

 Efficient Address Auto-Configuration in Ad hoc
Networks - Protocol & Algorithms

Dissertation zur Erlangung des
akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

vorgelegt der Fakultät für Informatik und Automatisierung
der Technischen Universität Ilmenau

von Dipl.-Ing. Ausama Yousef

1. Gutachter: Prof. Dr.-Ing. habil. A. Mitschele-Thiel
2. Gutachter: Prof. Dr. rar. nat. J. Seitz
3. Gutachter: Prof. Dr. rar. nat. O. Waldhorst

Tag der Einreichung: 14.10.2016
Tag der wissenschaftlichen Aussprache: 31.05.2017

urn:nbn:de:gbv:ilm1-2017000720

This page intentionally left blank

Acknowledgement

First, I would like to thank my advisor Prof. Mitschele-Thiel for his support and consistent aca-
demic guidance, which significantly helped me in accomplishing this thesis. I would like also to
thank Prof. Seitz and Prof. Waldhorst for being co-supervisor of the thesis.

Second, I would like to thank all members of the Integrated Communication Systems group for
their involvements in discussions and verifications of the thesis.

Finally, I would like to thank my family, especially my father and mother, for their encourage-
ment and support.

II

Abstract

Abstract

Mobile Ad hoc NETworks (MANETs) are an important part of mobile communications as they
allow communications without the presence of an infrastructure. A MANET consists of an auton-
omous system of mobile devices. In contrast with infrastructure networks, MANET nodes act as
hosts as well as routers. In the Internet, multi-hop communications are supported by the network
layer, i.e. the Internet Protocol (IP). However, this requires the availability of a unique IP ad-
dress. Due to the dynamic and decentralized nature of MANETs, and especially due to the mobil-
ity of nodes, providing and maintaining this unique IP address automatically in a decentralized
way is a challenge addressed by auto-configuration protocols as part of the network layer. Sev-
eral protocols to support this in fully decentralized environments as present in MANETs have
been developed, e.g., the MANETConf, Buddy and Prophet protocols. However, they fail to solve
the problem efficiently in scenarios where the nodes are highly mobile, e.g., as is the case with
typical car-to-car applications.

In highly dynamic scenarios, for instance where two nodes may be connected just for a couple
of seconds, the address allocation process has to be very fast. In addition, limited bandwidth and
the high number of configuration actions in MANETs with high mobility require reducing proto-
col overhead to a minimum. Although there are several auto-configuration protocols developed
for MANETs, they suffer from slow address assignment, high protocol overhead and address
conflicts when multiple networks merge.

This thesis presents an address auto-configuration protocol that efficiently supports highly
dynamic mobile ad hoc networks. This protocol, the Logical Hierarchical Addressing (LHA) pro-
tocol, focuses on the fast assigning of IP addresses to new nodes joining a MANET while mini-
mizing the signaling overhead. Besides this, LHA introduces a solution for the merging problem
ensuring, the uniqueness of IP addresses in the network when two previously independent MA-
NETs merge. LHA is based on the idea that the address assignments can be achieved locally by
the neigh-boring nodes of a requester, which in turn leads to a fast address assignment. Basical-
ly, in LHA, each configured node in a MANET is able to select, allocate and assign a unique ad-
dress to a new node requesting an address that is free. By dividing the address space logically
among configured nodes LHA is able to build a number of hierarchical structures of IP address-
es. By this means, LHA solves efficiently the merging problem. Furthermore, the utilization of a
certain assignment algorithm and specific address data structures is the key that LHA is able to
solve the problem of missing IP addresses due to the departure of nodes. Because LHA is less
dependent on unicast connections it reduces the signaling overhead and achieves fast address
assignment. This in turn makes LHA highly suitable to the use in a wide range of scenarios, es-
pecially in those which are high mobility.

III

Abstract

The work on which this thesis is based has shown that LHA is capable of fast address assign-
ment with minimum signaling overhead even at high speeds of mobile devices. It outperforms
MANETConf, Buddy and Prophet, which do not meet absolutely all of these requirements. Spe-
cific results of comparative studies for this thesis, based on ns2 simulations, show that MA-
NETConf has a higher address configuration latency that do Buddy, LHA and Prophet. Compar-
ing the assignment latency for LHA, Buddy and Prophet, results show that LHA is up to 86% and
57% faster than Buddy and Prophet respectively in high-density networks. In low-density net-
works LHA is up to 77% faster than Buddy but Prophet outperforms LHA, where it is 54% faster.
However, this outperformance by Prophet in low-density networks has to be paid for high signal-
ing overhead, wherein, LHA reduces the number of packets sent per time by up to 72% and 61%
compared to the Buddy protocol and Prophet respectively in high-density networks and up to
58% and 44% in low-density networks respectively.

When the impact of the speed of mobile nodes is considered, it is found that LHA performs
with signaling cost significantly better than Buddy and Prophet. The average number of messag-
es transmitted by LHA is approximately 50% fewer than the number in Buddy and 30% fewer
than in Prophet. With regard to average address assignment latency, LHA is up to 80% faster
than Buddy in all mobile scenarios and it is up to 40 % faster than Prophet in high-speed scenar-
ios. Although Prophet is faster than LHA in low-speed scenarios, the latency differences in those
scenarios are small, with a satisfactory time of under 50 msec. With respect to the successful
assignment process, LHA has a better performance in all mobile scenarios than that of Prophet
or Buddy, wherein it shows a success rate of 100% in most attempts.

Contrary to other developed protocols, LHA presents an efficient and robust solution for
merging networks because every node detecting a merger is able to solve the address conflicts
resulting from the merger by sending only one broadcast message. Depending on the LHA con-
cept, the change of all network addresses is achieved uniformly, which in turn provides routing
protocols in MANETs a seamless way to update their routing table. Thus, the possible interrup-
tion of ongoing communications due to network address changes can be avoided. Moreover, the
merger algorithm is able to handle simultaneous merging of more than two networks. The simu-
lation results from all attempts show successful merging in adequate time.

IV

Abstract

Zusammenfassung

Mobile Ad-Hoc-Netzwerke (MANETs) sind ein bedeutender Teil der Mobilkommunikation, da
sie Kommunikation ohne das Vorhandensein von Infrastruktur erlauben. Ein MANET besteht aus
einem autonomen System von mobilen Geräten. Im Gegensatz zu Infrastruktur-Netzwerken agie-
ren MANET-Knoten als Host, ebenso wie als Router. Im Internet werden Multi-Hop-
Kommunikationen durch den Netzwerk-Layer unterstützt, z.B. das Internet Protokoll (IP). Dies
verlangt jedoch die Verfügbarkeit einer eindeutigen IP-Adresse. Wegen der dynamischen und
dezentralen Natur von MANETs und besonders wegen der Mobilität der Knoten, ist die automa-
tische, dezentrale Bereitstellung und Verwaltung dieser eindeutigen IP-Adresse eine Herausfor-
derung, die durch Autokonfigurationsprotokolle als Teil des Netzwerk-Layers gelöst werden soll.
Zur Unterstützung dieser dezentralen Umgebung, die durch MANET repräsentiert werden, wur-
den verschiedene Protokolle entwickelt, wie MANETConf, Buddy und Prophet. Allerdings ver-
fehlen sie eine effiziente Lösung des Problems in Szenarien mit hoch-mobilen Knoten, wie z.B.
bei typischen „Auto-zu-Auto“-Anwendungen.

In stark dynamischen Szenarien, wo zwei Knoten zum Beispiel nur für ein paar Sekunden ver-
bunden sind, muss der Prozess der Adresszuweisung sehr schnell erfolgen. Zusätzlich erfordern
die limitierte Bandbreite und die hohe Anzahl an Konfigurationsaktionen in MANETs mit hoher
Mobilität die Reduzierung des Protokoll-Overheads auf ein Minimum. Obwohl verschiedene Au-
tokonfigurationsprotokolle entwickelt wurden, leiden sie unter langsamer Adresszuweisung, ho-
hem Protokoll-Overhead und Adresskonflikten, wenn sich mehrere Netzwerke vereinigen.

Die vorgestellte Arbeit präsentiert ein Adressenautokonfigurationsprotokoll, das hoch dyna-
mische mobile Ad-Hoc-Netzwerke unterstützt. Dieses Protokoll, genannt „Logical Hierarchical
Addressing (LHA)“, konzentriert sich auf die schnelle Zuweisung von IP-Adressen für neue Kno-
ten, die einem MANET beitreten, und minimiert gleichzeitig den Signal-Overhead. Zusätzlich
stellt LHA eine Lösung zum Vereinigungsproblem von Netzwerken vor und sichert die Eindeutig-
keit von IP-Adressen, wenn sich 2 vorher unabhängige MANETs vereinigen. LHA basiert auf
der Idee, dass die Adresszuweisung lokal durch jeden benachbarten Knoten eines anfragenden
Knotens durchgeführt werden kann, was zusätzlich zu einer schnelleren Adresszuweisung führt.
In LHA kann jeder konfigurierte Knoten in einem MANET für einen neuen Knoten eine eindeuti-
ge, freie Adresse auswählen und zuweisen. Durch die logische Aufteilung des Adressbereiches
zwischen den konfigurierten Knoten kann LHA eine Anzahl hierarchischer Strukturen von IP-
Adressen aufbauen, wodurch LHA das Vereinigungsproblem effektiv löst. Des Weiteren ist der
Einsatz eines speziellen Zuweisungsalgorithmus und spezieller Adressdatenstrukturen der
Schlüssel dafür, das LHA das Problem der durch das Verschwinden von Knoten fehlenden IP-
Adressen lösen kann. Da LHA weniger abhängig von Unicast-Verbindungen ist, reduziert es den
Signal-Overhead und erreicht eine schnelle Adresszuweisung. Dieser Effekt bewirkt die hohe
Eignung von LHA für eine Vielzahl von Szenarien, insbesondere hoch mobile Umgebungen.

V

Abstract

Die Untersuchungen, auf der diese Arbeit beruhen, haben gezeigt, dass LHA fähig zur schnel-
len Adressvergabe bei minimalem Signalisierungsaufwand ist, das gilt auch bei hohen Ge-
schwindigkeiten von mobilen Geräten. Es stellt sich besser dar, als MANETConf, Buddy und
Prophet, die alle diese Anforderungen absolut nicht erfüllen. Spezifische Ergebnisse von Ver-
gleichsstudien für diese Arbeit (basierend auf ns2 Simulationen) zeigen, dass MANETConf eine
höhere Adresskonfigurationslatenz als Buddy, LHA und Prophet hat. Der Vergleich von Ergeb-
nissen der Zuweisungslatenz für LHA, Buddy und Prophet zeigt, dass LHA bis zu 86% schneller
als Buddy und 57% schneller als Prophet in High-Density-Netzwerken ist. In Low-Density-
Netzwerken verhält sich LHA bis zu 77% schneller als Buddy, aber Prophet übertrifft LHA, es ist
in diesem Anwendungsfall 54% schneller. Diese Geschwindigkeit von Prophet in Low-Density-
Netzwerken muss jedoch mit hohem Signalisierungsaufwand bezahlt werden, mit LHA verringert
sich die Anzahl der Pakete bis zu jeweils 72% und 61% gegenüber dem Buddy-Protokoll und
Prophet in High-Density-Netzwerken und um bis zu jeweils 58% und 44% in Low-Density-
Netzwerken.

Wenn die Auswirkung der Geschwindigkeit der mobilen Knoten betrachtet wird, hat sich her-
ausgestellt, dass der Signalisierungsaufwand von LHA deutlich geringer gegenüber Buddy und
Prophet ist. Die durchschnittliche Anzahl der gesendeten Nachrichten bei LHA ist circa 50%
geringer gegenüber Buddy und 30% geringer gegenüber Prophet. Im Hinblick auf die durch-
schnittliche Adresszuweisungslatenz ist LHA bis zu 80% schneller als Buddy in allen mobilen
Szenarien und es ist bis zu 40% schneller als Prophet in High-Speed-Szenarien. Obwohl Prophet
schneller als LHA in Low-Speed-Szenarien ist, sind die Latenzunterschiede in diesen Szenarien
klein und liegen bei einem guten Wert von unter 50 msec. Mit dem Nachweis des erfolgreich
stattgefundenen Zuweisungsprozesses hat LHA eine bessere Leistung in allen mobilen Szenarien
gegenüber Prophet oder Buddy, wobei es eine Erfolgsrate von 100% in den meisten Versuchen
zeigt.
Im Gegensatz zu anderen entwickelten Protokollen präsentiert LHA eine effiziente und robuste
Lösung für Netzwerk-Vereinigungen, da jeder Knoten, der eine Zusammenführung von Netzwer-
ken entdeckt, nur eine Broadcast-Nachricht schicken muss, um alle resultierenden Adresskon-
flikte im Netzwerk zu lösen. Gemäß dem LHA-Konzept findet eine einheitliche Änderung aller
Netzwerkadressen statt, was wiederum zu einem nahtlosen Weg zur Aktualisierung der Routing-
Tabelle für Routing-Protokolle in MANETs führt. Damit kann eine mögliche Unterbrechung der
laufenden Kommunikation aufgrund von Netzwerkadressänderungen vermieden werden. Dar-
über hinaus ist der Vereinigungsalgorithmus in LHA auch in der Lage, die gleichzeitige Zusam-
menführung von mehr als zwei Netzwerken zu realisieren. Die Simulationsergebnisse aus allen
Versuchen zeigen einen erfolgreichen Vereinigungsprozess in einer adäquaten Zeit.

VI

Table of Contents

Table of Contents

Abstract __ II

Table of Contents ___ VI

Abbreviations __ IX

 Introduction __ 1 Chapter 1

1.1 Problem Statements __ 3

1.2 Auto-configuration Requirements ___ 5

1.3 Dissertation Objectives ___ 6

1.4 Contribution __ 6

1.5 Thesis Structure ___ 7

 Address Auto-Configuration ___ 8 Chapter 2

2.1 Early IP Address Auto-Configuration Efforts ___ 8
2.1.1 Infrastructure Stateful IP Addressing ___ 8

2.1.1.1 BootP protocol __ 9
2.1.1.2 DHCP protocol ___ 9

2.1.2 Infrastructure Stateless IP Addressing__ 10
2.1.2.1 IPv4 Link-Local addresses ___ 10
2.1.2.2 IPv6 Link-Local addresses ___ 10

2.1.3 Why do infrastructure solutions not suit ad hoc networks? _________________________________ 11

2.2 Classification of Auto-configuration Protocols ______________________________________ 11
2.2.1 Stateless protocols ___ 12
2.2.2 Stateful protocols ___ 14
2.2.3 Hybrid protocols __ 15
2.2.4 Why Stateful Protocols? __ 16

2.3 Proposed Classification of Stateful Protocols _______________________________________ 16
2.3.1 Centralized Approach __ 17
2.3.2 Distributed Approach___ 21

VII

Table of Contents

2.4 Conflict Resolution Mechanisms ___ 25
2.4.1 Individual methods __ 26
2.4.2 Collective methods __ 28

2.5 Network Partitioning Detection __ 31

2.6 Scenario-based Comparison ___ 33

 LHA Protocol ___ 36 Chapter 3

3.1 Required Features of LHA ___ 36

3.2 Basic Idea ___ 39
3.2.1 Hierarchical Host ID (HHID) __ 40
3.2.2 Hierarchical ID (HierID) ___ 42

3.3 Address Assignment ___ 43
3.3.1 LHA Function ___ 43
3.3.2 Correctness of IP Address Assignment ___ 44

3.4 Data Structures ___ 45
3.4.1 Tables & Parameters ___ 45

3.4.1.1 Configured nodes list __ 46
3.4.1.2 Assigning table ___ 46
3.4.1.3 Departure nodes list ___ 47
3.4.1.4 Merger list ___ 47
3.4.1.5 Sending list __ 47
3.4.1.6 Reverse path list __ 48

3.4.2 Messages __ 48
3.4.2.1 Packet Format __ 48
3.4.2.1 Joining nodes messages __ 50
3.4.2.2 Departing nodes messages __ 51
3.4.2.3 Partitioning messages __ 52
3.4.2.4 Merging messages __ 52
3.4.2.5 LHA Beacon message: __ 53

3.5 Node Joining Algorithms ___ 55
3.5.1 Network Initialization __ 55
3.5.2 One-hop Assigning (Basic Case) ___ 55
3.5.3 Multi-hop Assigning (Basic Case) __ 58
3.5.4 Complete Specification of Assigning Algorithm __ 60
3.5.5 Handling Special Cases __ 73

3.6 Network Merger Algorithms __ 75
3.6.1 Terminology __ 77
3.6.2 Basic Idea __ 77
3.6.3 Soft Merger __ 80

VIII

Table of Contents

3.6.4 Hard Merger __ 82
3.6.5 Reconfiguration Algorithm __ 84
3.6.6 Handling Special Case (Simultaneous Merging) __ 87

3.7 Network Partitioning Algorithms ___ 89
3.7.1 Partition Threshold __ 90
3.7.2 Partition Algorithm __ 92
3.7.3 Address Recovery Algorithm ___ 93
3.7.4 Special Case (Stand Alone Node) __ 94

3.8 Node Departure Algorithms ___ 96
3.8.1 Departing Node Algorithm __ 97
3.8.2 Departure Agent algorithm __ 98

 Performance Evaluation ___ 100 Chapter 4

4.1 Analysis of Multi-hop Assignment Function _______________________________________ 102
4.1.1 Assignment latency: ___ 103
4.1.2 Signaling Overhead: ___ 104

4.2 Main Scenarios of Assignment Process ___ 105
4.2.1 Impact of Network Density ___ 108
4.2.2 Impact of Node Speed ___ 111

4.3 Impact of Network Mergers __ 113
4.3.1 Simple Merger of Two Networks ___ 114
4.3.2 Simultaneous Merger of More Than Two Networks ______________________________________ 119

 Conclusion & Future Work ___ 122 Chapter 5

5.1 LHA Features __ 123

5.2 Future Work __ 124

Bibliography ___ 126

IX

Abbreviations

Abbreviations

4G fourth Generation network

A

AA Address Agent

ABA Agent Based Addressing

ACK Acknowledgment

AIPAC Automatic IP Address Configuration

AODV Ad Hoc on Demand Distance Vector

B

BER Bit Error Rate

BOOTP Bootstrap protocol

BRAN Broadband radio access networks

C

CBA Cluster-Based Address auto-configuration

CIDR Classless Inter-Domain Routing

CoReS Configuration and Registration Scheme

D

DACP Dynamic Address Configuration Protocol

DAD Duplicate Address Detection

X

Abbreviations

DAPRPA Defense Advanced Research Project Agency

DHAPM Dynamic Host Auto-configuration Protocol for MANETs

DHCP Dynamic Host Configuration Protocol

DSR Dynamic Source Routing

E

ESTI European Telecommunications Standards Institute

F

FAACP Filter-based Address Autoconfiguration Protocol

FAP Filter-based Addressing Protocol

FCC Federal Communications Commission

FSR Fisheye State Routing

G

GPS Global Positioning System

GSM Global Standard for Mobile communication

I

IETF Internet Engineering Task Force

IoT Internet of things

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IANA Internet Assigned Numbers Authority

L

XI

Abbreviations

LHA Logical Hierarchical Addressing

Layer 3 network Layer of TCP/IP model

LTE Long Term Evolution

LOS Line of Sight

LHA Logical Hierarchical Addressing protocol

MANET Mobile Ad hoc NETwork

M

MAC Media Access Control

MANET WG MANET Working Group

MN Merger Networks

MTU Maximum Transmission Unit

N

nMNet number of Merging Networks

ns2 network simulator 2

O

OLSR Optimized Link State Routing

P

PAA Primary Address Authority

PACMAN Passive Auto-configuration for Mobile Ad-hoc Networks

PDA Personal Digital Assistant

PDAD Passive DAD

PRNet Packet Radio Networks

Q

XII

Abbreviations

QDAD Query-based DAD

R

RTC Real-Time Communications

U

UAVs Unique IP Address Verification agents

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications Systems

U-NII Unlicensed-National Information Infrastructure

W

WDAD Weak DAD

WG Working Group

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Networks

Z

ZEROCONF Zero Configuration Networking

 Introduction Chapter 1

Mobile Ad hoc NETworks (MANETs) are infrastructure-less, distributed and self-organized
networks used to cover geographical parts where communication infrastructure does not exist.
Such areas might be mountainous or hilly or dotted with isolated, small villages. For that pur-
pose, the MANET features networks have certain advantages over the traditional wireless com-
munication networks, for instance, LTE1, UMTS2, GSM3, WiMAX4 or WLAN5. Some of the
main advantages as presented in [1] can be summarized as follows:

• Flexibility: Because MANETs can be constructed in a short time (built on-the-fly),
they have higher mobility and flexibility than conventional wireless networks.

• Scalability: While the communications in traditional wireless communication net-
works are conditional on the existence of the Line of Sight (LOS), the multi-hop fea-
ture in MANETs makes communication beyond the LOS possible at high frequencies.

• Efficiency: The use of short multi-hop communications in MANETs instead of long-
distance node to central base station communication has another advantage over tradi-
tional wireless networks in that it reduces interference levels and increases spectrum
reuse efficiency. This in turn makes it possible to use unlicensed unregulated frequen-
cy bands.

• Economy: MANETs can in some cases be more economical, as they eliminate fixed
infrastructure costs and reduce power consumption at mobile nodes.

The advantages of MANETs bring with them a variety of applications and opportunities [2].
Ad hoc networks were initially a military application and emerged from the Defense Advanced
Research Project Agency (DAPRPA) [3] [4]. Today, however, they are used to make users’ lives
easier or safer, as in the case of meeting rooms (interactive lectures) or automotive networks (e.g.
the BMW talking cars project for local hazard warning [5]). The major recommendation for
MANETs now is that they are the only possible solution to enable communications in disaster
areas, where communication infrastructure has been destroyed. Another field where the MA-
NETs are essential is the future Internet, it has developed into what is today known as “the Inter-
net of things (IoT)” [6] . This future vision of the Internet assumes that each object (thing) is em-
bedded with sensors and is able to communicate. Of course, the communication is not planned to

1 LTE: Long Term Evolution (LTE). It is the standard of fourth generation (4G) mobile communication networks.
2 UMTS: the Universal Mobile Telecommunication System (UMTS). It is the standard of third generation (3G) mobile communi-
cation networks.
3 GSM: the Global Standard for Mobile communication (GSM). It is the European standard of second generation (2G) mobile
communication networks.
4 WiMAX: the Worldwide Interoperability for Microwave Access (WiMAX).
5 WLAN: Wireless Local Area Network.

2

 Chapter 1: Introduction

 1.1 Problem Statements

be infrastructure-based. Although ad hoc wireless communication networks represent a promis-
ing solution for the various shortcomings of infrastructure networks, there are many constraints
which make it difficult to design and develop protocols for MANETs. Some of those constraints
as presented in [7] can be summarized as follows:

• Power supply: In MANETs the power is a critical term because batteries carried by
each mobile node cannot live for long. This in turn limits the processing power, ser-
vices and applications that can be supported by each node.

• Node capabilities: Due to the differences found in the wireless cards, drivers, and an-
tennae characteristics with which the ad hoc node may be equipped there will be great
heterogeneity in node radio capabilities in MANETs. This leads to varying transmis-
sion/receiving capabilities. In addition, processing capabilities differ from one device
to another because mobile devices might have different software/hardware configura-
tions.

• Resource limitations: As defined by the Federal Communications Commission
(FCC) and European Telecommunications Standards Institute (ESTI), ad hoc networks
and many other devices, such as wireless phones and microwaves, generally operate in
ISM (Industrial, Scientific, and Medical) and U-NII (Unlicensed-National Information
Infrastructure) bands. Because ISM and U-NII bands are a scarce medium and because
there are many devices sharing the medium, ad hoc networks have fewer available
frequencies. This in turn leads to high interference and medium contention.

• Asymmetric links: Radio irregularity, a common phenomenon of the wireless medi-
um, is due to multiple factors, such as variance in RF sending power and different path
losses depending on the direction of propagation. Such radio irregularity, along with
interference, obstacles and noise level difference, contributes to the existence of
asymmetric links [8] in MANETs. These link quality differences are a serious problem
for communication protocols.

• Limited bandwidth: Ad hoc wireless networks inherit the traditional problems of
wireless communications which operate with limited bandwidth. This means that only
a limited amount of information can be transmitted over a certain period of time. Due
to the high rate of collisions and Bit Error Rate (BER) in MANETs, the use of maxi-
mum packet size is inefficient in achieving high throughput in data transmissions. The
simulation in [9] and empirical study in [7] show that a proper packet size, i.e. Maxi-
mum Transmission Unit (MTU), of ad hoc applications should be set to approximately
512 byte.

• Dynamic topology: Because ad hoc nodes are free to move randomly and organize
themselves arbitrarily, the wireless topology of a network may change rapidly and un-
predictably. Such dynamic changing of network topologies results in route changes,
frequent network partitions and mergers, which turn network configuration and man-
agement into a very hard task.

3

 Chapter 1: Introduction

 1.1 Problem Statements

1.1 Problem Statements

Basically, MANETs are autonomous systems of mobile devices (nodes) which are capable of
working as both hosts and routers. This enables mobile nodes to communicate with each other
through multiple hops without any need for a predefined communication infrastructure, see Fig-
ure 1-1. In the figure there are three ad hoc nodes (A, B and C) and each of them has a limited
transmission range which enables the node to communicate with its neighbour directly (direct
connection). In this way, A can communicate only with B because they are the only nodes within
each other’s transmission range. On other hand, if A needs to communicate with C it has to use a
multi-hop communication (indirect connection). This means the intermediate node B should
work as router between A and C. A has to send its packets firstly to B and then B will deliver
(route) them to C. The routing protocols in MANETs [10] have been a main focus of the
MANET Working Group (MANET WG) [11] which works to standardize the ad hoc protocols.
Routing from the source to the destination nodes is, however, impossible as long as the node is
not assigned a certain identifier [12], i.e. it is necessary to have a unique addresses assigned to
every node. Because MANETs are IP-based and must adhere to the main features of the IP
world, each mobile node must be configured with a unique IP address before it can join a net-
work [13].

The dynamic and decentralized nature of MANETs means that a manual configuration of mo-
bile nodes with unique IP addresses is impracticable. So, the issue of an automatic addressing
process is managed by specific address auto-configuration protocols.

Figure 1-1 : Multi-hop connections in MANETs

In such an auto-configuration process, the first task a new joining node has to accomplish is
the acquisition of a unique IP address. Thus, the address assignment process is considered a main
issue of every auto-configuration protocol. In this context the following main challenges have to
be faced:

A B C

A communicate with C
through indirect connectionTr

an
sm

is
si

on
 ra

ng
e

of
 A

Transmission range of B

Tr
an

sm
is

si
on

 ra
ng

e
of

 C

4

 Chapter 1: Introduction

 1.1 Problem Statements

• Address assignment latency: this latency is defined as the latency a joining node re-
quires to obtain a unique IP address. It is crucial and it must be as short as possible,
despite the fact that the acquisition of a unique IP address from a high dynamic net-
work with no central management is not an easy job and will in normal situations take
a considerable amount of time, even some seconds. This delay deteriorates, for sure,
ongoing applications and may force established sessions to be reset or closed. It must
be remembered that the address assignment process is not needed only when the node
switches on and joins the network for the first time. The task may, for instance, be car-
ried out in response to movements of the node from one ad hoc network to another one
during an active session. The problem gets even more complicated when the network
grows in size.

• Address assignment overhead: the IP address assignment process demands recent
knowledge of IP addresses currently utilized by the nodes existing in the network.
Hence, the collection of such knowledge in MANETs is usually achieved by broad-
casting1 control messages inside the network, with the consequence of a considerable
overhead in the address assignment. This overhead is, of course, not desired and must
be minimized, since it wastes radio resources. Note that the larger the network, the
more the overhead. The broadcast itself implies other problems, also, that cannot be
neglected, those of collisions and contentions as described in [14].

There is yet another issue in automatic address configuration that must be considered, namely
the management of IP addresses within the MANET. The well-known problem in this context is
the possible existence of duplicated addresses, resulting when two different MANETs merge or a
new joining node is assigned an IP address which is already in use. This latter case is a possibil-
ity if the available IP addresses are not properly managed. It must be remembered that the avail-
able space of IP addresses in MANETs is limited and nodes are free to join and leave. So, IP ad-
dresses of disjoining (departing) nodes can be reused. Otherwise, an inadequate handling of de-
parting nodes may lead to a depletion of the available address pool.

The dynamic nature of MANETs gives rise to yet more potential problems, such as limited
bandwidth, symmetric/asymmetric links, network scalability, an ever-changing topology due to
node mobility. All in all, the handling of IP addressing problems is very complicated. Therefore,
the traditional addressing protocols known from infrastructure-based networks (e.g. the Dynamic
Host Configuration Protocol (DHCP) [15], ZeroConf [16], IPv6 stateless auto-configuration
[17], etc.), are inadequate to the needs of MANETs because they support neither decentralized
management nor multi-hop communication. This has led to the development of many address
auto-configuration protocols to cope with the dynamic nature of MANETs. However, all the so-
lutions so far suffer from a range of problems which include slow address assignment process,
large protocol overhead, potential address conflicts during merging operations and others. This
thesis is intended as a contribution to the further development of address auto-configuration pro-
tocols so that they better meet the challenges here described.

1 Broadcasting is one of the main operations in the MANETs, such as detecting the neighbors and paging a particular host, send-
ing an alarm signal, route discovery in source initiated and on-demand routing, announcement, …etc. [7]

5

 Chapter 1: Introduction

 1.2 Auto-configuration Requirements

1.2 Auto-configuration Requirements

An adequate address auto-configuration mechanism must, to be adequate to the main chal-
lenges already mentioned, include functions which will properly handle two main issues. These
are address assignment and address maintenance. Address assignment is concerned with the se-
lection, allocation and assignment of IP addresses to newly joining nodes, while address mainte-
nance manages the available IP address pool, ensures that IP addresses in use are unique and re-
leases any unused addresses. The following provides more insight into what is required in both
address assignment and maintenance solutions.

• Address assignment: any solution for the address assignment problem has to fulfill
the following requirements:

o Self-assignment: any new node should be able to construct a new Ad hoc net-
work in case it does not find an existing MANET. A self-assignment of IP ad-
dresses must be supported.

o Duplicate-free address assignment: this means the assignment of a definitely
not in-use (i.e. unique) IP address to a new joining node.

o Multi-hop assignment support: because MANETs are multi-hop networks, any
address assignment solution should be capable of communicating over multiple
hops when necessary.

o Efficient assignment process:
 Minimized address assignment latency: this implies that the time re-

quired to allocate and assign a new IP address should be minimized to
avoid communication disruption.

 Minimized signaling overhead: the number of protocol messages ex-
changed to complete the assignment process should be reduced to a
minimum.

• Address maintenance: any solution aiming at a proper and efficient maintenance of
IP addresses of MANETs must fulfill the following requirements:

o Proper handling of departing nodes: to properly handle the IP address pool,
departing nodes must be detected as quickly as possible, so that their addresses
can be reused. Moreover, the responsibility of managing the released addresses
should be given to a predefined node. In this way, it should be possible for ad-
dress conflicts arising from simultaneous assigning of a released address to dif-
ferent requesters to be avoided.

o Proper detection of missing nodes: because the detection of abruptly departing
nodes needs adequate cooperation among nodes, efficient methods of keeping
the degree of negotiation among network nodes low are required.

6

 Chapter 1: Introduction

 1.3 Dissertation Objectives

o Proper handling of network partitions: because the nature of MANETs is dy-
namic, an ad hoc network may split into two or more partitions. After the net-
work partitioning, new nodes may join the partitions, thus, acquiring IP ad-
dresses. The assignment process in each partition does not take account of the
addresses in other partitions. The problem arises when these partitions merge
again later to form a single ad hoc network, since duplicated addresses may
arise.

o Proper handling of network merge: usually a merger occurs when two neigh-
boring networks move into the other’s transmission range. As a result, dupli-
cate addresses may exist and these may cause erroneous routing when conflicts
are detected and an attempt is made to solve them. The merger function should,
therefore, deal with such cases as fast as possible with low control overhead.
Moreover, special cases such as a simultaneous multiple network merge, in
which two networks merge at the same time, should be considered in any solu-
tion.

1.3 Dissertation Objectives

Consistently with the statements in the previous sections, the main objective of this disserta-
tion is the development of an address auto-configuration protocol for MANETs. The intention is
that the protocol fulfils the requirements mentioned above and advances the state of art by con-
sidering the following:

• Protocol Efficiency – achievement of fast operation with low cost.

• High reliability despite the operation failures like address duplication for unpredicted
reasons. So, the protocol developed must be able to recover from operation failures.

• Scalability and capability of coping with the dynamic nature of MANETs.

• Robustness against the dropping of control messages since message dropping might
otherwise produce address conflicts.

• Suitability for a wide range of scenarios which will include simultaneous merging of
more than two networks or the standing alone of a partitioned node.

1.4 Contribution

The following contributions have been accomplished in the work here described:

• An in-depth analysis of the address auto-configuration issue in MANETs.

7

 Chapter 1: Introduction

 1.5 Thesis Structure

• A comprehensive review previously available address auto-configuration proto-
cols along with a discussion of the pros and cons of each protocol. In this context, the
dissertation classifies existing protocols and provides a qualitative comparison be-
tween those described.

• Development of an address auto-configuration protocol named Logical Hierar-
chical Addressing (LHA), see Chapter 3. The proposed protocol guarantees the
uniqueness of assigned IP addresses during the assigning phase (i.e. a stateful proto-
col, see Section 2.2.2 for more details). It is designed to achieve the assignment pro-
cess faster than other stateful protocols with minimal signalling overhead. Moreover,
in this thesis it is shown that LHA is robust against control message dropping and also
reliable, since merging and partitioning of MANETs have been considered during the
designing of the LHA protocol.

1.5 Thesis Structure

The rest of the document is organised as follows. Chapter 2 gives an overview of the existing
literature of address auto-configuration protocols for mobile ad hoc networks. Chapter 3 is a de-
scription of the basic idea and the main algorithms of the LHA protocol. An evaluation of the
performance of LHA compared to other stateful protocols is provided in Chapter 4.
ly, Chapter 5 summarizes the main points covered by the thesis and suggests future work in this
field of research.

 Address Auto-Configuration Chapter 2

This chapter deals mainly with the state of the art in the auto-configuration process studies.
The chapter structure is in six sections of which Section 2.1 gives an overview of IP configura-
tion in conventional infrastructure networks. Then, in Section 2.2, a classification of the address-
ing protocols used so far in MANETs is presented. To assist fine understanding the contribution
made by this thesis, a new classification applicable to stateful addressing protocols is defined in
Section 2.3. Section 2.4 presents new categories of possible mechanisms for resolving address
conflicts in cases of merging networks, while in Section 2.5 new categories of possible network
partitioning detection mechanisms used in MANETs are described. Then in Section 2.6, a com-
parative analysis of representative auto-configuration protocols for each of the newly classified
stateful classes is introduced.

2.1 Early IP Address Auto-Configuration Efforts

In the 1980s, the main method of assigning IP addresses to hosts was manual, by administra-
tors. As the number of communicating devices increased, allocating and managing IP addresses
required a great deal of administrative work. To underpin growth, mainly in the Internet, the au-
tomatic administering of IP addresses was suggested. To serve network users in any infrastruc-
ture networking scenario different automatic address schemes were developed for infrastructure
networks. As classified in [18] these address allocation schemes are divided into stateful and
stateless schemes. When a network is using a stateful scheme the allocation responsibility for
addresses is given to a certain entity which keeps the state information of all addresses in the
network in a database. In contrast, the stateless schemes let each entity allocate its address by
itself. To ensure the uniqueness of its address, the entity performs a procedure called Duplicate
Address Detection (DAD).

2.1.1 Infrastructure Stateful IP Addressing

The main idea of protocols following the stateful method is that new nodes have to get their
IP addresses from a certain node (central node) which has knowledge about every address state
(allocated or free). Therefore, this method can by in very concept ensure the uniqueness of IP
addresses in the network because the assigning node has a global overview of all allocated ad-
dresses. To neglect the type of environment (a network connection may be permanent or tempo-
rary), different protocols have been designed to allocate static or dynamic addresses. If IP ad-

9

 Chapter 2: Address Auto-Configuration

 2.1 Early IP Address Auto-Configuration Efforts

dresses are dynamic, it means that an address may be changed in each connection. An address is
called a static IP address if there is no need for the change in each connection. In the following,
two protocols are presented as examples of the two.

2.1.1.1 BootP protocol

The Bootstrap protocol (BOOTP), presented in [19], is intended for a comparatively static en-
vironment in which every network connection is permanent. A node can apply this protocol to
find out its own IP address, a gateway address and the address of a server host from BOOTP
server. The basic allocation operation of BOOTP is that the host broadcasts a 'bootrequest' packet
on the local network by using the limited broadcast IP address 255.255.255.255 or the server's IP
address (if known). The BOOTP server then answers with a 'bootreply' packet, which contains
the requester’s IP address, the router’s IP address, etc. The main disadvantages of BOOTP:

• No local configuration for each host is provided, but only central configuration.

• The host’s configuration parameters are stable for long time, despite the fact that the
host is only active for a certain time. Therefore, the protocol is not appropriate for a
dynamic address assignment.

2.1.1.2 DHCP protocol

In contrast to the BOOTP protocol, the Dynamic Host Configuration Protocol (DHCP) is
designed to work in dynamic enviroments where network connections change frequently. As a
successor of BOOTP, the DHCP protocol, of which there are two versions [15] and [20] for
IPv41 and IPv62 respectively, is widely used in Ethernets and Wireless LANs to configure the
host’s IP address. Mainlay, DHCP distinguishes between three types of IP address allocation, as
follows:

• Automatic allocation where a permanent IP address is assigned to a host.

• Dynamic allocation where a temporary IP address is assigned to a host.

• Manual allocation where a network administrator assigns an IP address to a host.

As with BOOTP, the basic allocation operation in DHCP is built on a client-server model,
where the server refers to the assigning node (DHCP server) and the client refers to a node
(DHCP client) requesting an IP address. In this model, four messages are needed to allocate an
address to every client. Initially, the client broadcasts3 a DHCPDISCOVER message on its local
physical subnet. Upon receipt of this message, each DHCP server responds with a DHCPOFFER
message that includes an available network address. If two or more of these messages are re-
ceived by the client, it has to choose a certain server and it broadcasts a DHCPREQUEST mes-
sage including the 'server identifier' of the selected server. After that, the server selected in the
DHCPREQUEST message responds with a DHCPACK message containing the configuration

1 Internet Protocol version 4 (IPv4) [90], which provides a number of IP addresses with a 32-bit number
2 Internet Protocol version 6 (IPv6) [92], which provides a number of IP addresses with a 128-bit number
3 For IP broadcast address, it is defined in [96] to set all bits of its local host part to one.

10

 Chapter 2: Address Auto-Configuration

 2.1 Early IP Address Auto-Configuration Efforts

parameters for the requesting client. The configuration process is complete when the client re-
ceives this message including the information sent before in the DHCPOFFER message. To
achieve dynamic allocation in DHCP, the address is assigned for a certain time called “lease” to
the client. In order to use the address for a longer time the client has to extend its lease with sub-
sequent requests by sending of DHCPREQUEST messages. This means that a client has to send
this message periodically to be able to continue using a particular network address. The main
disadvantages of DHCP:

• Like BOOTP, DHCP offers only a central management system.

• DHCP is not intended for use in configuring routers.

• DHCP has high protocol overhead due to the lease algorithm.

2.1.2 Infrastructure Stateless IP Addressing

The stateless method enables each new node joining the network to select its IP address by it-
self. There is thus a high likelihood of address conflicts due to the absence of information about
the used addresses in the network. Therefore, a negotiation mechanism between the new host and
the other hosts in the network is needed. Basically, protocols following this mechanism are
called Zero Configuration Protocols. The task of developing Zero configuration protocols was
given to IETF Zeroconf WG’s whose main goal is to enable direct communication between two
or more computing devices via IP [21]. A host in zero configuration protocols is able to config-
ure itself with a local IP address which can be used only for communication with other devices
connected to the same physical (or logical) link. The local address can be selected randomly or
by using an identifier of the interface, as the following examples show.

2.1.2.1 IPv4 Link-Local addresses

In the protocol presented in [16], the dynamic configuration of a host is done by using IPv4
link-local address1, wherein, the host selects randomly its address in the 169.254/16 prefix. No-
tice the address of this prefix is not routable. Therefore, to configure a host with unique address-
es, the host needs to be able to detect and solve any collision among its neighbouring nodes.
Mainly, such zero configuration protocols are designed to work satisfactorily over one hop con-
nection networks such as home networks, automobile networks, airplane networks, or ad hoc
networks at conferences, emergency relief stations, and many others [22]. Hence, such protocols
are disadvantageous for normal ad hoc networks which work and support multi-hop connections.

2.1.2.2 IPv6 Link-Local addresses

It is possible for a host to configure itself with IPv6 local addresses as in [17] . This is done by
appending the ID number of its interface (in most cases its MAC2 address) to the well-known

1 is proposed in [16] to perform only communications in the same physical (or logical) link when stable, routable addresses are
not available (such as on ad hoc or isolated networks)
2 A media access control address: “is a unique identifier assigned to network interfaces for communications at the data link layer”

11

 Chapter 2: Address Auto-Configuration

 2.2 Classification of Auto-configuration Protocols

link-local prefix [23] . In this way and in contrast to DHCP, the allocation of an address is
achieved without asking contact with any kind of server. Because MAC addresses may not be
unique [24], the host, as with IPv4 Link-local, has to verify that its selected address is unique
among all neighbors on the host link by broadcasting NDP messages [25] to the link. If there is a
conflict with any neighbor the host has to abort the process and manual configuration (by an ad-
ministrator) of the interface is required. In principle, the administrator should be able to supply
an alternate interface identifier that may override the shortcut. IPv6 link local still inherits the
problem of IPv4 above wherein the address is available only over single hop.

2.1.3 Why do infrastructure solutions not suit ad hoc networks?

It is obvious from the above that the Internet protocols are not suitable for MANETs because
they neither support decentralized management nor possess any mechanism to ensure uniqueness
beyond the local (one-hop) connection of a node. It is this that is inspiring effort to modify the
protocols and, indeed, to develop new protocols for MANETs which can barely exist without
multi-hop connections. There follow the auto-configuration protocols developed for MANETs.

2.2 Classification of Auto-configuration Protocols

Various auto-configuration protocols have been developed to meet the requirements of ad hoc
networks (doing without infrastructure-less and employing multi-hop connections). The authors
in [26] present possible techniques in different auto-configuration steps, such as initial address,
initial method, choosing of new address or allocation method. Because the address assignment
task is the first step in all protocols and it also essential to solve the other address problems (con-
flicts in case of merger networks or the reuse of the addresses of departure nodes) the most of the
classification effort so far has been focused on the methods of achieving the address allocation
task.

A key point of the classification of addressing protocols, highlighted in [27], is the mainte-
nance of address allocation tables in nodes because a network’s overall knowledge of free and
allocated IP addresses in a network should ensure the unique assignment of IP addresses. Thus,
the author in [27] divides the protocols into three categories; stateful, stateless and hybrid clas-
ses. In the stateful class the assignment process in a network depends on two concepts; firstly, at
least one configured node in the network must own the allocation table with up-to-date infor-
mation or actual status of all allocated addresses in the network; secondly, a new node must get
its unique address by requesting a free address from the configured node which owns the alloca-
tion table. In principle, the information on the allocation tables in the stateful class helps the con-
figured nodes to ensure unique assignment of IP addresses to the requesting nodes. In contrast,
the protocols of the stateless class are necessarily unable to guarantee the allocation of unique
addresses. The new nodes, usually, allocate themselves new addresses without any knowledge of
available free addresses in the network. The stateless method has the advantage of being much

12

 Chapter 2: Address Auto-Configuration

 2.2 Classification of Auto-configuration Protocols

faster than stateful one, which depends on other nodes in the network to achieve the allocation
process. However, a successful assignment of unique addresses in stateful methods needs usually
a synchronization mechanism to ensure that up-to-date information is maintained in the network.
As a solution between the two methods, the hybrid class has been defined. Basically, a protocol
of hybrid category combines both methods utilized in other categories, wherein a new node allo-
cates itself with an address by using a table from neighboring nodes which does not include up-
to-date information. In other words, the new node requests IP information from one of its neigh-
bors which usually keeps past knowledge about the allocated addresses in the network. Depend-
ing on such information the new node selects its new address. In this case the likelihood of allo-
cating unique addresses will be higher than in the stateless category but lower than in the stateful
one.

In Kyriakos et al. [28] another method of classifying the auto-configuration protocols is intro-
duced. This depends on the possible detection of conflicting addresses within the allocation pro-
cess. In this classification three categories are named: conflict detection allocation, best effort
allocation and conflict free allocation. Because there is no mention of the similarity between this
classification and that in [27] the researchers may have been confused by the terminology.
Therefore, the point is made here by way of disambiguation. Comparing the method of both clas-
sifications reveals that there are no differences between them because the main key in each is
whether network information is used or not. For example, a protocol of conflict free allocation
category enables the assignment of addresses without causing address conflicts in the network.
Basically, this can be done only when this protocol possess information about the addresses of
the whole network. Vice versa, if a protocol possesses information about all addresses used in
the network (i.e. it belongs to the stateful category) it can ensure that the joining nodes can be
assigned with unique addresses. Thus, the stateful, stateless and hybrid categories are similar to
the conflict free allocation, conflict detection allocation and best effort allocation ones respec-
tively.

The classification in [26] leaves some uncertainty in certain steps, e.g. in initial method any
protocol of both classes (directly and DAD) should send a packet to verify the uniqueness of any
selected address. On the other hand, due to the attributes counterpart of other classifications and,
also, wide range of the concept of stateful and stateless protocols in most RFCs and works, such
as [17], [20], [18], [29], [30], [31] and [32], the categories followed in this thesis are those used
in [27]. In the following sections each class will be presented with examples.

2.2.1 Stateless protocols

In protocols following the stateless approach, the new node constructs its addresses by itself.
These addresses are typically based on a hardware ID or on a random number given by a random
generator. Although this mechanism, of course, is a fast assignment process, there is no guaran-
tee that this address is unique in the network. So, if the number of nodes in a network is large and
the address space is small, the probability of getting of address conflicts can be assumed to be
very high in the network. To deal with the existence of conflicted addresses these protocols,

13

 Chapter 2: Address Auto-Configuration

 2.2 Classification of Auto-configuration Protocols

therefore, use a Duplicate Address Detection (DAD) [17] mechanism which is responsible for
detecting the conflicts and, then, informing the responsible nodes so that they change their IP
addresses. If DAD is utilized after a node has used its selected address in a running real-time ap-
plication, this will violate the requirements of such applications and increase the control messag-
es to solve possible address conflicts. However, in the case when DAD is used before the address
configuration is finished it is subject to other constraints related to issues such as delay and relia-
bility in MANETs.

Perkins et al. [33] and Fazio et al. [34] provide two examples of stateless protocols which
employ DAD before a node is able to use its selected address in established communications. In
the first protocol, devised by the MANET group of Internet Engineering Task Force (IETF), a
new node chooses a new address by itself. Before using this address to communicate with other
nodes in the network, it has to rule out an address collision by broadcasting a request to its own
address. If the selected address is not in use by another node in the network the new node is able
to use it in any communication with other nodes in the network, otherwise it has to select another
address and initiate a new query process by itself. In contrast, the query process in the second
protocol, Automatic IP Address Configuration (AIPAC), will not be done by the new node itself.
Here, the new node (requester) selects from its neighboring nodes an initiator node which is al-
ready a configured node. The initiator node negotiates an address within the network on behalf of
the requester. For the query process, the initiator node randomly selects an address from a prede-
fined space and tests it with the network with the DAD procedure. The approach in both proto-
cols is what is basically known as a Query-based DAD (QDAD). In this approach the address
configuration takes longer than desired. Additionally, unreliably exchanged messages because of
lost and dropped messages between the nodes may lead to incorrect decisions.

Even when the DAD mechanism is applied after the address has been assigned, as is the case
with Weak DAD (WDAD) [35] and Passive DAD (PDAD) [36], the requirements of real time
applications fail to be met, because the duplicated addresses lead to a change in the IP address of
some nodes which may have ongoing Real-Time Communications (RTC) [37] . This exchange
interrupts the transport and network layer connection, and the reconnection of them probably
involves a long time and many control message exchanges. In WDAD the new node has to
choose an initial IP address by itself. Then it should pick a random key by means of alternative
methods. The final IP address can be composed out of the key and the initial IP address. This
will reduce the probability of two nodes choosing the same IP address. If a node receives a pack-
et containing an IP address that is stored in its routing table, but with a different key, an address
conflict is detected. The key is only generated once by each node. There is a possibility that any
two nodes with the same address choose the same key and the conflict will not be discovered in
this case. In order to decrease the probability of such a situation, the key length has to be in-
creased. This again results in routing protocol overhead. Afterwards, the DAD is used to detect if
the same address already exists in the network. This will lead to the case which was explained
above and violate the requirements of real time applications. In PDAD the new node chooses its
address randomly. Then it can communicate with other ones in the network. Unlike WDAD, the
PDAD mechanisms do not need to add additional information to the IP address, like keys. There-
fore no protocol overhead is generated. Instead, every node in the network analyzes incoming
routing protocol packets to discover the conflicted addresses. However, the analyzing process is

14

 Chapter 2: Address Auto-Configuration

 2.2 Classification of Auto-configuration Protocols

based mainly on the state information used by routing protocols. The optimal choice of PDAD
mechanism is thus to use proactive routing protocols. Because the probability of conflicted ad-
dresses in this protocol is high, the control messages to solve all conflicts lead to signaling over-
head; especially when more than one node discover a conflict. PDAD has the same problem as
WDAD with real time applications.

2.2.2 Stateful protocols

The configuration process of stateful protocols depends mainly on the concept of the mainte-
nance of a kind of allocation table which includes information concerning all allocated addresses
in the network. In contrast with the stateless approach, by using a stateful approach the unique-
ness of the address can be ensured by concept. However, there is a cost. The assignment process
is slow, which does not suit the fast handoff needed for the interworking aspects in hybrid net-
works. There follow examples of different stateful protocols which use different kinds of alloca-
tion tables.

ABA (Agent Based Addressing) protocol in [38] uses the same principle as the DHCP proto-
col, utilizing a centralized allocation table. In this protocol only one node, the Address Agent
(AA), is allowed to assign addresses to requesting nodes. The AA maintains the allocation table
containing already assigned IP addresses, corresponding MAC addresses, and lifetimes. A syn-
chronization process is needed to refresh the status of IP addresses in the allocation table. There-
fore the AA periodically floods a “verify” message to all configured nodes in the network, asking
them about their current status. Those receiving it must respond with reply messages - a process
which adds protocol overhead. Additionally, due to unreliable message exchanges the allocation
table status may be incorrect, causing duplicated addresses. Moreover, the main challenge is
handling the crashed AA node because many nodes may try to be address agent simultaneously.
This brings with it additional signaling cost, especially in high mobility scenarios.

As presented in [39] the MANETconf protocol distributes to all nodes in a network a common
allocation table which contains the available address space in the network. It prevents the as-
signment of the same address to more than one node by maintaining an additional allocation ta-
ble called pending allocation table. These allow every configured node in the network to assign a
unique IP address to any requester. When a new node enters the network, it should select an ini-
tiator node from its neighbors. The initiator will be responsible for the configuring process.
Therefore, the initiator selects an address that is neither in its allocation table nor in the pending
allocation one. Then it floods a requesting message to all other configured nodes in the network.
This message will inform all nodes that the selected address will be used by a new node. If there
is a conflict with any node, the initiator receives a reply messages from these nodes. Then it se-
lects another address and initiates another attempt to assign the new one. Until this process suc-
ceeds, much undesirable latency is added. This approach also needs a synchronization procedure
to ensure that the allocation tables of the nodes are always up to date. Hence additional and relia-
ble message exchange is needed among all nodes. These messages increase the overhead in the
network.

15

 Chapter 2: Address Auto-Configuration

 2.2 Classification of Auto-configuration Protocols

In [40] the authors propose a Buddy protocol utilizing multiple disjoint allocation tables. This
means that the global allocation table is split among all nodes. The splitting of the allocation ta-
ble is based on the binary buddy algorithm known from memory management. A new node has
to select one of its neighbors, which will help in the configuration process. This neighbor is
called the initiator. The function of an initiator is to assign half of its allocation table, if available,
to the requester without asking other nodes for permission. If the node does not have an alloca-
tion table, it asks the other nodes in the network to do the task. Upon receiving the table, the new
node directly chooses its unique address from this table. Now the new node can also act as initia-
tor for nodes joining in the future. This mechanism can assign a unique address to a new node
faster than the other ones above. However, the mechanism suffers from some problems. One
problem can arise if any of the nodes crashes. Then a part of the address space may be destroyed.
As a solution, a synchronization procedure is needed to detect the holes in the address space.
This again increases the protocol overhead. Another problem relates to merging and partitioning.
When two networks with identical allocation tables merge, many conflicted addresses may be
found in the network. In this case there is no efficient method which can be used to solve the
problem.

2.2.3 Hybrid protocols

The hybrid approach uses elements from both stateless and stateful approaches. The protocols
maintain allocation tables and use DAD mechanisms, such as the Passive Auto-configuration for
Mobile Ad-hoc Networks (PACMAN) protocol [41]. A node which runs this protocol assigns an
address to itself depending on an allocation table obtained from a neighboring node and a ran-
dom algorithm. This mechanism reduces the duplicated address probability. But in the case
where many nodes join the network simultaneously this probability increases. Conflicts arise
because the allocation table is not up-to-date. In the approach a Passive DAD (PDAD) mecha-
nism is employed to solve these conflicts. The node using PDAD detects the duplication by
checking passively the ongoing communication in the network. This means that the duplicated
addresses may not be discovered when a node is assigned by a new address. Moreover, this
mechanism depends on ongoing routing protocols.

In Syed et al. [42], which is presented as the SAAMAN protocol in [43]), the assignment pro-
cess needs two steps to ensure the allocation of a unique IP address to every node in the
MANET. In the first step, the new node has to get a temporary IP which should be selected ran-
domly from a node depending on Global Positioning System (GPS) information and has to use a
DAD mechanism to avoid temporary address duplication. Basically, the authors expect each
node in the network to be able to identify its position using GPS. The goal of using GPS infor-
mation is to minimize the duplicate selection of temporary addresses. In this way, the network
should be divided into a predefined number of squares and to each square is allocated a disjoint
set of the whole temporary IP set. When the node selects its temporary IP, it has to go to the sec-
ond step called real IP assignment. The node, here, has to select randomly an address from an-
other set (real set) and it has to check the uniqueness of this address in the network by asking
some nodes which are predefined as server nodes in the network. A similar principle is utilized

16

 Chapter 2: Address Auto-Configuration

 2.3 Proposed Classification of Stateful Protocols

in Filter-based Address Auto-configuration Protocol (FAACP) [44] of which the server nodes are
called Unique IP Address Verification agents (UAVs) and hold information of all allocated ad-
dress in the network. As with PACMAN, this protocol is impacted by simultaneous joining of
many nodes located on a single square. Moreover, it suffers from inaccurate allocation sets when
the GPS information is missing due to device defect or environmental conditions, such as bad
weather.

2.2.4 Why Stateful Protocols?

The protocols following the categories used in [27] are next presented, with a summary in Ta-
ble 2-1 of main features of each class. In the table it is clear that stateless protocols possess the
fastest mechanism of address assignment with lowest signaling cost. This is because, in stateless
protocols, every new node can select and assign a new address by itself. However, there is a cost
in the high probability of address conflicts in the network. The detecting and changing of dupli-
cated addresses then presents other problem wherein the requirements of real-time applications
are not met.

Table 2-1: Features of stateful, stateless and hybrid classes

Features Stateless Stateful Hybrid

Assignment process Fast Slow Medium

Signaling cost Low High Medium

Address uniqueness Not guaranteed Guaranteed Best effort

Main focus DAD mechanism Reduce latency &
signaling cost

DAD mechanism

This thesis has, therefore, taken as its material for closest study the stateful protocols, as they
hold out the best hope of achieving unique IP addresses, which are crucial if MANETs are to
work well. To explain the main differences among stateful protocols, a new special classification
for protocols following the stateful category is presented in this thesis; the details are given in the
following section.

2.3 Proposed Classification of Stateful Protocols

It is, as stated, possible for the uniqueness to be ensured by concept in the stateful protocols,
though the cost will be a slower assignment process and a higher signaling overhead. The main
focus in attempting to improve stateful protocols is, therefore, to reduce the latency of the ad-
dress assigning process to a minimum with low signaling cost. Depending on which node or

17

 Chapter 2: Address Auto-Configuration

 2.3 Proposed Classification of Stateful Protocols

nodes are responsible for selecting, allocating and assigning IP addresses to requesting nodes, the
stateful protocols can be classified into centralized and distributed management approaches as
shown in Figure 2-1, with each class also divided into other sub classes. This is the new element
of the classification. An elucidation of the issues follows.

Figure 2-1: Classification of stateful address auto-configuration protocols

2.3.1 Centralized Approach

The protocols for centralized pool management basically follow the principle of the DHCP
protocol by utilizing a centralized allocation table which is located in one place. This means that
one node is responsible for managing other nodes. Depending on whether the network structure
is clustered or not, two sub classes can be distinguished: one manager per network or one man-
ager per cluster:

• One manager per network: The ABA protocol [38] which is quoted in Section 2.2.2
follows the centralized approach. Here the Address Agent (AA) is the first configured
node in a network and, as with the DHCP protocol, is responsible in the whole net-
work for managing a centralized allocation table which allows it to assign IP addresses
to new joining nodes. When a node wants to join the network it is first defined as an
unconnected node, then, when it obtains a unique address from AA node, as a con-
nected node. However, if the new node is not within the transmission range of AA the
other connected nodes in the network have to help in building a multi-hop connection
between AA and the requester. Thus, latency in assigning an IP address depends firm-
ly on the physical distance (number of hops) between the AA node and the requester.
In a dynamic network, a crashed AA node may be a frequent event. In ABA, if a node
discovers the lack of its AA node it tries to advertise itself as an AA node in the net-
work. Advertisement contention may occur when multiple nodes discover the lack of
AA at the same time; all try to announce themselves as the AA. Finally, it is a feature
of ABA that an update mechanism is needed because a node must always register its
IP address with the AA, and all connected nodes always have to send an acknowledg-

Single manager per
network

Single manager per
cluster

Global
assignment

decision

Local only
assignment

decision

DistributedCentralized

Stateful Address
Assignment Approaches

Physical
clustering

Logical
clustering

Local first
assignment

decision

18

 Chapter 2: Address Auto-Configuration

 2.3 Proposed Classification of Stateful Protocols

ment when they receive an update with new information from the AA. These two up-
date mechanisms produce in signaling overhead by increasing number of the nodes in
the network. Another example of this approach is Dynamic Address Configuration
Protocol (DACP) [45] . In this protocol, the node which is responsible for assigning
network addresses in a network is defined as the Primary Address Authority (PAA).
As with the ABA protocol, the PAA node periodically broadcasts Network Identifier
Advertisement messages to inform all nodes within the network of the network identi-
fier. After that, each node has to register its address in PAA and it gets an address au-
thority if there is no rejection. Basically, the Network Identifier Advertisement mes-
sages help detect possible network partitions and mergers. Specifically, when nodes do
not receive their PAA advertisement for consecutive intervals, they detect the partition
and elect a new PAA. The merger is detected when a different advertisement is heard
by PAA which then takes the responsibility for detecting duplicate addresses in both
networks. In this protocol only the nodes with the duplicate address must obtain a new
address from the PAA node.

• One manager per cluster: to solve the problem of the increasing number of nodes in
a network which may be distributed over a wide area, a network may be divided into
clusters to facilitate the auto-configuration process. Basically, the management of each
cluster is given to one node, which usually is called the cluster head. Similarly to “one
manager per network”, the cluster head has the task of allocating IP addresses to all
nodes in its cluster. Moreover, it has to observe any change of the node’s status in the
cluster. However, to prevent any address collision with other clusters the cluster heads
have to synchronize their tables with each other. In MANETs, such a synchronization
process adds an additional issue to the central management issues; especially in high
dynamic networks. However, the performance of protocols following this approach
depends on the method used to cluster the nodes in the network, physical or logical
clustering. A network is clustered physically if there is a relation between the position
of a cluster head and the position of the nodes which belong to this cluster head; oth-
erwise it is the case of logical clustering. Examples, DHAPM (Dynamic Host Auto-
configuration Protocol for MANETs) [46] has physical clustering and CoReS (Con-
figuration and Registration Scheme) [47] protocols has logical clustering. Here is an
explanation of two types.

o Logical clustering: CoReS protocol presented in [47] and [48] is an example
of an auto-configuration protocol with Logical clustering. In this protocol a
logical cluster is defined by a cluster head which is called the CR-node and
cluster nodes which are the children (CH nodes) of this CR-node as shown in
Figure 2-2. Basically, CR-nodes are responsible for assigning free IP addresses
to joining nodes in the network. Good candidates for CR-nodes are selected
depending on two values; degree of mobility (dm) and resource value (R). The
IP address space is divided into many disjoint sub blocks. These blocks are dis-
tributed among the CR-nodes. In CoReS the basic idea is that a new node has
to search for any neighboring CR-nodes which can directly assign IP addresses

19

 Chapter 2: Address Auto-Configuration

 2.3 Proposed Classification of Stateful Protocols

to it. However, in many scenarios there may not be a CR-node within the
transmission range of the new node (some hops away). To solve this problem,
a broker node, which may be any neighboring Child node, is used to help in the
address assignment. The job of the broker is to search for its default CR-node
(the node which has assigned the IP address to it). Then the CR-node is re-
sponsible for assigning a free address, if it has one, to the new node. Due to the
mobility in MANETs the broker may be many hops away from its default CR-
node, so that undesirable Latency and Overhead is added to the assigning of IP
addresses to the new nodes. Moreover, if a broker doesn't succeed in getting a
response from its CR, it must first solve the abrupt departure of its default CR-
node before it finds anther CR-node. Here, the joining request message of the
new node will be discarded without any reply being given to the new node. Fi-
nally, to function properly this protocol has to include one synchronization
mechanism among all CR-nodes and another mechanism between each CR-
node and its children. Similar problems can be seen in other auto-configuration
protocols which use logical clustering, such as the DHAPM protocol [46]. The
main differences among these protocols are the criteria for selecting the cluster
head.

Figure 2-2: Two kinds of the nodes in CoReS protocols

In the DHAPM protocol a candidate as cluster head is selected on the basis
of available (free) capacity of four metrics; memory, battery, CPU, and net-
work interface. Basically, the increasing number of nodes in a network leads
the DHAPM protocol to construct a new cluster head (i.e. the ratio of all
nodes/all AAs in the MANET). The cluster head of DHAPM is called address
agent AA because it manages the addresses of other normal nodes. As with
CoReS, if a new joining node is not within the transmission range of an AA
node, it selects a neighboring node as an initiator node. Mainly, the initiator is
responsible for finding its AA node (the AA node which has assigned the IP
address to this initiator). As explained above, because MANETs are by nature
dynamic, the AA node may be more than two hops away from the initiator
and/or it may depart abruptly from the network. To find the responsible AA,
the initiator would, therefore, need a long time (assigning latency) and addi-
tional messages (signaling overhead). The maintenance process in DHAPM,

0

CR1

8

1

3

6

4

5

7

CH2

CH1

CH2

CH1

CH2
CH1

Child nodes of CR1

Child nodes of CR2
CR2

20

 Chapter 2: Address Auto-Configuration

 2.3 Proposed Classification of Stateful Protocols

like that in CoReS, needs two kinds of synchronization: first between the AA
node and its assigned nodes, second among all AA nodes in the network.

o Physical clustering: unlike logical clustering, the main factor defining a phys-
ical cluster in a network is the distance between the cluster head and other
nodes belonging to the cluster. Usually, this distance is defined by the number
of hops between each node and its cluster head. In [49] the authors introduce
the Quorum protocol, in which the maximum distance in a cluster between a
node and its cluster head is three hops. In this protocol a cluster head should
maintain two kinds of data structure; IPSpace and QuorumSpace. The first one
represents the IP address block from which this cluster head is able to assign
addresses, while the second one represents the IP address blocks maintained by
adjacent cluster heads. If a new node wants to join a network it has to search
for the nearest cluster head by listening to the periodic hello message sent by
neighboring nodes. Depending on the neighbor information the node can de-
fine the location of the cluster head. After that it has to connect with the cluster
head which is responsible for assigning to it a free address. To ensure the
uniqueness of an address the cluster head has to verify whether the address is
occupied by checking with adjacent cluster heads in a quorum set (Quor-
umSpace). If the proposed address is free (not allocated by other cluster heads)
the cluster head assigns it to the new node. Such a mechanism adds additional
latency to the assignment latency needed for the connection between the clus-
ter head and the new node in case of more than one hop distance. The authors
assume that the connection among adjacent cluster must be available for the al-
location process but in a scenario of high node mobility the allocation of free
addresses may lead to address conflicts because of unreliable connections. Fi-
nally this protocol suffers from high signaling overhead to ensure the physical
clustering which is another big issue in MANETs.

In [50] another auto-configuration protocol called CBA (Cluster-Based Ad-
dress auto-configuration) following physical clustering is presented. Different-
ly from Quorum, a network in CBA is clustered in 2 hierarchal levels. The au-
thors in [50] regard an entire network as one cluster with a cluster head. Sub-
sequently, this cluster is divided into several sub-clusters and each one of them
is managed by a sub-cluster head. The cluster head manages the sub-cluster
heads and assigns a prefix of address space to each sub-cluster. In each sub-
cluster and similarly to Quorum, a sub-cluster head is responsible for manag-
ing all nodes located around it within a distance of three hops (maximum). Ba-
sically, when a new node wants to join the network it waits for the nearest sub-
cluster head advertisement which is sent periodically. Depending on the prefix
in the message and the new node ID, a candidate address is selected by the new
node. Finally this address is sent to the sub-cluster head which is responsible
for checking the availability of the address and selecting an available address if
there is a conflict. An issue arises here if a node from one cluster moves to an-
other cluster, in that it has to change its address because the prefix in the new

21

 Chapter 2: Address Auto-Configuration

 2.3 Proposed Classification of Stateful Protocols

cluster is different. This is not a realistic solution, especially in high mobility
scenarios. Moreover, the abrupt departure of a cluster head or any sub-cluster
head adds signaling overhead because the other nodes in the network have to
negotiate with each other to elect the missing head. Usually, physical cluster-
ing is more suitable for stable networks such as sensor networks in fields or
forests.

2.3.2 Distributed Approach

Protocols following the distributed approach enable each node in a network to maintain an al-
location table from which a configured node can select an available free address for any new re-
questing node. However, these protocols differ in the permission scope given to those nodes dur-
ing the assignment process. The options for assignment decisions are Global, Local first or Local
only. The concept of a Local only decision is that the decision for allocating and assigning a
unique address to a new node is taken by any allocating node itself; while in the Global decision
the allocating node has to ask for the assignment permission from other nodes in the network.
Basically, Local only assignment decision approaches assume the availability of free addresses in
each configured node at any time; however, in MANETs this is unrealistic because the address
space is limited. Therefore, the concept of Local first decision represents a reasonable mecha-
nism in which the address assignment decision is taken by the allocating node as long it owns
free addresses, otherwise it searches for another node which owns free address and is ready to
assign it. The following explains each approach with examples.

• Global assignment decision: MANETconf protocol [43] represents an example of the
mechanism here, by which a common allocation table containing the available address
space is distributed to all nodes in a network. However, a node cannot assign any free
address selected from its table until it has received permission from all nodes in the
network. In MANETconf as presented in Section 2.2.2, any neighboring node (initia-
tor) of a requesting node can select a free address from its allocation table but to as-
sign this address the initiator floods to all nodes in a network a request message asking
for the assignment permission of the address. This means that the allocation process
claims cooperation from all configured nodes in the network. If there is a conflict
with any node, the initiator will receive a negative reply from this node. Then it selects
another address and another attempt is initiated. Until the process succeeds, a long as-
signing time (latency) and control messages (overhead) must be added. Also, this ap-
proach needs a synchronization procedure to ensure that the allocation tables of the
nodes are always up to date.

• Local first assignment decision: In this approach, the block of IP addresses is divid-
ed into disjoint blocks and distributed among configured nodes in a network. This
means that every configured node, if it has free addresses in its block, has full permis-
sion to assign one of them directly to a requester node without asking for any assign-
ment permission from other nodes in the network. As mentioned above, if the node

22

 Chapter 2: Address Auto-Configuration

 2.3 Proposed Classification of Stateful Protocols

has no addresses free it can search for an available one among other nodes in the net-
work. In addition to the block of free addresses, each node, in this approach, has to
save in a separate table the states of all allocated addresses in the network. In such a
mechanism, every node in a network is able to manage the addresses of joining or re-
leasing nodes in the network. Mainly, most protocols from this method, such as [51],
[52], [53], [54] and [55], follow the principle of the Buddy system of memory man-
agement [56] [57] to split the address space into blocks. Usually, they are called Bud-
dy protocols. However, the Buddy protocols differ slightly from each other in the way
they handle issues such as message losses, node crashes or address reuse. In this thesis
the protocol presented in [52] is selected as a representative of Buddy protocols be-
cause its assignment process requires less signaling cost than protocols in [51] and
[53], and it is not based on any routing protocols as are those in [54] and [55] which
depend on the Optimized Link State Routing (OLSR) [58] routing protocol. Moreover,
it shows an even distribution of free addresses among nodes because a new node
should select an agent node which owns more free addresses. Furthermore, its function
for searching for free addresses obviates a direct search in the whole network. In addi-
tion, it solves critical issues such as message losses, abrupt node departure and net-
work partitioning/merging. Finally, the functions and algorithms of the address auto-
configuration are well described in this protocol. Basically, the assignment process in
this protocol uses a handshaking mechanism between two neighboring nodes; a re-
quester (the node requesting an IP address) and an allocator (the node that actually as-
signs the IP address). In MANETs a requester may have many neighboring nodes and
the process starts by sending a broadcast request (IPAddressRequest) from the re-
quester. Upon the receipt of this message every neighboring node checks its free IP
address (free_IP) set and responds by sending a corresponding reply message; i.e. it
sends an IPAddressAvail message if it has free addresses, otherwise it sends the NULL
IPAddressAvail message. After collecting all messages sent by the neighboring nodes,
the requester selects its allocator based on all received free_IP sets as follows:

o If there are non-empty free_IP sets, the requester selects the neighbor with
largest block of free addresses as its allocator. In this case the requester sends
an AllocatorChosen message with the selected allocator’s IP address to all its
neighbors. Upon the receipt of this message by the non-selected neighbors they
know that their blocks are available to be used in another assignment process.
Thus, it is ensured that nodes not chosen as the allocator get back their offered
address blocks. In contrast, the selected allocator has to mark its offered block
as assigned and it sends IPAddressAssign message with the proposed block to
the requester. When the requester receives this message it assigns to itself the
first address in the block and defines the remaining addresses as its free_IP set.

o Otherwise, the requester selects randomly as its initiator one of the neighbors
which has no free block. This case triggers a process called expanding ring
search in which the initiator has to search in other nodes for free addresses, by
sending an IPAddressInfoRequest message to all neighbors hop by hop. It
searches first among the nodes of its one hop connections. If it finds free ad-

23

 Chapter 2: Address Auto-Configuration

 2.3 Proposed Classification of Stateful Protocols

dresses it stops the search; otherwise it increases the search by one hop and re-
peats the process until it finds free addresses. When the allocator finds free
addresses it continues with the configuration of the requester.

In this protocol there may possibly be no free addresses in the network because all ad-
dresses have been assigned or some nodes have left the MANET without releasing
their IP address and/or free_ip set. To solve the leak of IP address space due to the
graceful departure of some nodes, the allocator in the expanding ring search must
reestablish the presence of allocated addresses by using a “reclamation of IP address”
process when it finds no free addresses. After this, it determines the addresses of the
nodes that failed to respond during the expanding ring search. This means that every
node in the network has to respond the allocator performing the expanding search,
which results, of course, in signaling overhead especially when many allocators try to
perform this process simultaneously. Moreover, most messages between the allocator
and the other nodes in this process are unicast messages, which may not be suitable for
high mobility scenarios.

• Local only assignment decision: as with Local first approaches, each node owns a
block of the available free addresses. Basically, by using a special function in Local
only, the node is able to define its free IP addresses. In contrast to Local first ap-
proaches, the node here is responsible only for the information of its free address
block. This means that there is no need to save the state of other blocks managed by
other nodes in a network. Of course, this can save on node resources such as memory
space; however, it leads to low capability of IP management functions such as the re-
use of released addresses and the detection of abrupt departures.

A Prophet protocol [59] is an example of such mechanism, where only a local connec-
tion among neighboring nodes is needed during the assignment process. In principle,
the Prophet function enables a configured node to calculate a set of unique addresses
by using a seed and its IP address. So, if a new node wants to join a network, it sends a
request message over one hop to its neighboring nodes and waits for a response from
any of them. Basically, each configured node from the neighborhood which receives
this message replies by sending a configure message and updates its own state accord-
ingly. Depending on the information contained in the reply message, the new node
configures itself with a unique IP address, initial state value, and NID which is a vari-
able selected by the first node in the network. Because no acknowledgement is needed
from the new node, Prophet suffers from possible exhausting of IP address space and
(when a node reassigns the allocated addresses) consequent collisions. This means that
it is only suitable for short live of networks which utilize IPv6 because of its huge ad-
dress range. The Prophet problem, however, increases dramatically in scenarios when
a new node sends more than one request message. This may happen in case of unrelia-
ble connections or in the presence of spoofing attacks. Therefore, in [60], the author
improves the Prophet protocol by adding an acknowledgment message telling other
nodes to keep any of their available addresses that are not selected by every requester.

24

 Chapter 2: Address Auto-Configuration

 2.3 Proposed Classification of Stateful Protocols

Finally, because Prophet has no table of configured nodes it has difficulty handling is-
sues such as abruptly departing nodes and partitioning/ merging networks.

Similarly to Prophet, the authors in [61] suppose that a new node is able to get a free
address from one of its neighboring nodes. In MANETs this is not feasible due to limi-
tation of the address space which in this protocol is divided and distributed among
configured nodes. This means that in some nodes there may be no free address space.
Here, the authors fail to provide a solution for the case when only one neighbor with-
out free addresses is a neighbor for the new joining node. Moreover, this protocol fails
to cope well with the abrupt departure of any father of a child node because the detec-
tion of that forces the child node to release its address and rejoin the network. This
means that the node must search again for a new father. The obvious result is in-
creased signaling cost and possible interruption of the ongoing communication in the
network.

For each category of stateful auto-configuration approaches mentioned above, the address as-
signment features are compared in Table 2-2.

Table 2-2: Analysis of stateful auto-configuration approaches

 Approaches

Features

Single
manager per

network

Single
manager per

cluster

Global
assignment

decision

Local first
assignment
decision

Local only
assignment

decision

Mechanisms - Logical
clustering

Physical
clustering -

Average signaling cost
& assignment latency HIGH HIGH/

MEDIUM MEDIUM Very HIGH LOW/
MEDIUM Very LOW

Possible detection of
abrupt departing nodes YES YES YES YES YES NO

Coupling degree be-
tween address unique-
ness and update process

HIGH MEDIUM HIGH Very HIGH LOW NULL

Periodical Synchronisa-
tion process YES YES YES NO NO NO

Robust against Packets
loss HIGH MEDIUM HIGH LOW MEDIUM HIGH

Robust against Nodes
loss LOW MEDIUM LOW HIGH HIGH HIGH

Scalability Very LOW LOW MEDIUM LOW HIGH Very HIGH

25

 Chapter 2: Address Auto-Configuration

 2.4 Conflict Resolution Mechanisms

As the table makes clear, the local assignment decision approaches outperform other ap-
proaches in most assignment features, especially signaling cost and assignment latency. This is
because the whole assignment process is achieved mostly between a new node and one of its
neighboring nodes without a need for periodic synchronization among nodes, additional signal-
ing overhead is absent. However, such synchronization in turn does make the centralized ap-
proaches more robust against packet losses. The down side of centralized approaches is that they
may not cope with the lack or loss of the central node which is responsible for all assignment
process, and are thus unsuitable for scenarios with high speed mobility nodes.

Because local only approaches do not make use of a table including up-to-date information
for every configured node in the network they are more suitable for scalable networks. They are,
however, poor at handling some issues such as the detection and the address reuse of abruptly
departing nodes. The table shows that the local first assignment decision approaches are able to
solve this problem but they have to pay by higher cost than that in the local only approaches.

2.4 Conflict Resolution Mechanisms

The address conflicts referred to in this section differ from conflicts arising during the as-
signment process of new nodes. Here, it is a question of when all nodes in a network have been
assigned unique addresses and the address conflicts have arisen due to the partitioning /merging
of networks, as illustrated in Figure 2-3. Efficient detection and resolution of such conflicts is
essential: an address maintenance function is crucial in auto-configuration protocols. These
methods are divided into the individual and collective types, depending on their way of defining
address conflicts and changing the addresses when the networks merge, as presented in Fig-
ure 2-4.

Figure 2-3: Address conflicts due to the merger of two networks

3

6

4

9

0
2

1 3

26 9

4 0

5

7

01

8
9

2

0

2

5

1 9

8
Address
conflicts

Merging networks

Network 2Network 1

26

 Chapter 2: Address Auto-Configuration

 2.4 Conflict Resolution Mechanisms

Figure 2-4: Resolution mechanisms of address conflicts in case of merging networks

2.4.1 Individual methods

The main principle here is to change only the addresses of conflicted nodes in any merged
network. In the individual method, each address conflict detected by the node which is responsi-
ble for handling a merger should be solved individually. Basically, this node may be the border
node which has detected the merger, or another predefined node in the network such the manager
node in protocols that adopt the centralized approach. In both cases, the responsible node has to
search in its network for every node with a conflicting address, then, either assigns new address-
es to each of them or tells each of these nodes to search for new addresses by themselves. There-
fore, the main function in this method is how the nodes of conflicting addresses are to be de-
fined. Usually, the node information maintained in address tables or routing tables is used to
permit a comparison between any received address data and the information in those tables. The
conflicting nodes can then be detected and the conflict resolved. Depending on the kind of table
used, two approaches can be defined: address table-based and route table-based.

• Route table-based: here the nodes of conflicting addresses can be determined by a
check on the information in routing tables utilized in routing protocols. This means
that auto-configuration protocols following this approach must couple with the routing
protocols utilized in the network. Usually the auto-configuration protocols following
this approach are built to work with certain routing protocols (proactive and/or reac-
tive routing protocols). For example, the auto-configuration protocols presented in
[36] , [62] and [63] depend on Optimized Link State Routing (OLSR) [58] which is a
proactive routing protocol, while the protocols presented in [64] and [34] are working
on the Ad Hoc on Demand Distance Vector (AODV) [65] protocol which is a reactive
routing protocol. In some cases, the auto-configuration protocols may support more
than one routing protocol such as the WDAD protocol [35] which can work with both
OLSR and Dynamic Source Routing (DSR) [66] protocols, or PACMAN which sup-
ports OLSR, AODV and Fisheye State Routing (FSR) [67] protocols. Basically, when
there are two identical addresses with different Network IDs, those auto-configuration

Conflict Resolution
Methods

Individual Collective

Address table-basedRoute table-based Uniform changingCasual changing

27

 Chapter 2: Address Auto-Configuration

 2.4 Conflict Resolution Mechanisms

protocols can detect possible conflict by analyzing route messages used by the ongo-
ing routing protocols. Then, to solve the conflict each of the conflicting nodes is in-
formed to change its address. Although this is apparently the optimal approach be-
cause only the conflicting nodes have to change their addresses, there is high addition-
al communication overhead to find and communicate with those conflicting nodes so
that the decision can be made on which nodes have to release their addresses. Moreo-
ver, this approach results in additional delay within the routing process due to the pro-
cessing time that a node has to spend checking every routing packet passing through
this node. Nevertheless, the main disadvantage of any auto-configuration protocol fol-
lowing this approach is the hard coupling to a particular routing protocol. In MANETs
this is not desirable, because of the need to modify or change routing protocols. More-
over, there is no guarantee that the approach will be at all applicable in MANETs due
to the wide variety of routing protocols which have been developed for critical scenar-
ios.

• Address table-based: if a node detecting a merger with another network has infor-
mation (i.e. an address table) for all configured nodes in its network it can define the
nodes of conflicting addresses and may be able to define the way of changing their ad-
dresses. Otherwise, the detecting node has to search for another node which has the
task of handling the merger in the network because it owns an updated table of all
nodes. This is the case with the protocols in [38] and [46]. Of course, the first method
(if the node has up-to-date information) is faster with less overhead because there is no
need to search for another node. The information of address table may be up-to-date
before the node detects the merger (which is usually the case); otherwise, such infor-
mation must be collected by the node during the merger. The two cases are, then:

o If the address table is up-to-date before the merger, the conflicting addresses in
merging networks can be detected directly. This happens in the MANETconf
protocol [39] which allows the border nodes in the merger to detect any con-
flicts by exchanging their address tables which are, by the concept of this pro-
tocol, up-to-date. After doing a comparison, these nodes can select the conflict-
ing nodes which must release their address and search for new ones. There are
criteria for the selection of the releasing nodes such as the conflicting node
with fewer and/or short-lived TCP connections, which would be the one to ac-
quire a different IP address. Because this protocol does not depend on any oth-
er protocol it will be able to work in any network. However, it suffers from
signaling overhead: the conflicting nodes have to search by themselves for new
addresses, and, every node obtaining new address has to inform all nodes in the
network about the new addresses so that the address table is kept up to date.
The Filter-based Addressing Protocol (FAP) protocol [68] is similar to MA-
NETconf in that it needs the current set of allocated addresses. Basically, the
information of all allocated addresses is stored compactly by using a filter. In
this protocol, when border nodes detect a merger they exchange their filters.
The number of conflicted address in each network can be detected from a

28

 Chapter 2: Address Auto-Configuration

 2.4 Conflict Resolution Mechanisms

comparison of the filters. Therefore, each border node floods its network with
“Partition” message including the filter used by the other network. Upon re-
ceipt of this message, the conflicting nodes in a small network have to release
their addresses and start a new allocation process. Depending on both filters
the node randomly chooses an available address in both filters and floods the
network with an AREQ message to allocate the new address. If there is a con-
flict with the selected address the node initiates the process for another address.
If there are many conflicted addresses in the small network, the protocol suf-
fers from signaling overhead. Moreover, the simultaneous assignment of dif-
ferent nodes makes address duplications highly probable because correct as-
signment in this protocol depends mainly on reliable flooding of AREQ mes-
sages. To decrease the duplication probability, each AREQ message is sent Nf
times – again a cause of additional signaling cost.

o Otherwise, if the address table is not up-to-date, each border node detecting a
merger has to search in its network for up-to-date information of all configured
nodes. After that, it can define the conflicting addresses and assign to them
new addresses as is the case in the Buddy protocol [52]. Because each node in
Buddy is able to assign addresses to new nodes, the address table may not be
up-to-date. Thus, the node detecting a merger asks other nodes in its network
about assigned addresses. In this mechanism the node floods a query message
to collect the network configuration information in terms of IP addresses as-
signed to the nodes and their respective free IP sets within its network. By ag-
gregating all the information obtained from the response messages sent by all
configured nodes, the node exchanges its table with the table of other border
node which belongs to the other merging network. After comparing both ta-
bles, the node detects the conflicting addresses and the free addresses in the
network. Based on this information, it performs a network-wide broadcast of a
message which contains the new addresses of all invalidated addresses. After
that it has to redistribute all free IP addresses among all the nodes in the
merged network by sending an update message. Mainly, this protocol suffers
also from high signaling overheads during the first phase (that of collecting the
information of other nodes in the network). Moreover, if the information of the
new addresses is not received by the conflicting nodes which may be many
hops further from the sender, these conflicting nodes must repeat the merger
process which adds protocol overhead.

2.4.2 Collective methods

In contrast with those following the individual method, the protocols using the collective
method solve the conflicts by changing all the addresses in one of the merging networks. The
mechanism is that one of the merging networks has to tell its nodes to release their addresses in
order to get new addresses. This method is divided into two approaches according to the way the

29

 Chapter 2: Address Auto-Configuration

 2.4 Conflict Resolution Mechanisms

new addresses are acquired - “casual or uniform” changing as depicted in the Figure 2-4.The first
phase in the two approaches is identical: the node detecting the merger with another big network
has to send a broadcast message in its network. Upon receipt of this message node activity varies
according to the approach:

• Casual changing: this is when all nodes in one of merging networks have to change
their addresses and search for new addresses by themselves. Usually, each node from
the small merging network has to initiate a new address assignment process. This
may, of course, lead in high signaling cost. Moreover, there is no guarantee that the
nodes in this network will find a neighboring node possessing free addresses. High la-
tency results, because every node need to search in further hops for free addresses.
The Prophet protocol [59] is an example of such a case. In it, all nodes in a small
network (i.e. one with a small number of nodes), after the merger with a big network,
has to release their addresses and to obtain new ones from the large network. Similar-
ly to Prophet, the Quorum protocol in [49] forces the nodes in a merging network
with few nodes to release their addresses and to obtain new ones from the large net-
work. Another example of casual changing of all addresses in one of the merging
networks is presented in [61]. In this protocol the nodes form a tree topology, named
the address tree. Basically the root node in this tree is responsible for any merger de-
cision. This means that any node from a network receiving from a neighboring node
an advertisement (Adv) packet including a different MANET ID has to inform its root
node by sending a Detection_merge packet. The root (first detector) in this case
should communicate with the other root node which belongs to another merger net-
work. After a successful connection, the other root should change the addresses of all
nodes in its network according to the available free addresses sent by the first detector
root. The precise details are that each node in the network will get a new address from
its father node wherein the root is the father for k child nodes and each child is a fa-
ther for other k nodes. This mechanism suffers from high latency and signaling cost
when the child nodes are further than one hop from their father. Moreover, unreliable
multi-hop connection may lead to additional issues such as the detection of new mer-
ger among the nodes of same network. Finally, this mechanism depends mainly on
periodic update between each pair (father, child), which in turn adds additional sig-
naling overhead to the network.

• Uniform changing: in this approach the broadcast message includes information on
new addresses of all nodes in one of the merging networks. This means that each
node in one network will know its new address when a border node detecting a mer-
ger broadcasts a merger message. The efficient way to achieve such change seamless-
ly is by making a uniform change to old addresses, e.g. by modifying (i.e. increasing
or decreasing) a part of all node IP addresses in one network, thus “uniformly” chang-
ing the addresses. Of course, such a uniform approach helps minimize the number of
messages needed to change all IP addresses in a network because a node has no need
to search for a new address when it receives the merger message instructing it to
change its IP address. In addition, this approach supports other functions in MANETs

30

 Chapter 2: Address Auto-Configuration

 2.4 Conflict Resolution Mechanisms

such as the routing function. Basically, a route in a routing table becomes invalid if
there is any change in IP addresses representing the route entry. If a discovery process
is required for the updating of each route in a routing table, such changes lead to a
high signaling cost. The key advantage in the uniform approach is that an address re-
configuration does not invalidate any cached routes because new changes of IP ad-
dresses in each route are known by each node and can be easily modified. Neverthe-
less, finding a good means of changing all addresses uniformly is the main issue in
protocols following this approach. For example, the authors in [48] present the
CoReS protocol in which uniform changing is done by adding offset to all node ad-
dresses in one network (the smaller one). However, the solution shows low efficiency
because only the cluster head nodes (CR-nodes) are responsible for detecting and
solving the duplication resulting from the merger of the two networks, i.e. if only
non-cluster nodes (child nodes) from two different networks are within transmission
range of each other, they will not be able to detect the merger. In this case each node
assumes abnormal cases and sends Warn message to its default CR-node. In the
CoReS protocol, if a CR-node receives a Warn message or detects a merger with an-
other network two kinds of messages are to be sent through the combined network.
First the CR-nodes of the two networks have to synchronize with each other, by ex-
changing the information of their tables and parameters. This step is very important to
help define the possible address conflicts and select the proper offset by which the
nodes belonging to a conflicting rage should modify their addresses. Then, every CR-
node that has to change its address range is responsible for informing its child nodes
about the required changes. This process takes a long time and increases the signaling
overhead in a network. Moreover, the success of the process requires reliable com-
munication among the CR-nodes and, also, between each CR-node and its Child
nodes. Finally, CoReS has no limitation on the number of bits for an address because
it can expand address size as a network grows. This in turn renders the solution in-
compatible with the IP architecture which supports a fixed length of 32 or 128 bits.

Table 2-3 shows the main features of conflict resolution mechanisms used in MANETs. In
this table we can see that uniform changing of address conflicts is preferable to other mecha-
nisms because its average signaling cost and reassignment latency is low. Moreover, it requires
no coupling with ongoing routing protocols and it allows a node detecting a merger to assign
new addresses to conflicting nodes. Finally, because there is no need for mutual exchanges of
signals among conflicting nodes to decide which of them is to be changed, the algorithm of this
mechanism is low in complexity. However, most auto-configuration protocols which utilize this
mechanism are stateful and belong to the centralized approaches which are unsuitable for many
scenarios in dynamic ad hoc networks. Therefore, there is a need to find a mechanism which al-
lows distributed protocols that follow this mechanism.

31

 Chapter 2: Address Auto-Configuration

 2.5 Network Partitioning Detection

Table 2-3: The features of conflict resolution approaches in MANETs

 Approaches

Features
Route table-

based
Address table-

based
Casual chang-

ing
Uniform
changing

Average signaling cost &
reassignment latency MEDIUM MEDIUM / HIGH Very HIGH LOW

Possible address reas-
signment by the node de-
tecting the conflicts

NO YES NO YES

Coupling with routing
protocol YES NO NO NO

Algorithm Complexity HIGH MEDIUM LOW LOW

2.5 Network Partitioning Detection

In MANETs, network partitioning takes place and if all partitions keep working independent-
ly there will be no critical problem (i.e. no resulting address conflicts). However, if later those
partitions merge together again, the problem of conflicted addresses may arise. This problem can
be clarified in two cases as follows:

• The first case arises if two nodes from two independent partitions allocate identical
free addresses to new nodes. This may happen when every node has permission to al-
locate a free address from a table containing all available addresses in the network, as
in the MANETconf protocol. Here, if two nodes from different partitions allocate
identical addresses at the same time there will be no rejection from the other nodes in
either partition.

• The second case is when, before the merger with the other partitions, a partition reas-
signs addresses which have been regarded as abrupt departure nodes because they be-
long to the other unreachable partitions.

The detection of such conflicts may be difficult because each partition has identical network
configuration (network ID). Therefore, partitioning detection is required so that each partition
can be assigned with unique identifier. This will enable them to be regarded as different net-
works, distinguished by their unique identifiers. In this case a merger can be detected and the
merger conflicts can then be handled by using one of the methods described in the above section.

Basically, there would be no assignment of identical free addresses in different partitions in
protocols following local first or local only approaches because every node in those protocols
owns a disjoint block of free addresses. However, if there is a need to reuse the addresses of ab-

32

 Chapter 2: Address Auto-Configuration

 2.5 Network Partitioning Detection

ruptly departing nodes (nodes not found, i.e. missing node) due to the lack of available address-
es, the detection of the network partitioning is important.

Because the detection of the partitioning may be a complex and bandwidth consuming process
some authors depend on the tables of routing protocols to detect the departure of nodes, as de-
scribed in [54]. In MANETs, the dependency on the routing table information is inappropriate
because there is such a wide variety of routing protocols. Aside from the routing service, the par-
titioning detection can be achieved in a proactive or reactive means, depending on the impact of
the partitioning on the assignment process of each protocol.

• Proactive detection: protocols which utilize synchronization among nodes such as
centralized protocols (one manager per network class or one manager per cluster
class) can proactively detect any partitioning in the network. After the detection, each
partition has to change its partition identifier and select the manager in the partition (if
not already found). In this way, each partition can resume the allocation of free ad-
dresses or reallocate the addresses which are of nodes detected as missing. Of course,
the detection of a partitioning increases the signaling cost in the network. Moreover, if
the partitions merge again later, another change needs to be done. Therefore, the pro-
tocols using proactive detection will perform poorly in networks with highly frequent
partitioning and merging.

• Reactive detection: in this mechanism, applied by most protocols following the dis-
tributed approach, partitioning in a network will be detected when there is an event
such as the assignment of free address in the network. In reactive detection there are
two basic methods, reflecting the relation between the assignment process and the kind
of assigned address (an address not assigned before or an address of a missing node):

o During the assignment of any free address: the protocols following this meth-
od require an acknowledgment in every assignment process from all config-
ured nodes, similarly to protocols from the global assignment decision class.
Basically, the abrupt departure nodes (signifying partition) can be detected by
any node assigning a free address to a requesting node. In MANETconf, for
example, if there is a partitioning in the network, the nodes in every partition
with no response during the assignment process are considered as abruptly de-
parting nodes and their addresses will be cleaned out of the allocation table to
permit the reuse in the future. To prevent possible collisions after the merger,
the absence of the lowest IP address node in a partition is the key for changing
the partition identifier. This means that only the partition with no such node
will change its identifier. This, however, may cause address duplication in a
scenario when only the partition with the lowest IP address node makes the ad-
dress assignment process. In this case, this partition will reuse the nodes from
another partition (in which the node with the lowest IP address is missing)
without the need for a change of the partition identifier. If later the both parti-
tions merge, there is no way to detect the possible address conflicts. To solve
this problem, the authors of MANETconf protocol introduced an additional
method (proactive) in which this node (with lowest IP address) periodically

33

 Chapter 2: Address Auto-Configuration

 2.6 Scenario-based Comparison

broadcasts messages advertising its presence to all nodes in the partition. This
in turn increases the signaling overhead in the network. Contrary to MA-
NETconf, the FAP protocol uses flooding during the address assignment of
every new joining node to modify the partition identifier (partition signatures),
which depends on a filter representing the presence of all nodes in a network.
However, in this mechanism if two partitions of a network assign identical ad-
dresses, their signature will be identical and the results will be address conflicts
if the two partitions come back together. Moreover, the reuse of the abrupt de-
parture of nodes in each partition is solved by flooding an AREQ message Nf
times by every node when the filter in the partition is full. This overcharges the
network in terms of control load because all nodes have to send this message.

o During the reassignment of a missing address: in a network, if a configured
node fails to assign a free address from its block, or from any block of other
nodes in the network, to any new node, it tries to reuse the addresses of the
missing nodes, as in protocols from the local first decision class. The partition-
ing in this case can be detected when the node asks about the existence of the
other configured nodes in the network, as described in the Buddy protocol. If
the node detects the absence of many nodes it supposes there is a partition in
the network. In this case, the addresses of missing nodes can be reallocated and
the network identifier in this partition should be changed to avoid any address
conflict if the partitions merge later. Such mechanism is, of course, more effi-
cient and suitable for scenarios with highly frequent partitioning and merging
networks.

2.6 Scenario-based Comparison

For the purposes of a comparative analysis of protocols which follow stateful approaches, rep-
resentative protocols from each class of the classification proposed in Section 2.3 are here select-
ed. Representing the centralized approach is ABA (one manager per network) together with two
“one manager per cluster” protocols, CAB with its physical and CoReS with its logical method.
MANETconf is used to represent the distributed approach in respect of global assignment deci-
sion methods, and for the local only and the local first assignment decision the representatives
are Prophet and Buddy respectively.

The focus is on these representatives because in their classes they show better performance as
to signaling cost (number of messages) required in the address assignment, independence of rout-
ing protocols and efficiency in their partitioning/merging mechanisms (as presented in the above
sections). For example, Buddy is selected from its class of protocols because it needs low signal-
ing cost (a minimum of 4 signals between new node and its neighbors) and it utilizes a good
mechanism to solve issues such as node departure partitioning/merging without any dependence
on routing protocols. Because the assignment process in centralized approaches is very similar,
the CoReS and CAB protocols, which utilize a good merging mechanism, are the ones selected.

34

 Chapter 2: Address Auto-Configuration

 2.6 Scenario-based Comparison

Prophet is a natural choice because it has the fastest addressing protocol among all stateful pro-
tocols. So, for the comparison of the selected protocols four scenarios are now defined, repre-
senting the main aspects of the nature of MANETs. The four scenarios vary as to density, mobili-
ty, scalability and heterogeneity, see below. Figure 2-5 is a schematic representation of the suita-
bility of the stateful protocols.

• Density (nodes per unit size): the main factor here is the number of nodes per unit or
transmission range. Usually, increasing node density is the main reason for high colli-
sions and contentions in a network. The assignment process of protocols with high
signaling cost such as MANETconf protocol will be particularly sensitive to this fac-
tor. In addition, protocols such as ABA and CBA may suffer in this case if multiple
nodes join the network simultaneously. This is because one allocator is responsible in
an area crowded with nodes. Protocols such as Buddy, Prophet and CoReS may work
better because more than one node may be responsible for assigning new address.
However, Prophet outperforms other protocols because the assignment process needs
less signaling cost than all other protocols.

• Mobility (average nodes speed): here it is assumed that the nodes move inside the
network without causing network partition. This means that the direct connection be-
tween two nodes may be interrupted due to the mobility but indirect connection will
always be possible via intermediate nodes between the two communicating nodes. In
such case centralized protocols which utilize synchronization mechanism suffer great-
ly because the connection between an allocator and other nodes belonging to this allo-
cator is not always possible. Basically, such protocols add high signaling cost to en-
sure uniqueness among nodes in high mobility scenarios. Finally, Prophet is more
suitable than the other protocols because its local assignment process has less signal-
ing cost.

• Scalability (area size of distribution area): the main factor describing scalability in
this scenario is the number of hops between the two furthest nodes in the network.
This means that the nodes in the network are distributed over a large area, in which
many hops are constructed. Such a case affects mainly the assignment process in
which allocator nodes may be many hops further from requesting nodes. Scalability is
worst addressed by the ABA and CoReS protocols because in them an allocator in
many cases may be many hops further from a new node requesting an address. Of
course MANETconf, too, is less than adequate because the decision of an address al-
location is done globally.

• Heterogeneity (partitions & merging networks): when a network frequently parti-
tions and/or merges with other networks, the issues of duplicate assignments and re-
solving of address conflicts may arise. The case here may be difficult when infor-
mation of all nodes in the network is not available – this applies to the Prophet proto-
col which follows local only method. In this protocol all nodes in a network must
search by themselves to change their addresses after each merger. At the same time,
when periodic synchronization for up-to-date information is needed, the frequent por-

35

 Chapter 2: Address Auto-Configuration

 2.6 Scenario-based Comparison

tioning and merging add high signaling overhead for protocols such as ABA and CAB
to solve missing nodes and avoid duplicate assignment later.

In the figure, it is obvious that none of those protocols are suitable for all the scenarios stud-
ied. For example Prophet works very well in the first three scenarios because it does not need
information concerning other nodes in a network, but for just that reason it has drawbacks in
merging and partitioning scenarios. Therefore, there is a need to design an efficient protocol
which may work properly in all the different scenarios, as shown in the figure by the orange
dashed line. It is with the aim of meeting this need that this thesis presents the proposed Logical
Hierarchical Addressing (LHA) protocol which will be described in the next chapter.

Figure 2-5: Four-dimension comparison of representative stateful protocols

Scalability
(area size or distribution area)

Heterogeneity
(partitionings
& mergings)

Mobility
(average node speed)

Density
(nodes per unit

area)

Prophet (local decision, function-based)

CoReS (logical clustering)

CBA(physical clustering)

MANETConf (global decision)

Our goal

Buddy (local decision, table-based)

ABA (single manager per network)

Centralized approaches: Distributed approaches:

 LHA Protocol Chapter 3

This Chapter is a detailed description of the new Logical Hierarchical Addressing (LHA) pro-
tocol. LHA is a stateful auto-configuration protocol applying a distributed approach with local
first assignment decision. The protocol utilizes a new function to distribute the available address
space among all nodes in a network. By means of this function, every node in the network knows
the available space of other nodes. This in turn supports the recovery function in case of address
space leak due to the frequent joining/departure of nodes. To enable reassignment of allocated
addresses, LHA makes use of certain lists which will be described later in this chapter. Because
LHA divides the Host ID (HID)1 of IP address structure logically it can efficiently handle issues
such as the partitioning and merging of ad hoc networks.

The sections are organized as follows. Section 3.1 describes the required features on which
LHA protocol is designed. The basic idea of the LHA protocol is in Section 3.2, and
tion 3.2 3.3 presents the address assignment function designed for LHA. Section 3.4 gives an
overview of the data structure required in LHA. Then the main LHA algorithms, those of node
joining, network merger, network partition and node departure, are presented in detail in Sec-
tions 3.5 to 3.8.

3.1 Required Features of LHA

LHA must efficiently handle the address assignment and maintenance tasks for every possible
event in a network. In MANETs, a distinction is made between the events which may emanate
from a single node and from a group of nodes (referred as a network or a portion). While the
events of a single node are known as joining and departure of a node, the events of a group of
nodes (network) are described as merger and partition of networks. Figure 3-1 represents the
functions/features which are required in LHA to efficiently handle each of those events, and
which dictate the design of the protocol.

1 In IPv4 address HID could be referred to sometimes host number as used in [94] or host/local address as used in [91].

37

 Chapter 3: LHA Protocol

 3.1 Required Features of LHA

Figure 3-1: LHA required function/features

• Joining of nodes
o Local address assignment: to avoid high assignment latency and reduce the

signaling cost.

o Handle simultaneous requests: to serve different nodes joining the network at
the same time a configured node which may get two requests from different
nodes should be able to serve them.

o Unique address assignment: to avoid address conflicts in the network.

o Multi-hop address assignment: to avoid a lack of free addresses at the neigh-
boring node of a joining node, which could arise because the number of free
addresses at each node is limited.

o Reliable update: to provide every node with an overview of the number of all
nodes in the network, which in turn enables accurate decision in every possible
scenario, e.g. reallocating of missing addresses in network partition scenarios.

• Departure of nodes
o Local Handling: to enable a fast departure process by ensuring that it is the

neighboring nodes of a departing node, which are responsible for handling the
departure request from this node.

o Address Reuse: to avoid a lack of address space during frequent join-
ing/departure of nodes and to ensure that the reused addresses do not cause lat-
er any conflict in the network.

38

 Chapter 3: LHA Protocol

 3.1 Required Features of LHA

o Handle alone standing node: to avoid inaccurate data update when a node
stands alone (no connection to another nodes in the network).

o Detect abrupt departure (missing nodes): to enable the reassignment of the lost
address or addresses when there is a need for that.

• Partitioning of network
o Low cost detection: to avoid the high signaling cost due to periodical an-

nouncement, the detection of network partition should take place on request.

o Distributed solution: to make the solution robust against possible communica-
tion faults with decreased detection time, each node in the network should be
able to detect and handle any partitioning.

o Seamless reconfiguration: after the detection, a new configuration may be
needed in each partition. To avoid unnecessary communication overhead and a
large number of table changes, there is a need for seamless way of reconfigur-
ing the partition nodes.

o Conflict-free rejoining: in one partition it would in principle be possible for all
nodes of other partitions to be detected as missing nodes. Therefore, the reuse
of IP addresses in one partition may lead to address conflicts if the partitions
reunite after some time has elapsed. In this case there is a need for a good
method of preventing such address conflicts.

• Merger of networks
o Fast detection: Because there may be numerous address conflicts when net-

works merge, the task of detecting the merger should be done as fast as possi-
ble.

o Handle address conflicts: After the detection, the hard task required is to find
the conflicts and resolve them. Robust completion of this task is vital to the re-
liability of the protocol.

o Distributed solution: to cope with many and varied merger scenarios, every
node in a network needs to be able to detect and solve possible network mer-
gers.

o Simultaneous merging: one of the difficult merger issues is how to handle the
merging of more than two networks at a same time. Here there is a need for an
efficient mechanism which ensures a correct reconfiguration plan for the merg-
ing networks.

o Reliable update: Because the mergers involve much updating in the network
there is a need for a reliable update function to ensure a failure-free merger
process.

39

 Chapter 3: LHA Protocol

 3.2 Basic Idea

3.2 Basic Idea

In this thesis, the basic configuration principle of LHA, which is applied, is that each node is
able to manage a disjoint part of the available IP address space. This means that each node is
able to select, allocate, and assign unique addresses from its own block without getting permis-
sion from other nodes in the network. Because LHA handles only the available space of IP ad-
dresses, it is applicable to any block of IPv4 or IPv6 addresses. However to simplify and further
illustrate the assumptions underlying the present work, a block1 192.168.0.0 - 192.168.255.255
(192.168/16 prefix) of private IPv4 addresses [69] is used to address the hosts (nodes) within a
MANET. This means that in a private IPv4 address the available address size is 16 bits for each
node address (i.e. Host ID). For the efficient management of the available address space and to
solve issues such as partitioning and merging, LHA imposes the logical structure of the IP blocks
by dividing the Host ID into two parts, Hierarchical ID (HierID) and Hierarchical Host ID
(HHID) as shown in Figure 3-2. To explain how LHA deals with both portions, the next sections
show the functions of each of them. Basically, the selection of each portion size depends on an
assumption that in a network the occurrence rate of address assignment events (joining/departing
nodes) compared to the occurrence rate of the events of merging/partitioning networks is bigger,
wherein, this ratio is about 3:2. Thus, the size of the HHID must be bigger and is calculated on
the functions presented in (3.1 & 3.2). For example, if the value of HostID (16 bits) in private
IPv4 block (192.168/16 prefix) is applied to (3.1 & 3.2) LHA will define 6 bits for the HierID
part and 10 bits for the HHID.

Figure 3-2: IP address block in LHA protocol

In LHA the selection of unique addresses by the assigning nodes is achieved by utilizing an
allocation function (see Section 3.3.1). The main advantage of using this function is the even
distribution of available address blocks among configured nodes. Furthermore, it enables each
node to know the address blocks of other nodes and to identify the allocator of every address in
the network, which in turn helps in handling issues such as departing or missing nodes.

 HHIDbits = floor (2 * HostIDbits) /3) (3.1)

 HierIDbits = HostIDbits – HHIDbits (3.2)

1 The private blocks of IP addresses are allocated by Internet Assigned Numbers Authority (IANA) which can offer the private IP
blokes from the A, B and C classes

Network ID HierID HHID

Host IDNetwork ID

40

 Chapter 3: LHA Protocol

 3.2 Basic Idea

3.2.1 Hierarchical Host ID (HHID)

In LHA each node in a network belongs to a logical address hierarchy. The creation of an ad-
dress hierarchy is managed by the first node in each address hierarchy by selecting a unique
number from the range of HierID block. This means that all nodes from one hierarchy share the
same HierID number. Basically, LHA utilizes the HHID block to distinguish among all nodes
belonging to an address hierarchy; where it assigns a unique number, the HHID, to each node.

It is the basic idea in LHA that such an assignment process is achieved by letting the protocol
treats the HHID block of an address hierarchy as a set of disjoint sub blocks, wherein each con-
figured node belonging to this address hierarchy manages its sub block autonomously without
permission from other nodes in the network. In other words, any configured node is able to act as
an Address Agent (AA) which is responsible for serving a unique address to a new node (re-
quester). The AA node assigns one of its free addresses if it has any. Otherwise, it has to search
for a free one in the network. Basically, a requester has to select one of its neighboring nodes to
become its AA node. If no neighbors exist, the node supposes that it is the first node in the net-
work. In this case it has to create its address hierarchy by selecting a random number from Hie-
rID block (see following section for more details about the HierID function). After that, it selects
the value of its HHID randomly from the range [0-15] and is therefore called the 'root node ' and
its HHID is called ‘ROOT’ parameter. In addition, the root has to define a hierarchical Network
Identity (hNetID) parameter which may be its MAC address or a global unique identifier number
of 16 octets selected by way of Universally Unique Identifiers (UUIDs) [70]. LHA utilizes these
two parameters with HierID to identify each address hierarchy.

In the LHA approach, there are two additional roles for a network node: that of the predeces-
sor and that of the successor. The node, which provides an address to a requesting node (re-
quester) from among its free addresses, is called the 'predecessor' for this requester. Analogously,
the requester is called the 'successor' of the node from which it has acquired a unique address.
According to this relation LHA defines a number called the hierarchical level (Hl) which indi-
cates the level of a node in its address hierarchy, wherein, the Hl value of a node increases the Hl
of its predecessor by 1 and the Hl of the root node is set to 0. Finally, every predecessor can have
a number (M) of direct successors, whereas every node will own only one predecessor. In this
case, a logical address hierarchy is built in the network as shown in Figure 3-3.

41

 Chapter 3: LHA Protocol

 3.2 Basic Idea

Figure 3-3: Example of the logical address hierarchy in LHA

In this figure the example is an address hierarchy where M, the maximum number of free ad-
dresses per node, is set to 3. This means that a configured node managing an address block can
assign up to 3 requesters with unique IP addresses. As shown, the Hl of a node is defined by the
node location in the address hierarchy where Hl of the root is set to 0. In the figure the arrow
indicates the logical connection from a predecessor to its successor. However, the lighting sym-
bol in the figure indicates a physical connection between two nodes and is used to explain the
configuration process of the new joining nodes. As mentioned above, for every node in a hierar-
chy, the root node selects the HierID which is a part of every IP address of these nodes; in this
example it selects 7 randomly from a range [0-63]. Notice that the Hash and MN parameters are
utilized for the merger aspects, see next section, and are initially set by the root as shown in the
figure. In addition, only the root node selects its HHID (ROOT) randomly from a range of [0-15];
in the figure the value is selected as 4. The HHID values of other nodes are, in contrast, calculat-
ed on the basis of the assigning Equation (3.3) discussed in Section 3.3.1 . To explain this in the
figure it is assumed that the new nodes (node “a” and node “b”) are located within the transmis-
sion ranges of nodes (7:11 & 7:7) respectively. Because a new node has to select one of its
neighboring nodes as an Address Agent AA node, it will be the task of nodes (7:11 & 7:7) to
assign a unique address to the requesting nodes. In the example, the HHIDs of new nodes (a & b)
are selected in accordance with the Equation (3.1) as 7:26 and 7:14 respectively. Finally, every
node has to save the LHA parameters presented in Table 3-1.

7:7

Root Node
Level 0

New Node(b)

7:67:5

New Node(a)

7:4

7:13

Level 1

7:127:11

Level 2

Level 3

AA Node for the
New Node(b)

AA Node for the
New Node(a)

(The address will be 7:26)

M = 3

7:14

Random selection
of the root HHID

HierID = 7 (rand 0 - 63); Root (rand 0 -15); Hash = x (rand of 18 bits); MN= 1

42

 Chapter 3: LHA Protocol

 3.2 Basic Idea

Table 3-1: LHA assignment parameters used by a node

Parameters Description

Hl The level of the node in the hierarchy

where Hlroot =0

Av The current available number of free addresses at this node

 where (0 ≤ Av ≤ M)

CN The current number of all configured nodes

where (0 ≤ CN ≤ 2HHID(bits size))

Seq The sequence number of the next available address in the assigning list

where (0 ≤ Seg ≤ M)

LN The current number of lost nodes

where (0 ≤ LN ≤ 2HHID(bits size))

M The maximum number of free addresses that a configured node may own

where (0 ≤ M ≤ 15)

ROOT The HHID of the root node in the hierarchy

where (0 ≤ ROOT ≤ 15)

3.2.2 Hierarchical ID (HierID)

Using the HierID, LHA permits the creation of more than one logical address hierarchy in a
MANET as illustrated in Figure 3-4 which shows an example of a network including two address
hierarchies. This may happen if there is no possibility of assigning free addresses to requesters
because, for instance, that all available addresses have already been assigned. For example, sup-
pose that at first only the address hierarchy of HierIDx and ROOTx exists in the network given in
the figure. So, if a new node joins the network and there are no free addresses in the address hi-
erarchy of HierIDx , the AA node of the joining node will instruct it to construct a new address
hierarchy (y). Following the LHA algorithm, the HierIDy and hNetIDy parameters are selected as
described in Section 3.2.1 and the new node is defined as the root node ROOTy. After that, the
new root informs other nodes (from x address hierarchy) in the network about the configuration
of the new address hierarchy. Finally, each node in the network has to increase the index of Mer-
ger Networks (MN) by one and save the information of both hierarchies in a table called the

43

 Chapter 3: LHA Protocol

 3.3 Address Assignment

merging list (see Table 3-5). Thus, if any other new node joins the network it gets a free address
from the new root ROOTy and it will then be a part of the address hierarchy of HierIDy.

Figure 3-4: An example of two address hierarchies in a network

Because a network may include more than one address hierarchy, there is a need to assign to
this network a specific identity number which will distinguish this network from other networks
with identical HierIDs. This identity number helps mainly to solve merging issues when the
merging networks include one or more identical HierIDs. So to discover such cases, every node
in a network utilizes a new parameter called a “Hash” which is a hash value calculated from all
HierIDs saved in the merging table. The example in the figure shows this parameter where the
inputs of the hash function are the HierIDs (x and y) and the output is the ‘Hash’ value (z). Be-
cause each node in a network can calculate the ‘Hash’ value from its table, LHA supports a dis-
tributed function for handling network partitions and mergers as will be covered later in Sec-
tion 3.6 and 3.7.

3.3 Address Assignment

This section introduces the assigning function of LHA, which distributes the available address
space (i.e. HHID block) evenly across all nodes belonging to one address hierarchy and enables a
configured node to select and allocate from its sub block a unique IP address to a requester.

3.3.1 LHA Function

Let hAr, hAag and hAn be abbreviations referring to “hierarchal address (a number from HHID
block) of “root”, “agent” and “new node” respectively. Let ℎ𝐴𝑎𝑎𝑖 and 𝑠𝑠𝑠𝑖 be the address of the
agent that can offer an available IP address to node i and the sequence number of available ad-
dresses at the agent of node i respectively. Let M be the maximum number of available address at
any node in the networks. The LHA function that calculates the new address ℎ𝐴𝑛𝑖 of a node i can
be written as follows.

First Root in
the network

HierID = x
hNetID= a

HierID = y
hNetID= b

MN = 2

Hash = z

level = 0

level = 1

level = n

Second Root in
the network

MANET
ROOTx ROOTy

44

 Chapter 3: LHA Protocol

 3.3 Address Assignment

ℎ𝐴𝑛𝑖 = (1 −𝑀)ℎ𝐴𝑟+𝑀 ∗ ℎ𝐴𝑎𝑎𝑖 + 𝑠𝑠𝑠𝑖 , 1 ≤ 𝑠𝑠𝑠 ≤ 𝑀 (3.3)

3.3.2 Correctness of IP Address Assignment

• Given: Prior to an address assignment all the nodes have unique IP addresses.

• Assertion: Following the IP address assignment of LHA function all the nodes have
unique IP addresses and disjoint free IP sets.

• Proof: the assertion is proved when two different nodes assign IP addresses to new
joining nodes. Here it will be shown that each node is able to calculate a unique ad-
dress to a requesting node by using the LHA equation without having address conflicts
with any address that may be calculated by another node.

Here is a case to clarify the proof: two new nodes are joining a network as in Figure 3-5. Fol-
lowing equation (3.3), the new addresses for node i and j are given as (3.4) and (3.5) respective-
ly:

Figure 3-5: Assumption of address assignment for two new joining nodes

ℎ𝐴𝑛𝑖 = (1 −𝑀)ℎ𝐴𝑟+𝑀 ∗ ℎ𝐴𝑎𝑎𝑖 + 𝑠𝑠𝑠𝑖 (3.4)

ℎ𝐴𝑛
𝑗 = (1 −𝑀)ℎ𝐴𝑟+𝑀 ∗ ℎ𝐴𝑎𝑎

𝑗 + 𝑠𝑠𝑠𝑗 (3.5)

What is to be proved is that ℎ𝐴𝑛𝑖 ≠ ℎ𝐴𝑛
𝑗 when the new addresses are assigned by two different

agent nodes, say ℎ𝐴𝑎𝑎𝑖 and ℎ𝐴𝑎𝑎
𝑗 as shown in the figure, where ℎ𝐴𝑎𝑎𝑖 ≠ ℎ𝐴𝑎𝑎

𝑗 . Since the differ-
ence d between the IP addresses of pair (i, j) in the network will be in the range 1 to K −1 where
K is the maximum value of an address allowed for a node to use in the network, then the follow-
ing relations are true:

ℎ𝐴𝑎𝑎𝑖 = ℎ𝐴𝑎𝑎
𝑗 + 𝑑, 1 ≤ 𝑑 ≤ 𝐾 − 1, 0 ≤ 𝑖, 𝑗 ≤ 𝐾, 𝑖 ≠ 𝑗, ℎ𝐴𝑎𝑎𝑖 > ℎ𝐴𝑎𝑎

𝑗 (3.6)

and

ℎ𝐴𝑎𝑎
𝑗 = ℎ𝐴𝑎𝑎𝑖 + 𝑑, 1 ≤ 𝑑 ≤ 𝐾 − 1, 0 ≤ 𝑖, 𝑗 ≤ 𝐾, 𝑖 ≠ 𝑗, ℎ𝐴𝑎𝑎𝑖 < ℎ𝐴𝑎𝑎

𝑗 (3.7)

3

7

5

6
4 ?? 1

8
2

MANET
node i node j

agent jagent i

45

 Chapter 3: LHA Protocol

 3.4 Data Structures

Let ℎ𝐴𝑎𝑎𝑖 > ℎ𝐴𝑎𝑎
𝑗 and ℎ𝐴𝑎𝑎𝑖 be substituted from (3.6) into (3.4). This yields

ℎ𝐴𝑛𝑖 = (1 −𝑀)ℎ𝐴𝑟+𝑀(ℎ𝐴𝑎𝑎
𝑗 + 𝑑) + 𝑠𝑠𝑠𝑖

ℎ𝐴𝑛𝑖 = (1 −𝑀)ℎ𝐴𝑟+ 𝑀 ∗ ℎ𝐴𝑎𝑎
𝑗 + (𝑀 ∗ 𝑑) + 𝑠𝑠𝑠𝑖 (3.8)

Using (3.5) in (3.8) gives

ℎ𝐴𝑛𝑖 = (1 −𝑀)ℎ𝐴𝑟 + ℎ𝐴𝑛
𝑗 − (1 −𝑀)ℎ𝐴𝑟 − 𝑠𝑠𝑠𝑗 + (𝑀 ∗ 𝑑) + 𝑠𝑠𝑠𝑖

 ℎ𝐴𝑛𝑖 = ℎ𝐴𝑛
𝑗 + 𝜓, 𝜓 ≠ 0 (3.9)

where 𝜓 = 𝑠𝑠𝑠𝑖 − 𝑠𝑠𝑠𝑗 + (𝑀 ∗ 𝑑). Hence, ℎ𝐴𝑛𝑖 ≠ ℎ𝐴𝑛
𝑗 and the correctness is held for ℎ𝐴𝑎𝑎𝑖 ≠

ℎ𝐴𝑎𝑎
𝑗 . The correctness for given ℎ𝐴𝑎𝑎𝑖 < ℎ𝐴𝑎𝑎

𝑗 can be proved in a similar manner.

3.4 Data Structures

Nodes running LHA require the maintenance of local data structures to perform LHA func-
tions. Each node uses the following local data structures.

3.4.1 Tables & Parameters

In LHA every node maintains 6 lists. A configured nodes list enables the node to take a deci-
sion in handling the issue of missing addresses when there are no more free addresses for the
assignment process in the network. If the network merges with another network, the information
in a merger list is needed. To reuse the addresses of departure nodes every node, has to save the
departure information in a departure nodes list. Because a configured node which has allocated
all its free addresses may need to search for free addresses in the network, a reverse path list is
used to enable the connection over multiple hops. To reduce signaling cost among neighboring
nodes when the allocation service in some nodes is better than others, a sending list is required.
Finally, each node is able to manage efficiently its available addresses because it saves the status
of its available addresses in the assigning table. In the following detailed information about re-
quired data and parameters of each list is presented.

46

 Chapter 3: LHA Protocol

 3.4 Data Structures

3.4.1.1 Configured nodes list

Each node maintains information about all assigned IP addresses in the address hierarchy
(from the root node to the last configured node in the network). Because the unique assignment
of addresses does not depend on the up-to-date information of this table, LHA does not need a
periodic update of this table. Basically, the information in each configured node can be collected
directly from the broadcast announcement of every joining node or gradually from the Beacon
messages sent from the neighboring nodes of the node. As shown in Table 3-2, each entry is a
quadruple of elements which are firstly information of IP/MAC addresses for each configured
node, secondly the IP/MAC addresses of the predecessor of this node, thirdly the information of
the joining time and fourthly the status (missing or available) information of this configured node
in the network. As this table shows, decisions to handle issues such as missing nodes and address
conflict detection can be made by each node. Moreover, a comparison of the information in this
table with other node information helps in detecting network mergers and partitions.

Table 3-2: Configured nodes list

Index Predecessor Configured node Status Joining
time (Jt)

MAC IP MAC IP

3.4.1.2 Assigning table

Once a node is configured it builds its assigning table as illustrated in Table 3-3. This table
consists of four columns and k number of rows, where k=M.

Table 3-3: Assigning table for the management task of available addresses in each node

Sequence
number (Seg)

Assign
Status (S)

Requester
MAC

Confirm
timeout (CT)

Each row in this assigning table represents the assignment information of the successor of this
node. Therefore, the columns Requester MAC and Confirm Timeout (CT) are initially set to null.
The first column (Seq) includes, in each row, a potential sequence number which can be assigned
to any requester node. The second column, Assign Status (S), shows the status of the sequence
numbers in each row representing status, “free” “pending” and “assigned” respectively. While
“free” indicates that the sequence number in this row can be used directly in any assignment pro-
cess, “pending” and “assigned” represents the unavailability. However, “pending” differs from
“assigned” status in that the Seq number is only temporary unavailable (i.e. for a specific time
defined in column CT). In LHA, when a node selects an available address for a requester it
changes its status from “free” to “pending”, and when it sends its reply message to the requester
it starts a timer for the selected Seq number wherein the CT value in the row of this Seq indicates

47

 Chapter 3: LHA Protocol

 3.4 Data Structures

the waiting times until the node receives an acknowledgment from the requester node. If this
timer runs out prior to receiving the acknowledgment, the node supposes that the address has not
been used by the requester and it changes its status to “free”. In the other case, when the node
receives an acknowledgment from the requester node, it resets the timer and sets the status to
“assigned” which means the Seq number is no longer available for other assignment processes.

3.4.1.3 Departure nodes list

Each node saves in this list (Table 3-4) information about every node managing the address of
a departing node when this manager is not the direct predecessor of this departure. This may
happen when the predecessor does not exist in the network due to a departure (normal or abrupt).
In the table the current manager column refers to a responsible node of the IP address of the de-
parture node. In LHA, if the predecessor of the departure node exists in the network there is no
need to save information in this table because the predecessor modifies the information of its
departing successors in its assigning table, changing the status from “assigned” to “free” as de-
scribed above.

Table 3-4: Departure nodes list

Index

Current
manager IP

Predecessor
IP

Departure node Departing
time

MAC IP Seq

3.4.1.4 Merger list

LHA depends on this list to solve the merging problems in MANETs. An entry in this list
consists of seven elements as shown in Table 3-5. Mainly, a node saves in this list information of
all address hierarchies included in the merging networks wherein an entry of this list consists of
the parameters ROOT, HierID, hNetID and CN from Table 3-1. In addition, the node saves ad-
dresses of the last and second last configured addresses, lastconf and S_lastconf .

Table 3-5: A merger list for saving a trace of all address hierarchies in a network

Index (MN) ROOT HierID hNetID CN lastconf S_lastconf

3.4.1.5 Sending list

To enable a fast response from nodes having more free addresses during the assignment pro-
cess and to reduce the load1 of messages sent or forwarded by neighboring nodes, the sending
list is used. Each entry of Table 3-6 records the information of certain messages scheduled to be
sent to other nodes when a specific timeout is reached.

1 The high network load is the main factor of packet collisions in wireless networks

48

 Chapter 3: LHA Protocol

 3.4 Data Structures

Table 3-6: Sending list

Sequence
number

Destination
MAC (one hop)

Send/forward
timeout

3.4.1.6 Reverse path list

Because LHA utilizes control messages over multiple hops, this list is employed to trace eve-
ry reverse path between each pair (source, destination). This mechanism is similar to the route
discovery function used in routing protocols such as AODV [65]. As shown in Table 3-7, each
entry includes information of the sequence ID of a message, the IP address of the initiator which
is the AA node of the new node, the MAC address of the new node, the MAC address of the pre-
cursor which is a next hop intermediate node on the reverse path, the hop number to the initiator,
the life time for each entry, and the route status which enables a node to reduce the number of
sent messages on the reverse path from different destinations. In LHA different nodes may re-
spond by sending positive replies but one is sufficient for a successful assignment process.
Therefore, an inactive value means that there is no need to send a message on its reverse path.

Table 3-7: Reverse path list

Sequence
ID

Initiator
(AA node) IP

New node
MAC

Precursor
MAC

Hop
count

Life
time

Route Status
(active or not)

3.4.2 Messages

LHA is designed to achieve the functions of the assignment and maintenance of unique IP ad-
dresses in MANETs. These functions, as mentioned in Section 3.1, are used to handle four main
actions defined as joining/departing nodes and partitioning/merging networks. With regard to
those actions, the LHA messages can be grouped into four kinds which are described in the fol-
lowing. In this thesis the protocol packet is presented with IPv4 addresses as depicted in Fig-
ure 3-6.

3.4.2.1 Packet Format

Figure 3-6 shows the basic layout of every LHA packet which consists of three main parts,
packet header, message header and message body. However, for easy testing of LHA under
Linux, as presented in [71], the LHA messages are encapsulated1 within the packet format of the

1 The encapsulation method for a protocol’s messages is used in the designing of many protocols; such as the Dynamic RARP
(DRARP) protocol [95]

49

 Chapter 3: LHA Protocol

 3.4 Data Structures

ARP protocol [72]. This means that the packet header in the figure is replaced with the corre-
sponding MAC header used by ARP. Now follows a description of each field.

• Packet Header

o Packet Length: The length (in bytes) of the packet

o Packet Sequence Number: it MUST be incremented by one each time a new
LHA packet is transmitted. Thus, the nodes in the network can define new
packets sent by every node in the network.

• Message Header

o Message Type: a specific number is defined for every message utilized in
LHA. Because of this rule, LHA functions can successfully handle all LHA
messages which are presented in the following section.

o Hash and MN parameters as described in Section 3.2.2 are important to the
handling of different issues such as merging/partitioning networks.

o Time to Life (TTL): to decrease message overhead and suit the scalability as-
pect LHA messages need this parameter, which is mainly defined by the max-
imum number of hops.

o Message Sequence: to distinguish the message from other messages from the
same type sent by any node. For example, a node may try to send another re-
quest message if the first attempt has failed. In this way other nodes know that
their first responses have been not correctly received.

o Hop Count: indicates the number of hops a message has attained. Initially, the
originator of the message sets the Hop Count to “0”, and before a message is
retransmitted by other nodes, this must be incremented by 1. If the Hop Count
is equal or bigger than TTL the message must not be retransmitted.

Figure 3-6: LHA message format

Packet Length Packet Sequence Number

Message Type Hash MN

Message Sequence number Time to Live Hop Count

Source Address

Destination Address

LHA Message Data
…….

0 7 15 3126

Pa
ck

et

he
ad

er
M

es
sa

ge

he
ad

er
M

es
sa

ge

bo
dy

50

 Chapter 3: LHA Protocol

 3.4 Data Structures

• Message Body: as shown in section above, LHA uses tables and parameters to archive
its functions successfully. So, in this part of the message LHA can send any saved in-
formation to other nodes when there is the necessity for that. Because multiple address
hierarchies are used in LHA the size of the data a node needs to send is low and in
most cases one packet is sufficient to send LHA messages.

3.4.2.1 Joining nodes messages

The following messages are exchanged during IP address assignment:

• Address Agent Solicitation (AA_Sol) message: this message is sent by a new join-
ing node as a local broadcast message to neighboring nodes in the network for re-
questing an IP address. Basically this message does not need to include any data
structure; otherwise, the MN of this message must be set to “0” which indicates that
this node does not belong to any address hierarchy.

• Address Agent Reply (AA_Rep): one-hop broadcast message sent by any neighbor
node as the response to the AA_Sol message. It includes the network configuration
and the possible free address provided by the sender. It comprises the following ele-
ments:

o LHA parameters presented in Table 3-1 and hNetID.

o If the node owns free address (Av > 0) it sends lists of the configured nodes,
departure nodes and merger; otherwise (Av = 0) there is only merger list.

• New node (New_Node): this message is broadcast by a new node to inform all nodes
in the network about its new configuration. It contains its hNetID, MAC/IP addresses,
joining time and the MAC/IP address of its predecessor.

• Address Agent Selection (AA_Sel): when a new node does not get any offered ad-
dress from all received AA_Rep messages it has to send a unicast message to select
one of the responding neighbors as AA node. This message contains only the
MAC/IP addresses of the selected node.

• Address Agent Address Request (AA_A_Req): this message is sent by any node
selected as AA node which does not have addresses free for the assignment. In this
case it broadcasts this message in the network to search for free addresses in other
nodes. The sender must set TTL in the header and there is no need for any data struc-
ture.

• Address Agent Address Reply (AA_A_Rep): any node owning free an address and
receiving an AA_A_Request from an AA node has to respond to the sender by send-
ing this message including the address it is offering. The message also contains the
MAC/IP and hNetID of the predecessor, the configured nodes list and the LHA pa-
rameters including the selected Seq number.

51

 Chapter 3: LHA Protocol

 3.4 Data Structures

• Address Agent Confirmation (AA_Conf): when an AA node finishes the searching
phase for free addresses, it unicasts AA_Conf to the predefined requesting node.
There are two cases here:

o There is a free address in the network: the message is sent to inform the re-
quester about the new address, where it contains the selected Seq number,
MAC/IP, hNetID of the predecessor and lists of the configured nodes, depar-
ture nodes and merger.

o Otherwise (Av = 0), the message must include this parameter with the merger
list. In this case the requester has to construct a new address hierarchy because
there are no free addresses in the network.

3.4.2.2 Departing nodes messages

• Departure Agent Request (DA_Req): when a node wants to be released from the
network it sends this message to its neighbors in order to select one of them as DA.
This message contains the data (MAC/IP, ROOT and hNetID) about the predecessor
of this node.

• Departure Agent Reply (DA_Rep): a node responds with this message to inform the
requesting departure node that it is ready to manage its IP address. This message in-
cludes the number of free addresses (Av) of the sender.

• Departure Agent Select (DA_Sel): a node can safely release the network when the
node sends this message to the selected neighboring node. This is because the select-
ed node will be responsible for managing the address of the departing node. The node
must then send in this message its assigning list, departure nodes list and the data
(MAC/IP, ROOT and hNetID) of its predecessor.

• Departure Management (Dep_Manage): this message is sent by a DA to inform
other nodes in the network that it is ready to manage the issues of a defined departing
node and, moreover, to enquire about the existence of the predecessor of the departure
node. This message must contain the assigning list and the data (MAC/IP, ROOT and
hNetID) of the departure node.

• Predecessor Existence (Pre_Ex): DA node sends this message in the network to en-
sure if there is a predecessor of the departing node. This message contains identical
information to the one in Dep_Manage.

• Departure Node (Dep_Node): this message is broadcast in the network by a node
which is responsible for managing the address of a departing node. This means that
the IP address of the departing node can be reallocated to any new node by the sender
of this message. Mainly, Dep_Node message informs the nodes in a network to modi-
fy their data base because there is a node departing the network. This message con-
tains hNetID, ROOT and the MAC/IP of both nodes (departure node and its predeces-
sor).

52

 Chapter 3: LHA Protocol

 3.4 Data Structures

• Missing Node (Mis_Node): this message is broadcast in a network when a config-
ured node discovers that there is a missing node. In LHA the discovery of missing
nodes exists in different cases; one of these cases is when a DA node does not get a
response from the predecessor of a departing node. This message contains the data
(MAC/IP, ROOT and hNetID) of the missing nodes.

3.4.2.3 Partitioning messages

• New_HierID: this message is broadcast to all nodes in a partition when a node de-
tects the network partitioning. Upon receipt of this message each node has to change
its HierID into the new one included in the message (see Section 3.7.2 for more de-
tails). Basically, this message contains the configured list and the old and new infor-
mation (HierID and hNetID) of the network.

• Existence Request (Ex_Req): this message is broadcast by a node detecting a parti-
tioning in its network. Its purpose is to define the number of missing nodes in the
network. This message contains the data (ROOT and hNetID) and a set of addresses
of the nodes which have not assigned all their free addresses in the network.

• Existence Confirmation (Ex_Conf): this message is sent by a node when it receives
Ex_Req message (including its address in the list) to inform the requester about its
existence in the network. Mainly, the message contains the LHA parameters, hNetID
and the assigning table of the sender.

3.4.2.4 Merging messages

• Information Request (Info_Req): when a node detects a Beacon message including
a different network configuration it unicasts to the sender of the Beacon Info_Req
message including its LHA parameters and the lists of the merger, departure nodes
and configured nodes. In a special case the message may include, in addition to these
parameters and lists, a free address if the node owns a free one and if, at the same
time, it detects in the Beacon message a merger with an unstable network, see Sec-
tion 3.6.5. Usually, Info_Req is sent between two border nodes from different net-
works but it is possible for it to be sent between two nodes from a same network if
one of them does not have up-to-date information, e.g. the last configured nodes in
the Beacon are different.

• Information Reply (Info_Rep): when a node receives Info_Req message from an-
other node it has to reply by Info_Rep message including its parameters and lists as in
Info_Req.

• Soft Merger (S_Merge): if a node detects a soft merger between its network and an-
other network (after comparing its merger list with another received list included in
any of the info messages) the node broadcasts S_Merger to all nodes in its network to
update their configuration data. This message contains the merger list of the other
merging network.

53

 Chapter 3: LHA Protocol

 3.4 Data Structures

• Hard Merger (H_Merge): this message is sent by a border node when the merger
(after detection) may lead to address conflicts. This message informs all nodes to
change their configuration to the new one included in the message. Basically, this
message contains hNetIDs and HierIDs of the addresses hierarchies which must use
the new HierIDs, and the merger list of the other merging network.

• Release Configuration (Rel_Conf): in the special merger case (merging with a very
small network, e.g. less than 5 nodes) a border node in the small network must send to
the nodes in its network Rel_Conf message to inform them to release their configura-
tion and get new one from the big network. This message contains only the data of
HierID, ROOT and hNetID of the sender.

3.4.2.5 LHA Beacon message:

Basically beaconing messages are widely deployed in MANETs [73,74] for localization and
to enable rapid detection of node movements, including network splitting and merging. The pro-
tocol presented in [73] defines in each domain a Beacon node which is responsible for generating
a Beacon message with a unique ID at a configurable rate. From this message this protocol can
detect network topology changes. In order to cover the network domain, non-Beacon nodes with-
in a domain must forward the Beacon message if it is not at the border of the domain.

Similar to this protocol, LHA uses the Beacon message to detect the network merging; how-
ever, contrary to the mechanism already described, each node in LHA has to send its Beacon
message because LHA supports a distributed mechanism to detect and handle different issues
such as the merger of networks and the update of the configured nodes list. In LHA, the Beacon
message must include information about HierID, Root, CN, Jtlast (joining time of the last node)
and the last two configured nodes (lastconf and S_lastconf) in the address hierarchy of every node.
In addition, the number of merged networks (MN) and the Hash number must be included in the
Beacon. By means of these parameters in the Beacon message each node is able to analyze the
states of its neighbors as shown in the flowchart in Figure 3-7, afterwards deciding upon a corre-
sponding step to avoid later any possible problem in the network. Basically, this flowchart ex-
plains the LHA procedure in each node when it receives a Beacon message. For example, if a
node is not standing alone (i.e. its MN is not 0, see Section 3.7.4) and it receives a Beacon with
at least MN or Hash is different from its own, the node detects a possible merger. To define the
kind of the merger, in this case, the detecting node must send an Inf_Req message to the neigh-
bor that sends the Beacon (for more details see the network merger in Section 3.6). Moreover,
the Beacon message in LHA is employed as an additional mechanism to update the configured
nodes list as shown in the figure, wherein it provides the last updated information (lastconf / Jtlast
and S_lastconf) from the configured nodes list in each node. In this information, if the last config-
ured node is not in the configured nodes list the detecting node has to add it and modify its pa-
rameters accordingly. If there is any conflict the node exchanges info messages with the sender
of the beacon. This in turn allows the node to take a correct decision, as will be explained later in
LHA algorithms, wherein LHA is defined to solve four main issues referred to as the join-
ing/departing of a node and the partitioning/merging of a network. In the following sections, al-
gorithms required for each action will be introduced.

54

 Chapter 3: LHA Protocol

 3.4 Data Structures

Figure 3-7: The flowchart of the Beacon message procedure for each node in LHA

Start

Yes

o c a t desc b g t e a go t o t e c ec g p ocedu e o t e beaco essage e

Is received HierID in my
merger list? Yes

Is received Root in the
list?

 The node sends information
request (Info_req) message

Including its LHA parameters
and the lists of the merger,

departure nodes and
configured nodes

No

No

No

 Is HierID of sender
equal to my one?

No

Yes

Is received Root
equal to my Root?

No

Yes

Update the configured
nodes list and LHA

parameters
End

No

End

Yes

End

Are both received Hash
and MN equal to my Hash

and MN?

Is my MN=0?No Yes

Is received MN=0?

Yes

Yes

Is received MN== my
old saved MN?Yes

Return back to the original
configuration

Send a New_node

End

The node releases its
configuration (Release=true)

and behaves as a new
requesting node (sending an

AA_Sol message)

No

End

No
Is received Hash ==
my old saved one?

Yes
No

 in the table, lastconf is
correct and Jtlast is not?

Yes
Are the received Jtlast

lastconf and S_lastconf in my
table?

No

 Are all of them not
in the table ?

Yes

No

55

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

3.5 Node Joining Algorithms

Usually, node joins a network in one of two separate scenarios; when (1) the node is powered
on or when (2) the node connecting a network leaves its network and wants to join a new one.
However, because a node in the first scenario may not find a predefined network when it is pow-
ered on, the node in this case must initialize the network by itself. Such a case is referred as net-
work initialization (or network construction, see the following section) and is considered as a
special case of node joining. In the basic case, however, a node, during the joining action, ob-
tains the configuration of the new network, which in turn allows the node to communicate with
other nodes in the network. In LHA a joining node gets a new configuration from any configured
node in the network. It is assumed here that the joining node and other configured nodes are able
to communicate locally by means of their MAC address or by way of Universally Unique Identi-
fiers (UUIDs1) [12] as described in [11]. In the following the algorithms will be described in de-
tail.

3.5.1 Network Initialization

In the initial (special) case, when a node is the first one in the network, it starts a solicitation
timer (Tm-sol) and broadcasts a AA_Sol message. During the solicitation period the node waits
to receive an Address Agent Reply (AA_Rep) message. If no replies are received after a prede-
fined number of retries (R), the node concludes that it is the first node in the network. In this
way, the node initializes a MANET by electing itself as a root node for one of the address hierar-
chies in the network and configures itself with the first address in the address hierarchy, setting
the following parameters of its table (𝐻𝐻 = 0, 𝐶𝐶 = 1, 𝑆𝑆𝑆 = 0, 𝑅𝑅𝑅𝑅 = 𝐻𝐻𝐻𝐻𝑟 , 𝐴𝐴𝑟 = 𝑀).
Details of this case are given with an example in Section 3.2.1. In addition, the root defines the
identifier number of its address hierarchy hNetID which will be saved with the other parameters
in the merging list (see Table 3-5). Thus each node is able to detect the possible merging and
partitioning networks in the future.

3.5.2 One-hop Assigning (Basic Case)

In contrast to the initialization case, the one-hop or multi-hop assigning scenarios present the
case that the new joining node is not the first node in the network. This means that there is at
least one neighboring node within the transmission range of the new node. The difference be-
tween the one-hop and multi-hop scenarios is that in the one hop assigning at least one of the
neighboring nodes that responds to the new node request has an available free address to be allo-
cated to the requester while, if none of the neighboring nodes has available addresses, the new

1 UUIDs are 16 octets long, and as they are exchanged in messages only between neighboring routers, they need only be locally
unique.

56

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

node will be in the multi-hop scenario. In LHA, the Av parameter indicates the current number of
available free addresses, here, Av>0 indicates that the node can directly assign a unique address
to the requester.

Now, the one-hop scenario can be clarified by supposing that the neighboring nodes have
Av>0. Figure 3-8 shows the MSC1 of a new node with two neighbors (configured nodes) where
Av>0. So, when a new node arrives at the network the assigning algorithm of the LHA protocol
executes the following steps:

• The new node (requester) broadcasts an Address Agent Solicitation (AA_Sol) message to
its neighbors.

• Upon receipt of this message, each neighboring node choses from its assigning table
(Table 3-3) a Seq number of status “free”, changes the status to “pending” and decreases
the value of Av parameter by 1. Before the response of an Address Agent Reply
(AA_Rep) message, the node sets an allocation timeout (Tm-allo). Basically, the node
sends an AA_Rep message which includes its parameters and the lists of the configured
nodes, departure nodes and merging networks.

• When the new node receives an AA_Rep message including Av>0, it selects the sending
node as its predecessor. This means that the node uses the seq value sent in the message
to calculate its address and builds its tables according to the information received. Then it
broadcasts a New Node (New_Node) message in the network.

• Upon receipt of the New_Node message, each node modifies its parameters and tables
according to the selected new address in the network and then forwards the message to
other nodes. Moreover, each node which has provided a free address to the new node
must change according to the selected address the assign status of its provided Seq, Ta-
ble 3-3. In this way, the nodes whose their addresses are not selected by the new node
change their assign status to “free”; however, the predecessor of the new node changes
the status of the selected Seq in the assigning table to “assigned”.

1 Message Sequence Charts (MSCs) [93]

57

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

Figure 3-8: One hop assigning algorithm without wait-send timeout

Because all neighboring nodes, as shown in Figure 3-8, have to respond simultaneously, the
assigning algorithm suffers from high signaling overhead, especially in dense nodes. This in turn
leads to low assignment performance due to the high network load. To eliminate this and ensure
a balanced distribution of available free addresses among the nodes, an additional timer with a
period wait-send Timeout (Tm-ws) based on Av has been defined to be used by the neighboring
nodes when they receive the AA_Sol message. The MSC diagram in Figure 3-9 shows two
neighboring nodes 1 and 2 that select different values of their Tm-ws timeouts because they have
different Av values, for example Av in node2 is bigger. In this assigning algorithm, each node is
able to send its AA_Rep message only after the expiration of its timer. During Tm-ws timeout,
e.g., the node1 may receive a New_Node message sent by the new node. If this case occurs,
node1 knows that the new node has obtained a new address from another neighbor, which means
there is no need to send AA_Rep message to the requester. To ensure the difference in Tm-ws,
values the selection of every value is based on the Av value and HHIDs of neighboring nodes in
each responding node. The following two steps explain the selection mechanism1:

• First, each node defines a main timeout range from equation 3.10, where RTT here is
an estimated round trip time2 over a one-hop communication in ad hoc networks.

𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟 = [(𝑀 − 𝐴𝐴) ∗ 𝑅𝑅𝑅 → (𝑀 − 𝐴𝐴 + 1) ∗ 𝑅𝑅𝑅] 3.10

• Second, the node sorts the HHIDs of its own and its neighbors, and assigns each one
with an index starting from 0 for the smallest one. Based on the number of all HHIDs
it divides the main timeout range into sub-ranges and according to its index it assigns

1 Similar to the mechanism utilized in [79], which ensures a low likelihood of selecting identical timeouts by the neighboring
nodes that try to reply or forward the same message
2 The time required for a signal to travel from a specific source to a specific destination and back again.

AA_Sol

New_node

AA_Sol

AA_Rep (Av>0)
Tm-sol

Tm-sol

New_node

Select neighbor 2 as
predecessor

Neighbor 1 Joining node Neighbor 2

Un-configured ConfiguredConfigured

Configured
Set status “assigned” of

the allocated address

AA_Rep (Av>0)

Tm-allo

Tm-allo

Tm-allo

Tm-allo

Set status “free” of the
allocated address

58

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

itself a corresponding sub-range. Finally it selects a random number from this sub-
range as its Tm-ws.

In this way, LHA reduces the network load likelihood of multiple transmissions of AA_Rep
messages, which in turn leads to high reliability of packet delivery. Moreover, it ensures a bal-
anced distribution of available free addresses among the nodes because the node which has more
free addresses will respond faster than other nodes which have fewer. Therefore, LHA in this
thesis follows this algorithm which differs crucially from the other ones in prior publications de-
scribing LHA, as in [75] [76] [77] [78].

Figure 3-9: One hop assigning algorithm by using wait-send timeout

3.5.3 Multi-hop Assigning (Basic Case)

In contrast to one-hop assigning, the multi-hop assignment describes the case where none of
the neighboring nodes of the joining node owns free available addresses for the allocation pro-
cess. In this case, when Av parameters of all neighboring nodes are equal to zero, a search for
free addresses beyond the neighboring nodes must be made. Because the new node, in this case,
does not get a network address it is not able to communicate over multiple hops in the network.
As dictated by the LHA algorithm, the searching mechanism must be achieved by one of the
neighboring nodes. Therefore, the new node has to select one of its neighbors as AA to do this
work. To describe the algorithm a simple scenario as illustrated in Figure 3-10 where the ex-
changes of AA_Sol and AA_Rep messages among nodes are done successfully is taken as an
example. For this scenario the algorithm is described in steps as follows:

• After the reception of a first AA_Rep message with Av equal to zero, as shown in
ure 3-10, the joining node sets a collecting timeout (Tm-coll). During this timeout the
node collects all AA_Rep messages of (Av=0). After the timeout and depending on the
number of neighboring nodes in every message, the node selects the last responding

AA_SolAA_Sol

Tm-sol

AA_Rep (Av>0)
Tm-sol

Neighbor 1 Joining node Neighbor 2

Un-configured ConfiguredConfigured

Tm-ws

Tm-allo

Address status
“free”

New_nodeNew_node

Set node 2 as predecessor

Configured

Address status
“assigned”

Tm-allo

Address Status
“pending”

Add. Status
“pending”

Tm-ws

Tm-ws

59

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

neighbor to work as an AA node. Then, it sends an AA_Sel message to the selected AA,
sets a configuration timeout (Tm-conf) and waits for an AA_Conf message.

• Upon receipt of the AA_Sel message by the selected AA node, it sets a search timeout
(Tm-search) to limit the searching time. The node then starts the searching timer and
sends an Address Agent Address Request (AA_A_Req) message to the nodes in the net-
work.

• Each node receiving this message will check its Av parameter. If it has a free address, it
replies with an Address Agent Reply (AA_A_Rep) message. If it does not have any free
addresses, it will forward the AA_A_Req message to its neighbors. However, to avoid
flooding all nodes in the network with this message, the number of hops throughout this
forwarding process is defined by the sender in the field of the maximum number of hops.
Moreover, the node uses Tm-ws timeout for this message and on overhearing any
AA_A_Rep message from at least one of its neighboring nodes it ceases to forward the
AA_A_Req message.

• During the Tm-search period, if AA node receives a reply message, it stops the timer and
sends an AA_Conf message including the configuration information offered by the reply-
ing node to the new node.

• After the receipt of AA_Conf, the new node uses the address from its predecessor, which,
in this case, is not the AA node. Then, it builds its tables and sends New_Node to all
nodes in the network. Basically, if some nodes fail to receive this message because of the
drop issue in unreliable broadcasting, this will not cause any problem during the assign-
ment process in LHA. Contrary to other protocols with global assignment decision (such
as MANETconf [43] or FAP [68] protocols), the assignment process in LHA does not
depend on the up-to-dateness of information for all configured nodes in the network.
Moreover, LHA utilizes another update mechanism to ensure the reception of this mes-
sage by using the Beacon messages of neighboring nodes as presented in Section 3.4.2.5.
Finally, because the new node must send this message only once without any need for
acknowledgments from other nodes or periodical announcement of its presence, the send-
ing of this message does not count as high overhead in the network.

• As described in one-hop assigning, upon receipt of the New_Node message, each node
modifies its parameters and tables according to the new IP address in the network and
forwards the message to other nodes. The message also informs the predecessor node
that its free address has been used by the new node, causing predecessor to change the
status of its allocated address in the assigning table to “assigned”.

60

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

Figure 3-10: The assigning algorithm for a multi-hop scenario

3.5.4 Complete Specification of Assigning Algorithm

In this section the UML1 state machine is used to give a whole overview of main states in the
LHA protocol. However, the UML description of different states representing big algorithms
which have many procedures and notations is infeasible on the state machine. Therefore, Ab-
stract Protocol Notation (APN) is used in some states to specify the node behaviors of LHA in
detail. APN is chosen because it is capable of use in UML when there is a need to describe a
specific state in detail. Moreover, the description form of APN is similar to the form used in the
programming languages, which in turn facilitates the implementation work later.

 Figure 3-11 gives an overview of the main states of a node in the LHA protocol. In this fig-
ure the LHA protocol has three main states:

• “Un-configured”: indicates the state in which a node is joining a network. In this state
the new node tries to get new networking configuration from the neighboring nodes of
a new network.

• “Configured (active)”: indicates the status in which a node has an accepted configura-
tion in the network and is able (active) to assign, allocate and manage available ad-
dresses in the network.

• “Wait departure (inactive)”: indicates the status when a configured node is waiting for
a seamless release from its network (i.e. a way to enable its address to be reused with

1 Unified Modeling Language (UML)

AA_SolAA_Sol

1hop-Neighbor 1 Joining node 1hop-Neighbor 2

Un-configured ConfiguredConfigured Configured

Tm-ws

Tm-allo

2hop-Neighbor

AA_Rep (Av=0)

AA_Conf
Tm-conf

AA_Rep (Av=0)
Tm-sol

Tm-sol

Tm-coll

Select neighbor 2 as AA

AA_SelTm-conf

Address status “assigned”

Tm-allo
New_nodeNew_nodeNew_node

Configured

2hop-neighbor (predecessor)

AA_A_Req
Tm-search

AA_A_Rep
Tm-search

Tm-ws Tm-ws

“Pending”

61

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

no problem later). In this state the node has available configuration but is not able (in-
active) to do normal actions, such as IP address assignment or maintenance.

 In the figure, a state may consist of sub-states which may be sequential or parallel states as
shown in “Un-configured” state or “Configured” state respectively.

Figure 3-11: Main state1 machine of LHA Protocol

Basically the configuration process in LHA starts from the case where an un-configured node
wants to join the network, so the LHA state machine starts from the Un-configured state as fol-
lows:

• When a mobile node switches to ad-hoc mode, it enters the state “Starting”. In this state
the network name/mask and IP type can be selected. Also, LHA has to set initial values
for its parameters as in Algorithm 3.1, e.g. it sets the values of the retry and negative
counters (r_count=0, neg_count=0). After that, it broadcasts a request message (AA_Sol)
to its neighbors. Notice that only a one-hop broadcast is necessary because the new node

1 Main state: some utilized variables{(sL: sending list index), (aL : allocation (or assigning) table index), (Seq.s(ID): the status of
the Seq number in the assigning table for a requester with this ID), (T_ws(ID) wait-send timeout for this ID), (T_allo(ID) wait-
ack. Timeout for this ID), (WA wait ack. “Boolean”)}

Starting

Un-configured

LHA protocol
Configured (active)

Ready to assign

Wait for AA
configuration

Wait for
AA_Rep

Wait for address
acknowledgment

Maintaining

Standby

Searching for free address

Assigning

Maintenance

AA_Conf[Av>0] / New_Node;
Or
AA_Conf[Av==0] ||Tm_conf/
S_Merge;

AA_Rep[Av>0]/ New_Node;
Or
Tm_soll &&[r_count>=R]/
(self-configure);

[WA(ID)== true]&&
[Seq.s(ID)==1]/ set
T_allo(ID),aL++,

On

[Want to leave the network]/
DA_Req; set(Tm_dep)

Fi
ni

sh
 m

ai
nt

ai
n

AA_Sel&& [Alone==false]/ AA_A_Req;
set(Tm_search); AA= true;

Maintain

{AA_A_Rep/AA_Conf(free
address); AA= false;}
Or
{Tm_Search/see Alg.3.2;
AA= false;}

[Release==true]

Wait for
positive reply

AA_Rep[Av==0]/
set(Tm_coll);
neg_count++;

AA_Rep[Av==0]/
neg_count++

Tm_coll / AA_Sel;
set(Tm_conf);

Tm_soll &&
[r_count<R]/
AA_Sol;
set(Tm_soll);
r_count ++

Idle of
allocation

AA_Rep[Av>0]/
New_Node;

[Release==true]

DA_Rep/DA_Sel

Or

Tm_dep
Wait departure
reply (inactive)

Idle

[Alone==true]
[Alone==false]

Wait to send

{AA_Sol && [Alone==false]
&&[AA==false]/ see Algo.
3.2; set T_ws(ID); sL++ }
Or {AA_A_Req(ID) &&
[Alone==false]&&[AA==
false]/see Algo.3.2; set
T_ws(ID); sL++}

AA_Sel/ AA_A_Req;
set(Tm_search); AA= true;

1/ AA_Sol;
set(Tm_soll);
start=false

{New_Node&&[Seq.s(ID)==1] &&[aL==1]/ New_Node;
set(Seq.s(ID)=2), aL--; WA(ID)==false;} Or
{Tm_allo(ID)&&[aL==1]/ set(Seq.s(ID)=0, Av++;
WA(ID)=false: aL--}

New_Node &&
[Seq.s(ID)==0]/
New_Node;
set(Seq.s(ID)=2)

{New_Node && [Seq.s(ID)==1]&& [aL>1]/ New_Node;set(Seq.s(ID)=2);aL--;
WA(ID)= false} Or {[WA(ID)== true] && [Seq.s(ID)==1]/set T_allo(ID);aL++}

I

II

AA_A_Rep &&
[active path for
ID]/ AA_A_Rep,
(deactive path)

{(AA_Sol || AA_A_Req) && [first-receive]/ see Algo. 2.3; set
T_ws(ID); sL++} Or { T_ws(ID) && [sL>1]/ see (Algo. 3.2),);
stop T_ws(ID); sL--, WA(ID)=true} Or {(AA_Rep || AA_A_Rep
|| New_Node) && [there is a timer for the requester ID] &&
[sL>1] / see (Algo. 3.2); stop T_ws(ID); sL--}

{ T_ws(ID) && [sL==1]/ see (Algo. 3.2),);
stop T_ws(ID); sL--, WA(ID)=true} Or
{(AA_Rep || AA_A_Rep || New_Node) &&
[there is a timer for the requester ID] &&
[sL==1]/ see (Algo. 3.2); stop T_ws(ID); sL--}

1/ start=true;
r_count, n_neg=0;

62

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

has no IP address. Then, it starts the solicitation timer (solicitationTimer). Finally, the
node changes from “Starting” state to “Wait for AA_Rep” state.

• During the “Wait for AA_Rep” state (where neg_count=0) the mobile node waits for the
receipt of an AA_Rep message or the expiration of solicitation timer. According to these
events, possible scenarios are the following cases:

o If Tm-soll is expired (solicitationTimer is reached in alg. 3.1) the node increases
the r_count by 1. Here there are two cases reflecting the r_count value in Algo-
rithm 3.1 as follows:

 If r_count<R, the node sets a new solicitation timer. Then it resends the
AA_Sol message and stays in the waiter state.

 If r_count >=R, the node knows that there are no neighbors within the
transmission range and it is the first node in the network. Therefore it con-
figures itself with a root address for an address hierarchy as described in
Section 3.2.1 and enters “Configured” state.

o If the mobile node receives a reply during the solicitation time, it checks the num-
ber of free addresses included in the message. Here, two cases can be defined as
follows:

 If Av > 0 (positive reply), the node knows that the neighbor has allocated a
free address to it. Therefore, the node uses the allocated new IP address
and depending on the received network configuration it sets the infor-
mation of its tables and parameters. Then the node stops solicitationTimer
and informs all nodes in its network by broadcasting a New_Node mes-
sage. After that, it changes its status to “Configured” state.

 If Av = 0 (negative reply), the node saves the information of the replying
node and increases a negative counter (neg_count) by 1. To improve the
likelihood of receiving a positive reply the node sets Tm-coll (starts col-
lectionTimer in Alg. 3.1) and enters the state “positive reply”.

• “Wait for positive reply” indicates that the node has received at least one negative reply
(neg_count > 0). In this state the node waits to receive a positive reply until the collec-
tionTimer is reached. During the timeout the node collects all negative replies. The node
changes its state if there is one of the two following events:

o If the node receives a positive reply it uses the configuration information included
in the message and broadcasts a New_Node message to inform all nodes in its
network. After that, it stops the collectionTimer and changes its status to “Config-
ured” state.

o If collectionTimer expires, the node ensures that there is no possibility of receiv-
ing a positive reply from the neighbors. So the node has to select one of the re-
spondents to work as an AA node which in turn will be responsible for searching
for a free address for the new node in the network. Thus, the new node sends an

63

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

AA_Sel message to the selected node. Then, it sets Tm-conf (starts configura-
tionTimer in Alg. 3.1) and enters the state “Wait for AA configuration”.

• If, while in the “Wait for AA configuration” state, the node gets a positive response
(AA_Conf message including a new address), it configures itself with the HHID, hNetID
and HierID included in the message. After the node is configured it broadcasts its new
address (New_Node message) and changes to “Configured” state. Otherwise, if there is a
negative response (AA_Conf with no free address) or the configuration timer expires, it
chooses a different HierID from the ones received in the reply message. Then it calcu-
lates the Hash of all HierIDs including its selected one and configures itself as a new root
for an address hierarchy in the network. After that it broadcasts the new configuration
with the S_Merge message and changes to “Configured” state.

Algorithm 3.1: joining algorithm of Un-configured node

const R; {a threshold of retry #}
bool start := true;
bool configured := false;
int r_count := 0; { retry counter }
int neg_count := 0; { negative counter }

start = true →

broadcast AA_Sol;
start solicitationTimer;
start := false;

receive AA_Rep from neighbor →

if free IP is available {positive reply, Av >0} then
if neg_count =0 then

stop solicitationTimer;
else

stop collectionTimer;
fi
send New_node to all nodes;
configured := true;
skip;

else
if neg_count = 0 then

stop solicitationTimer;
start collectionTimer;

fi
neg_count := neg_count + 1;

fi

receive AA_Conf from AA node →
stop configurationTimer;

if message includes free address then
send New_node to all nodes;

else
self-configure();{build a new address hierarchy}
CalculateNewHash();{from its HierID and received ones}

64

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

send S_Merge to all nodes;
configured := true;
skip;

timeout(solicitationTimer) →

if r_count < R then
 broadcast AA_Sol;
 start solicitationTimer;
 r_count := r_count + 1;
else
 self-configure(); {selection of HierID, ROOT and hNetID }
 configured := true;
 skip;
fi

timeout(collectionTimer) →
selectAAnode(); {the selection of the last responding node}
send AA_Sel to selected AA node;
start configurationTimer;

timeout(configurationTimer) →
self-configure();
CalculateNewHash()
send S_Merge to all nodes;
configured := true;
skip;

Because each configured node in LHA has different independent functions, such as to allocate
free addresses, detect the mergers or reuse the addresses of departing nodes, the functions of the
“Configured” state are divided in this thesis into two orthogonal groups called “Assigning” and
“Maintenance” states, which work concurrently. While the “Assigning” state represents the
functions of direct assignment, allocation or search for free address in the network, the “Mainte-
nance” state describes the functions that handle problems such as merging and partitioning net-
works. Following the basic idea of LHA, configured nodes are responsible for assigning address-
es to new joining nodes. Because new nodes may send more than one request simultaneously, a
configured node must be able to handle these messages at the same time. Therefore, the “Assign-
ing” state of a configured node consists of two sequential states working concurrently, as shown
in Figure 3-11 (parts I & II). While the states in part I are defined to serve new nodes by provid-
ing available addresses (if there are any) or searching for free ones (if there are none), the states
in part II are required to modify the status of the assigning table according the receipt of
New_Node messages (e.g. if a new node selects an available address provided from this table,
the assigning status must be set, ”assigned”, upon receipt of New_Node from this node). In the
figure the algorithm of configured node activates first the states, “Ready to assign” and “Idle of
allocation”, from parts I and II respectively. The detailed behavior of the configured node in the
“Assigning” state is shown below in Algorithm 3.2 and the ensuing description of it after that.

65

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

Algorithm 3.2: Assigning algorithm of a configured node

const M; {maximum number of free addresses in a node}
bool AA; {init. false, the node is not used as an Address Agent}
bool Alone; {init. Alone = false, a node is not alone standing}
int IP_status; {values: 0->”free”, 1->”pending” and 2->”assigned”}
int Av; {current available free addresses in the node, init. AV=M}
int hop-count; {increased by 1 for each hop of AA_A_Req, init. is 0}
int ID; {the ID of the requester (i.e., Un-configured node) }
bool WA(ID) {init. false, no need for an acknowledgement from this ID}
bool partition {init. false, no need to activate the partition Algo.}

receive AA_Sol from Un-configured node ˄ ~AA ˄ ~Alone →

if Av > 0 then
SelectAddressAssignTable();
IP_status :=1;
Av := Av-1;

fi
start sendTimer(ID);{reserved for this requester (ID)}
AddEntryToSendingList(); {add this timer to the list}

receive AA_Rep from configured node →
if requester ID in sending list then

if positive reply then
Stop sendTimer(ID); {the timer of this ID in sending list}
if requester ID in assigning table then

IP_status := 0;
Av := Av + 1;

fi
DeleteEntryFromSendingList();

else
if requester ID not in assigning table then

Stop sendTimer(ID); {in FSM -> TM_ws(ID)}
DeleteEntryFromSendingList();

fi
fi

fi

receive New_Node form a neighbor {not received before} →
if new node IP is a successor then

Stop alloTimer(ID);
IP_status := 2; {assigned}
WA(ID):=false;

else
if new node ID in sending list then

 Stop sendTimer(ID);
 DeleteEntryFromSendingList();

fi
if new node entry in assigning table then

IP_status := 0; {free}
Av := Av + 1;

fi
if sender ID in reverse list then

InactiveReversePathEntry();
fi

fi
AddToConfiguredTable();

66

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

receive AA_Sel from Un-configured node ˄ ~AA →

if sending list is not empty then
Stop all sendTimer;
DeleteEntryFromSendingList();

fi
AA := true;
start searchTimer;
send AA_A_Req to neighbors;
newEntryReversePath();

receive AA_A_Req from Configured node ˄ ~AA ˄ ~Alone →
if not received before then

if Av > 0 then
SelectAddressAssignTable ();
IP_status :=1;
Av := Av - 1;
start sendTimer (ID);
AddEntryToSendingList();
AddEntryReversePath();

else
if hop-count < hops threshold then

start sendTimer(ID);
hop-count := hop-count + 1;
AddEntryToSendingList();
AddEntryReversePath();

fi
fi

fi

receive AA_A_Rep from Configured node →
if requester ID in reverse list then

if AA=true {the receiver is working as AA for the new node} then
Stop searchTimer;
InactiveReversePathEntry ();
send AA_Conf to the new node;
AA := false;

else
if requester ID in sending list then

if new node in assigning table then
Stop sendTimer(ID);
IP_status := 0; {free}
Av := Av + 1;

else
Stop sendTimer(ID);

fi
DeleteEntryFromSendingList();
InactiveReversePathEntry ();

else
if intermediate node then

send AA_A_Rep to AA node;{based on reverse
path}

fi
InactiveEntryReversePath();

fi
fi

else
AddEntryReversePath();

67

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

InactiveEntryReversePath();
fi

timeout(sendTimer(ID)) → { in FSM -> TM_ws }

if new node ID in assigning table then
if the request is sent by an AA node then

send AA_A_Rep to AA node; {reverse path}
InactiveEntryReversePath();

else
send AA_Rep to the new node; {positive}

fi
start alloTimer(ID);
WA(ID):=true;

else
 if requester ID in reverse list then
 send AA_A_Req to my neighbors; {forwarding the message}

 else
 send AA_Rep to the new node; {negative}

fi
DeleteEntryFromSendingList();

timeout(alloTimer (ID)) → { in FSM -> TM_allo }
FindEntryAssignTable();
IP_status := 0; {provided address is available again}
Av:= Av+1;
WA(ID):=false;

timeout(searchTimer) → { in FSM -> TM_search }

if (LN > 0) or (there are some nodes with free addresses)
 partition := true; {this will trigger the “partitioning” state}
else

send AA_Conf to the new node; {negative}
fi
AA := false;

As mentioned above, the states in the “Assigning” state of a configured node are divided into
two parts I and II, and the behavioral description of each of these parts as follows:

Part I:
Basically, the states of this part in each configured node are responsible for providing two

kinds of services for new nodes (requesters) during the assignment process; first, the direct as-
signment of free addresses to the requesters (if the node owns free addresses) or, second, the
search for free addresses in the network for the requester (if the node does not own any free ad-
dress). However, if a node is standing alone (Alone = true) it must not provide any of these ser-
vices because this is a special scenario of partitioning network scenarios, which will be described
in Section 3.7.4 later. Algorithm 3.2 shows the LHA assigning algorithm of a configured node,
wherein, the Address Agent (AA) variable refers to the search service of this node and its value
will be (AA = true) when a node is in the “Search for free address” state; otherwise false. In ad-
dition, the Alone variable refers to the stand alone node when it is value (Alone = true); otherwise
false. Basically, when a node is configured with a free address the new node enters the “Ready to
assign” state, Figure 3-11, and the values of AA and Alone in this state are false. After that, it
provides its services as follows:

68

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

• During the “Ready to assign” state, each configured node is able to reply with equivalent
reply messages (AA_Rep or AA_A_Rep messages) on receipt of any address request
message (AA_Sol or AA_A_Req) or to transmit an AA_A_Rep message over its reverse
path to a requester. However, to reduce the network load due to simultaneous sending of
multiple replies, LHA utilizes the Tm_ws timeout as described in Section 3.5.2. Thus,
when a configured node receives a request message it selects a suitable timeout for send-
ing a corresponding reply and then enters a “Wait to send” state. The detailed process for
each event in the “Ready to assign” state are as follows:

o When a node receives an AA_Sol message, see Algorithm 3.2, it checks if it is
able to allocate a free address or not. The node calls the SelectAddressAs-
signTable() function in which if it has free available addresses (Av>0) it se-
lects a free address from the assigning table. Notice, positive reply in Algorithm
3.2 refers to AA_Rep message if it includes a free allocated address. The node,
then, selects a sending timeout and starts a timer (sendTimer) after which the node
has to send the AA_Rep message. However, to ensure high likelihood of receiv-
ing the positive replies prior to the negative ones, the sending timeout value of a
node having free addresses must be smaller than other nodes which have no free
addresses, as presented in equation 3.10. After that, the timeout is saved in the
sending list by using the AddEntryToSendingList() function which adds
to the sending list a new entry identified by the new node ID and assigns the se-
lected timeout Tm-ws to this entry.

o When the node receives AA_A_Req message for first time (is not received be-
fore). In Algorithm 3.2 and depending on the Av value:

 If Av>0, the node calls the SelectAddressAssignTable() func-
tion to select a free address and modifies its parameters according to that
(sets the Seq state to “pending” and decrease Av by 1). Then, it inserts a
new entry to the sending list by means of AddEntryToSend-
ingList() function. Moreover, to record the reverse path1 to the send-
er, the node uses AddEntryReversePath() function which adds new
entry identified by the new node ID to a reverse list. Thus, LHA unicast
messages can be transmitted over multiple hops. After that it starts send-
Timer and enters the “Wait to send” state.

 If Av=0 the node first checks the message hop (hop-count) to avoid flood-
ing a highly scalable network with the forward messages. Thus, the count
of hop-count must not exceed a predefined threshold. If it is within the set
range, the node increases it by 1 and calls AddEntryReversePath()
and AddEntryToSendingList() functions to add an entry to the re-

1 If there is a reply message (AA_A_Rep) the intermediate nodes can transmit the message over this reverse path. This mecha-
nism is mainly used in the route discovery function of routing protocols such as AODV protocol [65].

69

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

verse list and sending list respectively. After that, it starts sendTimer (i.e.
sets the Tm-ws timeout) and enters the “Wait to send” state.

o When the node receives an AA_A_Rep message and it has an active entry1 for the
requester in the reverse path list the node has to send the message to next hop on
the reverse path. After that it marks this path as inactive by calling Inac-
tiveReversePathEntry()function. In the other case, when it has no entry,
the node adds a new entry to the reverse list and signs this entry as inactive2 by
calling AddEntryReversePath() and InactiveReversePathEn-
try()functions respectively. This step is done to prevent, later, the node from
handling any AA_A_Req message from the same initiator with identical sequence
number.

o If a node does not have free addresses and receives an AA_Sel message, the node
supposes that the new node has not succeeded in getting a free address from its
neighboring nodes. This means that it has to work as AA node, so it sets its (AA=
true) in order to serve the new node to get a free address from a configured nodes
located further than one hop from the new node. After that, it broadcasts
AA_A_Req message to its neighbors. Then, it starts a timer called searchTimer
and enters the “Search for free address” state in which it waits for a response.

o A node leaves its “Ready to assign” and enters the “Idle” state when it discovers a
stand-alone case (Alone=true) which indicates that there are no neighboring nodes
within the transmissions range of the node. Because the task to detect and handle
the stand alone case in LHA is a part of the “Maintenance” state (see
tion 3.7.4), the assigning task must be idle which means the node is not able to al-
locate or assign addresses to other nodes. Basically, LHA prevents the stand alone
node from assigning addresses in such a case because it may lead later (if there is
a merger) to possible address conflicts in the network. Thus, in Figure 3-11 the
value of variable (Alone) is set by the “Maintenance” state which works concur-
rently with “Assigning” state.

• In the “Wait to send” state, the node overhears the medium for reply messages (see
AA_Rep or AA_A_Rep messages in Algorithm 3.2). Such an overhearing mechanism is
needed to prevent sending out the unnecessary replies. LHA here allows a configured
node to discard its reply message prepared to send to a certain requester when the node
during the sending timeout overhears from any of its neighboring nodes another reply
message for the same requester. Thus, LHA reduces the number of messages sent during
the assignment time. However, to avoid the discard of possible reply messages which in-
clude a free address (positive reply in Algorithm 3.2) if a negative reply is received at
first, the configured node which owns free addresses does not discard its reply message

1 An entry in reverse list indicates that the node has received an AA_A_Req message.
2 If a node marks an entry of an initiator in the reverse list as inactive, the node will not handle the initiator message including a
sequence number that is identical to the saved one.

70

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

upon receipt of a negative reply. In the “Wait to send” state the node handles the follow-
ing events:

o If the node overhears from its neighbors a positive AA_Rep message sent from a
neighbor to a new node and there is an entry of this new node in the sending list
as described in Algorithm 3.2, it stops the timer (sendTimer) of this entry and if
there is an entry for the new node (ID) in the assigning table it changes the status
of the allocated IP to “free” and increases Av by 1. In the other case, if a negative
reply is overheard and there is an entry of the new node in the sending list the
node only stops the timer if there is no entry for the new node in the assigning ta-
ble. In this description the action to stop the timer means that the node discards its
prepared AA_Rep message. Therefore, the node uses the DeleteEntryFrom-
SendingList() function which deletes the entry of the new node from the
sending list. Finally, if this list is empty it leaves its wait state and enters “Ready
to assign”.

o If an AA_A_Rep message is received, the node has to check the information of its
reverse list which saves the reverse path information of this message. In the case
where there is no entry, the node adds a new entry to the reverse list and signs this
entry as inactive1 by calling AddEntryReversePath() and InactiveRe-
versePathEntry()functions respectively. As mentioned above, this step is
done to prevent, later, the node from handling any AA_A_Req message from the
same initiator with identical sequence number. In the other case, where there is an
entry in the reverse list with information (ID) identical to that in the received
AA_A_Rep message, the node checks the following:

 If there is an entry for the new node in the sending list (i.e. an entry for
sending AA_A_Rep or AA_A_Req), the node knows that there is another
responder in the network that is trying to serve the requester. This means
that there is no need to send the prepared message with identical infor-
mation. Thus, if the node has allocated a free address to the requester (ID)
the node discards its prepared AA_A_Rep message, stops the timer (send-
Timer) and releases the allocated address by changing the status of the al-
located IP to “free” and increasing the Av by 1. Otherwise, if the node
does not have free addresses it stops the sendTimer in order to avoid the
forwarding of the prepared AA_A_Req message. After that, the node calls
InactiveReversePathEntry () and DeleteEntryFrom-
SendingList() functions to sign the entry of the new node in the re-
verse list as inactive and to delete the new node entry from the sending
lists respectively. Finally, if the sending list is empty it leaves the wait
state and enters “Ready to assign”.

1 If a node marks an entry of an initiator in the reverse list as inactive, the node will not handle the initiator message including a
sequence number that is identical to the saved one.

71

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

 If there is no entry of the new node in the sending list which means here
that a request message from the initiator has been sent before, the node has
to check the destination address in the received message. If the two ad-
dresses are identical and the reverse path is active the node knows that it is
the corresponding node (intermediate node of the reverse path) and re-
sponds by sending the AA_A_Rep message to the next hop over the re-
verse path to the initiator (the AA node of the new node).

o If the sendTimer of a certain entity (ID) is reached and there is no allocated free
address for the new node (in Algorithm 3.2, there is no entry for the new node in
assigning table), the node has to check the reverse list; if there is no entry in the
reverse list, the node responds by sending a negative reply of AA_Rep message,
otherwise it forwards for this entry AA_A_Req. However, if there is an entry in
the assigning table the node sends a positive reply message according to the re-
quester; i.e. if the requester is the new node it sends AA_Rep message, otherwise,
it sends AA_A_Rep message to the requesting AA node and signs the entry of the
new node in the reverse list as inactive. In LHA, a positive reply message form
any node requires acknowledgment (receipt of New_Node), so that the node sets
WA(ID)=true (i.e. the node must wait for an acknowledgement from this ID) and
starts allocation Timer (alloTimer) after sending AA_Rep or AA_A_Rep messag-
es. Finally the node has to delete the information from the sending list by using
the DeleteEntryFromSendingList()function and, then, if this list is
empty it releases its state and enters “Ready to assign”.

o If the node receives a New_Node message and the node is not the predecessor of
the new node which sends the messages, it means that the selected address of the
new node is not one of the free addresses set of this node. In this case, if there is
an entity of the new node in the sending list the node discards the message which
it had prepared to send to this new node. As described in Algorithm 3.2 the node
stops the sendTimer and modifies the sending lists. After that, the node leaves the
“Wait to Send” state and enters “Ready to assign” if the all entries in the sending
list are empty.

o If the node receives AA_Sel message from a new node that has requested a free
address, the node has to stop all sending timers (sendTimer) and delete their enti-
ties from the sending list. This means that the node must work as AA node (AA =
true) to the requester and will only be responsible for doing so. In this way, LHA
prevents duplicated searches performed by an AA node for different requesters at
the same time. After that, the node sends an AA_A_Req message to its neighbors,
starts the searching timer (searchTimer) and adds a new entry to the reverse list
by calling the function AddEntryReversePath(). Finally, it leaves the
“Wait to Send” state and enters the “Searching for Free Address” state.

• In “Search for free address” state (i.e. the node is working as AA for a new node where
AA= true), if the node gets an AA_A_Rep message as a response to its AA_A_Rep mes-

72

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

sage, it knows that the responding node has offered a free address to the new node.
Therefore, it sends an AA_Conf message including the free address to the new node.
Then, it stops the searchTimer of this requester and calls InactiveRever-
sePathEntry (). After that, it changes its state and enters the “Ready to Assign”
state in which AA=false. However, if the node does not receive an AA_A_Rep message
during the searching Timeout, the node supposes that there are no free addresses in the
networks and it behaves as follows:

o If searchTimer is reached and there are missing nodes or some nodes in the con-
figuring list with free addresses, the node activates the maintenance algorithm by
setting partition to true (i.e. start the partitioning algorithm of “Partitioning” state
to check if there is a partition or not see Section 3.7.2 for more details). In this
way the node may offer to the new node one of the now missing addresses. There-
fore, the node leaves the “Searching for free address” state and enters the “Ready
to Assign” state.

o If searchTimer is reached and there are no nodes with free addresses, the node
knows that it is not possible to assign free address to the new node (maybe all free
addresses in network are in the use). Therefore the node sends an AA_Conf mes-
sage without any free address (negative reply) and changes its state to the “Ready
to assign” state.

• In “Idle” state, which represents the case when the node stands alone (Alone=true), the
node is not allowed to assign a free address to any requester. This case is a special scenar-
io of the partitioning to avoid a quick reuse of missing nodes by this node. In this state
and after a while, if the node gets information from the “Maintenance” state
(Alone=false) that there is a reconnection with other nodes from its network, it has to re-
lease its state and enter again into “Ready to Assign” state.

Part II
In Figure 3-11, “Idle of allocation” and “Wait for acknowledgment” are the second part of

states from the “Assigning” state, which are working concurrently with the other states described
above. Basically, the two states are defined to enable every configured node to reallocate its
available free address provided (allocated) to a new node (requester) when the requester does not
select this allocated address as its own address. In this way, LHA allows the neighbors of a new
node to offer simultaneously their free addresses without causing IP address exhaustion1 or ad-
dress conflicts later because these addresses are not selected by the requesting new nodes. In ad-
dition LHA increases in this way the success rate of the assignment of free addresses to the new
nodes at the first attempt. The algorithm of both states is as follows:

• In “Idle of allocation” state, when WA of an (ID) is set true, which means that a positive
AA_Rep or AA_A_Rep messages has been sent to the requester with this ID, the node

1 IP address exhaustion is the term used to describe when there will be no more unallocated IP addresses available.

73

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

has to start the allocation Timer (alloTimer) and add an entry with this (ID) to the alloca-
tion list of timers (i.e. increase sL by 1). After that, it leaves this state and enters “Wait
for acknowledgment” state.

• In the “Wait for acknowledgment” state the node providing a free address to a requester
waits for an acknowledgment from this requester (New_Node) until alloTimer is reached.
Here there are two possible scenarios as follows:

o First possibility: it receives a New_Node message from the requester prior to the
expiration of alloTimer (in Algorithm 3.2 see “receive New_Node” where the
sender is a successor). The node stops the alloTimer of this allocated address and
changes the status of this address in the assigning table into “assigned” (IP-Status
= 2). Then, if the node has no other timers (sL = 0) for an offered address, it
leaves this state and enters the “Idle of allocation” state.

o Second possibility: the node does not receive a New_Node message during allo-
Timer. It supposes that the requester of the offered address has selected a free ad-
dress offered by another node. Therefore, it releases the allocated address by
changing the status of the offered address in the assigning table into “free” (IP-
status = 0). Then it enters “Idle of allocation” state if all timers of offered address-
es have been reached. Obviously, in MANETs the node may not receive the ac-
knowledgment, which in turn may result in address conflicts if the address is as-
signed to another node. In LHA this situation has been studied and solutions have
been defined to make LHA algorithm robust against abnormal scenarios as pre-
sented in next section, “Handling Special Cases”.

3.5.5 Handling Special Cases

As discussed in the section of the assignment algorithm, LHA uses appropriate timers and
scheduling mechanism to mitigate the effects of packet drops due to simultaneous sending of
AA_REP messages by all neighboring nodes. However, in MANETs loss of messages may occur
in other cases due to abnormal situations, such as interference, sudden node failure, bit error or
erasures. Because LHA uses timeouts and repeat mechanisms, the loss of AA_Req or AA_Rep
messages does not have an impact on the assignment process. However, this could be a problem
in lost New_Node messages sent to the predecessors. Therefore, to make the LHA protocol ro-
bust against such situations the following two special cases are taken into account:

• Dropping of New_Node by some nodes including the predecessor (update issue):

When a new node broadcasts its New_Node message, the other nodes in the network have to
update their tables to take account of the information received in the message. In the case of
message dropping, LHA has an additional mechanism to provide the other nodes in the network
with the required information about the new node. In LHA every Beacon message, see Sec-
tion 3.4.2.5, includes information about the last two configured nodes in the network. In other
words, each node adds to its Beacon the HHiDs of the last two configured nodes known by this

74

 Chapter 3: LHA Protocol

 3.5 Node Joining Algorithms

node and also the joining time of last node Jtlast. Thus, when another node receives a Beacon it
compares this received information with its one saved in the configured nodes lists. From the
comparison two cases can be defined as follows:

o If a received HHiD is one of its successors the node supposes that the
New_Node message of its successor has been dropped. In this case the node
adds the new node to the configured list and modifies the status of its IP suc-
cessor in the assigning table into “assigned “, where IP-status = 2.

o In the second case, the received HHiDs are not equal to any of the HHiDs in
the assigning table. This means that the new node is not a successor of this
node. So the node has to check its configured list and it adds a new entry to the
configured list if there is no entry of this address.

Although LHA is able to handle the update issue of broadcasting the New_Node message, it
is preferable to ensure highly reliable packet delivery for LHA broadcast messages by utilizing
the reliable broadcasting mechanism presented in [79], which is further work in which the author
has been involved, but outside the scope of this thesis.

• Duplicate assignment issue:

In MANETs there is a possible case when a predecessor does not get a New_Node message
sent by its successor (the new requesting node) because it moves out of the transmission range as
illustrated in Figure 3-12 (a and b). In this figure the assumption is that the new node selects the
free address offered by node 3. However, node 3 does not get the New_Node message sent by
the new node because node 3 moves away from other nodes in the network. As foreseen in the
LHA algorithm, after a predefined acknowledgement timeout without receiving a New_Node
message from the new node, AA node 3 offering a free address may use later (when the other
available addresses are assigned) the offered address in the assignment process for another re-
questing node. This in turn may lead to duplicate assignments of the same IP address in the net-
work as shown in Figure 3-12 (c and d).

(a) the provider (node 3) of a free address fails to get a
New_Node message from the requester

(b) the predecessor (node3) of the new node7 moves
away from the son and other nodes in the network

New node

AA node

4

1
6

5

3

?

4

1
6

5

7

3

75

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

(c) node 3 provides the free address which is used by

the first requester to another new node
(d) address conflicts due to both requesters using the

address “7”

Figure 3-12: Duplicate assignment scenario

Let us suppose that the timer of node 3 expires and a new node enters the network from the
right side as depicted in Figure 3-12 (c), where it can hear the nodes (3 and 5) which are not
within the transmission range of each other. This means that one of the two neighbors (3 or 5)
can assign a free address to the new node. Let us, also, suppose that the node 5 has no free ad-
dresses to assign and node 3 can only offer address “7” which has been offered before to another
requester. This means that the new node will use the free address “7” offered by node 3. In this
way the network will contain two nodes using identical addresses. LHA solves this problem in an
efficient way, which is that the last joining node sends its New_Node message and this message
will be forwarded to the node which has address identical to the one received in the message “7”
as shown in Figure 3-12(d). In LHA this node (node 7) must release its address and start a new
assignment process. In this way there will not be any address conflict because only one node in
the network is using the address “7”. Of course, when other configured nodes in the network
receive the new node message they have to modify their configured lists to take account of the
information of the last new node.

3.6 Network Merger Algorithms

The maintenance of configured addresses in a network is one of the essential tasks in address
auto-configuration. In LHA, the “Maintenance” state in “Configured” state as shown in Fig-
ure 3-11 is designed to handle different auto-configuration issues, such as address conflicts dur-
ing merging of networks or address management of departing nodes. As shown in Figure 3-13,
this state consists of two sequential states called “Standby” and “Maintaining”.

4

1
6

5

?

7

3
New node

AA node

4

1
6

5

7

7

3

76

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

Figure 3-13: Maintenance state of LHA protocol

The “Maintaining” state in the figure includes four main states defined as “Merging”, “Parti-
tioning”, “Departing” and “Alone standing” states. Initially, when a node becomes configured it
enters the “Standby” state of the main state “Maintenance”. In this state the node sends a Beacon
message every Beacon Timeout (Tm-bec) and it updates the alone Timeout (Tm-alone) when it
receives a Beacon from a neighboring node. The node in this state is responsible also for updat-
ing its database with recent LHA information carried in the Beacon, Dep_Node, Mis_Node or
New_Node messages; for example the node adds new entry to the configuration list when it re-
ceives a New_Node message from a new node as described in Section 3.5.2. Moreover, in this
state the node has to send an Ex_Conf message as a response for an Ex_Req message from a
node detecting a partition and, also, it replies by sending Dep_Rep message if it receives a
Dep_Req message from a departing node. However, if the node detects an event relating to any
of the maintaining tasks as shown in the figure it releases its state and enters the corresponding
state of the “Maintaining” state. In the following sections these events are described in detail.
Basically, after handling the issue the node returns to “Standby” state as shown in the figure. In a
certain case, after finishing the task, the node may not enter “Standby” state if there is a need for
a reconfiguration process which indicates that a node has to release its current configuration to
avoid any possible address conflict. To explain the working of the LHA algorithms in the “Main-
taining” state here is first a presentation of the algorithm of “Merging” state, followed by sec-
tions on the algorithms of other states of the “Maintaining” state. However, to start with the basic
idea of the merger, here are some useful terms.

Standby

Maintenance

Maintaining

Dep_Node && [not my successor] /Dep_Node
Or
New_Node && [not my successor] /New_Node

Partitioning
(Using missed addresses)

Merging

Departing
Dep_Sel

Tm_Bec / Beacon,
set (Tm_Bec)
Or
Beacon [equal
parameters] / set
(Tm_Alone)
Or
Mis_Node /Mis_Node
Or
Ex_Req && [address
in the list]/Ex_Conf
Or
Dep_Req/ Dep_Rep

New_HierID || [partition==True]

Finish partitioning / set (partition = False)

Beacon [different parameters]/Info_Req.un
Or
S_merge || H_merge || Rel_req || Rel_Conf
Or
Info_Req / Info_rep

Finish merging && [Release == false]/ set (Tm_Alone)

[Release== True]

Finish departing

Alone Standing
Tm_Alone/ set (Alone = True)

[Release == False] / Becaon
set (Alone= False, Tm_Alone, Tm_Bec)

[Release== True]

77

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

3.6.1 Terminology

• “Border nodes”: are configured nodes like other nodes in LHA but their positions are
on the border of the network. Therefore, these nodes are assumed to be the first nodes
which may receive a Beacon message sent by other border nodes of another network.
Thus, the border nodes of a network are assumed to detect and handle the merger with
other networks.

• “Unstable network”: is a network which has a number of nodes less than or equal to a
merging threshold (mer_Th). It is called unstable because its nodes have to release
their configuration when their network merges with another bigger network (one with
more nodes). For more details see Section 3.6.5.

• “Stable network”: is a network which consists of a number of nodes more than
mer_Th. In addition, the network which consists of more than one address hierarchy
(resulting from the merger with other networks) is usually considered a Stable net-
work.

3.6.2 Basic Idea

Because mergers may result in address conflicts in the network, conflict resolution is consid-
ered the main challenge here. Address auto-configuration protocols have tried to solve it to date
by following different methods as presented in Section 2.4. LHA as presented in this thesis in-
troduces a novel algorithm to handle the issue of merging networks. Contrary to centralized pro-
tocols, the basic idea of its merging algorithm is to allow every node in a network to be responsi-
ble for detecting any merger with another network and for handling possible address conflicts
after the detection in robust actions with minimum effort. As mentioned in Section 3.4.2 each
node sending a Beacon message has to include LHA parameters1 referring to the configuration
status of its network. Basically, if two networks merge together, the border nodes in the merger
area of each merging network will be the first nodes which detect the merger, as shown in Fig-
ure 3-14 where nodes 6 and 17 are border nodes. In this figure, both networks are taken to be
stable and there is at least one LHA parameter that differs between them. From the figure, when
border node 17 receives from node 6 a Beacon message including parameters which differ from
the saved ones, node 17 supposes that the sender is a border node belonging to another network.
Thus, in Figure 3-13 node 17 releases the “Standby” state and enters the “Merging” state which
includes four sub states (“Wait info reply”, “Soft merging”, “Hard merging” and “Reconfigur-
ing”) as shown in Figure 3-15.

1 They are HierID, Hash, ROOT, the number of Merged Networks (MN), the number of configured nodes and the information
lastconf / Jtlast and S_lastconf) of the last two configured nodes in the networks.

78

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

Figure 3-14: Merging of two networks

Figure 3-15: Merging state of LHA protocol

To show the process in the “Merging” state, a general scenario without special cases such as
dropping packets is now presented as an MSC chart in Figure 3-16. Thus after the detection of a
merger, the node sends an Info_Req message including the information and tables of its respec-
tive network and sets Info Request Timer (Inf-Req-Timer) with adequate duration defined as info
Timeout (Tm-info). During this period, the node assumes that an Info_Rep message will be sent
by the border node from the other network. In the case that the exchange of both info messages
succeeds, both border nodes are able, after the comparison of the message information, to define
the kind of the merger because both info messages include the network configuration parameters.

23

9

3

1

3
48

8

2

12

26
26

12
2

5

176

Network B

Merger area

Network A

Beacon

Wait Info
reply

Merging

[finish_merge == true]

Reconfiguring

Soft
merging

Info_Rep [merge with
bigger network and my
network is unstable]

[finish_merge == true && changed == true]/ set(Release = false)

Info_Rep [hard merge] Hard
merging

[finish_merge == true && changed == false]
/ set (Release = true)

Info_Rep [soft merge]

Tm_Info/
set(finish_merge= true)

Beacon [different
parameters] / Info_Req.un
set (Tm_Info)

S_merge || Info_Req [soft merge]

Rel_Conf

H_merge || Info_Req
[hard merge]

[finish_merge == true]

79

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

In the case of the merger of two stable networks, there are in LHA two main kinds of the mergers
called Soft and Hard mergers. Depending on the HierID values of the merging networks the soft
or hard case can be defined. Identical values lead to a Hard merger and different values lead to a
Soft merger (the following sections describe both). The actions in each kind of the merger differ
in the degree of modification to the configuration data in the nodes; however, each merger in
LHA represents a uniform modification that every node from one network must follow to avoid
any address conflicts after the merging. This means that if different border nodes from a network
detect a merger with another network, they are able to define the possible address conflicts with
the nodes from that network and, depending on the kind of the merger, select identical actions to
solve them. So, after detecting and defining the kind of merger in Figure 3-16, both border nodes
form the two merging networks enter the corresponding state (Hard or Soft) in the “Merging”
state and then each border node is responsible for informing the other nodes from its network
about the kind of the merger by sending a corresponding message, for example in case of Soft
merger a Soft Merger (Soft_Merge) message must be sent in each network. Depending on the
message received, the other nodes, in turn, enter the corresponding state in the “Merging” state
and then uniformly do identical actions to complete the merger. In other words, all nodes from a
network enter the predefined state from the border node and, thus, they make identical changes
to its tables and data. This means LHA needs in normal scenarios only one broadcast message
from the detecting node to handle the merging issues and this in comparison to other solutions is
efficient and very fast.

However, to make LHA robust it was also seen as vital to discuss a special case when there is
a merger with an unstable network. In this case it is not necessary to take either action (soft or
hard merging). Here, there is only an action which must be done on the nodes from the unstable
network, wherein, every node in this network has to release its configuration and start the recon-
figuration algorithm which will be described later in Section 3.6.5. The reason is to prevent in-
sufficient usage of a certain HierID by a network which consists, for example, of less than 5
nodes. In this way, the protocol avoids the unnecessary increment of the HierID numbers of the
merging networks and, also, effort (signaling cost) is saved by avoiding configuration changes in
a big network. In this case, the node in an unstable network enters a state called “Reconfiguring”
state which is independent of the Soft and Hard merging states as shown in Figure 3-15. There
follows a detailed description of the merging states, including the “Reconfiguring” state, together
with a presentation of the powerful LHA solution to certain special cases, especially the case of
simultaneous merging of more than two networks. This has long been considered a major chal-
lenge of merging scenarios and most protocols so far developed have failed to solve it, others
have been weaker in their solution. Here, first, is the description of the soft merger.

80

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

Figure 3-16: MSC chart of border nodes detecting the merging state

3.6.3 Soft Merger

As described in the basic idea of the merger, the soft merger presents the case where two or
more stable networks having different HierIDs merge together. Because each HierID is a part of
every IP address from a certain address hierarchy (see Section 3.2) the soft merger causes no
address conflicts among the nodes after the merging. Although the soft merger does not cause
address conflicts, the update process is required to handle later any merger between the new
merged network which includes a variety of HierIDs. To understand the principle, here, in Fig-
ure 3-17, is an example of two simple stable networks (i.e. each stable network consists of only
one address hierarchy). Each network selects its LHA parameters in which the HierIDs are dif-
ferent as depicted.

In accordance with the LHA algorithm, the detection of different beacons (including at least
one LHA parameter differ from the saved one) leads both border nodes to exchange info mes-
sages including all tables and parameters as presented above in the merger basic idea. Because
the HierIDs of both networks in the example are different, each border node discovers that there
is a soft merger. This means that each border node has to enter the “Soft Merging” state from the
“Merging” state as presented in Figure 3-15.

Info_Req

Info_Rep

Beacon

Tm-info

Configured node
(MANET A)

Border node
(MANET A)

Border node
(MANET B)

Configured node
(MANET B)

Merger message Merger message

Merging

Standby

Merger detection

Define the merger type

Merging

Merging

Tm-info

81

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

Figure 3-17: an example of soft merger (two stable networks with different HierIDs)

In LHA, each node in a “Soft merging” state is responsible for controlling the merger process
in that the node has to update its parameters, save the information from the other network and
inform the other nodes from its network about the merger. To permit this, the state consists of
two sub states called “Update soft merging” and “Wait soft change” as shown in Figure 3-18. In
the figure the “Soft merging” state is triggered by one of three events (Info_Rep, Info_Req or
S_merge messages). The two info messages in this case (i.e. the messages sent by a node from
another network with different HierID) are basically an exchange between two border nodes of
different networks, while the S_merge message is sent inside a network by a sender from the
same network of the receiver (i.e. both sender and receiver have identical LHA parameters). The
procedure in this state can be described as follows:

• When a node is triggered by any of those messages it enters the “Update soft merging”
sub state. The main action here is to add the information of the other networks to the
merging table. Depending on the node information and the newly received infor-
mation, the node updates its Hash and MN parameters. This will later help the node to
detect the merging with other networks and define the kind of merger. However, to
ensure a reliable merger process and avoid insufficient signaling to other nodes in the
network due to the dropping of broadcasting messages, the node has to save a trace on
its old Hash and MN numbers. After that, the node sets a merging timeout (Tm-mer)
and broadcasts the S_merge message to its neighboring nodes. Finally, the node re-
leases “Update soft merging” state and enters the “Wait soft change” state.

• In “Wait soft change”, the node observes any Beacon sent by the neighboring nodes.
During the Tm-mer timeout, if a node receives a Beacon message including infor-
mation that is the same as the old saved information, the node supposes that the sender
has not received the corresponding S_merge message. In this case the node has to
resend S_merge message to this node. After the expiration of Tm-mer timeout the
node knows that the soft merging state is finished, whereupon it sets the finish_merge
parameter with true value. Thus, the node releases the “Merging” state from the

3

7

5

6
4

4 7

0
1

2

1
8

2
Beacon

B: e.g. of configuration
parameters

HierID = 12, Root = 0
hNetID = CC, CN = 9
Hash =77, lastconf = 3
MN = 1, S_lastconf = 9

A: e.g. of configuration
parameters

HierID = 3, Root = 1
hNetID = FF, CN = 8
Hash = 5, lastconf = 8
MN = 1, S_lastconf = 4

Stable Network A Stable Network B

8 5

3

lastconf lastconfMNHash CN

82

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

“Maintaining” state and enters the “Standby” state as shown in Figure 3-13. This
means the node is able to act as usual by sending a Beacon message.

Figure 3-18: Soft merging state of LHA

3.6.4 Hard Merger

The algorithm of the “Hard merging” state is similar to that of “Soft merging”, in that there
are again two sub states as shown in Figure 3-19. However, the procedures of the sub states dif-
fer between hard and soft cases. This is because the hard merging deals with the merging of net-
works with identical HierIDs, which in turn leads to address conflicts among the nodes after the
merger. Therefore, in LHA one of the networks (the one with the smaller number of nodes) has
to change its HierID by choosing another HierID number which is free, i.e. not in use. Because
this change is made to part of the IP addresses in the smaller network, the name given to this case
is “hard”. Basically, only the smaller network is in a “Hard merging” state, while the big one
utilizes the new data selected by the smaller one to start the “Soft merging” state. As mentioned
in the paragraph on the basic idea, each node in a network is able to detect and handle merging
with another network. So, to avoid any conflicts in LHA when different nodes in the smaller
network detect the merger simultaneously, every node in both networks selects the same new
HierID by itself. In LHA the selection procedure used by every node is applied on both merger
lists of merging networks. Because the merger list of any node in a network contains identical
information belonging to the merging networks, the selection procedure based on this infor-
mation enables every node to produce identical results after the selection (e.g. select the next
available HierID in the list). This means that there is no problem if different nodes from a net-
work detect and handle the merger case at the same time. The following describes how a node
behaves in the “Hard merging” state:

Soft merging

Update soft
merging

Wait soft change

Beacon [old information]/
S_merge

Tm_Mer/
set (finsh_merge =True)

Finish updating/
S_merge,
save old configuration,
set (Tm_Mer)

S_merge [belong to my network]
|| Info_Req [soft merger]Info_Rep [soft merger]

83

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

Figure 3-19: Hard merging state of LHA

From info messages (Info_Req or Info_Rep messages), when a node detects that it has to start
“Hard merging” state because its HierID is equal to the one from other merging network and its
network has smaller number1 of nodes, the node enters the “Update hard merging” state as
shown in the figure.

• In the “Update hard merging” state, a node knows that its network is small and it has
to select a new HierID. Therefore, it builds a binary array of all HierID numbers, set-
ting the array cells with value 1 and 0 for the occupied and available number respec-
tively. Then, it uses a “simplest possible” strategy such as linear probing, or searching
sequentially in the array until the node can find an available cell. Notice that it is pos-
sible for the search to wrap around from the last position to the first. Usually, the
search starts upward from the HierID position of the node. After the definition of the
new HierID number the node saves its old configuration and updates its table with the
new data. Then it starts the merging timer with a value Tm-mer timeout. After that, it
broadcasts H_merge message including all the information to all nodes in the smaller
network. Finally, the node releases “Update hard merging” state and enters “Wait hard
change” state.

• In “Wait hard change” (as in the soft merging state), the node has to ensure that the
other nodes in the network have made the required change. Therefore, it observes the
beacons sent by the neighboring nodes for Tm-mer timeout. During this period, if a
node receives a Beacon message including information equal to the old saved info, the
node supposes that the sender has not received its last H_merge message. In this case,
the node has to resend the H_merge message to this node. After the expiration of Tm-

1 If the network nodes are equal in number in both merging networks, the smaller hNetID must be used.

Hard merging

Update hard
merging

Wait hard change

Beacon [old information]/
H_merge

Tm_Mer/
set (finsh_merge =True)

Finish updating/
H_merge,
save old configuration,
set (Tm_Mer)

H_merge [belong to my network]
|| Info_Req [hard merger]Info_Rep [hard merger]

84

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

mer timeout the node sets the finish_merge parameter with true value and releases its
state. The true value indicates that the node will also release the “Merging” state and
the “Maintaining” state, and then enter “Standby” state.

3.6.5 Reconfiguration Algorithm

Because the algorithms of the soft or hard merger are achieved in each merging network by
means of a broadcast mechanism, it is insufficient to use these algorithms in the case of merging
with a very small network (Unstable network). The LHA algorithm deals with this case by using
the reconfiguration algorithm, applied only on the smaller unstable network. The basic idea is
that all nodes in the small network have to release their address configuration and get a new one
from the big network. As there are few nodes in “Unstable network” the requesting nodes do not
cause high signaling overhead. Moreover, the reconfiguration algorithm is designed to keep this
cost to a minimum. Here follow the details of the algorithm.

As already explained above, the reconfiguration algorithm is selected when an unstable net-
work merges with another network which has a bigger number of nodes (this may be an unstable
or a stable network). Let us suppose that a stable network merges with unstable one as shown in
Figure 3-20, where Y and X indicate stable and unstable networks respectively. In this case the
nodes in the unstable network (X) have to release their configurations (addresses and network
configuration) and then they have to get new configurations from the other merging network (Y)
as shown in steps 1 and 2 in the figure.

Figure 3-20: Merging scenario in case of two networks (stable merges with unstable network)

Depending on which border node first detects the merger, there are two scenarios:

1
32

7 5
6

8 9

4 0

mer_Th= 5
Stable network = “Y”
Where CN >= mer_Th

Nodes release
their addresses

Unstable network = “X”
Where CN < mer_Th

Step 2

3

5
7

1 32

7 5
6

8 9

4 0

1

32

7 5
6

8 9

4 012
10

11

Step1

Request new
addresses from
stable network

Beacon

Info messages

85

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

• Say a border node of network X detects the merger first. This means that it receives a
Beacon message sent by a border node from network Y. Therefore, this node follows
the merging algorithm as follows:

o It compares its parameters with the parameters in the received beacon. In the
figure the node detects a merger with a stable network. Because of CN<
mer_Th (merger threshold) the node knows that it has to release its configura-
tion.

o Then, the two border nodes exchange their information by means of info mes-
sages (Info_Req and Info_Rep). Therefore, the node that receives the Beacon
sends Info_Req message including its parameters and tables to the other border
node which has sent the Beacon (in this case, to the node from network Y) and
waits for a reply.

o Upon receipt of the request message the border node of network Y compares
its data with the info received. The comparison indicates that there is a merg-
ing with an unstable network. The node, then, checks its assigning list. If the
node has free address it sends Info_Rep message including its information and
a free address which will be assigned to the border node of network X. Other-
wise, it sends the Info_Rep message including only its information to the bor-
der node of network X.

o When the border node of network X receives the Info_Rep message, it starts
the reconfiguring state which consists of two states as illustrated in
ure 3-21.

 In “checking for change” state the node checks if the received Info_Rep
message includes a free address or not as follows:

• If there is a free address it saves the old configuration (e.g. the
old HierID), assigns itself with the free address and changes its
configuration data into the new received one. Then it sends Re-
lease Configuration (Rel_Conf) message to the other nodes in
the network X and, also, sends New_Node message to the nodes
in network Y. After that, the node set “true” value to a Boolean
variable (changed) which indicates to the change in the configu-
ration of this node. Then it sets a release change timeout (Tm-
reCh) and enters the state “Wait for network change”.

86

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

Figure 3-21: State machine of reconfiguring status

• If the Info_Rep message does not include a new address the
node sets “false” to (changed) and sends a Rel_Conf message to
the other nodes in the network X. After that, the node has to
wait for a timeout “Tm-reCh” to ensure that the Rel_Conf mes-
sage has been received by all nodes.

 In “Wait for network change” state, the node waits for the other nodes
to complete the release of their old configuration. During the timeout
(Tm-reCh) if the node receives from its neighbors any Beacon message
including the old information it knows that this node has not received
the Rel_Conf message. In this case it sends the message again to the
sender of the old information. When the timeout period is passed, the
node releases the reconfiguring status and checks the changed value. In
the case of “true” value, the node resumes working as a part of the new
network (network Y) with the new configuration. This means if the
node receives an AA_Sol message it calculates the new address with
regard to its new configuration. Otherwise, in the case of “false” value,
the node begins a normal assigning algorithm like any new node join-
ing the network. In this way the node gets a new address from any
neighboring node of network Y. When the node receives the new con-
figuration it can work as a part of the network Y.

o Upon receipt of Rel_Conf message each node from the network X has to re-
lease its configuration data and try to get a new one from any node from the
network Y. However, before the node requests a new address from the new

Reconfiguring

Wait for network Change

Tm-ReCh / set (finish_merger = true)

[includes free address]/
Rel_Conf.br, New_Node.br,
set (old HierID, Tm-ReCh),
set (changed = true)

Checking
for change

[info message doesn't include
free address] / Rel_Conf, set
(Tm-ReCh, changed=false)

Beacon [old information]/
Rel_Conf.un

Info_Rep || Info_Req
[merger with bigger
network and my
network unstable]

Rel_Conf / Rel_Conf, set
(Tm-ReCh, changed=false)

87

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

network the node has to forward the message to other nodes in its network. To
do that, the node enters “Wait for network change” state. As mentioned above,
the node in this state waits for the duration to ensure that all nodes in its net-
work have got the Rel_Conf message. Then the node release the “Reconfigura-
tion” state and because changed =false in this case the node starts as a new
node joining a network, as described in Section 3.5.

• The second scenario is that, the border node from the network Y detects the merger
first. This means it detects that there is a merger with unstable network because of (CN
< mer_Th). the algorithm ,then, will be as follows:

o The node sends Info_Req message including its information to the border node
of network X. In addition to the network configuration the message may in-
clude an allocated address if the node owns a free one.

o When it receives this message, the border node of network X knows that there
is a merger with a stable network and the nodes in its network have to release
their configuration and get a new one from the new network. So it enters
“checking for change” state and follows the algorithm as described above in
the first scenario, the case where the node of X receives Info_Rep.

o When the other nodes in the network X receive Rel_Conf message they will
follow the steps as mentioned above in the first scenario (the steps of “Wait for
network change” state).

3.6.6 Handling Special Case (Simultaneous Merging)

Most protocols so far developed that focus on the problem of merging networks study the case
where only two networks are merging. However the merger of more than two networks at the
same time is considered by these protocols to be a major challenge. The LHA algorithm intro-
duces an efficient method of resolving these situations. To explain the LHA algorithm in the case
of simultaneous merging of more than two networks, let us suppose that there are three networks,
as shown in step 1 in Figure 3-22 where each cloud represents a network. In the first step it is
assumed that none of the networks has merged before with another one. This means that the
Hash numbers are selected randomly by the roots. Suppose r1, r2 and r3 are for MANET 1, 2 and
3 respectively, and the MN is set to 1 in every network; there is only one entry in the merging
table.

88

 Chapter 3: LHA Protocol

 3.6 Network Merger Algorithms

Figure 3-22: Simultaneous merging of three networks

In the figure each type of color-and-hatching in each cloud represents a distinct value of a
Hash parameter used in this cloud. Also, each shape of a node represents a HierID number used
by this node. Now let us suppose that MANET 1 and 3 merge with MANET2 simultaneously.
The LHA algorithm of this case is as follows:

• When a border node, say A from MANET2 as in the figure, receives a Beacon mes-
sage sent by Node B from MANET1, it detects a merger with MANET1 because LHA
parameters in the Beacon from B are different. After that, the two nodes involved in
the detection process exchange the information and tables of their respective networks,
as presented in the basic idea of the merger.

• Upon completion of the message exchanges, each node calculates the new Hash and
broadcasts a Soft Merger message (S_Merge) including the merging information to the
other nodes. This message includes the information pertaining to the two merging
networks.

• Basically in LHA, upon receipt of this message, the other nodes belonging to the net-
work of the sender save this information in their table and calculate the new Hash.

• In the example, let us suppose that nodes E and F from MANTE3 and 2 respectively
have detected a merger at the same time as with A and B nodes from MANET2 and 1.
This results in a case that two different S_Merge messages from two nodes in
MANET2 are sent at the same time. It is logical that some nodes of MANET2 will re-
ceive the merger message from A of the first merging (MANET1 with 2) faster than
the message sent by node F of the second one (MANET2 with 3). We suppose that the

HierID = 5

HierID = 4

HierID = 2

MANET1MANET2 MANET3
Hash=r1
MN=1

Hash=r3, MN=1

Hash=y
MN=2

Hash=z
MN=3

Hash=x
MN=2

Step1

Step2

Step3

B
A

D
C

Hash=r2, MN=1
C

DFE

89

 Chapter 3: LHA Protocol

 3.7 Network Partitioning Algorithms

first receipt of the merger message in node D is coming from A and the first receipt in
C is from nodes F.

• This results in the building of two networks (clouds) having different Hash parameters
where node C with some nodes are in one cloud and other nodes with node D are in
another cloud, as shown in step2 in the figure. Because C and D are on the border they
will detect different parameters in the Beacon messages. In this case the border nodes
(nodes C and D) of these two clouds will follow the same concept of detecting a new
merger (the first, second and third cases of the merging algorithm as explained above).

• Finally (step3 in the figure), each node from the three networks will have only one
Hash and MN number, which will later enable any node in the big cloud to detect
mergers with other networks.

3.7 Network Partitioning Algorithms

An essential issue that may face address auto-configuration protocols in MANETs is that of
network partitioning, in which one or a group of nodes may be unable to connect to other nodes
in the network. The reason may be temporary obstacles among nodes or movement out of the
transmission range of other nodes in the relevant period. The disruption of such connections
among nodes may result in inaccurate management of address space because the information of
some nodes is not available or not up-to-date during this period, which in turn may lead to ad-
dress duplication if partitions reconnect with each other, especially in protocols with global as-
signment decision approaches as presented in Section 2.5.

 Figure 3-23 shows this case where a network is divided into two partitions by the existence of
an obstacle. In the figure let us suppose that after a certain time the missing nodes set {0, 1, 2, 8
and 9} is detected in partition 1 and missing node set {3, 5 and 7} is again detected in partition 2.
Thus, if the addresses of the missing nodes in a partition are assigned to new nodes, there will be
no problem in each separate partition. However, if the two partitions reconnect later there will be
address conflicts as illustrated in the figure. So, during the design process the auto-configuration
protocol must preclude later address conflicts from the assignment of missing nodes if the parti-
tions reconnect. When this case is analyzed, two main questions can be defined as follows:

• First, when must a node detect a partition?

• Second, what is a safe method of reusing the address of missing nodes?

LHA is designed to handle the partition cases efficiently. The following sections describe the
LHA algorithm in partition scenarios.

90

 Chapter 3: LHA Protocol

 3.7 Network Partitioning Algorithms

Figure 3-23: Partition network problem

3.7.1 Partition Threshold

Because LHA belongs to local first decision class there is no problem if two partitions of a
network assign their free addresses and then they rejoin later, see Section 2.5. However, if each
partition reassigns the addresses of missing nodes this may leads in address conflicts later. So, to
fulfil the overall purpose, LHA partition algorithm will not be activated until there is a need to
reuse those addresses. This method has a big advantage especially in situations of frequent parti-
tioning and merging networks where the disconnection time is short.

In LHA, the partition algorithm will be triggered when an AA node in its “Searching for free
address” state, as described in the joining algorithm, fails to find a free address in the network. In
this case, there is a need to reuse the addresses of missing nodes when there is information about
these addresses. Basically, the LHA partition algorithm is responsible for defining how those
addresses are to be reused without causing address conflicts if later the nodes of different parti-
tions reconnect. The LHA method of solving this case is to change the configuration parameters
of every node existing in the partition. This means that when a partition decision is made, the
nodes are instructed to change their configuration data. To prevent frequent configuration change
(which would require additional communication cost among connecting nodes), LHA defines a
partition threshold after which the network starts handling the partition problem. The way this
threshold is selected is that LHA does not make a change in a partition if the number of Lost Ad-

1

32

7 5
6

8 9

4 0

3

7

5

6

4

8 9

0
1

2

Partitioning Network

Missing addresses detection

3

7

5

6

4

8 9

0
1

2

Reuse missing addresses

1

3
2

7 5 6
8

9

4 0

Missed nodes
{3,5,7}

Missing nodes
{0, 1, 2, 8, 9}

3

7

5

6
4

8 9

0
1

2

Merging partitions

3

5

70

1 8

9
2

3

5

7
01

8
9

2
Address
conflicts

O
bs

ta
cl

e

91

 Chapter 3: LHA Protocol

 3.7 Network Partitioning Algorithms

dresses1 (LoA) compared to the current number of configured nodes (CN) existing in a network
is very small. This is logical because in a big partition the advantage of reusing some addresses,
e.g. five lost addresses, will be very low compared to the cost of changing the address configura-
tion of many nodes, e.g. more than 500 nodes. From this, the partitioning algorithm starts when
the comparison in equation (3.11) is true, where HHIDb is the number of bits of the HHID block.

 𝐿𝐿𝐿 + 𝐶𝐶 ≥ (2𝐻𝐻𝐻𝐻𝑏)/M and 𝐶𝐶
𝐿𝐿𝐿

≤ 2 (3.11)

In LHA the LoA number is obtained from an equation (see equation 3.13) based on the sum of
all weights of the Lost Nodes (LN) in the network. Let 𝑙𝑙𝑖 be the lost node i, basically, each lost
node is assigned with a weight W where 𝑊(𝑙𝑙𝑖) will indicate to the weight of the lost node i.
The weight of node i 𝑊(𝑙𝑙𝑖) depends on the number of its not allocated addresses (𝑛𝑛𝑛𝑛_𝑎𝑎𝑎

𝑖) and
a hierarchy level deference (𝐻𝐻𝑑) calculated from, 𝐻𝐻𝑑 = 𝐻𝐻𝑚𝑚𝑚 − 𝐻𝐿𝑙𝑛𝑖 , where:

• Hlmax: is the maximum number of the levels in an address hierarchy, where
𝑀𝐻𝐻𝑚𝑚𝑚 ≤ 2𝐻𝐻𝐻𝐻𝑏 .

• 𝐻𝐻𝑙𝑙𝑖 : is the hierarchy level of a lost node i (lni) in a network; where 0 < 𝑖 < 𝐿𝐿 and
𝐻𝐻𝑙𝑛𝑖 < 𝐻𝐻𝑚𝑚𝑚 .

In other words and in more detail, a node as defined in LHA owns a block of available ad-
dresses and as soon as a node is lost, its free addresses (which are not allocated to other nodes
yet) will be considered lost addresses. Because LHA uses a hierarchal address structure, the pos-
sible number of lost addresses will be equal to or bigger than LN. So, to calculate LoA from the
actual lost nodes, the node, which starts the partitioning algorithm, has to define the weights (W)
of every lost node as shown in equation (3.12). This equation represents the weight value 𝑊(𝑙𝑙𝑖)
of a lost node i (lni).

𝑊(𝑙𝑙𝑖) = 1 + 𝑛𝑛𝑛𝑛_𝑎𝑎𝑎

𝑖 ∗ � (M𝑙)
𝐻𝐻𝑑−1

𝑙=1

 (3.12)

Finally, the sum of the weights of all lost nodes will refer to LoA as given in equation (3.13).

𝐿𝐿𝐿 = �𝑊(𝑙𝑙𝑖)

𝐿𝐿

𝑖=1

 (3.13)

1 The number of lost addresses is related directly to the lost nodes and indicates the sum number of all not allocated addresses
(nnot_alo) in the hierarchy which can be managed by those lost nodes and their successors.

92

 Chapter 3: LHA Protocol

 3.7 Network Partitioning Algorithms

3.7.2 Partition Algorithm

In LHA the “Partitioning” state of a node may be triggered by other nodes or by the node it-
self. In Figure 3-24 a node may receive a New_HierID message from a neighboring node or if a
node in “Searching for free address” state is unable to find a free address, as mentioned in Sec-
tion 3.5.4, it sets (partition = true) which triggers the “Partitioning” state. Responding to either of
these two events, the node enters the “Checking” state in which it has to check the partition
threshold and update its table according to the comparison decision. Possible cases in the parti-
tion algorithm are as follows:

• In “Checking” state, two actions are possible based on the comparison of the thresh-
old in “Equation (3.11)”.

o If LoA >= partition threshold, LHA supposes that there is a partitioning in the
network which means that the node is able to use the addresses of the missing
nodes in its partition. So it sends an AA_Conf message (positive reply) includ-
ing an address of a missing address with the new HierID. Then the node enters
“Updating” state.

o If LoA < partition threshold, the node knows that there is no possibility of as-
signing free addresses to the new requesting node. The node, then, sends an
AA_Conf message with no free address (negative reply) to the new node. Af-
ter that, if there are no nodes with free addresses the node releases the “Parti-
tioning” state and enters “Standby” state; otherwise, the node sends an Exist-
ence Request (Ex_Req) message including a list of the nodes which have not
assigned their free addresses. Then, it sets an existing node timer Tm-exist and
enters the “Recovery” state which represents an address recovery algorithm,
see next section for more details.

• In “Updating” state the node has to update its tables by changing the status of all
missing node into “available” and, then, it sends New Hierarchal ID (New_HierID)
message to inform other nodes in the network about the new HierID by which the us-
ing of lost addresses will be safe. Then it sets the change partition timer Tm-par and
enters “Wait partition change” state as shown in Figure 3-24.

• During “Wait partition change” state, the node analyses any Beacon message received
from a neighboring node and defines if there is a need to resend a New_HierID mes-
sage to the sender because it fails to change its HierID to the new one. In this case
LHA avoids unreliable using of broadcasting messages and ensures that each node
has made the required change sent in New_HierID. After the change timeout the node
releases the “Partitioning” state and enters “Standby” state, which means that the par-
tition algorithm has been finished.

• In “Recovery” state, LHA updates its tables on each receipt of an existence confirma-
tion (Ex_Conf) message. After the expiration of Tm-exist and before the “Partition-
ing” state is released, the nodes broadcast a Mis_Node message if any corresponding

93

 Chapter 3: LHA Protocol

 3.7 Network Partitioning Algorithms

node in Ex_Req message does not respond with the Ex_Conf message. The next sec-
tion describes this case (the address recovery algorithm) in detail.

 Figure 3-24: Partitioning state of LHA

3.7.3 Address Recovery Algorithm

As mentioned above, the “Partitioning” state will not be terminated if the threshold of the lost
addresses is not reached and, at the same time, there are free addresses with some nodes which
still exist in the configured list. LHA in this case supposes that there may be some missing nodes
in the network but there is no information about them due to the failure to detect of those nodes.
Therefore, the “Partitioning State” starts the address recovery algorithms to seek the existing
nodes of which some or all free addresses are not allocated to other nodes. From the responses
from those nodes, the partition algorithm gets accurate information about the missing nodes in
the network. Because only the nodes which are expected to have free addresses are requested,
LHA utilizes a multicast message which in turn reduces the signaling cost in the recovery pro-
cess. The MSC chart of this case is presented in Figure 3-25. From the figure the algorithm can
be described as follow:

• The node may, in the “Partitioning” state, detect in its configured list the existing of
nodes which may own free addresses. This process in LHA is possible because LHA
function divides the addresses space among nodes which in turn enables each node to
define the successors of other nodes in the network. After that, the node sends a mul-
ticast message called the Existing Request (Ex_Req) message to the selected nodes.

• Upon receipt of this message by a corresponding node it responds by sending an Exist
Confirmation (Ex_Conf) message to the requester.

Partitioning

Checking for
change

Finish Partitioning

[LoA >= partition threshold]/
AA_Conf (poistive); set (new HierID)

Wait partition
change

Tm_Par

Beacon [HierID == old HierID]/
New_HierID

1/ New_HierID, set (Tm_Par)

[LoA < partition threshold]&&[there are
nodes with free addresses]/AA_Conf
(nigative) ; Ex_Node; set (Tm_exist)

Tm_exist [no missed node]
Or
Tm_exist [there are missed nodes]/ Mis_Node

Ex_Conf/ (update)

[Partition==true]

New_HierID

Updating

[LoA < part. thre.] &&[no
nodes with free add.]/
AA_Conf (nigative)

Recovery

94

 Chapter 3: LHA Protocol

 3.7 Network Partitioning Algorithms

• The receiving of an Ex_Conf message by the requester indicates that this node is still
connected to the network and that it has not assigned its free addresses to other nodes
because of packet drops or other issues such as a temporary obstacle.

• At the end of the existing timeout, if there are some nodes with no response, the re-
questing node assumes that these nodes are missing and there is a need to inform the
other nodes in the network of that. Therefore, it sends a missing node message in the
network. After that it updates the information of its tables and releases the “Partition-
ing” state and enters the “Standby” state.

• When other nodes in the network receive a Mis_Node message they update their tables
according to the new information.

This mechanism to detect the missing nodes is not the only one in LHA because it starts only
when there is a need to assign free addresses. In the departing algorithm, LHA uses another
method to detect the missing nodes, for details see Section 3.8.

Figure 3-25: Search for nodes X and Y which own free addresses wherein node Y is no more in the network

3.7.4 Special Case (Stand Alone Node)

A special case of a partition scenario is that when a single node is not able to connect other
nodes in the network, for example because of an obstacle. The solutions in much of the literature
usually consider this case as an abrupt departure. The solving of this case as departing node may,
however, cause address conflicts in the network because the node may reconnect to the network
when the obstacle vanishes.

The LHA protocol defines an “Alone Standing” state in which this problem is well defined
and solved as shown in Figure 3-26. The basic idea in LHA to solve this case is to change the

Ex_Conf

Ex_Req
Tm-exist

Node A (with no
free addresses)

Recovery
requester

Mis_Node
Mis_Node

Partitioning

Forwards to X & Y

No response from Y
(Announcement of missing)

Standby

Standby

Node B (with no
free addresses)

Node X (with
free addresses)

Ex_Req
Ex_Conf

Standby
Detect nodes (X and Y)

have free addresses

Mis_Node

95

 Chapter 3: LHA Protocol

 3.7 Network Partitioning Algorithms

configuration of this node to a temporal or preserved one in which a node is not able to assign
addresses form the original network configuration to a requesting nodes. There follows a detailed
description of the state machine in the figure.

Figure 3-26: State machine of a node with alone standing state

The “Alone Standing” state is triggered when a node in “Standby” state (see Figure 3-13) de-
tects an event that a node is standing alone. LHA generates this event when the standalone timer
expires without receiving any Beacon message from neighboring nodes. This means that during
the Tm-alone timeout the node has failed to detect any Beacon from its neighbors. So in this case
the node concludes that it stands alone (Alone=true). Thus, in the “Alone Standing” state the
node behaves as follows:

• In “Change MN and save old configuration” the node has to change its MN to a pre-
served one or 0, and to keep a track of its configuration (saving its original configura-
tion). Then, it enters “Wait for rejoining” state.

• In “Wait for rejoining” state the node works in a normal way by sending regular Bea-
con message including the new MN. During this state the new node may receive one
of two messages; Beacon from another configured node or AA_Sol message from a
new node.

o If the node receives a Beacon message from another node it has to do the fol-
lowing:

 If the parameters in the received Beacon are equal to the old ones (Hie-
rID, Root, Hash and MN) then it reuses its old configuration. Then it
sends an Info_Req message with empty configuration and its lists. Af-
ter that, it enters “Wait Info” state.

Alone Standing

Wait info

Beacon [belong to my old
network]/ Info_Req, set
(Tm_Info)

Change MN and save old
configuration

1/ Beacon, Set
(Tm_Bec)

Wait for rejoining
Beacon [doesn't belong to my old
network]/ set (Release = True)

Tm_Info

Info_Rep/ (retrun to old configuration),
New_Node, set (Release= false)

1/ AA_Rep(free) ,
set (Release= false),
(allocate seq(i) for
requester)

Build new address
hierarchy

AA_Sol

Tm_Bec/ Beacon, set (Tm_Bec)

96

 Chapter 3: LHA Protocol

 3.8 Node Departure Algorithms

 If the parameters in the received Beacon are not equal to the old ones it
has to release its configuration. In this case the node sets (Release=true)
and leaves the “Alone Standing” state in order to start a new address
assignment algorithm by sending an AA_Sol message as described in
Section 3.5.

o If the node receives an AA_Sol message from a new node it releases its state
and enters “Build new address hierarchy” state.

• In “Build new address hierarchy” the node configures itself as a new root as described
before. This means that it chooses a random HierID and HHiD. Then it defines the
network parameter, as presented above, by using its MAC address. After that it sends
an AA_Rep message including its configuration and the new address which will be as-
signed to the requester. Finally, it sets (Release=false) and then releases its stand-alone
state and enters “Standby” state. It should be noted that when the requester receives
this message it will not discover that this is a stand-alone node. So it will be a new
member of this new address hierarchy and it sends a New_Node message to its prede-
cessor (the root node in this case).

• In “Wait Info” and upon receipt of the Info_Rep, the node uses the information of this
message to update its tables. After that it checks if its HHID has been noted as a
“missing” one. If not “missing”, it will continue as normal node but in the other case
the node will be obliged to inform other nodes in the network about its reconnecting.
Therefore, it sends a normal (New_Node) message to all nodes in the network. Upon
receipt of this message, other nodes update their tables according to the new infor-
mation. This means that if there is an entry of the sender in the configured nodes list
(Table 3-2) the receiver checks the status of the sender in the table; so if the status is
“available”, the receiver will not do anything because the sender has a normal configu-
ration and if the status is “missing”, the receiver changes the status to “available”.
Otherwise, i.e. the information of the New_Node message is actually new, the node
will deal with this message as described in section “joining new node” (update config-
uration table).

3.8 Node Departure Algorithms

A node in a MANET is able to join and release its network. When a node wants to release the
network, the first issue is how other nodes in the network must handle the address of this node.
Moreover, if the departing node has available addresses which are not allocated to other nodes
the other issue here is which node in the network should be responsible after that for managing
them.

LHA handles these issues by allowing a neighbor of the departing node to work as Departure
Agent (DA) node which will in turn decide by itself a suitable way to deal with the free address-

97

 Chapter 3: LHA Protocol

 3.8 Node Departure Algorithms

es. It may manage them by itself or give the responsibility to another node in the network. The
departing algorithm in this case is divided in two parts as follows.

3.8.1 Departing Node Algorithm

The LHA departing algorithm is triggered by a node when it needs to leave its network for
such reasons as the need to join another network or to switch off for saving energy. The depart-
ing node, in this case, has to search among its neighbors for a DA node which may be able to
manage the free addresses if the predecessor of the departing node does not exist in the network.
In LHA a predecessor has the priority of managing the addresses of its successors. Basically, the
DA node must be the predecessor of the departing node if it is within the transmission range of
the departing node, but, if not, any neighboring node is able to work as DA. The selection phase
of the algorithm fulfilling this principle is described in Figure 3-27 as follows:

Figure 3-27: Selection of DA node by the departing node

• When a node wishes to depart from its network it sends a Departure Agent Request
(DA_Req) message to its neighbors and starts departure timer Tm_dep. This message in-
cludes information about the predecessor and successors of this node.

• Upon receipt of this message, the neighboring nodes respond by sending Departure Agent
Reply (DA_Rep) message to the node. This message informs the departing node about
the readiness of the neighboring node to serve this node in the departing process.

• After collecting Dep_Rep messages, the departing node has to select one of its neighbors;
as mentioned above, the priority lies with the predecessor if it is one of the neighbors.
The figure shows a scenario where node 1&2 are not the predecessor of the departing
node but node2 is selected because it has fewer free addresses than node1. After that, the
node informs the DA node by sending a Departure Agent Select (DA_Sel) message, in-

DA_ReqDA_Req

DA_Rep
Tm-dep

Neighbor 1 Departing node Neighbor 2

Wait Departure Reply

Configured

Select Neighbor 2 as DA

DA_Sel

Need to release

Un-Configured

DA_Rep

98

 Chapter 3: LHA Protocol

 3.8 Node Departure Algorithms

cluding information about the selected node. Upon receipt of the DA_Sel message by
node2 the selection phase is finished and then the node releases the network without any
problem.

3.8.2 Departure Agent algorithm

Because the management task is given to DA node of the departing node, the algorithm de-
scribing this case is illustrated in Figure 3-28, presenting the state machine of a node receiving a
DA_Sel message. The algorithm of DA starts as follows:

• When a node receives DA_Sel message the node enters “Checking and updating” state.
In this state there are two cases:

o If DA is the predecessor of the departing node:

 It removes the address from its configuration table and it changes the sta-
tus of this successor in the assigning table to “free”. This means it can as-
sign this address directly to any requester.

 Then it broadcasts Dep_Node message in the network and releases the de-
parting state.

o If DA is not the predecessor of the departing node it has to discover the existence
of the predecessor in the network because that node has the priority of managing
the IP addresses of its successor. Therefore DA completes the following steps:

 It sets Manage_status parameter to 1. This means that it is responsible for
managing the IP address of the departing node during the time for search-
ing for the predecessor.

 It sends Departure management (Dep_Manage) message in the network
and starts the management timer Tm-manage.

 Finally it releases the “Checking and Updating” state and enters “Wait
Management” state.

• In “Wait Management” state DA waits for a response from the predecessor of the depart-
ing node. Here, there are two cases:

o If the timer expires, the node supposes that the predecessor is missing. Therefore
the node sends Predecessor Existence (Pre_Ex) message in the network and starts
the exist timer Tm-exist. After that it releases its state and enters “Wait Exist
Ack.” state.

o If the DA receives a Dep_Node message from the predecessor of the departure
node. This means that the predecessor exists in the network and it will take the re-
sponsibility of managing the IP address of it is successor which is the departure
node.

99

 Chapter 3: LHA Protocol

 3.8 Node Departure Algorithms

Figure 3-28: a state machine of a node working as Departure Agent (DA)

• In the “Wait Exist Ack.” State, the DA node which is not the direct predecessor of the
departing node assumes that the predecessor is not in the network but it needs to be sure
before the announcement of this information. So it waits a response from the predecessor.
Here, the possible cases are:

o Dep_Node message sent by the predecessor means that the node is not able to
manage the address of the departing node because the predecessor of the depar-
ture exists in the network. In this case the node has to set its Manage status to 0
and modifies its table according to new information. Finally, it releases “Depart-
ing” state and enters “Standby” state of the “Maintenance” state.

o If the Tm-exist timer expires, the node ensures that the predecessor is missing and
there a need to inform other nodes in the network of that. So it sends two messag-
es, Mis_Node and Dep_Node, in the network to inform other nodes that the pre-
decessor is missing and that it is thus responsible for the IP address of the depart-
ing node. After that it releases the “Departing” state and enters the “Standby”
state.

Departing

Checking
and updating

1

Wait
Management

Dep_Sel

[DA is not the predecessor]/ set (Tm_Manage,
Manage status =1), Dep_Manage

[DA is the predecessor]/
Dep_Node

Tm_Manage /
set (Tm_Exist), Pre_Ex

Wait exist ack.

Dep_Node.br [from the predecessor]/
set (Manage status =0)

Tm_Exist /
Dep_Node
Mis_Node

Dep_Node.br [from the predecessor]/
set (Manage status =0)

 Performance Evaluation Chapter 4

This chapter is mainly an evaluation of LHA using a well-known simulation tool (ns2) [80]
.Ns2 is the tool selected because it is the most popular one in academic use [81], especially for
wireless ad hoc research, and has open source and a rich components library. Moreover, because
of its well implemented IEEE physical/MAC layers, many ad hoc protocols have been developed
and tested with the ns2 simulator.

This section provides a detailed and comprehensive performance evaluation of LHA com-
pared to three counterparts, namely MANETconf, Prophet and Buddy. The first reason for selec-
tion of those protocols is that they are stateful protocols which, like LHA, utilize a distributed
assignment process, as presented in Section 2.3. However, the other reasons behind the selection
in each case are as follows:

• MANETconf is selected because it uses an assignment process with a global overview
mechanism. This allows MANETConf during the assignment process to collect the status
of other nodes in the network, which in turn, makes this protocol able to handle most ad-
dressing issues in MANETs, such as abrupt departing nodes and partitioning/merging
networks.

• Unlike MANETconf, the Prophet protocol is not able to solve issues such as node depar-
ture or network partitioning because it has only a local overview. However, Prophet has
been chosen because it operates the fastest address assignment process among all known
stateful address auto-configuration protocols due to its simple handshake for address al-
location based only on local assignment by a distributed method, as presented in [82] and
[83]. Furthermore, the number of messages in Prophet is kept at a minimum compared to
other protocols which have been developed. Because of these features the authors in [84]
have skipped the comparison with Prophet, although they detected from their quantitative
analysis that the performance was likely to be better than that obtained from their proto-
col with its cluster-based approach.

• The Buddy system, on other hand, represents the basis design of most stateful protocols
using local assignment decisions with allocation tables; as is the case in [51], [52] [53]
[54] and [55]. The protocol presented in [52] is selected as a representative of Buddy pro-
tocols because its assignment process requires less signaling cost than the protocols in
[51] and [53], and it is not based on any routing protocols as are the protocols in [54] and
[55] which depend on the Optimized Link State Routing (OLSR) [58] protocol. Moreo-
ver, it shows an even distribution of free addresses among nodes because of the rule that
a new node should select an agent node which owns more free addresses. Furthermore, its
search function for free addresses is economical because it uses hop-by-hop search. In

101

 Chapter 4: Performance Evaluation

 3.8 Node Departure Algorithms

addition, it solves certain critical issues such as message drops, abrupt node departure and
network partitioning/merging. Finally, the functions and algorithms of the address auto-
configuration are well described in this protocol.

Basically, in auto-configuration protocols the unique address assignment function of joining
nodes is the core process. A node is, namely, unable to communicate until it obtains the network
configuration. Also, this joining process happens frequently and in several cases may lead in
high signaling cost and latency if an inappropriate mechanism is used. Therefore it constitutes
one of two main challenges of those protocols. The other big challenge of auto-configuration
protocols is the function of the resolution of possible addresses conflicts resulting from networks
merging. Most researchers are, thus, mainly concentrating on developing those two functions. It
makes sense to measure the performance improvement resulting from both these functions when
considering LHA. This means concentrating on the unique assignment function of joining nodes
and on the address conflict resolution function when networks merge. Because LHA and Buddy
are the only protocols using a multi-hop assigning function it is important to analyze this func-
tion of both algorithms before starting on the performance evaluation of the address assignment
function of all protocol in different scenarios. So, first the behaviors of both protocols must be
explained in a simple scenario which may assist for understanding their results in complex situa-
tions. Concerning the resolution function of merging networks, we will study that only for LHA
because (in contrast to other protocols) LHA addresses the problem by sending only one broad-
cast message in the network. In this method, a node detecting a merger is able to handle all the
conflicts in the network when it sends a single message. So, the main focus here is on studying
this message during the merger.

Basically, the node density and node mobility are the two conditions considered critical in
MANETs because they are the main reasons for the high likelihood of packet losses (node densi-
ty) and the frequent interruptions of network connections (node mobility). While any packet drop
or connection interrupt results in higher latency and signaling overhead to solve it, many net-
working services in different scenarios, such as the relief services in disaster scenarios, fail to
tolerate latency or signaling overhead. Because a network address is the first step in any commu-
nication, there is a need for joining nodes to be assigned an address as fast as possible with low
signaling overhead. The performance evaluation, therefore, focuses on three metrics, the address
assignment latency, the signaling overhead and the success rates, so that the impact of network
density on the assignment process as well as the impact of network node speed in all protocols
can be studied. The performance of the aforementioned protocols is basically analyzed by means
of simulation studies modeled in the network simulator 2 (ns2), version 2.32. This follows the
IEEE 802.11 standard model in respect of Packet Error Rate (PER) to determine a random coor-
dination. In addition, the 2.32 version uses radio propagation models which use the free space
model, two-ray ground reflection mode and the shadowing model. It also uses a
RTS/CTS/DATA/ACK pattern for all unicast packets and simply sends out DATA for all broad-
cast packets. This simulator has been extended to model the protocols studied. The implementa-
tion of MANETconf and Prophet is that of their authors; the description of Buddy protocol is that
given in [52] and is relied upon in the present work.

102

 Chapter 4: Performance Evaluation

 4.1 Analysis of Multi-hop Assignment Function

In the merger study a successful merger in LHA is deemed to have been achieved when the
broadcast message sent by a border node detects the merger, so the performance in the merger
depends mainly on the successful delivery of this message to all nodes with, of course, low mer-
ger latency and low message redundancy. Thus, the performance metrics here are the success
rate of the merger, the merger latency and the redundancy measured by the number of messages
sent by a node for successful merger.

What follows is a special scenario to serve the analysis of the multi-hop assigning function
utilized by the LHA and Buddy protocols. Then follow the main ns2 simulation setup and sce-
narios used to evaluate the LHA protocol with all selected protocols during the assignment func-
tion. Finally comes a description of the evaluation scenarios for the merger function in the LHA
protocol.

4.1 Analysis of Multi-hop Assignment Function

Because LHA and Buddy are the only ones of the evaluated protocols to utilize a search func-
tion with the task of finding free addresses in other nodes located further than one hop away
from the new node, it is important to compare the performance of the two mechanisms used by
those protocols. As the search in two-hop neighbors is not sufficient as a performance metric for
the protocols, a special scenario is defined in which a single node owns a number of free ad-
dresses and other nodes obtain their addresses over different hops. This scenario is implemented
in the way that there are 10 stable nodes as shown in Figure 4-1. In the scenario nodes 2, 3, 4, 5
and 6 will be activated one by one every 3 seconds and get their addresses from node 0 over hops
2, 3, 4, 5 and 6 respectively, while nodes 7, 8 and 9 are set with no available free addresses to
show the signaling impact of such nodes on the middle and end of the assignment path. The
transmission range shown in a dotted line is set to 230 m for each node. DSDV is used as a rout-
ing protocol, while IEEE 802.11 is applied as a MAC protocol. Most results discussed here and
in the following sections are shown as boxplots [85]. This type of depiction has been chosen be-
cause boxplots are more robust than classical statistics based on normal distribution, in that box-
plot does not disguise the presence of outliers in the results. The method is that for each data set,
a box is drawn from the first quartile to the third quartile, and the median is marked with a thick
line. Additional whiskers extend from the top and bottom edges of the box towards the minimum
and maximum of the data set. Data points outside the range of the box and whiskers are consid-
ered outliers and drawn separately. There is, additionally, a depiction of the mean value which is
depicted in the form of a small filled square.

103

 Chapter 4: Performance Evaluation

 4.1 Analysis of Multi-hop Assignment Function

Figure 4-1: Address assignment of multi-hop Scenario

4.1.1 Assignment latency:

Figure 4-2 shows the boxplot of the latency resulting from multi-hop assignments when the
number of hops varies from 2 to 6 hops; LHA and Buddy results are side by side. The scenario is
repeated 10 times and each point in the figure represents the result of one of the10 trials.

Figure 4-2: Latency impact of multi-hop assignment scenario

As the plot shows, the time required to assign an address for a new node in both protocols in-
creases as the number of hops increases. This is normal for multi-hop assignment. However, with
LHA the time required by a new node is less than the time required by Buddy: the median as-
signment latency employing LHA varies between 0.14 and 0.3 sec. while it varies between 0.45
and 1.86 sec. employing Buddy. The reason for this is that Buddy algorithm needs a predefined
timeout (200ms as defined in the present work) to finish the search in each hop until it reaches
the hop in which there is a node with a free address. This means that starting form the first hop to

50
0

10
00

15
00

A

ss
ig

nm
en

t l
at

en
cy

 (m
se

c)

2 3 4 5 6 2 3 4 5 6

LHA Buddy
of Hops

104

 Chapter 4: Performance Evaluation

 4.1 Analysis of Multi-hop Assignment Function

the last hop, which includes a node that may have a free address, it performs subsequent search
processes which in turn increase the whole searching time dramatically. This is not the case in
LHA because it searches for the hop which may provide a free address by means of one search
process; therefore, it uses two kinds of timeouts, a big timeout (Tm-search) used by the requester
like the one used in each attempt in Buddy, and a small one (Tm-ws timeout) used by every re-
sponding node. To avoid unnecessary responses in LHA, Tm-ws is stopped upon receipt of reply
messages. Because this is a special scenario with special definition (one node owns all addresses)
a node with no free addresses selects1 its timeout between 25 and 50 msec., while a node with
free ones selects the timeout randomly between 0 and 25 msec. In the figure we can see that the
assignment latency from hop 3 and 4 in LHA has some outliers (in some attempts, slightly
lengthening the latency). This is because node 9 and 8 may try to forward the request massage if
they have not overheard the reply messages sent by nodes 3 and 4 respectively.

4.1.2 Signaling Overhead:

Figure 4-3 shows the overhead resulting from multi-hop assignment when the number of hops
varies between 2 and 6 hops; LHA and Buddy side by side.

Figure 4-3: Signaling overhead of multi-hop assignment scenario

In the figure the red box (i.e. the average number of messages) shows that the average number
of messages sent by each node required to join a new node deploying LHA is very low, stable
and independent of the number of hops in the network (between 2 to 2.5 messages per node). On
the other side, the average number of messages sent per node when Buddy is used increases sig-

1 Random selection from the range considering the number of neighbors (high priorities for bigger number)

2
3

4
5

6
7

8

M

es
sa

ge
s

pe
r n

od
e

2 3 4 5 6 2 3 4 5 6

LHA Buddy
of Hops

105

 Chapter 4: Performance Evaluation

 4.2 Main Scenarios of Assignment Process

nificantly with an increasing number of hops. In concrete terms, the variation is between 4 and 9
messages when the number of hops increases from 2 hops to 6 hops. The reason for this is that
Buddy starts a new search for each hop from the first node (new joining node) to the last hop
which may include a free address. This means that the initial request message is repeated in each
search within a new hop. Additionally, during the search in any hop, each configured node locat-
ed within the hop and regardless of whether it has a free address or not, responds with a reply
message. This increases exponentially the number of messages sent in Buddy to find a free ad-
dress. In contrast, LHA requires fewer signaling messages because it utilizes a single search pro-
cess. In addition due to the overhearing method applied in LHA, as already highlighted in de-
scribing LHA algorithms, LHA prevents a node from replying if there are already other respond-
ing nodes.

Because this scenario is relatively simple, using only 10 static nodes and a maximum number
of 4 neighboring nodes, there are none of the packet drops or connection interrupts due to net-
work load or node mobility that to be seen later in other scenarios. Thus, both protocols succeed
in all attempts and there is no need to illustrate this. Only if successful assignment is less than
100 % is there a figure provided.

4.2 Main Scenarios of Assignment Process

To produce meaningful results, the aforementioned protocols were evaluated deploying vari-
ous scenarios representing node densities (static scenarios) and mobility (mobile scenarios). Each
of the scenarios represents an ad hoc network with varying placement of the nodes and varying
movement abilities. The maximum simulation area of each scenario is a square 1000 m long and
1000 m wide. The transmission range of each node in all scenarios is 230 m. DSDV is used as a
routing protocol, while IEEE 802.11 is applied as a MAC protocol. Because the implemented
protocols are using different variables from those defined in their description, Table 4-1 presents
the implementation values of the variables used in the scenarios for each protocol. In the LHA
algorithm and based on RRT, a configured node selects a timeout (Tm-ws), as shown in Sec-
tion 3.5.2, before the sending of reply messages (AA_Rep or AA_A_Rep). On the basis of the
simulation experiments in ns2, the estimated RRT in all scenarios is set to 15ms.

In the evaluation of all the protocols applied to scenarios of varied densities and mobility, the
simulation begins with one node configured with a valid IP address and operating in an ad hoc
mode. In each scenario a new node joins the ad hoc network every 3 seconds and requests an IP
address. This task takes goes on until the maximum number of nodes is reached (50 nodes in
each scenario). If a node fails to get an IP address, it retries the request again after 200 msec for a
maximum of 3 times before it decides it is to be the initial node of an ad hoc network and, thus,
assigns an IP address by itself. In the simulation, the duration of each scenario is 170 sec, be-
cause the maximum number in each scenario is 50 nodes. To be sure of the results, each scenario
was repeated 20 times. Here are the descriptions of the form of each scenario:

106

 Chapter 4: Performance Evaluation

 4.2 Main Scenarios of Assignment Process

Table 4-1: the implementation values of the variables in the scenarios for every protocol

Variables Description Values Protocols

bacon/hello One hope periodic message 2 sec All Protocols

R Max Retry number 3 All Protocols

M Max available free addresses per node 3 LHA

T_soll Solicitation timeout 0.9 sec LHA

T_allo Allocation timeout 2 sec LHA

T_Conf Configuration timeout 2 sec LHA

T_search Search timeout 1.6 sec LHA

RRT An estimated time for one hop round trip transmission in ns2 15 msec LHA

T_Offer Timeout for resend of IPAddressRequest message 0.2 sec Buddy

T_allo.pend Timeout for receive AllocatorChosen message from requester 0.2 sec Buddy

T_assign_ip Timeout for receive IPAddressAssign from the allocator where d
is the hop distance from the requester to the responder

d*0.4 sec Buddy

T_confirm_ip Timeout Expected by an allocator of the search for a free address d*0.4 sec Buddy

T_NR Timeout for neighbor reply message 0.2 sec MANETconf

T_MR Timeout for a request-reply-timer, initiator 1.6 sec MANETconf

T_MA Timeout for address allocation 1.7 sec MANEtconf

T_MAP Timeout for address pending in allocation table 3.4sec MANETconf

T_wr Wait-reply timeout 0.2 sec Prophet

T_ack Acknowledgment timeout 0.4 sec Prophet

N_ir Initiator request retry 2 MANEtconf

• Density scenarios: In MANETs, the communication performance of a network is lim-
ited by the interaction between neighboring nodes, which may represent a very simple
static network of chain nodes [86]. The reasons behind this are linked to the behavior
of neighboring nodes, such as the sensing of the medium before the transmission of
packets, and to the medium problems, such as the radio wave interference which may
cause collisions at the destination nodes. In order to evaluate the performance under
different network densities, 50 inactive nodes in each scenario are placed randomly
within a predefined area (varying from small to big the maximum being, as mentioned
above, 1000 m2), so that a certain network density results. When the simulation starts,
one node is initially activated1 and forms the ad hoc network. Following that, a new
randomly selected node is activated every 3 seconds. It is worth mentioning that no
node moves during any scenario aiming at analyzing the network density. In static
scenarios 4 different network densities are distinguished, namely very high, high, low
and very low density. Based on these densities, the scenarios differ in the minimum

1 Activation of a node means that the node starts joining the ad hoc network by requesting a unique IP address

107

 Chapter 4: Performance Evaluation

 4.2 Main Scenarios of Assignment Process

number of hops between the furthest nodes in the ad hoc network. In more concrete
terms, the minimum number of hops between the furthest nodes the scenario is 2, 3, 4
and 6 hops for very high, high, low, and very low density respectively. However, to
satisfy the density condition, the results of the last 5 nodes joining the network were
observed in each static scenario because they satisfy a certain maximum number of
neighboring nodes. To clarify this, two scenarios are plotted in Figure 4-4 and
ure 4-5. The first figure shows a very high density scenario, where the minimum num-
ber of hops between node 3 and 5 (the two furthest nodes in the figure) is 2. In this
case, if for example node 45 enters the network it may be in density of about 33
neighboring nodes. The scenario shown in the second figure illustrates a low density
scenario, where the minimum number of hops between the two furthest nodes (node
42 and 47 in the figure) is 6. In this scenario the last 5 joining nodes may be in densi-
ties between 3 to 8 modes, e.g. node 45 may have only 3 neighboring nodes (42, 43,
and 15 in the figure).

• Mobility scenarios: A main factor affecting the communication performance of ad
hoc networks is the mobility of their nodes. Therefore, it makes sense to analyze the
impact of the speed of mobile nodes on the performance of the protocols. For this pur-
pose, a scenario is built in which a joining node is a neighbor for at least one config-
ured node in the network. The mobility pattern in each scenario follows a path built
using the random waypoint1 (RWP) model with a mean pause time of 0.5 sec between
each two subsequent movements. Sample movement pattern is provided in Figure 4-6,
which shows a node at every predefined instant (1 sec) randomly choosing a destina-
tion and moving towards it. On reaching the destination, the node stops for a duration
defined by pause time. Then, it again selects a random destination and repeats the
whole process. The speed of nodes in each simulated mobility pattern varies across the
speed of a cyclist (5 m/s = 18 km/h), of a car inside a city (10 m/s = 36 km/h), of a car
on an autobahn (30 m/s = 108 km/h) and of a quadcopter flight (50 m/s = 180 km/h).
Movement patterns of nodes as well as initial positions of nodes in the studied scenar-
ios remain unchanged.

1 RWP is the most commonly used mobility model in the ad hoc networking research community as in [97].

108

 Chapter 4: Performance Evaluation

 4.2 Main Scenarios of Assignment Process

Figure 4-4: example of very high density scenario
(the minimum number of hops between the two

furthest nodes is 2 hops)

Figure 4-5: Example very low density scenario (the mini-
mum number of hops between the two furthest nodes is

6 hops)

Figure 4-6: Nodes mobility pattern depending on a
random way model

4.2.1 Impact of Network Density

To provide an insight into the impact of network density on the performance of the studied
protocols, the assignment latency as well as protocol overhead of the address assignment process
for new joining nodes in the network was investigated in detail for all predefined density scenar-
ios. Because the overhead of broadcast messages is directly related to the broadcasting mecha-
nisms utilized in a network, the send of this message has been handled as the send of the unicast
message in the density scenarios. Basically, the study of this message is important when such
messages are used periodically and when there is a need to ensure their delivery, as in protocols
with centralized approaches.

• Assignment latency:
Figure 4-7 shows the boxplot results of the assignment latency of the last 5 joining nodes re-

sulting from employing LHA, Buddy, Prophet and MANETConf in ad hoc networks with densi-
ties ranging from very high to low. As the figure shows, most attempts using LHA achieve low

1000 m

1000 m

Start of
node1

Start of
node2

First des. of n2

First des. of n1

109

 Chapter 4: Performance Evaluation

 4.2 Main Scenarios of Assignment Process

latency under 50 msec. In the comparisons with other protocols, LHA shows stable latency in
different density scenarios. As shown, LHA significantly outperforms the other protocols in high
densities because it does not suffer from the high network load as is the case in the other proto-
cols. This load is the main reason for the packet drop resulting from collisions and transmission
delay due to the contentions in the wireless medium. Basically, LHA needs only a low number of
messages, mainly three between the requester and the Address Agent (AA) node. Furthermore,
the wait-send timeout (Tm-ws) prevents many nodes that might have received the request from
sending their reply messages if there is a response meanwhile from other nodes. However, in
low density, the Prophet protocol outperforms LHA because it, too, needs only a few messages
in the assignment processes and, in the Prophet case, all neighboring nodes respond to the re-
quest directly. Buddy requires more latency than LHA and Prophet because Buddy requires 4
messages in every assignment process. Moreover, the requesting node needs timeout to select its
allocator node from the responding ones. From the figure, one can notice that the protocol with
the worst performance is, unsurprisingly, MANETConf, because the address allocation process
requires permission from all nodes (global assignment decision approach), as mentioned in Sec-
tion 2.3.2. The new joining node implementing MANETConf sends three messages first to select
the address initiator. The address initiator in turn has to synchronize with all network nodes be-
fore assigning an IP address to the new joining node. This means that all configured nodes in the
network have to participate in the assignment process, which consequent high latency. MA-
NETConf has, moreover, a very low success rate, as shown in Figure 4-8, compared with the
other protocols. Clearly, the protocol is not suitable for high node density and its performance
sinks dramatically with a rising number of hops because for every additional hop the packet
drops increase. In this figure it can be seen that only LHA and Prophet have a 100% success rate,
which is due to the low number of messages sent between the requester and the assigning node.
Buddy has more messages and less success at very high density.

Figure 4-7: Assignment latency resulting from employing LHA, Buddy, Prophet and MANETConf in different node densities

20
50

20
0

10
00

50
00

10

A
ss

ig
nm

en
t l

at
en

cy
 (m

se
c)

33
-4

7

23
-2

9

12
-1

7

3-
8

33
-4

7

23
-2

9

12
-1

7

3-
8

33
-4

7

23
-2

9

12
-1

7

3-
8

33
-4

7

23
-2

9

12
-1

7

3-
8

LHA Buddy Prophet MANETconf
 Density (# of neighboring nodes)

110

 Chapter 4: Performance Evaluation

 4.2 Main Scenarios of Assignment Process

Figure 4-8: Assignment success rate of all attempts in static scenarios

• Signaling overhead:
Turning to signaling overhead, Figure 4-9 reveals that LHA has less signaling overhead than

other protocols in all scenarios. In summary, LHA reduces the number of packets sent per time
by up to 72% compared to the Buddy protocol and 61% compared to Prophet in high-density
networks and by up to 58% and 44% respectively in low-density networks. Moreover, in some
attempts LHA may need only 3 messages. This is because the eavesdropping mechanism used in
LHA causes the neighboring nodes to discard their reply messages if other neighbors send one.
Additionally, because this mechanism is based on the number of available addresses per node it
allows even distribution of them across all configured nodes in the network. Basically, the effi-
ciency of most protocols which do such distribution of available addresses, as Buddy does, is
impaired because they give this task to the new node itself. This means that the new node must
wait until all neighbors have sent their reply messages before it decides which neighbor to select.
Of course, this mechanism consumes the transmission bandwidth and, as already shown, takes
longer. In the figure, the search mechanism used by LHA and Buddy results in outliers for some
attempts of very low density when responding neighbors are not able on their own to assign free
addresses. The two figures, for latency and signaling overhead, make it clear that the low latency
of Prophet in low-density networks has to be paid for in higher signaling overhead. This is to be
expected when all neighbors of a new node have to respond directly to any request message.

61
68

76
81

0

10

20

30

40

50

60

70

80

90

100

"3-8" "12-17" "23-29" "33-47"

As
si

gn
m

en
t s

uc
ce

ss
 ra

te
 (%

)

Mobile scenarios (m/sec)

LHA Buddy Prophet MANETconf

111

 Chapter 4: Performance Evaluation

 4.2 Main Scenarios of Assignment Process

Figure 4-9: Signaling overhead resulting from employing LHA, Buddy, Prophet and MANETConf in different nodes densities

4.2.2 Impact of Node Speed

 A characteristic of MANETs is that the degrees of mobility will vary, as described in [87].
Fast moving nodes indicate a network with a high degree of mobility and thus a rapidly changing
topology which in turn may cause breaks in the links between communicating nodes. However, a
low mobility network (one with slowly moving nodes) will have relatively stable topology. In
this section, the different degrees of mobility studied and their impact on the protocols are de-
scribed.

• Assignment latency:
It has been stated above that MANETConf shows very low performance in static scenarios.

Moreover, testing of this protocol reveals a weak concept of the partitioning detection mecha-
nism, which must be triggered in every assignment process, so that the protocol fails to work
well because a detection of partitioning and merging networks has to be so frequent. For the ad-
dress assignment process in mobile scenarios, therefore, the focus in this section is only on the
other three protocols, where the assignment process works as long as there is a free address in the
network. The boxplot in Figure 4-10 illustrates for every joining node (one node joins the net-
work each 3 sec till the last node) the average assignment latency resulting from employing
LHA, Buddy and Prophet in MANETs. The figure shows that LHA has stable assignment laten-
cy in comparison with the Buddy and Prophet protocols: 50% of all LHA latencies in the first 3
scenarios (5, 10 and 30 m/sec) are between 30 to 50 msec. This is because LHA uses a wait-send
timeout to avoid packet loss due to collection and contention. Moreover, as already mentioned,
the assignment process in LHA requires only a few messages. Of course, Prophet is faster in the
first 2 scenarios (5 and 10 m/sec) because, like LHA, it requires few assigning messages and at
the same time all nodes respond directly to the joining node. For neither of these two scenarios

5
10

20
50

10
0

3Si
gn

al
in

g
ov

er
he

ad
 (m

es
sa

ge
s/

as
si

gn
m

en
t)

33
-4

7

23
-2

9

12
-1

7

3-
8

33
-4

7

23
-2

9

12
-1

7

3-
8

33
-4

7

23
-2

9

12
-1

7

3-
8

33
-4

7

23
-2

9

12
-1

7

3-
8

LHA Buddy Prophet MANETconf
 Density (# of neighboring nodes)

112

 Chapter 4: Performance Evaluation

 4.2 Main Scenarios of Assignment Process

does the issue of link breaks emerge, because the node speeds are not so fast. However, this is
not the case at higher speeds, i.e. 30 and 50 m/sec, wherein Prophet suffers from lower success
rate compared to the LHA protocol as shown in Figure 4-11. In this figure, LHA is more robust
than Buddy and Prophet in all mobile scenarios and has higher reliability of successful assign-
ment, the reason being that LHA uses broadcast messages which are more suitable than the
unicast messages used in the other two protocols. As explained in the section on the LHA algo-
rithm, the new node uses a broadcast message to inform other nodes about the new configura-
tion. This mechanism enables LHA to avoid breaking the link between the requester and alloca-
tor; because the message can be delivered by every node hearing the message. Basically, the
unicast mechanism is a big issue in highly dynamic network, affecting the other two protocols;
especially the Buddy protocol with its high use of unicast messages.

Figure 4-10: Address assignment latency resulting from employing LHA, Prophet and Buddy with different node speeds

Figure 4-11: Assignment success rate for all attempts in mobility scenarios

0
10

0
20

0
30

0
40

0
50

0
60

0

A
ss

ig
nm

en
t l

at
en

cy
 (m

se
c)

05 10 30 50 05 10 30 50 05 10 30 50

LHA Buddy Prophet
Node's speed (m/sec)

Threshold of 3 attempts

0

10

20

30

40

50

60

70

80

90

100

Speed 5 Speed 10 Speed 30 Speed 50

As
si

gn
m

en
t s

uc
ce

ss
 ra

te
 (%

)

Mobile scenarios (m/sec)

LHA Buddy Prophet

113

 Chapter 4: Performance Evaluation

 4.3 Impact of Network Mergers

• Signaling overhead:
Figure 4-12 depicts the signaling overhead of the assignment process for every node joining

the network. The wide variation in the number of messages for each scenario compared to the
static scenarios is due to the variety of densities in every mobile scenario. The minimum number
of 3 assignment messages in LHA and Prophet and 4 messages in Buddy shown in the figure
describes the case when a joining node has only one neighbor. On other hand, the maximum
number of messages in Buddy and Prophet in all scenarios shown in the figure is a reflection of
the approximate node density of late-joining nodes in these scenarios. For instance, in the 5m/sec
scenario the maximum density is about 18 nodes, because each neighbor in Buddy and Prophet
responds to any request received from a joining node. In the figure, the LHA signaling overhead
in all scenarios is less than those of Prophet and Buddy because the LHA protocol uses the wait-
send timeout to prevent any node from sending a response if the node hears a response from one
or more neighboring nodes. In the figure, it is clear that Prophet shows less signaling overhead
than does Buddy because Buddy requires more messages in each assignment process.

Figure 4-12: Signaling overhead resulting from employing LHA, Prophet and Buddy with different node speeds

4.3 Impact of Network Mergers

In LHA it is a task of the border nodes that detect the merger of networks to inform other
nodes in the network about changes required in order to solve possible address duplications. Un-
like other stateful protocols, LHA solves the conflicts by sending only one broadcast message

5
10

15
20

Si
gn

al
in

g
ov

er
he

ad
 (m

es
sa

ge
s/

as
si

gn
m

en
t)

05 10 30 50 05 10 30 50 05 10 30 50

LHA Buddy Prophet
Node's speed (m/sec)

114

 Chapter 4: Performance Evaluation

 4.3 Impact of Network Mergers

from a detecting node to all nodes in its network. This broadcast message is, therefore, very im-
portant during the merging of networks. Because the broadcast mechanism is not reliable against
packet drops caused by such things as fading, interference or collisions, a study is here made of
how, during the merger, LHA ensures the successful delivery of this message to all nodes with
adequate time and message redundancy. The first focus is on a simple case in which one node
detects a merger with another network. Then comes a complex situation in which several nodes
detect more than one merger at the same time (simultaneous merger of more than two networks).

4.3.1 Simple Merger of Two Networks

As mentioned above, in the LHA protocol when a node detects a merger it has to send only
one message that informs about the changes in its network. Basically, the merger is solved com-
pletely if every node receives the merger message. To ensure the successful delivery of the mer-
ger message, LHA uses a merger timeout in which every node analyses its neighbor’s messages
(this is the eavesdropping mechanism). The study now reported is, therefore, of the efficiency in
terms of latency, message redundancy and merger success rate when LHA follows its own
mechanism (reliable merger) or does without it (pure broadcast). In other words, if a node fol-
lows the pure broadcast a node depends only on the ongoing broadcast mechanism used in the
network to deliver its message, such as the simple flooding broadcast mechanism. Because there
are many reasons for message drops in wireless networks, it is important to study the merger of
networks in different scenarios. Three merging scenarios have therefore been selected, represent-
ing the merging between one large and one small network, a pattern shown in Figure 4-13. The
small network consists of 5 nodes and it is used only to trigger the merging function of the bor-
der nodes in the large network in which the merger message is observed. Depending on the node
distribution in the larger network, the three scenarios can be described as a sparse, dense and
special (clustered nodes). For example, Figure 4-13 shows a sparse scenario which indicates the
case of messages dropped because of long distances between nodes. In this scenario to get full
coverage from the border (node 0) a merge message has to be forwarded a minimum of 21 times.
In contrast, the dense scenario reveals the problem of high collisions and contentions because of
the high density of nodes, although the full coverage can be achieved with 8 forwarding episodes
at a minimum.

115

 Chapter 4: Performance Evaluation

 4.3 Impact of Network Mergers

Figure 4-13: Merging networks, sparse scenario

For complex cases, a special scenario (clustered nodes) which includes all the issues from the
last two scenarios as shown in Figure 4-14 is defined and studied. In this scenario, the minimum
number of times the merger message is forwarded from node 0 to all nodes in the network is
about 13. In addition to the “dense” and “sparse” issues, the clustered nodes scenario includes
bottleneck nodes, such as nodes 2 and 3 in the figure. Because the bottleneck nodes are consid-
ered a connection node between two portions of the nodes, the dropping of the packets in one of
these nodes results in a low packet delivery success rate. To show the performance of LHA mer-
ger function by using the reliable merger or pure broadcast mechanisms, we present each scenar-
io measured by three metrics, called merger latency, message redundancy and delivery rate (i.e.
full coverage success rate) as follows:

Range 230 m

Network 1 (45 nodes) Network 2 (5 nodes)

116

 Chapter 4: Performance Evaluation

 4.3 Impact of Network Mergers

Figure 4-14: Merging networks, clustered nodes scenario

• Success rate of merger:
The delivery metric is the success rate of all attempts, wherein the success of an attempt indi-

cates that the broadcast message sent during the attempt is delivered successfully to all nodes in
the network which means that message has got full coverage. Figure 4-15 shows this metric for
each scenario in both cases, that of using the reliable merger in LHA and that of the pure broad-
cast mechanism. The delivery metric shows that LHA is able to overcome the problem resulting
from the broadcast mechanism. In the figure, the statistics shows that use of a pure broadcast
mechanism to deliver the message to all nodes results in some unsuccessful attempts. However,
the eavesdropping function in the LHA obviates this shortcoming. As can be seen, in all scenari-
os broadcast with the LHA eavesdropping function there is full and successful coverage. In the
figure, the pure broadcast suffers mainly in sparse scenario because the forwarding requires sev-
eral hops and the probability of receiving a copy of the merger message from neighboring nodes
is lower than other scenarios. However, high node density in dense scenario may mitigate this
problem but in turn it increases the issues of contentions and collisions between nodes. There-
fore, as the figure show, the clustered nodes scenario which has moderate density of nodes shows
a better success rate than the other scenarios.

Network 1 (45 nodes) Network 2 (5 nodes)

117

 Chapter 4: Performance Evaluation

 4.3 Impact of Network Mergers

Figure 4-15: success rate of merger

• Merger latency:
Now follows a study of the delay in handling the merger as a function of reliable and pure

broadcast mechanisms: in other words, the time required to finish the merger process successful-
ly in both cases. Because pure broadcast is not able in all attempts to deliver a merger message
successfully the latency value in Figure 4-16 indicates the latency only of successful attempts. It
can be seen that the maximum average time needed to inform all nodes in the network by using
pure broadcast mechanism in all scenarios is lower than that in the reliable mechanism and that
the latency is less than 0.5 sec in all scenarios. Basically, the reliable mechanism used in LHA
merging function results in higher latency due to the waiting state needed for reliable merging,
i.e, for success in all attempts as presented in Figure 4-15 above. As explained in Section 3.6.2,
during this state each node forwarding any merger message (S_Merge or H_Merge) must detect
and resend the message if the first forwarding has failed to achieve full coverage. Of course the
time needed in a dense scenario in some cases is higher because the number of nodes trying to
forward or resend the dropped messages is higher and this leads to increased transmission time.
This effect is less in the sparse scenario but, on other hand, there are more outliers indicating
resend function due to dropped packets in this scenario because of the many hops and few neigh-
boring nodes. In this scenario 90% of latencies are between 0.4 and 0.5 second because the min-
imum number of forwarding episodes required to get full coverage is bigger than that in the other
two scenarios. In clustered nodes scenario the outliers is due to the bottleneck nodes but the most
latencies in this scenario is lower than that in sparse scenario because it needs less number of
hops for the forwarding.

100 100 100
88,9

82,45
91,1

0
10
20
30
40
50
60
70
80
90

100

dense sparse special

De
liv

er
y

ra
te

 %

Scenario

Reliable Pure Broadcast

118

 Chapter 4: Performance Evaluation

 4.3 Impact of Network Mergers

Figure 4-16: Latency of successful networks merger in different scenarios

• Message redundancy:
Figure 4-17 illustrates the message redundancy for each scenario, measured by number of

messages sent per node. It is clear that in successful pure broadcasting attempts the merger mes-
sage will be sent once by every node. However, to get full success in all attempts, the reliable
merger of LHA allows a node to resend a message if there is a message drop. Therefore, more
messages are sent per node in a dense scenario than in the other two scenarios, where many
neighboring nodes try to resend the dropped message to the same destination. In contrast, the
sparse scenario does not suffer from this case because of the low number of neighboring nodes
distributed over big number of hops. Unsurprisingly, the results for the clustered nodes scenario
show an average value between the two first scenarios because it has less node density than the
dense scenario and more than the sparse scenario.

Figure 4-17: Message redundancy of successful networks merger in different scenarios

0.
5

1.
0

1.
5

2.
0

2.
5

M

er
ge

r L
at

en
cy

(s
ec

)

Rel. Pure Rel. Pure Rel. Pure
Dense Sparse Special

Scenarios

1.
0

1.
5

2.
0

2.
5

M

es
sa

ge
s

pe
r n

od
e

Rel. Pure Rel. Pure Rel. Pure
Dense Sparse Special

Scenarios

119

 Chapter 4: Performance Evaluation

 4.3 Impact of Network Mergers

4.3.2 Simultaneous Merger of More Than Two Networks

To evaluate LHA under critical conditions a case is studied where more than two networks
merge simultaneously. Moreover, to prove that the merging algorithm of LHA is fully distributed
in that each node is able to solve the merger without a conflict arising with other nodes, a scenar-
io is studied in which more than one node detects and solves the merger. Figure 4-18 shows a
scenario where three networks (A, B and C) merge simultaneously. In the figure the distance
between the border nodes in both A and B is equal to that between those in B and C. In this sce-
nario, network B remains stable during the simulation while A and B networks are approaching
B at the same speed, causing simultaneous merging of the two different networks (A and C) with
the B network. Because nodes 9, 10 and 11 of network A are aligned vertically and are at the
same level as nodes 27, 28 and 29 respectively, the connection time may be identical, which
means one or all of them may detect and solve the merger. This situation is one of the big issues
in any distributed auto-configuration function which allows every node to be responsible for
solving possible address conflicts in the network. In LHA this case is competently solved, as de-
scribed in Section 3.6.6, where each node is able to inform other nodes in the network of the re-
quired changes without giving rise to any conflicts. By means of this scenario, LHA is evaluated
on three main metrics: merger latency, signaling cost and success rate of the merging.

Figure 4-18: Example of simultaneous merger of 3 networks

• Message Redundancy
In LHA every node is able to detect and solve the merger by sending a corresponding merger

message (S_Merge or H_Merge). In scenario studied, the merging networks have different Hie-
rIDs. So when a node detects a merger it will send an S_Merge message to its network. Fig-

120

 Chapter 4: Performance Evaluation

 4.3 Impact of Network Mergers

ure 4-19 shows the number of messages sent per node in each network. In the figure, for about
50% of the nodes in networks A and C only two messages are shown as basis sent because the
nodes in each network will receive two different S_Merge messages (each including different
configuration data). One of these is produced when A (or, as the case, may be, C) merges with
the relevant half of the nodes in network B. Simultaneously, the other network is merging with
the other half of the nodes in B. The other S-Merge message goes out when both these two new
networks merge, see Section 3.6.6 for more details. The reason why some nodes do not send the
message is that the optimized broadcast mechanism [79] used in this scenario reduces the num-
ber of broadcast messages if all neighbors receive a copy. In contrast, the figure reveals that the
number of messages sent by 50% of nodes in network B is between 2 and 4 messages. This is
because many nodes in B detect the merger with A and, at the same time, the merger with C and
they try to inform other nodes about that. The resulting high collision and contention among
nodes of network B then prevents some nodes from receiving the message. When the senders
detect the dropping they will try to resend the message. In some cases, this message may be sent
up to 8 times.

Figure 4-19: Number of messages sent per node in case of simultaneous merging of 3 networks

• Merger latency
Basically, the number of messages needed by the detecting nodes in network B for the first

step of the merger results in high latency to achieve the second step. Figure 4-20 shows that the
mean latency to finish the second merger among the nodes in network B is about 4 seconds and
the maximum latency for 90% of all attempts is about 4.5 seconds. This is usual, because some
of B nodes merge first with A nodes and others with C nodes. So, after the merger timeout (2
sec) each part of nodes from B detects that there is another merger among them and tries to solve
the merger. This is the reason why the nodes in network A and C require bigger latency than the
nodes of B alone. In the figure the minimum latencies of A and C are above 4 seconds. However,
the outliers show the cases when a node in some attempts does not receive the merger message
from its neighbors. In this case, the neighbors detect the old state of this node when it sends a

0
2

4
6

8

M

es
sa

ge
s

pe
r n

od
e

A B C
Merging Networks

121

 Chapter 4: Performance Evaluation

 4.3 Impact of Network Mergers

Beacon message. Therefore, the message may be sent twice or more to solve the problem and get
full success in the merging.

Figure 4-20: Merger latency in case of simultaneous merging of 3 networks

• Success rate of merger:
Figure 4-21 illustrates the success rate of all attempts for the merging of the three networks

(A, B and C), at the end of which every node has achieved the required changes. This means that
every node from the merged networks (A, B and C) has successfully selected a new Hash num-
ber and MN as described in the LHA merging algorithm.

Figure 4-21: Success rate in case of simultaneous merging of 3 networks

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

M

er
ge

r l
at

en
cy

(s
ec

)

A B C
Merging Networks

60
80

10
0

12
0

14
0

S

uc
ce

ss
 ra

te

A B C
Merging Networks

 Conclusion & Future Work Chapter 5

In this doctoral thesis, multiple research problems related to the auto-configuration of network
addresses in MANETs have been investigated; mainly, the auto-configuration problems in case
of the node joining/departure and networks partitioning/merging. To explain the drawbacks of
solutions available to date, a survey on current addressing protocols in traditional network (Inter-
net network) and ad hoc networks has been presented. A discussion of the available classification
of auto-configuration protocols in MANETs has followed. Because stateful auto-configuration
protocols ensure by their concept the unique assignment of network addresses, the main focus in
this work has been on studying those protocols. The existing stateful approaches have been clas-
sified according to the assignment process applied, into two major categories (centralized and
distributed). The analytical comparison of stateful approaches has shown that the distributed
ones are efficient in signaling cost and assignment latency. However, the distributed protocols
suffer by virtue of their concept of address management, such as address reuse. Moreover, the
new classification of possible address conflict resolution mechanisms (in cases of merger) has
shown that all available protocols in MANETs suffer from high signaling overhead in attempting
to solve the conflicts in the merger scenarios. This has triggered the development of an efficient
stateful address auto-configuration, called LHA, to take place as a local first decision of any dis-
tributed mechanism.

In LHA, each node is able to allocate and assign a free address to a joining node, employing a
new function which has been designed to distribute the available address space evenly across
configured nodes. Moreover, the basic idea of dividing the Host ID of a node address into HierID
and HHiD gives LHA the basis for efficient solutions of network merger and partition. In con-
trast to most protocols developed to date, LHA presents an efficient and robust solution for the
merging of networks, in that with LHA every node detecting a merger is able to solve the address
conflicts resulting from the merger by sending only one broadcast message. By the use of the
LHA concept, the change of all network addresses is achieved uniformly, which in turn provides
routing protocols in MANETs with a seamless way of updating the routing table. Thus, possible
interruptions of ongoing communications due to network address changes can be avoided. More-
over, the merger algorithm is able to handle simultaneous merging of more than two networks. In
all simulation attempts, the results have shown successful merging within a satisfactory time.

In the present work, the simulator ns2 has been used to evaluate LHA vis à vis three counter-
part stateful protocols with distributed approaches; namely the Buddy, MANETConf and Prophet
protocols. Although the address assignment process of stateful protocols ensures the unique as-
signment of network addresses in network, if the assignment of a free address is not completed
successfully there may be address conflicts in the network. A successful process should, of
course, come at a low cost in time and signaling overhead. The evaluation results have shown

123

 Chapter 5: Conclusion & Future Work

 5.1 LHA Features

that LHA outperforms Buddy, Prophet and MANETConf for both signaling cost and assignment
success rate in all scenarios studied. Comparing the assignment latency results has shown that
LHA is faster than the other protocols in such critical scenarios as high-density networks and
high-speed mobile scenarios. Specifically, when the assignment latency data for LHA, Buddy
and Prophet are compared, the results have shown that LHA is up to 86% faster than Buddy and
57% faster than Prophet in high-density networks. In low-density networks, LHA is up to 77%
faster than Buddy but Prophet outperforms LHA, where it is 54% faster. However, this outper-
formance by Prophet in low-density networks has to be paid for in high signaling overhead. The
comparison has shown that LHA reduces the number of packets sent per time by up to 72%
compared to Buddy and 61% compared to Prophet in high-density networks and in low-density
networks, by up to 58% and 44% respectively.

For the mobile scenarios, a study of MANETconf has been omitted because of the features of
its partitioning/merging function and its low performance in static scenarios as mentioned in Sec-
tion 4.2.2 . In all scenarios when there are rapidly moving mobile nodes, LHA has performed
with signaling cost significantly better than Buddy and Prophet. The average number of messag-
es transmitted by LHA is approximately 50% fewer than the number in Buddy and 30% fewer
than in Prophet. With regard to average address assignment latency, LHA is up to 80% faster
than Buddy in all scenarios and it is up to 40 % faster than Prophet in high-speed scenarios. Alt-
hough Prophet is faster than LHA in low-speed scenarios, the latency differences in those scenar-
ios are small, with a satisfactory time of under 50 msec. With respect to successful assignment
process, LHA has shown better performance in all mobile scenarios than that of Prophet or Bud-
dy. All these results in mobile scenarios taken together prove that it is more suitable overall for
such scenarios than are the other protocols.

Because LHA, contrary to other protocols, solves the conflicts during the merger by sending
only one broadcast message from a detecting node to all nodes in its network, the merger aspects
has been studied only for LHA. The study has focused on terms (latency, message redundancy
and merger success rate) when LHA follows its own mechanism (reliable merger) or does with-
out it (pure broadcast). The results of merger scenarios have shown that the reliable merger func-
tion of LHA overcomes the low success rate resulting from the pure broadcast mechanism. How-
ever, this has to be paid for higher redundancy and latency. To address the simultaneous merging
of more than two different networks, which is one of big challenges in MANETs, a critical sce-
nario in which different nodes from each network detect the merger and try to solve them has
been studied. The results have shown that LHA copes with these multiple detections successfully
and manages the simultaneous mergers in adequate time (90% of results between 3.5 and 5.5
seconds) with merely normal redundancy (the averages are 2 to 3 messages per node).

5.1 LHA Features

• Unique and rapid address assignment: LHA utilizes a distribution function based
on local first approach with fast search mechanism.

124

 Chapter 5: Conclusion & Future Work

 5.2 Future Work

• Fast and flexible merging function: because of the hierarchical aspects each node in
LHA detects and defines the required changes in the network. This in turn enables
LHA to handle different kinds of merger, such as the simultaneous merger of more
than two networks.

• Minimum protocol overhead:
o This is achieved in the assignment process because LHA prevents the neigh-

boring nodes of a new node from responding if they hear a response from other
neighbors.

o In the merger process (for resolving address duplications): LHA utilizes a uni-
form change which is applied in a distributed manner. In this way any node de-
tecting a merger is able to solve any possible conflicts by sending only a single
broadcast message per a merger.

• Reliable address reuse: by means of the LHA assignment function every configured
node is able to detect easily the successors of any predecessor. In this way, the respon-
sibility for managing the addresses of missing nodes is given to an appropriate node
when the predecessor is not available in the network.

• Robust against dropped control packets: LHA uses flexible updating mechanism by
adding its parameters to the Beacon message; for example, if some nodes do not re-
ceive the information from a new node due to the dropping of the New_Node message
the information of this new node may be obtained from Beacon of the neighboring
nodes. Moreover, for critical broadcast messages, such as the merger messages, LHA
utilizes a variety of timers and overhearing mechanisms to ensure high delivery.

• Lightweight algorithm for partitioning network: on the bases of whether free ad-
dresses are available in the network, LHA decides to the change the partition configu-
ration. This means that if there are available addresses in a network there is no need to
make any changes.

5.2 Future Work

LHA has, in fact, been implemented using a Linux testbed as presented in [71] though the im-
plementation was realized in the prior publication without wait-send timeouts. The next step
would, therefore, be to test the functions of LHA under these constraints.

Because LHA employs a uniform method to modify the address data of all nodes in the ad-
dress tables, it may be possible for the routing protocols to make use of this method to modify
the routing tables without affecting ongoing connections. However, this requires more research
to define how to modify any routing protocols which depend on such tables. A possible way
might be that these protocols provide their tables to LHA which will update them as necessary.

125

 Chapter 5: Conclusion & Future Work

 5.2 Future Work

Further possible work is to use the LHA principle to enhance and solve the IP address issues
for the connection of MANETs to the Internet. As known, NAT [88] is used to extend the life of
IPv4 by translating a set of private IP addresses into a public IP addresses to reach the global
Internet and vice versa. However, the technique has scalability problems because many hosts
wish to assign private addresses, and more latency is associated with processing each packet
crossing through the NAT, and so on. Because LHA uses a multi-hierarchical structure it is not
required to pick up an address for each node of a MANET but only to pick a HierID for an ad-
dress hierarchy. This in turn enables each node to be assigned a unique address locally which can
be used directly in the Internet.

Finally, in auto-configuration schemes the security issue (such as address spoofing attack and
Sybil attack which may lead to the exhaustion of address space or to address conflict) represents
another research area: the development of a secure auto-configuration protocol. Many research-
ers have tried to improve their protocols by adding a security function as is the case in Reshmi et
al. [89]. Thus, security in LHA represents another aspect which requires additional future work
to enable development of a new secure scheme based on the logical structure.

Bibliography

[1] R. Hekmat, Ad-hoc Networks: Fundamental Properties and Network Topologies. Netherland:
Springer, 2006.

[2] S. K. Sarkar, T. G. Basavaraju, and C. Puttamadappa, Ad Hoc Mobile Wireless Networks: Principles,
Protocols, and Applications, T. &. F. Group, Ed. New York, USA: Auerbach Publications, 2008.

[3] Defense Advanced Research Projects Agency (DARPA). [Online]. http://www.darpa.mil/index.html

[4] R. Bolt, L. Beranek, and R. Newman, "A HISTORY OF THE ARPANET: The First Decade," DARPA DTIC
File 4799, 1981.

[5] BMW-Group. (2011) TALKING CARS FOR LESS CONGESTION - THE FUTURE OF TELEMATICS. [Online].
https://www.press.bmwgroup.com/

[6] L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A survey," Computer Networks, vol. 54,
no. 15, p. 2787–2805, Jun. 2010.

[7] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, Mobile Ad Hoc Networking, 0471373133rd ed.
IEEE, 2004.

[8] C. Perkins. (1998, Nov.) "Mobile Ad Hoc Networking Terminology"Internet Engineering Task (IETF)
Internet Draft. [Online]. http://tools.ietf.org/id/draft-ietf-manet-term-01.txt

[9] J. Lee, G. Kim, and S. Park, "Optimum UDP packet sizes in ad hoc networks," in Workshop on, High
Performance Switching and Routing, Merging Optical and IP Technologies, Kobe, Japan, 2002, pp.
214-218.

[10] S. Corson and J. Macker. (1999, Jan.) Mobile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and Evaluation Considerations, IETF, RFC 2501. [Online].
http://tools.ietf.org/html/rfc2501

http://www.darpa.mil/index.html
https://www.press.bmwgroup.com/
http://tools.ietf.org/id/draft-ietf-manet-term-01.txt
http://tools.ietf.org/html/rfc2501

127

Bibliography

[11] D. B. Walker . (1997, Aug.) PROCEEDINGS OF THE THIRTY-NINTH INTERNET ENGINEERING TASK
FORCE. [Online]. http://www.ietf.org/proceedings/39/

[12] J. Seitz, M. Debes, M. Heubach, and R. Tosse, Digitale Sprach- und Datenkommunikation: Netze -
Protokolle - Vermittlung, 1st ed. München, Germany: Hanser Wirtschaft, 2007.

[13] E. Baccelli and M. Townsley. (2010, Sep.) IP Addressing Model in Ad Hoc Networks, IETF RFC(5889).
[Online]. http://tools.ietf.org/pdf/rfc5889.pdf

[14] IEEE Standard 802.11. (1999, Aug.) Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications.

[15] R. Droms. (1997, Mar.) Dynamic Host Configuration Protocol, IETF, RFC 2131. [Online].
http://www.ietf.org/rfc/rfc2131.txt

[16] S. Cheshire, B. Aboba, and E. Guttman. (2005, May) Dynamic Configuration of IPv4 Link-Local
Addresses. [Online]. https://tools.ietf.org/html/rfc3927

[17] S. Thomson and T. Narten. (1998, Dec.) IPv6 Stateless Address Autoconfiguration, IETF, RFC 2462.
[Online]. https://datatracker.ietf.org/doc/rfc2462/

[18] X. Chu, J. Liu, and Y. Sun, "Address Allocation Mechanisms for Mobile Ad Hoc Networks," in Guide to
Wireless Ad Hoc Networks, L. Limited, Ed. London, UK: Springer, 2009, ch. 14, pp. 333-354.

[19] B. Croft and J. Gilmore. (1985, Sep.) BOOTSTRAP PROTOCOL (BOOTP), IETF, RFC 951. [Online].
http://www.ietf.org/rfc/rfc951.txt

[20] R. Droms, J. Bound, B. Volz, T. Lemon, and C. Perkins. (2003, Jul.) Dynamic Host Configuration
Protocol for IPv6 (DHCPv6), IETF, RFC 3315. [Online]. http://www.ietf.org/rfc/rfc3315.txt

[21] E. Guttman, "Autoconfiguration for IP Networking: Enabling Local Communication," IEEE INTERNET
COMPUT, vol. 5, no. 3, pp. 81-86, May 2001.

[22] A. Williams. (2002) "Requirements for Automatic Configuration of IP Hosts"Internet Engineering
Task (IETF) Internet Draft. [Online]. http://www.watersprings.org/pub/id/draft-ietf-zeroconf-reqts-
12.txt

[23] R. Hinden and S. Deering. (2006, Feb.) IP Version 6 Addressing Architecture, IETF, RFC 4291.
[Online]. http://tools.ietf.org/html/rfc4291

http://www.ietf.org/proceedings/39/
http://tools.ietf.org/pdf/rfc5889.pdf
http://www.ietf.org/rfc/rfc2131.txt
https://tools.ietf.org/html/rfc3927
https://datatracker.ietf.org/doc/rfc2462/
http://www.ietf.org/rfc/rfc951.txt
http://www.ietf.org/rfc/rfc3315.txt
http://www.watersprings.org/pub/id/draft-ietf-zeroconf-reqts-12.txt
http://www.watersprings.org/pub/id/draft-ietf-zeroconf-reqts-12.txt
http://tools.ietf.org/html/rfc4291

128

Bibliography

[24] Cisco. (1997, May) DuplicateMACAddresses on Cisco 3600 Series. [Online].
http://www.cisco.com/c/en/us/support/docs/field-notices/misc/7.html

[25] T. Narten, E. Nordmark, W. Simpson, and H. Soliman. (2007, Sep.) Neighbor Discovery for IP version
6 (IPv6). [Online]. https://tools.ietf.org/html/rfc4861

[26] N. I. C. Wangi, R. V. Prasad, M. Jacobsson, and I. Nienegeers, "Address autoconfiguration in wireless
ad hoc networks: protocols and techniques," IEEE Wireless Communications, vol. 15, no. 1, pp. 70-
80, Feb. 2008.

[27] K. Weniger and M. Zitterbart, "Address Autoconfiguration in Mobile Ad Hoc Networks: Current
Approaches and Future Directions," IEEE Network , vol. 18, no. 4, pp. 6-11, Jul. 2004.

[28] K. Manousakis and J. S. Baras, "Network and Domain Autoconfiguration: A Unified Approach for
Large Dynamic Networks," IEEE Communication Magazine, vol. 43, no. 8, pp. 78-85, Aug. 2005.

[29] L. J. G. Villalba, J. G. Matesanz, A. L. S. Orozco, and J. D. M. Díaz, "Auto-Configuration Protocols in
Mobile Ad Hoc Networks," OPEN ACCESS Journal Sensors, vol. 11, pp. 3652-3666, Mar. 2011.

[30] M. B. Mutanga, P. Mudali, and M. O. Adigun, "Towards auto-configuring routing protocols for
wireless ad-hoc networks," International Journal of Computer Engineering Research (IJCER),
Academic Journals, vol. 2, no. 2, pp. 19-27, Mar. 2011.

[31] A. Munjal and Y. N. Singh, "Review of stateful address auto configuration protocols in MANETs,"
Journal Ad Hoc Networks, Elsevier, vol. 33, no. C, pp. 257-268, Oct. 2015.

[32] S. Bansal and P. K. Gaur, "Review of Auto-configuration Protocols for WANETs for IPv4 and IPv6
networking," International Journal of Advanced Research in Electronics and Communication
Engineering (IJARECE), vol. 4, no. 3, pp. 460-467, Mar. 2015.

[33] C. E. Perkins, E. M. Royer, and S. R. Das. (2001, Nov.) "IP address autoconfiguration for ad hoc
networks"Internet Engineering Task (IETF) Internet Draft. [Online]. https://tools.ietf.org/html/draft-
perkins-manet-autoconf-01

[34] M. Fazio, M. Villari, and A. Puliafito, "AIPAC: Automatic IP address configuration in mobile ad hoc
networks," Elsevie rComputer Communications (COMCOM), vol. 29, no. 8, pp. 1189-1200, May
2006.

[35] N. H. Vaidya, "Weak Duplicate Address Detection in Mobile Ad Hoc Networks," in ACM MobiHoc,
Lausanne, Switzerland, 2002, pp. 206-216.

http://www.cisco.com/c/en/us/support/docs/field-notices/misc/7.html
https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/draft-perkins-manet-autoconf-01
https://tools.ietf.org/html/draft-perkins-manet-autoconf-01

129

Bibliography

[36] K. Weniger, "Passive Duplicate Address Detection in Mobile Ad Hoc Networks," in Proc. IEEE WCNC,
New Orleans, LA, USA, 2003, pp. 1504-1509.

[37] C. Davids, G. Ormazabal, and R. State, "Real-Time Communications: Topics for Research and
Methods of Collaboration," ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
112-115, Jul. 2014.

[38] M. Günes, "Routing und Adressierung in mobilen multi-hop Ad-hoc-Netzen," Ph.D., Fakultät für
Mathematik, Informatik und Naturwissenschaften, Technischen Hochschule Aachen, Deutschland,
2004.

[39] S. Nesargi and R. Prakash, "MANETconf: Configuration of Hosts in a Mobile Ad Hoc Network," in
INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications
Societies, New York, NY, 2002, pp. 1059-1068.

[40] M. Mohsin and R. Prakash, "IP Address Assignment in a Mobile Ad-hoc Network," in In Proceedings
of IEEE MILCOM, Anaheim, USA, 2002, pp. 856-861.

[41] K. Wenige, "PACMAN: Passive Autoconfiguration for Mobile Ad Hoc Networks," IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS, vol. 23, no. 3, pp. 507-519, Mar. 2005.

[42] S. R. Hussain, S. Saha, and A. Rahman, "An Efficient and Scalable Address Autoconfiguration in
Mobile Ad Hoc Networks," in 8th International Conference (ADHOC-NOW), Murcia, Spain,
September, 2009, pp. 22-25.

[43] S. R. Hussain, S. Saha, and A. Rahman, "SAAMAN: Scalable Address Autoconfiguration in Mobile Ad
Hoc Networks," Journal of Network and Systems Management ,Springer Science+Business Media,
vol. 19, no. 3, pp. 394-426, Sep. 2011.

[44] T. R. Reshmi and K. Murugan, "Filter-based address autoconfiguration protocol (FAACP) for
duplicate address detection and recovery in MANETs," Computing, Springer-Verlag Wien, vol. 97,
no. 3, pp. 309-331, Mar. 2015.

[45] Y. Sun and E. M. Belding-Royer, "Dynamic Address Configuration in Mobile Ad hoc Networks,"
Computer Science Department, University of California Santa Barbara (UCSB), California, USA,
Technical Report 2003-11, March 2003.

[46] M. Nazeeruddin, G. Parr, and B. Scotney, "DHAPM: A New Host Auto-configuration Protocol for
Highly Dynamic MANETs," Journal of Network and Systems Management, vol. 14, no. 3, pp. 441-

130

Bibliography

475, Sep. 2006.

[47] M. Kim, M. Kumar, and B. Shirazi, "A Lightweight Scheme for Auto-configuration in Mobile Ad Hoc
Networks," in 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05),
Denver, Colorado, USA, April 2005.

[48] M. Kim, M. Kumar, and B. Shirazi, "An Integrated Scheme for Address Assignment and Service
Location in Pervasive Environments," Embedded and Ubiquitous Computing – EUC 2005, the series
Lecture Notes in Computer Science, vol. 3824, pp. 967-976, 2005.

[49] T. Xu and J. Wu, "Quorum Based IP Address Autoconfiguration in Mobile Ad Hoc Networks," in 27th
International Conference on Distributed Computing Systems Workshops (ICDCS 2007 Workshops),
Toronto, Ontario, Canada, 2007.

[50] U. Joung and D. Kim, "2-Level Hierarchical Cluster-Based Address Auto-configuration Technique in
Mobile Ad-Hoc Networks," Ubiquitous Intelligence and Computing, the series Lecture Notes in
Computer Science, vol. 4611, pp. 309-320, 2007.

[51] M. Mohsin and R. Prakash, "IP ADDRESS ASSIGNMENT IN A MOBILE AD HOC NETWORK," in in
Proceeding of IEEE Military Communications Conference (MILCOM 2002), Anaheim, CA, USA , 2002,
pp. 856-861.

[52] M. Thoppian and R. Prakash, "A Distributed Protocol for Dynamic Address Assignment in Mobile Ad
Hoc Networks," IEEE Transactions on Mobile Computing, vol. 5, no. 1, pp. 4-19, Jan. 2006.

[53] Y.-S. Chen, T.-H. Lin, and S.-M. Lin, "RAA: a ring-based address autoconfiguration protocol in mobile
ad hoc networks," Wireless Personal Communications Journal, vol. 43, no. 2, pp. 549-571, Apr.
2007.

[54] L. J. G. Villalba, J. G. Matesanz, A. L. S. Orozco, and J. D. M. Díaz, "Distributed Dynamic Host
Configuration Protocol (D2HCP)," sensors, vol. 11, pp. 4438-4461, Apr. 2011.

[55] L. J. G. Villalba, A. L. S. Orozco, J. G. Matesanz, and T. H. Kim, "E-D2HCP: enhanced distributed
dynamic host configuration protocol," Computing, Springer-Verlag Wien, vol. 96, no. 9, pp. 777-791,
Sep. 2014.

[56] K. Knowlton, "Fast Storage Allocator," Communications of the ACM, vol. 8, no. 10, pp. 623-624,
1965.

[57] J. L. Peterson and T. A. Norman , "Buddy Systems," Communications of the ACM, vol. 20, no. 6, pp.

131

Bibliography

421-431, 1977.

[58] T. Clausen and P. Jacquet. (2003, Oct.) Optimized Link State Routing Protocol (OLSR), IETF, RFC
3626. [Online]. http://tools.ietf.org/html/rfc3626#section-3

[59] H. Zhou , L. M. Ni, and M. W. Mutka, "Prophet address allocation for large scale MANETs," in
INFOCOM 2003, Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications, Michigan State Univ., USA, Apr. 2003, pp. 1304-1311.

[60] H. Zhou, "Secure Prophet Address Allocation for Mobile Ad-hoc Networks," in IFIP International
Conference on Network and Parallel Computing, 2008. NPC 2008, Shanghai, 2008, pp. 60-67.

[61] X. Wang and H. Qian, "A Distributed Address Configuration Scheme for a MANET," Journal of
Network and Systems Management, Springer Science+Business Media New York, vol. 22, no. 4, pp.
559-582, Oct. 2014.

[62] K. Weniger and K. Mase. (2006, Dec.) PDAD-OLSR: Passive Duplicate Address Detection for OLSR,
Internet Engineering Task Force (IETF), Internet-Draft. [Online]. https://tools.ietf.org/html/draft-
weniger-autoconf-pdad-olsr-01

[63] K. Mase and C. Adjih. (2006, Aug.) No Overhead Autoconfiguration OLSR, IETF Internet-Draft.
[Online]. https://tools.ietf.org/html/draft-mase-manet-autoconf-noaolsr-01

[64] D. Kim, H.-J. Jeong, and S. Oh, "Passive Duplicate Address-Detection Schemes for On-Demand
Routing Protocols in Mobile Ad Hoc Networks," IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
vol. 58, no. 7, pp. 3558-3568, Sep. 2009.

[65] C. Perkins, E. Belding-Royer, and S. Das. (2003, Jul.) Ad hoc On-Demand Distance Vector (AODV)
Routing, IETF, RFC (3561). [Online]. http://www.rfc-editor.org/rfc/pdfrfc/rfc3561.txt.pdf

[66] D. Johnson, Y. Hu, and D. Maltz. (2007, Feb.) The Dynamic Source Routing Protocol (DSR) for Mobile
Ad Hoc Networks for IPv4, IETF, RFC (4728). [Online]. http://www.rfc-
editor.org/rfc/pdfrfc/rfc4728.txt.pdf

[67] M. Gerla, X. Hong, and G. Pei. (2002, Dec.) Fisheye State Routing Protocol (FSR) for Ad Hoc
Networks, Internet Engineering Task Force (IETF), INTERNET-DRAFT. [Online].
https://tools.ietf.org/html/draft-ietf-manet-fsr-03

[68] N. C. Fernandes, M. D. D. Moreira, and O. C. M. B. Duarte, "An Efficient and Robust Addressing
Protocol for Node Autoconfiguration in Ad Hoc Networks," IEEE/ACM TRANSACTIONS ON

http://tools.ietf.org/html/rfc3626#section-3
https://tools.ietf.org/html/draft-weniger-autoconf-pdad-olsr-01
https://tools.ietf.org/html/draft-weniger-autoconf-pdad-olsr-01
https://tools.ietf.org/html/draft-mase-manet-autoconf-noaolsr-01
http://www.rfc-editor.org/rfc/pdfrfc/rfc3561.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc4728.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc4728.txt.pdf
https://tools.ietf.org/html/draft-ietf-manet-fsr-03

132

Bibliography

NETWORKING, vol. 21, no. 3, pp. 845-856, Jun. 2013.

[69] Y. Rekhter, B. Moskowitz, D. Karrenberg, and G. J. de Groot. (1996, Feb.) Address Allocation for
Private Internets, IEFT, RFC 1918. [Online]. http://www.faqs.org/rfcs/rfc1918.html

[70] P. Leach, M. Mealling, and R. Salz. (2005, Jul.) A Universally Unique IDentifier (UUID) URN
Namespace, IETF, RFC 4122. [Online]. http://www.ietf.org/rfc/rfc4122.txt

[71] Y. Tang, "Linux-basiertes Testbed zur Evaluierung von Adressierungsprotokollen in Ad hoc
Netzwerken," Fakultät für Informatik und Automatisierung, TU Ilmenau Diplomarbeit 2009-11-16 /
111 / II01 / 2235, 2010.

[72] D. C. Plummer. (1982, Nov.) An Ethernet Address Resolution Protocol, IETF, RFC 826. [Online].
http://tools.ietf.org/html/rfc826

[73] R. Morera, A. McAuley, and L. Wong , "Robust Router Reconfiguration in Large Dynamic Networks,"
in Military Communications Conference (MILCOM 2003), Boston, MA, USA, 2003, pp. 1343-1347.

[74] N. Bulusu, "Self-Configuring Localization Systems," Ph.D., University of California, USA, Los Angeles,
2002.

[75] A. Yousef, H. Al-Mahdi, M. A. Kalil, and A. Mitschele-Thiel, "LHA: Logical Hierarchical Addressing
Protocol for Mobile Ad-hoc Networks," in in Proc. of the 2nd International ACM workshop on
Performance monitoring and measurement of heterogeneous wireless and wired networks
(PM2HW2N ’07), Chania, Crete Island, Greece, October, 2007, pp. 96-99.

[76] A. Yousef, A. Mitschele-Thiel, and H. Al-Mahdi, "Analytical Model of the Address Auto-configuration
Protocol LHA in Ad hoc Networks," in The 6th International Symposium on Communication Systems,
Networks and Digital Signal Processing (CSNDSP08), Graz, Austria, Juli, 2008.

[77] A. Yousef, A. Diab, and A. Mitschele-Thiel, "Performance Evaluation of Stateful Address Auto-
Configuration Protocols in Ad hoc Networks," in The 2nd. IFIP international conference on wireless
networking and communications, (IFIP Wireless Days 2009), Paris, France, Dezember, 2009, pp. 177-
182.

[78] A. Yousef, P. Drieß, and A. Mitschele-Thiel, "Comparative analysis of LHA, MANETconf and PROPHET
stateful address auto-configuration protocols in ad hoc networks," in International Symposium on
Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 2009),
Tenerife, Canary Islands, Spain, 2009, pp. 161-162.

http://www.faqs.org/rfcs/rfc1918.html
http://www.ietf.org/rfc/rfc4122.txt
http://tools.ietf.org/html/rfc826

133

Bibliography

[79] A. Yousef, S. Rishe, and A. Mitschele-Thie, "RNBB: A Reliable Hybrid Broadcasting Algorithm for Ad-
Hoc Networks," in 10th International Conference on Wired/Wireless Internet Communications -
WWIC 2012, Springer-Verlag, LNCS 7277 , Santorini, Greece, Juni, 2012.

[80] Network Simulator - ns2. [Online]. http://nsnam.sourceforge.net/wiki/index.php/Main_Page

[81] Network simulator Tools. [Online]. https://networksimulationtools.com/computer-network-
simulation-projects/

[82] N. Kim, S. Ahn, and Y. Lee, "AROD: An address autoconfiguration with address reservation and
optimistic duplicated address detection for mobile ad hoc networks," Computer Communications,
vol. 30, no. 8, pp. 1913-1925, Mar. 2007.

[83] R. O. Schmidt, A. Pras, and R. Gomes, "On the Evaluation of Self-addressing Strategies for Ad-Hoc
Networks," Energy-Aware Communications, Lecture Notes in Computer Science (LNCS), vol. 6955,
pp. 31-42, Sep. 2011.

[84] Y. Sun and E. M. Belding-Royer, "A study of dynamic addressing techniques in mobile ad hoc
networks: Research Articles," Wireless Communications & Mobile Computing - Special Issue:
Scalability Issues in Wireless Networks—Architectures, Protocols and Services, vol. 4, no. 3, pp. 315-
329, May 2004.

[85] J. W. Tukey, Exploratory Data Analysis, 1st ed. Addison-Wesley, 1977.

[86] J. Li, C. Blake, D. J. S., H. I. Lee, and R. Morris, "Capacity of Ad Hoc Wireless Networks," in ACM
SIGMOBILE, Rome, Italy, 2001, pp. 61-69.

[87] P. Mohapatra, J. Li, and C. Gui, "Multicasting in Ad Hoc Networks," in AD HOC NETWORKS,
Technologies and Protocols. USA: Springer, 2005, pp. 91-119.

[88] K. Egevang and P. Francis. (1994, May) The IP Network Address Translator (NAT), IETF, RFC 1631.
[Online]. http://www.faqs.org/rfcs/rfc1631.html

[89] T. R. Reshmi and K. Murugan, "Secure and Reliable Autoconfiguration Protocol (SRACP) for
MANETs," Wireless Personal Communications, Springer Science+Business Media New York, vol. 89,
no. 4, pp. 1243-1264, Aug. 2016.

[90] J. Postel. (1980, Jan.) DOD STANDARD INTERNET PROTOCOL, IETF, RFC 760. [Online].
http://www.faqs.org/rfcs/rfc760.html

http://nsnam.sourceforge.net/wiki/index.php/Main_Page
https://networksimulationtools.com/computer-network-simulation-projects/
https://networksimulationtools.com/computer-network-simulation-projects/
http://www.faqs.org/rfcs/rfc1631.html
http://www.faqs.org/rfcs/rfc760.html

134

Bibliography

[91] S. Kirkpatrick, M. Stahl, and M. Recker. (1990, Jul.) INTERNET NUMBERS , IEFT, RFC 2131. [Online].
http://tools.ietf.org/html/rfc1166

[92] S. Deering and R. Hinden. (1998, Dec.) Internet Protocol, Version 6 (IPv6), IETF, RFC 2460. [Online].
http://www.ietf.org/rfc/rfc2460.txt

[93] A. Mitschele-Thiel, Systems Engineering with SDL, 1st ed. Chichester. West Sussex. PO19 1UD.,
England: John Wiley & Sons. Ltd, 2001.

[94] M. W. Murhammer, O. Atakan, S. Bretz, L. R. Pugh, and K. Suzuki, TCP/IP Tutorial and Technical
Overview, 6th ed. USA: IBM Corporation, 1998.

[95] (1996, Apr.) Dynamic RARP Extensions for Automatic Network Address Acquisition, IETF, RFC 1931.
[Online]. http://tools.ietf.org/html/rfc1931

[96] R. Gurwitz and R. Hinden. (1982, Sep.) IP - Local Area Network Addressing Issues, Internet
Engineering Note (IEN), 212. [Online]. https://www.rfc-editor.org/ien/ien212.txt

[97] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva, "A performance comparison of multi-hop
wireless ad hoc network routing protocols," in Proceedings of the Fourth Annual ACM/IEEE
International Conference on MobileComputing and Networking (MobiCom), Dallas,Texas, USA,
October 1998, pp. 85-97.

http://tools.ietf.org/html/rfc1166
http://www.ietf.org/rfc/rfc2460.txt
http://tools.ietf.org/html/rfc1931
https://www.rfc-editor.org/ien/ien212.txt

	Abstract
	Table of Contents
	Abbreviations
	Chapter 1 Introduction
	1.1 Problem Statements
	1.2 Auto-configuration Requirements
	1.3 Dissertation Objectives
	1.4 Contribution
	1.5 Thesis Structure

	Chapter 2 Address Auto-Configuration
	2.1 Early IP Address Auto-Configuration Efforts
	2.1.1 Infrastructure Stateful IP Addressing
	2.1.1.1 BootP protocol
	2.1.1.2 DHCP protocol

	2.1.2 Infrastructure Stateless IP Addressing
	2.1.2.1 IPv4 Link-Local addresses
	2.1.2.2 IPv6 Link-Local addresses

	2.1.3 Why do infrastructure solutions not suit ad hoc networks?

	2.2 Classification of Auto-configuration Protocols
	2.2.1 Stateless protocols
	2.2.2 Stateful protocols
	2.2.3 Hybrid protocols
	2.2.4 Why Stateful Protocols?

	2.3 Proposed Classification of Stateful Protocols
	2.3.1 Centralized Approach
	2.3.2 Distributed Approach

	2.4 Conflict Resolution Mechanisms
	2.4.1 Individual methods
	2.4.2 Collective methods

	2.5 Network Partitioning Detection
	2.6 Scenario-based Comparison

	Chapter 3 LHA Protocol
	3.1 Required Features of LHA
	3.2 Basic Idea
	3.2.1 Hierarchical Host ID (HHID)
	3.2.2 Hierarchical ID (HierID)

	3.3 Address Assignment
	3.3.1 LHA Function
	3.3.2 Correctness of IP Address Assignment

	3.4 Data Structures
	3.4.1 Tables & Parameters
	3.4.1.1 Configured nodes list
	3.4.1.2 Assigning table
	3.4.1.3 Departure nodes list
	3.4.1.4 Merger list
	3.4.1.5 Sending list
	3.4.1.6 Reverse path list

	3.4.2 Messages
	3.4.2.1 Packet Format
	3.4.2.1 Joining nodes messages
	3.4.2.2 Departing nodes messages
	3.4.2.3 Partitioning messages
	3.4.2.4 Merging messages
	3.4.2.5 LHA Beacon message:

	3.5 Node Joining Algorithms
	3.5.1 Network Initialization
	3.5.2 One-hop Assigning (Basic Case)
	3.5.3 Multi-hop Assigning (Basic Case)
	3.5.4 Complete Specification of Assigning Algorithm
	3.5.5 Handling Special Cases

	3.6 Network Merger Algorithms
	3.6.1 Terminology
	3.6.2 Basic Idea
	3.6.3 Soft Merger
	3.6.4 Hard Merger
	3.6.5 Reconfiguration Algorithm
	3.6.6 Handling Special Case (Simultaneous Merging)

	3.7 Network Partitioning Algorithms
	3.7.1 Partition Threshold
	3.7.2 Partition Algorithm
	3.7.3 Address Recovery Algorithm
	3.7.4 Special Case (Stand Alone Node)

	3.8 Node Departure Algorithms
	3.8.1 Departing Node Algorithm
	3.8.2 Departure Agent algorithm

	Chapter 4 Performance Evaluation
	4.1 Analysis of Multi-hop Assignment Function
	4.1.1 Assignment latency:
	4.1.2 Signaling Overhead:

	4.2 Main Scenarios of Assignment Process
	4.2.1 Impact of Network Density
	4.2.2 Impact of Node Speed

	4.3 Impact of Network Mergers
	4.3.1 Simple Merger of Two Networks
	4.3.2 Simultaneous Merger of More Than Two Networks

	Chapter 5 Conclusion & Future Work
	5.1 LHA Features
	5.2 Future Work

	Bibliography

