally, the model is a state space

description of a cascade of reservoir in rivers which are described by either the

linear kinematic wave equation (Szilagyi et al, 2005; Szöllösi-Nagy, 1982) or diffusive

wave equation (Szilágyi and Nagy, 2010). Flow propagation is thus able to be

approximated spatially and temporally. This physically based flow routing method

includes two parameters: number of sub reaches and their storage coefficient. The

backwater effect is also accounted through relating the storage coefficient and flow

rate.
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Frequency representation of SVEs

The full SVEs equations are linearized and transformed into the frequency domain by

Laplace transform. The transfer matrix is then obtained and addressed by several

approaches. The frequency representation of the system is presented as follows

(Baume et al, 1998).

In a case of finite and linear system, flow in the river with a downstream gate is

assumed as uniform. The integrator model is then initially developed from transfer

function of SVEs (Corriga et al, 1983, 1988; Ermolin, 1992; Papageorgiou and Mess-

mer, 1985, 1989) that simulates the water movements. Afterwards, a research of

(Schuurmans et al, 1995) which makes a significant improvement, describes channel

flow more realistic than earlier versions. In addition, the description of the non-

uniform flow of the channel through structures (gate, hydropower, culvert, and so

on) is also modeled. The model considers the channel as a system where the wa-

ter profile is separated into two parts: uniform and backwater part which are both

simulated and connected together. Regarding the uniform part, the kinematic wave

model is selected to approximate the wave deformation heading to downstream be-

cause of its simplicity and sufficient accuracy. On the other hand, the dynamic of

backwater part is primarily influenced by reflection of waves so that it is suitable

to be modeled by the reservoir model. Furthermore, the length of back water level

toward upstream direction must be pointed out in order to join with the uniform

part. The method is known as Integrator Delay Method (ID) which is validated in

(Schuurmans et al, 1999b,a) and commonly used in modeling canal for controller

design. The model only performs well for a long, steep, and shallow canal. Gener-

ally, the ID model is limited to the small flow changes because it is only stable in

low frequency.

Despite ID has been popularly used to model a river in time domain, it may not

be applicable to control design while the Integrator Delay Zero (IDZ) is a better

solution. The reason is stated in (Litrico and Fromion, 2004a) that the time delay

predicted by ID is much larger that the one derived by the IDZ model. This may

result into poor controllers. Another improvement of IDZ (Litrico and Fromion,

2004a) is that a zero is supplemented to ID model in order to simulate the system

in high frequency. Consequently, the IDZ has three parameters as integrator gain,
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delay, and zeros that are explicitly functions of flow rate and water level. Even

though (IDZ) compensates the weakness of the ID model, it still does not concern

the resonance waves in modeling the relative short river reach.

An evolution that is called the integrator resonance model (IR) is composed of

an integrator and a mode of long reflecting wave (Overloop van et al, 2014). The

dynamics of short, flat, and deep open canal is approximated by the integrator

resonance model. The integrator resonance (IR) model is built as an internal model

for offline controller design. It has been tested in laboratory and proved applicability

to offline controller design.

One of the most recent work by (Cimorelli et al, 2015) introduces a new model

which can be used for real time forecasting and optimization. In which, the analytical

solution for a cascade of diffusive channel has been derived in Laplace Transform

domain accounting for downstream boundary conditions. In addition, other studies

of (Cimorelli et al, 2013, 2014) introduce a reduced model of SVEs named Linear

Parabolic Approximation (LPA) developed by ignoring inertial terms of SVEs. An

analytical solution is then obtained in terms of discharge and water level variations,

taking account of backwater effect and downstream lateral flow.

The time delay model

The reduced model for flow routing based on the lag time (or time delay) has been

developed since years. Initially, the lag-and route method is introduced and rec-

ommended to use because it could alleviate deficiencies of conventional Muskingum

model (Meijer, 1941). The method consists of two components: lag time and rout-

ing reservoir in which a relationship of discharge and storage in routing is linear.

To obtain a better outcome, an upgrade is made by (Bentura and Michel, 1997)

where the linear routing reservoir component is substituted by a quadratic routing

reservoir. The model is calibrated for uniform flow in a wide rectangular channel

and its advantages are demonstrated. However, the physical attributes of channel

are not apparently related in both studies.

Another is the multilinear discrete lag cascade model (MDLC) proposed by (Ca-

macho and Lees, 1999), which is an extension of two parameter multilinear discrete

cascade model of (Perumal, 1994) by supplementing a time delay parameter. The
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inclusion of time delay which varies against each element of inflow show a clear

physical characteristic as well as provided explicit time transition of flood wave to

downstream. Nevertheless a drawback is the occurrence of irregularities at peak

regions of simulated hydrograph due to involvement of inappropriate time delay.

This problem is then exposed by (Perumal et al, 2007) comprehensively. The study

points out that a varied pure time delay of MDLC model obtained by multiplying

an integer with routing time interval caused truncation errors in the routing process

so that it returns discontinuities or sudden falls in the simulated hydrograph. An

option of keeping a time delay constant during routing process is suggested and

validated in order to overcome this weakness. However, the fixed constant lag value

does not reflect an accurate physical manner of flow propagation. In addition, it is

not considered to use for controller design.

The time delay model to describe flow movements in rivers has been developed

by (Pfuetzenreuter and Rauschenbach, 2005; Rauschenbach, 2001). The model pa-

rameters time delay and time constant are determined by the least square method.

Further advancement is a toolbox named WaterLib (Pfuetzenreuter and Rauschen-

bach, 2005), which is built up based on this approach to simulate a river system for

controller design. It is also validated in many projects (Rauschenbach, 2005). Beside

the flexibility in modeling a wide range of river network, the method is still simple

because significant parameters of model: time constant and time delay cannot adapt

with flow variation.

The similar method is also introduced by (Litrico and Georges, 1999) that de-

rives transfer functions of the linear Hayami model, and a linear Ordinary Differ-

ential Equations (ODE). By applying moment matching method on both transfer

functions, parameters of ODE are defined as functions of parameters of Hayami

model. The ODE is then able to use for controller design. Moreover, this work is

extended in (Litrico et al, 2010) that approximates a linearized SVEs and considers

the change of time delay with flow variation. The study on Jacui River validated

the model. In both cases, the cross section of the canal is rectangular, where the

analytical derivation is not complicated.

The investigation with backwater effect is also conducted by (Munier et al, 2008).

The model named Linear Backwater Lag and Route (LBLR) model transforms the
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linearized SVEs in time domain into frequency domain in order to derive the transfer

functions. Then, the downstream boundary conditions are introduced as local feed-

back between discharge and water depth. Afterwards, the first or second order time

delay model is utilized to approximate the system in low frequencies. Consequently,

either uniform flow or non-uniform flow can be computed by the model. While the

advancement is that the model is able to give the discharge at any location in channel

and dealing with non-uniformity of flow, the complexity of mathematical transfor-

mation is still an obstacle for users. Another disadvantage is that application of this

model to unsteady flow is still an open question.

2.3 Conclusion

In summary, the SVEs are a system of the partial differential equations describing

the one dimensional flow in channel/river. Due to no analytical solution, a number of

typical methods have been studied to find their solution. A wide range of numerical

approaches to solve these equations have been developed: method of characteristic,

finite difference methods, finite element methods, finite volume methods, spectral

methods, boundary element methods and many more. From these methods, several

sophisticated hydrodynamic models have been built (HECRAS, MIKE 11, SOBEK,

and many others). Moreover, model simplification aims at reducing system order

or dimension while maintaining the model accuracy in flow routing, and using for

controller design. On the one hand, for quick simulation, typical models consists

of reservoir routing model, Muskingum model, kinematic model, diffusion model,

Muskingum-Cunge model. On the other hand, empirical methods, transfer function

of SVEs, state space representation of SVEs are often used for controller design. In

modeling open channel flow, the SVEs are selected as a governing tool for describing

flow dynamics because of high accuracy. It requires high computation time and, huge

input demand. In contrast, a low order linear model is usually required for quick

simulation and control (Camacho and Bordons, 2004). For that reason, studies

on model reduction for different objectives have been continuously implemented

(Holmes et al, 1998).

A primary work of the dissertation is to develop a simplified model for flow
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routing and controller design of water system. The well known time delay model is

selected. After investigating development of the time delay model through available

researches of (Meijer, 1941; Perumal, 1994; Bentura and Michel, 1997; Camacho and

Lees, 1999; Schuurmans et al, 1999b; Rauschenbach, 2001; Munier et al, 2008; Litrico

et al, 2010), the time delay model is basically developed by using the first order time

delay model to approximate the fully hydraulic model. Following the fundamental

approach, significant advancements of the time delay model are presented in this

research. The work will be thoroughly described in following chapters.
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Adaptive time delay model

3.1 Introduction

In this chapter a new contribution to the control models is introduced. It is known

as the ATD model and tries to eliminate most of the limitations and drawbacks of

the other models mentioned in chapter 2. The advancement of the ATD model is

that it does not only approximate the full SVEs but also use both water level and

the flow rate to calculate the model parameters, which has not been realized before.

This can be considered as an upgrade of previous time delay models (Schuurmans

et al, 1999b; Pfuetzenreuter and Rauschenbach, 2005; Litrico et al, 2010). Based on

existing literature (Dooge et al, 1987, 1988; Litrico and Fromion, 2009) the study

presents a methodology for a reduced model that is able to be applied to a river

with prismatic trapezoidal cross, and a river with downstream backwater effect.

3.2 The fundamental method for derivation of the

ATD model

The SVEs are linearized and transferred to frequency domain to obtain their transfer

function. On the other side, a linear first order time delay model is selected to

approximate the SVEs and its transfer function is also derived. By equating the

cumulants of both transfer functions of the SVEs and first order time delay, the

relationship between both models is established. In this way, the time delay model

can describe the flow dynamics because its parameters are functions of parameters
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of the SVEs. The approach illustrated in figure 3.1 includes the following steps:

• Definition the two physical models (linearized SVEs and ATD);

• Derivation the transfer functions of linearized SVEs and the adaptive time

delay (ATD) model;

• Determination of the parameters of the ATD model from parameters of the

linearized SVEs.

Figure 3.1: Approach of approximating the SVEs

3.2.1 Linearization of the Saint Venant Equation

The Saint Venant Equations analyze the movement of flood waves in open channel

flow on the basis of a one dimension, hence, the independent variables are the elapsed

time t and the single space dimension x in the flow direction. The characteristics of

flow at downstream cross section is predicted by investigation of the characteristics

of flow at upstream cross section and hydraulic attributes of the reach between two

cross sections (Dooge et al, 1988; Cunge et al, 1980). As mentioned in the previous

chapter, the hyperbolic system without impact of lateral flow is given by:

∂A

∂t
+
∂Q

∂x
= 0 (3.1)
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∂Q

∂t
+
∂Q

2
/A

∂x
+gA

∂Y

∂x
+gA (Sf − Sb) = 0 (3.2)

It is denoted that A(x, t) is the wetted area; Q(x, t) is the flow rate; Y (x, t)

is the water depth; Sf (x, t) is the friction slope; Sb is the bed slope; and g is the

gravitational acceleration, L is length of the river reach. The friction slope Sf which

represents the friction law applied, the shape and roughness of cross section, and the

flow attributes at studied section, is calculated by Manning-Strickler (Chow, 1959)

as.

Sf =
Q2n2

A2R4/3
(3.3)

where n is the Manning coefficient; R = A/P is the hydraulic radius; and P is

the wetted perimeter.

It is essential to consider the unsteady flow as a perturbation from a steady flow

condition. The total flow characteristic is then written accordingly (Dooge et al,

1988)

Q (x, t) = Q0 + q (x, t) (3.4a)

Y (x, t) = Y0 + y (x, t) (3.4b)

where Q0, Y0(x) are the flow rate and water level at steady uniform condition;

q, y are the first order of increments.

To linearize the SVEs, the equations 3.4 a and b are substituted into the equa-

tions 3.1, 3.2 and expanded in series by Taylor method (Litrico and Fromion, 2004b).

Significantly, only the linear parts q, y will remain while higher order parts are ne-

glected even though it is false for a large perturbations from the steady stage. The

Taylor series as is written for each term of the SVEs as follows.

f (Q, Y )− f (Q0, Y0) = fQ (Q0, Y0) q (x, t) + fY (Q0, Y0) y (x, t) + ζ (3.5)

where fQ, fY are the partial derivative of the SVEs equations with respect to Q,
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Y ; ζ is the high order terms ignored in expansion.

In terms of the continuity equation 3.1, each term is denoted t1, t2 which are

expanded as follows

• the linearization of the first term t1 = A, A = B0y is obtained as

t1 − t1,0 = B0
∂y

∂t
(3.6)

• the linearization of the second term t2 = Q,Q = Q0 + q is obtained as

t2 − t2,0 =
∂q

∂x
(3.7)

The linearized version is derived by:

B0
∂y

∂t
+
∂q

∂x
= 0 (3.8)

Regarding the momentum equation 3.2, each term is denoted t1, t2, t3, t4 and

expanded respectively.

• the linearization of the first term t1 = Q,Q = Q0 + q is obtained

t1 − t1,0 =
∂q

∂t
(3.9)

• In case of the second term t2 = Q2/A. At first

Q2

A
− Q0

2

A0

= 2
Q0

A0

q − Q2
0

A2
0

∂A0

∂Y
y = 2V0q − V 2

0 B0y (3.10)

with V0 = Q0/A0, and ∂A0/∂Y = B0 Differentiating equation 3.10 with re-

spect to x we have

t2 − t2,0 = 2V0
∂q

∂x
+ 2

dV0

dx
q − V 2

0 B0
∂y

∂x
−
(
V 2

0

dB0

dx
+ 2V0B0

dV0

dx

)
y (3.11)

Because of the unsteady condition in prismatic channel, it is given that dQ0/dx =
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0, dA0/dx = B0dY0/dx, therefore the derivative of V0 against x:

dV0

dx
= −Q0

A2
0

dA0

dx
(3.12)

Putting equation 3.12 into equation 3.10, and arranging terms leads to

t2−t2,0 = 2V0
∂q

∂x
+2

V0T0

A0

dV0

dx
q−V 2

0 B0
∂y

∂x
+

(
V 2

0 B
2
0

A0

dY0

dx
− 2V 2

0

dB0

dx

)
y (3.13)

• The third item t3 = gAY is expanded as in equation 3.14

t3 − t3,0 = gB0
dY0

dx
y + gA0

∂y

∂x
(3.14)

• The fourth item t4 = gA(Sf − Sb) is expanded to

t4 − t4,0 = gA0
∂Sf
∂Q

q +

[
gB0 (Sf0 − Sb) + gA0

∂Sf
∂Y

]
y (3.15)

in which the friction slope Sf at stationary point (Q0, Y0) is derived as

∂Sf
∂Q

(Q0, Y0) = 2
Sf0

Q0

(3.16a)

∂Sf
∂Y

(Q0, Y0) = −2
Sf0

A0

∂A0

∂Y
− 4

3

Sf0

R0

∂R0

∂Y
(3.16b)

with

∂A0

∂Y
= B0 (3.17a)

∂R0

∂Y
=
B0

P0

− A0

P 2
0

∂P0

∂Y
(3.17b)

Substituting equations 3.17a and 3.17b into 3.16b returns

t4 − t4,0 = gA0Sf0

[
2
q

Q0

−
((

7

3
+

Sb
Sf0

)
B0

A0

− 4

3P0

∂P0

∂Y

)
y

]
(3.18)

Arranging terms q, y, ∂q/∂x, ∂y/∂x, the linearized momentum equation is ob-
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tained

∂q

∂t
+ 2V0

∂q

∂x
− β0q +

(
C2

0 − V 2
0

)
B0
∂y

∂x
− γ0y = 0 (3.19)

where

γ0 = V 2
0

dB0

dx
+ gB0

[
KSf0 + Sb −

(
1 + 2Fr2

0

) dY0

dx

]
(3.20a)

β0 =
2g

V0

(
Fr2

0

dY0

dx
− Sf0

)
(3.20b)

K =
7

3
− 4A0

3B0P0

∂P0

dY
(3.20c)

In case of the uniform steady flow in a channel with prismatic cross section:

dY0/dx = 0, dB0/dx = 0, and Sf0 = Sb, we obtain

γ0 = gB0Sb (1 +K) (3.21a)

β0 = −2gSb
V0

(3.21b)

K =
7

3
− 4A0

3B0P0

∂P0

dY
(3.21c)

Both equations 3.8 and 3.19 are components of linearized SVEs which are able to

describe the uniform flow in open channel flow. It is denoted that q is the deviation

of discharge from equilibrium value Q0, y(x, t) is the deviation of water level form

equilibrium value Y0 , C0 is the celerity, V0 is the mean velocity, B0 is the surface

width, K is the geometry factor.

3.2.2 Linearization of the nonlinear first order time delay

system

It is obvious that the flow routing in open channel flow is a delay process which also

has attenuation of the peak flow. The phenomenon can be accurately described by

a rational transfer function with delay (Rauschenbach, 2001). Therefore, the first

order of delay model is considered to fully simulate the flow dynamics. The structure
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of time delay model is selected as a nonlinear system with delay:

 q̇(t) = f (q(t),Qin(t))

Qsim(t) = h (q(t−Td(q)))
(3.22)

According to the Lemma 1 (Litrico et al, 2010), study an equilibrium point

f (Q0, Qin,0) = 0, and a stable time invariant linear system with delay

δq̇ (t) = Aδq (t) +BδQin (t) (3.23a)

δQsim (t) = Cδq (t− Td (Q0)) (3.23b)

with

A =
∂f

∂q
(Q0, Qin,0) (3.24a)

B =
∂f

∂Qin

(
Q0, Q̄in,0

)
(3.24b)

C =
∂h

∂q
(Q0) (3.24c)

Then the output Qsim(t) of the nonlinear system 3.22 beginning at q(0) = Q0

with input t→ Q̄in + δQin (t) is given by

Qsim (t) = h (Q0) + δQsim (t) + ε (δq, δQin) (3.25)

where δQsim (t) of the output of the linear system 3.23 starting at δq (0) = 0

with input δQin (t), and ε is omitted at order 1 against its two arguments.

Apparently, there are several solutions existing to satisfy the relation between

a nonlinear system and a family of linear system. Each term of the approximation

system of the nonlinear system 3.22 is calculated around equilibrium point Q = Q0.

A (Q0) = − 1

Tc (Q0)
;B (Q0) =

1

Tc (Q0)
;C (Q0) = G (3.26)

Finally, the representation of the linear first order time delay system that satisfy
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the nonlinear the system 3.22 is derived as follow

 Tc
dq
dt

+ q(t) = Qin(t)

Qsim(t) = Gq(t− Td)
(3.27)

Where G is the gain; Tc is the time constant; Td is the time delay; Qin is the

inflow at upstream end; Qsim is the simulated flow at downstream of uniform part;

q is the system state.

3.2.3 Derivation of the system transfer functions

The transfer functions (TF) of the systems are derived from frequency domain that

explicitly express the relation of upstream discharge to discharge along the river

qx(s) = TF(x, s)qo(s) (3.28)

This ordinary differential equations 3.28 which are obtained by applying Laplace

transformation to both linearized system 3.8, 3.19, and 3.27 contains variable x and

is parameterized by the Laplace operator s (Dooge et al, 1987; Litrico and Fromion,

2004b). A function f(x, t), t ≥ 0, the temporal Laplace form is defined as follows:

L [f(x, t)] = F (x, s) =

∫ ∞
0

f(x, t)e−stdt (3.29)

Then we obtain

L
[
∂f(x, t)

∂t

]
= sF (x, s)− f

(
0−
)

(3.30a)

L
[
∂f(x, t)

∂x

]
=
∂F (x, s)

∂x
(3.30b)

L
[
∂2f(x, t)

∂x2

]
=
∂2F (x, s)

∂x2
(3.30c)

The boundary 0− is as pre-conditional value of f that is selected to prevent

problem of discontinuity of f at the origin (Lundberg et al, 2007).

In terms of SVEs, applying the Laplace transform to equation 3.8, 3.19 and

rearranging the components we obtain
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∂q

∂x
= −B0sy (3.31a)

∂y

∂x
=

1

B0 (C2
0 − V 2

0 )
[(−s+ β0) q + (2V0B0s+ γ0) y] (3.31b)

A linear ODE is formulated from the equations 3.31 a and b as follows

d

dx

 qs(x)

ys(x)

 = TM(x, s)

 qs(x)

ys(x)

 (3.32)

with

TMs =

 0 −B0s

−s+β0
B0(C2

0−V 2
0 )

2V0B0s+γ0
B0(C2

0−V 2
0 )

 (3.33)

Substituting the equations 3.21 into the transfer matrix 3.33, and Froude number

Fr0 = C0/V0, the transfer matrix is given as

TMs =

 0 −B0s

2gSb−V0s
B0V0C2

0(1−Fr20)
2V0s+gSb(1+K)

C2
0(1−Fr20)

 (3.34)

The above ODE is able to simulate the flow rate Q and the water level y at

downstream location corresponding to inflow q0(s) and water level y0(s) at upstream.

To address the equation, the matrix TM(s) is diagonalized.

TM (s) = XsDsX
−1
s (3.35)

where

Xs =

 λ1 (s) 0

0 λ2 (s)

 (3.36a)

Ds =
1

B0s

 B0s B0s

−λ1 (s) −λ2 (s)

 (3.36b)

X−1
s =

1

λ1 (s)− λ2 (s)

 −λ2 (s) −B0s

λ1 (s) B0s

 (3.36c)
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Take determinant of the matrix

det (λI − TM (s)) = 0 (3.37)

The eigenvalues are derived as:

λ1,2 = as+ b±
√
cs2 + ds+ b2 (3.38)

with

a =
Fr0

C0 (1− Fr2
0)

(3.39a)

b =
(1 +K)B0Sb

2A0 (1− Fr0
2)

(3.39b)

c =
1

C2
0(1− Fr0

2)2 (3.39c)

d =
SbB0

V0A0

(2 + (K − 1)Fr0
2)

(1− Fr0
2)2 (3.39d)

Fr0 =

√
q2B0

gA0
3 (3.39e)

The flow condition is supercritical for the Froude number Fr0 < 1, a and b

are thus positive. Hence, the positive root λ1 is illustrated for waves propagating

upstream while the negative root λ2 represent waves toward the downstream. By

using an assumption of semi-infinite river x → ∞, the upstream wave λ1 can be

neglected and the simplified transfer function of SVEs is given by

q (x, s) =eλ2xq (0, s) (3.40)

TFSV Es (s) = eλ2x;λ2 = as+ b−
√
cs2 + ds+ b2 (3.41)

It is denoted that q(x, s) is the flow rate at location x, q(0, s) is the flow rate at

upstream of the reach; λ2 is that eigenvalue of transfer matrix TM.

Regarding the adaptive time delay model, the transfer function of the system
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3.27 is given by Laplace transformation as follows

q (x, s) =
G(x)e−sTd(x)

1 + sTc(x)
q (0, s) (3.42)

TFATD (x, s) =
G(x)e−sTd(x)

1 + sTc(x)
(3.43)

Where G is the gain; Tc is the time constant; Td is the time delay

3.2.4 Determination of the ATD model parameters by mo-

ment matching

To compute outflow of the river, the TF of SVEs must be transferred to time domain,

which is not that simple with this hyperbolic system. Hence, we apply the approach

suggested in (Dooge et al, 1987; Litrico and Fromion, 2004a) approximating the TF

of SVEs by TF of ATD model in which the cumulants of both transfer functions

are equated. As the SVEs will be approximated by the first order delay model, the

accuracy of the simulated discharge will be enough by determining the first three

cumulants of both TFs as described in the following approach:

1. Firstly, the cumulants of both TFs are derived by using Taylor development

for the base-e logarithm of TFs, ln[TFs] around s = 0 up to the second order

ln[TF (x, s)] = M0 (x) +M1 (x) s+M2 (x) s2 + 0
(
s3
)

(3.44)

where 0(s) is a function of s so that lim
s→0

0(s)
s

= 0, and cumulants Mk

Mk = (−1)k
dk

dsk
(ln [TF (x, s)])s=0 (3.45)

For k = 0 to 2 we obtain
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M0 (TFATD) = lnG (3.46a)

M1 (TFATD) = Tc + Td (3.46b)

M2 (TFATD) = Tc
2 (3.46c)

M0 (TFSV Es) = 0 (3.47a)

M1 (TFSV Es) =
2

(1 +K)V0

(3.47b)

M2 (TFSV Es) =

[
4− (K − 1)2Fr2

0

]
gSb(1 +K)3Fr2

0

(3.47c)

2. Secondly, the cumulants of the TF of SVEs are equated to those of the ATD

model and consequently the ATD parameters are defined as follows:

Tc =

√
4− (K − 1)2Fr2

0

gSbFr2
0(1 +K)3 2L (3.48)

Td =
2L

(1 +K)V0

− Tc (3.49)

where G = 1 is the gain, K is the geometry factor. These parameters will be

applied in the ATD model in order to simulate outflow of a river reach.

It is noted that determination of the geometry factor K is very important, the

simplified cross section with assumption of prismatic channel with particular shape

of section are widely accepted in flow routing studies. In which, rectangular and

trapezoidal geometry are popular. Utilization of both types of sections must follow

the instruction of Ven Te Chow (Chow, 1959) that the rectangular can be used for

a very wide river while the trapezoid is recommended to apply to a river which has

a width smaller than ten times of water depth. The factor K for rectangular cross

section is presented by (Litrico et al, 2010). In terms of trapezoidal cross section,

the factor K is introduced in the following section.
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3.3 The ATD model for a river with trapezoidal

cross section

3.3.1 Approach

Flash flood forecasting at in narrow rivers is very important in flood mitigation as

well as reservoirs operation. It is vital to extend the model to prismatic trapezoidal

channel cross sections in order to not only broaden the model’s applicability, but

also to improve its accuracy. The geometry coefficient K in equation 3.21c thus has

to be defined by different manner from which K contains two variables: water level y

and flow rate Q. With assumption of uniform river flow, y which is related to Q will

be estimated by the method of section factor AR2/3 for uniform flow computation

(Chow, 1959).

AR
2/3 =

nQsim√
Sb

;A = (b+my) y;R = A/P ;P = b+ 2y
√

1 +m2 (3.50)

substituting the equation 3.50 into the equation 3.21c and 3.39e, the K and Fr

are derived

K =
7

3
− 8

3

(b+ ym) y
√

1 +m2(
b2 + 2yb

(
m+

√
1 +m2

)
+ 4my2

√
1 +m2

) (3.51)

Fr2 =
Q2 (b+ 2my)

g(b+my)3y3
(3.52)

The left side of equation 3.50 is a section factor AR2/3 depending on the geometry

of the water area (water level y, side slope m, and bottom width b) whilst the right

side is determined by Manning coefficient n, discharge Q, and bottom slope Sb.

As water level y is a variable, all parameters are expressed according to y. The

procedure to determine the ATD model parameters as functions of Q, n, Sb, and y

is illustrated in figure 3.2. Two components are presented in the flowchart as follows:

The model calibration is basically a least square nonlinear optimization technique

with constraint that minimizes a quadratic error of simulated and observed outflow

Q or water level y. The two possible objective functions are expressed in 3.53. All
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Figure 3.2: The flowchart for calibration and validation of an adaptive time delay
model for river with prismatic trapezoidal cross section
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of physical parameters such as the Manning coefficient n, and river bed slope Sb

will be estimated in order to simulate outputs ysim and Qsim. According to the

equation 3.54 and 3.55, the limitation of the roughness n and the bed slope Sb

can be defined by the investigation of the previous studies of the research area as

well as from the literature such as (Chaudhry, 2007; Sturm, 2010; Chow, 1959).

At first, with the initial guess of Sb, n and initial value of y, an iterative process

starts approximating the water level y. Subsequently, parameters Froude number

Fr, geometry coefficient K, time constant Tc, and time delay Td, are derived. The

outflow of a reach is estimated by the fourth order Runge Kutta. The simulated

flow is then compared to observed data. The iteration proceeds until the objective

funtions are satisfied so that a best match between simulated and observed outputs

is achieved as evaluated by the Nash-Sutcliffe Efficiency (NSE) (3.56) and Percent

bias (PBIAS) (3.57). The outputs of calibration are the roughness n and the bed

slope Sb.

min
I∑
i=1

(Qobs,i −Qsim,i (Sb, n))2; min
I∑
i=1

(yobs,i − ysim,i (Sb, n))2 (3.53)

subject to

nmin ≤ n ≤ nmax (3.54)

Sbmin ≤ Sb ≤ Sbmax (3.55)

NSE=1-


I∑

i=1

(
Qobs,i-Qsim,i

)2

I∑
i=1

(
Qobs,i-Qmean,i

)2

 ;NSE=1-


I∑

i=1

(
yobs,i-ysim,i

)2

I∑
i=1

(
yobs,i-ymean,i

)2

 (3.56)
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PBIAS=1-


I∑

i=1

(
Qobs,i-Qsim,i

)
100

I∑
i=1

Qobs,i

 ;PBIAS=1-


I∑

i=1

(
yobs,i-ysim,i

)
100

I∑
i=1

yobs,i

 (3.57)

After the calibration, the roughness n and the bed slope Sb are determined. The

parameters Tc and Td of the ATD model can be calculated in order to approximate

the outflow of other flow. Nevertheless, it is proposed that the general relationship

of Tc and Td with Q are earlier developed and then are used to calculate the outflow

of different scenarios by the linear interpolation. This method apparently reduces

the computation time and maintains the simulation accuracy. However, the inflow

must be in the valid range of the curves Tc vs Q and Td vs Q so that the stability

of the model is assured.

In terms of validation, the curves Tc versus Q and Td versus Q which are used as

parameters of ATD model for unknown flood event, and again evaluated by Nash-

Sutcliffe Efficiency (NSE) (3.56) and Percent bias (PBIAS) (3.57). It is noted that

maximum and minimum values of the flow of the unknown flood event must be

within a valid range of the flow rate of the ATD model. Otherwise, the simulated

hydrograph will be discontinued at the point where the inflow are not within the

range.

3.3.2 Application of the ATD model (A case study)

To illustrate the performance of the ATD model, a small river reach located on an

upstream part of Thu Bon River in central area of Vietnam is selected which is

shown in figure 3.3. The reach starts from Nong Son gauge station and ends at

Giao Thuy gauge station. The geometry data of the river reach is listed in table

3.1. 1-year-period upstream and downstream flow data at both gauge stations are

considered as referenced data for the simulations. According to the collected data

at Giao Thuy, water depth reaches from 5.0m to 8.0 m during main flood season. It

is suggested that the ATD with trapezoidal geometry should be utilized to enhance

good accuracy in estimating the flood peak in this narrow but deep stream. The

idea is that the ATD model parameters will be calibrated using the referenced data
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for 3 months of main flood season (October-December) to obtain the relation curves

Q vs Tc and Q vs Td for a wide range of discharge Q. After calibration the

model is validated using reference data from the drought season (January-June)

and compared to the model given in (Litrico et al, 2010). In addition, the estimated

parameters must satisfy the constraints presented in table 3.2.

Figure 3.3: Location of the selected river reach at Vu Gia Thu Bon river basin in
Central Vietnam

The ATD model calibration results are depicted in figure 3.4. The model uses

geometry data in table 3.1 and 3 months of upstream main flood ( see, figure 3.4a)

to simulate the downstream flood of which returns both flow rate and water level.

The time interval of flow data is 10 minutes. Figure 3.4b presents the simulated and

observed discharge. For figure 3.4c shows the water level estimated by ATD model

against the measured data. The accuracy of the model is quantified in the table
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Table 3.1: Characteristic of studied river reach at upstream Vu Gia Thu Bon river
basin

Geometry data Flow data with dt = 10 minutes

L (km) b (m) m Upstream
observed flow
rate at Nong
Son station

Downstream
observed water
level at Giao
Thuy station

22 40 2 1 year period
of 2010

1 year period
of 2010

Table 3.2: Lower and upper limits on physical parameters

Parameter Min value Max value

Manning coefficient, n 0.01 0.07
Bed slope, Sb 0.00008 0.0025

3.3 which shows a NSE coefficient equals to 0.94 for both Q and y while PBIAS

reaches -10.5 for Q and –6.5 for y. This indicates that the ATD model returns a

very good result according to the guidelines of evaluating stream flow models in

(Moriasi et al, 2007). During calibration, the roughness n and the bed slope Sb of

the river reach are determined. In table 3.3, n and Sb are also shown as 0.035 and

0.0014, respectively.
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Figure 3.4: Model calibration results for the two objective functions for discharge
and water level

After calibration, the generalized nonlinear relationships between the time con-

stant Tc , the time delay Td and the discharge Q are determined as depicted in figure

3.5. The time constant Tc varies from approximately 30 minutes to 40 minutes when

flow rate changes between 5 m3/s to 2000 m3/s. Whereas, the time delay Td varies

from 60 minutes to almost 350 minutes in the same variation range of flow rates. The

linearly interpolated parameters values from these curves are directly used by ATD

model to simulate downstream flood in different upstream flood scenarios. This ap-

proach significantly reduces the computation time as well as raises feasibility for real

time flood simulation application. Based on estimated parameters, it should be a

deep river with stone and weeds at the bottom that is in accordance with attributes

of the selected river reach located in mountainous area of Vu Gia Thu Bon basin at

which agriculture and forest land exist (Mai, 2009).

The validation task is executed by applying the calibrated curves of Tc vs Q and

Td vs Q to simulate outflow for 6 months of drought period. The result is depicted

in figure 3.6. Generally, the model shows a very good result presented by the NSE
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Figure 3.6: Model validation results
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Table 3.3: Results of calibration, validation and estimated model parameter

Criteria Calibration Validation Model parameter
Q y Q y n Sb

NSE 0.94 0.94 0.91 0.9 0.035 0.0014
PBIAS -10.5 -6.5 0.68 4.06

of 0.91 for Q and 0.90 for y as well as by PBIAS of 0.68 for Q and 4.06 for y,

(see table 3.3). As in (Moriasi et al, 2007) this proves that the model is valid for

application to flow routing of this river reach.

The performance of the ATD model in comparison to the model in (Litrico et al,

2010) based on rectangular profile is also evaluated for the main flood season. The

measured water level is used to evaluate the goodness of both models. The technique

for approximating water level from section factor (Chow, 1959) is applied to simulate

the water level from the flow rate estimated by the model in (Litrico et al, 2010).

The results are shown in figure 3.7 and table 3.4. It can be seen that the water

level of the ATD model matches with observed stage better than the water level of

the model in (Litrico et al, 2010). In terms of NSE, the accuracy of ATD model

for this case study is 0.94 compared to 0.89 of the model in (Litrico et al, 2010).

In figure 3.7, it is clear that assuming a rectangular profile overestimates the water

level peak of 8.1 m in period time t from the day 45 to 47 by approximately 1.0

m compared to the ADT model which underestimates by only 0.2 m. Therefore,

the ATD model returns more accurate results for the same hydrological conditions.

This has very important role for decision maker who can determine an effective plan

of flood prevention.
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Figure 3.7: Comparison between ATD model with trapezoidal and rectangular ge-
ometry

Table 3.4: Result of 2 models comparison

Criteria Trapezoid Rectangular

NSE 0.94 0.89
Deviation (m) 0.2 1

3.4 Conclusion

In this chapter, a fundamental method for approximating the SVEs by an adap-

tive time delay model is presented. In addition, the ATD based on a prismatic

trapezoidal geometry is introduced. The model is an extension of the river model

developed in (Litrico et al, 2010) for very wide rectangular cross section channel.

The method uses moment matching to derive the parameters of the model from

linearized SVEs model. The application scope of the time delay models is also now

opened for small deep rivers. After calibration of the model to obtain the nonlinear

relation curves of Tc and Td against Q, the outflow simulation for different scenarios
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becomes very simple, fast and accurate. Therefore, this method can be utilized to

simulate, and design control strategies for river systems. Although the application

of the model in case study showed very promising results, further improvement with

downstream boundary conditions may expand the applicability of the model. Hence,

taking account of backwater effect caused by boundary condition in this ATD model

would be beneficial and is going to be studied thoroughly in the next chapter.
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Adaptive time delay model with

backwater effect

4.1 Introduction

The phenomena of backwater effect is a result of impact of downstream boundary

condition (hydraulic structures, tide, river junctions) on the gradually varied flow

that increases upstream depth. Typically, backwater is caused by downstream dam

(weir, reservoir) which is significantly studied due to its impacts on upstream flood,

energy production, and so on. When water starts flowing into reservoirs, the end

point of backwater may shift either upstream or downstream depending on several

factors, for instance, geometry characteristic of river (channel condition, cross sec-

tions, flood plains), or downstream boundary conditions (downstream water works,

river tributaries). In field studies, the intersection point is considered as an ap-

proximate point of tangency of normal depth line to backwater curve. It may be

specified by observation from drawing of flow profiles. The determined intersec-

tion point generally moves toward upstream when flow rate increases. According

to previous researches, the restriction of upstream movement of backwater should

be considerably defined to satisfy given requirement. The backwater profiles are

commonly obtained by combining the differential equations of flow resistance and

boundary conditions (Chanson, 2004). Neglecting backwater effects lead to large

deviation in estimating the model parameters such as: time responses, peak time,

and attenuation. Therefore, the chapter introduces an advancement that coupling
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an adaptive time delay model and a reservoir model can be used for simulation of

backwater effects. Firstly, the approximation of the backwater curve using a reser-

voir model is described, followed by the procedure for coupling the ATD model and

the backwater model.

Figure 4.1 illustrates the backwater curve which defines the steady state water

level for a given flow rateQ and a water depth yL at downstream boundary. Obtained

from reduced SVEs, the backwater can be approximated by the following reservoir

model (Litrico and Fromion, 2009):

dy

dx
=
Sb − Sf
1− Fr2

= SL (4.1)

In case of a river with infinite length, x → ∞ , then dy
dx
→ 0, so y → yn, the

uniform depth, SL is the deviation of the line tangent of the backwater curve to it

at downstream end, Fr is the Froude number. According to (Litrico and Fromion,

2004a; Schuurmans et al, 1999b) the backwater is described by 2 two pools connected

together. The upstream part of the backwater curve corresponding to the uniform

part is approximated by straight line parallel to bottom slope. The downstream part

is approximated by the straight line tangent to the free surface at the downstream

end. The intersection between to two lines exists at abscissa x1

x =

 max
(
L− yL−yn

SL
, 0
)
, SL 6= 0

L, SL = 0
(4.2)

The backwater curves is approximated as

y (x) =

 y1, x ∈ [0, x1]

y1 + (x− x1)Sb, x ∈ [x1, L]
(4.3)

with

y1 =

 yn, x1 6= 0

yL − LSL, x1 = 0
(4.4)

On the one hand, x1 6= 0, y1 = yn is the part of channel effected by uniform flow

and y1 = yL − LSL is the part of channel influenced by backwater. On the other

hand, x1 = 0, y1 = yL − LSL, the whole channel reach is affected by backwater

effect.
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Figure 4.1: Backwater approximation approach

4.2 Coupling ATD model with backwater model

The author suggests the new approach that couples the ATD model with backwater

model ( reservoir model) taking into account for downstream feedback ( see figure

4.2). The mathematical representation is shown in equations 4.5 and 4.6.

Figure 4.2: The selected river system

 Tc
dq
dt

+q(t) = Qin(t)

Qu (t) = q(t−Td)
(4.5)

dϑ

dt
= Qu(t)−Qd(t) (4.6)

where Qin is upstream flow, Qu is flow into the reservoir, Qd is downstream
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discharge of the reservoir, ϑ(t) is storage of the reservoir, Z is the crest elevation;

Zo is the elevation of dam toe; Zy is the water level elevation.

The model is then able to simulate dynamics of non-uniform flow. Differently

with steady state modeling, the backwater part x1 in this model changes against

variation of discharges. It is apparent that due to the coupling, the parameters

of Tc and Td of the ATD model (uniform part) are now functions of flow rate Q

and a uniform part of channel Lu. The upstream discharges will be transferred to

downstream where its dynamic is altered by downstream boundary. Then, the water

level of the pool is calculated, length of backwater curve Lb and uniform curve Lu

are determined. Afterwards, these obtained information will be used for the next

calculation. Figure 4.3 describes the procedure of calibration and simulation of the

ATD model and the backwater effect model.

Fundamentally, the calibration task is similar to the one presented in the previous

section. The objective function and the restrictions are shown in equations 4.7, 4.8.

It is significant that because the water profile is close to horizontal in the backwater

area (Schuurmans et al, 1995) and the water level in the reservoir is the same as

the water level at the cross section where the intersection point is located. In

particular, the process involves selecting the cross section at the intersection point

and calibrating the coupled model to the measured water level y at the reservoir.

According to the flowchart in the figure 4.3, the procedure firstly approximates the

water level y with the initial values of Lu and yo and initial guess of Sb, n. Then,

parameters Tc and Td of the ATD model are derived. The flow rate at the intersection

point denoted by Qu which is calculated by the fourth Runge Kutta is also the flow

into the reservoir. It is different with the flow chart 3.2 that the water level is

derived by the backwater model after calculating the water balance of the reservoir.

The simulated water level is then compared to the measured data. The iteration

process is ended when the objective function is satisfied. The model performance

is evaluated by the NSE (3.56) and PBIAS (3.57). The outputs of calibration also

consist of the roughness n and the bed slope Sb.

min
I∑

i=1

(yobs, i−ysim, i(Sb, n))2 (4.7)

the following equations show the minimum and maximum limit on roughness
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coefficient n, bed slope Sb, and water level y

nmin ≤ n ≤ nmax (4.8)

Sbmin ≤ Sb ≤ Sbmax (4.9)

ymin ≤ yi ≤ ymax (4.10)

It is different with the ATD model in chapter 3 that the Tc and Td are functions

of both Q and Lu which are significantly impacted by the downstream boundary.

Using the curves Tc vs Q and Td vs Q to simulate the downstream flow of other

simulation scenarios which have different downstream conditions is not possible.

Regarding validation or simulation task, the calibrated roughness n, and the bot-

tom slope Sb are used to simulated the water level in the reservoir for random flood

event, and again evaluated by Nash-Sutcliffe Efficiency (NSE) (3.56) and Percent

bias (PBIAS) (3.57).
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Figure 4.3: The flowchart for calibration and validation of a coupling of the ATD
model and the backwater model

4.3 Application of backwater model (A case study)

The system includes two components: an upstream river reach and a weir at down-

stream end in the case study as illustrated in figure 4.2 and in table 4.1. The first

component is the river reach whose parameters are calibrated in previous section is

chosen for this application. The physical characteristics of the reach are presented

in table 4.1. The second component is a weir which is located downstream of the
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Giao Thuy station. The distance from the Giao Thuy station to the weir is assumed

of 15.5 km approximately which can be considered as the upstream reservoir area

created by the weir. The weir has a width B = 40 m, the crest elevation at Z = 20

m and the dam toe at Zo = −5 m. The storage capacity of weir is determined by

the curve of reservoir water level and storage as shown in figure 4.4. The 4-day

data series of upstream flow rate is used to test the model. Time interval of data is

10.0 minutes. Because the upstream reach is well validated in previous section, its

parameters can be directly used for simulation. It should note that the total length

of upstream river reach which is the sum of the river reach length and the reservoir

area, is 37.8 km. The impacts of the downstream boundary condition that the water

flowing from upstream Qin is accumulatively stored in downstream reservoir result-

ing in non-uniformity of water level in upstream channel is considerably analyzed.

At the weir, the amount of water Qd is also released to downstream due to demand

of water users.

Table 4.1: Characteristic of the weir

Geometry data Flow data with dt =10 minutes

Z(m) Zo(m) n Sb L(km) Qin(m3/s) Qd(m
3/s)

20 -5 0.035 0.0014 37.8 4 day period 4 day period

The results of simulation using the model are illustrated in figures 4.5 and 4.6.

Figure 4.5a shows the dynamic situation of the system. The blue line is used to show

upstream flow which ranges from 2.93 to 42.47 m3/s. The dash green line represents

the hydrograph at the end of uniform part of channel which is propagated by the

ATD model and reaches a peak value of 40.03 m3/s. According to figure 4.5b, the

red line shows amount of discharge preserved in the reservoir. After water balance

calculation, the stored discharge rises from 1.93 m3/s to 39.03 m3/s. While, a

constant amount of discharge of 1.0m3/s is continuously released to the downstream.

According to figure 4.6, the situation is different for the black line representing the

volume of flow stored in the reservoir. At the end of simulation period, the reservoir

accumulates water volume up to 3730 104m3/s and the reservoir water level reaches

17.37 m which is still under the reservoir restriction. This means that all of incoming

water is hold by the reservoir.

Figure 4.7 shows the variation of the water surface and the channel bottom
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Figure 4.5: Discharge simulation
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Figure 4.6: Simulation of volume and water level in the reservoir

according to the distance L and time t. The elevation of bottom channel which is

calculated from the bottom slope Sb and elevation of dam toe Zo change from -5.0

m to 47.9 m from upstream to downstream. The water surface consists of 2 parts:

backwater part Lb and uniform part Lu which are separated at the intersection point

x. The black line present changes of intersection point x which is determined by the

change of Lb. Lb gradually rises from 1429 m to 15744 m while the Lu declines from

36371 m to 22056 m. Temporally, the water level in reservoir goes up from -2.81 m

to 17.37 m and water depth in the uniform part fluctuates from 0.2 m to almost 1.0

m. Section A-A in figure 4.8 shows the stationary regime of the non uniform flow

against a the time step t = 2000 minutes. The blue line is the water surface whose

elevation is approximately 10 m in reservoir and goes up to 47.0 m in the channel

upstream. The red line present the river bed.

Figure 4.9 shows the alternation of backwater pool and uniform pool through

variables Lb, and Lu in response with water level in the reservoir Z and time t.

Backwater part denoted by Lb is specified by the red line. The backwater expansion
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Chapter 4. Adaptive time delay model with backwater effect

Figure 4.7: 3-D representation of non uniform flow
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Figure 4.8: Section A-A: Non uniform flow
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is directly proportional to change of water level Z and time t which is illustrated by

an increase of Lb from 1429 m to 15744 m in response to the water level rising from

-2.81 m to 17.37 m. Since the inflow reaches peak value, the maximum water level

Z is at 17.37 m, the backwater pool Lb theoretically reaches a maximum value at

15744 m . On the other hand, the uniform pool denoted by a blue line is adversely

proportional to variation of water level Z and time t. This pool area reduces from

36371 m to 22056 m. The reach length L is 37800 m described by the black curve.

It is the sum of Lu and Lb.
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Figure 4.9: Variation of uniform part and backwater part of channel

Figure 4.10 presents parameters of ATD model: time constant Tc, and time delay

Td which are obtained from inflow Qin and the length of uniform pool Lu for the first

pool. The red curve shows the relationship of Tc versus Q and Lu while the blue one

illustrates the behaviors of Td versus Q and Lu. The attenuation of hydrograph is

parameterized by time constant Tc. The first part of Tc ranging from 50 - 30 minutes

which corresponds to the Lu from 36371 m to 29325 m determines the upward

shape of the hydrograph Q from base flow 2.93m3/s to peak value approximately
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Chapter 4. Adaptive time delay model with backwater effect

42.47m3/s. The last part varying from 30 - 40 minutes with the change of Lu from

29325 m to 22056 m can forms the shape of downward side from peak to base value.

Furthermore, the time delay is a determinant factor of the shift of the hydrograph.

Similar to Tc, the first side of Td: 960 - 250 minutes decides the delay time of rising

curve of Q whereas the other side: 250 - 500 minutes is used for the transition of

the recessing part. During the simulation, the reservoir continuously stores more

water which leads to the gradual decrease of the Lu from 36371 m to 22056 m and

the increase of the Lb from 1429 m to 15744 m. It is noted that the computation

takes 10.30 seconds when using the computer with configuration: processor of Intel

Core I7-4500U 1.8GHz and the random-accsess memory (RAM) of 8 Gigabytes.
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Figure 4.10: Relationship of Tc and Td with flow rate Q

From the analysis, the simulation time of the coupled ATD model is quite a lot

( 10.30 seconds for 4 days). It is thus difficult to use it for quick simulation such

as real time forecasting of flood in rivers. An improvement is suggested to simplify

the model so that it can be used to simulate the flow dynamics of the water system

quickly is presented in following section.
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4.4 Simplified method of the coupled ATD model

The idea is to keep the intersection point of the two pools fixed so that the backwater

area Lb and uniform area Lu remains unchanged despite of variation of downstream

condition. Hence, the computation time of the model is reduced while still giving

acceptable results. The method is described in detail as follow:

• The intersection point x is situated at the place where the backwater area Lb

reaches maximum distance and the uniform area Lu is minimum. Therefore,

the backwater flow does not have influence on the upstream uniform flow.

• For the upstream channel, the curves Tc vs Q, Td vs Q can be determined for

the uniform flow with normal depth at the downstream intersection point.

• Regarding the downstream weir, the water balance of the reservoir is calculated

in order to determine the water level in the reservoir.

To compare with the previous method, the reservoir shown in previous section

is used for simulation. The model is defined as follows:

• Based on the result of the previous simulation, the intersection point x is

determined at the place where the largest backwater area Lb is equal to 15744

m while the minimum uniform flow area Lu is defined as 22056 m.

• The Lu is almost equal to the reach length L of the river reach between Nong

Son station and Giao Thuy validated in the case study of the chapter 3. Hence,

the curves Tc vs Q and Td vs Q ( see figure 3.5) can be used to generate

discharge flowing into the reservoir

• Figure 4.11 shows the reservoir water level of both coupled models. On one

hand, the dashed line Z1 shows the results of the model with Lu and Lb

changing in response to flow rate Q which is named the ATD model 1. The

water level gradually rises up to 17.37 m. On the other hand, the solid line

Z2 shows the water level in the reservoir calculated by the coupled model

fixed Lu and Lb known as the ATD model 2. Z2 increases to 17.65 m. The

mean deviation of both water levels is 0.54 m. The uniform part Lu in the

ATD model 2 is selected as the minimum value of Lu so that the upstream
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Chapter 4. Adaptive time delay model with backwater effect

water flows in the reservoir earlier than the one of the ATD model 1. In this

circumstance, the flow is less attenuated and an amount of the incoming water

is larger than in the case of the ATD model 1. Nevertheless, there is a very

good match between both models with NSE = 0.98 and PBIAS = 4.74 ( see,

table 4.2).

• Regarding computation time, the ATD model 2 is almost 10 times faster than

the ATD model 1, 1.04 seconds in comparison to 10.3 seconds.
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Figure 4.11: Comparison of 2 coupled ATD model

Table 4.2: Comparison of both coupled ATD models

Model Computation time (s) ∆Z(m) NSE PBIAS

The coupled ATD model 1 10.3 0.54 0.98 4.74
The coupled ATD model 2 1.04
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4.5 Conclusion

The new approach that utilizes an ATD model coupling with the backwater model

to illustrate the non-uniformity of flow in channel introduced. The advancement is

that the uniform flow is considered in unsteady state for flow routing. Particularly,

it is shown that the intersection point x of the 2 pools varies as the flow rate Q varies

which is explicitly illustrated by interaction of backwater part Lb and uniform part

Lu. By assuming a horizontal line for water level in reservoir, computation time

is also declined. The approach compensates deficiencies of previous researches by

taking into account the backwater effect in routing river flow.

The approach of determination of parameters of this ATD model is distinctive

because Tc and Td are now functions of Q and Lu. The uniform reach length Lu

varies according to the upstream flow rate Q and the backwater part Lb. Indeed, the

backwater part Lb is dynamically affected by downstream condition. For instance, if

downstream boundary is a weir without discharging for water demand, the backwater

length is affected only by the weir characteristics. If downstream water demand

exists, the backwater length is not only influenced by the weir but also by the

downstream demands. Hence, the concept that priorly designs the curves of Tc and

Td according to certain range of flow rate Q and apply then to simulate different

scenarios encounters difficulties because of variation of downstream demands.

To overcome the difficulties, the simple coupled ATD model is introduced. In

which, the intersection point is kept fixed so that the both pools remains constant

according to variation of upstream and downstream flow. The model computes the

outflow quickly and the results is well evaluated. Hence, the coupling ATD model

is totally suitable to use for controller design.
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Chapter 5

Parameter estimation of ATD

model from a complex hydraulic

model

5.1 Introduction

Using the parameter estimation method used in Chapter 3 and 4 to estimate the

ATD parameters makes its application only for a narrow domain due to the valid

assumption of simplified geometry ( rectangular or trapezoidal). The obstacle comes

from cross sectional irregularities in complex river systems. To solve this problem,

a typical approach is to separate the river into small parallel rivers whose wetted

areas are a fraction of the whole one. Afterwards, the parameters may be estimated

for each parallel river and then be averaged to obtain the one for a whole cross

section. This implementation for time delay model in case of irregular cross section

is quite difficult and consumes a huge computation time. Moreover, it is not certain

that the result is as accurate as the existing complex hydraulic programs (MIKE 11,

HECRAS, and SOBEK). Therefore, this chapter presents a two step approach that

may be considered as a remedy for the mentioned deficiencies. Furthermore, the

approach can be considered as a model for control tasks from a complex hydraulic

models like MIKE 11, HECRAS, and SOBEK.
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5.2 Procedure

This approach is presented in figure 5.1 and is described step by step in the sub-

sequent section. The main two steps are to model a complex river reach using a

complex hydraulic model in the first step and to estimate the ATD model param-

eters based on the complex model in the second step. Afterwards, the estimated

parameters are used to simulate a random flood events. What makes this approach

so important is that most of the time such a complex model exists as it is required

for other analysis problems.

Figure 5.1: Approach for approximating a complex river reach

5.2.1 Set up a complex hydrodynamic model of a river reach

Commercial programs which are developed by prestigious organization such as Dan-

ish Hydraulics Institute, Delft University of Technology, US Army Corporation are

usually selected to build the full hydrodynamic model of the reach. The one di-
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mensional model which is composed by links and nodes to describe flow movement

in open channel discretizes and numerically solves the SVE. The complex model of

a river reach is built whose parameters must be carefully calibrated and validated

with measured data. Then, the model can be used to determined ATD parameters

as it will be described in the next steps.

5.2.2 ATD model parameter estimation from a complex model

Firstly, input data is prepared, which requires the determination of the characteristic

hydropgraph. The hydrograph shape is not only a reflection of general attributes

of successive periods of excessive rainfall leading to flood but is also moderated by

features of river system. Therefore, deriving a simplified hydrograph that represents

a catchment characteristic is significant for flood forecasting. This typical shape (see,

figure 5.2) is derived based on analyzing the width of hydrograph corresponding to

different flood waves, i.e, hydropgraph width analysis (Archer et al, 2000; O’Connor

et al, 2014; O’Sullivan et al, 2012). Data should be adequate to derive a accurate

characteristic hydrograph. The procedure is composed of steps as follows:

• Filtering of chosen hydrograph: a multi-peaks flood which represents the catch-

ment responding to different rainfall periods. However, a broadly single-peaked

flood is only preferred to use for extracting a characteristic hydrograph. To

overcome this difficulty, all of complex parts of the hydrograph is discarded

whereas maintaining a typical component. In addition, the base flow is essen-

tially supplemented to the selected component.

• Standardizing the hydrograph of predefined flood event: the ordinates of fil-

tered hydrograph are normalized to the peak value while the time scale of

hydrograph remains unchanged. This peak value of 1.0 corresponds to the 100

percentage of the peak flow. Then, the new ordinates are defined as percentage

of peak flow and they are identified at each interval of 5 percent of the peak

(95, 90, 85...5) in order to extend this particular hydrograph. The result is a

standardized hydrograph.

• Calculating the hydrograph width at particular predefined ordinates: the hy-

drograph width at predefined percentage of the peak is the duration before
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and after the occurrence of the peak. The coordinates of filtered hydrograph

is considered as a reference table from which the time period is calculated by

linear interpolation. The width is separated into two parts: one is the rising

limb and another is the receding limb. The combination of flow percentages

and corresponded widths are coordinates for sketching the unit characteristic

hydrograph, see figure 5.2.

• Median unit characteristic hydrograph: This method is repetitive for others

annual maximum flood event in order to derive the unit characteristic hydro-

graph of the year. Afterwards, the median unit characteristic hydrograph is

developed based on the annual unit characteristic hydrographs.

• Lastly, the characteristic hydrograph for a designed flood event is generated.

From the flood frequency analysis, a peak flow of designed return period is

calculated. By scaling up the median unit characteristic hydrograph for the

peak value, the characteristic hydrograph of the designed year flood event is

obtained. This hydrograph serves as inflow of hydraulic model of a river reach

to simulate the outflow.

Secondly, the model parameters are estimated. A complex hydraulic model of

a river reach with several cross sections is fully developed to simulate the designed

flood dynamics. As a byproduct, a travel time of the flow is also determined during

simulation. The travel time denoted TM is used to estimate parameters of ATD

model. From previous research for the upgraded Muskingum model (O’Sullivan et al,

2012), the travel time is directly used as constant storage parameter representing

attenuation and lag time of peak. In terms of ATD model, the time constant is

responsible for attenuation of peak whilst a pure time delay is the duration of the

flow signal to appear at downstream of a reach. Hence, the author assumes that the

travel time may be a combination of time constant and time delay of ATD model

and two coefficient α and β. The suggestion is expressed by equation 5.2 where α

and β are both coefficients determining proportion of Tc, and Td of travel time TM .

Parameters of ATD model in equation 3.27 are estimated by constrained non-

linear programming technique (NLP). The objective function given by equation 5.1

aims at minimizing the sum of quadratic errors between discharges simulated by
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ATD model and the ones from complex model. During the optimization process,

time constant and time delay are estimated to obtain the best match between QM

and QATD.

min
I∑

i=1

(
Qi
M−Qi

ATD

)2
(5.1)

subject to

Tc = αTM ;Td = βTM

α + β ≤ 1

α > 0, β > 0

αo = βo = 0.5

(5.2)

Further calculation of water level y, the relationship of y versus Q at downstream

station is generated by the complex model during the procedure of estimating the

parameters of the ATD model. This relationship is then used by the ATD model to

calculate the water level y.

The model performance is evaluated by using the estimated Tc and Td to ap-

proximate discharge for another flood event. Firstly, the outflow is computed by the

complex model and by ATD model in parallel. Subsequently, output of ATD model

is compared to the output of the model. The goodness of model is evaluated by

NSE. With the parameters, the ATD model is valid for application to flow routing

of this river reach corresponding to a designed range of flow rate from the lowest

flow rate value to the highest peak

5.3 Application of the method (A case study)

The data of the river reach shown in chapter 3 is used for simulation in this case

study. To illustrate the procedure of simplifying the complex hydraulic model by

the ATD model, a case study of previous section is used. The program HECRAS is

used to build the fully dynamic model of the reach. The characteristic hydrograph is

derived from the statistical data by hydrograph width analysis as described before.

The results are shown in figure 5.3. Then, it serves as inflow for the model of

the river reach developed in HECRAS to obtain the simulated hydrograph at Giao

Thuy station. The result is considered as reference for calibration of the ATD
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model. Through adjusting parameters of the ATD model to reach the best fit with

the reference data, its optimal parameters are derived. The model is calibrated

with measured flow rate from November to December and early stopping through

validation with data of October.

71



C
h
ap

ter
5.

P
aram

eter
estim

ation
of

A
T

D
m

o
d
el

from
a

com
p
lex

h
y
d
rau

lic
m

o
d
el

0 200 400 600 800 1000 1200 1400
0

1000

2000

Time(hours)

flo
w

 r
at

e 
Q

(m
3 /s

)

(a)

 

 
flow data series

0 200 400 600 800 1000 1200 1400
0

1000

2000

Time(hours)

F
lo

w
 r

at
e 

Q
 (

m3 /s

(b)

 

 
flow data series
filtered hydrograph

−100 0 100 200 300 400 500
0

0.5

1

Time(hours)

F
lo

w
 r

at
e 

Q
 (

m3 /s

(c)

 

 
characteristic hydrograph

0 100 200 300 400 500 600
0

1

2
x 10

4

Time(hours)

F
lo

w
 r

at
e 

Q
(m

3 /s
)

 

 

(d)

designed hydrograph for 100 year flood

Figure 5.3: Procedure for defining characteristic hydrograph

72



Chapter 5. Parameter estimation of ATD model from a complex hydraulic model

Figure 5.4a presents the characteristic flow for the river reach obtained from

figure 5.3d. The outflow shown by the blue curves in figure 5.4b is then calculated

by HECRAS as response to the inflow. The highest flow rate at downstream reaches

11600 m3/s while the minimum discharge is slightly over 18 m3/s. As a byproduct,

HECRAS generates a travel time of the flood wave, a black line denoted TM in

figure 5.4c, which is selected to estimate parameters of ATD model. The travel time

fluctuates in between 7.0 hours to 29 hours. From which, the upward side of the

graph is for the rising part of the characteristic hydrograph and the downward side

is for the recession part of the graph.

Parameters of ATD model Tc and Td are estimated by constrained nonlinear

programming technique (NLP) based on the the objective function in equation 5.1

with constraint 5.2. The performance is evaluated by NSE and PBIAS during op-

timization for early stopping to avoid over-fitting. The outcome is shown in figure

5.5. Check on figure 5.5a, the hydrographs modeled by HECRAS (blue line) and by

the ATD model (red curve) are almost indistinguishable. It proves that the reduced

model can efficiently return a result as good as the one from the complex model.

This is also confirmed by NSE and PBIAS of 0.99, and -0.92 respectively (see table

5.1). Figures 5.5b and 5.5c show the curves of Tc and Td. The red line reflects the

relationship between flow rate versus time constant which varies from 5.0 hours to

20 hours. On the other hand, the blue line reflects the relationship of flow rate

and time delay which changes from 2.0 hours to 9.0 hours. Due to the size of the

extreme flood event, the flood wave propagate quickly toward downstream. Hence,

the time delay Td in this case is smaller than the time constant Tc. The coefficient

α reaches 0.7, and β is 0.3. These parameters are used by ATD model to estimate

downstream flow of different upstream flood scenarios.

Table 5.1: Result of estimating parameters of ATD model

Criteria Calibration α β

NSE 0.99 0.7 0.3
PBIAS -0.92

For validation, the model performance is evaluated by using the estimated Tc

and Td to approximate discharge for a set of real data of 25 days in October. The

hourly data is the flow rate measured at Nong Son station. The results is depicted
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in figure 5.6. The flow data is shown in the dashed pink curve with highest flow of

950 m3/s. The outflow of HECRAS is the red curve and the simulated flow of ATD

model is the blue curve, and are nearly overlapping. A fact is that both hydrograph

reaches almost 800 m3/s of maximum value as well as 130 m3/s of minimum point.

Indeed, the model shows a good result presented in table 5.2 by NSE of 0.99 and

PBIAS of -1.99. In particular, the simulation time of the ATD is much faster than

the HECRAS programm, 0.15 seconds of ATD in comparison to 7.27 seconds of

HECRAS. All of the simulations is implemented by the the computer used in the

chapter 4. With the parameters, the ATD model is valid for application to flow

routing of this river reach corresponding to the designed range of flow rate from the

lowest flow rate value of 18 m3/s to the highest peak of 11600 m3/s .
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Figure 5.6: Validation of ATD model for flood in October

Table 5.2: Results of validation

Validation Computation time (second)

NSE PBIAS HECRAS ATD
0.99 -0.49 7.27 0.15
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5.4 Conclusion

In conclusion, this work presents an advancement of adaptive time delay model

that can estimate river flow for irregular geometry. It is an upgrade of river model

developed in (Litrico et al, 2010; Nguyen et al, 2016b). The NLP approach is utilized

to achieve the curves of time constant Tc, and time delay Td versus Q by minimizing

the difference between the outflow generated by HECRAS and the one by the ATD

model. The parameters are validated by a flood scenario of October and proved

that the model is very fast and accurate. Hence, this ATD model is able to use for

real time flood forecasting and design control policies for water systems.
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Chapter 6

Application of ATD model in

optimal control of hydropower

cascade

6.1 Introduction

The main purpose of the ATD model with respect to controller design has been

mentioned several times in the previous chapters. Therefore, it is essential to test

its applicability in such an environment. Such an environment is the control of a

reservoir cascade which is inevitable in water management.

Over the past decade, a tendency for supplementing and replacing conventional

fossil sources for electricity generation by renewable sources has been substantially

exerted because of the scarcity and limitation of fossil energy. Although the natural

replenishment of these sources for renewable electricity is well known, an efficient

manner in using this energy is always essential. Hydropower is one of the viable

option for sustainable energy production. However, operation and management of

hydropower systems is a challenging issue for decision makers and operators. The

reasons are conflicts among stakeholders ( electricity, flood protection, agriculture,

industry, and others) as well as the uncertain nature of reservoir inflow that adds

considerably to the complexity of the system (Karimanzira et al, 2014; Sattari et al,

2009; Schwanenberg et al, 2014). Popular powerful techniques for hydropower anal-

ysis are simulation and optimization. Models represent the system attributes and
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predict the system responses under different conditions. A set of operating rules

are developed and continuously improved in order to determine an acceptable re-

lease of reservoirs. On the other hand, the optimization that focuses on identifying

optimal decision variables is based on mathematical formulation for maximizing or

minimizing an objective function subject to constraints (Fayaed et al, 2013). In fact,

the optimization models for hydropower systems are applied for different operation

period such as seasonal operation, daily, hourly, or event-based real-time regulation.

Moreover, its applicability is not only for an individual hydropower plant, but also

for cascade of hydropower plants that improves significantly electrical productivity.

A large number of optimization approaches for dam optimal control exists, e.g.,

linear programming (LP), nonlinear programming (NLP), dynamic programming

(DP), genetic algorithm (GA), and have been applied since years (Hamann and

Hug, 2014; Karamouz and Houck, 1987; Neelakantan and Pundarikanthan, 2000;

Waltz et al, 2006; Yang et al, 2013).

This section introduces a new approach that combines an adaptive time delay

model and backwater model for simulation of a reservoir system. Nonlinear con-

strainted programming is applied to the system to achieve an optimal regulation for

enhancing the electricity generation of a cascade of hydropower plants. The inte-

gration of adaptive time delay river dynamics into the optimization is considered as

a new in this filed as most of the time a simple travel time is assumed between the

reservoirs.

6.2 Methodology

The method consists of two components: simulation and optimization. In terms

of simulation, the dynamics of system are represented by the backwater model and

flow routing model (ATD) (see figure 6.1). In which, the ATD model transfers water

from upstream reservoir to downstream reservoir while backwater model simulates

the behavior of dams. Regarding optimization, nonlinear programming technique

is applied to determine the best release of the cascade by which the electricity

production will meet the objective. For illustration, a case study of a cascade of

two hydropower plants is selected in order to compare an energy production of an
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optimized operation and existing operation. The objective of this study is to present

a new method that may be applied to improve the operational policies of hydropower

cascades through which electricity production is maximized, and flood or drought is

mitigated, and so forth.

Figure 6.1: Hydropower cascade model

The coupled system is described by the following equation 6.1, 6.2, and 6.3. The

equations 6.1 and 6.3 are the reservoir models that ensure mass balance of dams

while the ATD model in equation 6.2 transfers discharges from upstream reservoir

to downstream reservoir through a river reach between two dams. Particularly, the

approach presented in chapter 5 will be used to define the ATD model, hence, the

backwater effect is also taken into account. This concept considers the dynamics of

flow transfer in optimization that increase accuracy of the optimal result.

dϑu

dt
= Qu

in−Qu
out (6.1)

 Tc
dq
dt

+q(t) = Qu
out(t)

Qd
in (t) = q(t−Td)

(6.2)

dϑd

dt
= Qd

in−Qd
out (6.3)

where Qu
u,in(t) is inflow of upstream reservoir, Qu

out(t) is discharge of upstream

reservoir, Qd
in(t) is inflow of downstream reservoir, Qd

out(t) is discharge of downstream

reservoir, ϑu(t) is storage of upstream reservoir, ϑd(t) is storage of downstream

reservoir, Tc(t) is the time constant, Td(t) is the time delay.
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Regarding optimization, the objective function expressed by equation 6.4 to max-

imize electricity production.

max
I∑
i=1

J∑
j=1

E (Q) = max
I∑
i=1

J∑
j=1

Pt (Q) ∆t (6.4)

Subject to the constraints:

Water balance of dam:

ϑi,j = ϑi,j−1 + (Ii,j −Qi,j) ∆t (6.5)

Constraints of reservoir water level, outflow as, (further information in table 6.4):

ZDi,j≤Zi,j≤ ZFi,j (6.6)

Qmini,j ≤ Qi,j ≤ Qmaxi,j (6.7)

Where I is number of dams; J number of hour; Eo,i,j is the sum of optimal energy

of reservoir i at hour j; ϑi,j storage of reservoir i at hour j; Ii,j inflow to reservoir i at

hour j is determined by ATD model; Qi,j is the outflow through turbine of reservoir

i at hour j; ∆t is the time interval; Zi,j is the water level of reservoir i at hour j;

ZDi,j is the dead water level of reservoir i at hour j; ZFi,j is the flood warning water

level of reservoir i at hour j; Qmin,i,j is the minimum flow through turbine i an hour

j; Qmax,i,j is the maximum flow through turbine i at hour j.

The energy generation in a time period T is calculated as in equation 6.8

E =
T∑

t=1

Pt∆t,Pt=
J∑

j=1

ρgηHQ (6.8)

where E is the energy generated in a duration ∆t; Pt is the power generation; ρ is

the density of water; g is the gravitational acceleration; H is the water head; Q is

the turbines discharge; η is the overall efficiency of hydropower plant.

The water head H is a deviation of water level in reservoir and downstream tail

water. The general equation 6.9 which is used to estimate the tail water Ztw is

developed from the statistical data: the water level of the forebay of downstream
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dam Zfb, the tail water level of the dam Ztw, and the downstream release Q.

Ztw = α1 + α2Zfb + α3Q
α4 (6.9)

Those coefficients α1, α2, α3, α4 are derived based on the least square non linear

approach which minimize the quadratic errors between simulated Ztw,sim and the

measured data Ztw,data. The objective functions is subsequently introduced 6.10

min
J∑
j=1

(Ztw,sim − Ztw,data)2 (6.10)

6.3 Application of the system (A case study)

The study area is the Wuyang river, which is situated in the eastern part of Guizhou

province in China and has a long and narrow basin, ( see figure 6.2). There are 16

hydropower stations constructed along the river mainstream. Among them are two

reservoirs: Guanyinyan and Hongqi which are selected in order to demonstrate the

applicability of proposed method. In terms of Guanyinyan station, the dead water

is 577 m while the flood checking water level is 600.5 m. The maximum release of

turbine is approximately 70 m3/s. Regarding Hongqi station, the dead water level

is 499 m, the flood checking water level is about 521.7 m. In addition, the maximum

discharge of turbine also reaches 70 m3/s. The collected data of flow rate, water

level, and current energy production of January, 2011 are used as input for this

work. The step size of the statistical data is 1.0 hour. Both reservoir responses are

described by the backwater model while the river reach in between is simulated by

the ATD model with backwater effect. Optimization is implemented to maximized

energy product on the system.

6.3.1 Determination of parameters of ATD model

The ATD model is a simplified model of the existing complex hydraulic model

which is built in a commercial software, HECRAS. According to the method already

introduced in previous in chapter 5 (Nguyen et al, 2016c), the parameters Tc, Td

are derived by investigating the inflow and outflow of a river reach computed by

HECRAS. Nonlinear programming (NLP) technique is used as a tool to determine
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Figure 6.2: Geography of study area

the parameters.

The characteristic hydograph is obtained based on the method described in chap-

ter 5. Due to data shortage, one year data is used for deriving the characteristic

hydrograph. The time interval is 1.0 hour. Although this is a limitation, it is suffi-

cient to show the applicability of the ATD model for optimization. The data series

that show the river reach characteristics are illustrated in figure 6.3a. The flow

reaches max value at 35 m3/s, and minimum flow at 0.5 m3/s. The highest single

peaked flood is selected as a typical hydrograph that is illustrated by the blue curve

in figure 6.3a and c. Other complex parts are discarded, and the base flow value

0.5 m3/s is added to the graph. The gradient of upside and downside parts are

maintained to ensure the attributes of flow.

To simulate a 100 year flood event. The designed flood hydrograph illustrated

in red color (figure 6.3d ) is derived by multiplying the peak value to ordinates of

the unity hydrograph. The peak value is now nearly 380 m3/s while the base flow

is needed to be maintained at 0.5 m3/s.
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Figure 6.3: Procedure for deriving characteristic hydrograph
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Model parameter estimation

The travel time TM is also derived by HECRAS. This travel time obtained from

HECRAS is used to derive the parameters of the ATD model based on NLP.

The results of calibration process are shown in table 5.2. They illustrate a very

good result with NSE = 0.99 and PBIAS = -0.50. The coefficients for extracting Tc

and Td from TM , α and β are determined as 0.285 and 0.10, respectively. In the figure

6.5a, the QM in red curve and QATD in blue curve are almost identical. Besides, the

curves of time constant Tc and time delay Td versus discharge Q are also illustrated

in figure 6.5b, 6.5c. The red line is for the time constant changing between 5.0 hours

to 38 hours while the blue line is time delay which varies from 2.0 hours to 13 hours.

ATD model uses these curves to estimate the inflow of downstream reservoir.

Regarding validation process, 1-year-data of flow is used as inflow of the ATD

model and the outflow compared to the result of the HECRAS model. Table 6.2

indicates an acceptable accuracy with NSE = 0.87 and PBIAS = -3.65. As can

be seen in figure 6.6, the 2 graphs are almost identical. The blue graph shows the

simulated flow by ATD model whereas the red one represents the output of the

HECRAS model. In terms of simulation time, the ATD model takes 3.0 seconds

to derive the result while HECRAS needs 85.0 seconds for the same task and with

the same computer. Therefore, it is more advantageous when using ATD model as

substitution of the HECRAS model for developing control strategies of the system.

Table 6.1: Result of estimating parameters of ATD model

Criteria Calibration α β

NSE 0.99 0.285 0.10
PBIAS -0.5

Table 6.2: Results of validation

Validation Computation time (second)

NSE PBIAS HECRAS ATD
0.87 -3.65 85.0 3.0
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Figure 6.5: Time constant and time delay derived from HECRAS model
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Figure 6.6: Validation of ATD model for a data series of flood event
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6.3.2 Optimal control for hydropower cascade

The purpose of this research is to examine the applicability of the ATD model as

a internal model of optimization of a hydropower cascade that helps to improve

electricity production of the system. The hourly data is used in the optimization to

derive hourly operational releases of the reservoirs.

Assumptions

To simplify the optimization for the hydropower cascade, only flow capacity of tur-

bines and water level in dams are considered as a constraint for objective functions.

Hence, a few assumptions are made as listed below:

• Overall efficiency of hydropower plants are assigned as 0.9 for both reservoirs;

• The hourly data is used to implement optimal operation;

• Environmental flow and other downstream demand of flow are not taken into

account in this study;

• Evaporation from reservoirs is not considered;

• Tail water is defined as function forebay water level of downstream reservoir

and discharge of upstream reservoir presented in equation 6.9;

• Release from an upstream reservoirs will be transferred to downstream by ATD

model;

• The optimal flow rate through turbines is calculated by considering the dis-

charge capacity of turbines;

• The 40-day data of power capacity will be optimized and compared to current

energy production;

• Spill is not considered.

Result of cascade optimization

The reservoir system of Guanyinyan and Hongqi is optimized for 40 days to enhance

the energy which is then compared to current energy production.
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The tail water level for Guanyinyan and Hongqi stations are calculated by the

equation 6.11 and 6.12

Ztw= 133.8542 + 0.7766Zfb+6.0482Q0.1376 (6.11)

Ztw= −177.0298 + 1.3793Zfb+5.8354Q0.0235 (6.12)

As shown in figure 6.7, the red curve shows the maximized electricity at every

hour. The green line illustrates energy production of the cascade before optimiza-

tion. The result is also apparently presented in table 6.3. The total current energy

production is 845.80 104KWh in which Guanyinyan and Hongqi reservoir accounts

for 380.91 104KWh and 464.89 104KWh respectively. After the system is optimized,

the Guanyinyan produces 404.53 104KWh, whereas the production of Hongqi rises

to 493.84 104KWh. The total optimal energy of the system reaches 898.24 104KWh

which accounts for 6.20% higher than the current situation.
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Figure 6.7: Result of energy optimization of the cascade
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Table 6.3: Accumulative electricity generation of the cascade

No Wuyang hydropower cascade Total E (104 KWh)

Guanyinyan Hongqi
Current energy 380.91 464.89 845.80
Optimal energy 404.53 493.71 898.24

To reach the optimal energy production, new operating rules for the cascade have

been derived. In case of Guanyinyan dam, the new operation rules are introduced in

figure 6.8. The dam releases more water through turbine to enhance the energy to

404.53 104KWh. It is obvious in figure 6.8a that the red curves of optimized water

level in the reservoir which will goes down 594.0 m from 590.0 much in comparison

to the current strategy ( cyan curve) from 594.0 m and 590.30 m. In contrast, in

figure 6.8b, the flow rate through turbine, see the red line, increases an mount of 5

to 10 percent compared to current discharge. However, the optimal water level and

flow rate still satisfy the constraints in table 6.4.

The circumstance is adverse for the Hongqi dam that water level rises to maxi-

mize the energy to 493.71 104KWh. The release from Guanyinyan and intermediate

flow are stored whereas the outflow for turbines does not significantly change. Con-

sequently, the water level goes up from 505.10 m to almost 510.62 m, ( see the blue

line in figure 6.9a) compared to 505.10 m - 507.20 m for current strategy. Another

point is that the discharge of Hongqi slightly declines according to figure 6.9b. The

optimal flow in blue curves varies from 2.50 m3/s to 23.96 m3/s compared to the

range of current flow, (see the line in cyan color), between 6.0 m3/s - 33.43 m3/s. In

spite of increase of water level, the penalty in table 6.4 is not violated. In general,

the power production of a whole system increases as expected. Total computation

time is about 303 seconds which is acceptable.

Table 6.4: Flow and stage restrictions of both reservoirs

No Turbine flow (m3/s) Water level (m)

Guanyinyan Hongqi Guanyinyan Hongqi
Minimum 0.00 0.00 577 499
Maximum 35.80 55.20 600.5 514
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Figure 6.8: Optimal operation rules of Guanyinyan dam
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Figure 6.9: Optimal operation rules of Hongqi dam

6.4 Conclusion

This chapter introduces a new approach that utilizes an ATD model in the opti-

mization procedure of a hydropower cascade. The advancement is that the system

dynamics are considered during the optimization process while the calculation time

is short. The method has been applied to a two reservoir system with promising

results (Nguyen et al, 2016a)
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Chapter 7

WaterLib toolbox

7.1 Introduction of WaterLib simulation toolbox

The optimal design of an automatic control of water system such as rivers and reser-

voirs always requires model of their behavior. The MATLAB / Simulink toolbox

WaterLib is created for this purpose. Many portable models for typical elements

of water systems are stored in the library. From which, a complex hydraulic sys-

tem can be directly built per drag and drop with the support of a graphic editor.

These approaches hence allow to implement and analyze different control strategies

for the output of hydrodynamic systems (Pfuetzenreuter and Rauschenbach, 2005;

Rauschenbach et al, 1996). Nevertheless, the toolbox is not complete. Therefore,

this chapter introduces extensions for the WaterLib toolbox for river modeling re-

alized in the previous chapters of this work, i.e, adaptive the time delay model for

different river cross sections, coupled time delay model with backwater effects model.

Recently, the module has been continuously extended with a set of simulation tools

for complex water surface system. In stead of conducting a detail simulation model

with several parameters and enormous computation time, the new elements reduces

the workload by using simplified simulation blocks. Up to now most of significant

parts of surface water system are integrated, e.g model for a river reach and open

channel, models for water works, catchment model as in figure 7.2.
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Figure 7.1: Modules of Waterlib

1. The RIVER MOD module includes:

• Model for rivers and channels is a rough simulation of a simple time

constant elements Tc of the first order combined with time delay elements

Td. Hence, the propagation time of flow can be described. The discharge

q is then simulated based on these parameters. The following algorithm

indicates the first order delay model:

 Tc
dq
dt

+ q = Q

q = Q (t− Td)
(7.1)

• Flow routing element is connection between a river block with other el-

ements of surface water simulation models. These simulation blocks in-

cludes: combine flow (for confluences), sluice model ( deciding outflow),

for confluences, outflow model, and reservoir monitoring and control.

• Reservoir model presents the storage behavior of dam describe by equa-

tion 7.2. The water level and the volume of dammed water are the impor-

tant parameters of the reservoir. The change of reservoir volume is given

to a discrete integrator that computes the resulting water volume at ev-

ery time step. Then, the water level and surface area are determined by

utilizing SIMULINK look up tables of reservoir characteristics ( volume
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- water level, and volume - surface area). The volume alternation during

a time interval k is primary determined by inflow Qin(k), outflow of the

reservoir Qout(k), precipitation Qp(k), evaporation Qe(k), and infiltration

Qinfil(k).

V (k + 1) = V (k) + ∆V (k) (7.2a)

∆V (k) = Qin (k)−Qout (k) +Qp (k) +Qe (k) +Qinfil (k) (7.2b)

• Catchment area model is designed for long-term forecasting as well as

simulation of the flow at outlet of the watershed. According to (Gevers

and Maxwell, 1976), the fundamental structure consists of three sub-

models: sub-model 1 calculates the net run off from measured rainfall

data and the potential evapotranspiration (ETP), sub-model 2 computes

surface water flow, and sub-model 3 simulates groundwater flow.

2. The Water Supply-MOD module includes:

• Storage-free surface water works aim at fulfilling the water demand of

stakeholders from an available reservoir or water flow ( pipeline, chan-

nels). The realized flow rate Qs that must be released for stakeholder

demand Qd can not go beyond the design flow rate of the structure Qmax.

Moreover, surface waterworks with storage tank has similar algorithm to

the storage-free surface structures. Particularly, a storage tank integrated

in the system helps to balance the deficit in demand and waterwork in-

flow. The mathematical algorithm for any waterworks is described by

equation 7.3.

Qs =

 Qd, Qd ≤ Qmax

Qmax, Qd > Qmax

(7.3)

• Groundwater waterworks: water works obtains water from the ground

are capable to control their inflow by monitoring the water head in the

well. The customer demand is restricted by the maximum supply rate

for the waterworks. While the pumping rate of the water works Qp that
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is equal to the outflow to stakholders Qd is computed as follows:

Qs =

 Qd, Qd ≤ Qmax

Qmax, Qd > Qmax

(7.4)

Qp = ψQd. (7.5)

where ψ is a reduction factor from difference of water head.

3. The Groundwater-MOD consists of

• Groundwater tool is a reduced model of a complex ground water model

FEFFLOW

• The FEFLOW interface

7.2 Extension of the Waterlib Toolbox

Although modules of WaterLib are able to meet the basic demand in water sys-

tem simulation some somethings need further attention. Particularly, river/channel

simulation, the model is quite simple. The parameter of time delay model can not

adapt to the variation in flow rate. Therefore, it can only return a fair good result.

In addition, the problem of backwater effect has not been taken into account, con-

sequently, the simulation result is not correct for the river with finite downstream

boundary condition. Hence, the new modules developed in the previous chapters

are implemented in the Toolbox.

1. ATD model for river channel block

The model is able to simulate a river with wide range of geometry as well as

different boundary conditions. The module is governed by the relationship

between flow rate Q, time constant Tc, and time delay Td is presented in table

7.1

Two methods are used to determine the curves Q versus Tc, and Td:

• According to the Chapter 3 and (Nguyen et al, 2016b), the parameters

are designed for a small river with trapezoidal cross section. The param-

95



Chapter 7. WaterLib toolbox

ATD

Figure 7.2: A new simulation block for flow routing elements

Table 7.1: Parameters of river/channel simulation block

Parameters Description

Time unit Unit used for entering constant and delay time values
Flow rate Q is flow rate at upstream end

Time constant Tc is time spent for a step response reaching 63% of final value
Time delay Td is time spent flowing through conduit

eters Tc, and Td changes according to alternation of flow rate so that the

simulation result is more accurate than the previous model.

• Following the Chapter 5 and (Nguyen et al, 2016c), a nonlinear optimiza-

tion technique is utilized to estimate Tc, Td from a travel time and flow

rate of an available complex hydraulic model such as HEC-RAS, MIKE

11. Especially, with this approach, the effect of irregular cross sections

is also taken into account when generating the curves Q vs Tc, and Q vs

Td.

2. River channel block for backwater effects

Another upgrade is that a river/channel simulation block with backwater ef-

fect has been added to the library which is fundamentally a coupling of the

adaptive time delay model and reservoir model (figure 7.3). The algorithm is

developed and validated in Chapter 4. In addition, table 7.2 presents signifi-

cant parameters for implementing the simulation model. With this extension,

the flow dynamics in a river reach with different downstream boundaries is

able to be precisely simulated.
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ATD+BW

Figure 7.3: A simulation block of river/channel with backwater effect

Table 7.2: Parameters of river/channel simulation block with backwater effect

Parameter Description

Time unit Unit used for entering constant and delay time values
Flow rate unit Unit used for entering flow rate

Reach length unit Unit used for entering reach length
Water level unit Unit used for entering water level

Volume unit Unit used for entering volume
Initialization type Allows selection of water level or volume
Initialization value Initial state value of the reservoir
Dead water level Lowest water level

Maximum water level Highest possible water level
Lookup table editor Table of water level, volume, and surface area

7.3 Conclusion

In summary, the MATLAB/Simulink toolbox Waterlib comprising of libraries for

modeling water systems has been developed since years. The primary focus is to

further develop the library by creating modules which are capable of describing com-

plex hydraulic circumstances and use for controller design. Particularly, a number of

models for the water supply network elements (pumping stations, waterworks), for

groundwater storage and reuse of treated wastewater are under active investigation

(Rauschenbach and Gao, 2005). Nevertheless, the quick approximation of river flow

in terms of complex geometry as well as different downstream conditions is par-

ticularly strengthened in this work. In addition, the simplified model for controller

design is also derived from the available complex river models( HEC-RAS, MIKE 11,

and others) which is presented in (Nguyen et al, 2016c). The blocks return results

that are accurate as the complex model and faster than the complex ones. These

advancements improve the quality in designing control policies for water system.
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Chapter 8

Summary, Limitation and Outlook

The dissertation is dedicated to reduced models of the full hydraulic model, the

analysis and their applications to optimal control. The simple first order model

with delay is selected as a reduced model approach for the SVEs. The algorithm of

the model is then extended to analyze the flow dynamics in small rivers with semi-

infinite length, a river with backwater effect, a river with complex cross sections, and

the application to control of a cascade of reservoirs. Sequentially, the achievements

will be summarized and the outlook for further research will also be mentioned.

8.1 Summary

In terms of the reduced model for a small river with infinite downstream length, an

adaptive time delay model based on a prismatic trapezoidal geometry is introduced.

The nonlinear relation curves of the time constant Tc and the time delay Td with

flow rate Q are derived and used in simulating the outflow for different scenarios

which becomes very simple, fast and accurate.

Regarding the model for a river with backwater effect, an ATD model coupling

with the back water model to simulate the non-uniformity of flow in rivers/channels

is presented. Especially, the uniform flow is considered in unsteady state for flow

routing and the computation time is significantly reduced. The approach compen-

sates deficiencies of previous researches by taking into account the backwater effect

in routing river flow.

Moreover, a procedure to derive the simplified model directly from the complex
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hydrodynamics software is presented. In this case the ATD model that can be used

to estimate river flow for irregular geometry. The ATD model is validated in several

case studies and it has been shown that the ATD model is suitable for real time

flood forecasting and application in designing control policies for water systems.

The application of the ATD model to the optimization procedure of a hydropower

cascade is also demonstrated. The method has been applied to a two reservoir system

with promising results. The system consists of two hydropwer stations connected by

a river reach which are modeled by two reservoir models connected with the ATD

model for a river reach. The objective is to maximize the energy production of

the system subject to some constrains. This cutting-edge point is that the system

dynamics and unsteady flow are considered during the optimization process.

All the above mentioned improvements of the ATD models are implemented

in SIMULINK/MATLAB to generate the supplement modules for the WaterLib

Toolbox.

8.2 Limitation

Besides the mentioned above advantages, a few limitations of the ATD model are

presented as follows

• The ATD model is valid only in the design range of flow. It can be explained

that the parameters of the ATD model are obtained from the curves of Tc

versus Q and Td versus Q which are designed for a certain range of flow. If

the upstream flow is out of the range, Tc and Td can not be determined.

• In terms of the coupled ATD model with backwater effects, it is difficult to

define the relationship curves of Tc versus Q and Td versus Q. A reason is that

the Tc and Td are influenced by the upstream flow and the backwater flow. This

causes the fluctuation of both backwater part Lb and uniform flow part Lu.

Hence, two approaches of the coupling ATD model are introduced in chapter

4. On the one hand, the method presented in the section 4.2 describes the

movement of the intersection point of both areas by which the flow dynamics

are accurately simulated. However, it consumes much time for the simulation.

On other hand, in the section 4.4, the method defines the fixed intersection
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point and assumes that the backwater part does not influence the uniform

part. This reduces the simulation accuracy but the computation is quick. The

selection of the appropriate model should rely on the objectives of the research.

• The accuracy of the ATD model depends significantly on the accuracy of

complex hydraulic models (HECRAS, MIKE 11, and SOBEK). It is obvious

that the parameters of the ATD model Tc and Tc are derived from the travel

time TM and flow rate Q generated from the complex model. Therefore, it is

recommended that the complex hydraulic model must be well validated before

using for derivation of the ATD model.

8.3 Outlook

A number of directions are suggested for further research as follows

• The lateral flow is an important factor in hydraulic modeling. The combination

of the lateral of flow with the ATD model is recommended for further research.

It is suggested that the river reach is separated into several sub-reaches. The

ATD model is developed for each reach. The ATD model is connected together

at junction where the lateral flow can be integrated.

• The application of the coupled ATD model with backwater model for other

downstream conditions such as tidal effect, downstream sluices need to be

examined.

• The application of the ATD model for real time forecasting of flooding for

water system is proposed because the model can give very good results with

low computation effort. Moreover, using the ATD model with ArcGIS in

determining flooding area is recommended. For instance, the ATD model is

able to describe accurately the water level in the reservoir which is then used

by a Geographic Information System (GIS) to defined the upstream inundation

area.

• The application of the ATD model for real time control of water system such

as hydropower cascade, sluices/tide gate system for flood prevention is also

suggested.
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