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Data contamination due to physiological artifacts such as those generated by eyeblinks,

eye movements, and muscle activity continues to be a central concern in the acquisition

and analysis of electroencephalographic (EEG) data. This issue is further compounded

in EEG sports science applications where the presence of artifacts is notoriously difficult

to control because behaviors that generate these interferences are often the behaviors

under investigation. Therefore, there is a need to develop effective and efficient methods

to identify physiological artifacts in EEG recordings during sports applications so that

they can be isolated from cerebral activity related to the activities of interest. We have

developed an EEG artifact detection model, the Fingerprint Method, which identifies

different spatial, temporal, spectral, and statistical features indicative of physiological

artifacts and uses these features to automatically classify artifactual independent

components in EEG based on a machine leaning approach. Here, we optimized our

method using artifact-rich training data and a procedure to determine which features

were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then

applied ourmodel to an experimental dataset collected during endurance cycling. Results

reveal that unique sets of features are suitable for the detection of distinct types of artifacts

and that the Optimized Fingerprint Method was able to correctly identify over 90% of the

artifactual components with physiological origin present in the experimental data. These

results represent a significant advancement in the search for effective means to address

artifact contamination in EEG sports science applications.

Keywords: EEG, artifact removal, ICA, support vector machine, eyeblink artifact, eye movement artifact, myogenic

artifact, sports science

INTRODUCTION

A continuing challenge in the acquisition and analysis of human electroencephalographic data
(EEG) is the presence of artifacts–electrical activity generated outside of cerebral sources of
primary interest. Artifacts can arise from a number of sources including those of extracerebral
physiological origin, such as those generated from eyeblinks, eye movements, and myogenic
activity due to muscle activity in the head and neck, as well as non-physiological sources,
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such as electrical interference from external power sources and
mechanical artifacts generated from electrode displacement and
EEG equipment disturbances.

A number of methods have been proposed to address the
presence of artifacts, includingmethods that attempt tominimize
the artifactual sources during EEG acquisitions, as well as a
variety of methods that try to reduce or remove artifacts from
EEG data after acquisition and prior to further processing and
analysis, including blind source artifact separation methods,
co-acquisition of electromyogenic and ocular activity for post-
acquisition removal, visual inspection of EEG data and manual
deletion of artifactual data segments (for recent reviews see
Urigüen and Garcia-Zapirain, 2015; Islam et al., 2016). Many of
these methods rely on the participants who are asked to limit
the number of artifacts they generate or on the investigator who
inspects the data and relies on his or her experience to identify
artifacts and remove them. As a result, in recent years efforts
have been made to develop algorithms to automatically detect
and remove artifacts in EEG data (e.g., Barbati et al., 2004; Viola
et al., 2009; Mognon et al., 2011; Zou et al., 2016; Radüntz
et al., 2017). Although these methods have proven effective
in certain applications and under well-defined conditions, no
universal method is agreed upon and none has proven completely
effective.

We recently developed a system for the automatic
classification and removal of the most ubiquitous physiological
artifacts–eyeblinks, eye movements, and muscle and cardiac
artifacts (Tamburro et al., 2018). Our method, the Fingerprint
Method, was developed from both existing methods and novel
approaches. The underlying principle of the Fingerprint Method
was to use a variety of features of the independent components
separated from the EEG data, that span spatial, temporal,
spectral, and statistical domains to classify the components of
artifactual origin. The independent components containing
the artifacts are then disregarded in the reconstruction of the
artifact-free EEG. For the automatic classification of artifactual
components we used a common machine learning algorithm
where these sets of features, the “fingerprints,” were used to build
a model of each artifact type. Our initial findings proved that
our method was successful in discriminating artifactual and
non-artifactual components and achieved accuracies comparable
or superior to those of other automatic artifact classification
methods. In addition, we demonstrated that the Fingerprint
Method was able to successfully identify artifacts in EEG data
acquired with different EEG acquisition systems, and variable
electrode types, numbers, and layouts. Further, the Fingerprint
Method was able to detect artifactual components even when
the total number of separated independent components
was changed: artifactual components were successfully
identified whether EEG data were decomposed into a small
number (20) or a larger number (50 or 80) of independent
components.

The primary purpose of the current study was to optimize
the Fingerprint Method by refining the set of fingerprint features
designed to identify each type of artifact. The original Fingerprint
Method employed a set of 14 features to classify artifactual
components regardless of the type of artifact investigated. Some

of these features were designed to detect a specific type of
artifact (such as eyeblinks or cardiac interference), while others
were designed to capture more general characteristics of all
artifact types. In the present study we sought to develop a
set of unique classifiers optimally tuned to detect each specific
artifact by employing a method to (1) critically determine
which particular features were best suited to detect each
artifact type based on the classifier’s performance, and (2) to
remove those features which performed ineffectively or even
detrimentally. Thus, the Optimized Fingerprint Method retains
only those features which are proven to best discriminate each
type of physiological artifact. Our motivation for optimizing
the Fingerprint Method was based on several assumptions.
First, it is a well-known postulate of statistics and machine
learning that models with too many parameters suffer from
“overfitting” and may not generalize well in classifying new
data. Second, including features that have low discriminability
between artifactual and non-artifactual data components adds
noise to our model. Such features act as random variables that
reduce the efficiency and efficacy of our algorithm. Third, a
smaller set of features would improve computational efficiency.
Since the quantification of each feature incurs a computational
“cost,” fewer features would result in shorter processing times
and a reduced allocation of computational resources, which could
prove practically beneficial, particularly when applied to large
datasets or prospective online applications. Finally, retaining a
smaller number of features may make our model more tractable
and comprehensible. Possessing a more intuitive understanding
of the model facilitates further improvements and a more direct
interpretation of the results.

To facilitate the optimization of the Fingerprint Method,
we have increased the number of EEG datasets used to build
and test our model. In extension to our previous findings,
we have included data acquired from different EEG systems
with different numbers, types and layouts of electrodes, and we
have decomposed each dataset into the number of independent
components which achieved the highest number of clear
artifactual and non-artifactual components.

Once we determined the optimal features to include in
our model, we tested it on experimental data derived from
a sports science paradigm. EEG applications in sports science
have become more common in recent years and have provided
new insights into the nature and improvement of athlete
performance. This effort has been aided by recent advances in
EEG data acquisition, including advances in hardware portability
and comfort, as well as reduced preparation times (Park
et al., 2015). While these enhancements have made possible
the practical application of EEG in sports science, acquiring
informative EEG data from participants actively engaged in
physical activity continues to present a number of challenges
(Thompson et al., 2008). A primary source of difficulty is
the presence of physiological artifacts. Although they can be
detrimental in all EEG applications, limiting the occurrence of
these artifacts and finding effective means for removing them
are particularly challenging in sports applications for several
reasons. It is difficult or impossible to ask participants to limit
the number of muscle artifacts they generate given that muscle
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activity is inherent in the task being investigated. Depending on
the sport activity under investigation, muscular contractions can
be more intense, frequent, and chronic than those occurring in
more traditional EEG settings. Myogenic artifacts are generated
by contractions of the head, neck and facial muscles. Primary
head and neck movements are often necessary in many sports
activities (e.g., to track a moving target such as a tennis ball),
but secondary movement of the head and neck also occur to
stabilize the body during other movement activities (e.g., during
walking or cycling; Gwin et al., 2011). Additionally, contractions
of the facial muscles are difficult to avoid in many sports
applications (e.g., the grimace of a weight-lifter; Reis et al., 2014).
Eyeblinks and eye movements are also difficult to limit because
of task requirements, sweating and participant attention fully
focused on performance rather than the recording conditions.
Moreover, eyeblink rate has been reported to be correlated
with fatigue, which is inevitable in many sports applications
(Stern et al., 1994). Artifacts of non-physiological origin can
also interfere with the detection of physiological artifacts in
sports applications. Electrode displacement, cable movement and
tension artifacts, as well as signal drop-out due to excessive
sweating and movement, can degrade signal quality rendering
identification of physiological artifacts more difficult. Because of
the differing electrolyte composition present in human sweat,
extensive sweating can cause a low frequency artifact and alters
electrode-skin impedance (Reis et al., 2014). Also, in sports
involving a high degree of motion, gross motor movements
can alter electrode-skin contact, resulting in sudden increase
in electrode impedance, dramatic reduction of signal quality,
and significant data loss (Thompson et al., 2008). Although
the focus of the present study is on physiological artifacts,
the presence of non-physiological disturbances can obscure
not only brain signal but also the correct identification and
removal of physiological noise sources. Thus, finding an effective
means of identifying physiological artifacts and separating them
from brain activity in sports science applications promises to
considerably advance the field and EEG signal processing in
general.

In what follows, we first present the optimization of
our Fingerprint Method to automatically classify physiological
artifacts in a set of cued artifactual testing data. The optimization
procedure includes the selection of optimal features for the
identification of each artifact type. Then, we demonstrate the
Optimized Fingerprint Method in the detection of artifacts
in experimental data acquired during sports performance. We
have limited our scope to the automatic identification of
three common physiological artifacts: eyeblinks, lateral eye
movements, and myogenic artifacts generated from myogenic
activity in facial, jaw, head and neck muscles.

MATERIALS AND METHODS

Human Participants
Seventeen male non-clinical volunteers (age 28 ± 4 years)
participated in the acquisition of the artifact-rich training
and testing EEG data that were used to optimize the
Fingerprint Method. Twenty-two male athletes (age 27 ± 7

years) volunteered in the cycling performance experiment that
provided the EEG datasets that were used to validate the
Optimized Fingerprint Method. Both acquisition studies were
approved by the local Ethics Committee and complied with the
ethical standards outlined in the Declaration of Helsinki. All
volunteers gave written informed consent prior to participation.
Participants had no known record of neurological, psychological,
dermatological or ophthalmological diseases and were not
under pharmacological treatment. Participants in the cycling
performance experiment also provided medical certifications of
fitness for participation to non-competitive sports activities and
regularly practiced cycling at least twice a week.

Development and Testing of the Optimized
Fingerprint Method
The development of the Optimized Fingerprint Method was
performed in several steps. First, artifact-rich EEG data were
acquired in which participants generated multiple occurrences
of each of the different artifact types of interest. Second, these
data were decomposed into a set of independent components
(ICs) by applying independent component analysis (ICA). Third,
each IC was classified and labeled as being artifactual or non-
artifactual by an expert investigator, and all labels were verified
by an additional expert investigator. Next, for each IC (artifactual
and non-artifactual), the values of the original set of 14 temporal,
spatial, spectral, and statistical features were calculated. Based
on these sets of features—which we refer to as “fingerprints”—
and the labels provided, the ICs were sorted into artifactual
and non-artifactual classes. We then trained a set of automatic
classifiers, nonlinear binary support vector machines (SVMs)
with a radial basis function kernel, to automatically identify
each IC as artifactual or non-artifactual based on the values of
its fingerprint features. Finally, for each artifact type we tested
each classifier on artifact-rich EEG data using varying subsets
of the fingerprint features, and determined the particular set of
features which optimally identified artifactual and non-artifactual
ICs. A final set of classifiers, one for each artifact type, was
then constructed which classified based on these optimal sets of
features.

Artifact EEG Data Acquisition
EEG data used to develop the Optimized Fingerprint Method
were recorded in separate sessions using two different electrode
systems. In the first system, a standard gel-based electrode cap
consisting of 128 conventional Ag/AgCl electrodes arranged in
a quasi-equidistant montage was used (Waveguard, Advanced
Neuro Technologies B.V., Enschede, Netherlands; see Figure
S1). Electrolytic gel was applied at each electrode location to
ensure good electric contact with the scalp (ECI-Electrogel,
Electrocap International Inc., Eaton, Ohio, USA). The second
EEG system utilized a novel set of 97 dry multipin polyurethane
electrodes with a Ag/AgCl coating arranged in an equidistant
montage (Fiedler et al., 2015; see Figure S1). This system was
developed to permit contact and conductivity between the scalp
and the electrodes without the application of electrolytic gel
or paste. For all acquisitions, signals from both EEG systems
were recorded using a unipolar biosignal amplifier with common
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average reference (RefaExt, Advanced Neuro Technologies B.V.,
Enschede, Netherlands). All EEG datasets were acquired at
2048Hz sampling frequency except for 16 datasets (8 gel-based,
8 dry electrode datasets) acquired at 1,024Hz. All EEG datasets
acquired at 2,048Hz were downsampled at 1,024Hz before
further processing. A gelled Ag/AgCl electrode applied over the
right mastoid served as ground.

EEG data were acquired in separates sessions for each of the
three artifact types–eyeblinks, eye movements, and myogenic
artifacts. During the eyeblink and eye movement artifact
acquisition sessions, participants were seated at a distance of
50 cm in front of a 16:9 monitor with 30-inch diameter (Myrica
V30–1, Fujitsu Siemens, Munich, Germany). A fixed chin rest
was used to ensure a consistent screen-eye distance andminimize
head movement. During eyeblink sessions, participants were
instructed to fixate on a stationary red cross (approximately
2 × 2 cm) displayed on the monitor. A beep tone presented at
2 or 5 s intervals cued participants to blink and return to fixation.
During eye movement sessions, the position of the red cross
moved transiently in a repeated, deterministic sequence with an
initial center position followed by a repeated sequence of left side
of screen movement, right side of screen movement, bottom side
of screen movement, and top side of screen movement, returning
to the center fixation point after eachmovement. Eachmovement
corresponded to a position change of approximately 16◦ within
the visual field of the participant. Participants were instructed to
follow the position of the red cross on the screen. All movements
from center fixation occurred at 2 s intervals.

Myogenic artifact data were collected for five different
muscle movements in separate sessions. Muscle movements
included jaw flexions (masseter muscle), eyebrow and forehead
flexions (procerus and frontalis muscle), as well as neck
movements (splenius and suboccipital muscles) resulting in
side-to-side head tilts and forward-backward head tilts. For all
myogenic artifact acquisitions, participants were seated facing
forward and instructed to initially relax the relevant muscles.
For the acquisition of jaw, eyebrow, and forehead flexions,
participants were instructed to contract the relevant muscle at
maximal tension after an initial cue (amplitude of the myogenic
interference is determined in the electrodes close to the relevant
muscle) or, after some training, to maintain a contraction of
approximately 80% of maximal tension. Cues were presented
at 3 s intervals. Participants could relax the relevant muscle
following a second cue delivered 3 s later. For neck movement
acquisitions, participants were instructed to produce a series of
movement sequences following an initiating cue. For side-to-
side movements, participants began in an initial head forward
position (center) followed by a left head tilt, center, right head tilt,
center sequence. For forward-backward movements, participants
began in an initial head forward position (center) followed by a
chin down tilt, center, chin up tilt, center sequence. Movement
initiating cues were presented every 3 s for all head movement
sessions.

Cued artifact EEG data acquisitions occurred in two separate
studies. During the first study, there were 20 acquisitions of
eyeblink datasets (10 gel-based acquisitions, 10 dry electrode
acquisitions) and 20 acquisitions of eye movement datasets

(10 gel-based acquisitions, 10 dry electrode acquisitions). All
17 volunteers participated in the first study: seven volunteers
provided eyeblink and eye movement data using only the
gel-based system, seven volunteers provided eyeblink and eye
movement data using only the dry electrode system, and three
volunteers provided eyeblink and eye movement data using both
the gel-based and dry electrode systems in separate sessions. In
the second study, seven volunteers from the first study returned
to provide two additional eyeblink datasets each (one gel-
based acquisition, one dry electrode acquisition per volunteer)
and two additional eye movement datasets each (one gel-
based acquisition, one dry electrode acquisition per volunteer).
Thus, there were a total of 34 (17 gel-based, 17 dry electrode)
eyeblink and eye movement datasets acquired. The same seven
volunteers also provided 10 muscular artifact datasets each (five
gel-based acquisitions, one for each muscular artifact type, and
five dry electrode acquisitions, one for each muscular artifact
type) during the second study. Thus, there was a total of
70 (35 gel-based, 35 dry electrode) muscular artifact datasets
acquired.

Data Pre-processing and Independent Component

Analysis
EEG datasets acquired with a sampling frequency of 2,048Hz
were downsampled at 1,024Hz. All EEG datasets were then
filtered with a Butterworth bandpass filter with cut-off
frequencies at 0.3 and 100Hz. A notch filter at 50Hz was
applied to minimize noise from power line interference. EEG
data were visually inspected, and EEG channels exhibiting
isoelectric saturation, or poor scalp-surface contact, or excessive
noise interference, were identified and excluded from further
analysis (McMenamin et al., 2010). In cases where more than
20% of EEG channels exhibited excessive noise throughout the
EEG time course, the entire dataset was excluded from further
analysis. In cases where more than 50% of electrodes exhibited
excessive noise during shorter time windows, those segments
were trimmed from the data. Additionally, datasets where visual
inspection revealed very few or no eyeblink, eye movement,
or myogenic artifacts (depending on session type) were also
excluded from further analysis.

Retained datasets were pre-whitened by Principal
Components Analysis (PCA; Delorme et al., 2007) and
decomposed into 20, 50, or 80 ICs using the extended Infomax
ICA algorithm (Bell and Sejnowski, 1995; Lee et al., 1999). These
decomposition levels were selected to mimic the most common
clinical and experimental EEG conditions: 21 electrodes are
typically used in a clinical setting, whereas commercial EEG
caps for research purposes generally mount from 32 to 128
electrodes or more (Tamburro et al., 2018). For each EEG
dataset, we retained for further analysis only the sets of separated
ICs that contained clearly identifiable and non-redundant ICs.
When applying ICA to cued eyeblink EEG datasets, for each
dataset there were typically only one or two ICs containing
eyeblinks, regardless of the total number of separated ICs (20,
50, or 80 ICs). This was due to the well-defined waveform of
eyeblinks. Therefore, to increase the total number of artifactual
eyeblink ICs available to train and test the SVM classifiers,
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for some eyeblink datasets we retained multiple sets of ICs
decomposed at more than one level. For the eye movement
and myogenic datasets, all levels of decomposition produced
multiple artifactual ICs, so for each dataset we retained only one
set of ICs (decomposed at either 20, 50, or 80 ICs; see the last
row of Table 1 for the total number of artifactual ICs produced
for each artifact type). Myogenic artifact datasets included
all distinct types of triggered muscle artifacts: jaw tensions
(10 datasets), eyebrow movements (5 datasets), forehead
movements (4 datasets), and head tilts (9 datasets). All EEG
data pre-processing and decomposition were performed using
the EEGLAB toolbox (v. 13.6.5b; Delorme and Makeig, 2004).
The main characteristics of the retained EEG datasets with cued
artifacts used to develop the Optimized Fingerprint Method are
summarized in Table 1.

Expert Artifact Classification and Labeling
For each dataset containing a given artifact type (either eyeblink,
or eye movement, or myogenic artifact), all ICs were labeled as
either “artifact” or “non-artifact” by an experienced investigator
who inspected the time course, topological plot, and power
spectrum of each IC. All labels were independently verified by
an additional investigator. For each dataset, labels identified only
one artifact type (i.e., “eyeblink artifact,” “eye movement artifact,”
or “myogenic artifact”). All other ICs, including ICs containing
artifacts of a different type, were labeled as “non-artifact.”

Identification of Fingerprint Features
Fourteen different features were calculated for each IC from all
datasets. A complete description of all features, including the
calculation of each feature and the values of all parameters, is
provided in Tamburro et al. (2018). We briefly describe the
calculation of each feature below.

1. Temporal Kurtosis (K):

To calculate the Temporal Kurtosis Feature (K; Mognon et al.,
2011) of each IC time course, the entire time courses of individual

TABLE 1 | Artifact dataset characteristics.

Eye blink artifact

datasets

Eye movement

artifact datasets

Myogenic artifact

datasets

No. of Participants 17 17 7

No. of datasets

acquired

(gel-based/dry)

34

(17/17)

34

(17/17)

70

(35/35)

No. of datasets

retained

(gel-based/dry)

26

(15/11)

26

(16/10)

28

(23/5)

No. of ICs (20

IC/50 IC/80 IC)

2,030

(260/650/1120)

970

(260/550/160)

1,070

(260/650/160)

Ave. dataset

length (SD)

239.33

(64.81)

117.55

(12.20)

65.56

(24.03)

No. of Artifactual

ICs

49 214 325

Average dataset length is given in seconds.

ICs were epoched into consecutive epochs of 5 s duration with a
1 s overlap. The mean amplitude of each IC time course epoch
was then subtracted from each epoch. The Temporal Kurtosis, K
was calculated according to Equation 1.

K =
1

m

∑m

e=1







1
n

∑n
i=1

(

se,i − se
)4

(

1
n
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(1)

where the parameters si denote the ith out of n data samples in
the eth epoch data vector, and m is the number of epochs in the
IC. Negative K-values were set to zero and all positive K values
obtained were normalized to themaximumK-value across all ICs
for each dataset.

2. Maximum Epoch Variance (MEV):

The Maximum Epoch Variance Feature (MEV; Mognon et al.,
2011) of each IC time course was calculated according to
Equation 2.

MEV =
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(

1
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where the parameters si, i, n, e, and m represent the same
parameters as in Equation 1, and max()e denotes the maximum
across all epoch values. Epochs were defined in the same manner
as described for the K feature. All MEV values obtained for all ICs
were normalized with respect to the maximumMEV value across
all ICs in a given dataset.

3. Spatial Average Difference (SAD):

The Spatial Average Difference Feature (SAD; Mognon et al.,
2011) is based on disparities in the IC weights between frontal
and posterior electrodes. SAD was calculated according to
Equation 3.

SAD =

∣

∣

∣
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e=1
ak,FA

∣

∣

∣

∣

−

∣
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1

k
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e=1
ak,PA

∣

∣

∣

∣

(3)

where FA refers to frontal area electrodes and includes the
weights of electrodes whose angular positions range from 0 to
60◦From the medial line and have a radial range ≥ 0.4, PA
refers to posterior area electrodes and includes the weights of
electrodes whose angular positions range from 0 to 120◦ From
the medial line and have a radial range of 1.0, and a is the
vector of the IC weights in the k electrode positions in FA and
PA. For each IC, the variances of FA and PA electrode weights
were calculated and the difference, variance(FA)–variance(PA),
was determined. In cases where this difference was ≤0, it was
assumed the SAD was due to a posterior source and was set
to zero. Likewise, the average weights of left fronto-temporal
electrodes and right fronto-temporal electrodes (regions defined
below) were compared, and in cases where the averages were
of opposite sign SAD was set to zero. SAD values were then
normalized to the maximum SAD value obtained across all ICs
for a given dataset.
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4. The Spatial Eye Difference (SED):

The Spatial Eye Difference Feature (SED; Mognon et al., 2011)
assesses the difference between the IC weights in the left and right
fronto-temporal areas of the scalp. It was calculated according to
Equation 4.

SED =

∣

∣

∣

∣

1

k

∑k

e=1
ak,LE −

1

k

∑k

e=1
ak,RE

∣

∣

∣

∣

(4)

where LE is the left fronto-temporal area and includes the
weights of electrodes whose angular positions range from −60
to −30◦ From nasion, RE is the right fronto-temporal area
that includes the weights of electrodes whose angular positions
range from 30 to 60◦, and a is the vector of the IC weights in
the k electrode positions within the LE and RE areas. In cases
where the average weights of LE and RE were of the same sign,
it was assumed no net horizontal eye movements were made
and SED was set to zero. SED values were then normalized to
the maximum SED value obtained across all ICs for a given
dataset.

5–9. Power Spectral Densities (PSD):

To calculate the Power Spectral Density Features (PSD-
Delta, PSD-Theta, PSD-Alpha, PSD-Beta, and PSD-Gamma)
we first estimated the total PSD across the spectrum from
0.3 to 100Hz for each IC time course (Welch, 1967). We
then calculated the mean PSD in each of the following
frequency bands: Delta band (0.3–4Hz), Theta band (4–
8Hz), Alpha band (8–12Hz), Beta band (12–40Hz), and
Gamma band (40–100Hz). The PSD-Delta, PSD-Theta,
PSD-Alpha, PSD-Beta, and PSD-Gamma features were
then defined as the proportion of spectral power in their
respective frequency bands of total spectral power across all
bands.

10. Cardiac Identification Feature (CIF):

Although identification of artifacts generated from cardiac
sources was not a specific aim of the present study, the Cardiac
Identification Feature (CIF), an original feature of the Fingerprint
Method designed to discriminate potential cardiac artifacts from
other artifact types, was included. First, we defined a frequency
band of 0.8–3.0Hz that corresponds to a cardiac frequency
range of 48–180 beats per minute (bpm). Although athletes
can generally reach higher heart rates during intensive physical
load, the volunteers participating in the cycling task experiment
(during which EEG data were collected to validate the Optimized
Fingerprint Method, see cp. 2.3.1) were asked to keep a pedaling
rate of 80 rpm, which was not intensive physical load given
their training level. Consequently, no increase of their heart rate
was observed beyond 180 bpm. The maximum PSD peak in
the frequency band was identified. Then, all the peaks in the
IC time course corresponding to the maximum PSD peak were
selected. If no maximum PSD peak was identified, CIF was set to
0. Among the peaks identified in the IC time course, those that
were greater than half the average peak amplitude were retained,
and only those that occurred at a distance corresponding to
the expected inter-beat interval were considered. The cardiac

identification feature (CIF) was then calculated according to
Equation 5.

CIF =
Nfcp

Necb
(5)

where Nfcp is the number of the found cardiac peaks in the
IC time course, and Necb is the number of expected cardiac
beats based on the identified cardiac frequency (maximum PSD
peak).

11. Myogenic Identification Feature (MIF):

Given that myogenic signals typically have frequency
components >20Hz (Goncharova et al., 2003; Whitham
et al., 2007), for each IC we calculated the PSD in two frequency
bands: 0–20Hz and 21–100Hz. If the PSD in the frequency
band 0–20Hz was greater than the PSD in the frequency band
21–100Hz, the analyzed IC was considered to not contain a
myogenic artifact, and MIF was set to 0. Otherwise, MIF was
calculated according to Equation 6.

MIF =

∑100Hz
21Hz PSD

∑20Hz
0Hz PSD +

∑100Hz
21Hz PSD

(6)

12. Eye Movement Correlation Feature (EM-CORR):

A characteristic left-to-right horizontal eye movement template
was generated from multiple exemplary recordings of horizontal
eye movement artifacts using 4 s time windows. This template
was compared to the IC time course using a sliding window
procedure: the template was compared to the IC time course
using a 4 s time window which was advanced by one data point
at a time until the entire IC time course was spanned. A vector of
linear correlation values was obtained by calculating the Pearson
product moment correlation coefficient between the template
and eachmoving window of the IC. To account for horizontal eye
movements in both directions, we calculated the absolute value
of the correlation coefficients. Only the correlation coefficients
with an absolute value ≥0.65 were retained to calculate the
correlation feature, EM-CORR, which was estimated as the
average of the retained absolute correlation values, as given by
Equation 7.

CORR =

∑N
i=1 (ri)

N
(7)

where ri is the absolute value of the retained correlation
coefficient for the ith IC 5 s window, andN is the total number of
retained correlation values. If no absolute correlation value was
≥0.65, then EM-CORR was set to 0.

13. Eyeblink Correlation Feature (EB-CORR):

The calculation of the Eyeblink Correlation Feature (EB-CORR)
was identical to the calculation of EM-CORR except that each IC
time course was compared to a template of eyeblinks generated
from multiple eyeblink artifacts using 4 s time windows.

14. Entropy Feature (EF):
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IC time courses were epoched into 5 s non-overlapping
consecutive segments. The Entropy (H) of each IC was then
calculated according to Equation 8.

Hi(j) = −
∑

x∈j

pij(x)log
(

pij (x)
)

(8)

where j represents the jth 5 s segment of the ith IC, and pij (x)

is the probability of observing the activity values x in the
distribution of activity in the jth 5 s segment of the ith IC. After
calculating these entropy measures for all segments and all ICs,
we normalized the segment-entropy measures to 0 (mean) and
1 (standard deviation) for each segment across all ICs. For each
IC, we then calculated the number of entropy measures ≥1.64 or
≤ −1.64. The Entropy Feature (EF) was then defined according
to Equation 9.

EF =
Nsig

Ntot
(9)

where Nsig is the number of entropy measures≥1.64 or≤−1.64,
andNtot is the total number of entropy measures for the given IC.
Values of EF ≤ 0.2 were set to 0.

Optimization of the Fingerprint Method
Once the features of each IC from each artifact dataset had
been calculated and all ICs were labeled, we used these data
to create a set of automatic classifiers (one for each artifact
type) which would be capable of classifying artifacts in new
data collected during a sports science protocol (see cp. 2.3.1
and 2.3.2). For this purpose, we chose to use a set of nonlinear
binary SVMs, each of which used a radial basis function kernel
(Aizerman et al., 1964). Supervised SVM classifiers are binary
classifiers that, given a set of training examples (ICs) defined
by a set of parameters (the fingerprint features) preliminarily
labeled as belonging to one or the other of two classes (the
expert labels), are able to build a model which assigns new data
to one of the two classes by mapping the training examples as
points in an n-dimensional feature space, where n is the number
of fingerprint features. The model determines a hyperplane
(decision boundary) by maximizing the margin between points
representing the two classes (Vapnik, 1995, 1998). The SVM
classifier then determines the class of new data based on its
position in the feature space relative to the decision boundary.
We chose to use SVM classifiers to optimize our Fingerprint
Method for several reasons: First, SVMs have proven effective
in the automatic classification of EEG artifacts in a number of
applications, including our own work (e.g., De Martino et al.,
2007; Halder et al., 2007; Tamburro et al., 2018). Additionally,
SVM classifiers can learn in sparse, high-dimensional spaces with
few training examples (Yao et al., 2001). Given that our goal
is to evaluate multiple feature dimensions using the available
training data, these characteristics make SVMs particularly
attractive. Finally, since the optimization procedure requires
the training and testing of a large number of classifiers we
preferred SVMs over other machine learning methods, such
as artificial neural networks, because SVM classifiers are easily

modifiedwith relatively low computational load. All SVMmodels
were generated using functions in the Matlab Statistics and
Machine Learning Toolbox (v. R2016b; MathWorks, Inc., Natick,
Massachusetts, United States).

For each SVM artifact classifier, we wanted to determine
the set of fingerprint features which best classified each artifact
type. Specifically, we implemented an optimization procedure
where first we created a set of SVM classifiers which tested
all possible combinations of parameters (exhaustive search) and
then examined each classifier and selected the optimal classifier
by applying a set of evaluation criteria (fitness evaluation). We
anticipated that a unique set of parameters may be optimal
for each of the three artifact types; therefore, the optimization
procedure was performed independently for each artifact type
using artifact type-specific datasets.

Our optimization procedure consisted of six steps and is
outlined as follows:

1) Training and Testing Data Selection: For each artifact type,
six datasets of the artifact EEG data were selected at random
to test and evaluate the corresponding SVM classifier (testing
set). The remaining artifact datasets were used to train the
classifier (training set).

2) SVM Classifier Training: A set of SVM classifiers were
built from the training set of data, where each classifier
was trained using a different combination of fingerprint
features. There are 16,383 unique possible combinations of
the 14 IC-Fingerprint features, including those combinations
containing only a single feature and the combination that
includes all 14 features. Therefore, we generated a set of 16383
unique SVM classifiers. The expert labels were used to train
each classifier to label each IC as “artifact” or “non-artifact.”

3) SVM Classifier Testing: Once each classifier had been trained,
it was used to automatically classify artifactual and non-
artifactual ICs in the testing data. Since a different set of
features was used to train each classifier, the same set of
features within the testing data was used in the automatic
classification phase. Each IC of the testing datasets was
automatically classified either as “artifact” or “non-artifact.”

4) SVM Classifier Assessment: The SVM classifications of each
testing set IC were compared to the original labels provided
by the experts. Four possible outcomes existed for each IC
evaluated:

1. In cases where both the classifier label and the expert label
were “artifact,” the outcome was designated as true positive
(TP);

2. When both the classifier and the expert labels were “non-
artifact,” the outcome was designated a true negative (TN);

3. If the SVM classified the IC as “artifact” and the expert
classified the IC as “non-artifact”, the outcome was
designated a false positive (FP);

4. If classifier classified the IC as “non-artifact” and the expert
classified the IC as “artifact”, the outcome was designated a
false negative (FN).

The accuracy of each classifier was assessed based on the
probability that the classifier correctly labeled each IC in the
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testing set of data, which is given by the ratio of all correct
outcomes to all observations according to Equation 10.

p
(

correct classification
)

= Accuracy

=

∑

TP +
∑

TN
∑

TP +
∑

TN +
∑

FP +
∑

FN

(10)

The preceding procedure (from 1 to 4) was performed ten
separate times for each SVM classifier. On each iteration, a new
random testing set of the six datasets was selected and each
classifier was re-trained with the remaining training datasets. We
chose to perform the cross-validation with ten iterations and
selected six testing sets for each iteration to maintain consistency
and allow comparisons with our previous findings (Tamburro
et al., 2018).

5) SVM Classifier Optimization: Determining the optimal
classifier was based on three criteria: (1) generalizability–
performing well across different training and testing dataset
combinations, (2) performance–achieving the highest
accuracy, and (3) efficiency–achieving high accuracy with the
fewest number of parameters. Therefore, finding the optimal
classifier occurred in three stages: In stage one, we found
all those classifiers which had achieved an accuracy equal
to or exceeding the classifier that included all 14 fingerprint
parameters (the full parameter classifier) in every iteration.
If no classifiers were found at this stage, it was assumed that
the full parameter classifier was the optimal classifier, and
the optimization procedure was terminated. Otherwise, we
continued to the second stage, where we found the classifiers
from stage one that achieved the greatest summed accuracies
across all ten iterations. In the third stage, we found the
classifier from the second stage which used the fewest number
of fingerprint parameters. This classifier was then chosen as
the final (optimal) SVM classifier for that artifact type. In
the event that more than one classifier met these criteria,
additional iterations were performed, and the classifiers
meeting criteria were again evaluated until only one met the
optimization criteria.

The three final SVM classifiers—the eyeblink artifact SVM
classifier, the eye movement artifact SVM classifier, and the
myogenic artifact SVM classifier—which had been selected
from the optimization procedure, were re-trained using all
artifactual EEG datasets (i.e., the training and testing sets were
re-combined). These three classifiers comprised the final model
of the Optimized Fingerprint Method.

Validation of the Optimized Fingerprint
Method in Sports Application Data
Experimental Design
For evaluation of the Optimized Fingerprint Method in
experimental EEG, we used data collected during a sports
performance paradigm where participants performed an
endurance cycling task. During the task, participants performed
a time-to-exhaustion cycling task on a stationary cyclingmachine

(MagneticDays Cyclo-ergometer, ORFSrl, Arezzo, Italy) while
EEG, electrocardiographic (ECG) recordings, and bilateral
electromyogenic (EMG) measures of the outer thigh (vastus
lateralis) muscles were recorded. The task began with an initial
subjective report of perceived physical exertion (Borg, 1982).
Participants then began pedaling and were asked to maintain a
cycling rate of at least 80 revolutions per minute (rpm) with the
cycloergometer initially set to produce a 50Watt load. Every 60 s,
participants again reported their perceived physical exertion,
and the cycloergometer load was increased by 25 Watts. Cycling
continued until participants reported maximum perceived
exertion and were unable to sustain a cycling rate of 80 rpm.
Please note that, at a constant pedaling rate of 80 rpm, athletes’
heart rates remained below 180 bpm (the range specified for the
Cardiac Artifact Feature, see cp. 2.2.4). Figure 1 illustrates an
example of a participant performing the cycling task.

EEG Acquisition and Pre-processing
EEG data were acquired in separate sessions using either a
commercial gel-based electrode system or an experimental novel
dry electrode system. The commercial system comprised
64 Ag/AgCl electrodes in an adapted 10–10 montage
(Waveguard, Advanced Neuro Technologies B.V., Enschede,
Netherlands). The dry electrode system comprised 64 multipin
polyurethane electrodes with a Ag/AgCl coating (Fiedler
et al., 2015) arranged in a quasi-equidistant montage (see

FIGURE 1 | A participant performing the cycling endurance task during EEG

data acquisition. Written informed consent was obtained from this participant

for the publication of this image.
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Supplementary Materials). Please note that both systems differ
from those used to acquire the cued artifactual data (see systems’
layouts in the Figure S1). Electrolytic gel (ECI-Electrogel,
Electrocap International Inc., USA) was applied at each electrode
location for the standard system only. For all acquisitions, EEG
signals were recorded using a unipolar biosignal amplifier at
a sampling frequency of 1024Hz (eegoTM sports, Advanced
Neuro Technologies B.V., Enschede, Netherlands). A standard
Ag/AgCl electrode applied over the left mastoid served as ground
electrode. A second standard Ag/AgCl electrode applied over the
right mastoid served as reference electrode.

In total, 41 EEG datasets were acquired (20 using gel-based
electrodes, 21 using dry electrodes). EEG data were bandpass
filtered offline using cutoff frequencies at 0.3 and 100Hz, and
a notch filter at 50Hz. EEG data were visually inspected,
and isoelectric (saturated) channels and those exhibiting poor
scalp-surface contact or excessive noise throughout the time
course were excluded (McMenamin et al., 2010). Additionally,
time segments exhibiting temporary electrode displacement or
excessive noise due to non-physiological artifacts (e.g., electrode
cable tension) in more than 30% of the channels were trimmed
from the data.

IC Parameterization and Expert Artifact Classification
Datasets were decomposed into 20 or 50 ICs by performing ICA
with PCA pre-whitening. For each dataset, the decomposition
level depended on the number of retained channels (see cp. 2.3.2).
The ICs from each dataset were then parameterized into 14 IC-
Fingerprint features using a process identical to that described
in section Identification of Fingerprint Features. Additionally,
the time course, topological scalp map, and power spectrum
of each IC were examined and each IC from each dataset was
labeled as either “eyeblink artifact,” “eye movement artifact,”
“myogenic artifact,” or “non-artifact.” Note that, unlike the EEG
datasets containing cued artifacts of only one type, each of these
EEG datasets could contain all three artifact types, consistent
with what would be expected from real data acquired in an
experimental setting.

Automatic Artifact Classification and Evaluation
A subset of datasets was selected for testing the Optimized
Fingerprint Method. Visual inspection of the EEG traces
revealed that several datasets were affected by significant data
loss in the time courses likely due to electrode displacement.
Therefore, it was determined that the best 12 datasets
would be retained for the automatic artifact classification.
These datasets displayed <50% of channels affected by gross
artifacts of non-physiological mechanical and hardware origin
(which were removed before signal decomposition), and
produced ICs with clearly identifiable artifacts in both the
time courses and the IC topographies. All EEG datasets were
selected prior to the evaluation of the Optimized Fingerprint
Method.

Twelve EEG datasets (ten from conventional gel-based
electrode system acquisitions and two from dry electrode system
acquisitions) were retained for validation of the Optimized
FingerprintMethod. There was a total of 360 ICs from all datasets

including 13 eyeblink artifactual ICs, 15 eyemovement artifactual
ICs, and 106 myogenic artifactual ICs. The average duration of
the experimental datasets was 235.33± 143.30 s (mean± S.D).

The Optimized Fingerprint Method was then applied to
the selected experimental datasets. Each of the three artifact
classifiers was applied separately and independently to classify
only one artifact type: The eyeblink artifact classifier was
applied to the datasets to detect eyeblink artifactual ICs, the
eye movement classifier was applied to detect eye movement
artifactual ICs, and the myogenic classifier was applied to detect
myogenic artifactual ICs. Therefore, each classifier detected
only one type of artifact and labeled the other ICs as “non-
artifact.”

The performance of each classifier was evaluated separately
by comparing the automatic classifier labels to the labels
assigned to each IC in the experimental datasets by the expert
investigators and assessing the accuracy of the classifier according
to Equation 10.

We included two additional measures of each classifier’s
performance in detecting artifacts in the experimental datasets.
First, we ascertained the conditional probability that an IC is
truly artifactual given that the SVM classifier labels it as an
“artifact,” which is defined as the proportion of true positives to
all outcomes where the classifier labeled the IC as an “artifact.”
This probability is known as the Precision of the classifier and is
defined by Equation 11.

p
(

true artifact|“artifact”label
)

= Precision =

∑

TP
∑

TP +
∑

FP

(11)

Second, we calculated the conditional probability that an IC is
truly artifactual given that the SVM classifier labeled it as “non-
artifact,” which is known at the False Omission Rate, defined by
Equation 12.

p
(

true artifact|“non− artifact”label
)

= False Omission Rate =

∑

FN
∑

FN +
∑

TN
(12)

In the current study, all truly artifactual ICs are known a priori.
In real-world settings, where the true classification of an IC is
presumed to be unknown, the Precision and False Omission
Rates of the SVM classifiers give the probabilities that an IC is
correctly classified based only on the labels given by the classifier.

RESULTS

The Optimized Fingerprint Method
Outcome of Feature Selection and Evaluation of the

Optimized Fingerprint Method
The final sets of fingerprint features selected for inclusion in each
SVM classifier are outlined in Table 2.

Final eyeblink artifact SVM classifier
Four features were selected for the final automatic eyeblink SVM
classifier: Temporal Kurtosis, Maximum Epoch Variance, Spatial
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Average Distance, and the Delta Band PSD. The outcome of the
eyeblink artifact feature selection procedure is summarized in
Table 3. The accuracies obtained from the full feature classifier
are included for comparison. The final classifier failed to correctly
classify one eyeblink IC in iteration five and otherwise displayed
perfect performance, producing a mean accuracy of 0.9997
(SD= 0.0009) across all iterations. The performance of the SVM
classifier using the four selected features was significantly more
accurate than that of the SVM classifier using the full feature
classifier [t-test, paired samples; t(9) = 2.34, p= 0.044].

Final eye movement artifact SVM classifier
Ten features were selected for the final eye movement artifact
SVM classifier: Temporal Kurtosis; Maximum Epoch Variance;
Spatial Eye Distance; PSD in the Delta, Theta, Beta, and Gamma
Bands; The Cardiac and Myogenic Identification Features; and
Eye Movement Correlation Feature. The outcome of the eye

TABLE 2 | Fingerprint features for artifact classifiers.

Parameter Eyeblink artifact

classifier

Eye movement

artifact classifier

Myogenic artifact

classifier

K 3 3 3

MEV 3 3 3

SAD 3 3

SED 3 3

PSD DELTA 3 3 3

PSD THETA 3 3

PSD ALPHA 3

PSD BETA 3 3

PSD GAMMA 3 3

CIF 3 3

MIF 3 3

EM-CORR 3 3

EB-CORR 3

EF 3

TABLE 3 | Outcome of the feature selection for the detection of eyeblink artifacts.

Iteration

number

No. ICs No.

artifacts

TP TN FP FN Accuracy

(selected

features)

Accuracy

(all

features)

1 330 8 8 322 0 0 1.000 1.000

2 210 7 7 203 0 0 1.000 0.995

3 270 7 7 263 0 0 1.000 1.000

4 360 7 7 353 0 0 1.000 0.997

5 330 7 6 323 0 1 0.997 0.997

6 240 8 8 232 0 0 1.000 0.996

7 360 6 6 354 0 0 1.000 0.997

8 180 7 7 173 0 0 1.000 1.000

9 270 7 7 263 0 0 1.000 1.000

10 240 7 7 233 0 0 1.000 1.000

Mean 279 7.1 >0.999 0.998

movement artifact feature selection procedure is summarized
in Table 4 along with the accuracies from the full feature
classifier. The mean accuracy of the final eye movement classifier
across all iterations was 0.9380 (SD = 0.0170). As with the
final eyeblink classifier, the final eye movement artifact classifier
using the selected features was significantly more accurate than
the full feature classifier [t-test, paired samples; t(9) = 4.033,
p= 0.003].

Final myogenic artifact SVM classifier
None of the classifiers which employed a subset of the fingerprint
features achieved greater accuracies than the classifier employing
the full set of features on every iteration, so the full set
of features was retained in the final myogenic artifact SVM
classifier. The mean accuracy of the final myogenic classifier
across all iterations was 0.9622 (SD = 0.0153). The performance
of the final myogenic artifact classifier is summarized in
Table 5.

TABLE 4 | Outcome of the feature selection for the detection of eye movement

artifacts.

Iteration

number

No. ICs No.

artifacts

TP TN FP FN Accuracy

(selected

features)

Accuracy

(all

features)

1 210 55 51 144 11 4 0.929 0.924

2 180 23 21 150 7 2 0.950 0.950

3 180 41 38 132 7 3 0.944 0.928

4 150 24 23 121 5 1 0.960 0.953

5 210 45 42 157 8 3 0.948 0.938

6 240 65 52 167 8 13 0.913 0.908

7 240 60 55 170 10 5 0.938 0.921

8 240 54 47 181 5 7 0.950 0.942

9 270 74 57 188 8 17 0.907 0.900

10 120 18 16 97 5 2 0.942 0.942

Mean 204 45.9 0.938 0.931

TABLE 5 | Outcome of the feature selection for the detection of myogenic

artifacts.

Iteration

number

No. ICs No.

artifacts

TP TN FP FN Accuracy

1 270 83 79 184 3 4 0.974

2 150 51 50 95 4 1 0.967

3 240 68 63 171 1 5 0.975

4 240 93 89 144 3 4 0.971

5 240 78 76 147 15 2 0.929

6 210 46 45 156 8 1 0.957

7 240 81 80 154 5 1 0.975

8 180 76 72 98 6 4 0.944

9 270 93 89 170 7 4 0.959

10 240 82 79 154 4 3 0.971

Mean 228 75.1 0.962
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Validation of the Optimized Fingerprint
Method in Sports Application Data
Table 6 summarizes the results of the validation of the Optimized
Fingerprint Method in cyclist data. The eyeblink artifact SVM
classifier correctly identified all non-artifactual ICs and 11 out
of 13 eyeblink artifactual ICs giving the classifier an accuracy of
99.4%. The eyeblink classifier performed with perfect precision
(Precision= 100.0%) and a False Omission Rate of 0.6%.

The eyemovement classifier correctly identified 344 out of 345
non-artifactual ICs and 11 out of 15 eye movement artifactual
ICs for an accuracy of 98.6%, a Precision of 91.7%, and a False
Omission Rate of 1.2%.

Themyogenic classifier correctly classified 244 out of 254 non-
artifactual ICs and correctly identified 90 out of 106 myogenic
artifactual ICs. The accuracy of the myogenic classifier was 92.8%
with a Precision of 90.0% and a False Omission Rate of 6.2%.

To assess the outcome of the Optimal Fingerprint Method on
data quality, we compared the original cyclist EEG data to data
reconstructed after the removal of the automatically classified
artifactual ICs. Figure 2 illustrates examples of EEG traces before
and after classified artifact removal. The improvement of EEG
signal quality after artifact removal was estimated across a 10 s
EEG data segment for each artifact type by the change in signal-
to-noise ratio (SNR) between the original and reconstructed
EEG data. In each EEG data segment, SNR was evaluated at a
single channel where “signal” refers to the artifact-of-interest,
and “noise” refers to baseline activity. The spontaneous EEG
baseline activity (noise term of the SNR calculation) is intended
as an estimate of brain activity present in the original and
reconstructed signals. For each artifact in the EEG time segment,
the absolute maximum voltage of a 200ms baseline preceding the
artifact was the noise value which was compared to themaximum
voltage of the 200ms time window centered on the adjacent
artifact defining the signal amplitude. SNR was then calculated
according to Tamburro et al. (2018) (Equation 15) and averaged
across all artifacts in the EEG time segment.

DISCUSSION

The aim of the present study was to develop an automatic
artifact classification method capable of accurately identifying
eyeblink, eye movement, and myogenic artifacts in EEG data and

TABLE 6 | Results of the validation of the optimized fingerprint method in cycling

data.

Eyeblink artifact

classification

Eye movement

artifact classification

Myogenic artifact

classification

TP 11 11 90

TN 347 344 244

FP 0 1 10

FN 2 4 16

Accuracy 0.994 0.986 0.928

Precision 1.000 0.917 0.900

False

omission rate

0.006 0.012 0.062

to test the model with experimental EEG data acquired during
a cycling endurance task. Our results indicate that the Optimized
Fingerprint Method was highly successful in detecting artifacts in
artifact-rich EEG testing data when an optimal set of identifying
features was selected. This method also performed well in
detecting physiological artifacts in experimental sports science
EEG data, obtaining an accuracy of 92.8% when identifying
muscle artifacts, and accuracies >98% when identifying eyeblink
and eye movement artifacts.

The Optimal Fingerprint Features
One of the goals in optimizing the Fingerprint Method was to
determine which features were best suited to identify different
types of artifacts. We found that a unique cluster of spatial,
temporal, spectral, and statistical features was optimal for
selecting eyeblink and eye movement artifacts, whereas the full
set of features had the best performance for detecting myogenic
artifacts.

Two temporal features, Kurtosis and Maximum Epoch
Variance, were useful in determining all artifact types under
investigation. These features are sensitive to transient changes
in the amplitudes of IC time courses where high values indicate
rapid fluctuations in potential as occur during eyeblinks, eye
movements, and transient muscle contractions. Low values
indicate lower amplitude and continuous activity. Therefore,
their selection in detecting artifacts is not surprising. However,
it is important to note that these features were selected from a
process that employed evoked artifact training and testing data
where participants were cued to generate artifacts at intervals
which were consistent with the epoch intervals used to calculate
these features. Their efficacy in separating artifacts from cerebral
activity during evoked tasks, such as in experiments using event-
related designs where stimuli generate sensory or cognitive
potentials at regular intervals, remains to be investigated.

All the final artifact SVM classifiers included in the Optimized
Fingerprint Method also employed spatial and spectral features.
Two spatial features, the Spatial Average Difference and the
Spatial Eye Difference, are particularly sensitive to the detection
of eyeblinks and eye movements, respectively, and their inclusion
in the final eyeblink and eye movement artifact classifiers is
not unexpected. The eyeblink artifact classifier also included a
spectral power feature in the 0–4Hz (Delta) range, which is
the frequency band where eyeblink artifacts typically peak. The
eye movement classifier included spectral density features in the
Delta, Theta, Beta, and Gamma ranges. Interestingly, a spectral
feature which we developed to specifically identify myogenic
artifacts, the Myogenic Identification Feature, was also included
in the set of features employed by eye movement classifier.
The MIF calculates the ratio of high frequency (20–100Hz) to
low frequency (0–20Hz) power, based on the observation that
muscle interference in brain activity recordings tends to generate
frequency components >20Hz. The inclusion of the MIF and
spectral power features from a range of frequencies suggests that,
at least in the case of eye movement artifacts, both fine-grained
and course spectral information prove useful in artifact detection
and discrimination.
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FIGURE 2 | Examples of original EEG cyclist data and EEG data reconstructed after SVM classified artifactual ICs were removed. (A) EEG trace with eyeblink artifacts:

Original data segment containing seven eyeblink artifacts. Average SNR = 14.23 dB. (B) EEG trace after eyeblink artifact removal: The same data segment shown in

(A) reconstructed after removal of the ICs automatically classified as artifactual for eyeblinks. Average SNR = 4.64 dB. (C) EEG trace with eye movement artifacts:

Original data segment containing one eye movement artifact (at∼160 s). SNR = 5.92 dB. (D) EEG trace after eye movement artifact removal: The same segment

shown in (C) reconstructed after removal of the ICs automatically classified as artifactual for eye movements. SNR = 1.18 dB. (E) EEG trace with myogenic artifacts:

Original data containing two myogenic artifacts (at ∼23 s and 27 s). Average SNR = 15.45 dB. (F) EEG trace after myogenic artifact removal: The same segment

shown in (E) reconstructed after removal of the ICs automatically classified as artifactual for myogenic artifacts. Average SNR = 6.28 dB. In each EEG data segment,

distance between electrodes (between each point on the abscissa) = 100 microvolts. Average SNR was calculated in the EEG channel highlighted in red shown in

each EEG trace.

An unexpected outcome of our feature selection procedure
was the inclusion of the Cardiac Identification Feature in both the
eye movement and myogenic artifact classifiers. We developed
this feature to specifically identify cardiac artifacts, and its
usefulness in detecting eye movements and myogenic activity is
unclear. The measure is based upon spectral power peaks in the
lower Delta frequency band (0.8–3.0Hz) which are not typically
present in the generation of eye movement and muscle artifacts.
However, it is worth noting that the inclusion of the CIF in
the eye movement and myogenic artifact classifiers is consistent
with the inclusion of the spectral power feature in the Delta
range. Therefore, it may be possible that the CIF is useful in
detecting cardiac artifacts as it was designed to do, and so the

eye movement and myogenic classifiers may use information
present in the CIF feature to differentiate cardiac artifacts from
eye movements and muscle activity. We are currently developing
a cardiac artifact classifier that is an improvement with respect to
its former version (Tamburro et al., 2018). The performance of
this upgraded classifier may elucidate the benefit of the Cardiac
Identification Feature in the separation of multiple artifact types,
especially when applied to the detection of cardiac artifacts in
sports science settings.

In the final model, the full set of features were retained for
classification of muscle artifacts by the myogenic artifact SVM
classifier. Although other classifiers which were tested during
the optimization procedure and which utilized fewer features
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for artifact detection achieved a higher average accuracy and
outperformed the full feature classifier on many iterations of
the feature selection procedure, our strict optimization criteria
required equal or superior performance in every iteration. This
criterion was imposed to ensure that our optimized classification
model generalized well and was able to detect artifacts in a
variety of different settings. There are several reasons why
employing the full set of features was advantageous in detecting
myogenic artifacts in our artifactual data. First, we trained the
myogenic classifier using a variety of different muscle artifact
types typically encountered in EEG data including jaw and facial
muscle contractions, and head and neck movements. Each of
these muscle artifact types possesses a unique set of spatial,
temporal, spectral and statistical features. Therefore, while some
sets of features may be optimal in detecting a specific type of
muscle artifact, the full range of features may be required to
detect all the myogenic artifacts encountered. Second, some of
the features retained were designed to detect a broad range of
artifactual and non-artifactual differences while other features
were specifically designed to detect only one artifact type. Since
the purpose of the myogenic classifier is not only to detect
muscle artifacts but to correctly discriminate between muscle
and non-muscle artifacts, including artifacts of other types,
the full set of features may have been necessary to accurately
identify differences between muscle artifacts and artifacts of
other physiological origin. For example, muscle artifacts tend
to be spatially focal and often appear in frontal scalp regions
overlapping the channels used to calculate the Spatial Average
Distance and the Spatial Eye Difference features. These features
are based on specific differences in activity between frontal
and posterior scalp regions and the values generated from
focal muscle activity are likely different from those generated
during ocular activity. Additionally, posterior muscle artifacts
generated during neck movements will have null SAD and SED
values. Therefore, the myogenic artifact classifier may exploit the
information in these features to differentiate artifacts ofmyogenic
origin from eyeblink and eye movement artifacts.

The Fingerprint Method combines features from other
artifact detection methods with original features designed to
maximally discriminate artifactual and non-artifactual ICs.
While the rationale for including each of these features is
based upon the well-known spectral, spatial, temporal, and
statistical characteristics of artifactual data, to our knowledge, the
Optimized Fingerprint Method is the first method to critically
evaluate multiple features and select the best combination
of those features to detect specific artifacts based on actual
performance. This knowledge advances the field because it
facilitates the development of more targeted features for
artifact classification and aids researchers in identifying those
characteristics of physiological artifacts which are most relevant
for their detection and removal.

It should be noted that the Optimized Fingerprint Method is
so far limited to the detection of only the most common types
of physiological artifacts: eyeblinks, horizontal eye movements,
and facial and neck muscle artifacts. The presence of additional
artifacts produced from cardiac and respiratory interference,
vertical and convergent eye movements, and other physiological

and non-physiological sources have not been addressed in the
current study. It is an open question whether the Optimized
FingerprintMethod would have similar performance in detecting
these other artifact types. Nevertheless, we believe that the feature
optimization procedure employed here can readily be used in the
development of automatic detection methods for a broad range
of artifact types.

Automatic EEG Artifact Detection in the
Cycling Endurance Task
The Optimized Fingerprint Method was tested in a set of
experimental data acquired during a sports performance task
(a cycling endurance paradigm). The results indicate that
the method performed very well in correctly identifying
physiological eyeblink and eye movement artifacts as well as
multiple myogenic artifacts in these data, suggesting that the
Optimized FingerprintMethod is a useful tool for the detection of
these physiological artifacts in EEG data acquired during sports
applications.

The performance of the eyeblink SVM classifier when
applied to the data acquired during a sports performance task
(experimental data) was equivalent to the overall performance
of the classifier in the EEG datasets with cued artifacts (artifact
EEG datasets), while the eye movement classifier performed
better in detecting eye movements in the experimental data
than the average performance in cued artifact EEG datasets.
The performance of the myogenic artifact classifier was slightly
lower than its performance in the cued artifact EEG datasets;
nevertheless, the classifier was able to correctly identify over 90%
of the muscle artifact components present in these data. This
is an encouraging result, given the considerable number and
variety of muscle artifact components generated during cycling
performance. The cycling task, which requires participants to
cycle continuously with increasing effort, elicited sustained
muscle tension in many cases, particularly in neck muscles used
to maintain head posture and tone during continuous cycling.
The myogenic artifact classifier, which was trained using data
acquired during periodic muscle tension and relaxation intervals,
might not be ideal in such cases. However, it was able to detect
artifacts arising from sustained muscle tension.

EEG acquisition during sports performance tasks typically
generates a variety of physiological artifacts which are not
well managed by standard artifact minimization techniques due
to task demands and data quality control issues. Indeed, the
ubiquity of artifacts has historically been prohibitive to the
design, collection, and analysis of EEG data in sports settings
(Thompson et al., 2008). To date, there have only been a
few attempts to automatically classify artifacts in EEG sports
applications. In their review, Reis et al. (2014) recommend
using the MARA automatic artifact removal software developed
by Winkler et al. (2011) to detect and remove artifacts in
sport related studies. However, to our knowledge, this software
has not been specifically tested in EEG sports applications.
In 2013, Gabsteiger and colleagues used an SVM classifier to
automatically classify myogenic artifactual ICs in a study with
specific neck and body movement exercises (Gabsteiger et al.,
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2014). These authors obtained good results when they evaluated
their classifier in a test dataset from the same study (achieving
93% sensitivity and 96% specificity). Compared to our results,
their classifier achieved higher sensitivity than ours [we achieved
85% sensitivity measured as (TP/(TP+FN))] and equivalent
specificity [96% measured as (TN/(TN+FP))]. However, their
results were limited to one subject’s dataset taken from the same
study, and the authors admit that unfamiliar exercises could
result in worse performance. Further, these authors did not
evaluate the identification and removal of other physiological
artifacts, such as eyeblinks and eye movements. However, it
should be noted that the scope of the present work was limited
to addressing only the performance of our method. It remains
an outstanding question how the Optimized Fingerprint Method
directly compares to the method of Gabsteiger et al or other
methods of automatic artifact removal in sports science since
no direct comparisons between methods on the same data were
performed. Indeed, it may be possible that other methods are
superior in removing particular artifact types under certain
conditions, or that a combination of methods yields the best
results. We anticipate that, as the application of EEG in sports
science becomes more commonplace, a broader range of artifact
removal techniques will be applied and evaluated. Nevertheless,
we think that the results we obtained in testing the Optimized
Fingerprint Method in sports performance data represent a
significant step forward in the search for effective methods
to address physiological artifact contamination in EEG sports
science applications.

The ultimate goal of any automatic EEG artifact classification
system is to correctly identify and remove artifacts in EEG
datasets with minimal human intervention. Ideally, such models
would facilitate EEG data processing without appealing to
human experience and expertise in identifying artifacts or
depending on other modes of artifact reduction, such as
minimizing artifact generation during data acquisition or
monitoring artifacts via concurrent ocular, cardiac and myogenic
recordings. In this scenario, investigators who depend on
the model alone to correctly identify artifacts, would benefit
from some measure of the reliability of the model’s outcome.
Therefore, we included measures of the precision and false
omission rates in evaluating the performance of our model
in experimental data. These measures inform potential users
of the likelihood that a data component is actually artifactual
depending on the label the model assigns to the component.
Results indicate that our model achieved high precision (≥90%)
and low false omission rates (0.6% in eyeblink misclassification,
1.2% in eye movement misclassification, 6.2% in myogenic

misclassification) suggesting that our Optimized Fingerprint

Method would be suitable as an automatic artifact classification
tool in sports science research settings. On-going research
seeks to achieve comparable measures in clinical research
settings, thereby expanding the utility of the model across
a variety of EEG research applications. Moreover, in other
applications where only eyeblink or eye movement artifacts are
a concern, the Optimized Fingerprint Method will prove more
computationally efficient because fewer features will need to be
calculated which may reduce computational cost by as much
as 44%. Overall, the successful application of the Optimized
Fingerprint Method to real-world experimental data is a proof-
of-principle that the method generalizes well in a variety of
domains.
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