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Abstract We use 10 years of data of the USArray project to estimate the areal distribution of crustal
intrinsic and scattering attenuation of shear waves for frequencies between 1 Hz and 20 Hz in the
contiguous United States. Additionally, we report energy site amplification factors and estimate moment
magnitudes for small earthquakes (M 1.5 to M 3.5). The Qopen method is used to invert for intrinsic and
scattering attenuation for each event and nearby stations. Observations are collected for around 25,000
events, averaged at each station and interpolated between station locations. In a second inversion, energy
site amplifications and moment magnitudes are corrected by assuming that site amplifications for one
station and frequency are the same for different earthquakes. We observe a west-east decline of intrinsic
attenuation for high frequencies which reflects the west-east transition from young, hot to old and
cold crust. Scattering attenuation for high frequencies is stronger in the east with an extraordinary high
attenuation around the southern part of the Appalachian Highlands and the Interior Low Plateaus. Results
at low frequencies do not show clear trends. A large site amplification is observed at high frequencies in
parts of the eastern United States. Estimated moment magnitudes show a good agreement to moment
magnitudes independently derived from moment tensor inversion. Moment magnitudes in the west are
higher than in the east for the same Richter magnitudes.

1. Introduction

The Transportable Array (TA) is one of the main components of the USArray project. It consists of around
400 installations which migrated eastward over the continental United States between 2005 and 2015. The
spacing between the TA stations is around 70 km. The Reference Network (RN) ties together the stations of
the TA which partially do not have overlapping operation periods. It consists of more than 100 fixed stations
at a spacing of around 300 km.

The dense seismic networks of the USArray project allow amongst others for large-scale, high-resolution maps
of seismic velocity distributions [e.g., Burdick et al., 2008; Yang and Ritzwoller, 2008; Lin et al., 2012]. For a pre-
cise description of wave propagation, not only wave speed but attenuation of seismic waves is important. Two
different mechanisms, besides geometrical spreading, have to be distinguished. Intrinsic attenuation which
accounts for the conversion of seismic energy into different types of energy (e.g., heat) and scattering atten-
uation which describes the redistribution of seismic energy into different directions. Scattering and intrinsic
attenuation are quantified by the transport scattering coefficient g∗ and absorption coefficient b. The relation
between those coefficients and the respective Q values Qsc and Qi is given by

Q−1
sc =

g∗v0

2𝜋f
Q−1

i = b
2𝜋f

(1)

with mean velocity v0 and frequency f . We always refer to inverse Q values as these are proportional to
attenuation strength. The total attenuation Q−1

tot can be calculated by summing up individual contributions of
scattering and intrinsic attenuation: Q−1

tot = Q−1
sc + Q−1

i . The seismic albedo B = Q−1
sc ∕Q−1

tot refers to the share of
scattering attenuation in total attenuation.

Scattering properties of the medium for shear waves can be determined by analyzing the direct S wave and its
coda. The influence of compressional waves may be neglected in the S coda because of the high P-to-S con-
version ratio. Intrinsic and scattering attenuation of shear waves are distinguished by their different impact on
the energy envelope. While scattering influences the shape of the envelope in space and time—most notably
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the energy level between direct S wave and scattered coda wave—intrinsic attenuation can be accounted
for by an exponential decrease of the envelope with time. Basically, two methods evolved for the separation
of intrinsic and scattering attenuation of shear waves using homogeneous random media: MLTWA (multiple
lapse time window analysis) developed by Hoshiba et al. [1991] and Fehler et al. [1992] and Qopen (separation
of intrinsic and scattering Q by envelope inversion) presented by Eulenfeld and Wegler [2016] and based upon
Sens-Schönfelder and Wegler [2006]. Both methods invert for attenuation properties by comparing observed
and modeled energy envelopes. The major difference is the selection and specific handling of envelope seg-
ments. MLTWA uses averaged data inside three or more time windows to calculate energy ratios for the
inversion. Qopen uses adjustable windows for direct wave and coda, but data are not averaged inside the
coda window. Another difference is that coda normalization is usually employed before MLTWA, while site
amplifications and spectral source energies are a by-product of the inversion with the Qopen method. This
allows for the computation of moment magnitudes for small earthquakes. It should be emphasized that the
assumption of a homogeneous scattering model neglects any depth dependence of Q values and seismic
velocity [Lacombe et al., 2003].

Carcolė and Sato [2010] used Hi-net data of more than 135,000 events to compile maps of intrinsic and scat-
tering attenuation of shear waves for Japan for different frequency bands. MLTWA was used to separate
attenuation for individual events at nearby stations. After that, averaging and interpolation was performed. In
this study, we compile similar maps for the contiguous United States using the Qopen method and USArray
data. Additionally, maps of energy site amplification are presented. Estimated moment magnitudes Mw are
compared with results of independent moment tensor inversions and with Richter magnitudes MR.

2. Data and Method
2.1. Obtaining the Target Observables for a Single Earthquake
Data processing starts by inverting data from each considered frequency band and from each considered
earthquake for the inverse of the quality factor for intrinsic attenuation Q−1

i , the inverse of the quality fac-
tor for scattering attenuation Q−1

sc , the energy site amplification factor R, and the spectral source energy W .
The observables Q−1

i , Q−1
sc , and R are then assigned to the stations used in the particular inversion. After pro-

cessing all events, energy site amplification measurements R are corrected by the procedure described in
section 2.2. Finally, values of Q−1

i , Q−1
sc , and R collected at each station are averaged and interpolated. Number

of observations (nobs) at each station is reported, too.

The inversion compares observed total energy envelopes Eobs of an individual event to modeled energy
envelopes. The modeled energy envelopes at station i are calculated by [cf. Eulenfeld and Wegler, 2016,
equation (1)]

Emod(t, ri) = WRiG(t, ri, g∗)e−bt . (2)

t is the lapse time, r⃗i the vector pointing from the hypocenter to the station location, and W is the spectral
source energy of the event. e−bt describes the exponential intrinsic damping with time. The energy Green’s
function G(t, r⃗i, g∗) accounts for the direct wave and the scattered wave field. The most simple approach,
which is also pursued in this paper, employs the analytic approximation of the solution for three-dimensional
isotropic radiative transfer to calculate the Green’s function [Paasschens, 1997; Eulenfeld and Wegler, 2016,
equation (2)]. The usage of an isotropic description of scattering can be justified also for anisotropic scattering
as Gaebler et al. [2015] discussed exemplary that a scattering coefficient g0 determined under the assumption
of isotropic scattering can be directly translated to the transport scattering coefficient g∗ in an anisotropic
scattering medium (g∗ = g0). Observed energy densities corrected due to the free surface [Eulenfeld and
Wegler, 2016, equation (4)] are inverted for g∗, b, W , and Ri with the Qopen method. g∗ and b can be converted
to Q values with equation (1).

We use data from 1844 stations of the transportable array and the reference network of the USArray pro-
gram (virtual network codes _US–TA and _US–REF). Earthquake localizations and picks are taken from the
catalog of the Array Network Facility (ANF) [Astiz et al., 2014]. We analyze around 45,000 events of the time
period between 1 April 2005 and 31 August 2015 (more than 10 years) with magnitudes between 1.5 and
3.5 and a depth smaller than 40 km. Magnitude and depth constraints are the same as in Carcolė and Sato
[2010]. Magnitudes are sufficient small to justify the assumption that earthquake source time functions can
be approximated by a delta peak in space and time. The depth constraint guarantees events to be located
inside or immediately under the crust. A plot of used stations and events is displayed in Figure 1.
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Figure 1. Map of used USArray stations (triangles) and earthquakes (blue dots). Color refers to the interpolated number of observations at 6 Hz on a logarithmic
scale. White crosses mark the two earthquakes for which envelope fits are shown in Figure 2.

For each event, stations with a distance smaller than 110 km are selected. Data for these stations are requested
from the Incorporated Research Institutions for Seismology (IRIS) with 40 Hz sampling rate and processed
with the Qopen script hosted at https://github.com/trichter/qopen. The processing is detailed in Eulenfeld and
Wegler [2016] and shortly recapitulated with adaptations for our use case: S onset and P onset at each station
are obtained from the ANF picks. The mean S wave velocity, which is important for calculation of theoreti-
cal Green’s functions, is calculated from the S picks at the used stations. Data are filtered with a Butterworth
band-pass filter in octave frequency bands (i.e., the higher corner frequency is twice the value of the lower
corner frequency) with central frequencies at 1.5 Hz, 2.1 Hz, 3.0 Hz, 4.2 Hz, 6.0 Hz, 8.5 Hz, 12.0 Hz, and 17.0 Hz.
For the highest central frequency, data are filtered with a Butterworth high-pass filter with a corner frequency
at 11.3 Hz. The filters are of order 2 and are applied once forward and once backward to guarantee zero phase
shift. The further processing is applied separately for each frequency band. Energy envelopes are calculated
with the help of the Hilbert transform. At each station, the average of the envelope is calculated in each of
the time windows (−50 s; −40 s), (−40 s; −30 s), (−30 s; −20 s), and (−20 s; −10 s) relative to P onset and the
minimum of those averages is used as the envelope noise level which is subtracted from the envelope data.
The direct S wave window starts 0.2 s before the S onset and has a length of 10 s. The coda window starts at
the end of the corresponding direct wave window and ends 100 s after the S onset or until the envelope falls
under a level of 4 times the signal-to-noise ratio. Additionally, the coda is cut at the smallest possible local
minimum if envelope data at a subsequent local maximum is larger by a factor of 4. This short analysis, which
guaranties to filter out interfering aftershocks and other nuisances, is performed on the smoothed envelope
data (2 s Bartlett window). If the final coda window is shorter than 8 s, e.g., because the signal-to-noise ratio
is quickly reached, data for this station are removed from the inversion. If data of less than three stations are
remaining, the corresponding frequency band is completely removed from the analysis for this event. Data
in the direct wave window are averaged. Furthermore, observed and modeled envelopes are smoothed with
a 2 s wide Bartlett window. Finally, the inversion for intrinsic and scattering attenuation as well as site effects
and spectral source energy is performed by solving the least squares linear equation system Eobs = Emod for
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Figure 2. Envelope fits between observed and modeled energy densities for the inversion of two different earthquakes
(event IDs indicated) in the frequency band from 4 Hz to 8 Hz. Displayed in each panel are the observed envelope (gray),
the smoothed observed envelope (blue), and the smoothed modeled envelope (red). S wave and coda window are
indicated with green bars. The mean of the observed and modeled envelope in the S wave window is indicated with a
blue dot and red dot, respectively. Station name and distance to hypocenter is indicated in each panel. The epicenter
locations for the (a) western and (b) eastern event are indicated in Figure 1. Intrinsic attenuation is similar for both
events, but scattering is stronger for the eastern event manifesting in a lower ratio between energy density levels of
direct S wave and coda.

given g∗ and simultaneous optimization of g∗ as described in Eulenfeld and Wegler [2016]. The weight of the
S wave window in the inversion corresponds to its width.

Envelope fits for two representative earthquakes are displayed in Figure 2. The epicenters of the two earth-
quakes are marked with white crosses in Figure 1. The western event is located in a low scattering environment
and the eastern event in a high scattering environment. The fits exemplify that stronger scattering mainly
manifests in a lower ratio between energy density levels of direct S wave and coda, while intrinsic attenuation
accounts for a linear decrease of the logarithm of energy density with time.
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Figure 3. Map of shear wave scattering attenuation at 6 Hz (left) measured at the USArray stations and (right) interpolated. Measurements encircled red in
Figure 3 (left) are discarded because of the low number of observations.

2.2. Accumulation of Observations and Correction of Site Responses
The analysis of the previous section is repeated for each of the around 45,000 events. Around 21,000 events
are discarded, because not enough stations are deployed in less than 110 km distance at the time of event
occurrence or because other of the above defined criteria are not met. The values of Q−1

i , Q−1
sc , and R for each

event are associated with the corresponding stations. For easier analysis observables are log scaled with base
10 in the following. The robust mean [Eulenfeld and Wegler, 2016; Huber, 2014] and the median absolute devia-
tion (MAD) of the observables are calculated for each station. The MAD is utilized as error of the corresponding
observables. As an example, results for scattering attenuation at a central frequency of 6 Hz are displayed in
the left panel of Figure 3. Slopes are calculated for the attenuation observables by fitting a line to the averaged
log-log scaled measurements.

To resolve any ambiguity in the solution of the equation system because of the collinearity of W and Ri in
equation (2), the geometric mean of site responses at used stations is set to 1. As a result, site responses
obtained from different events may not be compared. The discrepancy is resolved by a second inversion for
site responses and spectral source energies leaving attenuation parameters Q−1

i and Q−1
sc untouched. There-

fore, a linear equation system is constructed by assuming that site amplification factors for one station and
frequency are the same for different events [Eulenfeld and Wegler, 2016, equation (10)]. The equation system is
split into independent subsystems each corresponding to an area of stations connected by measurements of
different events. Only the subsystem of the largest contiguous area is solved with the method of least squares.
Site amplification measurements for the smaller areas are discarded as it is difficult to determine how the
values between different contiguous areas are aligned to each other. The geometric mean of site responses
is again fixed to 1 to resolve ambiguity, but this time all measurements of the largest contiguous area are
involved. The number of unknowns equals the number of overall used events. The number of equations equals
approximately the sum of the number of observations over all stations in the largest contiguous area. In our
case, the coefficient matrix has around 25,000 columns (unknowns) and 75,000 to 110,000 rows (equations)
depending on frequency. Luckily, the coefficient matrix is sparse with a density around 0.01% which allows
to solve the equation system with specially designed efficient algorithms. We use the Qopen implementa-
tion to correct site responses. Qopen employs the LSMR algorithm [Fong and Saunders, 2011] by means of the
SciPy [Jones et al., 2011] submodule scipy.sparse. Exemplarily, results of this procedure are displayed in
Figure 4 showing energy site amplification factors before and after the correction.

2.3. Performing the Interpolation
Before the interpolation, results are discarded for a specific station and frequency band if less than four
observations are available. In Figure 3 (left) discarded stations are encircled red. The slope of an attenuation
observable at a station is only used if the corresponding attenuation observable is available at more than
three frequencies.

The interpolation of observables between station locations works as follows: First, the interpolation area
has to be defined with care because of the large holes without earthquake activity. We calculate concave
hulls by performing a Delaunay triangulation between station locations and subsequently removing all
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Figure 4. Map of energy site amplification factors at 6 Hz (left) before and (right) after correction of the values. In Figure 4 (left) the geometric mean of energy
site amplifications is fixed for each inversion of an earthquake. Different measurements of the site amplification are therefore not comparable. Contrary, in
Figure 4 (right) the geometric mean of all energy site amplification measurements is fixed allowing to compare site amplification factors at different locations.
Note that Figure 4 (right) only displays observations at stations inside the largest contiguous area (see main text).

triangles with a circumradius larger than 150 km (alpha value of alpha shape). The concave hulls formed by
the remaining triangles are enlarged by 50 km in all possible directions to define the interpolation area. For
the interpolation inside the convex hull of the station locations, again the Delaunay triangulation is applied.
Following, linear barycentric interpolation is performed in each triangle. Outside the convex hull the inter-
polation area is filled with the value of the respective nearest station. For this purpose, the SciPy function
scipy.interpolate.griddata with method=’linear’ and method=’nearest’ is used.

Exemplarily, Figure 3 shows scattering attenuation at a central frequency of 6 Hz before and after interpolation.
The interpolated number of observations at 6 Hz is displayed in Figure 1.

3. Results

We obtained measurements at around 1400 of the 1844 used stations. Results for interpolated log-scaled
intrinsic and scattering attenuation log10 Q−1 are displayed in Figure 5 at the central frequencies 1.5 Hz, 3 Hz,
6 Hz, and 12 Hz. The slopes of frequency-dependent intrinsic and scattering attenuation are displayed in
Figure 6. Log-scaled energy site amplification factors log10 R are displayed in Figure 7 at the above mentioned
frequencies. Note that site amplification values of one frequency can be compared with each other, but a
statement about the absolute value is not possible.

Furthermore, we provide extensive supporting information containing all results in reusable and demonstra-
tive format:

1. Figures of total, intrinsic and scattering attenuation, seismic albedo, energy site amplification, and number
of observations as well as corresponding errors if applicable. Each figure consists of plots of results per
station and plots of interpolated results for the central frequencies 1.5 Hz, 3 Hz, 6 Hz, and 12 Hz. Plots of the
slope are displayed if applicable.

2. Results per station for all analyzed frequencies in JSON format. The configuration file for the Qopen package
is provided, too.

3. Interpolated observables for all analyzed frequencies in georeferenced TIF format.
4. The JavaScript application Qviewer to explore all results interactively. It allows to display observables as a

function of frequency at a single station.

The resolution of our observations is governed by the interstation spacing of around 70 km and the restriction
of the event-station distance to a maximum of 110 km. We expect therefore a resolution around 100 km. For
comparison, the length of the scale bar in the displayed maps is 500 km. Two indicators for the accuracy of our
results are available. First, the number of observations correlating with the areal event density and secondly
the median absolute deviation (MAD) as a measure for the spread of the distribution of observations. Active
regions as large parts of the western United States, Appalachian, and Interior Highlands show a high number
of observations (Figure 1). Other regions have a low number of observations, e.g., the Central Lowland,
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Figure 5. Comparison of (left column) crustal shear wave scattering attenuation and (right column) intrinsic attenuation at the central frequencies 1.5 Hz, 3 Hz,
6 Hz, and 12 Hz. Blue depicts low attenuation; yellow depicts high attenuation.
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Figure 6. Slope of frequency dependence of (left) shear wave scattering attenuation and (right) intrinsic attenuation.

Coastal Plain, and New England; results from these regions should be regarded with caution. Errors (MAD)
are provided in the supporting information. It has to be noted that results might be slightly obscured by the
different depths of used earthquake origins.

Figure 5 reveals a distinct west-east decline for intrinsic attenuation at all frequencies above 1.5 Hz. Regions
with low intrinsic attenuation for most frequencies are the High Plains (especially the Llano Estacado), the
imaged part of the Coastal Plain, and Sierra Nevada. Regions with high intrinsic attenuation are the Pacific
Border province, Boston Mountains (part of the Interior Highlands), Southern Rocky Mountains, and the
area around the Great Salt Lake. Scattering depicts a raising west-east trend for frequencies higher than
3 Hz but generally has a higher spatial variation than intrinsic attenuation. High scattering is observed

Figure 7. Energy site amplification at the central frequencies 1.5 Hz, 3 Hz, 6 Hz, and 12 Hz.
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Figure 8. Mean of intrinsic, scattering, and total attenuation for the whole study area and for the western and eastern
part of the U.S. as a function of frequency. Intrinsic attenuation dominates clearly in the west at all frequencies (except
at 1.5 Hz), whereas in the eastern part this is only the case for low frequencies and scattering attenuation is more
important at high frequencies.

in the Early Tertiary part of the Missouri Plateau, Navajo Section of Colorado Plateaus, Superior Uplands
(high frequencies), and large parts of the Interior Plains and Appalachian Highlands. Low scattering is
observed at Columbia Plateau and Northern Rocky Mountains, Sierra Nevada and Southern California, Pecos
Valley (Great Plains) and Mexican Highland (Basin and Range province), and mapped parts of the Coastal
Plain including the Lower Mississippi Region. The slope of the frequency dependence of attenuation shows
a raising west-east trend for intrinsic attenuation and a decreasing west-east trend for scattering attenuation
(Figure 6). A correlation is observed between the slopes and attenuation values at 1.5 Hz for intrinsic and scat-
tering attenuation. At 1.5 Hz scattering attenuation and intrinsic attenuation dominate variantly in the United
States. Interestingly, at higher frequencies a pattern can be observed: In the western part intrinsic attenuation
is dominant except for Missouri Plateau and Navajo section of Colorado Plateaus. In the eastern part scattering
attenuation is dominant except for the eastern rim of the imaged area. The border between the domination
of intrinsic and scattering attenuation is at a longitude of around 103∘W which is near the boundary of Inte-
rior Plains and Rocky Mountains. Geometric averages of intrinsic, scattering, and total attenuation over the
whole study area as a function of frequency are displayed in Figure 8. The total Q value can be approximated
by Qtot = 59 × f 1.0. Additionally, the geometric mean of total, intrinsic, and scattering attenuation is dis-
played for the western and eastern part of U.S. (border at 103∘W) to illustrate further the above mentioned
west-east trends.

For energy site amplification factors, it has to be noted that site amplification is highly influenced by the
material near the surface and depends strongly on the exact location of the seismometer as site amplifica-
tion can vary over short distances. Therefore, we report only large-scale variations in site amplification factors
(Figure 7). At low frequencies the site amplification is relatively uniform with some distinct areas (e.g., High
Plains). For higher frequencies, a west-east trend of rising site amplification values is visible. Energy site ampli-
fications reach levels up to 100 corresponding to an amplitude site amplification of 10. Southern parts of the
Appalachian Highlands show a higher site amplification than the northern parts.

Source displacement spectra of the earthquakes are calculated from the spectral source energies W as a
function of frequency [Eulenfeld and Wegler, 2016, equation (11)]. Moment magnitudes Mw are estimated
with the geometric mean of the source displacement spectrum at frequencies smaller than 6 Hz. Source dis-
placement spectra, seismic moments, and moment magnitudes for all analyzed events are provided in the
supporting information. We compare estimated moment magnitudes with moment magnitudes obtained
by moment tensor inversions of different institutions in Table 1. Due to the small overlap in the magnitude
range, only 22 events were processed both by one of the institutions and ourselves. Before the correction
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Table 1. Comparison of Estimated Moment Magnitudes With Moment Magnitudes Derived by Moment Tensor Inversion of Different Institutionsa

Latitude Longitude Depth Our Mw Our Mw

ANF ID Origin Time (deg) (deg) (km) Ref Catalog Ref Mw Uncorrected Corrected

2013291 2005-4-16, 10:13:15 35.891 −120.434 8.6 Berkeleyb 3.45 3.76 3.83

1968787 2005-5-8, 10:35:55 37.836 −122.226 5.0 Berkeley 3.29 3.41 3.67

2154477 2005-9-24, 11:25:16 37.830 −122.221 5.4 ISCcBRK 3.2 3.33 3.57

2127896 2005-11-17, 08:55:05 38.814 −122.783 2.4 Berkeley 3.88 3.67 3.99

2519807 2007-4-19, 03:52:44 39.441 −123.106 4.8 Berkeley 3.5 3.42 3.94

2427335 2007-5-7, 07:52:58 40.767 −121.562 8.7 ISC BRK 3.6 3.60 3.82

2482627 2007-5-20, 23:10:19 37.364 −121.727 6.8 Berkeley 3.5 3.58 3.81

2525607 2007-5-26, 08:04:12 37.419 −118.526 8.7 ISC BRK 3.3 3.39 3.54

2580402 2007-8-15, 07:13:10 37.803 −122.193 5.7 Berkeley 3.2 3.32 3.62

2854061 2008-8-30, 22:06:15 41.674 −111.145 2.8 SLUd 3.4 3.46 3.49

2867342 2009-3-21, 08:47:50 43.322 −110.718 5.0 SLU 3.1 3.52 3.63

2867504 2009-3-25, 07:51:23 33.290 −115.721 4.4 ISC PAS 3.6 3.39 3.73

2868918 2009-5-1, 01:34:02 36.865 −104.864 6.6 SLU 3.5 3.21 3.22

2871933 2009-7-20, 12:10:19 33.116 −116.207 14.5 ISC PAS 3.4 3.56 3.85

3343295 2012-5-18, 16:51:17 37.203 −118.113 6.5 ISC NCEDC 3.2 3.35 3.34

3379316 2012-8-29, 13:01:50 36.012 −118.403 4.8 Berkeley 3.38 3.49 3.77

4488469 2013-10-10, 01:34:23 35.659 −118.472 10.6 Berkeley 3.34 3.50 3.72

4723074 2014-6-25, 22:01:36 35.816 −119.880 9.3 Berkeley 3.37 3.68 3.69

Mean signed deviation 0.08 0.28

Mean absolute deviation 0.16 0.31
aAn acceptable mean deviation of 0.16 can be observed before the correction of site responses. In the main text we explain, why moment magnitudes are

systematically higher after the correction.
bUC Berkeley Seismological Laboratory [Northern California Earthquake Data Center, 2014].
cInternational Seismological Centre [2014].
dSaint Louis University Earthquake Center [Herrmann, 2013].

of site responses, our moment magnitudes show an acceptable agreement with the reference magnitudes
with a mean deviation of 0.16 and a slight positive systematic shift (mean signed deviation). After the
correction for site responses, moment magnitudes are systematically overestimated. This is because the mean
site amplification of 1 over the whole U.S. was chosen arbitrary and most of the compared earthquakes rup-
tured in western U.S. areas with low site amplification. A clear trade-off between spectral source energies and
assumed averaged site amplification exists. For example, if we assumed a mean energy site amplification of 8
(amplitude factor 2.8), all estimated moment magnitudes would be reduced by 0.28. This completely elimi-
nates the systematic deviation and results in a mean deviation of 0.13.

A comparison of estimated moment magnitudes after site correction and local Richter magnitudes MR

reported by the Array Network Facility (ANF) is displayed in Figure 9 in two panels for western and eastern
U.S. The relationship between determined moment magnitudes and Richter magnitudes is different for west-
ern and eastern U.S. We checked that this is not solely a side effect of the correction of site amplification.
We compare our results to linear fits between moment magnitudes (west) respective local magnitudes (east)
and Richter magnitudes. These fits are reported in Figures S07 and S06b in the supporting information of
Astiz et al. [2014]. Our relationship between moment magnitude and Richter magnitude in the west agrees
well with the fit to moment magnitudes determined by the Northern California Seismic Network (NCSN). In
the east the best agreement is with the fit to local magnitudes determined by Lamont-Doherty Cooperative
Seismographic Network (LCSN). Fits to magnitudes reported by other agencies are systematically on a lower
level. Please note that assuming a mean site amplification larger than 1 over the whole U.S. (e.g., 8 as above)
reduces our estimates by a constant factor, effectively creating a larger agreement between our Mw-MR

relationship and those of other institutions.
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Figure 9. Box plots of the estimated moment magnitudes versus Richter local magnitudes reported by the Array Network Facility (ANF) for the western and
eastern part of the U.S. The top panels show the number of events for each reported local magnitude. Opaque gray lines show linear fits between magnitudes
from different agencies and Richter magnitudes [Astiz et al., 2014].

4. Comparison With Other Works and Discussion

The west-east decline of intrinsic attenuation at all frequencies above 1.5 Hz is consistent with previous studies
[e.g., Mitchell, 1995]. Its origin can be explained by a comparison to the heat flow map compiled by Blackwell
et al. [2011] which shows a positive correlation to intrinsic attenuation. The values with the largest heat flow
in the western U.S. (Yellowstone and Snake River plain, the area around Great Salk Lake, and Southern Rocky
Mountains) also show a relatively high intrinsic attenuation. An exception to this observation is the Great
valley which has a low heat flow but no lower intrinsic attenuation than the surrounding. The west-east trend
of intrinsic attenuation and heat flow reflects the transition from young, hot rock to old and cold rock. The
heat anomaly in South Dakota is not reflected by intrinsic attenuation, because it is caused by large-scale
groundwater flow from west to east [Blackwell et al., 1991].

The scattering strength allows to conclude on the extent of crustal heterogeneity of S wave velocities. Inter-
esting insights might be obtained for the different geologic formations: For example, the young Quaternary
and Tertiary sedimentary rocks of the Coastal Plain are more homogeneous on length scales down to 200 m
(f = 15 Hz at vS = 3.3 km/s) than the older Paleozoic sedimentary rocks of the Central Plains. Also, the crust
in the western part of the United States appears to be more homogeneous on the relevant length scales than
the crust in the eastern part. A reason might be that heterogeneities in the hot and viscous (high Q−1

i ) rocks
in the west are healing and mixing easier than in the cold and stiff rocks in the east. These healing and mixing
processes seem to be more important than the creation of new cracks by active tectonics in the west.

This is the first time intrinsic and scattering attenuation are reported separately for large regions of the U.S.
To compare our results with previous attenuation measurements in the U.S. area, maps of total attenuation
at a central frequency of 1.5 Hz and 12 Hz are displayed in Figure 10. Phillips and Stead [2008] conducted a Lg
attenuation tomography for western U.S. and report Qtot. They windowed the Lg phase with group velocities
of 3.6 km/s to 3.0 km/s. Results in the 0.75 Hz to 1.5 Hz frequency band are consistent in some regions and
disagree in other regions to our results at a central frequency of 1.5 Hz. Several features match, e.g., high
attenuation in the Pacific border region and near Yellowstone, low attenuation at the Columbia plateau, and
Northern Rocky Mountains. Other features do not match, most prominently the part of the Colorado plateaus
showing a low attenuation in the study of Phillips and Stead [2008] but a high attenuation due to scattering
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Figure 10. Total attenuation at 1.5 Hz and 12 Hz for the study area.

in our study. Phillips et al. [2013] extend the study region of Phillips and Stead [2008] eastward and report low
attenuation in the Great Plains province. This can be partly confirmed by our study. Controversially, our study
shows higher attenuation in the parts of the Great Plains where scattering contributes significantly to the
attenuation. It can be speculated that the mentioned Q attenuation studies of the Lg wave are mainly sensitive
to intrinsic attenuation due to the guided nature of the Lg phase. Also, Lg wave attenuation is affected by
topographic changes of the free surface and subsurface interfaces. Gallegos et al. [2014] performed the Lg
attenuation tomography for the central and eastern U.S. They chose a 0.6 km/s wide, visually picked lapse
time window. The correlation to our findings is not clear. A possible reason could be the existence of Paleozoic
sedimentary basins which might substantially influence Lg attenuation.

Adams and Abercrombie [1998] estimated intrinsic and scattering attenuation around Cajon Pass, Southern
California, with multiple lapse time window analysis (MLTWA). In Figure 11a we compare their results for sta-
tion CSP and borehole station CJP with our observations at nearby station CI.BFS and with results at station
CJP from Leary and Abercrombie [1994]. There is a very good agreement of observed intrinsic attenuation in
all studies with small deviations at low frequencies. The scattering estimates of Leary and Abercrombie [1994]
show a clear offset from the other measurements. This can be explained due to the single scattering assump-
tion they used. Multiple scattering models employed in Adams and Abercrombie [1998], and our study add
additional energy to the coda from multiple scattered waves [Gao et al., 1983]. The same coda envelope there-
fore has to be explained with stronger scattering in a multiple scattering description. Estimates of scattering
in Adams and Abercrombie [1998] fit well to our observations for the CJP stations and estimates are a bit higher
but follow the same frequency dependence for the CSP station. The slight discrepancy might be observed
simply due to the different stations used. Intrinsic and scattering attenuation were also estimated by Mayeda
et al. [1992] for the Long Valley and a part of Central California and by Jin et al. [1994] for Southern California.
We compare these studies to the 0th, 25th, 50th, 75th, and 100th percentiles at 83 stations in Southern and
Central California in Figure 11b. Our results show a good agreement with the study of Jin et al. [1994] for
Southern California. On the other hand, a slight discrepancy between our results and the estimates of Mayeda
et al. [1992] is visible, especially for the Long Valley. The USArray station CI.MLAC is located inside the Long
Valley Caldera, but the resolution of our results (≈100 km) is larger than the extent of the presumably high
scattering caldera (≈30 km) which can explain the differences in the two measurements. The higher scatter-
ing strength for Central California compared to Southern California can be verified by our study (compare
Figure 5). These comparisons with MLTWA studies confirm that we can be confident in our attenuation results
especially for regions with a large number of observation.

The procedure we used to correct for site responses uses the strong assumption of isotropic source radiation
patterns of individual earthquakes which is of course not fulfilled. We expect that this assumption does not
affect results for regions with a lot of earthquakes with different radiation patterns. Serious errors may be intro-
duced in regions with a low number of earthquakes or in regions with a dominating moment tensor. These
errors can propagate to neighboring regions due to the correction algorithm. This effect plays a larger role for
low frequencies and might render site amplification plots useless for low frequencies. Contrary, Takemura et al.
[2009] show that at higher frequencies (>5 Hz) higher scattering counterbalances the anisotropic radiation
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Figure 11. (a) Comparison of estimates of (left) scattering and (right) intrinsic attenuation from station CI.BFS of our study and studies of nearby stations by
Adams and Abercrombie [1998] and Leary and Abercrombie [1994]. (b) Comparison of estimates of (left) scattering and (right) intrinsic attenuation for Central and
Southern California. Displayed are the median (black line), 25th and 75th percentiles (gray lines), and minimum and maximum (gray dashed lines) of all stations
in Central and Southern California for each frequency. We compare our results to estimates at Long Valley, Central California [Mayeda et al., 1992], and Southern
California [Jin et al., 1994].

pattern. This argument is supported by our observation that the alignment was more successful for higher
frequencies than for lower frequencies: The reduction of the mean of the standard deviations of site ampli-
fication observations at individual stations due to the alignment is around 3% to 4% for frequencies smaller
than 5 Hz and around 8% to 10% for frequencies higher than 5 Hz. The absolute value of the mean standard
deviation is also higher at low frequencies (0.5–0.6 compared to 0.45 at higher frequencies). We are therefore
confident that the west-east increase of high-frequency energy site amplification and the extraordinary high
value at the Interior Low Plateaus and the southern part of the Appalachian Highlands are reliable results.
The high site amplification might be connected to the high scattering strength in the same region. vS30 maps
(mean S wave velocity over top 30 m) derived from topographic slopes [Wald and Allen, 2007] show a similar
trend as our site amplification maps (higher vS30 values in large parts of eastern U.S.). In detail, deviations are
observed. The resolution of our maps is limited by the average distance between U.S. array stations (70 km).
On the other hand, topographic slope is only a proxy for vS30 which itself is a weak proxy for site amplification
[Castellaro et al., 2008], whereas we directly measure frequency-dependent site amplification.
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For estimating the seismic moment, our method (based upon Sens-Schönfelder and Wegler [2006]) only needs
data of the earthquake itself. This can be an advantage to the previous coda method of Mayeda and Walter
[1996] using Empirical Green’s function corrections. The good agreement between our estimates and inde-
pendently derived moment magnitudes in Table 1 therefore is promising. Estimates of moment magnitude
for different events with the same Richter magnitude scatter a lot in Figure 9 because Richter magnitudes
for different regions inherently correspond to different moment magnitudes, e.g., due to different attenua-
tion or varying stress drops of the earthquakes. Additionally, if g∗ or b is determined erroneously for a single
event, W and the reported moment magnitude are affected. One reason for the observed difference in mag-
nitude scaling in west and east is the higher intrinsic attenuation in the west. The same ground motions
(proportional to Richter magnitude) then originate from more powerful sources (proportional to moment
magnitude). Estimated moment magnitudes in the west are therefore larger for similar Richter magnitudes.
This effect is even larger for stronger earthquakes, because more stations which are farther away contribute
to the MR calculation and waves are damped proportional to Q−1 and travel time. One might argue that the
difference should be manifested by total attenuation, but this can only be true when the direct wave which
attenuates with Q−1

tot dominates the calculation of the Richter magnitude. For higher scattering media as in the
Southern Appalachian Highlands the coda dominates the recordings and the influence of intrinsic attenua-
tion on Richter magnitude calculation surpasses the influence of scattering attenuation. Another reason for
the different magnitude scaling in west and east are potentially higher stress drops for eastern earthquakes
(e.g., Mw 5.7 Virginia earthquake [Ellsworth et al., 2011]) than for western earthquakes [e.g., Allmann and
Shearer, 2007]. A higher stress drop for an earthquake with the same seismic moment M0 implies a smaller fault
area and a shorter time function resulting in higher corner frequency and larger shaking and thus larger MR.
Furthermore, the higher site amplification for high frequencies in the east might be of importance, especially
for earthquakes of high stress drops and high corner frequency.

Differences between the magnitude relationship presented in Figure 9 and the fits from Astiz et al. [2014]
might be due to the fact that most of the latter are only calculated for larger events depending on the
completeness of the reference catalog. Furthermore, the mean energy site amplification does not equal the
assumed value of 1 and it might be different for different frequencies. For example, a mean energy site ampli-
fication factor of 10 (amplitude factor 3.1) would result in a moment magnitude reduction of 0.3 in our results.
The flattening of the moment magnitude-Richter magnitude relationship in the east for MR > 2.5 might be
another indication of varying stress drops of different earthquakes in eastern U.S. areas.

5. Conclusions

We presented the areal distribution of crustal S wave intrinsic and scattering attenuation for the contiguous
United States as a function of frequency between 1 Hz and 20 Hz. This is the first time intrinsic attenuation
and scattering attenuation were separated and mapped for a large part of the United States. Because we used
a simple homogeneous model, reported Q values should be interpreted as a crustal average between used
earthquakes and stations. The most prominent feature we identified is the declining west-east trend of intrin-
sic attenuation and the raising west-east trend of scattering strength. Furthermore, energy site amplification
factors were reported. Our findings of a high site amplification at some regions in the east at frequencies
above 5 Hz should be further hardened or rebutted by independent investigations. The good agreement
between estimated moment magnitudes and independently derived moment tensors confirm the robust-
ness of the Qopen inversion algorithm. Differences between moment magnitudes and ANF reported Richter
magnitudes can be explained reasonably well. We provide extensive supporting information which allows an
easy comparison of future studies with our findings.
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