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Zusammenfassung

In der vorliegenden Dissertation werden zufällige dynamische Systeme in Hilberträumen und
deren Langzeitverhalten diskutiert. Der Schwerpunkt der Arbeit liegt auf der Abschätzung der
Hausdorff-Dimension von zufälligen Attraktoren, welche ein wichtiges Merkmal für das Langzeit-
verhalten darstellen. Eine Besonderheit des ersten Teils der Arbeit ist, dass die Grundmenge des
zugrunde liegenden Maßraums eine fraktale Menge ist. Eine solche Menge ist typischerweise eine
Teilmenge eines euklidischen Raumes, hat ein leeres Inneres und keinen glatten Rand. Aufgrund
dieser Eigenschaften ist eine klassische Differentiation von Funktionen auf diesen Mengen nicht
möglich. Nach einer Einführung in die Analysis auf Fraktalen und dem zugehörigen Laplace-
Operator wird ein zufälliges dynamisches System aus der Lösung einer stochastischen partiellen
Differentialgleichung erzeugt und die Existenz eines eindeutigen zufälligen Attraktors diskutiert.
Für die Hausdorff-Dimension dieses Attraktors wird im Anschluss eine obere Schranke hergelei-
tet, die von dem spektralen Exponent des Laplace-Operators abhängt. Insbesondere geben wir
im Rahmen eines Beispiels einen numerischen Wert für die obere Schranke an. Der zweite Teil
der Arbeit befasst sich mit einer stochastischen partiellen Differentialgleichung, welche von einem
multiplikativen Rauschen getrieben wird. Wir beweisen die Existenz des zufälligen Attraktors der
zugehörigen Dynamik und die Existenz einer invarianten instabilen Mannigfaltigkeit. Um eine
untere Abschätzung für die Hausdorff-Dimension des Attraktors zu erhalten, projizieren wir ei-
ne Teilmenge der Mannigfaltigkeit, welche auch Teilmenge des Attraktors ist, auf den instabilen
Teilraum des Hilbertraums.
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Abstract

In this thesis we deal with random dynamical systems in Hilbert spaces and their long-time be-
havior. We focus on the derivation of bounds on the Hausdorff dimension of random attractors,
which are characteristic for the long-time behavior of the dynamics. In the first part of the work
the basic set of the underlying measure space is a fractal set. Such a subset of an Euclidean space
has typically an empty interior and no smooth boundary. Therefore the classical differentiation
of functions on these sets fails. After an introduction to the analysis on fractals and the related
Laplacian we generate a random dynamical system from the solution of a stochastic partial dif-
ferential equation and show the existence of an associated unique random attractor. In the sequel
we derive an upper bound on the Hausdorff dimension of this random attractor, which depends on
the spectral exponent of the considered Laplacian. In an example we compute a numerical value
of the upper bound. Another result of the thesis deals with a different stochastic partial differen-
tial equation driven by a multiplicative noise. We prove the existence of the random attractor of
the related dynamics as well as the existence of an unstable invariant manifold. Subsequently we
project a subset of the manifold, which is also a subset of the random attractor, onto the unstable
subspace of the Hilbert space. This approach allows us to obtain a lower bound on the Hausdorff
dimension of the attractor.
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Chapter 1

Introduction

In the present thesis the main object is to discuss the Hausdorff dimension for the random attrac-
tor of an associated random dynamical system.
A random dynamical system is a generalization of a (deterministic) dynamical system, which
mathematically describes for example the motion of a particle over time, i.e. the change of its ini-
tial state in time. For a random dynamical system (RDS) we allow in addition a random influence
which is modeled by a so called metric dynamical system. The main feature of a random dynami-
cal system is the cocycle property, which replaces the semigroup property in the deterministic case.

As an illustrative example think of the pollution inside the oceans and imagine we could track
the position of a plastic bottle that swims within some current. Since an ocean current behaves
not like a steady stream and is disturbed for instance by the weather or the sea level, a good
model for the trajectory of a plastic bottle within the current should allow random influence. If
we are able to describe the position of the bottle at a certain time by the solution of a stochastic
differential equation (e.g. stochastic Navier-Stokes equation), then a random dynamical system
can give us a priori information on the possible trajectories of this bottle.

For finite-dimensional problems the generation of random dynamical systems from stochastic
differential equations is described in detail in the book of Arnold [Arn10]. A main obstacle arises
since the appearing stochastic integral is defined only almost surely whereas the cocycle property
needs to hold for all ω of our probability space. In an infinite dimensional setup it is rather difficult
to overcome this problem, but for equations with additive or multiplicative noise it is possible, see
e.g. Caraballo, Langa and Robinson [CLR00], Crauel and Flandoli [CF94] or Schmalfuß [Sch92].
The standard method is to transform the SDE into a random (partial) differential equation (RDE)
via the Ornstein-Uhlenbeck process. This RDE can be solved pathwise and the solution mapping
generates a random dynamical system.
Having the classical theory in mind (see for instance Temam [Tem88] or Robinson [Rob01]), we
can ask for qualitative properties that depict the long-time behaviour of the dynamical system
such as attractors or invariant manifolds.
As a natural phenomena which describes a random attractor one can think of an ocean vortex,
see e.g. [Ghi17]. Following the trajectory of the plastic bottle, discussed in the above example,
we arrive after a sufficient long time in a vortex which changes its shape due to the random
influences and the time. If we wait long enough the vortex attracts all the objects that are car-
ried from the currents that started in an appropriate region. Mathematically these objects are
characterized as random sets that are obtained by random dynamical systems. Note that an RDS
is a non-autonoumous system, which makes it more difficult to predict time-dependent random
sets, like the random attractor on large time scales. To work around this problem one defines
the attractors in a pullback sense, cf. [Sch92]. The pullback dynamics gives us the advantage to
study asymptotic behaviour for t → ∞, since then the image of the initial sets under the RDS
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Introduction

are in a time-independent ω-fiber.
Invariant manifolds of an RDS are positively invariant subsets of the corresponding space that are
constructed around a random fixed-point of the RDS and the set has a graph-like structure. In
particular we distinguish between stable and unstable manifolds for instance we refer to [OS13],
[LS07]. An unstable manifold at a fixed point is roughly speaking the set of initial points that stay
inside the manifold under the image of the cocycle and tends exponentially fast to the fixed-point
when t → −∞. Conversely, the points from the stable manifold tends exponentially fast to the
fixed-point for t→∞.

We aim to estimate the Hausdorff dimension of the previously discussed random attractors.
The dimension of a set gives an answer to the question how much this set fills the space. It also
tells us how much an element in this set can move, i.e. the number of degrees of freedom. This
perception becomes more difficult when a dimension is non-integer, but it can help us to compare
sets or to decide if they are comparable. Note that the dimension is a geometric property and
there is a big variety of different definitions under consideration of the given assumptions or the
chosen properties of the set. These other definitions can give us again more infomation on the
considered set.
The Hausdorff dimension goes back to Felix Hausdorff in 1919 and gives us the possibility to
assign a dimension to any set in a metric space. Its definition is based on the Hausdorff measure,
which is a generalization of the Lebesgue measure and it is constructed by a countable family of
infinitesimal covering sets. A wide overview of the concepts ’Hausdorff measure’ and ’Hausdorff
dimension’ can be found in [Fal90]. In the last decades the Hausdorff dimension has become more
important due to the arising theory of fractal geometry, where often sets with non-integer Haus-
dorff dimension appear. In this context the most common and well-studied objects are self-similar
fractals like the Cantor set, the Sierpinski gasket, the Mandelbrot set or the Menger sponge. Al-
though these examples are purely mathematical, they have become more and more interesting for
natural scientists. Examples such as the percolation through porous structures or the diffusion
across conductive layers have supports that are modeled with fractal sets, see e.g. the references
in [Fre05]. In the 80s and 90s there have been various approaches to define a meaningful analysis
on these sets. For a diffusion the Laplacian is of particular interest. An overview of the analytic
approach for the definition of a Laplacian on a fractal set, using graph approximations and energy
forms, can be found in [Kig01]. This well-elaborated theory offers the possibility to study partial
differential equations on fractal sets.

The thesis is organized as follows: in the second chapter we start with a short repetition
of known statements concerning semigroups and linear unbounded operators in Hilbert spaces.
Subsequently, we discuss the Wiener process with values in a Hilbert space and introduce SPDEs
and their mild solution by taking an example. Finally, we make a brief sketch of the analysis
on a class of fractals. As an example we discuss the Sierpinski gasket. Chapter 3 begins with
a summary of the necessary terminology for random dynamical systems and metric dynamical
systems and we introduce the stationary Ornstein-Uhlenbeck process. Moreover we show related
properties of this process which are in our interest. We introduce the SPDE which we consider
for our main result in Chapter 4. The SPDE gets transformed into an RDE and we prove the
existence of a random dynamical system and its random attractor. In the end we use a proper
conjugacy to obtain a random attractor for the original SPDE. The upper bound on the Hausdorff
dimension of the random attractor is tackled in Chapter 4. After a summary of the methods for
the estimate in the deterministic and the random case we name conditions which are necessary
to obtain the aimed estimate. We consider the RDE of Chapter 3 with the Laplacian introduced
in Chapter 2. Then the upper estimate of the Hausdorff dimension depends especially on the
spectral properties of the Laplacian. In a last part of this chapter we give an example of the con-
sidered nonlinearity and derive, in the case the underlying set is the Sierpinski gasket, a numerical

2



value for the upper bound. In the last chapter of this dissertation we present a technique for a
lower bound on the Hausdorff dimension of another random attractor. For this purpose we begin
introducing an SPDE with a multiplicative noise and acquire the conjugated RDE. We prove
similarly to Chapter 3 the existence of an RDS and an associated random attractor. Since the
dimension estimate is based on invariant manifolds we introduce the related setting together with
the unstable and stable subspaces of the corresponding Hilbert space. After using a typical cut-off
function and the Lyapunov-Perron transform of the mild solution of the associated RDE we ob-
tain an invariant manifold for the truncated version of the RDE. In the last section we show that
this manifold is in fact a local unstable manifold for the original RDE. Moreover, the definition
the local unstable manifold allows to identify a non-trivial subset of the random attractor. Us-
ing the projection onto the unstable subspace we derive a lower bound on the Hausdorff dimension.

The main results are the following: as far as we know the presented work is the first connection
between the analysis on fractals and the infinite dimensional random dynamics. Although the
results in Chapter 3 are classical statements we prove and check that they are applicable for the
space of square integrable functions on a fractal set with an appropriate measure. In the fourth
chapter we use the known theory of Temam and Debussche to show the dependence of the Haus-
dorff dimension of the random attractor on the spectral exponent. This exponent is a constant
stemming from the asymptotic spectrum of the Laplacian constructed on the fractal. Moreover
we remark that we discuss the upper estimate on the Hausdorff dimension for an equation with a
Lipschitz continuous nonlinearity. This has not been discussed in the literature. In particular we
see the dependence of the upper bound on the Lipschitz constant. To the best of our knowledge
there are no well-known examples of a numerical value of the upper bound on the Hausdorff di-
mension, hence Section 4.3 is completely new. The last chapter combines two concepts concerning
random dynamics, random attractors and random invariant manifolds. First, we comment the
proof of the global unstable manifold in Section 5.2. Although the proof is structured like similar
proofs in the related literature we need to treat carefully the additional factor involving the time
integral over the Ornstein-Uhlenbeck process. Analogously we have to regard this factor in all
the subsequent statements of the local invariant manifold. The associated proofs have not been
seen in publications that are known to the author. Finally, note that we take assumptions to
obtain a random attractor and a local unstable manifold at zero. Typically these two objects are
not considered together. Here we show that a subset of the manifold is included in the random
attractor. The idea to use an orthogonal projection to estimate a rough lower bound on the
Hausdorff dimension is a classical approach in the theory of fractal geometry. However it has not
been used in the context of random attractors.
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Chapter 2

Preliminaries

In this chapter we introduce the basics for our work. In the first section we discuss the theory
of strongly continuous and analytic semigroups. The second section presents an overview of the
noise that will drive our stochastic partial differential equations. In Section 3 we briefly illustrate
the theory of solutions for stochastic partial differential equation, which are in our interest. The
last section is devoted to a rather new topic, fractal geometry and analysis for functions on these
sets. This section will support in particular our main theorem in Chapter 4.

2.1 Semigroup theory in Hilbert spaces

C0-semigroups

Before we present the differential equations we are working with we introduce all the components
that are necessary. The most results of the following section can be defined for Banach spaces
but since we consider later random partial differential equations an L2-space, we state all results
for Hilbert spaces.
A Hilbert space, usually denoted by H, is a complete normed vector space equipped with an inner
product (·, ·)H : H × H → R+ = [0,∞). The norm ‖ · ‖H :=

√
(·, ·)H is induced by the inner

product. In the following we omit the index H. If we consider norms resp. products in other
spaces we will denote it by using the notation of the corresponding space as an index to the norm
resp. product.

Later we will be mainly interested in the space of all functions which are square - integrable
w.r.t. a σ-finite measure. More precisely, let (E, E , µ) be a complete σ-finite measure space. Then
we define the L2-space,

L2(E,µ) :=
{
f : E → R : f is µ-measurable,

∫

E
|f |2 dµ <∞

}
.

Recall the following important property, cf. [Alt16, Theorem 9.8, p.294]. A Hilbert space H is
separable if and only if there exists an orthonormal basis (ONB) {ei}i∈N ⊂ H. The space H is
isometrically isomorph to the space of square summable sequences, denoted by `2(R) (see [Alt16,
Theorem 9.8 (Note), p.294]).

The following foundations stem from [Paz83, Chapter 1] and [SY02, Chapter 3].

Definition 2.1.1. Let H be a Hilbert space. A family {S(t)}t≥0 of bounded linear operators
mapping from H to H is called a semigroup of bounded linear operators, if the following two
conditions hold:
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Preliminaries

(i) S(0) = IdH ,

(ii) S(t+ s) = S(t)S(s), ∀ s, t ∈ R+ .

The second item is called the semigroup property of {S(t)}t≥0. If in addition

(iii) lim
t↓0

S(t)x = x, for every x ∈ H ,

then {S(t)}t≥0 is called a strongly continuous semigroup (in zero), often referred to as C0-
semigroup.
A linear operator A : D(A)→ H is called the infinitesimal generator of the semigroup {S(t)}t≥0
with domain

D(A) =
{
x ∈ H : lim

t↓0

S(t)x− x
t

exists
}
⊆ H .

For x ∈ D(A) we have

Ax = lim
t↓0

S(t)x− x
t

= d+S(t)x
dt

∣∣∣∣
t=0

.

Note that for the definition of the infinitesimal generator the strongly continuity of {S(t)}t≥0
is not necessary.
In the following we state some important properties of C0-semigroups. By L(H) we denote the
space of linear bounded operators mapping from H into itself.
All statements can be found proven in Pazy [Paz83, p.4f]

Theorem 2.1.2. Let {S(t)}t≥0 be a C0-semigroup. Then there exist constants α ≥ 0 and M ≥ 1
such that

‖S(t)‖L(H) ≤Meαt

for t ∈ R+.

We mention that {S(t)}t≥0 is called uniformly bounded if α = 0. {S(t)}t≥0 is called C0-
semigroup of contractions if in addition M = 1, i.e. ‖S(t)‖L(H) ≤ 1 for every t ≥ 0.

Corollary 2.1.3. Let {S(t)}t≥0 be a C0-semigroup. The mapping

S(·)x : R+ → H, t 7→ S(t)x ∈ H

is continuous for every x ∈ H.

Theorem 2.1.4. Let {S(t)}t≥0 be a C0-semigroup and A be its infinitesimal generator. Then

a) for x ∈ H, t ≥ 0
∫ t

0
S(s)x ds ∈ D(A) and A

(∫ t

0
S(s)x ds

)
= S(t)x− x,

b) for x ∈ D(A), 0 ≤ s < t

∫ t

s
AS(r)x dr =

∫ t

s
S(r)Axdr = S(t)x− S(s)x .

Definition 2.1.5. An operator A on a Hilbert space H is bounded from below, if there exists an
a ∈ R such that

a‖u‖2 ≤ (Au, u)

for all u ∈ D(A). If (Au, u) ≥ 0, then A is said to be non-negative.
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2.1 Semigroup theory

We introduce the concept of the resolvent of a linear operator A.

Definition 2.1.6. Let H be a Hilbert space and A ∈ L(H). Then

%(A) = {λ ∈ C : ∃(λIdH −A)−1 ∈ L(H)}

is called the resolvent set of A and

σ(A) = C \ %(A)

is called the spectrum of A. In general the spectrum of a closed operator consists of the point,
residual and continuous spectrum [Kow09, p.70f]. We emphasize the point spectrum, since it will
play an important role in the whole thesis.

The point spectrum of a closed operator A is given by the set

{λ ∈ C : ∃u ∈ H,u 6= 0, (λIdH −A)u = 0},

its elements are called eigenvalues of A. The condition above is equivalent to u ∈ Ker(λIdH −A).
This implies as well that λIdH −A is not injective.
The family of bounded linear operators

R(λ,A) := (λIdH −A)−1, for λ ∈ %(A)

is called the resolvent of A. For more information concerning resolvents see e.g. [SY02, p.66] and
[EN99, p.133].
We say that an operator A has a compact resolvent, if the resolvent R(λ,A) is compact for one
λ ∈ %(A) (hence for every λ ∈ %(A)), see [EN99, Chapter 2, Definition 4.24, p.117].

The following spectral theorem is presented entirely in [DSBB63, p.1331, Theorem 2] and
shows the impressive consequence of having a compact resolvent of a self adjoint operator.

Theorem 2.1.7. Let A be a self-adjoint operator such that R(λ,A) is compact for non-real λ.
Then

(i) the spectrum of A is a sequence of points on R with no finite limit point and

(ii) each λ ∈ σ(A) belongs to the point spectrum of A and has a finite geometric multiplicity.

We want to point out the following consequence of the spectral mapping theorem, which is
an important tool for many applications concerning the mappings of (self-adjoint) operators.
We present the general theorem of N.Dunford and J.T.Schwartz [DSBB63, XII Section 2 and 3]
applied in our interest.

Theorem 2.1.8. Let H be a separable Hilbert space. Assume T is a self-adjoint, positive operator
on H and f : σ(T ) → R is a bounded and continuous mapping. Further let (λi)∞i=1 ⊂ σ(T ) with
corresponding eigenvectors (ei)∞i=1 which form an ONB of H. Then we define for elements from
the domain

D(f(T )) :=
{
u ∈ H :

∞∑

i=1
|f(λi)|2 · |(u, ei)|2 <∞

}

the operator f(T ) : D(f(T ))→ H by

f(T )u =
∞∑

i=1
f(λi)(u, ei)ei .

7



Preliminaries

We close the subsection with the theorem of Hille-Yoshida, which states the conditions guar-
anteeing that A is the infinitesimal generator of a C0-semigroup.

Theorem 2.1.9. A linear operator A is the infinitesimal generator of C0-semigroup if and only
if

(i) A is a closed operator and D(A) is dense in H

and

(ii) there exists an α ∈ R such that {λ ∈ R : λ > α} ⊂ %(A) and for the resolvent of A it holds

‖R(λ,A)n‖L(H) ≤
M

(λ− α)n

for λ > α and n ∈ N.

Analytic semigroups

For the work with evolution equations in infinite dimensional spaces the theory of analytic semi-
groups is significant. This theory allows us to introduce fractional powers for generators of analytic
semigroups. We point out a compactness argument between two interpolation spaces which will
be of interest for the random attractor in Chapter 3. For this subsection we refer to [SY02, p.76ff]
and [Paz83, p.60ff].

Definition 2.1.10. Let D be an open set of C and H a Hilbert space. An H-valued function
u : D → H is called analytic if for any z0 ∈ D the limit

lim
z→0

1
z

(f(z + z0)− f(z0))

does exist in H.

We introduce for δ ∈ (0, π) and a ∈ R the following open sectors in the complex plane

∆δ := {z ∈ C : | arg z| < δ, z 6= 0},
∆δ(a) := a+ ∆δ = {z ∈ C : | arg(z − a)| < δ, z 6= a},

where z ∈ C can be represented by z = |z|ei arg z. For a better understanding we outline the sector
∆δ in the following picture.

<(z)

=(z)

δ

∆δ

Figure 2.1: A sector in the complex plane for an angle δ > 0.
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2.1 Semigroup theory

Definition 2.1.11. Let {S(t)}t≥0 be a C0-semigroup on H. We call {S(t)}t≥0 an analytic semi-
group, if there exists an analytic extension of {S(t)}t≥0 fulfilling the four conditions:

(i) for every z ∈ ∆δ ∪ {0} the image S(z) belongs to L(H),

(ii) S(z1 + z2) = S(z1)S(z2) for every z1, z2 ∈ ∆δ ∪ {0},

(iii) for every x ∈ H and z ∈ ∆δ ∪ {0}, limz→0 S(z)x = x,

(iv) the mapping S(·)x : ∆δ → H, z 7→ S(z)x is an analytic mapping for each x ∈ H.

The next natural question that arises, is under which assumptions A generates an analytic
semigroup. An answer to this question can for example be found in Pazy [Paz83, p.30, p.61]
and in Sell and You [SY02, p.79]. We summarize the necessary assumptions on A in the next
definition.

Definition 2.1.12. A linear operator A : D(A) → H is called a sectorial operator if it satisfies
the following properties,

(i) D(A) is dense in H and A is a closed operator,

(ii) there exist real numbers a ∈ R, σ ∈ (0, π2 ) and M ≥ 1 such that

(1) Σσ(a) ⊂ %(A) and
(2) ‖R(λ,A)‖L(H) ≤ M

|λ−a|

for all λ ∈ Σσ(a).

A sectorial operator is called positive, if inequality (2) holds for some a > 0.

According to Lemma 36.1 [SY02] if A is a sectorial operator then −A generates an analytic
semigroup. The following theorem is fundamental for our theory and is stated by Sell and You in
[SY02, p.68, Theorem 32.1].

Theorem 2.1.13. Let A be a self-adjoint operator on a Hilbert space H. Further let (ei)∞i=1 be
the eigenfunctions of A with corresponding eigenvalues (λi)∞i=1. Assume A is bounded from below
and has a compact resolvent. Then we obtain the following.

(1) The linear operator −A generates a C0-semigroup {S(t)}t≥0, which can be represented by

S(t)u =
∞∑

i=1
e−λit(u, ei)ei

where the sequence (ei)∞i=1 forms an orthonormal basis in H. Moreover for all t ≥ 0

‖S(t)‖L(H) ≤ e−λ1t (2.1.1)

where λ1 is the smallest eigenvalue of A.

(2) For each t > 0 the operator S(t) is compact.

(3) The semigroup {S(t)}t≥0 is analytic and the linear operator A is sectorial.

(4) For any fixed t > 0

lim
h→0
‖S(t+ h)− S(t)‖L(H) = 0 ,

which expresses the norm continuity of the semigroup {S(t)}t≥0.
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Preliminaries

For the proof of these statements we refer to [SY02, p.67f, p.81f]. Since the assertions (1) and
(3) are important for the following Theorem 2.1.16 we provide a proof.

Proof. We start with the statement (1).
Theorem 2.1.7 asserts that the spectrum consists of isolated points and has no finite accumu-
lation point. For an orthonormal basis we choose the set of normalized eigenvectors ei of the
corresponding eigenvalues λi, i ∈ N of the operator A, such that

Aei = λiei

for every i ∈ N and every eigenvalue λi ∈ [a,∞), where a ∈ R is the lower bound presented in
Definition 2.1.5. For any u ∈ H the Fourier series expansion is given by

u =
∞∑

i=1
(u, ei)ei.

Moreover the Parseval equality ([Alt16, Definition 9.7, p.293]) holds, that is

‖u‖2 =
∞∑

i=1
|(u, ei)|2 .

According to Theorem 2.1.8 the domain of A can be characterized by

D(A) =
{
u ∈ H :

∞∑

i=1
|λi|2|(u, ei)|2 <∞

}

and the operator A is then given by

Au =
∞∑

i=1
λi(u, ei)ei (2.1.2)

for u ∈ D(A). Taking the inner product in (2.1.2) with u entails

(Au, u) =
∞∑

i=1
λi|(u, ei)|2 ≥ λ1‖u‖2 .

Therefore we can assume w.l.o.g. that the constant a in Definition 2.1.5 is equal to λ1. Now apply
Theorem 2.1.8 with f(λ) = e−λt, λ ∈ R and we obtain

S(t)u :=
∞∑

i=1
e−λit(u, ei)ei . (2.1.3)

We see easily that S(t) ∈ L(H) and ‖S(t)‖ ≤ e−λ1t, t ≥ 0,

‖S(t)u‖2 =
∞∑

i=1
e−2λit|(u, ei)|2 ≤

∞∑

i=1
e−2λ1t|(u, ei)|2 = e−2λ1t‖u‖2 .

The generated semigroup (2.1.3) fulfills trivially the identity property. The semigroup property
follows since

S(t)S(s)u =
∞∑

i=1
e−λit(S(s)u, ei)ei =

∞∑

i=1
e−λi(t+s)(u, ei)ei = S(t+ s)u

10
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for every t, s ∈ R+ and u ∈ H.
The strong continuity of {S(t)}t≥0 follows by a typical ε− δ argument when considering the term
‖S(t)u−u‖2 for t ↓ 0. In particular one can choose a number N ≥ 1 such that λi > 0 for i ≥ N+1
hence (e−λit − 1)2 ≤ 1 for every t ≥ 0. For 1 ≤ i ≤ N we use the continuity of e−λit in t = 0.
It remains to show −A is the generator of the C0-semigroup. For this purpose denote B as the
infinitesimal generator of the semigroup {S(t)}t≥0. For a fixed N ∈ N we define the orthogonal
projection PN : H → span{e1, ..., eN} by PNu :=

∑N
i=1(u, ei)ei. We only show D(A) ⊂ D(B)

and Bu = −Au for every u ∈ D(A). The inverse inclusion is very similar and can be reviewed in
[SY02, Section 3.2, p.68]. First consider

−Au =
∞∑

i=1
−λi(u, ei)ei = lim

N→∞

N∑

i=1
−λi(u, ei)ei,

then since 1
h

(
e−λih − 1

) h↓0−→ −λi we obtain

−Au = lim
N→∞

N∑

i=1
lim
h→0+

1
h

(
e−λih − 1

)
(u, ei)ei = lim

N→∞
lim
h→0+

PN

(
1
h

(S(h)− IdH)u
)

= lim
N→∞

PN

(
lim
h→0+

1
h

(S(h)− IdH)u
)

= lim
N→∞

PN (Bu) .

The final step is to conclude that limN→∞ PN (Bu) = Bu. But this follows directly from the
minimum property for Fourier coefficients αi ∈ R, which is an application of the principle of
uniform boundedness (see e.g. [KA78, Chapter 7, Theorem 1, p.202]),

∥∥∥∥∥Bu−
N∑

i=1
αiei

∥∥∥∥∥

2

is minimal ⇐⇒ αi = (Bu, ei), i = 1, ..., N .

Now we shortly discuss the assertion (3). We will not give a complete proof. We need to verify
that for some δ ∈ (0, π) and arbitrary z ∈ ∆δ ∪ {0}, S(z) ∈ L(H). First we can replace t by a
complex variable z in (2.1.3), such that for every u ∈ H

S(z)u :=
∞∑

i=1
e−λiz(u, ei)ei .

Similar to the proof of part (1)

‖S(z)u‖2 =
∞∑

i=1

∣∣∣e−λiz
∣∣∣
2
|(u, ei)|2 =

∞∑

i=1
e−2λi<(z)|(u, ei)|2 ≤ e−2λ1<(z)‖u‖2 .

if <(z) > 0. Note that this condition is equal to choose an element z ∈ ∆π
2
∪{0}. The semigroup

property follows exactly as before. Similar to the reell case the strong continuity of S(·)u on
∆π

2
∪ {0} for u ∈ H can be obtained.

Since it is rather technical to show that the mapping S(·)u is analytic for all u ∈ H on the sector
∆π

2
and that A is a sectorial operator, we refer to the general proofs in [SY02, Theorem 36.2] and

[EN99, Proposition 4.3] which can be applied to the defined semigroup.

We introduce the notations of fractional powers for the operator A and the corresponding
domains applying Theorem 2.1.8, see [SY02, p.92ff].
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Definition 2.1.14. Let A be a self-adjoint, positive operator with a compact resolvent on a
Hilbert space H. The eigenvalues of A are denoted by (λi)∞i=1 and their corresponding eigenfunc-
tions by (ei)∞i=1.
For any α ≥ 0 we define the domain of the fractional power Aα by

V 2α := D(Aα) =
{
u ∈ H :

∞∑

i=1
λ2α
i |(u, ei)|2 <∞

}
(2.1.4)

and the operator Aα by

Aαu =
∞∑

i=1
λαi (u, ei)ei

for all u ∈ D(Aα).

For each α ≥ 0 the set V α is a linear subspace in H and V 0 = H. The space V α becomes a
Hilbert space, if it is equipped with the V α-inner product

(u, v)α :=
∞∑

i=1
λαi (u, ei)(v, ei) (2.1.5)

and the V α-norm given by

‖u‖2α := ‖Aαu‖2 =
∞∑

i=1
λαi |(u, ei)|2 (2.1.6)

for every u, v ∈ V α, α ∈ R+. Let us summarize the following properties. If β ≤ α, then V α ⊆ V β

and
‖u‖2β ≤ λ

β−α
1 ‖u‖2α

for every u ∈ V α. Hence V α is continuously embedded in V β, i.e. V α ↪→ V β. Moreover V α is
dense in V β. For α ≥ β let us identify each real number between them by γ = θα+ (1− θ)β for
θ ∈ [0, 1]. One can easily check that V α ↪→ V γ ↪→ V β and the following interpolation inequality
holds

‖u‖γ ≤ ‖u‖θα‖u‖1−θβ (2.1.7)

for all u ∈ V α and θ ∈ [0, 1]. A family of Banach spaces V α with norms ‖ · ‖α defined for
α ∈ I ⊂ R with the above properties is called a family of interpolation spaces on I. We point out
a statement of Theorem 37.2 in Sell and You [SY02, p.94] concerning the embedding between two
interpolation spaces.

Theorem 2.1.15. Let A be a positive, self-adjoint linear operator with a compact resolvent on a
Hilbert space H. Let the Hilbert space V α be defined by (2.1.4), (2.1.5) and (2.1.6).
If α > β then Vα ↪→ Vβ is a compact embedding.

The fundamental theorem on sectorial operators will be of use for the next chapter and is
proven in Sell and You [SY02, p.97, Theorem 37.5]. We focus only on one property, which will
help us with a compactness argument.

Theorem 2.1.16. Let A be a positive sectorial operator on a Hilbert space H and S(t) be an
analytic semigroup generated by −A.
Then for any r ≥ 0, there exists a constant Mr > 0 such that for all t > 0

‖S(t)‖L(H,D(Ar)) = ‖ArS(t)‖L(H) ≤
Mr

tr
e−αt , (2.1.8)

where α > 0. According to Definition 2.1.5 and Theorem 2.1.13 (1) we can choose α ≤ a = λ1
the smallest positive eigenvalue of A.

12
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Remark 2.1.17. Later the operator A will be responsible for the diffusion of a (partial) differen-
tial equation. The usage of the algebraic sign of the operator A on right-hand side of a differential
equation is not consistent in the literature, for instance compare A. Pazy [Paz83, Section 4.1,
Section 6.1] or G. R. Sell and Y. You [SY02, Section 3.8.1].
For example let A be the negative Laplacian ∆ =

∑n
i=1

∂2

∂x2
i
on some smooth domain of Rn, then

the operator has to appear on the right-hand side of a differential equation without a minus sign.
In particular the statements of the last theorem hold if we change everywhere A by −A. Then
−A = −∆ is positive and (2.1.8) becomes

‖S(t)‖L(H,D((−A)r)) = ‖(−A)rS(t)‖L(H) ≤
Mr

tr
e−αt .

Note that this is always a question of definition.

2.2 Wiener processes in a Hilbert space
The theory of canonical processes is of great relevance for random dynamical systems. Therefore
we make a short introduction to these processes and in particular we consider the Q-Wiener pro-
cess. The first part of this section is based on the general construction of stochastic processes in
[Bau02, p.304f.].

Let (Ω,F ,P) be a probability space with σ-algebra F ⊆ P(Ω) and probability measure
P : F → [0, 1]. Let T ⊆ R be our non-empty time space endowed with a proper topology such
that B(T) is well-defined. Further we consider the measurable space (H,B(H)) with the Hilbert
space H and the Borel-σ-algebra B(H).

Definition 2.2.1. An (H-valued) stochastic process is a family of H-valued random variables
X = (Xt)t∈T, i.e. X : T × Ω → H. The stochastic process is called jointly measurable if
(t, ω) 7→ Xt(ω) = X(t, ω) ∈ H is B(T)⊗F − B(H)-measurable.
The mapping X(·, ω) : T → H, t 7→ Xt(ω) for fixed ω ∈ Ω is called path of the process X and
corresponds to an ω-wise evaluation of the process. A path is also called trajectory, sample or
realization of X.

In the following let H be a separable Hilbert space. We define

XI = (Xi1 , Xi2 , ..., Xin) ∈ Hn := {f : {i1, ..., in} → H}

for a set I = {i1, ..., in} ⊂ T. The probability measure PI on B(Hn) is defined as the distribution
of XI w.r.t. P, i.e. PI := PXI . Let J and I be two non-empty subsets of T and J = {jk}lk=1 ⊂ I,
s.t. for every k ∈ {1, .., l}, jk ∈ {i1, ..., in}, l < n. We define the measurable projection

pIJ :Hn → H l,

Hn 3 B = Bi1 ×Bi2 × ...×Bin 7→ pIJ(B) = Bj1 × ...×Bjl

Hence the projection maps each element in Hn to its restriction in H l. We denote T = T (T) as
the collection of all non-empty finite subsets of T. Then the family of measures (PI)I∈T is called
finite dimensional distributions of the process X. The family (PI)I∈T is called projective, if for
each two sets I, J ∈ T

pIJ(PI)(·) := PI

(
(pIJ)−1(·)

)
= PJ(·) .

Since H is independent of the time we define HT as the set of all mappings from T to H.

13



Preliminaries

Theorem 2.2.2 (Kolmogorov Existence- [Bau02], Satz 35.3). Let (H,B(H)) be a separable Hilbert
space and let T ⊂ R be a non-empty time set. For each projective family of probability measures
(PI)I∈T on (HI,B(HI)) there exists a unique probability measure PT on (HT,B(HT)) with

pTI (PT) = PI .

The σ-algebra B(HT) can be generated in the following way

B(HT) = σ

({(
pTI

)−1
(B) ⊂ HT | I ∈ T , B ∈ HI

})
. (2.2.1)

Endowed with the product topology, HT forms a topological space. Recall that every sequence
(ωn)n∈N ⊂ HT converges to an element ω ∈ HT in this topology if and only if for each t ∈ T,
(ωn(t))n∈N ⊂ H converges to ω(t) ∈ H.

If we choose the probability space Ω := HT, F := B(HT) and P := PT as formulated in the
proof of Korollar 35.4, [Bau02, p.309] we obtain a canonical probability space. First note that
each mapping Ω 3 ω : T → H, t 7→ ω(t) is B(T) − B(H) measurable. For a fixed t ∈ T the
B(HT)− B(H) measurable projection is given by

pT{t}(ω) = ω(t) ∈ H

and we define Xt(ω) := ω(t) as the corresponding random variable. The process X is called the
canonical process and its set of paths is equal to Ω. Note that the canonical process consists of
coordinate functions.

Definition 2.2.3 (Appendix A.3, p.545, [Arn10]). Let {t, t1, t2, ..., tk} be a subset T for k ∈ N.
A stochastic process X : T× Ω→ H is called stationary if for every t ∈ T,

Pt1+t,...,tk+t = Pt1,...,tk , k ≥ 1 .

In the context of the Definition 2.2.1 and succeeding, the notation of the distribution Pt1,...,tk
should be understood in the following way

Pt1,...,tk(A) = PXt1 ,...,Xtk (A) = P(Xt1 ∈ A1, ..., Xtk ∈ Ak)

for a set A := (A1, ..., Ak) ∈ B(Hk).

Definition 2.2.4. Let X = (Xt)t∈T and Y = (Yt)t∈T be two stochastic processes on one proba-
bility space (Ω,F ,P) with the same state space (H,B(H)). If for each t ∈ T,

P(ω ∈ Ω : Xt(ω) = Yt(ω)) = 1

we call X a modification or version of Y and vice versa.

If two processes are modifications of each other, then they are equivalent processes as well,
i.e. they have the same finite dimensional distributions.
Let T = R and H be a separable Hilbert space. If (Yt)t∈R is a modification of another process
(Xt)t∈R and possesses only continuous paths then the process (Yt)t∈R is called continuous modi-
fication of (Xt)t∈R.
The following fundamental theorem by Kolmogorov, Loève and Chentsov states that under a cer-
tain condition on the moments of the considered process there exists a continuous modification.

Theorem 2.2.5 (Kolmogorov Continuity- [Kal97], Theorem 2.23). Let X be a process with time
set R and values in a Hilbert space H and assume there exist constants α, β, c > 0 such that

E(‖Xt −Xs‖α) ≤ c|t− s|1+β

for all s, t ∈ R. Then X has a continuous modification. If in particular c ∈ (0, βα) then X is
Hölder continuous with exponent c.
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We denote by

C = C(R, H)

the set all continuous functions mapping from R to H and by

C0 = C0(R, H)

the set of all continuous functions of the corresponding space and with value zero in zero i.e. for
f ∈ C0 we have f(0) = 0. We want to collect some results concerning the σ-algebra of the set C,
see [Bau02, p.336f].
The set C is an essential subset of HR for a given projective family of probability measures
(PJ)J∈T , i.e. there exists a stochastic process (Xt)t∈R whose finite dimensional distributions are
PJ and C is its set of paths. But in general C /∈ B(HR) cf. [Bau02, Korollar 38.5]. Considering
the Borel σ-algebra we can still find a connection to B(HR). By [Bau92, Satz 31.6] and [Arn10,
Appendix A2, p.544] we know that C endowed with the compact open topology on R, given by
the complete metric

d(ω, ω) =
∞∑

n=1

‖ω − ω‖n
2n(1 + ‖ω − ω‖n) , ‖ω − ω‖n := sup

t∈[−n,n]
‖ω(t)− ω(t)‖, ω, ω ∈ C (2.2.2)

is a polish space, in particular it is a separable topological space. We consider B(C) the Borel
σ-algebra on C w.r.t. this topology.

Remark 2.2.6. Remember the general representation of a Borel σ-algebra B(HT) for the space
of mappings from T to H in (2.2.1). Following the discussion in [Bil68, Chapter 1, Section 3,
p.19ff.] we obtain in the case of C the Borel σ-algebra

B(C) = σ
{
p−1
t1,...,tk

(A) ⊂ C : t1, ..., tk ∈ R for k ≥ 1, A ∈ B(Hk)
}

(2.2.3)

for the projections pt1,...,tk(ω) := (ω(t1), ..., ω(tk)) ∈ Hk. Keeping this in mind we mention the
next important theorem.

Theorem 2.2.7 ([Bau02] Satz 38.6). Let H be a separable Hilbert space. Then

B(C) = C ∩ B(HR)

in respect of both topologies, the compact open topology and the product topology.

Theorem 2.2.8 ([Bau02] Lemma 39.2). Suppose a stochastic process X = (Xt)t∈R with values
in a separable Hilbert space H possesses a continuous modification. Then the set C is essential
w.r.t. the family of finite dimensional distributions of the given process and the process X is
equivalent to the related C-canonical process, i.e. a process on the space (C,C ∩ B(HR), P̃) given
by X̃t(ω) = ω(t) for all (t, ω) ∈ R×C. The measure P̃ is the restriction of the outer measure P∗R
on C ∩ B(HR) with P∗R(C) = 1.

Remark 2.2.9.

◦ The transition from PR to the outer measure is necessary since the essential set C is not in
B(HR).

◦ The above theorem allows us for every (H-valued) process with a continuous modification
to switch to an equivalent (H-valued) canonical process whose path space is the set of
(H-valued) continuous functions on R.

15



Preliminaries

We will now consider the most important example of stochastic processes: the Wiener process.
In our case we consider a Q-Wiener process, which is an H-valued analogy to the Wiener process
with state space R (see for example [Bau02, Chapter 8, § 40]). For the following concepts we refer
to [DPZ92, Chapter 4] and [PR07, Appendix B].

Definition 2.2.10. Let (U, ‖ · ‖U ) and (H, ‖ · ‖) be two separable Hilbert spaces. An operator
T ∈ L(U,H) is said to be a nuclear operator, if there exists a sequence (ai)i∈N ⊂ H and a sequence
(bi)i∈N ⊂ U such that

Tx =
∞∑

i=1
ai(bi, x)U , for all x ∈ U

and
∞∑

i=1
‖ai‖ · ‖bi‖U <∞ .

By L1(U,H) we denote the space of all nuclear operator mapping from U to H.

Definition 2.2.11 ([DPZ92], Appendix C). Let us consider a separable Hilbert space H and
denote by (ei)∞i=1 an orthonormal basis in H. If T ∈ L1(H,H) we define the trace of T ,

Tr T :=
∞∑

i=1
(Tei, ei).

For every nuclear operator mapping from H to H the trace of an operator Tr T is well defined
(see [DPZ92, Proposition C.1]). The definition of Tr (·) does not dependent of the choice of the
ONB. In the finite dimensional case this definition coincide with the trace of a matrix.

Moreover according to [DPZ92, Proposition C.2], a non-negative operater T ∈ L(H) is nuclear
if and only if for an ONB (ei)i∈N ⊂ H

Tr T =
∞∑

i=1
(Tei, ei) < +∞ .

We call a non-negative, symmetric operator T ∈ L1(H,H) trace class operator.
Pursuant to [PR07, Proposition 2.1.5] if T ∈ L(H) is given by a symmetric (i.e. as well self-
adjoint), non-negative operator, there exists an ONB (vi)i∈N of H, such that

Tvi = λivi

for every i ∈ N where zero is the only accumulation point. The sequence of eigenvalues (λi)i∈N ⊂
R+ is bounded, since the operator T is bounded. If in addition T is trace class, then

Tr T =
∞∑

i=1
(Tei, ei) =

∞∑

i=1
λi <∞ .

The following definition presents the link to stochastic processes in Hilbert spaces.

Definition 2.2.12. Let H be a separable Hilbert space, (Ω,F ,P) be a probability space and
Q ∈ L(H) a non-negative, symmetric and trace class operator. An H-valued stochastic process
W (t), t ≥ 0 is called Q-Wiener process if
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(i) W (0) = 0

(ii) W has continuous paths P-a.s.

(iii) W has independent increments, i.e.

W (t0),W (t1)−W (t2), ...,W (tn)−W (tn−1)

are pairwise independent for all 0 ≤ t1 < t2 < ... < tn <∞, n ∈ N and

(iv) W has normally distributed increments, i.e.

P ◦ (W (t)−W (s))−1 = N (0, (t− s)Q)

for all 0 ≤ s ≤ t.

The next proposition gives us a representation of a Q-Wiener process by a sequence of real-
valued Brownian motions.

Proposition 2.2.13 ([DPZ92], Proposition 4.1). Assume that W is a Q-Wiener process. Then
the following statements hold.

(i) W is a Gaussian process on H with mean 0 and covariance operator tQ, t ≥ 0.

(ii) For any t ≥ 0 the process W has the following representation

W (t) =
∞∑

i=1

√
λiβi(t)ei (2.2.4)

where βi(t) := 1√
λi

(W (t), ei), i ∈ N are real valued Brownian motions mutually independent
on (Ω,F ,P) and the series in (2.2.4) converges in L2(Ω,F ,P;H). As previously introduced
(ei)∞i=1 is the sequence of eigenvalues of the operator Q with the related eigenvalues (λi)∞i=1.

Remark 2.2.14. The Q-Wiener process W defined above has stationary increments, that is for
every r ∈ R+ and 0 ≤ s ≤ t

PW (t+r)−W (s+r) = PW (t)−W (s) = N (0, (t− s)Q) .

The variance resp. the second moment of a Q-Wiener process is determined as follows

E
(
‖W (t)‖2

)
= E

( ∞∑

i=1
λiβ

2
i (t)(ei, ei)

)
=
∞∑

i=1
λiEβ

2
i (t) = tTr Q < +∞ .

Hence we obtain another reason for the operator Q to have a finite trace.

Proposition 2.2.15 ([DPZ92], Proposition 4.2). For any symmetric, non-negative trace class
operator Q on a separable Hilbert space H there exists a Q-Wiener process W = (W (t))t∈R+.

As we will see later (in Chapter 3) we will need a corresponding Q-Wiener process on the time
set R not only R+. The standard procedure to obtain a Wiener process with two-sided time is
the following (cf. [Box88, Section 3.1, p.33]). Let (W ′(t))t≥0 and (W ′′(t))t≥0 be two independent
Q-Wiener processes, then we call W = W (t)t∈R defined as

W (t) :=
{
W ′(t), t ≥ 0,
W ′′(−t), t < 0

a two-sided Q-Wiener process or a Q-Wiener process on time R. We want to fix the following
conclusion from Theorem 2.2.8.
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Corollary 2.2.16. A (two-sided) Q-Wiener process W = (Wt)t∈R is equivalent to its C-canonical
Wiener process ω(·) ∈ C.

In addition to the definition of nuclear operators 2.2.10 we want to introduce another class of
operators, the class of Hilbert-Schmidt operators.

Definition 2.2.17 ([PR07], Definition B.0.5). Let U,H be two separable Hilbert spaces. A
bounded linear operator T : U → H is called Hilbert-Schmidt if

∞∑

k=1
‖Tek‖2 <∞

for an ONB (ek)k∈N ⊂ U . The space of Hilbert-Schmidt operators is denoted by L2(U,H).

If H = U we write L2(U) instead of L2(U,U). The definition of a Hilbert-Schmidt operator
and the associated norm

‖T‖2L2(U,H) :=
∞∑

k=1
‖Tek‖2

do not depend on the choice of the ONB and together they form a separable Hilbert space with
inner product

(T, S)L2(U,H) :=
∞∑

k=1
(Sek, T ek)

for S, T ∈ L2(U,H). Moreover ‖T‖L(U,H) ≤ ‖T‖L2(U,H) (see [PR07, Proposition B.0.6 & B.0.7]).

Let U be a separable Hilbert space with inner product (·, ·)U . We assume there exists a Q-
Wiener process with values in U and suppose the eigenvalues of Q, (λk)k∈N, are positive. We
know already that there exists a sequence (ei)∞i=1 of eigenvectors of Q that forms an ONB of U ,
then for any u ∈ U

Qu = Q

( ∞∑

i=1
(u, ei)Uei

)
=
∞∑

i=1
λi(u, ei)Uei .

Similiar to the Definition 2.1.14 the operator Q
1
2 ∈ L(U),

Q
1
2u =

∞∑

i=1
λ

1
2
i (u, ei)Uei

can be defined.

Proposition 2.2.18 ([PR07], Proposition 2.3.4). If Q ∈ L(U) is non-negative and symmet-
ric, then there exists exactly one element Q

1
2 ∈ L(U), which is non-negative, symmetric and

Q
1
2 ◦Q

1
2 = Q. If, in addition, Tr Q < ∞ we have that Q

1
2 ∈ L2(U), where ‖Q

1
2 ‖2L2(U) = Tr Q

and L ◦Q
1
2 is an element of L2(U,H) for every L ∈ L(U,H).

By Q−
1
2 we denote the pseudo inverse of Q

1
2 . For the definition of pseudo inverses and their

properties check [PR07, Appendix C]. Further we define the space U0 := Q
1
2 (U), which is a

subspace of U and we endow it with the inner product

(u, v)0 :=
∞∑

i=1

1
λi

(u, ei)U (v, ei)U = (Q−
1
2u,Q−

1
2 v)U ,
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2.2 Canonical processes and Q-Wiener processes

such that (U0, (·, ·)0) forms a Hilbert space. This Hilbert space is separable since it possesses the
ONB (Q

1
2 ei)∞i=1 ⊂ U0. The space of Hilbert-Schmidt operators mapping from U0 to H is very

important for the stochastic integration in H. The norm of an operator B ∈ L2(U0, H) can be
rearranged and described by the norm of the space L2(U,H),

‖B‖2L2(U0,H) =
∞∑

k=1
‖Bgk‖2 =

∞∑

k=1
‖B ◦Q

1
2 ek‖2 = ‖B ◦Q

1
2 ‖2L2(U,H) ,

where (gk)∞k=1 ⊂ U0 is an ONB with gk = Q
1
2 ek =

√
λkek for every k ∈ N.

Note that by this short discussion we can interpret the characterization of a Q-Wiener process
in (2.2.4) by

W (t) =
∞∑

i=1
βi(t)gi

for an ONB (gi)∞i=1 in U0. Necessary for the convergence of the above series in L2(Ω,F ,P;U) is
the finite trace of Q (cf.[DPZ92, p.88]). If we consider more generally symmetric, non-negative
operators Q ∈ L(H) which have not a finite trace, the Definition 2.2.12 is not valid anymore. We
can still define a Wiener process in a larger Hilbert space.

Let (U1, (·, ·)1) be a Hilbert space such that the embedding J : U0 → U1 is Hilbert-Schmidt.
Note by remark [PR07, Remark 2.5.1] there always exist such a space U1 and an embedding J .
Then the following proposition allows us to define the so called cylindrical Wiener processes.

Proposition 2.2.19 ([PR07, DPZ92], Proposition 2.5.2 resp. 4.11). Let (ek)k∈N be an ONB of
U0 = Q

1
2 (U) and (βk)k∈N be a family of mutually independent real-valued Brownian motions.

Define Q1 := J ◦ J∗. Here J∗ denotes the adjoint of J .
Then the operator Q1 ∈ L(U1) is non-negative, symmetric and has a finite trace. The series

W (t) =
∞∑

k=1
βk(t)Jek, t ≥ 0

is convergent in L2(Ω,F ,P;U1) and defines a Q1-Wiener process on U1. Moreover Q
1
2
1 (U1) =

J(U0) and J : U0 → Q
1
2
1 (U1) is an isometry, i.e. for every u ∈ U0

‖u‖0 = ‖Q−
1
2

1 ◦ Ju‖1 = ‖Ju‖
Q

1/2
1 (U1) .

Remark 2.2.20.

◦ If the non-negative, symmetric operator Q has not a finite trace, i.e. Tr Q = +∞ we call
the Wiener process above a cylindrical Wiener process.

◦ If the operator Q is trace class in the above proposition, then by [PR07, Proposition 2.3.4]
Q

1
2 is a Hilbert-Schmidt operator. In this case we can set U = U1 to obtain again aQ-Wiener

process.

◦ Also a Q-Wiener process with a trace class operator Q ∈ L(U) can be considered as a
cylindrical Wiener process, if we set J = Id : U0 → U , see [PR07, Remark 2.5.3, p.42].

19



Preliminaries

2.3 Stochastic partial differential equations in Hilbert spaces
We are interested in stochastic partial differential equations that are driven by an additive Q-
Wiener process (see Chapter 3 & 4) and in SPDE with a multiplicative noise, of course driven
by real standard Brownian motion (see Chapter 5). In particular we consider SPDEs that can be
transformed by a proper conjugation into a random differential equation (RDE) which is a partial
differential equation without a stochastic integral. Nevertheless we briefly discuss the theory of
stochastic differential equations in Hilbert spaces using the example of an equation whose solution
is the Ornstein-Uhlenbeck process. The process itself is discussed in detail in Chapter 3.

We start with the classical real-valued Ornstein-Uhlenbeck process.
Let (Ω,F ,P) be a probability space, W = (W (t))t∈R+ be a real-valued one-dimensional Wiener
process and ξ : Ω→ R be a random variable which is independent to W . Moreover we define Gt
as the filtration generated by the standard Brownian filtration and σ(ξ). By Ft we denote the
filtration generated by Gt and σ(N ) where N are the P-null sets in

⋃
t≥0 Gt.

Under the previous assumptions we consider for α, σ > 0 the following stochastic differential
equation (SDE),

dX(t) = −αX(t)dt+ σdW (t),
X(0) = ξ,

(2.3.1)

according to Example 6.8 in [KS88, Section 5.6]. The SDE has the following integral representation

X(t) = ξ +
∫ t

0
(−αX(s)) ds+

∫ t

0
σ dW (s), t ≥ 0, (2.3.2)

where the last summand in (2.3.2) is a stochastic integral with respect toW . Now we define what
we understand under a (strong) solution of the given SDE.

Definition 2.3.1 ([KS88], Definition 2.1, Section 5.2). A continuous process (X(t))t≥0 is called
solution of the SDE (2.3.1), if

1) (X(t)) is (Ft)-adapted,

2) X(0) = ξ a.s.,

3) ∀t ≥ 0:
∫ t

0
(
α|X(s)|+ σ2) ds <∞,

4) X(t) fulfills (2.3.2).

Since in this simple case the functions µ : R+ × R → R, µ(t, x) := αx and σ : R+ × R → R,
σ(t, x) := σ are independent of the time, we obtain that they fulfill the typical Lipschitz continuity
and linear growth conditions. Together with the assumption that ξ ∈ L2(Ω,F ,P) we obtain that
there exists a unique solution of (2.3.1), according to the Theorem 2.9 in [KS88].

The solution of equation (2.3.1) has the following form:

X(t) = e−αtξ + σ

∫ t

0
e−α(t−s) dW (s), t ≥ 0 . (2.3.3)

In the next part we want to describe the Ornstein-Uhlenbeck process as an H-valued stochas-
tic process in a separable Hilbert space H. We will see that the solution of a similar stochastic
partial differential equation in H has basically the same structure like (2.3.3).

Like in the finite dimensional case we begin to describe the setup which is necessary.
All details of the following definitions and theorems can be found in [FK01, Chapter 2], [PR07,
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Section 2.3] or [DPZ92, Section 3,4,5].

Succeeding we always fix a probability space (Ω,F ,P) and define for the Lebesgue measure
dx ([Bau92, Section 5,6]),

Ω∞ := [0,∞)× Ω and P∞ := dx⊗ P .

We call a filtration F = (Ft)t≥0 to an associated probability space normal if all null sets of F
are contained in F0 and the filtration is right-continuous. Fix again a separable Hilbert space
(H, ‖ · ‖).

Definition 2.3.2 ([DPZ92], Section 3.3). An H-valued stochastic process X on R+×Ω is called

a) progressively measurable, if for every t ≥ 0 the mapping

[0, t]× Ω→ H, (s, ω) 7→ X(s, ω)

is B([0, t])⊗Ft − B(H) measurable.

b) predictable if X is P∞ −B(H) measurable, where P∞ is the so-called predictable σ-algebra

P∞ : = σ ({(s, t]× Fs : 0 ≤ s < t <∞, Fs ∈ Fs} ∪ {{0} × F0 : F0 ∈ F0})
= σ (Y : Ω∞ → H : Y is left-continuous and adapted to Ft, t ≥ 0) .

Remark 2.3.3. Note by this definition if the process is continuous and adapted to Ft, t ≥ 0,
then it is predictable.

Let (U, ‖ · ‖U ) be another separable Hilbert space. As proven in proposition 2.1.13 [PR07] a
U -valued Q-Wiener process W (t), t ≥ 0, defined like in Definition 2.2.12, is always a Q-Wiener
process with respect to a normal filtration F, i.e. W (t) is adapted to Ft for every t ≥ 0 and the
increments are independent of F· . Indeed the filtration can be described in the following way.
First define N := {A ∈ F : P(A) = 0}, Gt := σ(W (s) : s ≤ t) and G0

t := σ(Gt ∪ N ). Then for
every t ≥ 0

Ft :=
⋂

r>t

G0
r

is the normal filtration to a Q-Wiener process.
Then we consider the following SPDE in H

dX(t) = AX(t)dt+BdW (t), t ∈ (0,∞)
X(0) = ξ .

(2.3.4)

Such an equation is called a linear SPDE with additive noise. The operator A : D(A) → H is
the infinitesimal generator of a C0-semigroup {S(t)}t≥0 ⊂ L(H) like we introduced in Section 2.1.
The operator B is an element of L(U,H) and ξ is an H-valued F0-measurable random variable.
Note that by these definitions BW is an H-valued (BQB∗)-Wiener process with Tr BQB∗ <∞
(cf. [DPZ92, Remark 5.1]).

Definition 2.3.4 ([PR07], Appendix F, Definition F.0.1). An H-valued predictable process X(t),
t ∈ [0,∞), is called a mild solution of the SPDE (2.3.4) if

X(t) = S(t)ξ +
∫ t

0
S(t− s)BdW (s), P-a.s. (2.3.5)

for each t ∈ [0,∞).
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Note that the integral on the right-hand side of equation (2.3.5) is a stochastic integral in H
and has to be well-defined. The solution of this specific SPDE is called stochastic convolution
(for ξ ≡ 0 cf. [DPZ92, Section 5.1.2]) or Ornstein-Uhlenbeck process. We will come back at the
Ornstein-Uhlenbeck process in the following chapter, since this process plays a key role in the
theory of random dynamical systems.
For more details concerning stochastic integrals in Hilbert space please consider [PR07, Section
2.3] and [DPZ92, Section 4.2].
For the sake of completeness we introduce the concept of weak and strong solutions.

Definition 2.3.5 ([PR07], Appendix F, Definition F.0.3). b

a) An H-valued predictable process X(t), t ∈ [0,∞) is called weak solution of the SPDE (2.3.4)
if

(X(t), ζ) = (ξ, ζ) +
∫ t

0
(X(s), A∗ζ) ds+

∫ t

0
(ζ,B dW (s)), P-a.s. (2.3.6)

for each t ∈ [0,∞] and ζ ∈ D(A∗). Here (A∗, D(A∗)) is the adjoint of (A,D(A)) on H.

b) An D(A)-valued predictable process X(t), t ∈ [0,∞) is called strong solution of the SPDE
(2.3.4) if

X(t) = ξ +
∫ t

0
AX(s) ds+

∫ t

0
B dW (s), P-a.s. (2.3.7)

for each t ∈ [0,∞].

Note again, that the integrals on the right-hand side of (2.3.6) and (2.3.7) have to be well-defined.

Remark 2.3.6.

◦ As formulated in proposition F.0.4 every strong solution of (2.3.4) is a weak solution. Under
certain integrability assumptions on X and B which have to hold almost surely, we see that
a weak solution of problem (2.3.4) is aswell a mild solution. The implications in the other
direction follow from general integrability assumptions.

◦ In comparison to the literature the extension of the above definitions and SPDEs with an
additional Lipschitz nonlinearity F : H → H is natural.
For random differential equations the concepts of mild, weak and strong solutions are similar,
in particular there appear only Bochner integrals. Their definitions can be found in [Paz83].

2.4 Analysis on fractals
Before we step on to the next chapter we like to give an insight on classes of sets that have
interesting properties. We briefly introduce the theory of fractal sets. In our case these embedded
subsets of Rn, n ∈ N, shall be used as the underlying space for our Hilbert space. We present an
overview how to construct an associated Laplacian in the Hilbert space on a proper fractal set.
One can find useful introductions to this topic for example in the books of J. Kigami [Kig01] or
R. S. Strichartz [Str06].
The purpose is to consider later SPDEs depending on this Laplacian as well as the dynamics
stemming from the solution of the SPDE. The Hausdorff dimension of a random attractor will be
estimated in Chapter 4 and as we will see, it depends heavily on the spectrum of the constructed
Laplacian, more precisely on the so called spectral exponent.

We introduce the concept of self-similar sets. They are a special class of fractal sets.
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2.4 Fractal sets

Theorem 2.4.1 (Theorem 1.1.4, [Kig01]). Let {Fi}Ni=1 be a family of contractions on a complete
metric space (X, d).Then there exists a unique non-empty compact subset K of X that satisfies
the self-similiar property, i.e.

K =
N⋃

i=1
Fi(K) .

In this case we call K a self-similiar set w.r.t. the contractions {Fi}Ni=1.

Sometimes K is called the geometric attractor of the iterated function system {Fi}Ni=1, cf.
[Fal97, Section 2.2, p.29]. Here and in the sequel we consider all sets w.r.t. the Euclidean metric
d.

Example 2.4.2. As one of the standard examples in the last decades we like to introduce the
Sierpinski gasket or short SG, see for example [Kig01, p.3] and for a first impression see the Figure
2.2 below.

Figure 2.2: The Sierpinski gasket, a subset in the plane

A standard method to construct the Sierpinski gasket is based on a graph approximation.
Choose three points p1, p2, p3 in the Euclidean space R2 such that they form an equilateral triangle.
Additionally define the contractions

Fi : R2 → R2,

Fi(x) := 1
2(x− pi) + pi

for i = 1, 2, 3.
Applying these three mappings to the set V0 := {p1, p2, p3} we obtain three new points and the
old points. We collect all points in the set V1. The points in V1 \ V0 get connected to each other
by edges. In total we obtain four copies within the first triangle scaled by 0.5.
To be more illustrative, we consider the first equilateral triangle as an undirected graph with
vertices in V0. Then applying the contractions multiple times we obtain for instance the vertex
sets V1, V2 and V3 as it can be read of the following picture.
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F1p2p1

V1V0

p1 p2

p3

F3p2F1p3

V2 V3

p2

p3

Figure 2.3: The first four ’pre-levels’ of the SG as graphs with the vertex sets
V0, ..., V3.

It is natural to call V0 the set of boundary points. Then since {Vi}∞i=1 is an increasing sequence
of vertex sets we define inductively

Vm :=
3⋃

i=1
Fi(Vm−1)

the set of vertices at the mth-level of the SG, such that Vm ⊂ Vm+1 for every m ≥ 0. Furthermore
we set

V∗ =
∞⋃

m=0
Vm . (2.4.1)

Now taking the closure of V∗ w.r.t. the Euclidean metric in R2 we obtain the Sierpinski gasket
(SG). Hence we have in particular that V∗ is dense in SG as it is shown in a general setup in
Lemma 1.3.11 [Kig01, p.22].

Other well-known examples are the Peano curve, the Koch curve, the Cantor set, the Sier-
pinski carpet and in R3 for example the Menger sponge. Note that together with the Sierpinski
gasket the first two examples belong to a certain class - the class of (connected) p.c.f. fractals.
P.c.f. fractals stands for post critically finite self-similiar structures, which are a special class of
finitely ramified self-similar sets. For a precise definition see [Kig01, Definition 1.3.4 and Defini-
tion 1.3.13, p.19 resp. p.23].
In this work we restrict ourselfs to the case of connected p.c.f. fractals with a regular harmonic
structure (see [Kig01, Definition 3.1.2., p.69]) and we take the SG as our standard example.

A well-known property of fractal sets is their often non-integer Hausdorff dimension. We
like to recall the basic ideas to determine the dimension and start by introducing the Hausdorff
measure. We refer to Section 1.5 in [Kig01, p.28] and Chapter 2 in [Fal90, p.25].
Definition 2.4.3. Let (X, d) be a metric space and |U | = sup

x,y∈U
d(x, y) be the diameter of a set

U ⊂ X. For any set A ⊆ X and δ > 0, s ≥ 0 a family of sets {Ui}∞i=1 ⊂ P(X), which satiesfy
(i) A ⊂

⋃∞
i=1 Ui and

(ii) |Ui| < δ, ∀i ∈ N

is called a δ-cover of A. Then we call

Hsδ(A) := inf
{ ∞∑

i=1
|Ui|s : {Ui} is a δ -cover of A

}

the δ-approximated s-dimensional Hausdorff measure of A.
The mapping Hs : P(X)→ [0,∞] given by

Hs(A) := lim
δ→0
Hsδ(A) ,

is called the s-dimensional Hausdorff measure of a set A ⊆ X.
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Definition 2.4.4. Let (X, d) be a metric space. For any A ⊆ X we call

dimH(A) := sup{s ≥ 0 : Hs(A) =∞} = inf{s ≥ 0 : Hs(A) = 0}

the Hausdorff dimension of A.

Clearly the Hausdorff measure as well as the Hausdorff dimension depend on the chosen metric
d. For the ease of notation we omit the dependence in our notation.
We remark as described in [Fal90, p.26] there exists a relation between the Hausdorff measure
and the Lebesgue measure. More precisely, for a set A ∈ B(Rn), it holds

Hn(A) = 2n · Γ(n/2 + 1)
πn/2

· λn(A), (2.4.2)

where λn presents the n-dimensional Lebesgue measure and the constant Γ(n/2+1)
πn/2

is the reciprokal
of the n-dimensional ball of radius 1 with gamma function Γ.

Next we give some examples for the above definitions.

Example 2.4.5.

1. If we consider the Cantor set C ⊂ [0, 1] it is well-known that C is a λ1-null set, although it is a
non-empty and uncountable set. On the other side one can show, that the Hausdorff dimension
of C is log 2

log 3 and Hlog 2/ log 3(C) = 1.

2. Further examples are:

• the Sierpinski gasket, dimH(SG) = log 3
log 2 ,

• the Koch curve K, dimH(K) = log 4
log 3 and

• the boundary of the Mandelbrot set ∂M ⊂ C, dimH(∂M) = 2.

More examples and properties of the Hausdorff measure can be found e.g. in the book of K.
Falconer [Fal90, p.25ff] or J. Kigami in [Kig01, Section 1.5].
In general it can be difficult to calculate the Hausdorff dimension of an arbitrary set. However for
self-similiar sets under the open set condition we can determine the Hausdorff dimension. This
result is based on Moran’s theorem in [Mor45, Theorem II].
Let N ≥ 2 and {Fi}Ni=1 be a family of contractions on Rn w.r.t. the Euclidean metric d. The open
set condition holds for {Fi}Ni=1, if there exists an non-empty bounded open set U ⊂ Rn such that

1.
N⋃
i=1

Fi(U) ⊂ U and

2. Fi(U) ∩ Fj(U) = ∅ ∀i, j ∈ {1, ..., N}, i 6= j .

Theorem 2.4.6. Let (K, {1, 2, ..., N}, {Fi}Ni=1) be a self-similiar structure satisfying the open set
condition, then dimH(K) = s where s ≥ 0 has to fulfill

N∑

i=1
csi = 1 ,

where ci ∈ (0, 1) are the contraction ratios of Fi.

For an even weaker condition than the open set condition we refer to [Kig01, Theorem 1.5.7.,
p.30ff].

Before we give the idea of the Laplacian for functions on these sets, we need to know which
measure is useful concerning the analysis on these settings. We are always working with Borel
sets in Rn therefore we consider a non-empty closed set X ⊆ Rn and the Borel σ-algebra B(X).
Due to [Fal97, Theorem 2.8, p.36f.] we have the following.
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Theorem 2.4.7. Let {F1, ..., FN} be a family of contractions (N ≥ 2) on X. Further let
p1, ..., pN ∈ (0, 1) be probabilities with the property

∑N
i=1 pi = 1. Then there exists a unique

Borel regular (probability) measure µ such that

µ(A) =
N∑

i=1
piµ(F−1

i (A)) (2.4.3)

for every A ∈ B(X). Moreover in view of Theorem 2.4.1 the mass is concentrated on the compact
set K ⊂ X, i.e. supp µ = K and consequently µ(K) = 1.

The measure defined in (2.4.3) is called self-similar measure w.r.t. the contractions {Fi}Ni=1.
When the probability weights (pi)Ni=1 are uniformly distributed we call µ the standard measure.
For any function f ∈ C(K), where C(K) is the space of continuous functions mapping from K to
R, the integration w.r.t. a self-similar measure is given by

∫

X
f(x) dµ(x) =

N∑

i=1
pi

∫

X
f(Fi(x)) dµ(x) ,

see for instance [Fal97, p.37]. We consider all the measures in this section as complete measures,
cf. [Kig01, Section 1.4, p.25]. With the constructed setting we are able to define an appropriate
Hilbert space on (K,B(K), µ),

L2(K,µ) :=
{
f : K → R : f is measurable,

∫

K
|f |2 dµ <∞

}
(2.4.4)

with inner product for f, g ∈ L2(K,µ)

(f, g)µ :=
∫

K
fg dµ ,

which induces a corresponding norm ‖ · ‖2 = (·, ·).

If we want to consider differential equations like the heat or wave equation on some domain
in Rn it is natural that partial derivatives come across. If we consider a ’fractal’ domain in Rn
we can not define a differential operator like the classical Laplacian

∆ =
n∑

i=1

∂2

∂x2
i

since in general the appearing partial derivatives are not defined in K. We like to present the
(functional) analytic approach presented in [Kig01] and [Str06] to overcome this problem. First
we give an introduction what we mean by a Laplacian on the SG and later we summarize the
general idea for self-similar structures that generate a Dirichlet form and for which we derive a
proper Laplacian.

We want to use a sequence of energy functionals or short energies defined on the prestages of
the SG, see [Str06, Section 1.3].

Definition 2.4.8. Let V be the vertex set of a simple, finite and connected graph in Rn and
define the set of functions on V by

`(V ) := {f : V → R} .
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The energy (form) of a function f ∈ `(V ) on the graph with vertex set V is given by

E : `(V )→ R+,

E(f) := 1
2
∑

p∈V

∑

q∈V
q∼p

[f(q)− f(p)]2,

where {q ∈ V : q ∼ p} symbolize all neighbor points of p, i.e. for which a joint edge exists.
Applying the polarization identity we obtain a bilinear energy form

E(f, g) := 1
2
∑

p∈V

∑

q∈V
q∼p

[f(q)− f(p)][g(q)− g(p)] ,

for two functions f, g ∈ `(V ).

We state some properties of the functional E. Apparently we have E(f) ≥ 0 for every f ∈ `(V )
and E(f) = 0 if and only if f is constant on V . A direct consequence is that the bilinear form
E(f, g) forms a inner product on the space V modulo constants.

Definition 2.4.9 (Section 1.4, p.26, [Gri09]). Let V be the vertex set of a simple, finite and
connected graph in Rn and f : V → R. Then the discrete Laplacian of a function f evaluated in
p ∈ V is defined by

∆f(p) = 1
deg(p)

∑

q∈V
q∼p

[f(q)− f(p)]

where deg(p) counts the number of neighbor points of p. Of course we assume that deg(p) ∈ (0,∞).
For a sequence of vertex sets (Vm)∞m=1 we define analogously the discrete m-th Laplacian ∆m for
a function f : Vm → R, where the appearing sum is taken over all neighbors of a point on the set
Vm.

Example 2.4.10. Let us return to the case of the SG. In the previous example we constructed
a sequence of vertex sets (Vm)∞m=0 with corresponding graphs. Consider a function f ∈ `(V0) and
denote E1(·) resp. E0(·) the energy for functions on V1 resp. V0.
The unique solution of the following discrete Dirichlet problem,

∆f [1](x) = 0, x ∈ V1 \ V0

f [1](x) = f(x), x ∈ V0
(2.4.5)

is the unique extension f [1] : V1 → R of f , that minimizes the energy E1(f [1]) among all extensions
of f with f [1]|V0 = f . This extension is called harmonic extension. For any other extension
f̃ [1] ∈ `(V1) we have E1(f [1]) ≤ E1(f̃ [1]). As one can easily verify in the case of the SG we have
the following connection between the energy forms of the first set V1 and V0,

E1(f [1]) = 3
5E0(f) .

for every function f ∈ `(V0). The appearing factor r = 3
5 is called renormalization factor. We

rescale the energies by this factor to conclude

E1(f̃ [1]) ≥ E1(f [1]) := 5
3E1(f [1]) = E0(f) . (2.4.6)
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Iterating the previous procedure we obtain for a function f ∈ `(Vm) (m ≥ 0) and its n-th harmonic
extension f [n] ∈ `(Vm+n),

Em+n(f [n]) =
(

3
5

)n
Em(f)

and similar to (2.4.6) we have (e.g. for m = 0)

En(f̃ [n]) ≥ En(f [n]) :=
(

5
3

)n
En(f [n]) = E0(f) for every n ≥ 0 .

Consider now a real-valued function f on V∗, see (2.4.1). Then we have a non-decreasing sequence
of energies

(
Em(·|Vm)

)
m≥0 considering the corresponding restrictions on each prestage Vm, m ≥ 0,

E0(f |V0) ≤ E1(f |V1) ≤ · · · ≤ Em(f |Vm) ≤ · · ·

with limit in [0,∞], cf. [Str06, Section 1.4, p.18]. Hence we define for every f ∈ `(V∗)

E(f) := lim
m→∞

Em(f |Vm)

the energy form on `(V∗). The domain of the defined energy form is given by the functions with
finite energy,

FE := {f ∈ `(V∗) : E(f) <∞} . (2.4.7)

Similar to Definition 2.4.8 we observe for two functions f, g ∈ FE ,

E(f, g) := lim
m→∞

Em(f |Vm , g|Vm) . (2.4.8)

We denote by FE0 the set of functions with finite energy that vanish on the boundary V0, i.e.

FE0 := {f ∈ FE : f |V0 = 0} . (2.4.9)

If no confusion occurs, we omit the restriction signs on the set Vm, m ≥ 0.
Note that every function f ∈ FE is continuous on SG, [Str06, p.19]. To see this, first recall that
Em(f) ≤ E(f) and

(
3
5

)−m
|f(x)− f(y)|2 ≤

(
3
5

)−m 1
2
∑

p∈Vm

∑

q∈Vm
q∼p

[f(q)− f(p)]2 = Em(f) ≤ E(f)

for any x, y ∈ Vm that are neighbors. Hence we have

|f(x)− f(y)| ≤
(

3
5

)m
2
E(f)

1
2

which gets arbitrary small for points x, y that are sufficient close to each other, when m rises.
Therefore any function f ∈ FE is uniformly continuous on V∗ and according to [AE06, Theorem
2.1, p.10] there exists a unique continuous extension on the SG. In the case of the Sierpinski
gasket one obtain Hölder continuity with exponent log

(5
3
)
/ log 2 w.r.t. the Euclidean metric, see

[Str06, p.19]. Moreover we have the following interesting connections.

Proposition 2.4.11 (p.19-21f., [Str06]). The domain of the energy FE is dense in C(SG) and
subsequently FE is dense in L2(SG, µ). Moreover the space FE modulo constants forms a Hilbert
space with inner product (2.4.8).
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2.4 Fractal sets

A consequence of the above results is the following. Let f ∈ C(SG) such that f |V∗ ∈ FE , then
we define the energy on C(SG) by

E(f) := E(f |V∗)

and similar for two functions f, g ∈ C(SG) with f |V∗ , g|V∗ ∈ FE by polarization

E(f, g) := E(f |V∗ , g|V∗) .

According to [Str06, Section 2.1] we define a proper Laplacian on the SG in a weak sense.

Definition 2.4.12. Let u ∈ C(SG) and f ∈ FE . If for every g ∈ FE0

E(f, g) = −
∫

SG
u · g dµ,

then we say f ∈ D(∆µ) with ∆µf = u. Hence for functions f ∈ D(∆µ) and g ∈ FE0 we write

E(f, g) = −
∫

SG
∆µf · g dµ .

Note that the definition of a Laplacian on SG is motivated by the integration by parts formula.
Assume f ∈ C2([0, 1]) and g ∈ C1([0, 1]) with g|{0,1} = 0. Then the integration by parts gives

∫ 1

0
f ′(x)g′(x) dx = −

∫ 1

0
f ′′(x)g(x) dx .

On the other hand, if we assume there exists a function h ∈ C([0, 1]) and f ∈ C1([0, 1]) such that
∫ 1

0
f ′(x)g′(x) dx = −

∫ 1

0
h(x)g(x) dx

then f ∈ C2([0, 1]) and f ′′ = h. Here the left-hand side is the bilinear form of the related Dirichlet
principle of a Laplace equation presented for instance in [Eva08, Section 8.1.2, p.434] and this
integral is called energy functional, see [Eva08, Section 2.2.5, p.42].

For the class of p.c.f. fractals it is possible to define a Laplacian similar to the case of the SG.
The analysis on these fractals has been intensively investigated, cf. [Str06] and [Kig01].
We still assume µ to be a self-similar measure on the measurable space (K,B(K)) with weights
(pi)Ni=1 ∈ (0, 1)N . Further let (Vm)∞m=0 be a non-decreasing sequence of vertex sets of graphs
approximating K and (∆m)∞m=0 a sequence of discrete Laplacians on Vm such that according to
Theorem 2.1 in [Gri09, p.33f.] and e.g. [Kig01, p.43],

Em(f, g) = −(∆mf, g) m ≥ 0

for every f, g ∈ `(Vm). Then we have similar to the example E(f, g) := limm→∞ Em(f, g) for
functions f, g ∈ FE := {u ∈ `(V∗) : E(f) <∞}. FE0 is analogously defined like before. The space
L2(K,µ) ∩ FE together with the inner product

E∗(f, g) = E(f, g) +
∫

K
f(x)g(x) dµ(x)

forms a Hilbert space, cf. [Kig01, Theorem 2.4.1, p.63].
The energies satisfies the following rule [Kig01, Definition 3.1.1, p.69] for f, g ∈ `(Vm),

Em+1(f, g) =
N∑

i=1

1
ri
Em(f ◦ Fi, g ◦ Fi)
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and note that in general the rescaling factors (ri)Ni=1 of the energy differ depending on Fi (this is
possible by weakening the symmetry of a self-similar set, see [Kig01, Example 3.1.6, p.71]). We
will always assume that

0 < ri < 1

for every i ∈ {1, ..., N}. Before we state one of the most important theorems in this context we
recall the definition of a local regular Dirichlet form, see e.g. [Kig01, Appendix B.3, p.202].

Definition 2.4.13 (Section 1.1, pp.3-5, [FOT10]). Let H be a real Hilbert space and
E : D(E)×D(E)→ R+ be a symmetric bilinear form with domain D(E), a linear dense subset of
H. Define another symmetric bilinear form E∗ by

E∗(f, g) = E(f, g) + (f, g)

for any f, g ∈ D(E) and (E∗, D(E)) forms a pre-Hilbert space. A symmetric bilinear form E is
called closed, if the domain D(E) is complete w.r.t. E∗.
Consider now a σ-finite measure space (X,B(X), µ) and the associated Hilbert space L2(X,µ).
Let E be a closed form on L2(X,µ) with domain D(E), then (E , D(E)) is called a Dirichlet form
if the so called Markov property holds, that is for any function f ∈ D(E) the function defined by

f(x) =





1, if f(x) ≥ 1,
f(x), if 0 < f(x) < 1,
0, if f(x) ≤ 0

is an element of D(E) and it holds E(f, f) ≤ E(f, f).
Let us denote supp (f) = {x ∈ X : f(x) 6= 0} and

C0(X) = {f : X → R, f is continuous and supp (f) is compact} .

A Dirichlet form (E , D(E)) is called regular, if it possesses a core, that is a set C ⊂ (D(E)∩C0(X))
which is dense in D(E) w.r.t. E∗ and in C0(X) w.r.t. ‖ · ‖∞. A Dirichlet form (E , D(E)) is local if
E(f, g) = 0 for functions f, g ∈ D(E) with disjoint compact supports.

Suppose we are in the setup described above.

Theorem 2.4.14 (Corollary 3.4.7 and Theorem 3.4.6, pp.92-94, [Kig01]). Let ripi < 1 for every
i ∈ {1, ..., N}. Then the quadratic form (E ,FE0) is a local regular Dirichlet form on L2(K,µ)
and there exists a non-negative self-adjoint operator HD on L2(K,µ) with D(H1/2

D ) = FE0 and
E(f, g) = (H1/2

D f,H
1/2
D g) for every f, g ∈ FE0. Moreover the operator HD has a compact resolvent

and −HD =: ∆µ is called the Dirichlet Laplacian on L2(K,µ).

A general version of this theorem can be found in [Kat95, Chapter 6, Section 2].

Analog to the above theorem we can define a Neumann Laplacian with Neumann boundary
conditions, where of course one needs to explain what we understand under a Neumann derivative
in our setup, see [Kig01, Definition 3.7.6, p.110].
In the classical case (K,µ) = (R, λ) with λ the Lebesgue measure on R, the domain of the energy
coincides with the sobolev space H1(R). The energy is given by

E(f, g) =
∫

R
f ′(x)g′(x) dλ(x)

for functions f, g ∈ H1(R). Then according to the last theorem the operator HD coincides with
the standard Laplacian −∆ = − d

dx2 on R, see [Kig01, p.65f.] for more details.
We want to collect some more properties of the introduced (Dirichlet) Laplacian on a proper
self-similar set. We refer to [Kig01] for details and proofs.
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Proposition 2.4.15.

• There exists a point-wise definition of the Laplacian ∆µ and it holds the Gauß-Green For-
mula similar to the classical one.

• Due to Theorem 2.1.7 the eigenvalues (λi)∞i=1 of the operator HD are real positive numbers
with no finite limit point and the corresponding eigenfunctions {ϕi}∞i=1 build an ONB for
L2(K,µ). Hence the space L2(K,µ) is separable, cf. [Alt16, Theorem 9.8, p.294].
In particular we want to mention that the operator ∆µ fulfills all necessary assumptions on
Theorem 2.1.13. Therefore ∆µ is the generator of an analytic semigroup.

• A unique property of the Laplacian on self-similar sets is the existence of (pre-)localized
eigenfunctions, that is an eigenfunction that fulfill Dirichlet and Neumann boundary condi-
tions for an appropriate eigenvalue.

We like introduce another property which is of great relevance for our results. We summarize
the asymptotic behaviour of the constructed Laplacian.

Definition 2.4.16 (Definition 4.1.3, p.133, [Kig01]). Let (λi)i≥1 ⊂ (0,∞) be the sequence of
Dirichlet eigenvalues to the Laplacian −∆µ, depending on the self-similar measure µ. Then we
define the eigenvalue counting function by

ρ(x, µ) := max{k ∈ N : λk ≤ x} = #{k : λk ≤ x} (2.4.10)

for any x ∈ R. If no confusion occurs we write ρ(x) instead of ρ(x, µ). Let E(λ) denote the
eigenspace of the eigenvalue λ then (2.4.10) can be rewritten,

ρ(x, µ) =
∑

λ≤x
dimE(λ),

hence it is clear that we count the eigenvalues w.r.t. their geometric multiplicity.

For classical Laplacians (with Dirichlet boundary conditions) on bounded domains of Rn there
exists the well-known result from Weyl about the asymptotic behaviour of the eigenvalue counting
function, i.e. for x→∞

ρ(x) ∼ xn/2 . (2.4.11)

For a proof we refer to [Lap91, Theorem 2.3]. We like to present the ’fractal’ analogue to Weyl’s
theorem, based on [Kig01, Theorem 4.1.5, p.134].

Theorem 2.4.17. Let µ be a self-similar measure with weights (pi)Ni=1 and suppose ripi < 1,
i ∈ {1, ..., N}, for the corresponding renormalization factors ri of the energy E. Then for x
sufficiently large there exist constants C1, C2 > 0 such that

C1x
dS
2 ≤ ρ(x) ≤ C2x

dS
2 . (2.4.12)

Here dS is the unique real number d that satisfies,

N∑

i=1
(ripi)d/2 = 1 . (2.4.13)

We call dS the spectral exponent of (E ,FE , µ).

We are able to deduce the asymptotic behaviour of the eigenvalues of −∆µ according to Lemma
5.1.3 in [Kig01, p. 159] together with the previous theorem.
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Lemma 2.4.18. There exist constants C3, C4 > 0, such that for any m ≥ 1,

C3m
2
dS ≤ λm ≤ C4m

2
dS . (2.4.14)

In particular, for λm large enough the constants C3 and C4 can be determined by the constants
C1 and C2 of the previous theorem.

Example 2.4.19. First let us consider again the Sierpinski gasket introduced in Example 2.4.2.
While constructing the energy we set the renormalization for each mapping F1, F2, F3 equally,
that is r = r1 = r2 = r3 = 3

5 as presented in (2.4.6). Moreover let µ be the standard (self-similar)
measure acting on SG, therefore p1 = p2 = p3 = 1

3 . Then according to (2.4.13) dS = dS(SG) =
log 9
log 5 and hence λm ∼ mlog 25/ log 9.

The result of Theorem 2.4.17 is in view of (2.4.11) surprisingly. One could have expected that
as a natural analogue the Hausdorff dimension appears in the corresponding exponent. We want
to comment the spectral exponent a bit more since it plays an important role for one of our main
results.

Remark 2.4.20.

◦ The original result of Kigami states a function rule describing the eigenvalue counting func-
tion ρ(x) for large values of x.

◦ In the definition of the spectral exponent both the geometry of our setting (pi) as well as
the analysis constructed on the set (ri) have influence on the actual value of dS .

◦ For the SG the spectral exponent is often called spectral dimension and it holds the famous
Einstein relation,

dS = dimH(SG)
dW

where dW is the so called walk dimension which is connected to a Brownian motion on the
SG (see [BP88]). In particular dW can be characterized via the mean crossing time through
the graphs building the SG, that is the expected time which a random walker needs to pass
through the points of the boundary, cf. [FT13, Section 2.1].
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Chapter 3

Random Dynamics

This chapter is devoted to random dynamical systems (RDS) that are generated by the solution
operators of the associated SPDEs. We start with a short overview of all necessary concepts
concerning this subject, e.g. metric dynamical system, invariant measure and properties of ran-
dom dynamical systems. The second section explains all necessary properties of the stationary
Ornstein-Uhlenbeck process for a certain metric dynamical system, which we constructed in ad-
vance. This section will help us to make the link between random dynamical systems for SPDEs
and (partial) random differential equations, which we describe in detail in Section 3. In the last
section we discuss the long-time behaviour of the considered RDS based on the theory of random
attractors.

3.1 Fundamental concepts of random dynamical systems
In this section we want to introduce the basics of random dynamics in infinite-dimensional spaces.

We start with the classical theory of (deterministic) dynamical systems introduced by Birkhoff
in [Bir27, Chapter VII]. A more modern definition of a dynamical system can be found for example
in [Arn10, Appendix A.1] or [PW10, Section 4.4].

Definition 3.1.1. A dynamical system can be described by a tripel (T, E, φ). The set T denotes
a time set (typically Z+,Z,R+ or R) and E denotes a state space (for example Rn, n ∈ N or H a
Hilbert space). The mapping φ : T×E → E has to fulfill the identity property and the semigroup
property, i.e.

φ(0, x) = x, and φ(t+ s, x) = φ(t, φ(s, x)) for every x ∈ E and t, s ∈ T .

The most common appearance of dynamical systems is in combination with differential equa-
tions. For example consider the following initial value problem

dx(t)
dt

= f(x(t)), t > 0

x(0) = x0 ∈ E,

where x0 is a fixed value in E. Under sufficient regularity assumptions on f one can obtain
a unique solution of this ordinary differential equation and the solution generates a dynamical
system, see [PW10, Satz 4.4.2].
One could expect that we could simply add an ω from a reasonable probability space in the above
definition to derive a random dynamical system. As we will see this would not be correct. In fact
to arrive at the definition of a random dynamical system one has to respect that the randomness
changes in time as well. Remember again the example of the introduction: the trajectory of a
plastic bottle under the influence of the ocean current and the wind.
Motivated by this example we define now the tool that helps us to describe the evolution of the
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noise w.r.t. the time. Since we are only interested in the time-continuous case we fix for the
following definition T = R.

Definition 3.1.2 (Appendix A.1, p.536ff., [Arn10]). Let (Ω,F ,P) be a probability space and
θ = (θt)t∈R be a family of measure-preserving mappings from Ω to itself, i.e. for all A ∈ F and
t ∈ R,

P(θ−1
t A) = P(A)

or shortly, θtP = P.
The quadrupel (Ω,F ,P, θ) or sometimes just θ is called a metric dynamical system or shorter
MDS, if the following properties are fulfilled.

(1) The mapping (t, ω) 7→ θtω is (B(R)⊗F ,F)-measurable,

(2) θ0 = IdΩ and

(3) θt+s = θt ◦ θs for all t, s ∈ R.

Notice that for a (two-sided) time set like R we obtain directly from the properties (2) and
(3) above that the inverse is given by θ−1

t = θ−t for every t ∈ R.

Definition 3.1.3 (Appendix A.1, p.536-539, [Arn10]). Assume we are in the same setting as in
the definition above. A set A ∈ F is called invariant w.r.t. θ if θ−1

t A = A for every t ∈ R. The
collection of all invariant sets in F is denoted by I. Indeed I forms a sub σ-algebra of F . Note
that for ω ∈ A the whole orbits ((θtω)t∈R) belong to A, if A is θ-invariant.
A given MDS θ is ergodic if for all sets A ∈ I we have P(A) = 0 or P(A) = 1.
A measurable function f : Ω→ R is called invariant w.r.t. to the given MDS θ if f(θtω) = f(ω)
for every t ∈ R and any ω ∈ Ω.

The Birkhoff-Chintchin Ergodic Theorem is of great importance for our result in Chapter 4.
We refer to [Arn10, Appendix A.1, p.538] and to [Ogr11, Theorem 2.30, p.13].

Theorem 3.1.4. Let (Ω,F ,P, θ) be an MDS and suppose f : Ω → R is integrable on Ω. Then
there exists a θ-invariant set Ωf of full P-measure, where the following limits exist and

lim
t→∞

1
t

∫ t

0
f(θrω) dr = lim

t→∞

1
t

∫ 0

−t
f(θrω) dr =: f(ω)

for every ω ∈ Ωf . Moreover f is invariant on Ωf , f ∈ L1(Ω,F ,P) such that

Ef = Ef

where we set f ≡ 0 outside of Ωf .
If additionally θ is ergodic, then f is constant on Ωf and it follows f = Ef , which presents the
well-known equality of time and space average.

Remark 3.1.5. Assume we are in the ergodic case of the above theorem. Let f be defined on
Ωf by the previous limits. Then by setting f := Ef on the exceptional set of measure zero (i.e.
the complement of Ωf ) it holds f = Ef on the whole sample space Ω.

Example 3.1.6. For an example of a metric dynamical system recall the statement of Theorem
2.2.8 and consider a Q-Wiener process W on a probability space (Ω,F ,P) with values in a
separable Hilbert space H. By Corollary 2.2.16 we can change from W (t, ω) to the equivalent
(two-sided) C0-canonical Wiener process ω(t) for t ∈ R and ω(·) ∈ C0(R;H). This process
exists on the canonical space (C0(R;H),B(C0(R;H)),P0) with the associated Wiener measure
P0 possessing the same finite dimensional distributions as our Wiener process. This probability
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space extends to an ergodic metric dynamical system, if we introduce the so called Wiener shift
given by

θt : C0(R;H)→ C0(R;H), ω(·) 7→ θtω(·) := ω(t+ ·)− ω(t)

for t ∈ R.

In the following we will write for simplicity C0 and B(C0) instead of C0(R, H) resp. B(C0(R, H)).

Theorem 3.1.7. The measure P0 is invariant and (C0,B(C0),P0, θ) forms an ergodic metric
dynamical system.

Proof. The invariance will be shown according to Lemma 3.3 [Box88]. For k ∈ N define the finite
set Sk := {s1, ..., sk} whose (fixed) elements are in R. For a set ASk ∈ B(Hk) we define the
generalized cylindric sets

C(t, ASk) :=
{
ω ∈ C0 :

(
ω(t+ s1)− ω(t), ..., ω(t+ sk)− ω(t)

)
∈ ASk

}

for every t ∈ R. We want to show that C(t, ASk) is a generator of B(C0). First recall in view of
(2.2.3)

B(C0) = σ
{
p−1
r1,...,rk(A) ⊂ C0 : r1, ..., rk ∈ R for k ≥ 1, A ∈ B(Hk)

}
.

Next we clearly have a relation to the following (classical) cylindric sets

C(0, ASk) = Z(ASk) := {ω ∈ C0 : ω(s1), ..., ω(sk) ∈ ASk} (3.1.1)

and we know by Proposition 4.1 from [IW81, p.16] that σ(Z) = B(C0), where Z is the collection
over all cylindric sets of the form (3.1.1). Notice that by choosing t = 0,

Z ⊂
{
C(t, ASk) : t ∈ R, ASk ∈ B(Hk), Sk ∈ Rk, k ≥ 1

}
=: EC .

Since C(t, ASk) ∈ B(C0) for arbitrary t ∈ R and ASk ∈ B(Hk) we finally obtain σ(EC) = B(C0).
Hence the sets C(t, ASk) can be measured by P0. Applying the shift to C(t, ASk) we conclude for
r ∈ R

θ−rC(t, Ask) = {ω ∈ C0 : θrω ∈ C(t, ASk)}
= {ω ∈ C0 : (θrω(t+ s1)− θrω(t), ..., θrω(t+ sk)− θrω(t)) ∈ ASk}
= {ω ∈ C0 : (ω(t+ s1 + r)− ω(t+ r), ..., ω(t+ sk + r)− ω(t+ r)) ∈ ASk}
= C(t+ r,ASk) .

To show the requested invariance we write

P0(θ−rC(t, ASk)) = P0(C(t+ r,ASk)) = P0(C(t, ASk))

where the last equality follows since the increments of ω(·) are stationary, see the Remark 2.2.14.
The next part to show is that θ builds indeed an MDS.

1. The measurability of the mapping (t, ω) 7→ θtω for t ∈ R and ω ∈ C0 follows from the
continuity of the mapping shown in Lemma 3.2 in [Box88]. In our case we would use the
metric defined in (2.2.2), which induces the compact open topology and which is equivalent
to the one given in [Box88] for C0.

2. The identity property holds obviously, since ω ∈ C0.
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3. For the last property it follows for t, s ∈ R and r ∈ R

θt+sω(r) = ω(t+ s+ r)− ω(t+ s) = ω(t+ s+ r)− ω(t)− (ω(t+ s)− ω(t))
= θt(ω(s+ r)− ω(s)) = θt ◦ θsω(r) .

To close the proof we need to verify the ergodicity. We follow [Box88, Lemma 3.3, p.36ff.].
We need the following result for the proof. Let t1, t2 ∈ R, t1 ≤ t2 and consider the time sets
S1 = {s1} and S2 = {s2} for arbitrary s1, s2 ∈ R. We show the independence of an appropriated
shifted generalized cylindric set and another generalized cylindric set w.r.t. P0. There exists a
r0 ∈ R such that for all r ≤ r0,

P0 [(θ−rC(t1, AS1)) ∩ C(t2, AS2)] = P0(C(t1, AS1))P0(C(t2, AS2)) .

If we choose r0 := min{0, t2 − t1 − |s1| − |s2|}, then we notice at first r ≤ r0 ≤ 0 and for these r
we conclude

t1 + r + |s1| ≤ t1 + r0 + |s1| ≤ t2 − |s2| .

Therefore we conclude that we can sort the times (t1 + r+ s1), (t1 + r), t2 and (t2 + s2) in such a
way that we can apply the independence of the increments of the (canonical) Q-Wiener process,

P0 [(θ−rC(t1, AS1)) ∩ C(t2, AS2)] = P0(θ−rC(t1, AS1))P0(C(t2, AS2))
= P0(C(t1, AS1))P0(C(t2, AS2)) .

We can extend this result on multidimensional generalized cylindrical sets C(t, AS) and to finite
unions of these cylindrical sets.
Choose a Borel set A ∈ I ⊂ B(C0) (w.r.t. our θ), i.e. A is θt-invariant for every t ∈ R. As
mentioned above σ(EC) = B(C0), hence we conclude that we can approximate the set A by a finite
union of disjoint (generalized) cylindric sets B = B(ε) ∈ EC for any ε > 0 with P0(A∆B) ≤ ε.
For a proper r we obtain

P0((θ−rBc) ∩B) = P0(Bc)P0(B) (3.1.2)

and similar when the position of B and Bc are changed. Since P0(·∆·) forms a pseudometric on
B(C0)⊗ B(C0), we have

P0((θ−rB)∆B) ≤ P0((θ−rB)∆(θ−rA)) + P0((θ−rA)∆A) + P0(A∆B)

where second summand vanishs since θtA = A for every t ∈ R. The first summand is due to the
shift invariance identical to the last summand, hence

P0((θ−rB)∆B) = 2P0(A∆B) ≤ 2ε . (3.1.3)

Moreover using the definition of the symmetric difference and (3.1.2)

P0((θ−rB)∆B) = P0((θ−rB) ∩Bc) + P0((θ−rBc) ∩B)
= 2P0(B)P0(Bc) = 2P0(B)(1− P0(B)) .

(3.1.4)

Combining (3.1.3) and (3.1.4) we obtain

2P0(B)(1− P0(B)) ≤ 2ε

and since ε can be arbitrary small we conclude after some basic set-rearrangements

P0(A)(1− P0(A)) = 0 .
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Remark 3.1.8. To motivate why we are always interested in θ-invariant sets, we refer to Remark
2 and Lemma 1 in [CGASV10]. Assume a certain property holds on a θ-invariant set Ω′ ⊂ Ω
of full P-measure (a.s.). Then we redefine the (ergodic) MDS in such a way, that the property
holds for all ω ∈ Ω′. The ’new’ (ergodic) MDS is given by (Ω′,Ω′ ∩ F ,P′, θ′), where for every
A′ ∈ Ω′∩F , A ∈ F with A′ = A∩Ω′ we have P′(A) = P(A). Often the notation of the new MDS
is overwritten by the old one (Ω,F ,P, θ).

Let us return to the case of Example 3.1.6. We want to mention the next theorem which gives
us an answer to the question, if there exists a θ-invariant subset of C0 of full P0-measure, such
that the trajectories of the noise have a certain growth condition, which is necessary for many
estimates in the sequel. We recall the definition of Hölder continuous functions.

Definition 3.1.9 (Section 0.1, 0.2, pp.1-3, [Lun95]). Let X be a real Banach space with norm
‖ · ‖X and I ⊂ R be a finite interval. Then for any γ ∈ (0, 1) the (Banach) space of Hölder
continuous functions on I is defined by

Cγ(I;X) =




f ∈ C(I;X) : ‖f‖Cγ(I;H) = sup

a,b∈I
a6=b

‖f(a)− f(b)‖
|a− b|γ

<∞





with norm [f ]Cγ(I;H) := ‖f‖Cγ(I;H) + ‖f‖∞. By adding the supremum norm to the seminorm
[·]Cγ(I;H) turns into a norm.
In the case Cγ(I;H) ≡ Cγ0 (I;H) from Example 3.1.6, ‖ · ‖Cγ(I;H) is already a norm since the only
possible constant function is identical zero.

Theorem 3.1.10 (Lemma 3.3, [GLR11]). Let (ω(t))t∈R be the canoncial H-valued Wiener process
on the metric dynamical system (Ω,F ,P, θ) introduced in Example 3.1.6.
Then there exists a θ-invariant set Ω′ ⊆ Ω with P(Ω′) = 1 such that

1. for any ε > 0, ω ∈ Ω′ there exists a constant C1 = C1(ε, ω) > 0 such that for every t ∈ R

‖ω(t)‖ ≤ ε|t|2 + C1 , (3.1.5)

2. on any interval [r, s] ⊆ R the paths are Hölder continuous with Hölder constant 0 < γ < 1
2 .

In particular there exists a constant C2 = C2(ω, γ, r, s) > 0, such that

‖ω‖Cγ([r,s];H) ≤ C2

with C2 ∈ L1(Ω).

A consequence of the inequality (3.1.5) is that the ’tails’ of the trajectories are subexponentially
growing on a θ-invariant set of full measure. For any ε > 0 and ω ∈ Ω there exists a time
t0 = t0(ε, ω) and an ω-wise constant Cε = C(ε, ω) > 0 such that for |t| ≥ t0

‖ω(t)‖ ≤ Cεeε|t| , (3.1.6)

cf. [CGASV10, Lemma 11 ff.].
All in all we redefine the sample space

Ω :=
{
ω ∈ C0 : lim

t→±∞

log+ ‖ω(t)‖
t

= 0
}

(3.1.7)

The associated ’new’ metric dynamical system is also denoted by (Ω,F ,P, θ). Here F represents
Ω ∩ B(C0) and P the restriction of the Wiener measure to this new trace σ-algebra.
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Definition 3.1.11 (Definition 1.1.1, [Arn10]). Let (H,B(H)) be a measurable space and as in
Definition 3.1.2 (Ω,F ,P, θ) an MDS. Then a random dynamical system is a mapping

ϕ : R+ × Ω×H → H, (t, ω, x) 7→ ϕ(t, ω, x),

such that

(1) ϕ is (B(R+)⊗F ⊗ B(H),B(H))-measurable,

(2) ϕ(0, ω, ·) = IdH for all ω ∈ Ω and

(3) the cocycle property has to hold, i.e. we have
ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x)) for all ω ∈ Ω, x ∈ H and s, t ∈ R+ .

If in addition the mapping ϕ(t, ω, ·) : H → H is continuous for every t ∈ R+ and ω ∈ Ω, then ϕ
is called a continuous random dynamical system.

The cocycle property is illustrated in Figure 3.1.

time s time t

{ω} ×H
{θsω} ×H

{θt+sω} ×H

ϕ(s,ω,x)

ϕ
(
t,θsω,ϕ(s,x,ω)

)x

ϕ(t+ s,ω,x)

Figure 3.1: The cocycle property for two times t, s > 0. The space Ω ×H is
called bundle and consists of the fibers θ·ω ×H for ω ∈ Ω.

Remark 3.1.12.

◦ Note that the cocycle property in the last definition has to hold for all s, t ∈ R+, that is
why this property is also called perfect cocycle. However there exist also crude and very
crude cocycles, where (3) holds only for fixed s ∈ R and for all t ∈ R, P-a.s. or resp. only
for fixed s, t ∈ R, P-a.s.

◦ We emphasize that the RDS is defined only for non-negative times, whereas the MDS θ is
defined for the whole real line. This discrepancy arises because of the fact, that the solution
operator of a proper SPDE will generated an RDS and this solution is only defined for
non-negative times. If one pursues other aims for instance in finite-dimensional spaces, then
according to Definition 1.1.1 in [Arn10] one can define the RDS for arbitrary time sets which
form a group or a semigroup.

◦ We want to comment that as formulated in [Arn10, Remark 1.1.5(V)] we arrive at a deter-
ministic dynamical system if we omit the ω-dependence in the above definition. In particular
the cocycle property corresponds to the semigroup property.
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◦ As we will see in the sequel the solution of a given random differential equation is a possible
generator of an RDS. Notice that the solution of an SPDE seems to not be the right choice
to generate an RDS since the appearing stochastic integrals and as a consequence the whole
solution are only defined P-a.s. (see Definitions 2.3.4 - 2.3.5), whereby the properties (2)
and (3) have to hold for every ω ∈ Ω. The next part will help us to overcome this conflict.

3.2 The Ornstein-Uhlenbeck process and its application in the
field of RDS

In this section we introduce the Ornstein-Uhlenbeck process with values in a Hilbert space, the
properties of this process and we will see how it can be applied for the SPDE which is of our
interest. In particular we discuss how to transform an SPDE into an RPDE (or short RDE) via
a certain conjugacy. We show that the solution of the considered SPDE generates a continuous
RDS.

Assume (Ω,F ,P, θ) is the MDS constructed in the last section with the sample space in (3.1.7).
Recall Section 2.3 and the SPDE constructed in (2.3.4). According to [CS01, Section 2, p.359],
[DPZ92, Section 5.1.2, p.119] and [CGASV10, Section 3, Lemma 12] consider the equation

dZ(t) = AZ(t)dt+ dW (t), t > s

Z(s) = 0
(3.2.1)

for t ∈ [s,∞) ⊂ R. The noise W = (W (t))t∈R is given by a two-sided Q-Wiener process with
values inH and Tr Q <∞. The linear operator −A is chosen like in Theorem 2.1.13. In particular
the operator −A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0. The unique
mild solution of (3.2.1) is then given by the process Z̃ : R2 × Ω→ H for t ∈ [s,∞) by

Z̃(t, s, ω) :=
∫ t

s
S(t− r) dW (r) P− a.s.,

cf. [DPZ92, Theorem 5.4, p.121 and Theorem 6.5, p.156]. The process is defined by an Itô-integral
so only a.s. To overcome the problem that ω lies possibly in a null set we redefine the integral by
an ω-wise approach. We apply an H-valued integration by parts for stochastic integrals, see for
instance Lemma 5.13, p.131 in [DPZ92] (t ≥ 0) and Lemma 2.4, p.261 in [CM87] (arbitrary t),

∫ t

s
S(t− r) dW (r) = W (t)− S(t− s)W (s) +A

∫ t

s
S(t− r)W (r) dr P− a.s.

As a result from our chosen probability space we can rewrite this equality
∫ t

s
S(t− r) dω(r) = ω(t)− S(t− s)ω(s) +A

∫ t

s
S(t− r)ω(r) dr , (3.2.2)

where the right-hand side holds for all ω ∈ Ω.
With the following lemma we introduce the so called stationary Ornstein-Uhlenbeck process. The
eponymous stationarity of this process will be shown in the after next Lemma 3.2.3.

Lemma 3.2.1. Let (Ω,F ,P, θ) be the MDS from before. The stationary Ornstein-Uhlenbeck
process Z : R× Ω→ H given by

(t, ω) 7→ Z(t, ω) := Z(θtω) :=
∫ 0

−∞
S(−r) dθtω(r) (3.2.3)
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is well-defined for all ω ∈ Ω. Moreover for every t ∈ R we observe Z(θtω) =
∫ t
−∞ S(t − r) dω(r)

and for t ≥ 0

Z(θtω) = S(t)Z(ω) +
∫ t

0
S(t− r) dω(r) (3.2.4)

for every ω ∈ Ω.

Remark 3.2.2. Let t ∈ R+. The stationary Ornstein-Uhlenbeck process is the unique mild
solution of the following equation

dZ(θtω) = AZ(θtω)dt+ dW (t), t > 0,

Z(θ0ω) = Z(ω) =
∫ 0

−∞
S(−r) dω(r)

(3.2.5)

for every ω ∈ Ω.

Proof of Lemma 3.2.1. We begin with the claimed equalities, provided Z(θtω) is well-defined.
First notice that dθtω(r) = d(ω(t+ r)−ω(t)) = d(ω(t+ r)) for every fixed t ∈ R. Then we obtain

Z(θtω) =
∫ 0

−∞
S(−r)dω(t+ r) =

∫ t

−∞
S(t− r)dω(r) (3.2.6)

for t ∈ R. In the case t ≥ 0 we conclude using the semigroup property

Z(θtω) =
∫ t

−∞
S(t− r)dω(r) = S(t)

∫ 0

−∞
S(−r)dω(r) +

∫ t

0
S(t− r)dω(r)

= S(t)Z(ω) +
∫ t

0
S(t− r)dω(r) .

(3.2.7)

With view on (3.2.6) it suffices to consider Z(ω) since we can shift ω(·) appropriately. According
to [Nea17, Lemma 2.2.7 and Lemma 2.2.10] we show that the random variable Z(·) is well-defined.
First apply theH-valued integration by parts for stochastic integrals (3.2.2) which we used already
above,

Z(ω) = lim
t→∞


ω(0)︸︷︷︸

=0

−S(t)ω(−t) +A

∫ 0

−t
S(−r)ω(r) dr


 .

According to Theorem 3.1.10 we can choose Ω to be a θ-invariant subset of C0 such that the
trajectories have a subexponential growth. In the last summand we have two possible singularities
in 0 and in infinity. Therefore we write

Z(ω) = lim
t→∞

(
−S(t)ω(−t) +A

∫ −1

−t
S(−r)ω(r) dr

)
+A

∫ 0

−1
S(−r)ω(r) dr . (3.2.8)

Under consideration of the exponential decay of the semigroup (2.1.1) and the inequality (3.1.6)
we estimate for every α > ε > 0 and t ≥ t0(ε, ω),

‖S(t)ω(−t)‖+
∥∥∥∥A
∫ −1

−t
S(−r)ω(r) dr

∥∥∥∥ ≤ Cεe−(α−ε)t +
∫ −1

−t
‖AS(−r)ω(r)‖ dr .

where we used the closedness of the operator A to take the operator inside the integral, see [Vra03,
Theorem 1.2.2, p.8]. For the latest integral we obtain in view of the Theorem 2.1.16 for analytic
semigroups,

∫ −1

−t
‖AS(−r)ω(r)‖ dr ≤

∫ −1

−t0
‖AS(−r)ω(r)‖ dr +M1Cε

∫ −t0
−t

e(α−ε)r

−r
dr .
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3.2 ONU process and its properties

Therefore the limit in (3.2.8) is finite. Now for the last summand in (3.2.8) we estimate using the
Hölder norm,

∥∥∥∥A
∫ 0

−1
S(−r)ω(r) dr

∥∥∥∥ ≤M1

∫ 0

−1

eαr

−r
· ‖ω(r)‖ dr ≤M1‖ω‖Cγ([−1,0];H)

∫ 0

−1
eαr|r|γ−1 dr

≤M1C2

∫ 0

−1
eαr|r|γ−1 dr

for C2 = C2(ω, γ,−1, 0) > 0. The last integral is finite, since γ ∈
(
0, 1

2
)
.

Now we want to collect some more properties concerning the stationary Ornstein-Uhlenbeck
process.

Lemma 3.2.3. The process defined in (3.2.3) is stationary, i.e. for a time set {t, t1, ..., tk}, k ≥ 1
and a set A ∈ F it holds that PZt1+t,...,Ztk+t(A) = PZt1 ,...,Ztk (A).

Proof. For the Ornstein-Uhlenbeck process it follows similar as before for arbitrary s, t ∈ R,

Z(s+ t, ω) =
∫ s+t

−∞
S(s+ t− r) dω(r) =

∫ s

−∞
S(s− r) dθtω(r) = Z(s, θtω)

for each ω ∈ Ω. From this equality we conclude for a proper time set and A ∈ F ,

PZt1+t,...,Ztk+t(A) = P
[
(Z(t1 + t, ω), ..., Z(tk + t, ω)) ∈ A

]

= P
[
(Z(t1, θtω), ..., Z(tk, θtω)) ∈ A

]

= θtP
[
(Z(t1, ω), ..., Z(tk, ω)) ∈ A

]

= PZt1 ,...,Ztk (A)

where in the last equality we use the invariance of the measure P.

Lemma 3.2.4. For the given MDS (Ω,F ,P, θ) the stationary Ornstein-Uhlenbeck process pos-
sesses trajectories in C(R+;H). Moreover Z is a random fixed-point of the equation

ϕ(t, ω, Z(ω)) = Z(θtω) (3.2.9)

for every t ≥ 0 and ω ∈ Ω, where ϕ is the random dynamical system generated by the equation
(3.2.5).

Proof. According to [DPZ92, Theorem 5.14, p.132] we know that t 7→
∫ t

0 S(t− r) dω(r) is Hölder-
continuous with Hölder exponent γ ∈ (0, 1

2). The continuity of Z(θ·ω) follows from the continuity
of the semigroup, i.e. 0 ≤ t 7→ S(t)x is continuous for every x ∈ H (cf. Corollary 2.1.3) and the
decomposition in (3.2.4).

For the second part of the lemma we use again (3.2.4) and combine it with the integration by
parts formula. Hence we have for all ω ∈ Ω

Z(θtω) = S(t)Z(ω) +
∫ t

0
S(t− r) dω(r) = S(t)Z(ω) + ω(t) +A

∫ t

0
S(t− r)ω(r) dr .

Setting ϕ : R+ × Ω×H → H with

ϕ(t, ω, x) = S(t)x+
∫ t

0
S(t− r) dω(r) = S(t)x+ ω(t) +A

∫ t

0
S(t− r)ω(r) dr

we obtain directly the fixed-point property (3.2.9). It remains to prove that ϕ is indeed a random
dynamical system. The measurability follows e.g. from [AB06, Lemma 4.51, p.153] and [CV06,
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Lemma III.14, p.70]. Fix x ∈ H. The mapping ϕ(·, ·, x) : R+ × Ω → H is Carathéodory, i.e.
ϕ(·, ω, x) : R+ → H is continuous for each ω ∈ Ω and ϕ(t, ·, x) : Ω → H is measurable for
each t ∈ R+. Hence the mapping ϕ : R+ × Ω → H is jointly (B(R+) ⊗ F) − B(H)-measurable.
Again because ϕ(t, ω, ·) : H → H is continuous, ϕ(·, ·, ·) is Carathéodory, hence we obtain that
ϕ : R+ × Ω×H → H is jointly (B(R+)⊗F ⊗ B(H)− B(H))-measurable. The identity property
is obviously.
The cocycle property follows by a direct computation

ϕ(t, θsω, ϕ(s, ω, x)) = S(t)
[
S(s)x+

∫ s

0
S(s− r) dω(r)

]
+
∫ t

0
S(t− r) dθsω(r)

= S(t+ s)x+
∫ s

0
S(t+ s− r)dω(r) +

∫ t+s

s
S(t+ s− r) dω(r)

= ϕ(t+ s, ω, x)

for every t, s ∈ R+, ω ∈ Ω and x ∈ H.

Remark 3.2.5. Note that we can obtain more regularity results concerning the Ornstein-Uhlen-
beck process, cf. [Nea17, Remark 2.2.14, p.16]. One can show that the process Z(θtω) is well-
defined in D((−A)β) for every 0 ≤ β < 1

2 and Z(θ·ω) ∈ Cγ(R;D(−A)β) for every 0 ≤ γ + β < 1
2 ,

cf. [DPZ92, Theorem 5.16, p.134].

Now we come to a concept which plays an important role especially when we want to define
random attractors in the pullback sense. We have already fixed our sample space Ω in (3.1.7).
There we controlled the growth of our process such that it does not expand to infinity ’to fast’,
when the time tends to ±∞. Now we want extend this property to a formal definition for random
variables. We refer to [Arn10, Definition 4.1.1, p.164] and [BGAS14, Section 3, p.3957].

Definition 3.2.6. Let (Ω,F ,P, (θt)t∈R) be some arbitrary metric dynamical system. A random
variable X : Ω→ [0,∞) is called tempered or more precisely tempered from above, if there exists
a θ-invariant set of full P-measure such that

lim
t→±∞

log+X(θtω)
|t|

= 0 (3.2.10)

for all ω ∈ Ω. Note that log+(·) := max{0, log(·)}.
A random variable X : Ω→ (0,∞) is called tempered from below if 1/X is tempered from above
or equivalently if

lim
t→±∞

log−X(θtω)
|t|

= 0 (3.2.11)

for every ω ∈ Ω with log−(·) := max{0,− log(·)} on some θ-invariant set of full P-measure.

Remark 3.2.7.

◦ One has to be careful with definition of the word ’tempered’. Sometimes a tempered random
variable is referred to be tempered from above and from below, see [Arn10, Definition 4.1.1,
p.164]. In our setup we understand under a tempered random variable always a random
variable tempered from above as defined in the previous definition.

◦ According to Proposition 4.1.3 in [Arn10, p.165] the long-time behaviour of a random vari-
able X : Ω→ R on a metric dynamical system θ can be described by

lim sup
t→±∞

X(θtω)
|t|

= {0,∞}

lim inf
t→±∞

X(θtω)
|t|

= {−∞, 0}
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and in the ergodic case the lim sup’s and lim inf’s are constants for every ω ∈ Ω, i.e. 0 or
±∞ on a invariant subset of Ω. The only other possiblity for a tempered random variable
on such a subset is

lim sup
t→±∞

log+X(θtω)
|t|

=∞

and similar for the lim inf. Hence the assumption of temperedness for a random variable is
not very strict.

◦ We can rearrange (3.2.10) such that the subexponential growth of a tempered random
variable becomes more visible. Equivalent to the above definition is the following. For every
ε > 0 and ω ∈ Ω there exists a t0 = t0(ε, ω) > 0 such that for |t| ≥ t0

X(θtω) ≤ eε|t| .

Other possible equivalent formulations can be found in [IS01, p.220] or [CDLS10, Lemma
2.1, (2.3)]. Note that if t 7→ X(θtω) is continuous for fixed ω ∈ Ω, then for every ε > 0 there
exists a constant C(ε, ω) > 0 such that for all t ∈ R

1
C(ε, ω)e

−ε|t| ≤ X(θtω) ≤ C(ε, ω)eε|t| (3.2.12)

see Proposition 4.3.3 [Arn10, p.188].

◦ Another more practical formulation of temperedness is given by the dichotomy for linear
growth of stationary processes, see Proposition 4.1.3 [Arn10, p.165]. Let X be the non-
negative random variable defined on a θ-invariant set Ω with P(Ω) = 1 like in Definition
3.2.6. If

sup
t∈[0,1]

X(θtω) ∈ L1(Ω)

then X is a tempered random variable.

Example 3.2.8. Let (Ω,F ,P, θ) be the MDS which we already used in Lemma 3.2.1 together
with the stationary Ornstein-Uhlenbeck process Z : R × Ω → H. Then ‖Z(·)‖ : Ω → [0,∞) is a
tempered random variable.

Proof. According to the last remark, it is sufficient to show that

E

(
sup
t∈[0,1]

‖Z(θtω)‖
)
<∞ .

Then it follows for all ω from a θ-invariant subset Ω of full P-measure

lim
t→±∞

log+ ‖Z(θtω)‖
|t|

= 0 .

Under consideration of (3.2.7) and (3.2.2) we have for t ∈ [0, 1]

Z(θtω) = S(t)Z(ω) + ω(t) +A

∫ t

0
S(t− r)ω(r) dr

= S(t)Z(ω) + ω(t) +A

∫ t

0
S(t− r)(ω(r)− ω(t)) dr +A

∫ t

0
S(t− r)ω(t) dr

= S(t)Z(ω) + S(t)ω(t) +A

∫ t

0
S(t− r)(ω(r)− ω(t)) dr
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where we applied Theorem 2.1.4(b). Hence we need to show that

E sup
t∈[0,1]

‖Z(θtω)‖ ≤ E‖Z(ω)‖︸ ︷︷ ︸
(I)

+E sup
t∈[0,1]

‖ω(t)‖
︸ ︷︷ ︸

(II)

+E sup
t∈[0,1]

∥∥∥∥A
∫ t

0
S(t− r)(ω(r)− ω(t)) dr

∥∥∥∥
︸ ︷︷ ︸

(III)

.

For the first expectation (I) we use the Itô-isometry for the H-valued stochastic integration, see
[PR07, Proposition 2.3.5, p.25]. We observe

E
(
‖Z(ω)‖2

)
= E

(∥∥∥∥
∫ 0

−∞
S(−r) dω(r)

∥∥∥∥
2)

= E

(∫ 0

−∞
‖S(−r) ◦Q

1
2 ‖2L2(H) dr

)

≤
∫ 0

−∞
e2αr‖Q

1
2 ‖2L2(H) dr = 1

2α Tr Q <∞ ,

where in the last line the Hilbert-Schmidt norm ‖Q
1
2 ‖2L2(H) = Tr Q according to Proposition

2.2.18 . Hence E‖Z(ω)‖ <∞.
Now we consider (II). It follows readily from the Doob maximal inequality [KS88, Theorem

1.3.8 (iv), p.14] and Remark 2.2.14, that

E sup
t∈[0,1]

‖ω(t)‖ ≤
∞∑

i=1
λi · E

(
sup
t∈[0,1]

|βi(t)|
)2

≤ 4 Tr Q <∞ ,

where βi are the real-valued Brownian motions introduced in Proposition 2.2.13.
The term (III) is estimated by using the methods of the proof of Lemma 3.2.1,

∥∥∥∥A
∫ t

0
S(t− r)(ω(r)− ω(t)) dr

∥∥∥∥ ≤M1

∫ t

0

e−α(t−r)

t− r
‖ω(r)− ω(t)‖ dr .

For the noise we have for t, r ∈ [0, 1], r 6= t

‖ω(r)− ω(t)‖ = ‖ω(r)− ω(t)‖
|t− r|γ

· |t− r|γ ≤ ‖ω‖Cγ([0,1];H) · |t− r|γ .

Therefore we conclude for every t ∈ [0, 1],
∥∥∥∥A
∫ t

0
S(t− r)ω(r) dr

∥∥∥∥ ≤M1‖ω‖Cγ([0,1];H)

∫ t

0
e−α(t−r) · |t− r|γ−1 dr <∞

and ‖ω‖Cγ([0,1];H) ≤ C2(ω, γ, 0, 1) ∈ L1(Ω) completes the proof.

3.3 Random dynamical systems for SPDE’s and conjugacy
Finally we introduce the SPDE we are interested in and for which we show that the solution
operator generates an RDS. Let H := L2(K,µ) where (K,B(K), µ) is a σ-finite measure space of
a bounded subset K of Rn, n ≥ 1 representing the domain of our problem. Then we consider

dv(t) = Av(t)dt+ F (v(t))dt+ dW (t), ∀t > 0,
v(0) = v0 ∈ H .

(3.3.1)

The linear operator A is the generator of an analytic semigroup in H, denoted by {S(t)}t≥0, see
Section 2.1. The appearing noise is again an H-valued Q-Wiener process with finite trace, cf.
2.2.12. On the mapping F : H → H we assume a global Lipschitz continuity with the associated
Lipschitz constant L > 0, i.e. ‖F (v1(t))− F (v2(t))‖ ≤ L‖v1(t)− v2(t)‖ for every t ∈ [0,∞). Let
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(Ω,F ,P, (θt)t∈R+) be the metric dynamical system based on Ω the canonical sample space on R+
which is given by (3.1.7). Let us endow the trace σ-algebra F with an associated filtration (Ft)t≥0
and assume v0 to be an H-valued F0-measurable random variable. Then the mild solution of the
equation (3.3.1) is given according to (2.3.5)

v(t) = S(t)v0 +
∫ t

0
S(t− r)F (v(r)) dr +

∫ t

0
S(t− r) dW (r)

for all t ∈ R+, P-a.s. Now we define for every (t, ω) ∈ R+ × Ω

u(t) := v(t)− Z(θtω) . (3.3.2)

Together with Remark 3.2.2 we deduce

du(t) = d(v(t)− Z(θtω)) = [Av(t) + F (v(t))]dt+ dW (t)−AZ(θtω)dt− dW (t)
= A(v(t)− Z(θtω))dt+ F (v(t))dt .

Similar for the initial condition u0 := u(0) = v(0)− Z(ω) = v0 − Z(ω).
Hence we arrive at an ω-wise differential equation which we call random (partial) differential
equation, for short RDE or RPDE,

du(t) = Au(t)dt+ F (u(t) + Z(θtω))dt, t > 0,
u(0) = u0 .

(3.3.3)

We recall the well-known Gronwall Lemma, which will be used repeatedly in our context.

Lemma 3.3.1 (Lemma 29.2, p.436,[Wlo87]). Let g, v ∈ C([0, T ]), h be a non-negative integrable
function on (0, T ) and suppose for t ∈ [0, T ] we have

v(t) ≤ g(t) +
∫ t

0
h(τ)v(τ) dτ .

Then we have for t ∈ [0, T ]

v(t) ≤ g(t) +
∫ t

0
g(τ)h(τ)eH(t)−H(τ) dτ = eH(t)

[
g(0) +

∫ t

0
g′(τ)e−H(τ) dτ

]
,

with H(t) =
∫ t

0 h(τ) dτ . The last equality in the statement holds for differentiable functions g.

The next theorem is crucial for our theory.

Theorem 3.3.2. Under the previous assumptions there exists a unique solution of the equation
(3.3.3) on every interval [0, T ], T > 0 given by the variation of constants formula for every ω ∈ Ω
and u0 ∈ H

u(t) = S(t)u0 +
∫ t

0
S(t− r)F (u(r) + Z(θrω)) dr . (3.3.4)

Moreover u ∈ C([0, T ];H). The solution operator (3.3.4) is the generator of a continuous random
dynamical system ϕ : R+ × Ω×H → H given by

ϕ(t, ω, x) = u(t, ω, x) = S(t)x+
∫ t

0
S(t− r)F (u(r) + Z(θrω)) dr (3.3.5)

for (t, ω, x) ∈ R+ × Ω×H.
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Proof. The existence and uniqueness of the solution of the RDE is a special case of Theorem 6.1.2
in [Paz83, p.184f.]. In particular the Banach fixed-point Theorem [AB06, Theorem 3.48, p.95]
and the Gronwall Lemma mentioned above play key roles.

The measurability follows the same ideas we have seen in the proof of Lemma 3.2.4. For a
fixed x ∈ H, T > 0 define the mapping

T·,x(·) : Ω× C([0, T ];H)→ C([0, T ];H)

Tω,x(u)[t] = S(t)x+
∫ t

0
S(t− r)F (u(r) + Z(θrω)) dr

for every t ∈ [0, T ]. For fixed ω ∈ Ω this mapping is Lipschitz continuous (see e.g. the proof
of [Paz83, Theorem 6.1.2, p.184]) and for fixed u ∈ C([0, T ];H) the mapping T·,x(u) is mea-
surable since every involved mapping is continuous resp. measurable. Moreover according to
[Bau92, Satz 31.6] the space C([0, T ];H) is separable. Then [AB06, Lemma 4.51, p.153] says
that T·,x(·) is [F ⊗ B(C([0, T ];H))] − B(C([0, T ];H)) measurable. Taking into account that
x ∈ C([0, T ];H) and the fixed-point argument in [AB06, Theorem 3.48, p.95], we obtain that the
sequence Tnω,x(x) = Tω,x ◦ · · · ◦ Tω,x(x) converges to a unique fixed-point u(·, ω, x) ∈ C([0, T ];H)
which itself is [F ⊗ B(C([0, T ];H))] − B(C([0, T ];H)) measurable. Now evaluating this function
at a time t ∈ [0, T ] we obtain that the mapping ω 7→ u(t, ω, x) ∈ H is F − B(H) measurable.
Therefore ϕ(·, ·, x) : R+×Ω→ H is jointly measurable, from the Carathéodory argument discussed
in Lemma 3.2.4. As we will see below ϕ(t, ω, ·) is continuous. Finally the desired measurability
follows again from the Carathéodory argument.

The identity property is evident. Concerning the cocycle property notice for t, s ≥ 0 the
following

ϕ(t+ s, ω, x) = S(t+ s)x+
∫ t+s

0
S(t+ s− r)F (u(r, ω, x) + Z(θrω)) dr

= S(t)
[
S(s)x+

∫ s

0
S(s− r)F (u(r, ω, x) + Z(θrω)) dr

]

+
∫ t+s

s
S(t+ s− r)F (u(r, ω, x) + Z(θrω)) dr

= S(t)u(s) +
∫ t

0
S(t− r)F (u(r + s, ω, x) + Z(θr+sω)) dr

= S(t)w(0) +
∫ t

0
S(t− r)F (w(r, ω, x) + Z(θr+sω)) dr ,

where w(t) := u(t+ s) solves the RDE

dw(t) = Aw(t)dt+ F (w(t) + Z(θtθsω))dt
w(0) = u(s) .

By the uniqueness of the solution we obtain ϕ(t+ s, ω, x) = ϕ(t, θsω, u(s, ω, x)). The next goal is
to show the continuity of the RDS. Moreover we even obtain Lipschitz continuity.
Let us define Dϕ(t) := ϕ(t, ω, y)− ϕ(t, ω, x). Then first notice that

‖Dϕ(t)‖ ≤ ‖S(t)‖L(H)‖(y − x)‖

+
∫ t

0
‖S(t− r)‖L(H)‖F (u(r, ω, y) + Z(θrω))− F (u(r, ω, x) + Z(θrω))‖ dr

≤ ‖y − x‖e−αt + L

∫ t

0
e−α(t−r)‖u(r, ω, y)− u(r, ω, x)︸ ︷︷ ︸

=Dϕ(r)

‖ dr
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where we used (2.1.8) and the Lipschitz continuity of F . To apply the Gronwall Lemma we
muliply the last inequality by eαt, such that

eαt‖Dϕ(t)‖ ≤ ‖y − x‖+ L

∫ t

0
eαr‖Dϕ(r)‖ dr .

We deduce from Lemma 3.3.1 (second statement),

eαt‖Dϕ(t)‖ ≤ ‖y − x‖eLt

and hence

‖ϕ(t, ω, y)− ϕ(t, ω, x)‖ = ‖Dϕ(t)‖ ≤ ‖y − x‖e(L−α)t (3.3.6)

for fixed t ∈ R+ and ω ∈ Ω. The last expression gets arbitrary small if x, y ∈ H are close enough
to each other.

Note that in this proof we do not have to assume anything on the positive constants L and
α. Until now we have a random dynamical system ϕ for the corresponding RDE. Originally we
were interested in an RDS generated by the solution operators of SPDEs of the type (3.3.1). The
following lemma closes this gap and is often called conjugacy or transformation of an RDS. We
refer, for instance, to [CDLS10, Lemma 2.1] or [DLS03, Lemma 2.2, p.2116] for the idea of the
proof.

Lemma 3.3.3. Let T : Ω×H → H be a mapping, such that T (ω, ·) : H → H is a homeomorphism
for any ω ∈ Ω and T (·, x) : Ω→ H, T−1(·, x) : Ω→ H are measurable for every x ∈ H. If ϕ is a
random dynamical system, then the mapping

ψ : R+ × Ω×H → H

ψ(t, ω, x) := T
(
θtω, ϕ(t, ω, T−1(ω, x))

)

is as well a random dynamical system.

Combining this lemma with the choice T (ω, x) = x+ Z(ω) and its inverse (w.r.t. the second
component) T−1(ω, x) = x− Z(ω) we obtain in view of (3.3.2),

v(t) = T (θtω, u(t)) = u(t) + Z(θtω) . (3.3.7)

We summarize our observations in the following corollary.

Corollary 3.3.4. Let ϕ be the RDS generated by the unique solution of the RDE (3.3.3). Defining
the conjugacy according to (3.3.7) gives us a random dynamical system ψ : R+ ×Ω×H → H for
the SPDE (3.3.1)

ψ(t, ω, x) = ϕ(t, ω, x− Z(ω)) + Z(θtω)

for every t ∈ R+, ω ∈ Ω and x ∈ H. Moreover ψ is continuous.

The idea of conjugacy can be visualized by the following figure.
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t

t

ϕ

ψ

T−1 T

v0

v0 − Z(ω)

ψ(t, ω, v0)

ϕ(t, ω, v0 − Z(ω))

Figure 3.2: The initial data v0 gets transformed via T−1 to be the initial data
u0 = v0 − Z(ω) of an according RDS ϕ. Then we evole this system until a
certain time t and conjugate the actual state via T to obtain ψ(t, ω, v0). If we
apply this transformation along the time t ≥ 0 we arrive at the trajectories in
the picture for a fixed ω ∈ Ω.

3.4 Random attractors for random dynamical systems
In this part, we discuss the concept of random attraction. Keeping in mind the example given
in the introduction, we now describe mathematical objects that are similar to the vortex in the
ocean.
For the basic definitions and ideas we refer to [Sch97] and [Sch92]. A more recent overview of the
concepts can be found for example in [BGAS14].
We begin with the definition of a random closed set. For this definition we apply the theory of
multifunctions also known as set-valued functions. A general introduction is given in e.g. [AB06,
Chapter 18]. For a collection of results focusing our case we refer to [Ogr11, Chapter 2].

Definition 3.4.1. Let H be a separable Hilbert space. A multifunction M : Ω → P(H) which
maps in particular to nonempty closed sets of P(H) is called a closed random set if for every
x ∈ H

ω 7→ inf
y∈M(ω)

‖x− y‖,

is F −B(R+) measurable. A multifunction M is also denoted by {M(ω)}ω∈Ω or simply M(ω) for
ω ∈ Ω.

Remark 3.4.2. For abbreviation we say random set instead of closed random set. According to
[CV06, Proposition III.4, p.63] for a sequence of compact-valued multifunctions Mn, n ∈ N the
mapping ω 7→

⋂
n∈NMn(ω) is measurable and if in addition the sets Mn ,n ≥ 1 are monoton-

ically decreasing, then
⋂
n∈NMn has compact values. Moreover if

⋃
n∈NMn

H is compact, then
ω 7→

⋃
n∈NMn(ω)H is measurable.

In the following we identify the subset of P(H) which gives us later the sets that get attracted
by the random attractor.

Definition 3.4.3. A set D consisting only of closed random sets of P(H) is called universe if
it is inclusion closed, i.e. whenever an arbitrary random set D1 ∈ P(H) is a subset of another
random set D2 ∈ D for every ω ∈ Ω, then D1 ∈ D.
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The following definition of tempered sets is extracted from [Sch97, p.956], see also [BLW09,
Definition 2.3, p.847].

Definition 3.4.4. Let θ = (θt)t∈R be an MDS. A random set D ∈ P(H) is called a tempered set
(w.r.t. θ) if for any c > 0

lim
t→∞

e−ct sup
x∈D(θ−tω)

‖x‖ = 0 .

An equivalent definition is given accordingly to [BGAS14, p.3958] by

lim
t→±∞

1
|t|

log+

(
sup

x∈D(θtω)
‖x‖

)
= 0 . (3.4.1)

Let D denote the universe of tempered sets in H. Now we define the random attractor in the
pullback sense.

Definition 3.4.5 ([Sch97]). Let ϕ : R+ × Ω×H → H be a random dynamical system and θ an
associated MDS. We call the random compact set A ∈ D a random attractor (of the RDS ϕ), if
the following two conditions are fulfilled,

(i) A(ω) is invariant for every ω ∈ Ω, i.e.

ϕ(t, ω,A(ω)) = A(θtω) for all t ∈ R+

(ii) A(ω) attracts all sets in D, that is for all ω ∈ Ω,

lim
t→∞

dist
(
ϕ(t, θ−tω,D(θ−tω)),A(ω)

)
= 0 for all D ∈ D , (3.4.2)

where ’dist’ is the Hausdorff semi-distance defined for two nonempty sets A,B ⊂ H by

dist(A,B) := sup
x∈A

inf
y∈B
‖x− y‖ . (3.4.3)

Note that the Hausdorff semi-distance is not a metric, since for every subset A ⊆ B we have
dist(A,B) = 0.

Remark 3.4.6.

◦ The above attraction property (ii) happens in the pullback sense. The advantage of the
convergence in this sense, is that the set (A(ω))ω∈Ω is not changing in time. Hence the
name attractor is meaningful. Roughly speaking, if we go far enough backwards in time
with our initial set, the property (3.4.2) tells us that we will arrive in the attractor when
we wait long enough.

◦ It is possible to define a random attractor as the set that attracts every bounded determinis-
tic set, see [CF94, Definition 3.9, p.370]. However this definition requires a P-a.s. approach
of the property (3.4.2). In particular we lose the uniqueness of the random attractor [CF94,
p.372]. If we consider random sets in D we obtain the uniqueness of the random attractor,
see [Sch97, Lemma 2.3, p.955].

◦ As stated in [Sch97, Remark 2.2] the random attractor is indeed a generalisation of the
deterministic semigroup attractor defined e.g. in [Tem88, Chapter I, Definition 1.2, p.20].
The universe of the random attractor corresponds to the basin of attraction of the attractor
in the deterministic case. Additionally the mentioned Remark 2.2 tells us that the forward
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convergence to the attractor holds in probability. More precisely, for every ε > 0 we have
for any D ∈ D and ω ∈ Ω

lim
t→∞

P
[
dist

(
ϕ(t, ω,D(ω)),A(θtω)

)
> ε
]

= 0 .

The above limit does not hold P-a.s. in the general case, see [Arn10, Remark 9.3.7, p.488]
for a counterexample. An interesting overview of the different kinds of random attractors
can be found in [Sch02].

◦ For comparison: in the case of a deterministic autonomous dynamical system the concepts
of pullback and forward convergence coincide, whereas in nonautonomous systems the con-
vergence differs in general, see [GK01, Section 4].

Before we state the important existence theorem for the random attractor of an RDS, we need
one more definition giving us the concept of absorption.

Definition 3.4.7 ([Sch97], p.956). Let ϕ : R+×Ω×H → H be a random dynamical system and
θ an associated MDS.
A random set B ∈ D is called random absorbing for ϕ if for every D ∈ D and ω ∈ Ω there exists
a time tD(ω) > 0 such that

ϕ(t, θ−tω,D(θ−tω)) ⊂ B(ω) for all t ≥ tD(ω) .

An often more comfortable condition in finding an absorbing set is the following. If for every
x ∈ D(θ−tω), D ∈ D and ω ∈ Ω

lim sup
t→∞

‖ϕ(t, θ−tω, x)‖ ≤ 1
2ρ(ω) (3.4.4)

for an ω-wise constant ρ(ω) > 0, then B(ω) = B(0, ρ(ω)) is a random absorbing set.
The following existence theorem originate from [Sch92, Theorem 2.1, p.187].

Theorem 3.4.8. Let ϕ be a continuous random dynamical system, θ an associated MDS and D
the collection of tempered sets. Suppose ϕ has a compact random absorbing set B ∈ D. Then the
random dynamcial system ϕ has a unique random attractor in D (also called random D-attractor)
which is given by

A(ω) :=
⋂

s≥0

⋃

t≥s
ϕ(t, θ−tω,B(θ−tω))

H

. (3.4.5)

Remark 3.4.9. We want to point out that, if we have in addition that the set B in the above
definition is positively invariant, i.e. for every t ≥ 0 and ω ∈ Ω

ϕ(t, ω,B(ω)) ⊆ B(θtω)

then the random attractor in (3.4.5) has according to [Sch97, Theorem 2.4, p.956] the following
representation

A(ω) =
⋂

t≥0
ϕ(t, θ−tω,B(θ−tω)) .

An extension of Lemma 3.3.3 gives us the attractor of a conjugated dynamical system, cf.
[IS01, Theorem 2.1].
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Lemma 3.4.10 ([CS15]). Let T : Ω × H → H be the mapping of Lemma 3.3.3 giving us the
conjugacy between the RDS ϕ and ψ. If the random dynamical system ϕ possesses the random
attractor A and if we have in addition,

ω 7→ T (ω,D(ω)) ∈ D, ω 7→ T−1(ω,D(ω)) ∈ D

for every D ∈ D, then the random dynamical system ψ possesses the random attractor Ã(ω) =
T (ω,A(ω)) ∈ D for every ω ∈ Ω.

Let us return to the equation (3.3.3)

du(t) = Au(t)dt+ F (u(t) + Z(θtω))dt, t > 0,
u(0) = u0 .

which was transformed from the stochastic partial differential equation (3.3.1). To begin with we
show the existence of a random absorbing set for the RDS ϕ generated by the mild solution, cf.
Theorem 3.3.2.
The Lipschitz continuity of the nonlinearity implies a linear growth. We assume in particular that
there exist constants l, d > 0 such that,

‖F (u(t))‖ ≤ l‖u(t)‖+ d (3.4.6)

for t ∈ R+ and additionally l < α ≤ L. Note that the following lemmas would also hold for
L < α but then the random attractor in (3.4.5) reduces to a singleton A(ω) = {a∗(ω)} due to the
continuity estimate in (3.3.6). In particular the singleton is a random fixed point, i.e.

ϕ(t, ω, a∗(ω)) = a∗(θtω)

for every t ∈ R+ and ω ∈ Ω, cf. [Ogr11, Corollary 3.21, p.53].

Lemma 3.4.11. The RDS ϕ given by (3.3.5) has a random absorbing set B ∈ D.

Proof. Having in mind the estimate (2.1.1) with 0 < α = λ1 and the linear growth condition
(3.4.6), we obtain together with the notation u(t) = u(t, ω, u0)

‖u(t)‖ ≤ e−αt‖u0‖+
∫ t

0
e−α(t−r)‖F (u(r) + Z(θrω))‖ dr

≤ e−αt‖u0‖+
∫ t

0
e−α(t−r)(l‖u(r) + Z(θrω)‖+ d

)
dr .

In Example 3.2.8 we have seen that ‖Z(θrω)‖, r ∈ R is tempered. We introduce the tempered
random variable

G(θrω) := l‖Z(θrω)‖+ d, for r ∈ R .

Using this random variable we obtain

‖u(t)‖ ≤ e−αt
[
‖u0‖+

∫ t

0
eαrl‖u(r)‖ dr +

∫ t

0
eαrG(θrω) dr

]
.

We are now in a similar situation to the proof of Theorem 3.3.2. We multiply the above inequality
by eαt and apply the Gronwall Lemma 3.3.1 to see that,

eαt‖u(t)‖ ≤ elt
[
‖u0‖+

∫ t

0
eαrG(θrω)e−lr dr

]
.
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Finally we observe

‖u(t)‖ ≤ e(l−α)t‖u0‖+
∫ t

0
e(l−α)(t−r)G(θrω) dr .

We replace ω by θ−tω and let u0 ∈ D(θ−tω) ∈ D for fixed t ∈ R+,

‖u(t, θ−tω, u0)‖ ≤ e(l−α)t‖u0‖+
∫ t

0
e(l−α)(t−r)G(θr−tω) dr

= e(l−α)t‖u0‖+
∫ 0

−t
e−(l−α)rG(θrω) dr .

Following the criterion in (3.4.4) we consider the limit

lim sup
t→∞

‖u(t, θ−tω, u0)‖ ≤
∫ 0

−∞
e(α−l)rG(θrω) dr ,

where the last integral exists since G is a tempered random variable. Note that the estimate is
uniformly over the set D(θ−tω). There exists a random absorbing set B(ω) = B(0, ρ(ω)) with
radius

ρ(ω) := 2
∫ 0

−∞
e(α−l)rG(θrω) dr . (3.4.7)

We want to remark that B is indeed a tempered set. According to Definition 3.4.4 we need to
show that for every c > 0, ω ∈ Ω,

lim
t→∞

e−ct sup
x∈B(θ−tω)

‖x‖ ≤ lim
t→∞

e−ctρ(θ−tω) = 0 .

Since t 7→ G(θtω) is continuous we know by (3.2.12), that for every ε > 0, that there exists
a C(ε, ω) such that G(θtω) ≤ C(ε, ω)eε|t| for every t ∈ R. For every c > 0 there exists a
ε = ε(c, α, l) > 0 such that ε < c and ε < (α− l). Replacing ω by θ−tω in (3.4.7) we observe

ρ(θ−tω) = 2
∫ −t

−∞
e(α−l)(r+t)G(θrω) dr ≤ 2e(α−l)tC(ε, ω)

∫ −t

−∞
e(α−l−ε)r dr .

Next we consider the product with e−ct and determine the following integral

e−ctρ(θ−tω) = 2e(−c+α−l)tC(ε, ω)
∫ −t

−∞
e(α−l−ε)r dr = 2C(ε, ω)

α− l − ε
e(−c+ε)t ,

which tends to zero if t→∞ by our assumptions. This completes the proof.

Before we state the main theorem of this section, we prove that there exists a compact ab-
sorbing set.
To show the compactness of our absorbing set, recall the interpolations spaces we introduced in
Section 2.1. According to Theorem 2.1.15 the space D(Aβ) is compactly embedded in the space
H for β > 0, i.e. every bounded set in D(Aβ) is relatively compact in H. We have the following
lemma.

Lemma 3.4.12. If B(ω) is a random absorbing set for our RDS ϕ, then the set K(ω) :=
ϕ(1, θ−1ω,B(θ−1ω))H ⊂ H is compact and random absorbing for ω ∈ Ω.
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Proof. That K is indeed absorbing follows from the cocycle property and that B is already
absorbing. Moreover K is a tempered set which ensues from a similar argument as in the last
proof. Now concerning the compactness we observe the following.
We know by Section 4.7.1 [SY02, p.233] that u ∈ D(Aβ) for 0 < β < 1, hence

‖ϕ(1, ω, u0)‖β = ‖Aβϕ(1, ω, u0)‖ ≤ ‖AβS(1)u0‖+
∫ 1

0
‖AβS(1− r)F (ϕ(r, ω, u0) + Z(θrω))‖ dr .

Using the estimates for an analytic semigroup in (2.1.8), we have

‖ϕ(1, ω, u0)‖β ≤Mβe
−α‖u0‖+

∫ 1

0
Mβ

e−α(1−r)

(1− r)β ‖F (ϕ(r, ω, u0) + Z(θrω))‖ dr .

Similar to the previous lemma we estimate the latter integral,

‖ϕ(1, ω, u0)‖β ≤Mβe
−α‖u0‖+

∫ 1

0
Mβ

e−α(1−r)

(1− r)β (l‖ϕ(r, ω, u0) + Z(θrω))‖+ d) dr

≤Mβe
−α‖u0‖+

∫ 1

0
Mβl

e−α(1−r)

(1− r)β ‖ϕ(r, ω, u0)‖ dr +
∫ 1

0
Mβ

e−α(1−r)

(1− r)βG(θrω) dr .

The last integral is a constant (ω-wise), since t 7→ G(θtω) is continuous by Lemma 3.2.4 and
therefore it can be estimated by its maximum Cmax(ω) on [0, 1]. We define

C3(β, ω) :=
∫ 1

0
Mβ

e−α(1−r)

(1− r)βG(θrω) dr > 0 .

Moreover since e−α(1−r) ≤ 1 for every r ∈ [0, 1],

‖ϕ(1, ω, u0)‖β ≤Mβ‖u0‖+Mβl

∫ 1

0

1
(1− r)β ‖ϕ(r, ω, u0)‖ dr + C3(β, ω) .

Now replace ω by θ−1ω and choose u0 ∈ B(θ−1ω) from an absorbing set. Then according to the
previous lemma for r ∈ [0, 1],

‖ϕ(r, θ−1ω, u0)‖ ≤ e(l−α)r‖u0‖+ e(l−α)r
∫ r−1

−1
e−(l−α)(s+1)G(θsω) ds

≤ ‖u0‖+ eα−l
∫ 0

−1
e(α−l)sG(θsω) ds ≤ ρ(θ−1ω) + eα−l

α− l
Cmax(ω)

and we obtain ϕ(r, θ−1ω, u0) ∈ B(0, R(ω)) with R(ω) := ρ(θ−1ω) + eα−l

α−l Cmax(ω) for r ∈ [0, 1] and

‖ϕ(1, θ−1ω, u0)‖β ≤Mβρ(θ−1ω) +Mβl

∫ 1

0

1
(1− r)βR(ω) dr + C3(β, ω) <∞ .

We conclude by the compact embedding D(Aβ) ↪→ H, that the set ϕ(1, θ−1ω,B(θ−1ω)) is rela-
tively compact and hence

K(ω) = ϕ(1, θ−1ω,B(θ−1ω))H

is compact.

We formulate the main result concerning the existence of the random attractor for our RDS.

Theorem 3.4.13. The random dynamical system ϕ generated by the solution of the RDE (3.3.3)
possesses a unique random D-attractor A(ω), ω ∈ Ω. Moreover, the conjugated RDS ψ of the
original SPDE possesses a unique random attractor Ã(ω), ω ∈ Ω.
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Proof. The first statement follows by the Lemmas 3.4.11 and 3.4.12, such that the assumptions
of Theorem 3.4.8 are fulfilled. The random attractor for the RDS ψ given by the SPDE (3.3.1)
follows from Lemma 3.4.10 with the conjugacy T (ω, x) := x+ Z(ω) for ω ∈ Ω,

Ã(ω) = T (ω,A(ω)) = A(ω) + Z(ω) = {x+ Z(ω) : x ∈ A(ω)} .

We close this chapter with a remark concerning the application of the introduced theory of
random attractors to differential equations on fractal sets which are introduced in Section 2.4.
Throughout the Sections 3.3 and 3.4 we did not impose any strong assumptions on the set K ⊂ Rn
of the corresponding space L2(K,µ). Since we constructed in Section 2.4 a proper Laplacian ∆µ

on a fractal set K with an associated (self-similar) measure µ, we obtain in particular that ∆µ

is the generator of an analytic semigroup, see Theorem 2.1.13. Hence we are able to consider a
similar equation as (3.3.1) with A = ∆µ and a sufficiently smooth nonlinearity. The mild solution
of this SPDE gives us according to the last two sections a random attractor for the dynamics that
emerge in the Hilbert space.
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Chapter 4

An upper bound on the Hausdorff
dimension of the random attractor

In this chapter we present one of our main results. We give an estimate for the Hausdorff dimension
of the random attractor A(ω), ω ∈ Ω we constructed in the previous chapter. According to the
further developed theory of B. Schmalfuß in [Sch97] and A. Debussche in [Deb98] for random
attractors we have the general result concerning the Hausdorff dimension

dimH(A(ω)) ≤ m, ω ∈ Ω

where m is the smallest natural number, that fulfills m2/n > L
C∆

. Here n ≥ 1 is the dimension
of the underlying set K ⊂ Rn of the corresponding Hilbert space L2(K,λ), where λ denotes the
Lebesgue measure on K. Moreover L is the Lipschitz constant of the appearing nonlinearity and
the constant C∆ is related to the spectral asymptotics of the Laplacian on K.
In turns out in the classical results that the dimension n appears also in the asymptotics of the
Laplacian defined on L2(K,λ). In the interesting case of a fractal domain K ⊂ Rn, an associated
self-similar measure µ and the corresponding Laplacian ∆µ, recall in particular Section 2.4, we
obtain a dependence on the spectral exponent dS . The Hausdorff dimension of the random
attractor is then less than or equal to the smallest m ∈ N satisfying

m2/dS >
L

C∆µ

where C∆µ is a constant depending on the asymptotics of the Laplacian ∆µ. Recall that the
spectral exponent does not coincide with the Hausdorff dimension dimH(K) in general.
The described statement presents a generalization of the established results, since there are so far
no results concerning more arbitrary (e.g. fractal) domains of the Hilbert space L2(K,µ).

In the first section we summarize the classical concepts and ideas of the deterministic theory
to arrive at the upper bound of the Hausdorff dimension. In the next section we state the main
ideas of a similar approach in the probabilistic case. Moreover we apply these ideas to the RDE
we considered before and show the main result of this chapter. In a last section we present a
mathematical example for the nonlinearity of the related random differential equation (3.3.3).
We show that for this class of operators the arising dynamics possess a random attractor and we
discuss the value of the upper bound of the associated Hausdorff dimension.

4.1 Technical preparations for the estimate
In this section we follow the introduction in [Tem88, Chapter V, VI]. Since we will use several
times Fréchet derivatives we recall its definition.
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An upper bound on the Hausdorff dimension

Definition 4.1.1 (Definition 12.1.2, p.267, [Wou79]). Let X,Y be two Banach spaces and
T : X → Y . If there exists an operator L(x) ∈ L(X,Y ) such that for some x ∈ D(T )

‖T (x+ h)− T (x)− L(x)h‖ = o(‖h‖) ∀h ∈ X

then L(x)h is called Fréchet differential of T (x), denoted often by DT (x)[h] or T ′(x)[h]. The
operator L(x) = T ′(x) is called the Fréchet derivative of T at x ∈ D(T ). The expression o(‖h‖)
means clearly that ‖T (x + h) − T (x) − L(x)h‖ goes faster to zero than ‖h‖ when h approaches
zero.

The approach to estimate the Hausdorff dimension requires the concept of an exterior product
of Hilbert spaces.

Definition 4.1.2 (Chapter V, Section 1,[Tem88]). Let H be a Hilbert space. The m-exterior
product of H is given by

∧m
H := H ∧ · · · ∧H︸ ︷︷ ︸

m times

= span





∑

σ∈{1,...,m}m
(−1)σxσ(1) ⊗ · · · ⊗ xσ(m) : x1, ..., xm ∈ H



 ,

where σ = (σ(1), ..., σ(m)) is a permutation of {1, ...,m}, (−1)σ = ±1 denotes the sign of the
permutation and the tensor product for m elements xi ∈ H, i ∈ {1, ...,m} is given by

(x1 ⊗ · · · ⊗ xm)(y1, ..., ym) :=
m∏

i=1
(xi, yi) ∀yi ∈ H .

For xi ∈ H, i ∈ {1, ...,m} we call

x1 ∧ · · · ∧ xm :=
∑

σ∈{1,...,m}m
(−1)σxσ(1) ⊗ · · · ⊗ xσ(m)

the exterior product of x1, ..., xm. Moreover we obtain a positive definite inner product by defining

(x1 ∧ · · · ∧ xm, y1 ∧ · · · ∧ ym)∧mH := det[(xi, yi)]1≤i,j≤m

for all xi, yi ∈ H, i ∈ {1, ...,m} and define the associated norm ‖ · ‖∧mH :=
(
(·, ·)∧mH

)1/2.

We like to stress the idea for the estimate of the Hausdorff dimension for the attractor. A
detailed proof is presented for the deterministic case in [Tem88, Chapter V, Section 3.3, p.368]
and for the probabilistic case in [Deb98, Theorem 2.4, p.972] and [Sch97, Theorem 3.2, p.959].

The main question that arises is: How can we estimate the (d-dimensional) Hausdorff measure
Hd(A) for an appropriate number d of the attractor A?

Since the attractor is a compact set we can cover it with a finite amount of balls in H. In
particular for every ε > 0 each ball has a radius smaller than ε. The next step is to use the
invariance property of the attractor, which infers that we need to know how a ball in a Hilbert
space behaves when it gets distorted by the (random) dynamical system. In fact we need also
results on the Hausdorff measure for these distorted balls. In the following we will provide some
ideas to these problems.

We denote by T ∗ : H → H the adjoint of an operator T on H. In preparation for the next
proposition we want to recall some of the results in Section 1.3.2 [Tem88, Chapter V]. The linear
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self-adjoint operator L∗L of a linear bounded (not necessary compact) operator L in H possesses
a sequence of non-increasing numbers

νn(L∗L) = inf
G⊂H

dim G≤n−1

sup
x∈G⊥
‖x‖=1

((L∗L)x, x), n ≥ 1 .

If L∗L is compact, then νn would be the eigenvalues of L∗L. Suppose L∗L is not compact and
set ν∞(L∗L) = infn∈N νn(L∗L), then two possiblities arise. First suppose there exists a n0 ∈ N
such that

ν1(L∗L) ≥ ... ≥ νn0(L∗L) > νn0+1(L∗L) = νm(L∗L) = ν∞(L∗L), ∀m ≥ n0 + 1 .

The other possiblity is νm(L∗L) > ν∞(L∗L) for every m ∈ N. In the first case ν1, ..., νn0 are
eigenvalues of L∗L and in the second case each νm, m ∈ N is an eigenvalue of L∗L, see proposition
1.1 [Tem88, p.348 ff.].
Now it is useful to introduce the index set I which is either equal to {1, ..., n0} in the first case
or equal to N for the other case. In both cases we can decompose H into Hν and H⊥ν , where
Hν = span{ei, i ∈ I : L∗Lei = νiei}. By proposition 1.2 [Tem88, p.350] we have for every n ∈ N

νn(L∗L) = sup
G⊂H

dim G≤n

inf
x∈G
‖x‖=1

((L∗L)x, x) .

After these short explanations and notations we have the following result concerning the image
of a ball in H.

Proposition 4.1.3 (Chapter V, Proposition 1.3, [Tem88]). Let H be a Hilbert space and B the
unit ball therein. Let L be a linear bounded operator in H and suppose we have the decomposition,
H = Hν ⊕ H⊥ν described above. The image of the ball B under the mapping L, i.e. L(B) is a
subset of an ellipsoid E in H. Depending on the properties of L we distinguish between two cases:

(i) Either L is compact or L being not compact but Hν = H, then the axes of E are directed
along Lei, i ∈ N and their length is given by the numbers

αi(L) = νi

(
(L∗L)

1
2

)
= sup

G⊂H
dim G≤i

inf
x∈G
‖x‖=1

‖Lx‖, i ∈ N

where ei, i ∈ N are the eigenvectors of L∗L.

(ii) If L is not compact and Hν 6= H, then E is the product of a ball around zero with radius

α∞(L) = ν∞

(
(L∗L)

1
2

)
= inf

i∈N
αi(L)

in the space H⊥ν and the ellipsoid in the space Hν with axes along to Lei and lengths αi(L),
i ∈ I. Similar as in (i) the eigenvectors of L∗L are denoted by ei, i ∈ I. Note that in this
case I can be finite or infinite.

We remark that α1(L) = ‖L‖L(H) and we define additionally the product of the first m axes
by

Pm(L) = α1(L) . . . αm(L) .

According to proposition 1.4 in [Tem88, p.353] we have the following connection between the axes
of an ellipsoid, which is generated by a linear mapping L and the m-exterior product.
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Lemma 4.1.4. If L ∈ L(H), then for every m ∈ N

Pm(L) = sup
x1,...,xm∈H
‖xi‖≤1,∀i

‖Lx1 ∧ · · · ∧ Lxm‖∧mH .

Until now we considered general techniques and results how a volume behaves under a linear
bounded mapping. But the solution operator of an associated evolution equation is general not
linear. To close this gap we use the Frechet derivative of the solution. We have the following
discussion.

Suppose we are given a similar situation as in the beginning of Section 3.3. In particular recall
the assumptions on the linear operator A and the nonlinearity F . We consider now a similar
equation to (3.3.1) but without the noise. We have the following (deterministic) initial value
problem

du(t)
dt

= G(u(t)), t > 0,

u(0) = u0 ,
(4.1.1)

for every u0 ∈ H and G := A + F : H → H. By Theorem 3.3.2 it is possible to state the
unique mild solution of this equation. Moreover we know that the solution operator generates a
dynamical system ϕ : R+ × H → H with u(t) = ϕ(t, u0). We want to remark that in [Tem88,
Chapter V, Section 2.3, p.362] the author considers the concept of weak solutions for equations
of the type (4.1.1). In our case the two concepts of solutions coincide according to the result in
[Bal77].
We assume that G is Fréchet differentiable with derivative DG and we arrive at the following
linearized equation,

dU(t)
dt

= DG(u(t)) · U(t), t > 0,

U(0) = ξ ,
(4.1.2)

which is well-posed for every u0, ξ ∈ H. In addition we suppose that the dynamical system ϕ(t, u0)
is Fréchet differentiable with derivative L(t, u0) given by

U(t) := Dϕ(t, u0)ξ = L(t, u0)[ξ]

for every ξ ∈ H, where U is the solution of (4.1.2).
If we consider m solutions U1, ..., Um of the equation (4.1.2) for m initial elements ξ1, ..., ξm ∈ H
we obtain by further calculations in the norm

∧mH ([Tem88, p.362f.]) for fixed t ∈ R+ and
u0 ∈ H,

‖U1(t) ∧ · · · ∧ Um(t)‖∧mH = ‖ξ1 ∧ · · · ∧ ξm‖∧mH · exp
{∫ t

0
Tr
(
DG(ϕ(r, u0)) ◦Qm(r)

)
dr

}
,

(4.1.3)

where Tr
(
DG(ϕ(t, u0))◦Qm(t)

)
describes the trace of the linear operator obtained by applying the

derivative DG(ϕ(t, u0)) on the orthogonal projector Qm(t) = Qm(t, u0; ξ1, ..., ξm). This projector
maps H onto the space spanned by (U1(t), ..., Um(t)), cf. [Tem88, Chapter V, Lemma 1.2, p.344].
Combining Lemma 4.1.4 (applied on the Fréchet derivatives Ui(t)) with the equation (4.1.3) we
have

Pm(L(t, u0)) = sup
ξ1,...,ξm∈H
‖ξi‖≤1,∀i

‖U1(t) ∧ · · · ∧ Um(t)‖∧mH

= sup
ξ1,...,ξm∈H
‖ξi‖≤1,∀i

exp
{∫ t

0
Tr
(
DG(ϕ(r, u0)) ◦Qm(r)

)
dr

}
,
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where we also applied proposition 1.4 [Tem88, Chapter V, p.353].
For the following let X be an invariant set in H w.r.t. to the dynamical system ϕ in the sense of
definition 1.1 in [Tem88, Chapter 1, p.19], i.e.

ϕ(t,X) = X ∀t ≥ 0.

Further define the numbers

Pm(t) := sup
u0∈X

Pm(L(t, u0))

qm(t) := sup
u0∈X

sup
ξ1,...,ξm∈H
‖ξi‖≤1,∀i

(
1
t

∫ t

0
Tr
(
DG(ϕ(r, u0)) ◦Qm(r)

)
dr

)

for every t ∈ R+ and m ∈ N. In fact it follows,

1
t

logPm(t) ≤ qm(t) .

Moreover we introduce for every m ≥ 2 the global Lyapunov exponents on X, cf. [Tem88, p.361],

νm = log
{

lim
t→∞

(
Pm(t)
Pm−1(t)

)1/t}

and for m = 1 the Lyapunov exponent becomes ν1 = limt→∞(P1(t))1/t.
We can now formulate the conditions that are necessary to obtain the estimate of the Hausdorff
dimension for the (deterministic) attractor, see [Tem88, Chapter V, Section 3.4, p.377].

DC (I) For any t ∈ R+ there exists a constant Ct > 0, such that the following uniformly
differentiability is fulfilled. For any ε > 0 we have

sup
u,v∈X
‖u−v‖≤ε

‖ϕ(t, u)− ϕ(t, v)− L(t, v)[u− v]‖
‖u− v‖

≤ Ct ε .

DC(II) For some t0 > 0 it holds

sup
u∈X
‖L(t0, u)‖L(H) <∞ .

DC(III) For some t0 > 0 and m ≥ 1

Pm(t0) = sup
u∈X

Pm(L(t0, u)) < 1 .

Remark 4.1.5.

◦ It suffices to show that the number qm(t0) < 0 for some t0 > 0 since then condition DC (III),
Pm(t0) < 1, is fulfilled.

◦ Proposition 2.1 [Tem88, Chapter V, p.364] tells us that if for some m ∈ N and t sufficiently
large qm(t) < 0, then the m-volume of the parallelepiped spanned by
(U1(t), ..., Um(t)), that is

‖U ′1(t) ∧ · · · ∧ U ′m(t)‖∧mH ,

decays exponentially. That means that the m-dimensional volumes decrease, which gives us
information on the Hausdorff dimension, since it is defined bym-dimensional sets. Moreover
we have log limt→∞(Pm(t))1/t = ν1 + ...+ νm < 0.
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◦ The numbers

lim
t→∞

(
Pm(t)
Pm−1(t)

)1/t

are called global Lyapunov numbers which can be defined iteratively starting with
lim
t→∞

(
P1(t)

)1/t and they exist on an invariant set X according to [Tem88, p.359].

◦ It follows readily from the equality

ϕ(t) = ϕ(t− btc) ◦ ϕ(1) ◦ · · · ◦ ϕ(1)︸ ︷︷ ︸
btc - times

, t ≥ 0

that we can replace the condition DC (I) by

sup
t∈[0,1]

sup
u,v∈X
‖u−v‖≤ε

‖ϕ(t, u)− ϕ(t, v)− L(t, v)[u− v]‖
‖u− v‖

≤ Cε

for some constant C > 0 and ε > 0. Instead of the condition DC (II) we can assume the
slightly stronger condition, that

sup
t∈[0,1]

sup
u∈X
‖L(t, u)‖L(H) <∞ .

We state now the theorem of the Hausdorff dimension for an invariant set X ⊂ H of a dynamical
system ϕ.

Theorem 4.1.6. Under the deterministic conditions DC (I)–DC (III) we infer

dimH(X) ≤ m

for the smallest natural number m that fulfills DC (III).

Remark 4.1.7.

◦ There are several slightly more general results. For instance in Theorem 3.1 in [Tem88,
p.369] the Hausdorff dimension is bounded by some real number d > 0, where this number
has to fulfill DC (III) instead of m ∈ N. However in practical applications d often equals a
natural number, cf. [Tem88, p.378].

◦ We have also a little more precise result using the Lyapunov exponents. If the conditions
DC (I), DC (II) hold and for some N ∈ N

ν1 + ...+ νN+1 < 0 , (4.1.4)

then the upper bound of the Hausdorff dimension is given by

N + (ν1 + ...+ νN ) ∧ 0
|νN+1|

see [Tem88, Chapter V, Theorem 3.3, p.374]. Of course we are especially interested in the
smallest natural number that fulfills (4.1.4).

◦ The idea of the proof of Theorem 4.1.6 is based on iterated coverings including two covering
results. The first result gives an estimate how many balls are necessary to cover an ellipsoid,
introduced in Proposition 4.1.3. The second result states that the sum of an ellipsoid and
a ball (like it was appearing in Proposition 4.1.3 (ii)) is covered by a larger ellipsoid with
specified properties on the axes of this ellipsoid.
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4.2 The upper estimate for the random attractor
Due to the ω-dependence we have to adjust the deterministic assumptions and a general theorem
on the dimension of a random attractor has also to treat the evolution of the noise in time by the
MDS θ = (θt)t∈R.

Suppose we are given an RDS ϕ in H with an appropriate MDS (Ω,F ,P, (θt)t∈R) and assume
ϕ possesses a random attractor A(ω), ω ∈ Ω like introduced in Chapter 3.

First note that the results of Proposition 4.1.3 hold identically for the random case, i.e. in an
ω-wise analogue. Similar to the Proposition 4.1.3 we denote by αi(L(t, ω)), i ∈ I (I = N or a finite
set) the length of the axes of a corresponding ellipsoid and it holds α1(L(t, ω)) = ‖L(t, ω)‖L(H)
for every (t, ω) ∈ R+ × Ω. In particular we introduce

Pm(L(t, ω)) := α1(L(t, ω)) · · ·αm(L(t, ω))

for every (t, ω) ∈ R+ × Ω.
The following conditions are presented for discrete time in [Deb98] and they are the random

analogue to the deterministic conditions DC (I)–DC (III).

RC (I) There exists a random variable C = (C(ω))ω∈Ω ≥ 1, such that ϕ is uniformly differ-
entiable on A(ω) with Fréchet derivative L(t, ω, ·) for t ∈ R+ and ω ∈ Ω, i.e.

sup
t∈[0,1]

sup
u,v∈A(ω)
‖u−v‖≤ε

‖ϕ(t, ω, u)− ϕ(t, ω, v)− L(t, ω, v)[u− v]‖
‖u− v‖

≤ C(ω)ε .

and additionally it holds

E(lnC) <∞ .

RC(II) There exists a random variable α̃1 = (α̃1(ω))ω∈Ω ≥ 1 such that,

sup
t∈[0,1]

sup
u∈A(ω)

α1(L(t, ω, u)) ≤ α̃1(ω) and E(ln α̃1) <∞ .

RC(III) For every t ∈ R+ there exists a random variable P̃m(t, ·) and for some m ∈ N there
exists a time t0(ω) > 0 such that,

sup
u∈A(ω)

Pm(L(t, ω, u)) ≤ P̃m(t, ω) and E(ln P̃m(t, ·)) < 0 ,

for t ≥ t0(ω) and every ω ∈ Ω.

Now we are able to formulate the generalization of Theorem 4.1.6 to the random case.

Theorem 4.2.1. Let ϕ : R+ × Ω × H → H be a random dynamical system on a Hilbert space
H and let (Ω,F ,P, (θt)t∈R) be the associated MDS. Moreover assume that the RDS possesses
a unique random attractor (A(ω))ω∈Ω and the random conditions RC (I)–RC (III) are satisfied.
Then we conclude for all ω ∈ Ω,

dimH(A(ω)) ≤ m,

where m ∈ N is the smallest number satisfying RC (III).
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For the proof of this theorem we refer to [Deb98, Theorem 2.4, p.972] and for a continuous
version see [CF98, Theorem 4.3, p.457].

The next step is to apply the above theorem to the RDS generated by the mild solution of
the RDE (3.3.3),

du(t) = Au(t)dt+ F (u(t) + Z(θtω))dt, t > 0
u(0) = u0 ∈ H ,

and its random attractor A(ω), ω ∈ Ω discussed in Theorem 3.4.13. From here on we assume,
unless stated otherwise, that we are on the Hilbert space H = L2(K,µ) for a fractal set K and a
self-similar measure µ introduced in (2.4.4). In particular we consider the (Dirichlet) Laplacian
presented in Theorem 2.4.14,

A = ∆µ : D(∆µ)→ H .

In remembering the Proposition 2.4.15, we know that A is the generator of an analytic semigroup
denoted by {S(t)}t≥0. Recall the mild solution of (3.3.3) which is given by (3.3.4),

u(t) = uω,u0(t) = S(t)u0 +
∫ t

0
S(t− r)F (u(r) + Z(θrω)) dr ,

for t ∈ R+, ω ∈ Ω and u0 ∈ H. Before we verify the conditions RC (I)–RC (III), we show the
Fréchet differentiability of the RDS ϕ generated by u.

Theorem 4.2.2. Let u : R+ × Ω × H → H be the mild solution of the RDE (3.3.4) with a
Lipschitz-continuous nonlinearity F : H → H with constant L > 0. Let A(ω), ω ∈ Ω be the
random attractor of the corresponding RDS ϕ that is generated by u. We assume that F is twice
Fréchet differentiable with a uniform bound CF > 0, such that

sup
u∈H
‖D2F (u)‖BL(H×H,H) := sup

u∈H
sup

h1,h2∈H
‖h1‖≤1,‖h2‖≤1

‖D2F (u)[h1, h2]‖ ≤ CF ,

where D2F (u) is the second Fréchet derivative at u and BL(H × H,H) is the space of bounded
bilinear forms, see [Wou79, Section 12.2].
Then the RDS ϕ(t, ω, u0) is Fréchet differentiable at u0 ∈ A(ω) with derivative

Dϕ(t, ω, u0) : A(ω)→ H,

ξ 7→ Dϕ(t, ω, u0)ξ =: U(t)

given by

U(t) = S(t)ξ +
∫ t

0
S(t− r)DF (ϕ(r, ω, u0) + Z(θrω))U(r) dr

for every t ∈ [0, 1], ω ∈ Ω and ξ ∈ A(ω).

Proof. According to Definition 4.1.1 we need to show for t ∈ [0, 1], ω ∈ Ω and ξ close to zero,

‖ϕ(t, ω, u0 + ξ)− ϕ(t, ω, u0)− U(t)‖ = o(‖ξ‖) .

For a better readability we introduce the following abbreviations for this proof,

ϕ(r, u0 + ξ) + Z := ϕ(r, ω, u0 + ξ) + Z(θrω)
ϕ(r, u0) + Z := ϕ(r, ω, u0) + Z(θrω) .
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Following Theorem 2.1.13 we have the constant α > 0 giving us the exponential stability of the
semigroup {S(t)}t≥0. Then we obtain for the latter difference

‖ϕ(t, ω, u0 + ξ)− ϕ(t, ω, u0)− U(t)‖ ≤
∫ t

0
‖S(t− r) {F (ϕ(r, u0 + ξ) + Z)− F (ϕ(r, u0) + Z)

−DF (ϕ(r, u0) + Z)U(r)} ‖ dr

≤
∫ t

0
e−α(t−r) ‖F (ϕ(r, u0 + ξ) + Z)− F (ϕ(r, u0) + Z)

−DF (ϕ(r, u0) + Z)U(r)‖ dr .
(4.2.1)

Inside the last norm we insert an artificial ’zero’ by

±DF (ϕ(r, u0) + Z)[ϕ(r, u0 + ξ)− ϕ(r, u0)] . (4.2.2)

We obtain two expressions in norm that we want to estimate. Using the notation Dϕ(u0, ξ) :=
ϕ(·, u0 + ξ)− ϕ(·, u0) the first expression becomes

‖F (ϕ(·, u0 + ξ) + Z)− F (ϕ(·, u0) + Z)−DF (ϕ(·, u0) + Z)[Dϕ(u0, ξ)]‖ ,

which can be estimated using Taylor’s formula for Frechet derivatives, see [Wou79, p.276]. Since
F is twice Fréchet differentiable, we observe

‖F (ϕ(·, u0 + ξ) + Z)− F (ϕ(·, u0) + Z)−DF (ϕ(·, u0) + Z)[Dϕ(u0, ξ)]‖
=
∥∥D2F (ϕ(·, u0 + Z))[Dϕ(u0, ξ),Dϕ(u0, ξ)] + o(‖Dϕ(u0, ξ)‖2)

∥∥
≤‖D2F (ϕ(·, u0) + Z)‖BL(H×H,H)‖Dϕ(u0, ξ)‖2 + o(‖Dϕ(u0, ξ)‖2) .

Using now our assumption on D2F we obtain,

‖F (ϕ(·, u0 + ξ) + Z)− F (ϕ(·, u0) + Z)−DF (ϕ(·, u0) + Z)[Dϕ(u0, ξ)]‖
≤CF ‖Dϕ(u0, ξ)‖2 + o(‖Dϕ(u0, ξ)‖2) .

For simplicity we assume now that ξ is close to zero such that

o(‖Dϕ(u0, ξ)‖2) = o
(
‖ϕ(·, u0 + ξ)− ϕ(·, u0)‖2

)
≤ ‖ϕ(·, u0 + ξ)− ϕ(·, u0)‖2 = ‖Dϕ(u0, ξ)‖2

and if we set C ′F := CF + 1 we have

‖F (ϕ(·, u0 + ξ) + Z)− F (ϕ(·, u0) + Z)−DF (ϕ(·, u0) + Z)[Dϕ(u0, ξ)]‖
≤C ′F ‖ϕ(·, u0 + ξ)− ϕ(·, u0)‖2 .

Similar to the proof of the continuity of the RDS ϕ in Theorem 3.3.2 we obtain

‖ϕ(r, ω, u0 + ξ)− ϕ(r, ω, u0)‖ ≤ ‖ξ‖e(L−α)r ,

hence

‖F (ϕ(r, u0 + ξ) + Z)− F (ϕ(r, u0) + Z)−DF (ϕ(r, u0) + Z)[ϕ(r, u0 + ξ)− ϕ(r, u0)]‖
≤C ′F ‖ξ‖2e2(L−α)r . (4.2.3)

If we combine the second expression of the norm in (4.2.1) combined with (4.2.2) we see

‖DF (ϕ(r, u0) + Z)[ϕ(r, u0 + ξ)− ϕ(r, u0)]−DF (ϕ(r, u0) + Z)U(r)‖
≤‖DF (ϕ(r, u0) + Z)‖L(H)‖ϕ(r, u0 + ξ)− ϕ(r, u0)− U(r)‖ .
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Since F is Lipschitz continuous we infer that ‖DF (ϕ(r, u0) + Z)‖L(H) ≤ L and therefore

‖DF (ϕ(r, u0) + Z)[ϕ(r, u0 + ξ)− ϕ(r, u0)]−DF (ϕ(r, u0) + Z)U(r)‖
≤L‖ϕ(r, u0 + ξ)− ϕ(r, u0)− U(r)‖ .

(4.2.4)

Finally we conclude by (4.2.3) and (4.2.4)

‖ϕ(t, ω, u0 + ξ)− ϕ(t, ω, u0)− U(t)‖

≤C ′F ‖ξ‖2
∫ t

0
e−α(t−r)+2(L−α)r dr

+
∫ t

0
Le−α(t−r)‖ϕ(r, ω, u0 + ξ)− ϕ(r, ω, u0)− U(r)‖ dr .

(4.2.5)

For the moment suppose L 6= α. Now we multiply the latter by eαt to arrive at the following
inequality,

eαt‖ϕ(t, ω, u0 + ξ)− ϕ(t, ω, u0)− U(t)‖

≤
C ′F

2L− α‖ξ‖
2
(
e(2L−α)t − 1

)
+
∫ t

0
Leαr‖ϕ(r, ω, u0 + ξ)− ϕ(r, ω, u0)− U(r)‖ dr .

Applying the Gronwall Lemma 3.3.1 we obtain

‖ϕ(t, ω, u0 + h)− ϕ(t, ω, u0)− U(t)‖ ≤ C ′F ‖ξ‖2

L− α
e(L−α)t

[
e(L−α)t − 1

]
= o(‖ξ‖)

for every t ∈ [0, 1], ω ∈ Ω and u0 ∈ A(ω). In the case α = L we have starting in (4.2.5),

‖ϕ(t, ω, u0 + h)− ϕ(t, ω, u0)− U(t)‖ ≤ C ′F ‖ξ‖2t = o(‖ξ‖)

Note that our estimates are independent of u0 ∈ A(ω).

In general it can be challenging to show condition RC (I). Due to the chosen assumptions on
the nonlinearity F the condition follows readily from the last proof. As discussed in Section 3.4
we choose L ≥ α, otherwise the random attractor reduces to a singleton. Hence we distinguish
between two cases. First let L > α, then

sup
t∈[0,1]

C ′F ‖ξ‖2

L− α
e(L−α)t

[
e(L−α)t − 1

]
≤

C ′F
L− α

e2(L−α)‖ξ‖2 .

and if L = α, then supt∈[0,1]C
′
F ‖ξ‖2t ≤ C ′F ‖ξ‖2.

Finally we identify the random variable C and we see that it is actually a constant, for ε > 0

sup
t∈[0,1]

sup
u0∈A(ω)
‖ξ‖≤ε

1
‖ξ‖
‖ϕ(t, ω, u0 + ξ)− ϕ(t, ω, u0)− U(t)‖ ≤ C(ω)ε

where

C(ω) :=
{

C′F
L−αe

2(L−α), L > α,

C ′F , L = α .

We conclude that C(ω) ≥ 1 for every CF > 0, since C ′F = CF + 1 and e2(L−α) > L− α. Clearly
we have as well E(lnC) <∞.
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For the second condition RC (II) we have the following discussion. First, bear in mind the
notation U(t) = Dϕ(t, ω, u0)ξ for fixed (t, ω, u0, ξ) ∈ R+ × Ω×H ×H and consider

dU(t)
dt

= AU(t) +DF (ϕ(t, ω, u0) + Z(θtω))U(t), t > 0

U(0) = ξ ∈ H .
(4.2.6)

We know from [Hen81, Theorem 7.1.4, p.193 and Exercise 5, p.195] that the above linear differ-
ential equation possesses a unique mild solution. As decribed in the previous section this mild
solution U coincides with a weak solution by a result in [Bal77]. The unique weak solution U is
an element of L2(0, T ;FE0) for every T > 0 in the sense of [Tem88, Chapter II, Section 3.4, p.74]
and [Sho97, Chapter III, Proposition 4.1 and Corollary 4.1, p.122]. Here FE0 = D

(
(∆µ)

1
2

)
is the

set of functions with finite energy and value zero on the boundary defined in (2.4.9). Note that
this space corresponds for the classical Laplacian on a smooth domain to the Sobolev space H1

0 .
If we multiply (4.2.6) with its solution U(t), we observe since (∆µU,U) ≤ 0, that

d

dt
‖U(t)‖2 = 2

(
dU(t)
dt

, U(t)
)

= 2(AU(t), U(t)) + 2
(
DF (ϕ(t, ω, u0) + Z(θtω))U(t), U(t)

)

≤ 2
(
DF (ϕ(t, ω, u0) + Z(θtω))U(t), U(t)

)

≤ 2‖DF (ϕ(t, ω, u0) + Z(θtω))‖L(H) · ‖U(t)‖2 .

From which we deduce the bound of the Fréchet derivative of the solution for every t ≥ 0, ω ∈ Ω,

‖U(t)‖ ≤ ‖U(0)‖ · exp
{∫ t

0
‖DF (ϕ(r, ω, u0) + Z(θrω))‖L(H) dr

}
≤ ‖ξ‖eLt .

Hence the condition RC (II) holds by choosing α̃1 = eL, since

sup
t∈[0,1]

sup
u0∈A(ω)

α1(Dϕ(t, ω, u0)) = sup
t∈[0,1]

sup
u0∈A(ω)

‖Dϕ(t, ω, u0)‖L(H)

= sup
t∈[0,1]

sup
u0∈A(ω)

sup
ξ∈H
‖ξ‖=1

‖U(t)‖ ≤ eL .

Clearly we have

E(ln α̃1) <∞ .

The last condition RC (III) is most important for our result. The following lemma is of great
use for the proof. A more general version can be found in [Tem88, Chapter VI, Lemma 2.1, p.390].

Lemma 4.2.3. Suppose A = ∆µ is the Laplacian on L2(K,µ) with the properties introduced in
Section 2.4. Let ψ1, ..., ψm be a family of FE0 which is orthonormal in H, then

m∑

i=1
(Aψi, ψi) ≤ −(λ1 + ...+ λm),

where (λi)i∈N is the sequence of eigenvalues of −A.
Taking into account the asymptotics of the Laplacian −A given in Lemma 2.4.18, we estimate

m∑

i=1
λi ≥ C3

m∑

i=1
i

2
dS ≥ C3

1 + 2/dS
m

1+ 2
dS .

for a constant C3 > 0.
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According to the previous section we consider first Pm(Dϕ(t, ω, u0)) for fixed t ∈ R+, ω ∈ Ω
and u0 ∈ A(ω) for some m ∈ N. For this purpose consider m solutions of the equation (4.2.6) for
m initial elements ξi ∈ H, i ∈ {1, ...,m}. Let Qm(r) = Qm(r, ω, u0; ξ1, ..., ξm) be the orthogonal
projector that maps H onto span(U1(r), ..., Um(r)) for r ∈ R+. Choose an orthonormal basis of
H denoted by (ψi(r))∞i=1 such that ψ1(r), ..., ψm(r) is an orthonormal basis of Qm(r)H. Note that
since U1(r), ..., Um(r) ∈ FE0 we have that ψ1(r), ..., ψm(r) ∈ FE0 . Hence we conclude accordingly
to the previous lemma,

Tr ([A+DF (ϕ(r, ω, u0) + Z(θrω))] ◦Qm(r))

=
∞∑

i=1

(
[A+DF (ϕ(r, ω, u0) + Z(θrω))] ◦Qm(r)ψi(r), ψi(r)

)

=
m∑

i=1

[
(Aψi(r), ψi(r)) +

(
DF (ϕ(r, ω, u0) + Z(θrω))ψi(r), ψi(r)

)]

≤−
m∑

i=1
λi +mL ≤ − C3

1 + 2/dS
m

1+ 2
dS +mL

(4.2.7)

with L being the Lipschitz constant of the nonlinearity F . We obtain for m ∈ N,

Pm(Dϕ(t, ω, u0)) = sup
ξ1,...,ξm∈H
‖ξi‖≤1,∀i

‖U1(t) ∧ · · · ∧ Um(t)‖∧mH

= sup
ξ1,...,ξm∈H
‖ξi‖≤1,∀i

exp
{∫ t

0
Tr ([A+DF (ϕ(r, ω, u0) + Z(θrω))] ◦Qm(r)) dr

}
.

Together with the estimate (4.2.7) we infer

Pm(Dϕ(t, ω, u0)) ≤ sup
ξ1,...,ξm∈H
‖ξi‖≤1,∀i

exp
{∫ t

0
− C3

1 + 2/dS
m

1+ 2
dS +mLdr

}

= exp
{
t

(
− C3

1 + 2/dS
m

1+ 2
dS +mL

)}
=: P̃m(t, ω) ,

(4.2.8)

where in our case P̃m(t, ω) is independent of ω.
Finally we observe for any t > 0,

E(ln P̃m(t, ·)) = ln P̃m(t, ·) < 0

if and only if

m
2
dS >

L

Cs
, (4.2.9)

for Cs := C3
1+2/dS and m ∈ N sufficiently large. Hence the condition RC (III) is fulfilled.

Theorem 4.2.4. Let ϕ be the RDS presented in Theorem 3.3.2, where the domain K of the
Hilbert space L2(K,µ) is a connected p.c.f. fractal introduced in Section 2.4. Suppose ϕ possesses
a random attractor A(ω), ω ∈ Ω as stated in Theorem 3.4.13. Moreover assume that the conditions
RC (I)–RC (III) hold.
Then the Hausdorff dimension of the random attractor is bounded by the smallest number m ∈ N
which fulfills

m >

(
L

Cs

) dS
2
.
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The proof follows directly from the previous discussion and Theorem 4.2.1.

Remark 4.2.5. In the arguments succeeding Lemma 4.2.3 we can choose t0(ω) = t0 to be an
arbitrary positive constant, such that for every t ≥ t0 the condition RC (III) is fulfilled.
However in the case of an ω-depending Lipschitz constant L(θtω) for t ∈ R+ and ω ∈ Ω it is
possible to obtain a similar result as in (4.2.9). Assume in addition that EL < ∞. Then (4.2.8)
becomes

Pm(Dϕ(t, ω, u0)) ≤ sup
ξ1,...,ξm∈H
‖ξi‖≤1,∀i

exp
{
− C3t

1 + 2/dS
m

1+ 2
dS +mt · 1

t

∫ t

0
L(θrω) dr

}
.

According to the Birkhoff-Chintchin Ergodic Theorem 3.1.4 there exists a time t0(ω) > 0 such
that for every t ≥ t0(ω),

Pm(Dϕ(t, ω, u0)) ≤ exp
{
t

(
− C3

1 + 2/dS
m

1+ 2
dS +mEL

)}
=: P̃m(t, ω) .

Hence we obtain a similar condition as above,

m
2
dS >

EL

Cs
.

Clearly we have to adjust as well the other conditions, that are necessary for the result in Theorem
4.2.4.

For the random attractor of the SPDE (2.3.4) discussed in Theorem 3.4.13 it holds

Ã(ω) = T (ω,A(ω))

where T (ω, ·) : H → H is the conjugation between the RDE and the SPDE. By Corollary 2.4
[Fal90, (b), p.30] we know that for every ω ∈ Ω

dimH(Ã(ω)) = dimH(A(ω)) ,

since ‖T (ω, x)− T (ω, y)‖ = ‖x− y‖ for every x, y ∈ A(ω).

We shortly discuss that the Hausdorff dimension of A(ω) is constant a.s. This statement is
presented e.g. in [CF98, Lemma 4.2, p.456] and [Sch97, Remark 3.3, p.962].
According to Theorem 3.3.2 the mapping ϕ(t, ω, ·) : H → H is Lipschitz continuous for every
t ∈ R+ and ω ∈ Ω. Therefore Corollary 2.4 in [Fal90, (a), p.30] together with the invariance of
the random attractor in Definition 3.4.5 tell us that

dimH(A(θtω)) = dimH(ϕ(t, ω,A(ω))) ≤ dimH(A(ω))

for fixed t ∈ R+ and ω ∈ Ω. Since the measure P is invariant w.r.t. θ we have E[dimH(A(θt·))] =
E[dimH(A(·))]. Hence we see directly that

P(dimH(A(θtω)) = dimH(A(ω)),∀t ≥ 0) = 1 .

Then applying the Ergodic Theorem 3.1.4 and that θ is ergodic we obtain that dimH(A(·)) is a.s.
constant.
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4.3 A numerical value for the bound in the case of the SG
Until now we have not chosen a particular nonlinearity F of the RDE (3.3.3),

du(t) = Au(t)dt+ F (u(t) + Z(θtω))dt, t > 0
u(0) = u0 ∈ H .

In the previous section we made several assumptions on the nonlinearity and we justify them is
this section using integral operators.
We have to check that F is Lipschitz continuous with constant L > 0. According to the discussion
prior to Lemma 3.4.11 there has to exist a small linear growth constant such that l < α ≤ L,
where α = λ1 is the smallest positive eigenvalue of −∆µ = −A. The nonlinearity needs to be
twice Fréchet differentiable and its second derivative has to be bounded by a constant CF > 0,
cf. Theorem 4.2.2.
As a traditional fractal set K to start with, we choose the Sierpinski gasket described in Chapter
2. In Remark 2.4.20 we stated that it is possible to construct the Laplacian −∆µ pointwise by a
sequence of iterative graph Laplacians similar to Definition 2.4.9. Using the spectral decimation
method described e.g. in [FS92] or [Str06, Section 3.3] we have the following results.
Solving an elementary discrete Dirichlet problem on the first graph, that is the pre-level of the
SG, with vertex set V1 gives us that the corresponding Laplacian ∆1 has the eigenvalues λ∆1

1 = 2
and λ∆1

2 = 5 with multiplicity 1 resp. 2. Suppose we are given an eigenvalue λ∆m−1 on the graph
with vertex set Vm−1, then we calculate the so called continued eigenvalues λ∆m of the Laplacian
∆m on the graph of Vm by

λ∆m−1 = λ∆m(5− λ∆m),

or equivalent

λ∆m = 5
2

[
1±

√
1− 4

25λ
∆m−1

]
. (4.3.1)

Using this recursive formula we obtain the eigenvalues λ of the Laplacian −∆µ on the SG by

λ := lim
m→∞

5mλ∆m ,

whenever the above limit exists. Of particular interest are those limits which we obtain with
all but a finite sequence of minus signs at the bifurcation in (4.3.1). Following the discussion in
[Str06, p.78], the lowest positive eigenvalue λ1 occurs, when we start with λ∆1

1 = 2 and take at
every occuring bifurcation in (4.3.1) the minus sign. Using for example a classical calculation
program like Mathematica the limit converges to α = λ1 ≈ 2.242. For details on the used code
we refer to [BE17].

We introduce now integral operators according to [KA78, Chapter XVII, Section 3, p.548].

Definition 4.3.1. Let H = L2(K,µ) be the Hilbert space introduced in the previous chapters.
The operator F : H → H given by

F (u) : K → R,

s 7→ F (u)(s) =
∫

K
k(s, x, u(x)) dµ(x)

is called integral operator at u ∈ H and k : K ×K × R→ R is called integral kernel.

For the Fréchet derivatives of this operator we have the following theorem.
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Theorem 4.3.2 ([KA78], Satz 3.XVII, p.548). Let the function k(s, x, ·) : R → R be twice
differentiable with continuous second derivative k′′(s, x, ·) for fixed s, x ∈ K. In particular for
every (s, x, y) ∈ K ×K × R we have

|k′′(s, x, y)| ≤ C ′′k

for some constant C ′′k > 0. Then the integral operator F is twice Fréchet differentiable at u ∈ H
with derivatives

[DF (u)ξ](s) =
∫

K
k′(s, x, u(x))ξ(x) dµ(x)

and

[D2F (u)(ξ, ξ̄)](s) =
∫

K
k′′(s, x, u(x))ξ(x)ξ̄(x) dµ(x)

for every s ∈ K, ξ, ξ̄ ∈ H.

In the following example we will choose specific integral kernels to check the assumptions we
took for the nonlinearity.

Example 4.3.3. For simplicity we assume that we have a partial separation of the variables, i.e.
we suppose

(1) k(s, x, y) = f(s, x) + g(y) or (2) k(s, x, y) = f(s, x)g(y)

where f ∈ C(K ×K;R) and g ∈ C2(R;R), such that there exist constants C ′g, C ′′g > 0 with

|g′(y)| ≤ C ′g and |g′′(y)| ≤ C ′′g

for every y ∈ R. Moreover interpreting g as a mapping from H to H, it has a linear growth, i.e
there exist constants l1, c > 0 such that ‖g(u)‖ ≤ l1‖u‖+ c for u ∈ H.
We estimate the (uniform) bound of the first derivative in the case (1)

‖DF (u)ξ‖2 =
∫

K

∣∣∣∣
∫

K
k′(s, x, u(x))ξ(x) dµ(x)

∣∣∣∣
2
dµ(s)

= µ(K)︸ ︷︷ ︸
=1

∣∣∣∣
∫

K
g′(u(x))ξ(x) dµ(x)

∣∣∣∣
2

≤ (C ′g)2 · ‖ξ‖2

and therefore ‖DF (u)‖L(H) ≤ C ′g for every u ∈ H. Together with the mean value theorem for
Fréchet derivatives (see [Wou79, Section 12.1, Corollary 3, p.266]) we obtain that there exists a
τ ∈ (0, 1) such that for u, v ∈ H

‖F (u)− F (v)‖ ≤ ‖DF (v + τ(u− v))‖L(H)‖u− v‖ ≤ C ′g‖u− v‖

and we take L = C ′g as the Lipschitz constant. Similar we obtain for the second derivative,

‖D2F (u)(ξ, ξ̄)‖2 =
∣∣∣∣
∫

K
g′′(u(x))ξ(x)ξ̄(x) dµ(x)

∣∣∣∣
2

≤ (C ′′g )2 · ‖ξ‖2‖ξ̄‖2
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and so ‖D2F (u)‖BL(H×H,H) ≤ C ′′g =: CF < ∞ for every u ∈ H. The linear growth of F follows
for u ∈ H and s ∈ K from

|F (u)(s)|2 ≤
(∣∣∣∣
∫

K
f(s, x) dµ(x)

∣∣∣∣+
∣∣∣∣
∫

K
g(u(x)) dµ(x)

∣∣∣∣
)2

≤ 2f2
max + 2‖g(u)‖2

where fmax is the maximum of the continuous function h : K → R, h(s) := maxx∈K |f(s, x)|. We
conclude with the linear growth of the function g, that

‖F (u)‖ ≤ l‖u‖+ d, d2 := 2f2
max + 4c2 and l := 2l1 .

For an integral kernel as in (2) we obtain in a similar way the Lipschitz constant

‖DF (u)‖L(H) ≤ fmaxC
′
g =: L

and the bound of the second derivative,

‖D2F (u)‖BL(H×H,H) ≤ fmaxC
′′
g =: CF .

For the linear growth we observe

‖F (u)‖ ≤ l‖u‖+ d, d := fmaxc and l := fmaxl1 .

If we are interested in particular numbers, then choose for example

k(s, x, u(x)) = f(s, x) + g(u(x)) = e−|s|
2 + sin(3u(x))

with s, x ∈ K and u ∈ L2(K,µ). Then we observe |g′(y)| ≤ 3 =: L and for the second derivative
|g′′(y)| ≤ 9 =: CF for every y ∈ R. Concerning the linear growth we can choose for instance
‖g(u)‖ ≤ ‖u‖+ 1 such that l = 2l1 = 2. Therefore we have found an example of a nonlinearity F
with 2 < α ≈ 2.24 < 3 and a bounded second derivative. In view of Lemma 3.4.11 and Theorem
3.4.13 we obtain a random attractor which is not a singleton.

Now we are ready to discuss the value of the upper bound on the Hausdorff dimension we
gave in Theorem 4.2.4.

Theorem 4.3.4. Let ϕ be the random dynamical system in (3.3.5) with a nonlinearity given by
F (u)(s) =

∫
K e
−|s|2 + sin(3u(x)) dµ(x) for s ∈ K, where K is the Sierpinski gasket. Then the

associated random attractor A(ω), ω ∈ Ω has a bounded Hausdorff dimension and in particular,
dimH(A(ω)) ≤ 11.

Proof. We need the approximate size of the constant Cs = C3
1+2/dS . We recall from Example 2.4.19

that dS = log 9
log 5 ≈ 1.365 for the Sierpinski gasket. Let us rewrite (4.2.9),

m
2
dS >

L

Cs
= L

C3

(
1 + 2

dS

)

where the constant C3 > 0 is given by Lemma 2.4.18. This number C3 > 0 is often not stated
explicitly in the literature. For the SG there is however an interesting result ([FS92, p.27]), which
originates from the eigenvalue counting function ρ : (0,∞)→ [0,∞), that counts the eigenvalues
w.r.t. their multiplicities, i.e. ρ(x) := #{j ∈ N : λj ≤ x}. We start with presenting this result,

ρ(x)
xdS/2

≤ 9 · ζ(5)−dS/2, x > ζ(5) (4.3.2)
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4.3 A numerical value for the bound in the case of the SG

where the function ζ :
(
−∞, 25

4
]
→ R+ is given by

ζ(z) := lim
m→∞

5m+1φ
(m)
− (z) .

The term φ
(m)
− denotes the m-th composition of the function

φ−(x) = 5
2

(
1−

√
1− 4

25x
)

for x ∈
(
0, 25

4
]
. Using again a reasonable program we calculate ζ(5) ≈ 37.257 and therefore

ρ(x)
xdS/2

≤ 9 · ζ(5)−dS/2 ≈ 0.762, x > ζ(5) . (4.3.3)

From the inequality (4.3.2) we also obtain a bound for x ≤ ζ(5) since

ρ(x) ≤ ρ(ζ(5)) ≤ ρ(y) ≤ 9ζ(5)−dS/2ydS/2

for every y > ζ(5). Since ρ(y) is right-continuous, we conclude

ρ(x)
xdS/2

≤ 9
xdS/2

≤ 9
λ
dS/2
1

≈ 5.187, x ≤ ζ(5) (4.3.4)

and note that for x < λ1 we have clearly ρ(x) = 0. In comparison of (4.3.3) and (4.3.4) we have
the general result for every x > 0,

ρ(x)
xdS/2

≤ 9
λ
dS/2
1

=: C2 . (4.3.5)

Although this estimate is not very sharp, we obtain a general result with this constant. Analo-
gously to the proof of Lemma 5.1.3 in [Kig01, p.159] we observe for every i ≥ 1,

i ≤ ρ(λi) ≤ C2λ
dS
2
i .

Hence choosing C3 := 1/(C2)
2
dS we have C3i

2
dS ≤ λi for every i ∈ N. Finally we are looking for

the smallest m ∈ N such that

m >

(
(1 + 2

dS
)

C3

)dS/2
· LdS/2 = C2

(
1 + 2

dS

)dS/2
· LdS/2 ≈ 9.602 · LdS/2

and since L = 3 we have dimH(A(ω)) ≤ 21 = m. We also observe by the last discussion that this
upper bound on the Hausdorff dimension depends strongly on the Lipschitz constant L resp. the
bound for the first derivative of F , more precisely m ∼ LdS/2.

To obtain the estimate stated in the theorem, we construct a more precise estimate than
(4.3.5). Although it is quite difficult to state the complete (ordered) spectrum of ∆µ on the SG
we know by (4.3.4) that ρ(x) ≤ 9 for x < ζ(5). That means in particular that up to ζ(5) there
are at most 9 eigenvalues. For each of these eigenvalues we have as a consequence of (4.3.5),

λi ≥
λ1

92/dS
i2/dS =: C ′3i2/dS , i ∈ {1, ..., 9}

and for every eigenvalue larger than ζ(5) we have, following (4.3.3),

λi ≥
ζ(5)
92/dS

i2/dS =: C ′′3 i2/dS .
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Considering now the sum of the first m (m > 9) eigenvalues, we observe

m∑

i=1
λi ≥ C ′3

9∑

i=1
i2/dS + C ′′3

m∑

i=10
i2/dS ≥ 9C ′3 + (m− 9)C ′′3

m

m∑

i=1
i2/dS

≥ (m− 9)C ′′3
m

m∑

i=1
i2/dS ≥ C ′′3

1 + 2/dS
m− 9
m

·m1+ 2
dS

since C ′′3 > C ′3. Then if we follow the reasoning in (4.2.7) and (4.2.8) we conclude that m has to
fulfill

− C ′′3
1 + 2/dS

m− 9
m

·m1+ 2
dS +mL < 0 ,

which is equivalent to

m
2
dS >

(1 + 2/dS)
C ′′3

L · m

m− 9 . (4.3.6)

Hence we are looking for the smallest m ∈ N that fulfills (4.3.6) and m > 9. Together with the
chosen nonlinearity and the related Lipschitz constant L = 3, the inequality (4.3.6) becomes

m
2
dS > 1.654 · L · m

m− 9 = 4.962 · m

m− 9 ,

which holds for N 3 m > 10.652, hence dimH(A(ω)) ≤ 11. Note again if L→∞ thenm→∞.
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Chapter 5

A lower bound on the Hausdorff
dimension of the random attractor

In this chapter we discuss a lower bound for the random attractor of a given SPDE with a
multiplicative noise. In the first section we state the SPDE and we show similar to Chapter 3 the
existence of an RDS and its associated random attractor. In doing so we use a conjugation to
obtain a related RDE.
We follow the idea to use invariant manifolds as a subset of the random attractor, as presented
in the deterministic theory, e.g. in [Tem88, Chapter VII, Section 3, p.482 ff.]. Similar to this
deterministic theory we show that a subset of the random unstable manifold is included in the
random attractor.
Our approach rely on the theory of (local) random unstable manifolds described e.g. in [GALS10,
Section 2]. Therefore we start the second section with a short introduction of the important
concepts concerning these manifolds. Later in this section we truncate the given RDE to show
the existence of a global unstable Lipschitz manifold for this truncated differential equation. This
construction helps us in the third and last section to show that this manifold is in fact a local
unstable manifold for the original RDE. Finally we are able to establish our result. We show that
the intersection of the local manifold with a certain neighborhood of zero in H is included in the
attractor. Using this and a projection theorem we obtain a lower bound for Hausdorff dimension
of the random attractor.

5.1 The random attractor for an SPDE with multiplicative noise
Let H be the space L2(K,µ) where (K,B(K), µ) is a σ-finite measure space of an (open) bounded
subset of Rn, n ≥ 1. Then let us consider the following SPDE with a multiplicative noise,

dv(t) = (Av(t) + F(v(t)))dt+ v(t) ◦ dW (t), ∀t > 0,
v(0) = v0 ∈ H .

(5.1.1)

Here the linear operator A is the generator of an analytic semigroup {S(t)}t≥0 with assumptions
like in Theorem 2.1.13 such that in particular −A has discrete positive spectrum. For the nonlin-
earity term we assume a global Lipschitz continuity with constant L > 0. W is a two-sided Wiener
process on the canonical space Ω := C0(R,R). We equipp this set with the compact open topology
and consider the related Wiener shift θ = (θt)t∈R with θtω(·) = ω(t+ ·)−ω(t) similar to Example
3.1.6. Together with the Wiener measure P0 : B(C0(R;R))→ [0, 1] given by the finite dimensional
distributions of W , we obtain the probability space (Ω,F ,P) := (C0(R;R),B(C0(R;R)),P0).
Similar to Theorem 3.1.7 we can show that P is invariant and that (Ω,F ,P, θ) forms an ergodic
metric dynamical system.
For more informations on the appearing Stratonovich differential v◦dW we refer to [Pro04, Chap-
ter II, Section 7]. It is also well-known (e.g. in [Pro04, Chapter V, Section 5]) that the equation
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(5.1.1) has the corresponding Itô stochastic differential equation

dv(t) = (Av(t) + F(v(t)))dt+ v(t)
2 dt+ v(t)dW (t), ∀t > 0,

v(0) = v0 ∈ H .

The theory of solutions for the above stochastic evolution equation is formulated in [DPZ92,
Chapter 7]. As in Chapter 3 we have the problem that the appearing stochastic integrals are only
defined almost surely and that the associated probability space has to be complete. Since we are
interested in random dynamical systems that are generated by the solution operators of equations
like (5.1.1) we have to overcome this problem. The following lemma is proven in [DLS04, Lemma
2.1, p.2114] and serves as a corresponding result to the statements in Section 3.2 and Theorem
3.1.10.

Lemma 5.1.1.

(i) There exists a θ-invariant subset Ω′ ⊆ Ω of full P0-measure with the property that each
element in Ω′ grows sublinear, i.e. for every ω ∈ Ω′

lim
t→±∞

|ω(t)|
|t|

= 0 .

(ii) Suppose we are given the θ-invariant set Ω′ of (i). Then for every ω ∈ Ω′,

z(ω) :=
∫ 0

−∞
er dω(r) = −

∫ 0

−∞
erω(r) dr

is well-defined and the unique stationary solution of the equation

dz(t) = −z(t)dt+ dω(t), t > 0,
z(0) = z(ω)

is given by the Ornstein-Uhlenbeck process z : R× Ω′ → R,

z(t, ω) := z(θtω) =
∫ 0

−∞
er dθtω(r) = −

∫ 0

−∞
erθtω(r) dr

= −
∫ 0

−∞
erω(t+ r) dr + ω(t) .

Moreover for every ω ∈ Ω′ the paths of z(θ·ω) are continuous and lim
t→±∞

|z(θtω)|
|t| = 0.

(iii) There exists a θ-invariant set Ω′′ ⊆ Ω of full P0-measure such that for every ω ∈ Ω′′

lim
t→±∞

1
t

∫ t

0
z(θrω) dr = 0 .

For the following we replace Ω by Ω̃ := Ω′∩Ω′′, the σ-algebra B(C0(R;R)) by the trace with Ω̃,
that is Ω̃∩B(C0(R;R)) and the Wiener measure P0 by its restriction on the new trace σ-algebra.
For simplicity we rename the associated ’new’ metric dynamical system by the old notation, i.e.

(Ω,F ,P, (θt)t∈R) .

We consider now an RDE which can be transformed by the Ornstein-Uhlenbeck process into
the SPDE (5.1.1),

du(t)
dt

= Au(t) + z(θtω)u(t) + e−z(θtω)F
(
u(t)ez(θtω)

)
,

u(0) = u0 ,
(5.1.2)
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for every t ∈ R+, ω ∈ Ω and u0 ∈ H. The substitution is identified by,

u(t) = v(t)e−z(θtω)

for every t ∈ R+, ω ∈ Ω. This substitution gives us in fact the conjugacy T : Ω ×H → H with
T (ω, x) := xez(ω) and its inverse T−1(ω, x) = xe−z(ω).

For simplicity we introduce for all ω ∈ Ω and u ∈ H the notation

F (ω, u) := e−z(ω)F
(
uez(ω)

)
. (5.1.3)

Clearly this nonlinearity F is Lipschitz continuous with the same Lipschitz constant L from the
originial nonlinearity F . In recall of Theorem 3.3.2 we have the following similar statement, see
also [DLS04, p.2115].

Theorem 5.1.2. Under the previous assumptions the equation (5.1.2) has a unique mild solution
on every interval [0, T ], T > 0 given by

u(t) = u(t, ω, u0) = S(t)e
∫ t
0 z(θsω) dsu0 +

∫ t

0
S(t− r)e

∫ t
r z(θsω) dsF (θrω, u(r)) dr (5.1.4)

for all t ∈ R+, u0 ∈ H and ω ∈ Ω. The solution operator given in (5.1.4) generates a continuous
random dynamical system ϕ : R+ × Ω×H → H.

To prove the previous theorem we refer to the proof of Theorem 3.3.2 and the references
therein.

In view of Theorem 2.1.13 we choose the constant α = λ1 the smallest positive eigenvalue
of −A. For the following we assume that F has at most a linear growth with a small growth
constant. More precisely, we assume the existence of the constants l, c1 > 0 such that,

(A1) ‖F(u)‖ ≤ l‖u‖+ c1, and l < α .

In case we use F instead of F the last condition (A1) becomes

‖F (ω, u)‖ = e−z(ω)‖F(uez(ω))‖ ≤ l‖u‖+ c1e
−z(ω) (5.1.5)

for every ω ∈ Ω and u ∈ H.
The following lemma is a preparation for the existence theorem of the random attractor for

the questioned evolution equation.

Lemma 5.1.3. The RDS ϕ generated by the solution (5.1.4) has a random absorbing set B.

Proof. We estimate in norm

‖u(t)‖ ≤ e−αt+
∫ t
0 z(θsω) ds‖u0‖+

∫ t

0
e−α(t−r)+

∫ t
r z(θsω) ds‖F (θrω, u(r))‖ dr

and define f(t) := eαt−
∫ t
0 z(θsω) ds‖u(t)‖ and Y (ω) := c1e

−z(ω) for ω ∈ Ω. Note that Y is a tempered
random variable. In view of the linear growth (5.1.5) we obtain

f(t) ≤ ‖u0‖+
∫ t

0
lf(r) dr +

∫ t

0
Y (θrω)eαr−

∫ r
0 z(θsω) ds dr .

Applying the Gronwall Lemma 3.3.1, we have

f(t) ≤ elt
[
‖u0‖+

∫ t

0
e−

∫ r
0 z(θsω) ds+(α−l)rY (θrω) dr

]
.
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Hence we see that

‖u(t, ω, u0)‖ ≤ e(l−α)t+
∫ t
0 z(θsω) ds‖u0‖+

∫ t

0
e(l−α)(t−r)+

∫ t
r z(θsω)dsY (θrω) dr .

We substitute ω by θ−tω,

‖u(t, θ−tω, u0)‖ ≤ e(l−α)t+
∫ 0
−t z(θsω) ds‖u0‖+

∫ 0

−t
e−(l−α)r+

∫ t
r+t z(θs−tω) dsY (θrω) dr

≤ e(l−α)t+
∫ 0
−t z(θsω) ds‖u0‖+

∫ 0

−∞
e−(l−α)r−

∫ r
0 z(θsω) dsY (θrω) dr .

The first summand converges for t → ∞ to zero, since we have together with property (iii) of
Lemma 5.1.1 that for every ε > 0 there exist t0(ω, ε) > 0 such that for every |t| ≥ t0(ω, ε),

∫ 0

−t
z(θsω) ds = t

[
1
−t

(
−
∫ 0

−t
z(θsω) ds

)]
= t

[
1
−t

∫ −t

0
z(θsω) ds

]
≤ tε. (5.1.6)

We choose now ε > 0 such that l − α+ ε < 0. Taking into account that u0 ∈ D(θ−tω), where D
is a tempered set, we see that the limit t→∞ of the first summand is indeed zero.
Finally we obtain

lim sup
t→∞

‖u(t, θ−tω, u0)‖ ≤
∫ 0

−∞
e(α−l)r−

∫ r
0 z(θsω) dsY (θrω) dr. (5.1.7)

The following discussion ensures the existence of the latest integral. We identify for every ε > 0
with α−l

2 > ε the (joint) time t0(ω, ε) > 0 such that for every |t| ≥ t0(ω, ε)

Y (θtω) ≤ e−εt,

since Y is a tempered random variable (see in particular Remark 3.2.7) and it holds as well

−
∫ t

0
z(θrω) dr ≤ −εt .

The integral in (5.1.7) becomes
∫ 0

−∞
e(α−l)r−

∫ r
0 z(θsω) dsY (θrω) dr = c1

∫ 0

−t0(ω,ε)
e(α−l)r−

∫ r
0 z(θsω) dse−z(θrω) dr

+
∫ −t0(ω,ε)

−∞
e(α−l−2ε)r dr <∞ .

The function inside the first integral in the latter inequality is a composition of continuous func-
tions on [−t0(ω, ε), 0] and has a maximum. Hence we choose the absorbing set B(ω) := B(0, ρ(ω))
with radius

ρ(ω) := 2
∫ 0

−∞
e(α−l)r−

∫ r
0 z(θsω) dsY (θrω) dr .

The temperedness of this set is analogue to the proof of Lemma 3.4.11.

Like we have seen in Lemma 3.4.12 we show the compactness of an absorbing set.

Lemma 5.1.4. Let B be a random absorbing set as in the previous lemma. Then the set K(ω) :=
ϕ(1, θ−1ω,B(θ−1ω))H is compact and random absorbing.
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Proof. We will only discuss the compactness argument. It is sufficient to show the boundedness
of the set ϕ(1, θ−1ω,B(θ−1ω)) in D(Aβ), β ∈ (0, 1). The solution at time one is

ϕ(1, ω, u0) = e
∫ 1
0 z(θsω) dsS(1)u0 +

∫ 1

0
e
∫ 1
r z(θsω) dsS(1− r)F (θrω, ϕ(r, ω, u0)) dr .

Since the process z has continuous paths (see (ii) in Lemma 5.1.1) we have, by defining zmax(ω) :=
maxt∈[0,1] z(θtω) ∈ R, that exp

(∫ 1
r z(θsω) ds

)
≤ exp(|zmax(ω)|) for every r ∈ [0, 1] and ω ∈ Ω.

Using additionally that the semigroup is analytic we obtain

‖ϕ(1, ω, u0)‖β ≤Mβe
−α+|zmax(ω)|‖u0‖+

∫ 1

0
Mβe

|zmax(ω)|l
e−α(1−r)

(1− r)β ‖ϕ(r, ω, u0)‖ dr

+
∫ 1

0
Mβe

|zmax(ω)| e
−α(1−r)

(1− r)β Y (θrω) dr
(5.1.8)

where Mβ > 0 is a constant as formulated in Theorem 2.1.16 and Y (ω) = c1e
−z(ω) like in

Lemma 5.1.3. Now replacing ω by θ−1ω and assuming u0 ∈ B(θ−1ω) we can argue exactly like
in Lemma 3.4.12. We have that ϕ(r, θ−1ω, u0) ∈ B(0, R(ω)) for a proper radius R(ω) > 0 and
r ∈ [0, 1]. Using in the end again continuity for the last integral in (5.1.8), we conlude that
‖ϕ(1, θ−1ω, u0)‖β <∞. The compact embedding of D(Aβ) into H (cf. Theorem 2.1.15) gives the
statement.

We complete this section with the existence theorem for the random attractor. This result
follows from the previous two lemmas and the general Theorem 3.4.8. Moreover we use the
Lemmas 3.3.3 and 3.4.10.

Theorem 5.1.5. The random dynamical system ϕ generated by the solution of the RDE (5.1.2)
possesses a unique random D-attractor A(ω), ω ∈ Ω. Given the conjugation T : Ω×H → H

(ω, x) 7→ T (ω, x) = xez(ω),

SPDE (5.1.1) possesses the conjugated RDS

ψ : R+ × Ω×H → H

ψ(t, ω, x) = ϕ
(
t, ω, xe−z(ω)

)
ez(θtω) .

Moreover, the conjugated RDS ψ possesses a unique random attractor given by

Ã(ω) = A(ω)ez(ω) := {xez(ω) : x ∈ A(ω)}, ω ∈ Ω .

5.2 Existence of a global unstable manifold
This section starts with a short introduction to invariant manifolds. In particular we define the
concept of a global unstable (Lipschitz) manifold. Then we consider the RDE (5.1.2) and truncate
it to obtain a global unstable manifold inside the truncated ball. The final result is achieved by
a fixed-point argument using the Lyapunov-Perron approach.
We begin with describing a necessary splitting of the Hilbert space to discuss stability resp. in-
stability of manifolds.

Let A = ∆ be a Laplacian on H = L2(K,µ) where (K,B(K), µ) is a σ-finite measure space of
an (open) bounded subset of Rn, n ≥ 1. This operator is the generator of an analytic semigroup
{S(t)}t∈R+ and its spectrum shall be given by

· · · < λi < · · · < λ2 < λ1 < 0
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for all i ∈ N and it has no finite accumulation point, lim
i→∞

λi = −∞.
For any given positive number k > |λ1| there exists an index N ∈ N with

λu := λN + k > 0, λs := λN+1 + k < 0 . (5.2.1)

These are the corresponding smallest positive and largest negative eigenvalues of the shifted
spectrum. In the case an operator A has not a complete negative spectrum, we assume that A+k
is hyperbolic, i.e. 0 is not an eigenvalue of A+ k.
The associated eigenfunctions of ∆ + k are denoted by vi ∈ H, i ∈ N and form an orthonormal
basis of H. Since we avoid the eigenvalue zero the Hilbert space H is splitted into an unstable
subspace Hu and a stable subspace Hs and in particular we have H = Hu⊕Hs. These subspaces
are spanned by their corresponding eigenfunctions,

Hu = span({v1, v2, ..., vN}) and Hs = span({vN+1, ...}) . (5.2.2)

Note thatHu is a finite dimensional andHs is an infinite dimensional subspace ofH. These spaces
are invariant under the mapping {S(t)}t∈R for Hu resp. {S(t)}t∈R+ for Hs, see the following
lemma. We introduce the corresponding orthogonal projections πu : H → Hu and πs : H → Hs

by

x 7→ πux =
N∑

i=1
(x, vi)vi ,

x 7→ πsx =
∞∑

i=N+1
(x, vi)vi .

Clearly we have πs = IdH − πu. We want to point out the following general lemma, see for
instance [DLS04, p. 2112f.] or [OS13, p. 1667].

Lemma 5.2.1. Let A : D(A) → H be a linear unbounded operator which is the generator of
a C0-semigroup S on H. The semigroup S satisfies the exponential dichotomy with exponents
λu > λs if the following statements hold

(i) πuS(t) = S(t)πu for t ∈ R and πsS(t) = S(t)πs for t ≥ 0,

and there exists a constant M ≥ 1 such that,

(ii) for t ≤ 0

‖πuS(t)‖L(H) ≤Meλ
ut

and for t ≥ 0

‖πsS(t)‖L(H) ≤Meλ
st .

Remark 5.2.2. The proof follows from some functional analytic considerations. Note in the case
of Hu that the semigroup is still well-defined for t ≤ 0, since the space is finite dimensional. In
the following we set M = 1.

For the next part recall the Definition 3.4.1 of a random set and the Remark 3.4.9 on a
positively invariant random set.

Definition 5.2.3. Let H be a divided Hilbert space like in (5.2.2). Assume that the cocycle
ϕ(t, ω, ·) ∈ H is zero in zero for all t ≥ 0 and ω ∈ Ω.
Then the setM(ω) is called a global unstable (Lipschitz) manifold at zero, if the following prop-
erties are satisfied:
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(i) M is positively invariant,

(ii) M is exponentially attracting, i.e for all t ≥ 0, ω ∈ Ω and x ∈ M(ω), there exists x−t ∈
M(θ−tω) such that,

ϕ(t, θ−tω, x−t) = x

and x−t tends exponentially fast to zero for t→∞.

(iii) M has a Lipschitz graph structure, i.e. there exists a function hu : Ω × Hu → Hs with
hu(ω, 0) = 0 for every ω ∈ Ω, such that

M(ω) = {ξ + hu(ω, ξ) : ξ ∈ Hu} .

The function hu has to be measurable in its first component for fixed ξ ∈ Hu and Lipschitz
continuous in the second component for fixed ω ∈ Ω.

Remark 5.2.4. Analogously we could define a global stable Lipschitz manifold. Then we would
need to replace the mapping hu by a function hs : Ω×Hs → Hu enjoying the same properties as
in (iii) of the previous definition.

We begin studying the following differential equation for t ∈ R+ and ω ∈ Ω,

du

dt
= (∆ + k)u+ z(θtω)u+ F (θtω, u)− ku, t > 0,

u(0) = u0 ∈ H
(5.2.3)

which is identical to (5.1.2) under consideration of (5.1.3). Let us define

G(ω, u) := F (ω, u)− ku (5.2.4)

for all ω ∈ Ω and u ∈ H. By the Lipschitz continuity of F the operator G is Lipschitz continuous
with Lipschitz constant smaller or equal to L+ k > 0 for every ω ∈ Ω.
In the previous section we assumed a linear growth of the nonlinearity F as stated in (A1). As
introduced in the above definition we want to consider unstable manifolds at zero. Therefore we
give a condition on the nonlinearity F which ensures the fixed-point at zero,

(A2) F(0) = 0 ,

and then of course F (ω, 0) = 0 for every ω ∈ Ω. An application of the Banach fixed-point theorem
yields that zero is a fixed-point, i.e. ϕ(t, ω, 0) = 0 for every t ∈ R+ and ω ∈ Ω.

We introduce a modified equation from (5.2.3) by using a cut-off function similar to the ideas
in [GALS10, Section 4, p.1650].
We define the following cut-off function σ : R+ → [0, 1] given by

σ(s) =





1, s ≤ 1,
2− s, 1 < s < 2,
0, s ≥ 2 .

Let ρ : Ω→ (0,∞) be a random variable tempered from below, which we use as the radius of the
cut-off area. We modify the nonlinearity defined in (5.2.4) in the following way,

Gρ(ω, u) := Gρ(ω)(ω, u) := G

(
ω, u · σ

(
‖u‖
ρ(ω)

))
(5.2.5)
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for u ∈ H and ω ∈ Ω, where we often write for simplicity Gρ instead of Gρ(ω).
Let fρ(ω)(ω, x) := x · σ

(
‖x‖
ρ(ω)

)
for x ∈ H. Then ‖fρ(ω)(ω, x)‖ ≤ ρ(ω) and therefore we are in fact

inside of a ball with radius ρ(ω), ω ∈ Ω.

We consider the following truncated equation for ω ∈ Ω

du

dt
= (∆ + k)u+ z(θtω)u+Gρ(θtω, u), t > 0,

u(0) = u0 ∈ H .
(5.2.6)

We add two more standard assumptions to the original nonlinearity F . Assume that

(A3) the Frechét derivative of F exists and

DF(0) = kId for k > |λ1| ,

(A4) the Frechét derivative DF(·) is Lipschitz continuous with Lipschitz constant L′ > 0.

The appearing constant k in the assumption (A3) is chosen sensible, since we are now able to
divide H into the stable resp. unstable subspaces which are generated by the shifted spectrum of
the Laplacian ∆ + k, see (5.2.1) and (5.2.2).

The following lemma is important for the next statements. A similar version can be found in
[Ogr11, p.57] and [CDLS10, Lemma 4.1].

Lemma 5.2.5. The nonlinearity Gρ(ω, ·) is Lipschitz continuous with an ω-independent Lipschitz
constant smaller or equal to 3(L+ k). Moreover we have also a ω-dependent constant, i.e.

‖Gρ(ω, u1)−Gρ(ω, u2)‖ ≤ 9L′ez(ω)ρ(ω)‖u1 − u2‖ (5.2.7)

for all ω ∈ Ω and u1, u2 ∈ H and in particular we obtain

‖Gρ(ω, u)‖ ≤ 18L′ez(ω)ρ2(ω)

for all ω ∈ Ω and u ∈ H.

Proof. We write ρ instead of ρ(ω) since we only make ω-wise estimates.
We remark apriori

σ

(
‖u‖
ρ

)
=





1, ‖u‖ ≤ ρ
2− ‖u‖ρ , ρ < ‖u‖ < 2ρ
0, ‖u‖ ≥ 2ρ

and let us introduce the following abbreviation, ũ := u · σ
(
‖u‖
ρ

)
. Therefore for every u1, u2 ∈ H,

ω ∈ Ω,

‖ũ1 − ũ2‖ =
∥∥∥∥u1σ

(
‖u1‖
ρ

)
− u2σ

(
‖u2‖
ρ

)∥∥∥∥ ≤ Lσ‖u1 − u2‖ (5.2.8)

with Lσ = 3. To see this, we only verify the case ‖u1‖ ∈ (0, ρ) and ‖u2‖ ∈ (ρ, 2ρ). The other cases
follow by similar arguments. We consider the following convex combination u3 := (1−τ)u1 +τu2,
τ ∈ [0, 1] and choose τ such that ‖u3‖ = ρ then

‖ũ1 − ũ2‖ =
∥∥∥∥u1 − u3 + u3 − u2

(
2− ‖u2‖

ρ

)∥∥∥∥

≤ ‖u1 − u3‖+
∥∥∥∥u3

(
2− ‖u3‖

ρ

)
− u2

(
2− ‖u2‖

ρ

)∥∥∥∥ .
(5.2.9)
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Inside the last norm we insert the term ±u3

(
2− ‖u2‖

ρ

)
and obtain

∥∥∥∥u3

(
2− ‖u3‖

ρ

)
− u2

(
2− ‖u2‖

ρ

)∥∥∥∥ ≤
∣∣‖u2‖ − ‖u3‖

∣∣ · ‖u3‖
ρ

+
∣∣∣∣2−

‖u2‖
ρ

∣∣∣∣ ‖u3 − u2‖

≤
(
‖u3‖
ρ

+ 2− ‖u2‖
ρ

)
‖u3 − u2‖ ≤ 2‖u3 − u2‖ .

Combining this estimate with (5.2.9) we have with τ ∈ [0, 1]

‖ũ1 − ũ2‖ ≤ ‖u1 − u3‖+ 2‖u3 − u2‖ ≤ (|τ |+ 2|1− τ |) ‖u1 − u2‖ ≤ 2‖u1 − u2‖ .

The Lipschitz constant Lσ = 3 arises from the case ‖u1‖ ∈ (ρ, 2ρ) and ‖u2‖ ∈ (ρ, 2ρ). Finally we
conclude the Lipschitz continuity for Gρ from the above discussion,

‖Gρ(ω, u1)−Gρ(ω, u2)‖ = ‖G(ω, ũ1)−G(ω, ũ2)‖ ≤ (L+ k)Lσ‖u1 − u2‖ .

To obtain the estimate (5.2.7) we use the mean value theorem [Wou79, Section 12.1, Corollary 3,
p.266],

‖Gρ(ω, u1)−Gρ(ω, u2)‖ = ‖G(ω, ũ1)−G(ω, ũ2)‖
≤ sup

τ∈(0,1)
‖DG(ω, ũ1 + τ [ũ1 − ũ2])‖L(H) · ‖ũ1 − ũ2‖ .

Now we observe by our assumption (A3) and the definition of G,

DG(ω, x) = DF (ω, x)− kId = DF (ω, x)−DF(0) = DF
(
xez(ω)

)
−DF(0)

for every x ∈ H and ω ∈ Ω. Using this and the Lipschitz continuity assumed in (A4) we see that

‖Gρ(ω, u1)−Gρ(ω, u2)‖ ≤ sup
τ∈(0,1)

‖DG(ω, ũ1 + τ [ũ1 − ũ2])‖L(H) · ‖ũ1 − ũ2‖

≤ L′ez(ω) sup
τ∈(0,1)

‖ũ1 + τ [ũ1 − ũ2]‖ · ‖ũ1 − ũ2‖ .

We use the Lipschitz continuity in (5.2.8) again to observe

‖Gρ(ω, u1)−Gρ(ω, u2)‖ ≤ L′Lσez(ω) sup
τ∈(0,1)

‖ũ1 + τ [ũ1 − ũ2]‖ · ‖u1 − u2‖

≤ 3L′Lσez(ω)ρ‖u1 − u2‖ = 9L′ez(ω)ρ‖u1 − u2‖ ,

where the estimate for the supremum is obtained from ‖ũ‖ ≤ ρ, for every u ∈ H. As a consequence
of Gρ(ω, 0) = 0 we have for ‖u‖ ≤ 2ρ

‖Gρ(ω, u)‖ ≤ 9L′ez(ω)ρ‖u‖ ≤ 18L′ez(ω)ρ2 .

In the case ‖u‖ > 2ρ it is clear that ‖Gρ(ω, u)‖ = ‖G(ω, 0)‖ = 0.

Remark 5.2.6.

◦ We will use the ω-wise Lipschitz constant

L̃(ω) := 9L′ez(ω)ρ(ω)

of the function Gρ(ω, ·) in the next lemma. There we will choose a suitable radius ρ(ω) such
that we can control the appearing gap condition between λu > 0 and λs < 0.
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◦ Note that in the estimate (5.2.7) we have no dependence on the constant k responsable for
the spectral shift nor on the original Lipschitz constant L.

Proposition 5.2.7. Under the previous assumptions the truncated RDE (5.2.6) possesses, similar
to Theorem 5.1.2, a unique mild solution given by

uρ(t, ω, u0) = S(t)e
∫ t
0 z(θsω) dsu0 +

∫ t

0
S(t− r)e

∫ t
r z(θsω) dsGρ(θrω, uρ(r, ω, u0)) dr (5.2.10)

for all t ∈ R+, u0 ∈ H and ω ∈ Ω. The solution operator (5.2.10) generates a random dynamical
system ϕρ.

We want to construct unstable manifolds based on the Lyapunov-Perron method applied on
random evolution equations like in [OS13, Section 3]. This method gives us a fixed-point of an
integral equation (in the subsequent function space). The projection of this fixed-point will later
describe the graph structure of the unstable manifold, cf. (iii) in Definition 5.2.3. We introduce
the Banach space

Cγ :=
{
u ∈ C((−∞, 0], H) : sup

t≤0
e−γt−

∫ t
0 z(θsω) ds‖u(t)‖ <∞

}

for γ > 0 with the related norm

‖u‖γ := sup
t≤0

e−γt−
∫ t
0 z(θsω) ds‖u(t)‖ .

This space describes the continuous functions in H, such that the norms are decreasing with a
rate controlled by eγt+

∫ t
0 z(θsω) ds when t goes to −∞.

Lemma 5.2.8. We define γ := λu+λs

2 and assume γ > 0. For any c > 0 that fulfills the gap
condition 4c < λu − λs, we can choose the radius of ball B(0, ρ(ω)) sufficiently small, i.e.

ρ(ω) ≤ e−z(ω)

9L′ c (5.2.11)

for each ω ∈ Ω. Then for t ≤ 0, ω ∈ Ω and ξ ∈ Hu the function Jω,ξ on Cγ given by the integral
equation (Lyapunov-Perron transform)

Jω,ξ(g)[t] := πuS(t)e
∫ t
0 z(θsω) dsξ −

∫ 0

t
πuS(t− r)e

∫ t
r z(θsω) dsGρ(θrω, g(r)) dr (5.2.12)

+
∫ t

−∞
πsS(t− r)e

∫ t
r z(θsω) dsGρ(θrω, g(r)) dr

has a unique fixed-point denoted by Γ(ω, ξ) ∈ Cγ, which is Lipschitz continuous in ξ ∈ Hu for
each ω ∈ Ω.

Proof. Since we want to apply the Banach fixed-point Theorem ([AB06, Theorem 3.48, p.95]) we
need to see that Jω,ξ maps from Cγ into itself. This property follows from very similar arguments
as the ones the subsequent proof of the contraction property uses. The main ideas are based on
the equality S(·)ξ = πuS(·)ξ, ξ ∈ Hu for the first summand in equation (5.2.12), the exponential
dichotomy of the semigroup S, see Lemma 5.2.1 and the Lipschitz continuity of Gρ discussed in
Lemma 5.2.5 in combination with the assumptions of this theorem.
For simplicity we only show the contraction property. For each (ω, ξ) ∈ Ω×Hu and g, ḡ ∈ Cγ we
consider

‖Jω,ξ(g)− Jω,ξ(ḡ)‖γ =
∥∥∥∥−
∫ 0

·
πuS(· − r)e

∫ ·
r z(θsω) ds[Gρ(θrω, g(r))−Gρ(θrω, ḡ(r))] dr

+
∫ ·

−∞
πsS(· − r)e

∫ ·
r z(θsω) ds[Gρ(θrω, g(r))−Gρ(θrω, ḡ(r))] dr

∥∥∥∥
γ

.
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We estimate the last norm by Lemma 5.2.1 and the triangle inequality, which yields to

sup
t≤0

[∫ 0

t
eλ

u(t−r) · e−γ(t−r)e−γr−
∫ r
0 z(θsω) ds‖Gρ(θrω, g(r))−Gρ(θrω, ḡ(r))‖ dr

+
∫ t

−∞
eλ

s(t−r) · e−γ(t−r)e−γr−
∫ r
0 z(θsω) ds‖Gρ(θrω, g(r))−Gρ(θrω, ḡ(r))‖ dr

]
.

Taking the Lipschitz estimate for Gρ (5.2.7) into account we obtain

sup
t≤0

[∫ 0

t
e(λu−γ)(t−r)9L′ez(θrω)ρ(θrω) dr +

∫ t

−∞
e(λs−γ)(t−r)9L′ez(θrω)ρ(θrω) dr

]
‖g − ḡ‖γ .

Now applying the condition on the radius ρ from (5.2.11) we have

‖Jω,ξ(g)− Jω,ξ(ḡ)‖γ ≤ c‖g − ḡ‖γ sup
t≤0

[∫ 0

t
e(λu−γ)(t−r) dr +

∫ t

−∞
e(λs−γ)(t−r) dr

]

≤ 4c
λu − λs ‖g − ḡ‖γ .

From the assumptions we have the consequence that the mapping Jω,ξ is Lipschitz continuous
with Lipschitz constant smaller than one. Hence Jω,ξ is a uniform contraction w.r.t. the norm
‖·‖γ . The Banach fixed-point Theorem states that there exists a unique fixed-point of Jω,ξ denoted
by Γ(ω, ξ) ∈ Cγ , i.e. the sequence {(Jω,ξ(v))n}n≥0 converges to Γ(ω, ξ) as n→∞ for every v ∈ Cγ .

It remains to show that the fixed-point is Lipschitz continuous in the space Hu. Therefore
consider for all ξ, ξ̄ ∈ Hu, ω ∈ Ω,

‖Γ(ω, ξ)− Γ(ω, ξ̄)‖γ = ‖Jω,ξ(Γ(ω, ξ))− Jω,ξ̄(Γ(ω, ξ̄))‖γ
≤ ‖Jω,ξ(Γ(ω, ξ))− Jω,ξ(Γ(ω, ξ̄))‖γ + ‖Jω,ξ(Γ(ω, ξ̄))− Jω,ξ̄(Γ(ω, ξ̄))‖γ

≤ 4c
λu − λs ‖Γ(ω, ξ)− Γ(ω, ξ̄)‖γ + ‖πuS(·)e

∫ ·
0 z(θsω) ds(ξ − ξ̄)‖γ .

Similar as before Lemma 5.2.1 gives us,

‖Γ(ω, ξ)− Γ(ω, ξ̄)‖γ ≤
4c

λu − λs ‖Γ(ω, ξ)− Γ(ω, ξ̄)‖γ + ‖ξ − ξ̄‖ ,

which implies

‖Γ(ω, ξ)− Γ(ω, ξ̄)‖γ ≤
λu − λs

λu − λs − 4c‖ξ − ξ̄‖ = LΓ‖ξ − ξ̄‖ . (5.2.13)

with LΓ := λu−λs

λu−λs−4c ≥ 1.

Next we want to prove the main result of this section. The solution of the truncated equation
(5.2.6) generates a global unstable manifold at zero, like we introduced in Definition 5.2.3.

Theorem 5.2.9. Let F : H → H be a nonlinear function satisfying the assumptions (A2) – (A4)
and further the gap condition in Lemma 5.2.8 holds.
Then the truncated differential equation (5.2.6) possesses a global unstable manifoldM(ω) in the
sense of Definition 5.2.3. In particular

M(ω) = {ξ + hu(ω, ξ), ξ ∈ Hu}

where the function hu : Ω × Hu → Hs has to be measurable for fixed ξ ∈ Hu and Lipschitz
continuous for ω ∈ Ω.
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Proof. The proof is adapted from [Ogr11, p.62f.]. We begin with the Lipschitz graph structure of
the manifold, i.e. (iii) in Definition 5.2.3.
For all ω ∈ Ω and ξ ∈ Hu we define the mapping

Hs 3 hu(ω, ξ) := πsΓ(ω, ξ)[0]

=
∫ 0

−∞
πsS(−r)e

∫ 0
r z(θsω) dsGρ(θrω,Γ(ω, ξ)[r]) dr,

where Γ(ω, ξ) is the fixed-point of equation (5.2.12). Note that hu(ω, ξ) ∈ Cγ .
The Lipschitz continuity of hu(ω, ·) follows from the Lipschitz continuity of the fixed-point Γ(ω, ·)
and we prove the main ideas. Similiar to the previous proof we deduce

‖hu(ω, ξ)− hu(ω, ξ̄)‖ ≤
∫ 0

−∞

∥∥∥πsS(−r)e
∫ 0
r z(θsω) ds [Gρ(θrω,Γ(ω, ξ)[0])−Gρ(θrω,Γ(ω, ξ̄)[0])

]∥∥∥ dr

≤
∫ 0

−∞
eγre−γr−

∫ r
0 z(θsω) dse−λ

sr×

×
∥∥Gρ(θrω,Γ(ω, ξ)[0])−Gρ(θrω,Γ(ω, ξ̄)[0])

∥∥ dr .

Now applying the Lipschitz continuity of Gρ and using the continuity of Γ(ω, ξ) in Cγ , see (5.2.13),
we have

‖hu(ω, ξ)− hu(ω, ξ̄)‖ ≤
∫ 0

−∞
e−(λs−γ)r9L′ez(θrω)ρ(θrω) · LΓ‖ξ − ξ̄‖ dr

≤ LΓc‖ξ − ξ̄‖
∫ 0

−∞
e−(λs−γ)r dr ≤ 1

2LΓ‖ξ − ξ̄‖
(5.2.14)

where we applied the condition on ρ and the gap condition from Lemma 5.2.8.
Since Γ(ω, 0) = 0 (in view of assumption (A2)) we conclude that hu(ω, 0) = 0.

We will briefly discuss the measurability of the function hu(·, ξ) for fixed ξ ∈ Hu. By the
definition of hu it suffices to discuss the measurability of the mapping Ω 3 ω 7→ Γ(ω, ξ)[0] ∈ H
for fixed ξ ∈ Hu. We obtain Γ(ω, ξ) as the limit of compositions of the functions Jω,ξ(v) for
arbitrary v ∈ Cγ . But the mapping ω 7→ Jω,ξ(v)[t] given in (5.2.12) is F -measurable, since the
only ω-depending terms are ez(ω) and Gρ(ω, v). Due to their definitions these terms are random
variables, if the other variables are fixed. Hence we conclude that hu is measurable in its first
component and we know already that it is continuous in its second component. Thus hu is a
Carathéodory function, see [AB06, Definition 4.50, p.153].
For the following we identify ξ with πuu0, where u0 = u(0) ∈ H is the given initial data. We
already know

Γ(ω, ξ)[0] = πuΓ(ω, ξ)[0] + πsΓ(ω, ξ)[0] (5.2.15)
= ξ + hu(ω, ξ),

so it’s seems that the set of fixed-points Γ(ω, ξ)[0], ξ ∈ Hu describe the desired manifold. To show
(i) and (ii) of the Definition 5.2.3 we need to understand the image of these fixed-points under
the cut-off system ϕρ given by (5.2.10).

Positive invariance
Next we prove the positive invariance of the manifold. Let ϕρ be the RDS resp. the solution
operator in (5.2.10) and we want to show,

ϕρ(t, ω,Γ(ω, ξ)[0]) = Γ
(
θtω, π

uϕρ(t, ω,Γ(ω, ξ)[0])
)
[0] (5.2.16)
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for each t ≥ 0 and ω ∈ Ω. We define the function

Ψt,ω[s] :=
{

Γ(ω, ξ)[s+ t], s+ t < 0
ϕρ(s+ t, ω,Γ(ω, ξ)[0]) s+ t ≥ 0 ,

for all t ≥ 0. The previous function allows us to prove the more general result,

Ψt,ω[s] = Γ
(
θtω, π

uϕρ(t, ω,Γ(ω, ξ)[0])
)
[s] (5.2.17)

for all s ≤ 0. Setting s = 0 yields the desired positive invariance. Remember that Γ is the fixed
point of the integral equation, hence for s ≤ 0,

Γ(ω, ξ)[s] = πuS(s)e
∫ s
0 z(θqω) dqξ −

∫ 0

s
πuS(s− r)e

∫ s
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr (5.2.18)

+
∫ s

−∞
πsS(s− r)e

∫ s
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr .

First case: s < −t.
We derive for the stable part

πsΨt,ω[s] = πsΓ(ω, ξ)[s+ t]

=
∫ s+t

−∞
πsS(s+ t− r)e

∫ s+t
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr

=
∫ s

−∞
πsS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω,Γ(ω, ξ)[r + t])︸ ︷︷ ︸

=Ψt,ω [r]

dr .

For the unstable part we obtain

πuΨt,ω[s] = πuΓ(ω, ξ)[s+ t]

= πuS(s+ t)e
∫ s+t
0 z(θqω) dqξ −

∫ 0

s+t
πuS(s+ t− r)e

∫ s+t
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr

= πuS(s)e
∫ s
0 z(θq+tω) dq

·
[
S(t)e

∫ t
0 z(θqω) dqξ +

∫ t

0
πuS(t− r)e

∫ t
r z(θqω) dqGρ(θrω, ϕρ(r, ω,Γ(ω, ξ)[0])) dr

]

−
∫ t

0
πuS(s+ t− r)e

∫ s+t
r z(θqω) dqGρ(θrω, ϕρ(r, ω,Γ(ω, ξ)[0])) dr

−
∫ 0

s+t
πuS(s+ t− r)e

∫ s+t
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr ,

where we recognize in the square bracket the projected cocycle of our cut-off system. Thus

πuΨt,ω[s] = πuS(s)e
∫ s
0 z(θq+tω) dqπuϕρ(t, ω,Γ(ω, ξ)[0])

−
∫ 0

−t
πuS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω, ϕρ(r + t, ω,Γ(ω, ξ)[0])︸ ︷︷ ︸

=Ψt,ω [r]

) dr

−
∫ −t

s
πuS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω,Γ(ω, ξ)[r + t]︸ ︷︷ ︸

=Ψt,ω [r]

) dr

= πuS(s)e
∫ s
0 z(θq+tω) dqπuϕρ(t, ω,Γ(ω, ξ)[0])

−
∫ 0

s
πuS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω,Ψt,ω[r]) dr .
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Second case: −t ≤ s ≤ 0.
Similar to the first case we observe for the stable part,

πsΨt,ω[s] = πsϕρ(s+ t, ω,Γ(ω, ξ)[0])

= S(s+ t)e
∫ s+t
0 z(θqω) dqπsΓ(ω, ξ)[0]

+
∫ s+t

0
πsS(s+ t− r)e

∫ s+t
r z(θqω) dqGρ(θrω, ϕρ(r, ω,Γ(ω, ξ)[0])) dr

= S(s+ t)e
∫ s+t
0 z(θqω) dq

∫ 0

−∞
πsS(−r)e

∫ 0
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr

+
∫ s+t

0
πsS(s+ t− r)e

∫ s+t
r z(θqω) dqGρ(θrω, ϕρ(r, ω,Γ(ω, ξ)[0])) dr

and hence

πsΨt,ω[s] =
∫ −t

−∞
πsS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω,Γ(ω, ξ)[r + t])︸ ︷︷ ︸

=Ψt,ω [r]

) dr

+
∫ s

−t
πsS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω, ϕρ(r + t, ω,Γ(ω, ξ)[0])︸ ︷︷ ︸

=Ψt,ω [r]

) dr

=
∫ s

−∞
πsS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω,Ψt,ω[r]) dr .

The unstable projection of the function Ψt,ω rearranges to

πuΨt,ω[s] = πuϕρ(s+ t, ω,Γ(ω, ξ)[0])

= S(s+ t)e
∫ s+t
0 z(θqω) dq πuΓ(ω, ξ)[0]︸ ︷︷ ︸

=ξ

+
∫ s+t

0
πuS(s+ t− r)e

∫ s+t
r z(θqω) dqGρ(θrω, ϕρ(r, ω,Γ(ω, ξ)[0])) dr .

We split the last summand into two integrals and factorize the semigroup and the exponential
factor,

πuΨt,ω[s] = πuS(s)e
∫ s
0 z(θq+tω) dq

·
[
S(t)e

∫ t
0 z(θqω) dqξ +

∫ t

0
πuS(t− r)e

∫ t
r z(θqω) dqGρ(θrω, ϕρ(r, ω,Γ(ω, ξ)[0])) dr

]

−
∫ t

s+t
πuS(s+ t− r)e

∫ s+t
r z(θqω) dqGρ(θrω, ϕρ(r, ω,Γ(ω, ξ)[0])) dr

= πuS(s)e
∫ s
0 z(θq+tω) dqπuϕρ(t, ω,Γ(ω, ξ)[0])

−
∫ 0

s
πuS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω, ϕρ(r + t, ω,Γ(ω, ξ)[0])︸ ︷︷ ︸

=Ψt,ω [r]

) dr ,

which finishes the second case.
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We conclude from both cases

Ψt,ω[s] = πsΨt,ω[s] + πuΨt,ω[s]

= πuS(s)e
∫ s
0 z(θq+tω) dqπuϕρ(t, ω,Γ(ω, ξ)[0])

−
∫ 0

s
πuS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω,Ψt,ω[r]) dr

+
∫ s

−∞
πsS(s− r)e

∫ s
r z(θq+tω) dqGρ(θr+tω,Ψt,ω[r]) dr .

Therefore Ψt,ω[s] is a solution to the equation (5.2.12) for all s ≤ 0 and each t ≥ 0, ω ∈ Ω. The
statement (5.2.17) follows from the uniqueness of the solution.

Exponentially attracting
To show the exponentially attracting property of (ii), we mention that we can not simply go
backwards in time, since a priori the cocycle ϕρ is only defined for non-negative times. That is
the reason why we need to find an element (x−t) in the negative shifted manifoldM(θ−tω) such
that if we evolve the system until time t, we are inside ofM(ω) again.
Let us define in view of (5.2.18) for any ω ∈ Ω and ξ ∈ Hu

xu
s := πuΓ(ω, ξ)[s] = πuS(s)e

∫ s
0 z(θqω) dqξ −

∫ 0

s
πuS(s− r)e

∫ s
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr

for s ≤ 0. Similar to the proof of the positive invariance we show that for t ≥ 0 and s ≤ 0

Γ(ω, ξ)[s− t] = Γ(θsω, xu
s )[−t] . (5.2.19)

We start with the left hand side

Γ(ω, ξ)[s− t] = πuS(s− t)e
∫ s−t
0 z(θqω) dqξ

−
∫ 0

s−t
πuS(s− t− r)e

∫ s−t
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr

+
∫ s−t

−∞
πsS(s− t− r)e

∫ s−t
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr .

We split the first integral in two integrals and factorize the semigroup S(−t) and the corresponding
exponential term,

Γ(ω, ξ)[s− t] = πuS(−t)e
∫−t
0 z(θq+sω) dq

·
[
πuS(s)e

∫ s
0 z(θqω) dqξ −

∫ 0

s
πuS(s− r)e

∫ s
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr

]

−
∫ s

s−t
πuS(s− t− r)e

∫ s−t
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr

+
∫ s−t

−∞
πsS(s− t− r)e

∫ s−t
r z(θqω) dqGρ(θrω,Γ(ω, ξ)[r]) dr .

We recognize the bracket as our xu
s . Further we shift the last two integrals by a substitution to

Γ(ω, ξ)[s− t] = πuS(−t)e
∫−t
0 z(θq+sω) dqxu

s

−
∫ 0

−t
πuS(−t− r)e

∫−t
r z(θq+sω) dqGρ(θr+sω,Γ(ω, ξ)[r + s]) dr

+
∫ −t

−∞
πsS(−t− r)e

∫−t
r z(θq+sω) dqGρ(θr+sω,Γ(ω, ξ)[r + s]) dr .
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Now the right-hand side solves the integral equation (5.2.12) at time −t, fiber θsω and with initial
value xu

s ∈ Hu. Due to uniqueness of this solution we showed the statement.

We want to express xu
s for s ≤ 0 with the solution of a finite dimensional random differential

equation, which we then express by the unstable projection of the truncated differential equation.
The shifted fixed-point at xu

−t evaluated in zero will then be our x−t of (ii) in the Definition 5.2.3
of the unstable manifold.

Consider the following RDE on the finite dimensional space Hu for t ∈ R and ω ∈ Ω,

duu
ρ

dt
= (∆ + k)uu

ρ + z(θtω)uu
ρ + πuGρ(θtω,Γ(θtω, uu

ρ )[0]), t 6= 0

uu
ρ (0) = ξ ∈ Hu ,

(5.2.20)

where in general uu
ρ 6= πuuρ. But we show below for certain initial values this characterization

is possible. The Lipschitz continuity of Gρ and Γ(ω, u) guarantees the uniqueness of the solution
and defines a random dynamical system ϕu

ρ in Hu. The solution is given by the variation of
constants formula

uu
ρ (t, ω, ξ) = ϕu

ρ (t, ω, ξ)

= πuS(t)e
∫ t
0 z(θsω) dsξ +

∫ t

0
πuS(t− r)e

∫ t
r z(θqω) dqGρ

(
θrω,Γ(θrω, ϕu

ρ (r, ω, ξ))[0]
)
dr

(5.2.21)

for all t ∈ R. Combining the definition of xu
s with the shown equality (5.2.19) we have

xu
s = πuS(s)e

∫ s
0 z(θqω) dqξ −

∫ 0

s
πuS(s− r)e

∫ s
r z(θqω) dqGρ(θrω,Γ(θrω, xu

r )[0]) dr

for s ≤ 0. Hence it is clear that R− 3 s 7→ xu
s is a solution to (5.2.20) and due to the uniqueness

of the solution we obtain

ϕu
ρ (−t, ω, ξ) = xu

−t

for t ≥ 0. The cocycle property of ϕ leads to

ϕu
ρ (t, θ−tω, xu

−t) = ϕu
ρ (0, ω, ξ) = ξ for each t ≥ 0 . (5.2.22)

Now we show ϕu
ρ (t, ω, ξ) = πuϕρ(t, ω,Γ(ω, ξ)[0]), t ≥ 0. The unstable part of the truncated

solution (5.2.10) for t ≥ 0 becomes in view of the positive invariance (5.2.16),

πuϕρ(t, ω,Γ(ω, ξ)[0])

=πuS(t)e
∫ t
0 z(θsω) dsΓ(ω, ξ)[0] +

∫ t

0
πuS(t− r)e

∫ t
r z(θsω) dsGρ(θrω, ϕρ(r, ω,Γ(ω, ξ)[0])) dr

=πuS(t)e
∫ t
0 z(θsω) dsξ+

+
∫ t

0
πuS(t− r)e

∫ t
r z(θsω) dsGρ

(
θrω,Γ

(
θrω, π

uϕρ(r, ω,Γ(ω, ξ)[0])
)
[0]
)
dr ,

and is therefore also a solution to (5.2.20). Again by uniqueness of the solution we conclude

ϕu
ρ (t, ω, ξ) = πuϕρ(t, ω,Γ(ω, ξ)[0]) t ≥ 0 . (5.2.23)

Combining the last equation with equation (5.2.22) we observe for t ≥ 0,

ξ = ϕu
ρ (t, θ−tω, xu

−t) = πuϕρ(t, θ−tω,Γ(θ−tω, xu
−t)[0]) . (5.2.24)
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We summarize the result. For every x ∈ M(ω), ω ∈ Ω we find a ξ ∈ Hu with x = Γ(ω, ξ)[0]
represented as in (5.2.15). By the previous discussion we notice, that for every ξ ∈ Hu there
exists xu

−t ∈ Hu for t ≥ 0, such that (5.2.24) holds. Now we define

x−t := Γ(θ−tω, xu
−t)[0]

for every t ≥ 0, ω ∈ Ω and therefore we achieve

x = Γ(ω, ξ)[0] = Γ(ω, πuϕρ(t, θ−tω, x−t))[0] = ϕρ(t, θ−tω, x−t) ,

where for the last equality we applied the positive invariance of M. In particular we replace ω
by θ−tω and ξ by xu

−t in (5.2.16), i.e.

ϕρ(t, θ−tω,Γ(θ−tω, xu
−t)[0]) = Γ

(
ω, πuϕρ(t, θ−tω,Γ(θ−tω, xu

−t)[0]
)
[0] .

What remains to show is that x−t tends exponentially fast to zero when t → ∞. Choosing
independently of each other −t ≡ 0 and s ≡ −t in (5.2.19) we obtain the following equality

x−t = Γ(θ−tω, xu
−t)[0] = Γ(ω, ξ)[−t] .

As a preparation we remember (5.1.6). We have that for every ε > 0, γ > ε there exists a
t0(ω, ε) > 0 such that if |t| ≥ t0(ω, ε), then

∫ −t

0
z(θsω) ds = −t ·

[
1
−t

(∫ −t

0
z(θsω) ds

)]
≤ tε.

Therefore we estimate x−t in norm, that is

‖Γ(ω, ξ)[−t]‖ = ‖Γ(ω, ξ)[−t]− Γ(ω, 0)[−t]‖

≤ e−γt+
∫−t
0 z(θsω) ds‖Γ(ω, ξ)− Γ(ω, 0)‖γ

≤ e−(γ−ε)tLΓ‖ξ‖, |t| ≥ t0(ω, ε)

where Γ(ω, 0) = 0 is the fixed-point of (5.2.12) for ξ = 0. Hence lim
t→∞

x−t = 0 exponentially
fast.

Remark 5.2.10. As a result of the last theorem we can represent the unstable manifold as a set
of fixed-points in H. Following the equality (5.2.15) we observe for all ω ∈ Ω

M(ω) = {ξ + hu(ω, ξ), ξ ∈ Hu}
= {Γ(ω, ξ)[0], ξ ∈ Hu} .

We note additionally that although we only consider global unstable manifolds at zero, it’s not
restrictive. In the most cases we can deduce manifolds at some point from the ones at zero, see
[GALS10, p.1643] and [Arn10, Lemma 7.2.1, p.310].

Without proof we want to state a result giving us the unstable manifold at zero for a conjugated
RDS. For more details we refer to [DLS04, Theorem 3.3, p.962]

Theorem 5.2.11. Let M be a global unstable manifold at zero for an RDS ϕ generated by an
RDE like in (5.2.3). Suppose T : Ω×H → H, T (ω, x) = xez(ω) is the associated conjugation with
inverse T−1(ω, x) = xe−z(ω). Then the conjugated RDS ψ possesses the global unstable manifold,

M̃(ω) := T (ω,M(ω))

at zero for ω ∈ Ω.
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5.3 Local unstable manifolds and the lower estimate
In this section we show the existence of a local unstable (Lipschitz) manifold for our originial
differential equation

du

dt
= (∆ + k)u+ z(θtω)u+ F (θtω, u)− ku, t > 0,

u(0) = u0 ∈ H

which is the transformed equation of the beginning in Chapter 5. The following definition can be
found e.g. in [GALS10, Definition 2.6, p.1642].

Definition 5.3.1. Let ϕ : R+ × Ω ×H → H be a random dynamical system with a fixed-point
in zero, i.e. ϕ(t, ω, 0) = 0. The random setMloc(ω) is called a local unstable manifold at zero, if
the following properties are satisfied:

(i) Mloc(ω) has a graph-like structure on a closed ball B(0, r(ω)) ⊂ Hu with radius r : Ω→ R+,
i.e. there exists a function hu(ω, ·) : B(0, r(ω))→ Hs with hu(ω, 0) = 0 such that,

Mloc(ω) = {ξ + hu(ω, ξ) : ξ ∈ B(0, r(ω))} .

(ii) For every t ≥ 0, ω ∈ Ω and x ∈Mloc(ω) ∩ V (ω) there exists x−t ∈Mloc(θ−tω) such that,

ϕ(t, θ−tω, x−t) = x

and x−t tends exponentially fast to zero for t → ∞. V (ω) ⊂ H is a random set and a
neighborhood of zero.

(iii) Mloc(ω) is locally positively invariant, i.e. for all ω ∈ Ω and x ∈Mloc(ω)

lim
‖x‖→0

τ(ω, x) =∞

where

τ(ω, x) := inf{t ≥ 0 : ϕ(t, ω, x) /∈Mloc(θtω)} .

Remark 5.3.2. The property (iii) is called locally positively invariant since if we are close enough
to zero with our initial value x, then the image under ϕ stays inside the (shifted) manifoldM(θtω)
for a finite time t > 0.

We collect some useful results in the following lemmas. All used notations are introduced in
the previous section.

Lemma 5.3.3. If s ≤ 0, ω ∈ Ω and ξ ∈ Hu, then

‖Γ(ω, ξ)[s]‖ ≤ LΓe
γs+

∫ s
0 z(θrω) dr‖ξ‖ .

In particular we have that ‖Γ(ω, ξ)[0]‖ ≤ LΓ‖ξ‖.

Proof. The last result is a consequence of the first inequality setting s ≡ 0. We use the Lipschitz
continuity of the fixed-point to show the first inequality,

e−γs−
∫ s
0 z(θrω) dr‖Γ(ω, ξ)[s]‖ ≤ sup

t≤0
e−γt−

∫ t
0 z(θrω) dr‖Γ(ω, ξ)[t]‖ = ‖Γ(ω, ξ)‖γ ≤ LΓ‖ξ‖

for s ≤ 0.

90



5.3 Local unstable manifolds and the lower estimate

Lemma 5.3.4. Let ω ∈ Ω, u0 ∈ H and ρ : Ω→ (0,∞) be a tempered from below random variable.
If ‖ϕρ(t, ω, u0)‖ ≤ ρ(θtω) then

ϕρ(t, ω, u0) ≡ ϕ(t, ω, u0)

for every t ≥ 0.

Proof. The statement follows from the definition of the truncated nonlinearity in (5.2.5). We
conclude from the assumption that

Gρ(θtω, uρ(t, ω, u0)) = G(θtω, uρ(t, ω, u0)) .

The definition of G implies that the mild solution of equation (5.2.6) is also a solution to the
original equation (5.1.2). By the uniqueness of the solution we obtain the result.

We will need also the following lemma, which is similar to [GALS10, Lemma 5.1, p.1659].

Lemma 5.3.5. Let ω ∈ Ω, C > 0 some constant and r : Ω → (0,∞) some positive mapping
which is tempered from below. Then the mapping R : Ω→ (0,∞),

R(ω) := 1
C

inf
t≤0

e−γt−
∫ t
0 z(θsω) dsr(θtω)

is tempered from below and satisfies CR(ω)eγs+
∫ s
0 z(θqω) dq ≤ r(θsω) for all s ≤ 0.

Proof. The definition of temperedness from below in (3.2.11) says us that for every ε > 0 there
exists s0(ω, ε) > 0 such that for all s ≤ −s0(ω, ε)

ln+
(

1
r(θsω)

)
≤ −εs . (5.3.1)

Note that if r(θsω) ≥ 1 (5.3.1) reads 0 ≤ −εs for all s ≤ 0. In the second case r(θsω) < 1 we
observe for s ≤ −s0(ω, ε)

r(θsω) ≥ eεs .

We need to show the same for R in the case of s ≤ −s0(ω, ε). The definition of R yields to

R(θsω) = 1
C

inf
t′≤0

e−γt
′−

∫ t′
0 z(θr+sω) drr(θt′+sω) = 1

C
inf
t≤s

e−γ(t−s)−
∫ t−s
0 z(θr+sω) drr(θtω)

= 1
C
eγs inf

t≤s
e−γt−

∫ t−s
0 z(θr+sω) drr(θtω) .

The latter integral in the exponent can be rewritten,

−
∫ t−s

0
z(θr+sω) dr = −

∫ t

s
z(θrω) dr = −

∫ t

0
z(θrω) dr +

∫ s

0
z(θrω) dr .

For every ε > 0 we define v0(ω) := v0(ω, ε) := max(s0(ω, ε), t0(ω, ε)), where t0(ω, ε) > 0 has been
chosen such that for all t ≤ s ≤ −t0(ω, ε),

1
t

∫ t

0
z(θrω) dr ≥ −ε and 1

s

∫ s

0
z(θrω) dr ≤ ε ,

according to (iii) in Lemma 5.1.1.
We remember in the case that r(θtω) < 1, we obtain r(θtω) ≥ eεt for all t ≤ −v0(ω). Note that
in the other case we have r(θtω) ≥ 1 ≥ eεt for all t ≤ 0. Hence we deduce

R(θsω) ≥ 1
C
eγs inf

t≤s
e−γt+2εt+εs = 1

C
eεseγs inf

t≤s
e(−γ+2ε)t .
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If we choose ε < γ
2 then inft≤s e(−γ+2ε)t = e(−γ+2ε)s. Therefore it is clear that

R(θsω) ≥ 1
C
e3εs for all s ≤ −v0(ω) .

The temperedness follows then from

ln+
(

1
R(θsω)

)
≤ ln+C − 3εs .

for s ≤ −v0(ω). To end the proof of the lemma we show the claimed inequality.
By the definition of R we conclude for any fixed s ≤ 0

CR(ω)eγs+
∫ s
0 z(θrω) dr = inf

t≤0
e−γt−

∫ t
0 z(θrω) drr(θtω)eγs+

∫ s
0 z(θrω) dr

≤ e−γs−
∫ s
0 z(θrω) drr(θsω)eγs+

∫ s
0 z(θrω) dr = r(θsω) .

For convenience we suppose in the remaining part of this chapter that

ρ(ω) = e−z(ω)

9L′ c, (5.3.2)

being the largest value w.r.t. the condition (5.2.11). Note in particular that ρ is a tempered
random variable both from above and from below.

The next question is how to choose the set that could be our local unstable manifold and
respects the cut-off we did?

To answer this question we have to choose a suitable radius of the ball in Hu such that the
local manifold has a Lipschitz graph-like structure as stated in (i) of Definition 5.3.1. We aim to
use the global unstable manifold for the truncated equation since every point therein has already
a graph-like representation.
First we notice the following. If we choose an element ξ ∈ BHu(0, r(ω)), where BHu(0, r(ω))
denotes the closed ball in Hu for some radius r > 0, then according to the proof of Theorem 5.2.9
the fixed-point Γ(ω, ξ)[0] ∈M(ω) and

Γ(ω, ξ)[0] = ξ + hu(ω, ξ) = ϕρ(t, θ−tω, x−t)

for every t ≥ 0 and ω ∈ Ω.
Provided ‖Γ(ω, ξ)[0]‖ = ‖ϕρ(t, θ−tω, x−t)‖ ≤ ρ(ω) we obtain under consideration of Lemma 5.3.4
that

ϕρ(t, θ−tω, x−t) = ϕ(t, θ−tω, x−t)

for every t ≥ 0. This implies that every fixed-point of the Lyapunov-Perron transform (5.2.12)
(building the global unstable manifold), which is bounded in norm by ρ(ω), is a fixed-point for
the original equation (5.1.2) and it can be expressed by the graph Lipschitz structure of the global
manifold.

We use these ideas as a motivation to choose the radius r(ω) of the ball in Hu such that we
stay inside the ball B(0, ρ(ω)) ⊂ H. Since the spaces Hu and Hs are orthogonal we conclude for
ξ ∈ BHu(0, r(ω)) that

‖ξ + hu(ω, ξ)‖2 = ‖ξ‖2 + ‖hu(ω, ξ)‖2 ≤ ‖ξ‖2 +
L2

Γ
4 ‖ξ‖

2 ≤ r(ω)2 +
L2

Γ
4 r(ω)2
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where we used the Lipschitz continuity of hu(ω, ·) in (5.2.14).
If we want to stay inside the ρ(ω)-ball we need to fulfill at least

ρ(ω)2 != r(ω)2 +
L2

Γ
4 r(ω)2

which is equivalent to

r(ω) = 2√
4 + L2

Γ

ρ(ω) =: ρu(ω) . (5.3.3)

The maximal value of the radius ρu(ω) can only be 2√
5ρ(ω), since LΓ ≥ 1. A possible situation

could be the following.

Hu

Hs

r(ω)ξ2

Γ(ω, ξ2)[0] hu(ω, ξ2)

Γ(ω, ξ1)[0]

ρ(ω)

LΓ

2 r(ω)

Figure 5.1: For a given radius ρ(ω) and a fixed Lipschitz constant LΓ ≥ 1 we
obtain a zone (the part of the circle between the blue dashed lines) of possible
fixed-points Γ(ω, ξ)[0] with ‖ξ‖ ≤ r(ω). The fixed-point Γ(ω, ξ1)[0] is a choice
with a maximal norm, ‖ξ1‖ = r(ω). If LΓ gets smaller, but still larger or equal
to one, then we observe e.g. the area between the green dashed lines. For
fixed ρ(ω) the fixed-point Γ(ω, ξ2)[0] is never a suitable choice.

Now we define for each ω ∈ Ω the set

Mloc(ω) := {Γ(ω, ξ)[0], ξ ∈ BHu(0, ρu(ω))} .

ObviouslyMloc(ω) ⊂M(ω), which denotes the unstable global manifold of the truncated mani-
fold. We will show thatMloc(ω) is our local unstable manifold.
Further let us define

Ru(ω) := 1
LΓ

inf
t≤0

e−γt−
∫ t
0 z(θsω) drρu(θtω) (5.3.4)

such that by Lemma 5.3.5

LΓR
u(ω)eγs+

∫ s
0 z(θrω) dr ≤ ρu(θsω) for s ≤ 0.
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In particular note that

Ru(ω) ≤ 1
LΓ

ρu(ω) ≤ 2√
5LΓ

ρ(ω) . (5.3.5)

The radius Ru(ω) will be of particular interest for the next theorem. It will garantuee that in the
end the solution stays inside the local unstable manifold.

Now we are prepared to formulate and show one of the main statements of the section. We
follow the proof in [Ogr11, p.70 ff.].

Theorem 5.3.6. The unstable global manifold for the truncated equation of Theorem 5.2.9 is
a local unstable manifold for the original differential equation (5.2.3) in the sense of Definition
5.3.1.

Proof. The set given by

Mloc(ω) := {Γ(ω, ξ)[0], ξ ∈ BHu(0, ρu(ω))} (5.3.6)

for ω ∈ Ω has due to (5.2.15) already the requested local graph structure of (i), Definition 5.3.1.
The next part to show is (ii). Choose a random neighborhood V (ω) of zero such that the
unstable projection of Mloc(ω) ∩ V (ω) onto Hu includes the ball with radius Ru(ω) given by
(5.3.4). As we will show below the radius Ru(ω) is chosen such that for the complete trajectory
‖ϕ(t, θ−tω, x−t)‖ ≤ ρ(ω) and x−t ∈ Mloc(θ−tω) for t ≥ 0. Moreover x−t goes to zero for t → ∞,
which describes in a pullback sense the attracting property of the unstable manifold in zero.

Let x = Γ(ω, ξ)[0] ∈ Mloc(ω) ∩ V (ω) and ξ ∈ BHu(0, Ru(ω)), where Ru(ω) ≤ ρu(ω). From
the discussion prior to this theorem we know that x ∈ M(ω) and by Theorem 5.2.9 there exists
x−t ∈M(θ−tω) such that ϕρ(t, θ−tω, x−t) = x for every t ≥ 0 and ω ∈ Ω. Moreover Lemma 5.3.3
tells us that ‖x‖ = ‖Γ(ω, ξ)[0]‖ ≤ LΓ‖ξ‖ ≤ ρ(ω).
According to Lemma 5.3.4 we conclude for all t ≥ 0 and ω ∈ Ω

ϕρ(t, θ−tω, x−t) = ϕ(t, θ−tω, x−t) = x .

It remains to prove that x−t ∈Mloc(θ−tω). Recall the definition

x−t := Γ(θ−tω, xu
−t)[0]

where xu
−t = πuΓ(ω, ξ)[−t] and by (5.2.19) Γ(θ−tω, xu

−t)[0] = Γ(ω, ξ)[−t]. To show the statement
we need to prove that xu

−t ∈ BHu(0, ρu(θ−tω)) for fixed ω ∈ Ω.
Thanks to the choice that ξ ∈ BHu(0, Ru(ω)) and applying the Lemmas 5.3.3 and 5.3.5, we obtain

‖xu
−t‖ = ‖πuΓ(ω, ξ)[−t]‖ ≤ ‖Γ(ω, ξ)[−t]‖ ≤ LΓe

−γt+
∫−t
0 z(θrω) dr‖ξ‖ ≤ ρu(θ−tω) .

We will show property (iii) of Definition 5.3.1 in the following. In [Ogr11] this property is only
shown for discrete times. Following the approach therein we face an intersection taken over a
discrete time set which we can not extend to the case of continuous time, since an uncountable
intersection could be trivial.

Let x = Γ(ω, ξ)[0] ∈ Mloc(ω) und fix a time interval [0, T ] for T > 0. Then if ξ ∈ Hu is close
to zero, we know according to Lemma 5.3.3 that ‖x‖ is also close to zero. Before we specify how
small we have to choose ξ, we discuss the necessary condition such that ϕ(t, ω, x) ∈ Mloc(θtω)
for t ∈ [0, T ].
We begin with the truncated RDS in (5.2.10) and use the positive invariance given in (5.2.16),

‖ϕρ(t, ω,Γ(ω, ξ)[0])‖ = ‖Γ(θtω, πuϕρ(t, ω,Γ(ω, ξ)[0]))[0]‖ .
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Equation (5.2.23) tells us that we can replace the projected RDS πuϕρ with the solution of the
equation (5.2.20) ϕu

ρ . Therefore we obtain

‖Γ(θtω, πuϕρ(t, ω,Γ(ω, ξ)[0]))[0]‖ = ‖Γ(θtω, ϕu
ρ (t, ω, ξ))[0]‖ .

Together with Lemma 5.3.3 we infer

‖Γ(θtω, ϕu
ρ (t, ω, ξ))[0]‖ ≤ LΓ‖ϕu

ρ (t, ω, ξ)‖ .

Now if we choose ξ ∈ Hu so small that ϕu
ρ (t, ω, ξ) ∈ BHu(0, Ru(θtω)), then we observe

‖ϕρ(t, ω,Γ(ω, ξ)[0])‖ ≤ LΓ‖ϕu
ρ (t, ω, ξ)‖ ≤ ρu(θtω) , (5.3.7)

in view of (5.3.5). Consequently, Lemma 5.3.4 implies

ϕρ(t, ω,Γ(ω, ξ)[0]) = ϕ(t, ω,Γ(ω, ξ)[0]) .

for all t ∈ [0, T ]. To determine how small we have to choose ξ notice the following discussion.
Estimations of the mild solution in (5.2.21) lead for t ∈ [0, T ] to

‖ϕu
ρ (t, ω, ξ)‖ ≤ eλut+

∫ t
0 z(θsω) ds‖ξ‖+ LΓc

∫ t

0
eλ

u(t−r)+
∫ t
r z(θsω) ds‖ϕu

ρ (r, ω, ξ)‖ dr ,

where we applied the usual estimates we used frequently in this chapter. We substitute w(r) :=
exp

{
−λut−

∫ t
0 z(θsω) ds

}
· ‖ϕu

ρ (r, ω, x)‖ for r ∈ [0, t] and apply the Gronwall Lemma 3.3.1 to
obtain

‖ϕu
ρ (t, ω, ξ)‖ ≤ ‖ξ‖e(LΓc+λu)t+

∫ t
0 z(θsω) ds .

Notice that the right-hand side of the latter estimate is not monotonic in t due to the Ornstein-
Uhlenbeck process. Since the process has continuous paths on [0, T ], it attains its maxima resp.
minima. Let us denote MT (ω) = maxt∈[0,T ] |z(θtω)|. Moreover with LΓ, c, λ

u > 0 we conclude

sup
t∈[0,T ]

‖ϕu
ρ (t, ω, ξ)‖ ≤ ‖ξ‖e(LΓc+λu+MT (ω))T .

We define CT (ω) := LΓc+ λu +MT (ω).
Now consider on the other hand the radii Ru(θ·ω) : [0, T ] → R+ \ {0}. They are continuous in
time along the definition (5.3.4) and since ρ(θ·ω) = c

9L′ e
−z(θ·ω) is continuous. Hence there exists

t0 := t0(ω) ∈ [0, T ] such that

0 < Ru(θt0ω) = min
t∈[0,T ]

Ru(θtω)

is well-defined. If we choose ξ ∈ Hu appropriately, that is

‖ξ‖ ≤ Ru(θt0ω)e−CT (ω)T =: δ(ω, T )

then

ϕu
ρ (t, ω, ξ) ∈ BHu(0, Ru(θtω))

for all t ∈ [0, T ]. The following picture should emphasize the choice of ξ.
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t ∈ R+

R+

Ru(θtω)

‖ξT ‖

‖ξT ′‖

‖ϕuρ(t, ω, ξT )‖

‖ϕuρ(t, ω, ξT ′)‖

t0 T t′0 T ′

Figure 5.2: Expanding the time interval gives us a possible smaller minimal
radius Ru(θt0ω) and so we need to adjust the radius of initial value ‖ξ‖. Please
note that in this picture we only present the behavior of norms and radii.

Therefore we obtain that the inequality (5.3.7) holds for every t ∈ [0, T ] whenever ξ ∈
BR+(0, δ(ω, T )). Hence the definition of the conjectured local manifold in (5.3.6) tells us for
t ∈ [0, T ] that

ϕ(t, ω,Γ(ω, ξ)[0]) ∈Mloc(θtω) .

Recall from the Definition 5.3.1 with x = Γ(ω, ξ)[0] that

τ(ω, x) = inf{t ≥ 0 |ϕ(t, ω,Γ(ω, ξ)[0]) /∈Mloc(θtω)} .

For every T > 0 there exists δ(ω, T ) > 0 such that for ξ ∈ Hu with ‖ξ‖ ≤ δ(ω, T ) we have

τ(ω, x) ≥ τu(ω, ξ) := inf{t ≥ 0 |ϕu
ρ (t, ω, ξ) /∈ BHu(0, Ru(θtω))} > T ,

where the last inequality implies lim‖ξ‖→0 τ
u(ω, ξ) =∞. Finally we conclude

lim
‖x‖→0

τ(ω, x) =∞ .

The upcoming theorem will show the connection between the local unstable manifold and the
random attractor.

Theorem 5.3.7. Assume the random dynamical system ϕ of the differential equation (5.1.2)
possesses a local unstable manifold

Mloc(ω) = {Γ(ω, ξ)[0], ξ ∈ BHu(0, ρu(ω))}

in the sense of Definition 5.3.1 and a random attractor A(ω), ω ∈ Ω like we showed in Theorem
5.1.5.
In particular there exists a neighborhood of zero V (ω) ⊂ H, such that

(
Mloc(ω) ∩ V (ω)

)
⊆ A(ω),

for all ω ∈ Ω.
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5.3 Local unstable manifolds and the lower estimate

Proof. Let x ∈ Mloc(ω) ∩ V (ω) for each ω ∈ Ω, then we know by (ii) of Definition 5.3.1 ∀t ≥ 0
there exists a x−t ∈Mloc(θ−tω) such that

ϕ(t, θ−tω, x−t) = x .

According to Definition 3.4.5 the random attractor A given by Theorem 5.1.5 attracts every
tempered random set D ∈ D.
We prove thatMloc(ω) is a tempered set, i.e. for every ω ∈ Ω

lim
t→±∞

1
|t|

ln+

(
sup

x∈Mloc(θtω)
‖x‖

)
= 0 ,

cf. (3.4.1). We use the definition of ρu(θtω) in (5.3.3) such that for every x ∈Mloc(θtω)

‖x‖ =
√
‖ξ‖2 + ‖hu(θtω, ξ)‖2 ≤

(
1 +

L2
Γ

4

) 1
2

ρu(θtω) = ρ(θtω) .

Therefore for every t ∈ R

sup
x∈Mloc(θtω)

‖x‖ ≤ ρ(θtω) .

Since ρ, given by (5.3.2), is a tempered (from above) random variable, we conclude that

lim
t→∞

dist(ϕ(t, θ−tω,Mloc(θ−tω)),A(ω)) = 0 . (5.3.8)

We know by the definition of the local manifoldMloc(ω) ∩ V (ω) ⊆ ϕ(t, θ−tω,Mloc(θ−tω)) for all
t ≥ 0 .
The limit in (5.3.8) can be rewritten. For every ε > 0 there exists t0 = t0(ω, ε) ≥ 0 such that
∀t ≥ t0

dist(ϕ(t, θ−tω,Mloc(θ−tω)),A(ω)) < ε .

The property of the supremum in the Hausdorff semi-distance (defined in (3.4.3)) provides

dist(Mloc(ω) ∩ V (ω),A(ω)) ≤ dist(ϕ(t, θ−tω,Mloc(θ−tω)),A(ω)) < ε ,

dist(Mloc(ω) ∩ V (ω),A(ω)) = sup
x∈Mloc(ω)∩V (ω)

inf
y∈A(ω)

‖y − x‖ < ε .

Hence for every x ∈ Mloc(ω) ∩ V (ω) we have infy∈A(ω) ‖x − y‖ < ε. Now choose 0 < εn = 1
2n ,

then for every n ∈ N there exists yn ∈ A(ω) with

‖x− yn‖ −
1

2n < inf
y∈A(ω)

‖x− y‖ < 1
2n

and so limn→∞ yn = x. Thus the claimMloc(ω) ∩ V (ω) ⊆ A(ω) is proven.

Finally we prepare the desired result, i.e. the lower bound for the Hausdorff dimension of
the random attractor. Therefore we will use the above lemma. We begin with some geometric
discussions.
The monotonicity property, that every measure possesses (see e.g. [Rog98, p.2]) implies under
consideration of the last theorem, that

dimH(Mloc(ω) ∩ V (ω)) ≤ dimH(A(ω)) . (5.3.9)
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Now we want to find an open subset of Mloc(ω) ∩ V (ω). At first, we observe since V (ω) is a
neighborhood of zero in the normed vector space H, therefore there exists an open ball

Bop(0,R(ω)) = {x ∈ H : ‖x‖ < R(ω)} ⊂ V (ω)

for each ω ∈ Ω with the positive radius R : Ω→ (0,∞). Hence we haveMloc(ω)∩Bop(0,R(ω)) ⊂
Mloc(ω) ∩ V (ω).
We define the set

Oloc(ω) := {ξ + hu(ω, ξ) : ξ ∈ Bop
Hu(0, ρu(ω))},

which is an open subset ofMloc(ω). Indeed using the graph structure of the set Oloc(ω) we notice
at first that the continuous mapping p : Oloc(ω) → Bop

Hu(0, ρu(ω)), p(x) = πu(x) is bijective.
Then we obtain that the pre-image of the open set Bop

Hu(0, ρu(ω)), i.e. Oloc(ω), is open (see
[AB06, Definition 2.26, p.36]).
Therefore we have now

Oloc(ω) ∩Bop(0,R(ω)) ⊂Mloc(ω) ∩ V (ω), (5.3.10)

where the set Oloc(ω) ∩Bop(0,R(ω)) is open as intersection of two open sets. To obtain a lower
bound on the Hausdorff dimension we want to project this set onto the unstable subspace Hu. In
general two situations are of particular interest.
If R(ω) ≥ ρ(ω) (cf. Figure 5.3a), then Oloc(ω) ⊆ Bop(0,R(ω)) and therefore

πu
[
Oloc(ω) ∩Bop(0,R(ω))

]
= Bop

Hu(0, ρu(ω)) .

If on the other hand R(ω) < ρ(ω), cf. Figure 5.3b, then the projection of Oloc(ω)∩Bop(0,R(ω))
onto Hu does not necessary need to be a ball in Hu, however the projection is still an open set
in Hu, which follows by a similar argument as before. Define the bijective continuous mapping

q : πu
[
Oloc(ω) ∩Bop(0,R(ω))

]
→ Oloc(ω) ∩Bop(0,R(ω)),

q(ξ) = ξ + hu(ω, ξ),

as the inverse mapping of the projection πu. Then, since Oloc(ω) ∩ Bop(0,R(ω)) is open, the
pre-image πu [Oloc(ω) ∩Bop(0,R(ω))

]
is open as well.

Hu

Hs

ρ(ω)

R(ω)

Bop
Hu(0, ρu(ω))

(a) An example for the case R(ω) ≥ ρ(ω)
with the one-dimensional subspace Hu.

Hu

Hs

ρ(ω)

R(ω)

πu[Oloc(ω) ∩ Bop(0,R(ω))]

(b) The case when R(ω) < ρ(ω) and the projection
of Oloc(ω) ∩Bop(0,R(ω)) on an open subset of Hu.

Figure 5.3: An overview of the cases that can possible occur, when projecting
the open subset of the local manifold.
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5.3 Local unstable manifolds and the lower estimate

Applying a mapping theorem for metric spaces shown by C.A.Rogers in [Rog98, p.53] to the
spaces (H, ‖ · ‖) and (Hu, ‖ · ‖) and (5.3.10) we have

dimH

{
πu
[
Oloc(ω) ∩Bop(0,R(ω))

]}
≤ dimH{Oloc(ω) ∩Bop(0,R(ω))}

≤ dimH(Mloc(ω) ∩ V (ω)) .

We know that there exists an isometric isomorphism L : Hu → RN between the N -dimensional
vector space Hu and RN , see e.g. [Alt16, Theorem 9.8 (Note), p.294]. Hence the image of the
open subset πu [Oloc(ω) ∩Bop(0,R(ω))

]
⊂ Hu under the mapping L is an open subset of RN .

The following lemma presents the connection between the Hausdorff dimension and the dimension
of the vector space RN . The statement can be found for example in [Fal90, p.29] and its proof
makes use of the relation described in (2.4.2).

Lemma 5.3.8. Let F be an open subset of RN , N ∈ N. Then dimH F = N .

Following the last lemma, we obtain in combination with (5.3.9) for each ω ∈ Ω,

N = dimH

{
πu
[
Oloc(ω) ∩Bop(0,R(ω))

]}
≤ dimH(Mloc(ω) ∩ V (ω)) ≤ dimH(A(ω)) .

Summarizing we have shown the following theorem.

Theorem 5.3.9. Suppose the RDS ϕ is given by the solution operator in (5.1.4). Moreover
assume F resp. DF fulfills the assumptions (A1) – (A4) and γ = 1

2(λu +λs) > 0. We denote the
related random attractor A(ω), ω ∈ Ω. Then the Hausdorff dimension of the random attractor is
bounded from below by N ∈ N.
The number N appears as the index of the smallest positive eigenvalue λu of the shifted spectrum
of the Laplacian, recall (5.2.1).

Remark 5.3.10.

◦ Remember that the number N ∈ N depends in particular on the value of the Fréchet
derivative of the nonlinearity at zero (see (A3)), i.e. DF(0) = kId, where k > |λ1|. Hence
we observe for the considered equations, with this particular method, N ≥ 1.

◦ An interesting consequence from the proof is that it seems not to be important which par-
ticular open subset of the random attractor we choose. The succeeding projection onto the
unstable subspace reduces the information we gained before from the open subset in the
Hilbert space. So even if we find another proper subset of the random attractor we would
obtain the same estimate.
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Conclusion and outlook

We summarize the results of this thesis and discuss possible extensions.

Chapter 2 introduces the concepts and definitions which allow us to derive the results that
are obtained in the subsequent chapters.

In Chapter 3 we described the theory of random dynamics in Hilbert spaces. We checked the
classical results such as the existence of a random dynamical system for a specific SPDE with
additive noise and a Laplacian given by the analysis on fractals. Moreover, we proved that the
RDS possesses a unique random attractor. All statements in Chapter 3 are valid for elements in
an L2- space on a (not necessary open) bounded subset of Rn, n ≥ 1, equipped with an associated
measure.
Possible extensions of the obtained statements are the Banach space-valued results collected in
[Nea17]. For instance one could also consider unbounded (fractal) domains, as they are presented
in [Tep98], [CMT15], [Sab00] or random recursive fractals, where the set of possible contractive
similarities is chosen according to a given probability distribution, see [Ham97] or [Ham00].
It is worth considering other types of equations. In particular, we think of equations that are
driven by a more general noise such as the fractional Brownian motion, see [GALS10], or equa-
tions with other nonlinearities that are not necessary Lipschitz continuous. Provided new results
in the theory of differential operators on fractal sets one can also deal with equations that use
these operators. Interesting primary works in this direction are e.g. [HT13] and [HRT13].

We derived in the subsequent Chapter 4 an upper bound on the Hausdorff dimension of the
random attractor obtained in Chapter 3. For this purpose we introduced a classical deterministic
method presented e.g. in [Tem88]. This approach has been extended to the more general case
of a random attractor, see [Sch97], [CF98] and [Deb98]. In our setting the upper bound on the
Hausdorff dimension does not depend on the dimension of the underlying set but on the spectral
exponent of the related Laplacian. This result is reasonable, since the considered estimates in
the relevant proofs depend on the spectrum of the related operator. Giving an example, we have
seen that the upper bound on the Hausdorff dimension grows, when the Lipschitz constant of the
nonlinearity becomes larger.
For future research one can try to improve or replace the assumptions that we imposed on the
nonlinearity. For example Theorem 4.2.2 holds even if the nonlinearity is only C1. But then the
essential uniform differentiability of the solution in condition RC (I) can not be established and
we expect that it is necessary to have at least Hölder continuity for the first derivative of the non-
linearity. As we have seen in Section 4.3 it is technical to obtain a numerical value for the upper
bound of the Hausdorff dimension. A better knowledge of the complete spectrum, in particular on
the distribution of the eigenvalues of the considered Laplacians ∆µ would lead directly to a more
precise bound. The lower estimate of the sum of the first m (m ≥ 1) eigenvalues has to be of the
type m1+a with exponent a > 0, if we want to apply the related theory of [Tem88]. Besides the
SG that we considered, there are similar results for other fractal sets (see e.g. [ABC+17]) which
state an upper and lower bound on the eigenvalues. These results are not of the type C · iβ ≤ λi,
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Conlusion and outlook

where C > 0 and β > 0 are suitable constants and even if we have estimates of the desired type,
it is still a challenging question to compute the values of the constants explicitly.
We can also examine reaction-diffusion equations with a Laplacian defined on a fractal set and
a polynomial nonlinearity. Obtaining meaningful results would enable us to compare them with
the corresponding statements in [Deb98].

Finally in the last chapter we focused on an SPDE driven by a multiplicative noise and
obtained an associated random attractor. Thanks to a suitable shift of the spectrum of the
Laplacian, using the Lyapunov-Perron transform of the solution and a cut-off function, we were
able to show the existence of local unstable invariant manifolds. We proved that the intersection
of the local unstable manifold with a neighborhood of zero is contained in the random attractor.
We managed to establish a lower bound on the Hausdorff dimension using the projection of a
subset of the latter intersection onto the unstable subspace of the Hilbert space.
There exist other methods to obtain a lower bound of the Hausdorff dimension, thus a joint
work with experts in the field of fractal geometry with a focus on Hausdorff dimensions would be
beneficial. Of course these techniques has to be used with care since we are working with dynamic
attractors not geometric attractors.
A next question for ongoing works is of course: Is it possible to combine the results of Chapter 4
and 5, i.e. can we find a bracketing result for the Hausdorff dimension of the random attractor.
In the setup of the lower estimate, it seems possible to apply the method described in Chapter
4 to the attractor of Chapter 5, in order to obtain an upper bound on its Hausdorff dimension.
However in the setting of Chapter 4 we assumed an additive noise which led to an additive
Ornstein-Uhlenbeck process in the nonlinearity. Hence the theory of invariant manifolds fails to
apply, since the solution does not generate a fixed-point at zero. Having a bracketing for the
Hausdorff dimension brings us closer to the true value of the Hausdorff dimension. Note that
having an upper bound of the Hausdorff dimension means firstly that the dimension is finite, but
the true value of the Hausdorff dimension can still be very low.
Besides the Hausdorff dimension it could be interesting to consider other types of dimensions
such as packing dimensions or box-counting dimensions. Although they are typical larger than
the Hausdorff dimension they can afford new information due to their definition.
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