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II GLOSSARY 

aAB  autoantibody 

AE  autoimmune encephalitis 

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

AP  action potential 

CNS  central nervous system  

CSF  cerebrospinal fluid 

dSTORM direct stochastic optical reconstruction microscopy 

EPM  elevated plus maze 

Fab  fragment antigen binding 

fEPSP  field excitatory postsynaptic potential 

FM1-43FX (N-(3-Triethylammoniumpropyl)-4-(4-(Dibutylamino) Styryl) Pyridinium  

Dibromide fixable 

GABA  gamma-aminobutyric acid  

GAD65 glutamate decarboxylase 65 

GluA1  glutamate receptor 1 

GluA2  glutamate receptor 2 

HEK  human embryonic kidney 293 

IgG  Immunoglobulin G 

IR  infrared 

ko  knockout 

LTP  long-term potentiation 

eEPSC evoked excitatory postsynaptic current 

ieEPSC iontophoretically evoked excitatory postsynaptic current 
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mEPSC miniature excitatory postsynaptic current 

miR  micro ribonucleic acid 

NASPM 1-Naphthyl acetyl spermine 

NMDAR N-methyl-D-aspartate receptor 

NOR  novel object recognition 

NR  N-methyl-D-aspartate receptor subunit  

nsFA  non-stationary fluctuation analysis 

PSD95  post synaptic protein 95 

TTX  tetrodotoxin 

VGCC  voltage-gated calcium channel 

VGLUT vesicular glutamate transporter 
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III Summary 

Autoimmune Encephalitis (AE) is a new group of disorders characterized by autoantibodies 

(aABs) to synaptic surface antigens. Currently, there are 16 different subformes of AE 

described with aABs to postsynaptic and presynaptic, to vesicular proteins as well as to 

synaptic anchoring proteins. AE can be treated by immunotherapy, but recovery is often 

prolonged and takes several weeks. Intensive care is needed in severe cases. Specific 

treatment is difficult since for most subforms of AE the molecular mechanisms of aAB action 

are still unknown. This work focuses on investigating the molecular mechanisms of aABs in 

AE. Therefore, high resolution imaging, electrophysiological recordings, and behavioral tests 

in in-vitro models and in-vivo animal models were used. With these new methods, several 

molecular mechanisms of aAB action in AE were uncovered: In AMPA receptor AE aABs 

lead to synaptic scaling by replacing the synaptic AMPA receptor subunit composition 

leading to changes in synaptic transmission, impairment in long term potentiation, and defects 

in learning and memory. In an osmotic pump infusion animal model of NMDA receptor AE 

the internalization of NMDA receptors by aABs can be antagonized by addition of the 

EphrineB2 receptor agonist ephrine-B2 leading to a rescue of disease symptoms. Taken 

together, this work elucidates the mechanisms of different subtypes of AE and demonstrates 

new and antigen-specific treatment approaches that may become therapeutic options in 

patients in the future.  
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IV Zusammenfassung 

Die autoimmune Enzephalitis ist eine neue Gruppe von Krankheiten die durch Autoantikörper 

gegen synaptische Membranproteine gekennzeichnet ist. Zum heutigen Stand sind 16 

verschiedene Typen von autoimmuner Enzephalitis mit Autoantikörpern gegen 

postsynaptische, präsynaptische, vesikuläre und synaptische Ankerproteine bekannt. 

Autoimmune Enzephalitis kann durch Immunotherapie behandelt werden, die Genesung von 

dieser Krankheit dauert allerdings oft mehrere Wochen und in schweren Fällen ist mitunter 

eine intensivmedizinische Behandlung notwendig. Eine spezifische Behandlung für viele 

Typen der autoimmunen Enzephalitis ist schwierig, da bisher die molekulare Wirkweise der 

Autoantikörper noch immer unbekannt ist. Die vorliegende Arbeit fokussiert sich auf die 

Untersuchung der molekularen Mechanismen von Autoantikörpern mittels hochauflösender 

Mikroskopie, elektrophysiologischer Messungen und Verhaltenstests in in-vitro Zellmodellen 

und in-vivo Tiermodellen. Durch diese neuen Methoden konnten Wirkmechanismen von 

Autoantikörpern bei der autoimmunen Enzephalitis aufgeklärt werden: Bei der AMPA 

Rezeptor Autoimmunenzephalitis bewirken Autoantikörper die synaptische Reorganisation 

durch die Änderung der AMPA Rezeptorzusammensetzung. Dies führt zu Änderungen in der 

synaptischen Transmission, Störungen in der Langzeitpotenzierung und Defiziten beim 

Lernen und der Gedächtnisleistung. Bei der NMDA Rezeptor Autoimmunenzephalitis kann 

die Internalisierung von NMDA Rezeptoren durch die Gabe des EphrineB2 Rezeptor 

Agonisten Ephrin-B2 im Tiermodell verhindert werden. Zusammengefasst untersucht diese 

Arbeit die pathogenen Mechanismen von Autoantikörpern in verschiedenen Subtypen 

autoimmuner Enzephalitiden und zeigt erste Möglichkeiten für die Entwicklung potentieller 

neuer und Antigen-spezifischer Behandlungsmöglichkeiten beim Patienten.
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1 Introduction 

During the last ten years a new category of neurological autoimmune disorders was 

established that is characterized by autoantibodies (aABs) targeting synaptic antigens. The 

clinical spectrum of these disorders features rapidly progressive encephalitis (Graus et al. 

2016), cerebellar syndromes (Smitt et al. 2000), or chronic encephalopathy resembling 

neurodegenerative processes (Sabater et al. 2014). All of these syndromes are associated with 

aAB to synaptic antigens and they are summarized as autoimmune encephalitis (AE). 

Currently, there are 16 subtypes of AE established that are defined by their aAB reactivity 

against synaptic proteins involved in synaptic signaling. These include excitatory and 

inhibitory neuronal receptors, or proteins involved in clustering and modulation of receptors, 

synaptic vesicle reuptake or synaptogenesis (Dalmau et al. 2017). Nearly all of these antigens 

are directly accessible for the aAB and the removal of aAB by immunotherapy leads to 

improvement of symptoms, suggesting a direct pathogenic role of these aABs. 

1.1 Discovery of autoimmune encephalitis as a new entity of autoimmune disorders 

in the central nervous system 

The discovery of AE evolved on research on paraneoplastic syndromes of the central nervous 

system (CNS) (Darnell and Posner 2003) and features some similarities to aAB mediated 

disorders in the peripheral nervous system , e.g. myasthenic syndromes (Waterman et al. 

1997). These initial clinical descriptions of patients and case series led the cornerstone to 

understand aAB mediated diseases altering synaptic function in the CNS.  

Paraneoplastic syndromes are autoimmune responses mediated by systemic cancer. Tumor 

cells express ectopic neuronal proteins which lead to the activation of an immune response.  

The so-called classical onconeural syndromes are characterized by aAB to intraneuronal 

antigens and cytotoxic T-cell responses against this onconeuronal antigen. Extensive 

cytotoxic T-cell infiltrates can activate perforin and granzyme B mechanisms causing 

neuronal degeneration. The associated aABs to nuclear or cytoplasmic antigens in these 

syndromes are mainly considered as an epiphenomenon (Bien et al. 2012). 

In contrast to these syndromes it is known from the peripheral nervous system that disease-

associated aABs can indeed be pathogenic and induce disease symptoms. Myasthenic 

syndromes are autoimmune disorders with aAB that have access to cell surface proteins (e.g. 

acetylcholine receptors). These aAB can alter neuromuscular function and/or lead to cross-

linking and internalization of target proteins and induce prototypical disease symptoms upon 
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passive-transfer in experimental animals (Drachman et al. 1982, Drachman et al. 1978, Toyka 

et al. 1975).  

In recent years an increasing number of patients has been identified who showed syndromes 

similar to the paraneoplastic CNS disorders, but responded to immunotherapy and had aABs 

to cell surface antigens (Ances et al. 2005). One of the first observations was a case study of 

four young women with prominent neuropsychiatric symptoms and neuronal antibodies 

against the NR1 subunit of the N-methyl-D-aspartate receptor (NMDAR). Three of these 

patients responded to immunotherapy and all of them had an ovarian teratoma (Dalmau et al. 

2007). In another case series of 10 patients with typical limbic encephalitis aAB to α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) were found. Nine of these 

patients successfully received immunotherapy (Lai et al. 2009). Based on these observations a 

large number of different neuronal antigens were identified in several subtypes of AE. This 

was achieved by screening patients serum and cerebrospinal fluid (CSF) for possible antigens 

with immunolabeling on living cultured neurons and brain slices. Novel antigens were 

discovered by evaluating distinct pattern of brain reactivity together with mass spectrometry 

in combination with the clinical phenotype (Hutchinson et al. 2008, Dalmau et al. 2007). 

After identification of the target antigens cell-based assays were developed for routine 

diagnosis of these disorders. Since the epitopes of most of these antigens are not detectable in 

denatured proteins, recombinant human embryonic kidney 293 (HEK) cells expressing the 

target protein are used as diagnostic tools. 

1.2 Testing the pathogenic relevance of autoantibodies to synaptic antigens 

1.2.1 In-vitro assays 

In-vitro assays are important tools for the examination of AE. Cell-based assays are crucial 

for a fast and reliable diagnosis of different antigens involved in AE. Additional, the 

transfection of cell lines can be used to investigate acute effects of aABs on a single-protein 

level. For NMDARs the general binding epitope of aABs was shown in transfected HEK cells 

after transfection with different mutated forms of the NR1 subunit (Gleichman et al. 2012).  

In addition to transfected cells, the preparation of dissociated neuronal cell cultures is a 

powerful model for studying neuronal signaling. There are several advantages of primary 

neuronal cell cultures in comparison of transfected cell lines. First, supporting cell types for 

the neuronal growth (e. g. astrocytes, glial cells) are included in a dissociated neuronal cell 

culture and can be modulated in their growth and activity by the culture medium. This allows 
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the investigation of the interplay of different neuronal cell types in a disease model. Second, 

neuronal dissociated cell cultures undergo a neural development including the outgrowth of 

neurites and establishment of active synapses. This enables studies on the synaptic 

localization of target proteins and their trafficking into synapses. Additionally, the 

quantification of synaptic clusters by immunocytochemical stainings is easy to obtain in 

neuronal cell cultures due to their growth as a single cell layer on the coverslips. Third, 

neuronal signaling and aAB induced pathogenic influence thereof can be investigated by 

recording synaptic transmission using electrophysiology.  

However, dissociated neuronal cultures lack the developmentally determined network 

connectivity that can only be found in in-vivo preparations. Additional, the culturing of 

neurons is only possible for a limited time frame, preventing the investigation of adult 

cultured neuronal cells. This limits the experimental possibilities in dissociated neuronal 

cultures to scientific questions on the single cell level or to the examination of undefined 

neuronal connections in young neurons. In the brain there exist several well-defined regions 

that are differently modulated by a plethora of regulatory proteins. This complex organization 

cannot be depicted by dissociated cultures of neurons. Thus, for the investigation of neuronal 

circuits the use of in-vivo models or ex-vivo slice preparation is essential. 

 

1.2.2 Animal models 

In-vitro assays can provide first evidence for a pathogenic role of aABs and they can be used 

to establish hypotheses how aABs interact with the target antigen. Still, in-vitro tests are 

insufficient to claim that aABs are crucial to evoke an autoimmune disease. Therefore, certain 

criteria (so called Koch-Witebsky criteria) have to be fulfilled that can only be tested by using 

animal models. According to the modified Witebsky postulates (Witebsky et al. 1957, Rose 

and Bona 1993) the pathophysiological role of an autoimmune disease can be unequivocally 

substantiated if  

 an aAB can be detected in all cases of disease,  

 the corresponding antigen can be identified,  

 passive-transfer of aABs leads to immunopathological syndromes similar to the 

natural disease and 

 immunization of test animals with the antigen leads to disease symptoms  
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Recently, different in-vivo passive-transfer animal models were established to demonstrate 

typical AE syndromes in experimental animals upon application of potentially pathogenic 

aABs to neuronal antigens. These animal models include intrathecal injections via catheters to 

the spinal cord (Werner et al. 2016, Geis et al. 2010), intraventricular or intraparenchymal 

injections of small volumes by microinjection (Saadoun et al. 2010), or intraventricular 

infusions by osmotic pumps (Planaguma et al. 2015).  

Here, the methods of chronic intraventricular infusion and of intraparenchymal injection are 

explained in more detail since these were used and adapted for application of potential 

pathogenic patient IgG fractions or CSF in the following experiments. 

1.2.2.1 Intraventricular infusions with osmotic pumps 

Osmotic pumps are commercially available (Alzet, Germany), small, implantable 

compartments consisting of a semipermeable membrane, an osmotic layer (the so called salt 

sleeve), and a probe reservoir. Osmotic pumps are able to deliver samples with steady 

infusion rates over a long time span to test their impact on the tissue. The pumps are 

connected to the tissue by cannulas. Water pours through the semipermeable membrane into 

the osmotic layer due to the high osmolality of the salt sleeve. When water enters the osmotic 

layer it compresses the impermeable probe reservoir, pumping the probe solution with 

controlled flow rate through the cannula. The flow rate can be varied from 0.1 to 10 µl/h and 

the duration of infusion can be varied from one day to six weeks depending on the 

construction of the pump (Theeuwes and Yum 1976). The advantage of this method is the 

steady flow rate which assures stable drug concentrations over a long time span. In 

comparison to other techniques, this prevents over- or underdosing of compounds by 

fluctuations in their concentrations between single administrations or their depletion (Fara and 

Urquhart 1984). Additionally, infusing samples into the ventricles leads to a widespread 

distribution within the whole brain.  

1.2.2.2 Intraparenchymal injections 

Direct injection of compounds into selected brain regions is a commonly used method. The 

simplest way is to use manual injection of substances using e.g. Hamilton syringes (Bouilleret 

et al. 1999). Later, electrically driven nanoliter injection systems for Hamilton syringes or 

glass capillaries were used to obtain a slow and continuous injection rate (Okada et al. 2003). 

It is possible to inject very small amounts of samples into the brain, with only marginal tissue 

destruction, by using these nanoliter injections systems. The tissue destruction is reduced in 
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comparison to catheter cannulas. The surgery is fast and no implanted material remains. 

Furthermore, it is possible to investigate the effect of compounds in a targeted, locally limited 

area by injection of small volumes. 

The adaptation of these animal models set the stage for the investigation of the molecular 

effects of aAB derived from AE patients and the direct testing of their pathogenic effects.  

1.3 aABs related to AE subtypes show a wide spectrum of synaptic antigens 

Each subtype of AE is characterized by specific aABs to a distinct synaptic antigen. As 

mentioned above, the number of target antigens and therefore also the subtypes of AE 

syndromes are continuously increasing. Antigens can be located postsynaptically as well as 

presynaptically and consist of membrane receptors and their interaction partners. On the 

presynaptic site there exist aABs to metabotrobic receptors (GABA-B), presynaptical located 

anchoring proteins (Neurexin-3α), vesicular proteins (Amphiphysin) or catalytic intracellular 

proteins (glutamate decarboxylase 65 [GAD65]). On the postsynaptic site aABs to ionotropic 

receptors (NMDAR, AMPAR), metabotrobic receptors (metabotrobic glutamate receptor 1), 

and anchoring proteins (leucine-rich glioma inactivated 1 gene) have been identified. Each of 

these aABs defines a specific syndrome and may be responsible for different disease 

symptoms in patients. Therefore, pathomechanisms of AE associated aABs on synaptic 

transmission depend on the respective target antigen and have to be evaluated for each type of 

AE. The largest part of the work presented here is about the pathogenic mechanisms of patient 

IgG aABs to ionotropic glutamate receptors. In the following, the clinical syndromes 

associated with aABs to the AMPA and the NMDA receptors as well as the physiological 

function of these receptors are outlined in detail. 

1.3.1 Autoimmune encephalitis associated with aABs to the AMPAR  

Patients suffering from AE associated with AMPAR aABs develop a typical limbic 

encephalitis. AMPAR limbic encephalitis manifests with a rapid development of mood 

changes, depression, anxiety, short-term memory dysfunction, retrograde amnesia, temporal 

lobe seizures, and strong anterograde memory deficits. Additionally, patients often show 

temporal lobe seizures and EEG abnormalities as well as temporal lobe hyperintensities and 

swelling, and at later stages atrophy in MRI (Tuzun and Dalmau 2007). 64% of all patients 

are women with a median age of 62 years (range: 23 – 81). 40% of patients show additional 

symptoms such as rapidly progressive dementia or psychosis (Hoftberger et al. 2015). 70% of 

the patients have an underlying tumor (small cell lung cancer, thymoma, ovarian cancer, 
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breast cancer or teratoma) and about 70% respond to immunotherapy such as rituximab or 

cyclophosphamide. Early diagnosis of the disease with following immunotherapy is important 

to decrease the risk of relapses (Hoftberger et al. 2015). There exist aAB against two subunits 

of the AMPAR, the glutamate receptor 1 and 2 subunit (GluA1 and GluA2, respectively). The 

reported clinical characteristics of AE with either GluA1 or GluA2 aABs are similar. 

However, less than 30 cases have been reported in literature so far. Therefore, the clinical 

description is still limited. Analysis of the aAB epitope suggests the bottom lobe of the 

extracellular amino terminal domain of either subunit, but with certain variability in the 

antigenic region between different patients (Gleichman et al. 2014). 

1.3.1.1 AMPAR 

AMPARs are heterotetrameric ionotropic receptors composed of four subunits (GluA1 – 

GluA4) that mediate the vast majority of excitatory transmission in the brain (Hollmann and 

Heinemann 1994). GluA2/GluA3 and GluA1/GluA2 heteromeric AMPARs dominate in 

excitatory hippocampal synapses (Passafaro et al. 2001). All subunits have a flip/flop splicing 

site, whereby the flip variant is mostly expressed in young and the flop variant in mature 

animals (Monyer et al. 1991). Flop isoforms of AMPARs have a lower binding affinity for 

glutamate and faster desensitization kinetics (Sommer et al. 1990, Mosbacher et al. 1994). 

Additionally, there are different editing sites of the AMPAR. First, the R/G edited AMPARs 

show faster desensitization kinetics (Lomeli et al. 1994). Second, the GluA2 Q/R editing site 

mediates the Ca
2+

-conductivity and inward rectification of AMPARs. Receptors of juvenile 

rodents are not Q/R edited and therefore Ca
2+

-conductible (Burnashev et al. 1992). Edited 

GluA2 AMPARs are conductible only for K
+
 and Na

+
, have a decreased single-channel 

conductivity in comparison to unedited AMPARs and are inward rectifying (Bowie and 

Mayer 1995, Sommer et al. 1991, Hollmann et al. 1991). GluA2-lacking and Ca
2+

 permeable 

AMPARs are important for long-term potentiation (LTP) in order to strengthen synaptic 

transmission. They mediate an increase in Ca
2+

 conductivity for second messenger activation 

(Malinow and Malenka 2002, Newpher and Ehlers 2008). Additionally, GluA2-lacking 

AMPARs are important for homeostatic plasticity to increase synaptic activity and restore 

synaptic function (Turrigiano and Nelson 2004, Hou et al. 2008). GluA1 homomeric 

AMPARs are not incorporated into the synapse under normal conditions but can be found in 

extrasynaptic compartments (Sans et al. 2003, Wenthold et al. 1996). Taken together, the 

GluA2 subunit plays a special role in AMPAR transmission since this subunit is responsible 
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for Ca
2+

 permeability, inward rectification, LTP induction, and regulation of AMPAR 

kinetics. 

1.3.1.2 Research on autoimmune encephalitis associated with aABs to the AMPAR - state of 

the art 

Incubation of dissociated hippocampal cultures with pooled IgG containing aABs to GluA1 

and GluA2 led to a decrease of synaptic clusters of AMPARs and to a reduction of 

fluorescence intensity of the remaining AMPARs. Against this, NMDARs, post-synaptic 

protein 95 (PSD95), vesicular glutamate transporter (VGLUT), and stargazin clustering is 

unchanged (Lai et al. 2009, Peng et al. 2015). Western Blot analysis of preincubated 

hippocampal cell cultures showed a decrease of AMPAR surface expression but not of 

intracellularly located receptor subunits. This suggests a global reduction of synaptic 

AMPARs by internalization and degradation of AMPARs after aAB binding (Peng et al. 

2015). In electrophysiological recordings of miniature excitatory postsynaptic currents 

(mEPSCs) in hippocampal cell cultures aAB incubation induced a reduction of AMPAR 

mEPSC amplitudes and frequencies. Moreover, GABA-A receptor mediated miniature 

inhibitory postsynaptic currents (mIPSCs) were also reduced (Peng et al. 2015, Gleichman et 

al. 2014). This observation was interpreted as a possible mechanism of compensation for the 

loss of AMPAR mediated transmission.  

 

1.3.2 Autoimmune encephalitis associated with aABs to the NMDAR 

In comparison to AMPAR AE, patients suffering from NMDAR AE show a distinct clinical 

syndrome and a different course of disease. The median age of patients with NMDAR AE is 

22 years (approximately 40% with age < 18 years). 80% of all patients are women (Dalmau et 

al. 2017). In about 40% of patients (all females) teratomas of the ovaries are detected. Since 

these teratomas express ectopic neuronal tissue and also NMDARs, ovarian teratomas may 

serve as a trigger of NMDAR AE by inducing molecular mimicry. Another identified trigger 

is herpes simplex encephalitis as it has been shown that some patients after herpes 

encephalitis develop secondary symptoms of NMDAR encephalitis. These patients have been 

tested positive for NMDAR aABs and respond to immunotherapy (Pruss et al. 2012). 

However, in up to 60% of all cases with NMDAR AE no trigger can be identified (Titulaer et 

al. 2013).  
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The clinical spectrum of the disease presents with a rapidly progressing neuropsychiatric 

manifestations. Beginning with prodromal headache or fever patients develop psychiatric 

syndromes like anxiety, insomnia, delusional thinking, hallucinations, paranoid thoughts, 

pressured speech, mood disorder, aggressive behavior and episodes of extreme agitation and 

catatonia (Dalmau et al. 2011, Titulaer et al. 2013). Patients further progress with 

development of seizures, reduced verbal output, decreased levels of consciousness, rigidity 

and autonomic dysfunction (high blood pressure, hyperthermia, profuse salivation, 

hypoventilation) until they eventually become comatose (Titulaer et al. 2013, Irani et al. 2010, 

Sansing et al. 2007). Clinical MRI shows mild or transient cortical, subcortical, cerebellar, or 

brainstem abnormalities in some patients (40%). EEG can show epileptic activity and bursts 

of rhythmic 20-30 Hz beta frequency activity riding on rhythmic delta (1-3 Hz) waves, called 

“extreme delta brush” in several patients (Schmitt et al. 2012). About 80% of all patients 

respond to immunotherapy such as corticosteroids, intravenous immunoglobulins, plasma 

exchange, rituximab or cyclophosphamide. Tumor resection in case of a teratoma, 

symptomatic care, and physical therapy are also important completing the treatment strategies 

(Titulaer et al. 2013). Recovery from NMDAR AE usually takes several weeks to months 

although adequate immunotherapy and intensive care is conducted. It is suggested that this 

prolonged recovery is due to the continuous presence of pathogenic aABs synthesized by 

long-lived mature plasma cells within the CNS (Dalmau et al. 2017).  

The epitope of NMDAR AE is a highly restricted region in the N-terminal domain of the N-

methyl-D-aspartate receptor subunit (NR) 1. Mutants of NR1 with deletion of the N368/G369 

region of the aminoterminal domain of the receptor show no aAB binding (Kreye et al. 2016, 

Gleichman et al. 2012). 

 

1.3.2.1 NMDARs 

NMDARs are heterotetrameric ionotropic glutamate receptors composed of three subunits 

(NR1, NR2 and NR3). There exist eight NR1 subunit splice variants, four different NR2 (A-

D) and two NR3 (A, B) subunits (Dingledine et al. 1999). The NR1 subunit is obligatory for 

the expression of functional NMDARs (Forrest et al. 1994). NR2 assembles with NR1 and 

NR3 as ternary NR1/NR2/NR3 complexes (Sasaki et al. 2002, Karakas and Furukawa 2014). 

The agonist binding sites of NMDARs are located in the S1 and S2 domains, whereas NR1 

and NR3 bind glycine as coagonist and NR2 binds glutamate (Yao and Mayer 2006, 
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Furukawa et al. 2005). NR2A and NR2B have an allosteric inhibitor binding site for Zn
2+

 and 

ifenprodil (Paoletti et al. 2000). Additionally, NMDARs are voltage-dependently blocked by 

Mg
2+

. At membrane potential smaller than -40 mV external Mg
2+ 

ions enter the NMDAR and 

block the pore due to the size of magnesium ions. With increasing depolarization the Mg
2+ 

block resolves according to the magnesium driving force (Nowak et al. 1984, Mayer et al. 

1984). In the hippocampus NR1/NR2B complexes are thought to be present in nascent 

synapses and extrasynaptic sites whereas NR2A-containing NMDARs predominantly exist in 

mature synapses (Thomas et al. 2006, Tovar and Westbrook 1999). 

1.3.2.2 Research on autoimmune encephalitis associated with aABs to the NMDAR AE - 

state of the art 

Previous studies on NMDAR AE revealed aAB driven NMDAR internalization and 

degradation. Incubation of dissociated cultured neurons with aABs caused an activity-

independent decrease of NMDAR surface density and synaptic location after two hours with 

the greatest effect after 12 hours. AMPAR or GABAA receptor transmission was unaltered. 

Additional experiments, using fragment antigen binding (Fab)-Fragments that are unable of 

crosslinking NMDARs, showed no changes in NMDAR density and location (Hughes et al. 

2010, Dalmau et al. 2008, Moscato et al. 2014). These experiments suggest that NMDAR 

aABs induce a pathogenic function by crosslinking mechanisms and internalization of the 

antigen.  Recordings of NMDAR mEPSCs in neuronal cultured cells after NMDAR aAB 

incubation for 24 hours induced a reduction of the amplitudes, but not of their frequency, 

without altering AMPAR mEPSC amplitudes (Hughes et al. 2010). There was no difference 

in mEPSC amplitudes after incubation of cells with Fab-Fragments. These results corroborate 

the hypothesis of a reduction in NMDAR density (Moscato et al. 2014). Analysis of lateral 

diffusion by single molecule trafficking revealed dramatically increased NMDAR diffusion as 

compared to GluA1 or GABA-A receptors (Mikasova et al. 2012). This finding indicates a 

specific influence of NMDAR aABs on receptor trafficking in synaptic areas. As a potential 

target for inducing pathological NMDAR trafficking the Ephrin B2 receptor (EphB2) was 

identified. EphB2 is a tyrosine-kinase that modulates LTP by stabilization and clustering of 

NMDARs in the postsynaptic membrane (Kullander and Klein 2002, Lisabeth et al. 2013). 

Quantum dot tracking of EphB2 demonstrated an increased EphB2 diffusion rate at the 

synapse after NMDAR aAB incubation. Additionally, there was a reduction in co-

immunoprecipitation of EphB2/NMDAR pointing to a disturbed interaction of EphB2 with 

the NMDAR. Importantly, EphB2 activation by application of its ligand ephrine B2 prevented 
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the increase in synaptic NMDAR diffusion. Injection of ephrine B2 ligand together with 

NMDAR aABs into the dorsal hippocampus of rats was able to rescue the aAB induced loss 

of NMDARs in immunostaining experiments (Mikasova et al. 2012).  

Recently, a passive-transfer mouse model was developed by continuous application of 

NMDAR aABs over 14 days using bilateral intraventricular catheters connected to osmotic 

pumps (Planaguma et al. 2015). Animals with NMDAR aAB infusion showed impairments in 

recognition memory, anhedonic and depressive-like behavior but no change in locomotor 

activity. IgG deposition in the brain was maximal on day 18 after pump implantation and 

decreased at later time points when pump infusion has ended. Similarly, cell surface NMDAR 

density was also decreased with a maximum on day 18. There were no detectable 

inflammatory infiltrates after aAB infusion, thus, suggesting a pathomechanism exclusively 

mediated by aABs without other effector activation.  

2 Objectives of this work 

The field of AE is continuously growing and gives rise to many questions on disease 

pathophysiology that need to be addressed by experimental work. Furthermore, treatment 

options are currently insufficient; therefore, development of target-specific treatment options 

is needed. The goal of this work was to analyze the molecular pathomechanisms of different 

subtypes of AE characterized by aABs to AMPARs, NMDARs, GAD65, and amphiphysin.  

In the first step several experimental procedures were developed to analyze aAB effects in-

vivo and in-vitro. This includes the improvement of in-vitro techniques using dissociated 

hippocampal cell cultures and establishment of different passive transfer animal models.  

Second, the effects of several aABs on synaptic transmission at post- and presynaptic sites 

were examined using electrophysiological patch-clamp or field potential recordings. aAB 

induced structural changes were investigated using immunofluorescence methods in 

combination with super-resolution imaging or confocal microscopy. Behavioral abnormalities 

were investigated using standardized behavioral testing, e.g. using tests for memory, anxiety, 

depressive like behavior, and motor function.  

Third, based on those experimental results, novel treatment methods were tested that directly 

interfere with the aAb-induced synaptic dysfunction as a concept of hypothesis-driven 

targeted treatment beyond immunosuppressive therapy.  

  



3 Manuscript overview 17 

 

3 Manuscript overview 

Manuscript I: 

Stiff person-syndrome IgG affects presynaptic GABAergic release mechanisms 

Werner C, Haselmann H, Weishaupt A, Toyka KV, Sommer C, Geis C 

J Neural Transm (Vienna). 2015 Mar;122(3):357-62. doi: 10.1007/s00702-014-1268-1 (IF 

2.59) 

Date of acceptance: 25
th

 June 2014 

In this publication, we analyzed the action of stiff-person syndrome aABs using patch-clamp 

recordings in dissociated hippocampal neurons and confocal microscopy. We identified an 

increase of GABAergic mIPSC frequency but no structural changes. Since these cannot be 

explained by GAD65 aABs we propose an additional, yet unknown, antigen in stiff-person 

syndrome. This hypothesis is supported by intense immunoreactivity of synapses in neuronal 

cultures after GAD65 antibody depletion and application of the depleted IgG fraction to the 

neurons.  

CW designed the study, did patch-clamp and microscopy experiments, including IgG 

preabsorption and immunocytochemistry, data analysis and prepared the manuscript. HH 

prepared neuronal hippocampal cell cultures, did patch-clamp recordings and contributed to 

the discussion. AW purified the IgG fractions and contributed to the discussion. KVT and CS 

contributed to the discussion. CG designed the study and wrote the manuscript. 

Personal contribution: 20% 

 

 

_________________________ 

Prof. Dr. med. Christian Geis 
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Manuscript II: 

Interactions of human autoantibodies with hippocampal GABAergic synaptic 

transmission – analyzing antibody-induced effects ex vivo 

Haselmann H, Röpke L, Werner C, Kunze A, Geis C 

Frontiers in Neurology. 2015 Jun 11;6:136. doi: 10.3389/fneur.2015.00136 (IF 3.18) 

Date of acceptance: 28
th

 May 2015 

In this manuscript, we developed a new passive transfer mouse model in order to study the 

effects of patient-derived aABs in the CNS of experimental animals by intraparenchymal or 

intraventricular injections. This method provides a stable passive-transfer animal model which 

requires only small amounts of patient aAB material, which is often limited.  

HH designed the study, did the stereotactic injections, immunohistological stainings, patch-

clamp recordings of hippocampal brain slices, data analysis and prepared the manuscript. LR 

contributed to the discussion. CW did patch-clamp recordings of hippocampal brain slices, 

data analysis and contributed to the discussion. AK contributed to the discussion. CG 

designed the study and wrote the manuscript. 

Personal contribution: 80% 

 

 

_________________________ 

Prof. Dr. med. Christian Geis 
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Manuscript III:  

Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics 

and composition 

Werner C, Pauli M, Doose S, Weishaupt A, Haselmann H, Grünewald B, Sauer M, Heckmann 

M, Toyka KV, Asan E, Sommer C, Geis C 

Brain. 2016 Feb;139:365-379. doi: 10.1093/brain/awv324 (IF 10.29) 

Date of acceptance: 25
th

 September 2015 

In this work, we investigated the structural effects of amphiphysin aABs using electron 

microscopy and direct stochastic optical reconstruction microscopy (dSTORM). We were able 

to provide evidence for interference of human anti-amphiphysin aABs with clathrin-mediated 

endocytosis. This interaction leads to a reduction of the presynaptic vesicle pool, clathrin 

coated intermediates, and endosome-like structures. Synaptobrevin 2 as a marker for the 

ready-releasable pool was increased and synaptobrevin 7 as a marker for the vesicle reserve 

pool was reduced. These changes may induce synaptic dysfunction by run-out of presynaptic 

vesicles as a possible pathomechanism in amphiphysin aAB associated stiff-person syndrome. 

CG, MH, CS, and KVT designed the study. CW performed electron microscopy and 

dSTORM microscopy and was responsible for data acquisition and analysis. MP, SD, and MS 

supported dSTORM analysis and contributed own data. AW purified the IgG fractions. HH 

was responsible for neuronal cell cultures and helped in conceptualization and discussion of 

the manuscript. BG performed animal experiments. MH. EA performed electron microscopy 

together with CW. CG, CW, KVT, and CS wrote the manuscript.  

Personal contribution: 10% 

 

 

_________________________ 

Prof. Dr. med. Christian Geis 
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Manuscript IV: 

Ephrin-B2 Prevents N-Methyl-D-Aspartate Receptor Antibody Effects on Memory and 

Neuroplasticity 

Planagumà J*, Haselmann H*, Mannara F*, Petit-Pedrol M, Grünewald B, Aguilar E, Röpke 

L, Martín-García E, Titulaer MJ, Jercog P, Graus F, Maldonado R, Geis C
#
, Dalmau J

#
 

Annals of Neurology. 2016 Sep;80(3):388-400. doi: 10.1002/ana.24721 (IF 9.89) 

Date of acceptance: 27
th

 June 2016 

In this publication, we demonstrated the effects of human NMDAR aABs on behavior of mice 

that received long term NMDAR aAB infusion by osmotic pumps. Furthermore, we evaluated 

structural und functional changes induced by NMDAR aABs leading to impaired memory, 

depressive like behavior, and decreased LTP in ex-vivo field potential recordings in CA1 

region of the hippocampus. In addition, we developed a treatment strategy of NMDAR AE by 

administration of ephrin-B2 as agonist of EphB2 to prevent synaptic disturbance of NMDAR 

trafficking in-vivo and in-vitro.  

JD and CG were responsible for conception and design of the study. FM, MP-P, EM-G, EA, 

and JD were responsible for acquisition and analysis of animal behavior. JP, MJT, PJ, FG, 

and JD were responsible for acquisition and analysis of immunohistochemistry and confocal 

microscopy. HH, BG, LR, and CG were responsible for acquisition and analysis of 

electrophysiological studies. JP, HH, CG, and JD were responsible for drafting of the 

manuscript and figures. JP, HH, and FM contributed equally (*).CG and JD shared seniority 

(#). 

Personal contribution: 30% 

 

 

_________________________ 

Prof. Dr. med. Christian Geis 
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Manuscript V:  

Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor 

reorganisation and memory dysfunction 

Haselmann H*, Mannara F*, Werner C, Planagumà J, Grünewald B, Petit-Pedrol M, Kirmse 

K, Classen J, Demir, F, Klöcker N, Doose S,  Dalmau J, Hallermann S, Geis C 

Neuron (in revision; IF 14.02) 

This publication demonstrates the functional and structural effects of patient’s aABs against 

the GluA2 subunit of the AMPAR in-vitro, ex-vivo and in-vivo. Here, we used patch-clamp 

recordings, extracellular field potential recordings, dSTORM analysis and behavioral tests 

and found a compensation for the aAB induced loss of GluA2 containing AMPAR by the 

synaptic insertion of extrasynaptic GluA1 homomeric receptors. Furthermore, in passive-

transfer models with GluA2 aABs mice exhibited characteristic disease symptoms e.g. 

impaired recognition memory and anxiety.  

HH designed the study, performed electrophysiological experiments, intraparenchymal IgG 

injections, behavioral studies, HEK cell transfections, immunohistochemical stainings, data 

analysis, prepared dissociated hippocampal neurons and wrote the manuscript. FM did 

intraventricular IgG infusions, behavioral studies and data analysis. CW and SD did 

immunocytochemical stainings and dSTORM analysis and contributed to the discussion. KK 

performed data analysis and contributed to the discussion. JP and MP-P did 

immunohistochemical stainings, data analysis and contributed to the discussion. BG, JD and 

SD contributed to the discussion. JC and JD provided patient material. NK and FD did 

immunoprecipitation experiments and contributed to the discussion. SH provided analysis 

software and contributed to the discussion. CG designed the study and wrote the manuscript. 

HH and FM contributed equally (*). 

Personal contribution: 70% 

 

 

_________________________ 

Prof. Dr. med. Christian Geis 
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5 Discussion 

In the last decade, the discovery of the spectrum of AE and the clinical characterization 

helped to identify patients suffering from these diseases and established the rationale that 

these patients should be treated with immunotherapy. Commercially available cell-based 

assays now allow fast diagnosis of the different subtypes of AE. These assays consist of cell 

lines that are transfected with the most common target antigens and can be applied for 

diagnostics using serum and CSF. When started early, immunotherapy often leads to 

substantial improvement even in very long phases of severe illness. This delayed response to 

treatment is most likely due to the long half-time of aABs in the CNS and due to long-life 

plasma cells that are difficult to attack by pharmacological means. Now, it is important to 

understand disease pathophysiology to understand disease symptoms and to develop target-

specific treatment options that can be applied in addition to immunotherapy.  

First experimental studies of the molecular mechanisms of aAB action in the brain provided 

insights into the pathomechanisms of AE. For example, aABs lead to the internalization of 

NMDARs by cross-linking mechanisms and the disruption of NMDAR - EphB2 interaction 

leading to impaired NMDAR trafficking to synapses in NMDAR AE (Hughes et al. 2010, 

Mikasova et al. 2012). These mechanisms then probably induce recognition and memory 

deficits, depressive-like, and anhedonic behavior in passive-tranfer animal model using 

osmotic pumps to deliver pathogenic aABs into the lateral ventricles of mice. (Planaguma et 

al. 2015). However, in case of NMDAR AE it was not clear how these aABs interact with 

synaptic transmission in-vivo and if these aABs interfere with synaptic plasticity possibly 

underlying severe memory deficits. Moreover, to date more than 15 target antigens have been 

identified. For each of these antigens pathogenic mechanisms that are induced by the aABs 

may be different and remain to be investigated.  

5.1 Experimental models for investigation of AE pathophysiology 

One focus of this work was the investigation of aAB mediated deficits on the presynaptic as 

well as on the postsynaptic site of neuronal connections. Therefore, we generated different 

experimental models adapted to the respective experimental question. For the verification of 

aAB specificity we used transfected HEK cells. The cells were transfected with the target 

protein and specificity of purified human patient IgG was verified by immunocytochemical 

staining or preabsorbtion with transfected HEK cells (Planaguma et al. 2016, Werner et al. 

2015, Haselmann et al. in revision).  
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For structural analysis of the pre- and postsynaptic organization of proteins we used 

dissociated hippocampal neurons. Thereby we were able to apply confocal microscopy or 

dSTORM to reconstruct structural synaptic components and analyze protein density and 

clustering in-vitro (Werner et al. 2016, Werner et al. 2015, Haselmann et al. in revision). For 

cell culture experiments we only needed small amounts of patient IgG fractions for incubation 

of cells, the incubation procedure is experimentally easy, and answers to these experimental 

questions could be obtained without animal experiments. We were able to investigate the 

density and localization of presynaptic proteins and we could identify presynaptic 

disturbances in vesicle endocytosis induced by aABs to amphiphysin.  Additionally, we were 

able to produce neuronal cell cultures from amphiphysin knockout (ko) mice as control for 

these structural presynaptic changes. Here, we used embryonic neuronal cultures from 

heterozygous amphiphysin mice with subsequent genotyping and control 

immunocytochemical staining against amphiphysin to select neuronal cultures from knockout 

embryos (Werner et al. 2016). Moreover, we used primary hippocampal neurons to perform 

electrophysiological patch-clamp studies for analysis of quantal and single synapse synaptic 

transmission (Werner et al. 2015, Haselmann et al. in revision). Here, among other findings, 

we could identify changes in quantal release frequency of neurons incubated with IgG fraction 

from patients with stiff-person syndrome (Werner et al. 2015).  

For further evaluation of pathogenic mechanisms of aABs in-vivo, animal models are 

indispensable. For in-vivo behavioral and ex-vivo physiological experiments we used two 

different passive-transfer models. First, we established a mouse model with stereotactic 

intraparenchymal injections of patient IgG samples into different areas of the hippocampus. 

Using this model it is possible to analyze acute effects of aABs on synaptic function in a 

locally defined area. The injection site could be identified ex-vivo in vital slice preparations by 

fluorescence location of (N-(3-Triethylammoniumpropyl)-4-(4-(Dibutylamino) Styryl) 

Pyridinium Dibromide fixable (FM1-43FX) dyes added to the injected IgG fraction 

(Haselmann et al. 2015, Haselmann et al. in revision). This method was used mainly for 

electrophysiological patch-clamp and field potential recordings of acute hippocampal slices, 

since it allowed us to locally manipulate the neuronal network without disturbing other brain 

regions and with little destruction of brain tissue by the injection needle. By using a nanoliter 

injection device with glass pipettes with very small tip openings, lesions of brain tissue caused 

by the injection pipette could be reduced to a minimum. In addition, with this method a 

smaller amount of the patient IgG samples, which are often limited in rare diseases, was 

needed (Haselmann et al. 2015). Parenchymal injections are best suited for the investigation 
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of intermediate effects of aABs (up to 24h after injection) since the injected volume and the 

amount of aABs is small in comparison to the osmotic pump model (see below). Additionally, 

we used this injection model for behavioral studies by repetitive IgG injections at multiple 

hippocampal locations over several days, thus ensuring that the observed behavioral deficits 

on memory are caused by pathogenic effects of aABs exclusively in the hippocampal region.  

However, the intraventricular osmotic pump infusion model is better suited for behavioral 

studies in general. In this model we subcutaneously implanted two osmotic pumps filled with 

patient IgG samples on the animals neck. These pumps were connected with small tubings on 

two implanted catheters that deliver IgG probes to both lateral ventricles. The flow rate of the 

used pumps was 25 µl/h for total 14 days. As a consequence, investigation of the effects of 

long-term administration of IgG to the brain is possible and animals are able to recover from 

surgery over a long time period before maximal concentrations of intraventricular antibodies 

are reached. Furthermore, repetitive testing can be performed during the infusion period and 

also during the recovery period after the end of the infusion. We mainly used this model for 

analysis of structural and functional effects as well as for behavioral studies after long-term 

aAB administration to the brain (Planaguma et al. 2016, Haselmann et al. in revision). 

With the use of both models in the same study testing the same IgG aAB preparation we were 

able to directly compare the two models with regard to the effects of aABs to the AMPAR in 

behavioral experiments. Based on these experiments, both models can be regarded as reliable 

methods for analysis of behavioral effects of AE aABs. In both models we found increased 

anxiety (EPM or black & white box) and decreased recognition memory (NOR) after 

administration of GluA2 aABs (Haselmann et al. in revision). In conclusion, the osmotic 

pump model is less stressful for the animals during experimental acquisition time and less 

time consuming for the experimenter because of the shorter surgery and there is no necessity 

for repetition of surgery to accumulate larger amounts of IgG in the brain. The osmotic pump 

model is able to reflect the long-term influence of IgG samples on brain function better than 

the injection model. It is also possible to exchange the osmotic pumps after the infusion time 

of 14 days and extend the long-term exposure of aABs to the time interval needed (Banach-

Petrosky et al. 2007, Grathwohl and Jucker 2013). On the other side, the injection model is 

less material consuming in comparison to the osmotic pump model, since the amount of IgG 

sample needed is markedly lesser. Intraparenchymal injections are also better suited for 

investigations of  effects of aABs in distinct brain areas.  
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5.2 aABs lead to internalization of the target antigen by cross-linking mechanisms 

For some neuronal surface antigens it is commonly accepted that the binding of aABs leads to 

cross-linking of target proteins followed by internalization and degradation of these 

complexes. This has been shown by immunocytochemistry in primary neurons for aABs to 

the NMDAR, AMPAR, or glycine receptor (Moscato et al. 2014, Lai et al. 2009, Carvajal-

Gonzalez et al. 2014). We confirmed these findings ex-vivo in brain slices of mice after 

osmotic pump infusion of NMDAR aABs by confocal microscopy showing reduced 

expression of NMDARs in the hippocampus (Planaguma et al. 2016). Additionally, we 

confirmed the findings of Lai et al. (2009) showing reduction of AMPAR expression in 

neuronal hippocampal cultures, but here with super-resolution microscopy. dSTORM 

revealed a reduction of synaptically located GluA2 subunit localizations after 24h of anti-

GluA2 IgG incubation (Haselmann et al. in revision). The dSTORM technique is a powerful 

tool that is able to break the diffraction limit of normal light microscopy and dissolve 

structures of as little as 20-40 nm (Rust et al. 2006). This is achieved by photo-switching 

fluorophores between the on- and off-state, whereas most of the fluorophores are shifted to 

the off-state by special buffers containing mercaptoethylamine. After acquisition of several 

thousand pictures with different and separated fluorophores in the on-state it is possible to 

localize single molecules and compute an image from these single localizations with strongly 

increased resolution (van de Linde et al. 2011). Thus, dSTORM enables the analysis of 

clusters of AMPARs in the subcompartment of the postsynaptic receptor field in hippocampal 

dissociated neurons. Moreover, measurements of synaptic protein densities are more accurate. 

Surprisingly, the synaptic GluA1 subunit densities after incubation with GluA2 aABs for 24h 

were increased, whereas no changes in extracellular GluA1 densities could be detected 

(Haselmann et al. in revision). When we evaluated the distribution of GluA1 AMPARs after 

aAB incubation we could show a shifted distribution of extracellular GluA1 AMPARs into 

synapses possibly compensating for the loss of GluA2 containing by homomeric GluA1 

AMPARs. In addition, the number of Homer1 clusters is decreased after incubation with 

GluA2 aABs, indicating a decrease in the total number of synapses. 

5.3 GluA2 AE leads to synaptic changes in-vitro 

To verify this interesting result, we used functional whole-cell patch-clamp recordings of 

neuronal cell cultures to measure quantal synaptic inputs from single vesicle fusion 

(mEPSCs), spontaneous activity of the neuronal network (EPSCs), and evoked glutamatergic 

transmission by  application of glutamate  (ieEPSCs) on the level of a single synapse, a 
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defined group of synapses, and of all synapses projecting to the recorded neuron (Neher and 

Sakmann 1976, Brown and Greenberg 2016). AMPAR mediated mEPSCs were recorded after 

blocking action potentials (AP) with tetrodotoxin (TTX). There was no difference in mEPSC 

amplitude, but a decrease in the frequency of quantal events at resting membrane potentials. 

Together with our dSTORM data this can be interpreted as a reduction of active synapses 

induced by GluA2 aABs or the presence of silent synapses lacking intrasynaptic AMPARs 

(Kullmann 2003). 

Using the inward rectification properties of AMPARs (Bowie and Mayer 1995) we were able 

to show that mEPSC amplitude and frequency is decreased in GluA2 aAB incubated cells at 

positive holding potentials, consistent with studies on GluA2 deficient neurons (Lu et al. 

2009). This is explained by the exchange of GluA2 containing heteromeric for GluA2 lacking 

AMPARs that are blocked at positive membrane potential by endogenous polyamines and 

have a higher single-channel conductance (Donevan and Rogawski 1995). The higher 

conductivity of the newly inserted AMPARs lacking GluA2 at resting membrane potential 

leads to a compensation of the mEPSC amplitude although the total number of receptors is 

reduced by aABs (Sommer et al. 1991). This synaptic AMPAR subunit exchange was 

corroborated by the use of the specific non-GluA2 AMPAR blocker 1-Naphthyl acetyl 

spermine (NASPM). mEPSC recordings with superfusion of NASPM led to similar results as 

compared to recordings at positive holding potentials (Koike et al. 1997). Together, these 

results are in good accordance with conditional GluA2 ko studies (Panicker et al. 2008, 

Altimimi and Stellwagen 2013, Lu et al. 2009). 

Further, evaluation of the synaptic transmission in neuronal cultures by single synaptic 

glutamate iontophoresis revealed unchanged ieEPSCs. Here, single synaptic spots are 

identified with FM1-43FX, a fluorescent dye that is enriched in presynaptic vesicles upon 

stimulation and endocytosis (Geis et al. 2010). A glass pipette with very small tip opening 

filled with the negatively charged transmitter glutamate and connected to a iontophoretic 

device can release the transmitters for stimulation of the individual synapse when negative 

potential is given to the pipette for a very short time interval (1 ms) (Murnick et al. 2002, Liu 

et al. 1999). Increase of stimulation strength leads then to enhanced glutamate release and to 

multisynaptic stimulation along the dendrite.  ieEPSC evoked by multisynaptic stimulation 

were decreased in GluA2 aAB preincubated cells (Haselmann et al. in revision). This 

observation suggests a reduction of AMPAR containing synapses consistent with 

immunocytochemical experiments as shown before (Lai et al. 2009). Moreover, partial 
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silencing of synapses or reduced absolute AMPAR expression was also reported in GluA2 

deficient neurons (Lu et al. 2009, Sans et al. 2003). Corroborating these findings, the 

reduction of synaptic GluA2 containing AMPARs is also reflected in a decrease of recovery 

after desensitization in GluA2 aAB incubated neurons as it has been reported in GluA2 ko 

slice cultures (Harvey et al. 2001). 

5.4 GluA2 aABs lead to synaptic scaling  

Next, we injected human aABs into the dentate gyrus of the hippocampus of mice. FM1-

43FX was co-injected for intravital identification of the correct application site in acute slice 

preparation. Stimulation of the lateral perforant path fibers revealed unchanged evoked 

excitatory currents (eEPSC) in dentate gyrus granule cells consistent with our results in 

neuronal cultures. With fixed experimental settings and a high number of stimulations we 

were able to perform non-stationary fluctuation analysis (nsFA) using the eEPSC recordings. 

With this method using a mathematical model it is possible to extract the single-channel 

conductivity and number of channels contributing to a synaptic response from the variation of 

this response (Benke et al. 2001). The readout of this method is a parabolic curve from which 

the single channel conductance is given by the initial slope and the number of channels by the 

equation of the parabola (Sigworth 1980). Analysis of nsFA data demonstrated increased 

single channel conductivities and decreased channel numbers in eEPSCs comparable to the 

results in mEPSC recordings in cultured neurons. The hypothesis of synaptic insertion of 

GluA2 lacking AMPARs was ultimately supported by recordings in GluA1 ko mice after 

GluA2 aAB administration. Here, eEPSC amplitudes were decreased with unchanged single 

channel conductance but decreased channel number (Haselmann et al. in revision). In GluA1 

ko mice, the loss of GluA2 containing AMPARs cannot be compensated by insertion of 

GluA2 lacking AMPARs, e.g. GluA1 monomers. These mainly extrasynaptic located GluA1 

homomeric AMPARs have increased single channel conductance (Sommer et al. 1991) and 

are blocked by NASPM (Koike et al. 1997) explaining the results of nsFA by insertion of 

GluA2 lacking AMPARs in wildtype mice (Soares et al. 2013). In GluA1 ko mice 

extrasynaptic homomeric GluA1 AMPARs are not available, therefore, single channel 

conductance in nsFA was unchanged, but the number of channels was decreased then leading 

to the reduction of eEPSC amplitude.  
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5.5 Recognition memory and anxiety like behavior is affected by GluA2 aABs 

In the next step we tested for the pathogenic effects of GluA2 AE on the mouse behavior in 

our passive-transfer animal models. As behavioral readouts we used the novel object 

recognition test as a method for memory testing and the elevated plus maze test (EPM) or the 

black and white box as methods to assess anxiety related behavior. Additionally, we used an 

infrared (IR) actimeter for the analysis of locomotor activity. With this set of behavioral 

experiments we were able to reliably recognize behavioral changes of mice after aAB 

administration.  

The IR actimeter is measuring motoric activity, including horizontal activity, local motor 

activity and rearings. Data from the IR actimeter were used to detect influence of the surgery 

on the activity of the animals. Moreover, this data can also be used to assess the direct 

influence of aAB administration on motoric behavior (Caille et al. 1999, Berrendero et al. 

2005). As we expected, we did not find changes in locomotor activity since motor dysfunction 

is not a key symptom of the disease. This result also allows us to conclude that the surgeries 

had no influence on overall activity of test animals in the animal models (Planaguma et al. 

2016, Haselmann et al. in revision).  

The anxiety tests both measure the mice’s natural aversion to open spaces and the tendency to 

be thigmotaxic. In the EPM there are two closed arms allowing the animal to hide in a dark 

zone and two open arms that are enlightened and allow the view over a wide area of the room. 

Dependent on anxiety level of the animal it will remain in the dark for a longer period (Walf 

and Frye 2007, Pellow et al. 1985). In the black and white box, the same paradigm is tested by 

using a black darkened box as a possibility to hide and an enlightened white box as a stimulus 

for anxiety (Gimenez-Llort et al. 2015). In contrast to the assumption that anxiety is nearly 

exclusively mediated by the amygdala, recent data revealed striking evidence that the ventral 

hippocampus is involved, too (Bannerman et al. 2014, Bannerman et al. 2004). In our 

experiments we could show that GluA2 aABs mediate increased anxiety in the hippocampal 

injection animal model in the EPM, as well as in the ventricular infusion animal model in the 

black and white box (Haselmann et al. in revision). Whereas the osmotic pump model could 

account for aAB induced pathomechanisms in the hippocampus as well as in the amygdala, 

the injection model is likely to induce anxiety related behavior especially in the hippocampus 

since the diffusion of locally injected aABs into the amygdala is not expected. Together, these 

findings are in line with further studies suggesting increased anxiety-like behavior after 
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benzodiazepine withdrawal induced deregulation of synaptic AMPAR composition (Van 

Sickle et al. 2004, Das et al. 2008). 

We used the Novel Object Recognition (NOR) test in order to test the impact of anti-AMPAR 

aABs on memory. This test uses the animals innate exploratory behavior without the need of 

other positive or negative stimuli (Antunes and Biala 2012). Another advantage of the NOR 

test is the possibility that it can be repeated several times with different objects without 

disturbing the performance of the animal. This allows the experimenter to test recognition 

memory before and after surgery to rule out effects of the surgery on brain function. The test 

measures the discrimination index, e.g. the time spent exploring the unknown object divided 

by the total time exploring both objects. A higher discrimination index is considered to reflect 

greater memory retention for the familiar object (Ennaceur and Delacour 1988). There is still 

discussion about the participating brain regions in NOR. On the one side, involvement of 

different brain regions in novel object preference and object location paradigms is suggested 

(Barker and Warburton 2011). Novel object preference may be mediated more by perirhinal 

cortex, whereas object location is mediated by the hippocampus. On the other side, also the 

hippocampus is identified to participate in novel object preference test (Broadbent et al. 2010, 

Cohen and Stackman 2015). Overall, the involvement of the hippocampus in object 

recognition memory seems to be dependent on the delay between the familiarization and the 

test phase (Cohen and Stackman 2015, Hammond et al. 2004). In our experiments we used 

two objects on a diagonal axis of the open field box for habituation and exchanged one of 

these objects for the acquisition (Puighermanal et al. 2009). Our experiments revealed a 

decrease in object recognition memory by GluA2 aABs in the microinjection model as well as 

the osmotic pump model. This reflects the characteristic anterograde memory deficit that is 

characteristic in patients with GluA2 AE (Tuzun and Dalmau 2007).  

Of note, in the parenchymal injection model of GluA2 AE also control IgG injected mice 

showed slightly decreased performance in the NOR task in comparison to the baseline 

performance before surgery. This effect could be due to repetitive surgeries and anesthesia. 

Furthermore, repetitive injections at multiple injection sites might have effects on behavior 

due to small lesions of brain tissue. Another possible influence factor might be the short time 

(one day) of recovery after the last surgery. However, the decrease in recognition memory of 

these control mice was by far less pronounced than in GluA2 IgG injected animals. Based on 

these caveats the osmotic pump model might be better suited for behavioral testing whereas 

the injection model is possibly more suitable for electrophysiological recordings due to its 



5 Discussion 147 

 

defined local application and the exact amount of injected aAB fractions to these targeted 

injection sites. 

5.6 The effects of aABs to ionotropic glutamate receptors on synaptic long-term 

potentiation 

By using aABs to the AMPAR (anti-GluA2 aABs) and to the NMDAR (anti-NR1 aABs) we 

first showed how disease-associated human aABs to neuronal antigens interfere with synaptic 

plasticity. As functional correlate for learning and memory we used ex-vivo hippocampal 

brain slice field excitatory postsynaptic potential (fEPSP) recordings to test long term 

potentiation (LTP) in the Schaffer collateral – CA1 synaptic pathway (Morris et al. 1986).  

When anti-GluA2 aABs were injected into the CA1 region of the hippocampus, LTP after 

theta burst stimulation was heavily reduced as shown by the reduction of fEPSP slope values 

in comparison to control IgG injected animals (Haselmann et al. in revision). Induction of 

LTP drives the recruitment of extrasynaptic AMPARs to synapses (Bassani et al. 2013, Jacob 

and Weinberg 2015). Additionally, Granger et al. (2013) demonstrated that LTP formation is 

strongly dependent on the number of extrasynaptic receptors independently from their type or 

subunit composition. As we could show by electrophysiology and super-resolution 

microscopy, anti-GluA2 aABs mediate the internalization of AMPARs leading to the 

insertion of extrasynaptic AMPARs from the reserve pool. We therefore propose that the loss 

of extrasynaptic AMPARs after hippocampal GluA2 aAB injection leads to insufficient 

incorporation of AMPARs and finally to reduced LTP. Corroborating this hypothesis, basic 

synaptic transmission measured by input-output characteristics of fEPSPs during the same 

recording session is unaltered by anti-GluA2 aABs similar to eEPSC peak amplitudes in 

dentate gyrus granule cells as revealed by patch-clamp measurements (discussed above) 

(Haselmann et al. in revision). 

In contrast, ventricular infusion of anti-NMDAR aABs and subsequent fEPSP recordings 

showed decreased basal synaptic transmission in the Schaffer collateral – CA1 pathway and 

decreased LTP after theta burst stimulation (Planaguma et al. 2016). For LTP the synaptical 

influx of Ca
2+

 and subsequent activation of Ca
2+

/calmodulin-dependent protein kinase II is 

coercive. NMDAR aABs lead to the internalization of NMDARs. Consequently, this 

reduction of NMDARs leads to the impairment of LTP due to the decreased number of Ca
2+

 

conductible channels (Lisman et al. 2012). These results show the differences of aAB 

interference with synaptic plasticity depending on the target antigen. Both aAB fractions lead 
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to the internalization of the respective receptors, but while in GluA2 AE AMPAR synaptic 

transmission can be rescued by extrasynaptic AMPAR that are then missing for induction of 

LTP, anti-NR1 aABs lead to disturbed synaptic anchoring of NMDARs by disruption of 

NMDAR – EphB2 interaction and therefore prevents appropriate synaptic transmission as 

well as LTP (Planaguma et al. 2016, Dalva et al. 2000).  

5.7 Soluble ephrine-B2 is able to rescue the NMDAR AE phenotype in the osmotic 

pump model 

Since Mikasova et al. (2012) could show that ephrine-B2 is able to prevent the loss of 

NMDARs in immunohistological stainings of brain slices, we aimed to test this observation as 

a treatment approach during long term aAB infusion by osmotic pumps in an in-vivo animal 

model. Therefore, we co-applied ephrine-B2 together with the aAB fractions during chronic 

intraventricular infusion. Indeed, ephrine-B2 was a potent inhibitor of the pathogenic effects 

on synaptic function and behavior mediated by anti-NR1 aABs. Behavioral deficits and 

structural abnormalities in receptor densities could be almost completely rescued by ephrine-

B2 co-application whereas functional deficits of LTP and basic synaptic transmission were 

partially rescued. This beneficial effect is explained by the fact that the activation of EphB2 

receptors by its ligand ephrine-B2 leads to an increased synaptic clustering of NMDARs 

(Dalva et al. 2000). According to these observations, application of  EphB2 agonists might be 

an option for an alternative treatment approach of NMDAR AE in addition to 

immunosuppressive therapy (Planaguma et al. 2016). This dual therapeutic approach might be 

more effective in controlling disease symptoms. Importantly, it might also shorten the time of 

treatment response in this severe and long-lasting disorder. 

5.8 The role of the target antigen in AE 

This work shows the diversity of pathomechanisms in AE that depends on the target antigen 

of the associated aABs. Whereas some mechanisms seem to be present in several subtypes of 

AE (e.g. aAB-induced internalization of synaptic proteins), the outcome of this mechanism 

with respect to neuronal and network function may be diverse. The effects of aABs on the 

NR1 subunit of the NMDAR or to the GluA2 subunit of the AMPAR can serve as an 

example. For both subtypes of AE experimental evidence demonstrates aAB mediated 

crosslinking and internalization of the receptors leading to decreased receptor densities in 

neuronal cultures (Lai et al. 2009, Hughes et al. 2010). However, by using super-resolution 

microscopy we were able to elucidate the molecular mechanism in GluA2 AE more 
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accurately. We could show that the internalization of GluA2 containing receptors lead to the 

synaptic accumulation of GluA2 lacking AMPARs from extrasynaptic pools (Haselmann et 

al. in revision). Since the NR1 subunit of the NMDAR is obligatory for its membrane 

insertion and function such mechanism cannot be expected in NMDAR AE (Nakanishi 1992).  

These differences are also reflected in the results of electrophysiological recordings. Anti-

NR1 aABs lead to a reduction of synaptic NMDARs and therefore to a reduction of NMDAR 

but not AMPAR mediated mEPSC amplitudes (Hughes et al. 2010). On the other hand, 

AMPAR mEPSC amplitudes were unchanged after application of anti-GluA2 aABs at resting 

membrane potential due to the incorporation of AMPAR lacking GluA2 from extra- to 

intrasynaptic sites after GluA2 internalization (Haselmann et al. in revision).  

In fEPSP recordings differences in the manifestation of defective LTP were elaborated. In 

mice injected with anti-GluA2 aABs reduction of LTP is mediated by the lack of an 

extrasynaptic reserve pool of AMPARs, but basal synaptic transmission was unaltered. By 

contrast, in mice after application of anti-NR1 aABs, reduced LTP is explained by globally 

reduced NMDARs after aAB-mediated internalization that also affected synaptic transmission 

on the multi-synaptic and cellular level (Planaguma et al. 2016, Haselmann et al. in revision, 

Hughes et al. 2010). 

In behavioral tests aABs to GluA2 as well as to NR1 led to memory deficits in the NOR test, 

reflecting the dominant memory defects in patients. However, mice were affected differently 

in other behavioral tests. Whereas anti-AMPAR-aAB infused animals showed increased 

anxiety in the EPM and the black and white box test, anti-NMDAR aAB infused animals were 

not susceptible for anxiety but had increased depressive-like behavior in tail suspension and 

forced swimming test. 

These results elucidate the difference in the molecular mechanisms of disease-associated 

aABs in AE. These differences may be the underlying cause for diverse and characteristic 

symptoms in each subtype of disease and for different treatment response and time course of 

disease in patients (Tuzun and Dalmau 2007, Irani et al. 2010). 

 

5.9 Conclusion and outlook 

Taken together, the current work elucidates basic pathophysiological mechanisms in 

prototypic disorders of the newly discovered spectrum of AE. We could provide evidence for 
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aAB-induced synaptic dysfunction and defects in synaptic organization of important pre- and 

postsynaptic molecules. These changes most likely mediate characteristic disease symptoms 

in patients of AE, e.g. memory dysfunction and defective motor control. Moreover, we clearly 

demonstrate the diversity of synaptic pathomechanisms depending on the respective target 

antigen and depict the importance to explore detailed molecular mechanisms of the individual 

types of AE.  

In case of Stiff person syndrome with aABs to amphiphysin we could show that vesicle 

endocytosis is altered by pathogenic aABs to amphiphysin leading to a depletion of reserve 

pool vesicles and disturbed vesicle release (Werner et al. 2016). This presynaptic defect might 

be causative for disturbed spinal GABAergic transmission and severe muscle hyperactivity as 

shown in a passive transfer model and in patients (Geis et al. 2010). In NMDAR encephalitis 

the NR1 – EphB2 interaction is disturbed by specific aABs leading to deficits in memory 

function and LTP (Mikasova et al. 2012, Planaguma et al. 2016). In AMPAR AE with aABs 

to GluA2 GluA1/GluA2 heteromeric AMPARs are internalized and synaptic incorporation of 

AMPARs with increased conductivity and inward rectification induce synaptic scaling. These 

changes are distinct from NMDAR encephalitis but may also induce behavioral deficits and 

impair synaptic plasticity (Haselmann et al. in revision).  

Animal models are necessary tools for unequivocal confirmation of the pathological action of 

aABs according to the Witebsky criteria (Rose and Bona 1993). Together with in-vitro and 

ex-vivo studies and using a variety of advanced experimental techniques it is possible to 

analyze structural and functional changes of central synapses and to create a detailed picture 

of aAB induced pathomechanisms in the CNS. By uncovering these mechanisms new 

treatment approaches can be developed that act specifically and may extend immunotherapy. 

So far, immunotherapy is not able to eliminate aAB producing B-cells in the CNS. Thus, in 

near future alternative therapeutic approaches may be of great importance for treatment of AE 

in general (Furneaux et al. 1990). The NMDAR – EphB2 interaction serves as a first example 

how such novel treatment approaches can be realized in experimental models. Further studies 

need to demonstrate if this approach has the potential to be translated for use in disease.  

In AMPAR AE with aABs to GluA2 a possible novel treatment approach could be the 

interference with micro ribonucleic acid (miR) involved in AMPAR regulation. First, it has 

been shown that miR124 regulates the expression of GluA2, GluA3 and GluA4. Reduced 

expression of miR124 leads to increased GluA2, GluA3 and GluA4 expression in the frontal 

cortex (Gascon et al. 2014). In another study the increase of miR 124 lead to a reduction of 
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GluA1 and GluA2 AMPARs in the hippocampus as well as decreased memory performance 

in the Morris water maze (Arrant and Roberson 2014, Dutta et al. 2013). Therefore, 

downregulation of miR124 by an appropriate antagomir may induce overexpression of 

AMPARs that possibly counteracts the aAB mediated internalization of GluA2. Second, 

miR233 regulates the expression of GluA2 and NR2B. Downregulation of miR233 leads to 

increased GluA2 and NR2B levels in the hippocampus (Harraz et al. 2012). Third, miR181a 

expression leads to the reduction of GluA2 AMPAR leading to changes in synaptic 

organization and reduced mEPSC amplitude and frequency hippocampal neuronal cells (Saba 

et al. 2012, Zhang et al. 2016). Modulation of these miRNAs by antagomirs can be used as a 

tool for overexpression of GluA2 containing AMPARs and may serve as possible therapeutic 

target in GluA2 AE counteracting the deregulation of synaptic AMPARs.  

In summary, we uncovered disease-relevant pathomechanism of Stiff-person syndrome with 

aABs to amphiphysin, of NMDAR AE with aABs to NR1, and of AMPAR AE with aABs to 

GluA2. For NMDAR AE a first treatment approach with ephrin-B2 in a passive transfer 

animal model successfully restored the functionality of synaptic transmission and 

performance in behavioral tests. Due to the diversity of antibody targets in AE it is of great 

importance to investigate the pathogenic effects of the respective aAB in detail. Specific 

alternative treatment approaches might be developed as complementary treatment approaches 

in addition to immunotherapy, thus leading to effective treatment and better disease control in 

patients with AE.  
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