
MODEL-BASED DEVELOPMENT
OF ENERGY-EFFICIENT
AUTOMATION SYSTEMS

DOCTORAL DISSERTATION TO BE AWARDED THE DEGREE
“DOKTORINGENIEUR” (DOCTORATE IN ENGINEERING)

submitted at the

DEPARTMENT OF COMPUTER SCIENCE AND AUTOMATION
of the

TECHNISCHE UNIVERSITÄT ILMENAU

 by Dipl.-Ing. Dmitriy Shorin

 on 10 November 2017

 Reviewers: 1. Prof. Dr.-Ing. habil. Armin Zimmermann

 2. Prof. Dr.-Ing. habil. Wolfgang Fengler

 3. Prof. Dr. Javier Campos

The scientific discussion in an open session took place on 15 May 2018.

ILMENAU, GERMANY 2018

urn:nbn:de:gbv:ilm1-2018000154

ABSTRACT

Power consumption is an increasingly important decision criterion that has to be
included in the search for good architectural and design alternatives of technical
systems. This monograph presents a methodology for the model-based engineering of
energy-aware automation systems.

In this monograph, an embedded system is considered as an alliance of the
processor hardware and the software part. In the developed method, the former part is
described by an operational model, which depicts all possible states and transitions of
the system under consideration. The latter part is represented by an application model,
which reflects the workflow of a concrete program created for this system. Together,
these two models are translated into one stochastic Petri net to make analyzing of the
system possible. The developed transformation rules are presented and described
mathematically. It is then possible to predict the system’s power consumption by a
standard evaluation of Petri nets.

The Unified Modeling Language (UML) is used in this monograph for modeling of
real-time systems. State machine diagrams extended with the MARTE profile (Modeling
and Analysis of Real-Time and Embedded Systems) are chosen for modeling and
performance evaluation. The presented methodology is supported by an implementation
of the necessary algorithms and graphical editors in the software tool TimeNET. The
developed extension implements the presented method for power consumption
modeling and evaluation based on the extended UML models, which now can be
automatically transformed into a stochastic Petri net. The system’s power consumption
can be then predicted by the standard Petri net analysis modules of TimeNET.

The methodology is validated and its advantages are demonstrated using
application examples.

ZUSAMMENFASSUNG

Der Energieverbrauch ist ein immer wichtigeres Entscheidungskriterium, das bei
der Suche nach guten architektonischen und gestalterischen Alternativen technischer
Systeme einbezogen werden muss. Diese Monographie stellt eine Methodik für das
modellbasierte Engineering energieeffizienter Automatisierungssysteme vor.

In dieser Monografie wird ein eingebettetes System als eine Kombination der
Prozessorhardware und des Softwareteils betrachtet. Im entwickelten Verfahren wird
der erste Teil durch ein Betriebsmodell (operational model) beschrieben, das alle
möglichen Zustände und Übergänge des betrachteten Systems darstellt. Der letzte Teil
wird durch ein Anwendungsmodell (application model) repräsentiert, das den
Arbeitsablauf eines konkreten für dieses System erstellten Programms widerspiegelt.
Gemeinsam werden die beiden Modelle in ein stochastisches Petri-Netz umgewandelt,
um eine Analyse des Systems zu ermöglichen. Die entwickelten Transformationsregeln
werden vorgestellt und mathematisch beschrieben. Es ist dann möglich, die
Leistungsaufnahme des Systems mittels einer Standardauswertung von Petri-Netzen
vorherzusagen.

Die UML (vereinheitlichte Modellierungssprache) wird in dieser Monographie für
die Modellierung der Echtzeitsysteme verwendet. Die mit dem MARTE-Profil
(Modellierung und Analyse der Echtzeit- und eingebetteten Systeme) erweiterten
Zustandsübergangsdiagramme sind für die Modellierung und Leistungsbewertung
ausgewählt. Die vorgestellte Methodik wird durch eine Implementierung der
notwendigen Algorithmen und grafischen Editoren in der integrierten
Entwicklungsumgebung TimeNET unterstützt. Die entwickelte Erweiterung
implementiert die vorgestellte Methode zur Modellierung und Bewertung des
Energieverbrauchs basierend auf den erweiterten UML-Modellen, die nun automatisch
in ein stochastisches Petri-Netz transformiert werden können. Der Energieverbrauch
des Systems kann dann durch die Analyse-Module für stochastische Petri-Netze von
TimeNET vorhergesagt werden.

Die Vorteile der vorgeschlagenen Methode werden anhand von
Anwendungsbeispielen demonstriert.

RÉSUMÉ

La consommation d'énergie est un critère de décision de plus en plus important
qui doit être inclus dans la recherche de bonnes solutions architecturales des systèmes
techniques. Cette monographie présente une méthodologie basée sur des modèles,
pour l'ingénierie de systèmes d'automatisation économes en énergie.

Dans cette monographie, un système embarqué est considéré comme
l’association du hardware du microprocesseur et de la partie logicielle. Dans la méthode
développée, la première partie est décrite par un modèle opérationnel (operational
model) qui reflète tous les états et transitions possibles du système considéré. La
seconde partie est représentée par un modèle d'application (application model) qui
reflète le déroulement de l’exécution d'un programme concret créé pour ce système.
Ensemble, ces deux modèles sont traduits en un réseau stochastique de Petri pour
permettre l'analyse du système. Les règles de transformation développées sont
présentées et décrites mathématiquement. L’évaluation standard des réseaux de Petri
permet alors de prédire la consommation d'énergie du système.

L’UML (langage de modélisation unifié) est utilisé dans cette monographie pour
la modélisation des systèmes temps réel. La modélisation et l'évaluation des
performances sont réalisées avec les diagrammes états-transitions, étendus par le profil
MARTE (modélisation et analyse de systèmes temps réel et embarqués). Les
algorithmes issus de cette méthodologie, ainsi que les éditeurs graphiques nécessaires,
sont implémentés dans l'outil logiciel TimeNET. L'extension développée permet
l'évaluation de la consommation énergétique basée sur les modèles UML étendus, qui
peuvent maintenant être automatiquement transformés en un réseau stochastique de
Petri. La consommation énergétique du système peut alors être prédite par les modules
standards TimeNET d'analyse de réseau de Petri.

La méthodologie est validée et ses avantages sont démontrés avec des
exemples d'applications.

АННОТАЦИЯ

Энергопотребление становится всё более важным критерием принятия
решений, который необходимо включить в процесс поиска качественных
архитектурных и проектных альтернатив технических систем. В настоящей
монографии представлена методика типового проектирования
энергоэффективных систем автоматизации на основе моделей.

В данной монографии встроенная система рассматривается как сочетание
аппаратных средств процессора и программного обеспечения. В разработанном
методе первое описывается операционной моделью (operational model), в которой
представлены все возможные состояния и переходы в рассматриваемой системе.
Вторая часть представлена программной моделью (application model), которая
отражает процесс работы конкретной программы, созданной для данной системы.
Вместе эти две модели преобразуются в одну стохастическую сеть Петри, чтобы
анализ системы стал возможным. Разработанные правила преобразования
представлены и описаны математически. После этого энергопотребление
системы можно спрогнозировать с помощью стандартного анализа сетей Петри.

Для моделирования систем реального времени в настоящей монографии
используется унифицированный язык моделирования UML. Выбранные
диаграммы состояний дополнены профилем MARTE (моделирование и анализ
систем реального времени и встраиваемых систем) для моделирования
нефукциональных свойств и оценки эффективности. Необходимые алгоритмы и
графические редакторы внедрены в программное обеспечение TimeNET. В
разработанном дополнении реализован представленный метод для
моделирования и оценки энергопотребления на основе расширенных моделей
UML, которые отныне можно автоматически преобразовывать в стохастическую
сеть Петри. После этого энергопотребление системы можно предсказать с
помощью стандартных модулей анализа сетей Петри в программном обеспечении
TimeNET.

Представленная методика проверена, а её преимущества
продемонстрированы на примере приложений.

 7

CONTENTS
1. Introduction .. 9

1.1. Related Work .. 11

1.2. Overview of the Approach ... 15

1.3. Outline .. 18

2. Background ... 19

2.1. Unified Modeling Language (UML) ... 19

2.1.1. State Charts ... 21

2.1.2. States ... 23

2.1.3. Substates ... 24

2.1.4. Events .. 24

2.1.5. Transitions .. 25

2.2. UML MARTE Profile.. 25

2.3. Stochastic Petri Nets ... 27

2.3.1. Petri Nets as a Modeling Tool .. 28

2.3.2. Formal Description ... 30

2.3.3. Enabling and Firing Rules .. 32

2.3.4. State Transitions .. 33

3. Describing an Embedded System by Means of UML and MARTE Profile 35

3.1. Common Elements ... 36

3.2. Operational Model .. 40

3.3. Application Model ... 40

3.4. Correspondence Between the Models .. 41

4. Transforming Models into Stochastic Petri Nets .. 45

4.1. Transforming Regular States .. 45

4.2. Transforming Choice Pseudostates .. 47

4.3. Transforming Join Pseudostates .. 48

4.4. Transforming the Initial Pseudostate... 49

4.5. Transforming the Attribute 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 .. 50

5. Software Implementation ... 51

5.1. Tool Description .. 51

5.2. Integration of Energy-Aware State Machines into TimeNET 53

5.3. Tool Functionality .. 54

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 8

6. Example 1. Microcontroller .. 57

6.1. Operational Model .. 57

6.2. Application Model ... 59

6.3. Transforming the Example into an SPN .. 65

7. Example 2. Workbench ... 69

7.1. Operational Model .. 69

7.2. Application Model ... 71

7.3. Transforming the Example into an SPN .. 72

8. Summary, Conclusion, and Outlook .. 73

Own Publications ... 75

Bibliography ... 77

Appendix. Software Manual... 83

Glossary .. 91

Declaration of Authorship .. 93

 9

1. INTRODUCTION
Technical processes become more and more complex. Nowadays, it is not

enough that they work correctly and fulfill their functional purposes. Other additional
(non-functional) properties like safety, quality, and performance became relevant as well.
Moreover, such properties like timeliness and reliability are significant for the design of
the embedded systems, by means of which automation systems are controlled and
realized.

Among the reasons for this development are the following: Embedded systems
are integrated in almost all spheres of the today’s life. On the one hand, law
requirements especially concerning safety became stricter because, e.g., an error at a
nuclear plant can be crucial. On the other hand, customers have a large choice of offers
from all over the world, and they can be thus fastidious. Complex automation systems,
which control these technical processes, can be efficiently controlled by means of the
available control units. This is based on system design methods that can check the
operational modes with the help of models already before the realization of an
embedded system.

A non-functional property, which is of great importance in the current discussion
about resource-efficient management, is the power consumption of these systems.
While the European Union faces the lack of energy sources and has to purchase them
abroad, such political decisions like closing nuclear power plants make the situation
only worse. The energy consumption raises at the same time, its quantity sinks, and,
logically, the energy price constantly rises. In this situation, the engineering science
strives to decrease the power consumption of devices without losing their performance.
Unfortunately, at the present time there is a lack of readily available modeling methods
and analysis algorithms which are able to predict the energy consumption of a planned
system design.

The International Organization for Standardization defines energy efficiency as
the ratio or other quantitative relationship between an output of performance, service,
goods or energy, and an input of energy (International Organization for Standardization,
2011). However, preconditions for recognizing its importance arose much earlier. The
oil crisis of 1973 encouraged 16 countries, including Germany, to found the International
Energy Agency (IEA). Though its primordial aim (creating the system of collective
energy security) was not directly related to the energy efficiency, nowadays the Agency
pays much attention to this aspect: “Increasing energy efficiency, much of which can be
achieved through low-cost options, offers the greatest potential for reducing CO2
emissions over the period to 2050. It should be the highest priority in the short term.”
(International Energy Agency (IEA), 2010) The key ways of energy efficiency
improvements that the industry can offer at present are:

• staff training for identifying inefficient energy usage and its improvement
potential, and

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 10

• providing the equipment, systems and solutions to reduce energy
consumption and losses, improving productivity and managing equipment
and processes more effectively (ABB, 2010).

Despite the existence of such offers, the recent analyses have shown that the
industry is not active in adopting the new energy-efficient technologies (Gerarden, et al.,
2015). Furthermore, even 70% of the world’s energy use takes place outside of any
efficiency performance requirements (International Energy Agency (IEA), 2016). In this
respect, this problem must be solved at state level. In 2016, the members of the Group
of Twenty (G20) as consumers of over 80% of global energy consider themselves
obliged to improve their energy efficiency performance continuously (International
Partnership for Energy Efficiency Cooperation (IPEEC), 2017).

It is thus important to evaluate architectural and other design decisions in all
phases of the development process based on a good prediction of the power
consumption of an embedded system. While some components in the industry such as
microcontrollers are already developed with low power∗ consumption, an energy-
efficient automation system has to be developed as a whole and the power
consumption of the controlled and control systems have both to be considered. In the
end, spending more energy on a (better) control system may lead to energy savings in
the overall setup. This aspect has not been covered in the literature enough so far. It is
of great importance to detect inefficient solutions in the early design phases because it
spares much time and, thus, budget.

In many areas of research, a phenomenon is being studied not directly, but
indirectly through a model. A model is a view typically in mathematical terms, which is
considered as most characteristic in the system or the object being studied. By
manipulating a modeled system, the user can gain new knowledge about it, avoiding
danger, high cost or inconvenience of the real system analysis.

In this monograph, the efforts are concentrated on the early design steps, in
which major architectural decisions are made, which may have a significant impact on
the overall system's energy consumption. Therefore, more abstract models are
necessary because low-level information is not available at this moment. Modeling
methods are to be developed for discrete automation systems in such a way that the
energy consumption, beside other parameters, can be modeled, estimated, and finally
reduced or optimized in conjunction with other design issues. There are different levels
of abstraction, on which embedded systems can be evaluated for this task (Talarico, et
al., 2005). While there are some methods for the quite exact computation of power
consumption, they all require very detailed knowledge of the system under design.

∗ In this monograph, the power consumption is being modeled. On the premise that knowing the power
consumption, one can definitely calculate the system’s energy consumption, these two terms are
sometimes used as synonyms replacing each other in the whole work. However, the author is aware that
the terms “power” and “energy” are physically differently defined.

1. INTRODUCTION

 11

The description has to be on a very low level, which is available only in later phases of
the design process.

1.1. RELATED WORK
 A real-time system is a system that must react to events in the external

environment or affect the environment within the required time constraints. The
information processing must be carried out by the system over a certain finite period of
time to maintain a constant and well-timed interaction with the environment (Labrosse,
et al., 2007).

The main requirements for such systems are predictability and determinism of
the system’s behavior in the worst environmental conditions, which is very different from
the requirements for performance and speed. Good real-time systems have predictable
behavior under all scenarios of the system load. For this reason, modeling of such
systems gathered already in 2000s much importance. The problem was the lack of a
modeling language that could take the essential properties of the real-time and
embedded systems into account.

Nowadays, UML (Object Management Group (OMG), 2015) is considered to be
an industry standard for describing software systems. However, it is not intended to
describe non-functional system properties equally well because there are no constructs
for quantitative properties.

Researchers tried to solve this problem by adding profiles to UML, like e.g.
Gaspard2 (Atitallah, et al., 2007) and TURTLE (Apvrille, et al., 2004) or profiles
presented in (CEA, I-Logix, Uppsala, OFFIS, PSA, MECEL, ICOM, 2003) and (Graf, et
al., 2006). Though these efforts extended UML (extendibility is a great advantage of this
modeling language), they were never standardized, so, not mathematically and
semantically well defined. Standards play an important role because they make
applications independent from a certain software tool. Reduced can be costs and time
for training the staff.

To solve the problem, in 2007, the Object Management Group (OMG) presented
Systems Modeling Language (SysML), which supported specification, analysis, design,
verification, and validation of a broad range of systems (Object Management Group
(OMG), 2017). Still, SysML did not support real-time resource management and strict
timing modeling sufficiently.

For this reason, in 2009, OMG presented the UML Profile for Modeling and
Analysis of Real-Time and Embedded Systems (MARTE) (Object Management Group
(OMG), 2011). It was a successor of the UML Profile for Schedulability, Performance,
and Time (SPTP) (Object Management Group (OMG), 2005). UML models adopting the
MARTE profile contain the necessary information for power consumption estimation.
However, they are not usable directly because UML models are not semantically well-
defined for a specification of the resulting stochastic process. There are two possible

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 12

alternate routes for this issue: either the models must be interpreted or enriched in a
way to make them analyzable (as it is done, for instance, in (Lindemann, et al., 2002)
outside the area of energy-related issues, or in (Junior, et al., 2006) for energy), or the
models must be automatically transformed into a model, for which analysis algorithms
already exist. In this monograph, the second option was chosen, and UML models are
being transformed into extended deterministic and stochastic Petri nets (eDSPN)
(German, 2000), such that the behavior and the properties are preserved. This was
motivated by the work (Trowitzsch, 2007), in which single extended UML state chart
models describing reliability aspects of a system were transformed into uncolored
stochastic Petri nets (SPN) for their analysis (Trowitzsch & Zimmermann, 2005).

First attempts for reducing power consumption of the software were taken in
(Tiwari, et al., 1994). One of the first approaches in the direction of the power
consumption reduction throughout the co-synthesis process was presented in (Dave, et
al., 1997). The authors propose an algorithm based on energy levels, so that the
mapping of the tasks becomes energy-dependent. Even deeper modeling levels are
examined later in (Vidal, et al., 2009). The authors propose three abstraction levels for
considering a system: abstract (for the system behavior), execution (for the
performance analysis), and detailed (for the code generation). However, the presented
hardware description language is not suitable for describing the system architecture in
the early design phase.

In (Hagner, et al., 2011), the authors deal with the power consumption estimation
based on the Scheduling Analysis View. For this purpose, they developed the Power
Consumption Analysis View Profile that lets the user model real-time and embedded
systems executing a defined set of tasks. This idea was used for the example presented
in Chapter 6 of this monograph. An alternative view on this example is presented in
(Aydin, et al., 2004). The authors show power-aware scheduling of periodic tasks to
reduce CPU (Central Processing Unit) energy consumption in hard real-time systems by
using dynamic voltage scaling.

An algorithm and approaches to reduce the power consumption are also
presented in (Schmitz, et al., 2004). Multimode applications are considered in this work.
Though, the presented technique – dynamic voltage/frequency scaling (DVFS) – is one
of the most effective in reaching the trade-off between energy and performance during
run-time of the application, its usage is not foreseen for the early design phases. In (Le
Dang, et al., 2008), the authors focus on the requirements traceability management and
propose a model-based methodology oriented to distributed, embedded and real-time
applications development, however, variability and verification are left outside the scope
of this paper. Any further developments of this work left no indices.

A related approach similar to the (Trowitzsch, 2007) is taken in (Callou, et al.,
2008), in which enriched UML models are translated into stochastic Petri nets. The main
difference to the current monograph is the distinction between the two aspect models
and their integration during transformation. Another approach with similar goals is

1. INTRODUCTION

 13

presented in (Andrade, et al., 2009), where a UML model is translated into a colored
Petri net (CPN) description as supported by the CPN tools (Jensen, et al., 2007).
However, the resulting model tends to be rather complex and the CPN interpretation
does not support a natural notion of (stochastic) time similar to the widely accepted
model class of stochastic Petri nets.

In (Billington, 2002), it is attempted to standardize the definitions, graphical
notation, and conventional symbols for the high-level Petri nets, which are in itself a
development of stochastic Petri nets created to reduce the overload of the net by
describing complex systems. First, the concept of generalized nets was presented in
(Atanassov, 1984). The author succeeded to avoid disadvantages of Petri nets like
unclearness of the initially modeled item by depicting them in Petri nets. Transformation
rules for several behavior diagrams like use case, state chart, activity and sequence
diagrams are proposed in (Merseguer & Campos, 2004). The resulting model –
Generalized Stochastic Petri Net (GSPN) (Ajmone Marsan, et al., 1996) – is
characterized by using only exponentially distributed or immediate times. The same
Petri net type is used in (King & Pooley, 1999) to evaluate the system performance. It is
one of the first works where communication and state chart diagrams are transformed
manually into GSPN. In this work, Petri nets are also produced from UML diagrams, but
the whole translation is not formally described; it is done intuitively through an
exemplification. The user has to understand the behavior of the state charts to model an
appropriate Petri net. In contrast to that work, the transformation presented in this
monograph is mathematically described, and the method lets the user translate UML
models into an SPN automatically. The transformation is developed in (Campos &
Merseguer, 2006) and afterwards, in (Pérez-Palacín, et al., 2012), where non-functional
properties, like energy consumption, are taken into account. Finally, GSPN were
semantically defined in (Eisentraut, et al., 2013).

In (Bernardi, et al., 2002), the authors translate the elements of the UML state
chart and sequence diagrams in separate Petri nets and then combine them into a
single GSPN. However, this indirect approach is limited to exponentially distributed
timing, whereas the method presented in this monograph covers deterministic timing as
well. Similarly, various UML diagrams are transformed in (López-Grao, et al., 2004), and
stored in the GreatSPN format. Such GSPN can be then modeled, simulated and
analyzed in the GreatSPN Graphical Editor (Amparore, 2014). In the earlier presented
software tool ArgoUML (Gómez-Martínez & Merseguer, 2005), analyzing had to be
executed externally.

Another approach (André, et al., 2016) comes close to the method presented in
this monograph; it lets the user automatically translate numerous elements of UML state
charts into CPN. These efforts should be commended as the authors succeeded to
transform concurrent aspects of the diagram and could cover some elements that are
not considered in this monograph (e.g. forks and history states). On the other hand, in
contrast to that approach, the method presented here takes timing aspects into account
(as well as it can transform e.g. choice elements), which are decisive for the

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 14

performance evaluation. But it would be fair to say that in (André, et al., 2016), the
authors aimed at an absolutely different issue, namely, checking techniques that could
guarantee the system safety.

A state chart diagram analysis framework is presented in (Lian, et al., 2008). To
reach the simulation-based analysis, the authors convert UML models into CPN and
give three analysis operations: direct Message Sequence Charts inspection, pattern-
based trace query analysis, and CPN-based model checking. However, this framework
does not consider complex features of UML state charts, e.g. concurrent composite
states, and aims at identifying design errors, but no performance evaluation.

Finally, (Rajabi & Lee, 2009) propose to transform different types of UML
diagrams into another type of Petri nets – Object-Oriented Petri Nets (OOPN). The
authors compare numerous software tools and correspondent methods and conclude
that each transformation has its disadvantages.

It is obvious that the way UML can be transformed into Petri nets has been
actively studying for already 20 years. In this way, researches aim to overcome the
informal aspects of UML and use advantages of Petri nets for the system evaluation.

1. INTRODUCTION

 15

1.2. OVERVIEW OF THE APPROACH
A schematic overview of the model-based systems engineering is presented in

Fig. 1.1.∗

Fig. 1.1. Model-based system design

A system description consists of a main model describing firmly given elements,
system variations and estimation criteria. A concrete model is generated from the main
model with the help of a library containing existing descriptions of subsystems or
modules. In the last development stage, a parameter-choice procedure generates
design variations automatically. The model is filled with the values of decision variables.
Afterwards, the value of the criteria (optimization or cost function) is calculated by
simulation. The cycle in Fig. 1.1 shows an optimization process, which is carried out
iteratively.

The simulation estimates the model and gives a conclusion whether and how
good the parameterized solution meets the requirements. It is necessary that the
system can be executed and simulated. In addition, the appropriate main models have
to be used, e.g. in Petri nets (Zimmermann, 2007). A good system interpretation is
obtained by the repeated definition of parameters and the system estimation, so that
finally, the optimal control parameters can be calculated. This gives the idea, which
system variation has to be realized.

The methodology presented in this monograph offers a possibility of analyzing
the system performance. The way it works is schematically depicted in Fig. 1.2.

∗ The intention was first presented in (Shorin & Zimmermann, 2010).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 16

Fig. 1.2. Schematic overview of the presented method

A system in the early design stage is considered as an alliance of the hardware
and the software. The former part, which will be the same for all applications, is
described in an operational model that specifies all run modes of the system, possible
state changes, and their associated power consumption (as well as transition times, if
applicable). This information can be taken from data sheets, and the model has to be
constructed only once for a specific CPU. The hardware part remains the same for all
applications.

On the other hand, the effect of the controlling software is captured in one or
more application models. They describe which steps are taken and what time is spent in
which mode, and may have stochastic behavior (interrupts, for instance). Thus, an
application model contains information about the operational states used in the
specified system and their duration. The model distinction follows the principle of
separation of concerns in (software) engineering of complex systems. This type of
distinction can be found in other fields as well, for instance in manufacturing systems,

1. INTRODUCTION

 17

where a similar relation exists between structure (machines, transport routes) and work
plans (Zimmermann & Hommel, 1999).

Both models are built as UML state machine diagrams extended with the MARTE
profile (Modeling and Analysis of Real-Time and Embedded Systems) for modeling of
non-functional properties and performance evaluation. Together, they contain all the
necessary information for predicting the power consumption. Their combined
transformation into a stochastic Petri net is presented in Chapter 4. This procedure can
be done automatically thanks to the extension of the software tool TimeNET
(Zimmermann, 2017) presented in Chapter 5. The resulting model can then be used to
estimate the power consumption of the system with stationary analysis or simulation.

The power consumption can be described in even greater detail by using a
MARTE extension termed Dynamic Power Management (DPM) profile, which was
developed at Tampere University of Technology (Arpinen, et al., 2010). By means of
this profile, power aspects of embedded systems can be described. Its main idea
consists in creating an individual state diagram for each hardware component, which
includes necessary information for calculating power consumption (Arpinen, 2011).
However, the formula for calculating the total power consumption is bound up with the
parameters of CMOS (complementary metal-oxide-semiconductor) circuits. This method
goes deeper into the hardware part of the system. Though in the current monograph the
automation systems are examined at the same level, the method presented here is
alternative and attempts to be more universal and simple for the end user. It uses the
common physical formula for electric power calculation, namely, 𝑁𝑁∗ = 𝐼𝐼 ∙ 𝑈𝑈. The values
of current 𝐼𝐼 and voltage 𝑈𝑈 can be easily measured or are already known from the supply
documentation.

∗ To avoid ambiguities with the notations for places and probability, power is denoted as 𝑁𝑁 in the current
monograph.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 18

1.3. OUTLINE
This monograph is structured as follows:

• Chapter 2, “Background,” introduces the theoretical basis of the work.

• Chapter 3, “Describing an Embedded System by Means of UML and MARTE
Profile,” presents operational and application models, which are used for
describing the system under consideration, specifies their non-functional
properties and presents the correspondence function that links the states
between these models.

• Chapter 4, “Transforming Models into Stochastic Petri Nets,” shows
transformation of the operational and application models developed in UML into a
stochastic Petri net.

• Chapter 5, “Software Implementation,” describes the software development
where the created method is implemented.

• Chapter 6, “Example 1. Microcontroller,” demonstrates how the method works on
the example of the microcontroller actions.

• Chapter 7, “Example 2. Workbench,” shows how the method can be used for
analyzing complex automation systems.

• Chapter 8, “Summary, Conclusion, and Outlook,” summarizes the work and
presents its perspectives.

 19

2. BACKGROUND
This chapter introduces theoretical basics of the method, including

• UML in general, its diagram arts, and especially the elements of the chosen type
state charts (2.1),

• the UML extension MARTE (Modeling and Analysis of Real-Time and Embedded
Systems) for modeling non-functional properties (2.2), and

• stochastic Petri nets (2.3), in which the further analysis takes place.

2.1. UNIFIED MODELING LANGUAGE (UML)
The Unified Modeling Language (UML) is a family of graphical notations, based

on a single meta-model, that helps in describing and designing software systems,
particularly software systems built using the object-oriented style. (Fowler, 2003)

UML can act as a programming language, which helps in modeling the behavior
logic. For this purpose, UML 2 proposes three methods of modeling the behavior:

• activity diagrams,
• state machine diagrams, and
• interaction diagrams.

The UML 2 specification includes 14 types of diagrams; each of them has a
defined purpose and implementation field. Nevertheless, there are no strict rules when
one or another diagram type must be used. This lets the user to present the necessary
information in different ways, which gives certain flexibility. Besides, this appears when
the user implements in certain diagram type elements specified for another diagram
type.

The structure of the diagram types is presented in Fig. 2.1 (Object Management
Group (OMG), 2015).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 20

Fig. 2.1. Taxonomy of structure and behavior diagrams

State machine diagram (or state chart diagram) defines a set of concepts that
can be used for modeling discrete behavior through finite state-transition systems or for
expressing the usage protocol of part of a system. (Object Management Group (OMG),
2015) Because the presented method analyzes complex embedded systems, which
function can be described as a number of discrete modes, this type of UML diagrams
fits best for the aim of the method presented in this monograph.

The state machine diagram is a graph of states and connections between them.
Determining the state and its semantics are based on the definition of state charts
published in (Harel, 1987). The following list describes the diagram elements in short; in
detail, the components used in this monograph are presented in the following
subchapters. The diagram type itself is introduced in 2.1.1.

• A state is a situation in the life of the object, during which it satisfies some
condition, performs some activity, or waits for some event. (2.1.2)

2. BACKGROUND

 21

• A substate is a component of a state that can be used to perform some activity or
to wait for some event before the state can be left. (2.1.3)

• An event is a specification of a substantial fact that takes place in time and space.
In the context of automatic event, it is a stimulus that can trigger the transition.
(2.1.4)

• A transition is a ratio between two states, indicating that the object in the first
state must perform some action and go to the second state, as soon as a certain
event happens and specified conditions are fulfilled. (2.1.5)

• An activity is a continuing non-atomic calculation inside the machine.
• An action is an atomic calculation that results in a change of status or return

values.

2.1.1. State Charts
A state chart is a description of the sequence of states, through which the object

passes during its life cycle, responding to events including the description of the
reactions to these events. This type of diagrams is a familiar model for describing the
behavior of a system. Various forms of state diagrams are known since the 1960s, and
the earliest object-oriented techniques adopted them to show behavior. (Fowler, 2003)

The state chart diagram specifies all possible states, which can be a particular
object, as well as the process of changing object states as a result of the impact of
certain events. The diagrams are constructed for a single class and describe the
behavior of a single object.

An example of a state chart diagram is presented in Fig. 2.2.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 22

Fig. 2.2. Example of a state chart diagram

The state chart diagram shows a simulator, focusing on the control flow from
state to state. The state diagram has the properties common to all other diagrams;
namely, it has a name and graphical content projected onto the model. Typically, a state
diagram includes:

• simple and compound states and
• transitions with associated events and actions.

The state chart diagram may contain forks, divisions, state activities and actions,
objects, initial and final states, guard conditions, etc. Like all other diagrams, a state
chart may contain notes and restrictions.

State chart diagrams are used to model dynamic aspects of the system. This
refers to the order of occurrence of events caused by the behavior of objects of any kind
in any view of the system architecture, including classes, interfaces, components and
units.

State chart diagrams are usually used to model the dynamic aspects of a system
in the context of almost any model element. Usually, however, they are used in the
context of the overall system, subsystem or class. While modeling the dynamic aspects
of the system, class or precedent, state chart diagrams are usually used only for the
purpose of modeling the reactive sites.

2. BACKGROUND

 23

A reactive, or event-driven, state is an object whose behavior is best described
as his reaction to external events.

Typically, a reactive object is in an idle state until it receives an event, and when
it happens, its reaction depends on the preceding events. After the object responds to
one event, it waits again for the next event to happen.

Most often, the state chart diagram is used to model reactive states, particularly
instances of classes, and the precedents of the whole system. State chart diagrams are
designed to simulate the behavior of a single object throughout its life cycle; they model
control flow from event to event.

In the automatics literature, all actions, which are attached to the transitions, are
called Mealy machines (Mealy, 1955), and the machine, where all the actions are
connected to the states machine, are called Moore machines (Moore, 1956). From a
mathematical point of view, they both have the same expressive power. In practice,
during the development of state chart diagrams, the combination of Mealy and Moore
machines are commonly used.

2.1.2. States
A state is a situation in the life of the object when it satisfies some condition

during some time in the life of the object; certain actions are being performed or it is
waiting for some event.

A state is represented in the diagram as a rectangle with rounded corners. It may
have one or more sections. They contain:

• a name that specifies the name of the state. Multiple characters in the names of
the same state chart diagram are used for convenience of presentation (for
example, in order not to overload one state suitable to it).

• state variables that specify attributes defined in this state or in its substates.
Expressions describing their initial value may contain attributes of the object,
state variables and parameters of the substates within the state transitions (if
they are included in all incoming routes).

• the internal behavior that specifies a list of internal actions to be performed when
the state is active.

The event name can be used in the same state repeatedly. There are three
reserved actions with the same description format as a usual action, whose names can
be used only once:

• 'entry' '/' <action>: actions to be performed when entering the state;
• 'do' '/' <action>: actions to be performed inside the state;
• 'exit' '/' <action>: actions to be performed when exiting the state.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 24

These expressions can use variables of the state and its substates, the attributes
of the object and the parameters included in the state transitions (if they are included in
all incoming routes).

2.1.3. Substates
Conditions may have a hierarchical structure. Each substate may have its start

and end pseudostates. A transition into a state means a transition into a pseudo-
elementary initial substate. Entering the final substate is a pseudo-shutdown of the
substate; shutdown of all substates means the completion of the state activity and going
out of it. Conditions can be detailed by introducing sequential substates with
mathematical operands such as “and” or mutually exclusive substates with operands
such as “or”.

A composite state is represented as parallel multiple windows located in one
state one above the other and separated by a dashed line. Each substate can have its
own name and contain nested chart of disjoint states. Sections in the text information
are separated by a solid line.

A small black circle indicates the initial pseudostate. The transition from the initial
pseudostate can be marked with the name of the event; if so, it is a transition to the
active state caused by an event. If this mark is not present, it is considered that just the
transition to the active state takes place. The transition can also have an action to
perform.

A pseudo-finite state looks like a small black circle, circled by a solid line.

2.1.4. Events
An event depicts a significant event. In the state chart diagram, it may cause a

transition from one state to another. The events can be of different types:

• Designation of the condition, usually described by a Boolean expression that
becomes true, demonstrates the condition without identifying the name of the
event.

• Activation of one object from another object signal describes the name of the
event that causes the transition.

Events associated with the expiration of a period of time are described by
expressions that indicate the time, for example, “9 seconds”. By default, after this
amount of time, the current state is activated. Otherwise, these events can be described
by a conditional expression, for example, “22 seconds after activating the state A”.

Events can also be declared in the class diagram as a class with the stereotype
of “event”.

2. BACKGROUND

 25

2.1.5. Transitions
A transition is a link between two objects, indicating when the object can pass

from the first state to the second and perform certain actions if the event has occurred.
An event can have options that are available for the actions defined in the transition or
action, initiating a subsequent event. Events are processed instantly. If an event does
not cause any transition, it is simply ignored. If a multiple transition is activated, only one
of them will be initiated; selection can be non-deterministic if the transitions have no
priorities.

A transition in the state chart diagram is represented by a solid line with an arrow
drawn from one state (initial state) to another state (final state). A Boolean expression
can describe a condition when an event occurs.

2.2. UML MARTE PROFILE
Building a model is based on definitions and methodological apparatus provided

by the UML extension MARTE (Modeling and Analysis of Real-Time and Embedded
Systems). Its main function is to assist the process of building models, so that
quantitative details concerning characteristics of the system can be added with regard
to the properties of both hardware and software parts. The specification of the profile
adds to the UML modeling capabilities of real-time systems and embedded systems.
The provided support concerns specification, design and validation stages. The MARTE
profile can be used for various purposes, such as scheduling tasks, performance
evaluation, etc.

In accordance with this extension, there is a variety of non-functional properties
of the system that can be specified. A quantitative property is characterized by a set of
values, which are defined (measured or estimated) during an operation, wherein the
values can be received after a real experiment or simulation based on the software. In
particular for deterministic systems, such values may be obtained once and
extrapolated to the next cycle time.

The MARTE profile consists of four packages (Fig. 2.3).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 26

Fig. 2.3. Architecture of the MARTE profile

The package “MARTE foundations” defines founding concepts for real-time and
embedded systems; it describes time and the use of concurrent resources. The
concepts are improved in the packages “MARTE design model” and “MARTE analysis
model” created for design and analysis purposes, respectively. The former includes
Software (SRM) and Hardware Resource Modeling (HRM) by specifying Generic
Resource Modeling (GRM) concepts. The latter package (“MARTE analysis model”)
improves core concepts of the “MARTE foundations” by offering Generic Quantitative
Analysis Modeling (GQAM) and possibilities of Schedulability (SAM) and Performance
Analysis Modeling (PAM). The fourth package contains annexes profiles and model
libraries defined in MARTE (Object Management Group (OMG), 2011).

Stereotypes are used to classify or introduce new elements in the metamodel
class hierarchy and to allow increasing of the modeling capacity of a certain application
area. In this monograph, the extension domain for Generic Resource Modeling (GRM),
namely, the «ResourceUsage» stereotype is used to show generic resources of the
system. Resources represent physical or logical units (hardware or software
components) available to the system in order to perform expected tasks and meet the
requirements. The aim of GRM is to offer extensions of general concepts that are
required for modeling real-time applications platforms. Following tags of the
«ResourceUsage» stereotype are used in this monograph:

2. BACKGROUND

 27

• execTime: time that the resource is in use due to the usage;
• powerPeak: power that should be available from the resource for its usage

(Object Management Group (OMG), 2011).

The stereotype «GaStep» provides a general description of behavior. It is a part
of Generic Quantitative Analysis Modeling (GQAM) of the MARTE profile. The aim of
this domain is to offer analysis possibilities for performance and schedulability of the
system and to show how the system behavior uses resources. The only tag from the
stereotype «GaStep» used in this monograph is:

• prob: probability of the step to be executed (for a conditional execution) (Object
Management Group (OMG), 2011).

2.3. STOCHASTIC PETRI NETS
Petri nets are a mathematical apparatus for modeling dynamic discrete systems.

First, they were described by Carl Adam Petri in (Petri, 1962). The author formulated
basic concepts of the theory of asynchronous communication component of a computer
system.

A Petri net is a bipartite directed graph consisting of vertices of two types: places
and transitions (interconnected arcs). Vertices of one type cannot be connected directly.

An example of a Petri net is presented in Fig. 2.4.

Fig. 2.4. Example of a Petri net

An event in Petri nets is a move operation in the net, in which the tokens of the
input place of one transition are moved to the next place. Petri nets have been
developed for the simulation of systems with parallel interacting components.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 28

This subchapter presents:

• how Petri nets are used for a modeling task (2.3.1),
• their formal mathematical description (2.3.2),
• dynamics (2.3.3), and
• state transitions (2.3.4).

2.3.1. Petri Nets as a Modeling Tool
The development of the Petri nets theory is being conducted in two directions.

The formal theory of Petri nets develops basic tools, techniques and concepts
necessary for the application of Petri nets. The applied theory of Petri nets is mainly
related to the application of Petri nets to modeling systems, analysis and to the resulting
deep implementation into the simulated system.

The simulation is carried out in Petri nets on the event level. The Petri net
determines, which action takes place in the system, which state preceded these actions
and in what state the system will be after performing the action. Performance event
models in Petri nets describe the behavior of the system. The analysis of the execution
results can give information, in which state the system is and which states are in
principle achievable. However, this analysis does not give numerical characteristics that
define the state of the system.

The further development of the Petri nets theory led to the introduction of so-
called colored Petri nets. The concept of color is closely related to the concepts of
variables, data types, conditions and other structures that are more close to
programming languages. Despite some similarities between the colored Petri nets and
programs, they have not been used as a programming language.

Petri nets offer a great possibility to describe parallel systems. They are no less
powerful than Message Passing Interface (MPI) (Message Passing Interface Forum,
2015), Parallel Virtual Machine (PVM) (Geist, et al., 1994), Specification and Description
Language (SDL) (International Telecommunication Union (ITU), 2016), UML (Object
Management Group (OMG), 2015) and others, but to apply them for processors, Petri
nets must be created from the description of the parallel distributed systems. An
example of such a distribution is presented in Fig. 2.5.

2. BACKGROUND

 29

Fig. 2.5. Example of a hierarchical object composition

Petri nets have been developed and are mainly used for modeling. Many
systems can be modeled using them, particularly systems with independent
components, such as hardware and software parts of the computer, physical, social
systems and others. Petri nets are used to model the occurrence of various events in
the system. In particular, they can model the flow of information or other system
resources.

Petri nets are widely used in many fields – from designing network protocols to
developing the logic of the home theater. This is possible due to intensive development
of Petri nets and their modifications and variations.

On the whole, the theory of Petri nets is a well-known and popular formalism
designed to work with parallel and asynchronous systems. Founded in the early 1960s,
now it contains a large number of models, methods and tools for analysis with a vast
number of applications in almost all branches of computer science and even outside of
it.

The main properties of Petri nets are:

• boundedness: the number of tokens in any place (a certain value of 𝐾𝐾) that the
net cannot exceed (a special case of limitations: 𝐾𝐾 = 1);

• reachability: ability to move from one state (characterized by the distribution of
tokens) to another;

• liveness: any transition of the simulated object can be fired under certain
circumstances.

The study of the listed properties is called reachability analysis. Methods for
analyzing the properties of Petri nets, solution of net conditions and calculation of linear
invariants of places and transitions are based on the use of achievability graphs.
Auxiliary reduction methods are used to reduce the size of Petri nets with preservation
of its properties and decomposition separating the original net into subnets.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 30

2.3.2. Formal Description
A generalized stochastic Petri net (GSPN) (Ajmone Marsan, et al., 1996)

𝑃𝑃𝑃𝑃 = (𝑃𝑃,𝑇𝑇,𝐴𝐴,𝑀𝑀,𝑅𝑅) consists of the following elements:

• places
The (finite) set of places 𝑝𝑝 is denoted as 𝑃𝑃.

𝑝𝑝 ∈ 𝑃𝑃

• transitions
The (finite) set of transitions 𝑡𝑡 is denoted as 𝑇𝑇.

𝑡𝑡 ∈ 𝑇𝑇

• arcs
The set of directed arcs of a net connecting a place to a transition or a transition
to a place is denoted as 𝐴𝐴, and relates the arc cardinality to the relation, i.e., the
number of tokens removed or added.

𝐴𝐴: (𝑃𝑃 × 𝑇𝑇) ∪ (𝑇𝑇 × 𝑃𝑃) → ℕ

• markings
The current state of a GSPN is given by the number of tokens in each place, the
marking.

𝑀𝑀: 𝑃𝑃 → ℕ

The initial marking of a Petri net is denoted as 𝑀𝑀0 and specifies the starting state.

𝑀𝑀0 ∈ 𝑀𝑀

• performance measure

The performance measure 𝑅𝑅 specifies a reward function (Sanders & Meyer, 1991)
– a formula over the stochastic process defined by the Petri net to calculate the power
consumption later on. A reward function 𝑟𝑟(𝑀𝑀) is a unifying approach in which proper
index functions are defined over the markings of the SPN. If 𝜋𝜋 denote the steady-state
distribution of an SPN, the performance index 𝑅𝑅 can be expressed as an average
reward:

𝑅𝑅 = � 𝑟𝑟(𝑀𝑀𝑖𝑖)𝜋𝜋𝑖𝑖
𝑀𝑀𝑖𝑖∈𝑅𝑅𝑅𝑅(𝑀𝑀0)

,

where 𝑅𝑅𝑅𝑅(𝑀𝑀0) is the reachability set of the Petri net system (reachable markings).

Different interpretations of the reward function can be used to compute different
performance indices. (Marsan, et al., 1994)

2. BACKGROUND

 31

Places and transitions also have properties. Two of them are used in the
presented method:

• delay
Each transition has a 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 property. Its value must be either a positive real
number or equal to zero. In the first case, the firing time is exponentially
distributed with mean firing time given by the delay (exponential transition). If the
delay is equal to zero, the transition is called immediate (s. also 2.3.4).

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: 𝑇𝑇 → ℝ+ ∪ {0}

• weight
Immediate transitions have a 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 property that is used to compute the
probability of firing the transition in case of a conflict. The number must be real
and positive. If the value is equal to zero, the transition can never be activated
and, thus, loses its sense.

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡: 𝑇𝑇 → ℝ+

A token is a primitive concept of Petri nets (like places and transitions). Tokens
are assigned (in other words, belong) to the places. The number and position of the
tokens during the performance of Petri nets can be changed. Tokens are used to
determine the performance of Petri nets.

At the graph of a Petri net, tokens are depicted as small dots in the circle that
represent the position of the Petri net. Since the number of tokens that can be defined
for each place is indefinite, in general, there are infinitely many markings for Petri nets.
The set of all markings of the Petri nets having 𝑛𝑛 positions is a set of all 𝑛𝑛-vectors ℕ𝑛𝑛.
Though this set is infinite, it is countable.

А marking 𝑀𝑀 of a Petri net 𝑃𝑃𝑃𝑃 = (𝑃𝑃,𝑇𝑇,𝐴𝐴,𝑀𝑀,𝑅𝑅) is a function mapping the set of
places 𝑃𝑃 in the set of non-negative integers ℕ.

𝑀𝑀: 𝑃𝑃 → ℕ

The marking 𝑀𝑀 may also be defined as an 𝑛𝑛-vector 𝑀𝑀 = (𝑀𝑀1,𝑀𝑀2,⋯ ,𝑀𝑀𝑛𝑛), where
𝑛𝑛 = |𝑃𝑃| and ∀𝑀𝑀𝑖𝑖 ∈ ℕ, 𝑖𝑖 = 1,𝑛𝑛�����. The vector 𝑀𝑀 determines the amount of tokens for each
place of Petri net 𝑝𝑝𝑖𝑖 . The number of tokens in the place 𝑝𝑝𝑖𝑖 is 𝑀𝑀𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛����� . The
connection between definitions of marking as a function and as a vector is established
by the formula 𝑀𝑀(𝑝𝑝𝑖𝑖) = 𝑀𝑀𝑖𝑖. Its designation as a function is more common and therefore
is used much more frequently.

The graphical representation of Petri nets is much more convenient for illustrating
the concepts of the Petri nets theory. The graph-theoretic representation of a Petri net is
a bipartite directed multigraph.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 32

2.3.3. Enabling and Firing Rules
The dynamics of Petri nets is controlled by the amount and distribution of the

tokens in the net.

A transition 𝑡𝑡𝑗𝑗 ∈ 𝑇𝑇 in the marked Petri net 𝑃𝑃𝑃𝑃 = (𝑃𝑃,𝑇𝑇,𝐴𝐴,𝑀𝑀,𝑅𝑅) is enabled, when

∀𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃: 𝑀𝑀(𝑝𝑝𝑖𝑖) ≥ #�𝑝𝑝𝑖𝑖, 𝑡𝑡𝑗𝑗�

The transition is fired by removing the necessary number of tokens from its input
places and placing one token for each arc in each of its output places. Multiple tokens
are created for multiple output arcs.

A transition 𝑡𝑡𝑗𝑗 in the marked Petri net 𝑃𝑃𝑃𝑃 = (𝑃𝑃,𝑇𝑇,𝐴𝐴,𝑀𝑀,𝑅𝑅) can fire each time it is
enabled. As a result of the firing of the enabled transition 𝑡𝑡𝑗𝑗 , a new marking 𝑀𝑀′ is
created and determined by the following relationship:

𝑀𝑀′(𝑝𝑝𝑖𝑖) = 𝑀𝑀(𝑝𝑝𝑖𝑖) − #�𝑝𝑝𝑖𝑖, 𝑡𝑡𝑗𝑗� + #(𝑡𝑡𝑘𝑘,𝑝𝑝𝑖𝑖)

If any input place of the transition does not have enough tokens, the transition is
not enabled and cannot fire. The firing can be carried out as long as there is at least one
enabled transition. When there are no more enabled transitions, the firing stops. Since
only enabled transitions can fire, the number of tokens in each place remains always
non-negative.

(a) transition 𝑡𝑡1 is enabled

(b) transition 𝑡𝑡1 fired, transition 𝑡𝑡2 is not enabled

Fig. 2.6. Enabling and firing of the transitions

2. BACKGROUND

 33

For example, if places 𝑝𝑝1 and 𝑝𝑝2 serve as inputs for the transition 𝑡𝑡1, then 𝑡𝑡1 is
enabled when each of the places 𝑝𝑝1 and 𝑝𝑝2 has at least one token (Fig. 2.6(a)). In Fig.
2.6(b), the transition 𝑡𝑡1 fired. For the transition 𝑡𝑡2 with the entry set of {𝑝𝑝3,𝑝𝑝3,𝑝𝑝3}, the
place 𝑝𝑝3 must have at least three tokens to make the transition 𝑡𝑡2 enabled.

2.3.4. State Transitions
Suppose that some transition is enabled in the marking 𝑀𝑀 and, hence, can fire.

The result of the state transition will be a new marking 𝑀𝑀′ . The marking 𝑀𝑀′ is then
directly reachable from marking 𝑀𝑀; in other words, the state 𝑀𝑀′ is directly obtained from
the state 𝑀𝑀. For a marked Petri net 𝑃𝑃𝑃𝑃 = (𝑃𝑃,𝑇𝑇,𝐴𝐴,𝑀𝑀,𝑅𝑅) the marking 𝑀𝑀′ is called directly
reachable from 𝑀𝑀 if there is such a transition 𝑡𝑡𝑗𝑗 ∈ 𝑇𝑇 that 𝛿𝛿�𝑀𝑀, 𝑡𝑡𝑗𝑗� = 𝑀𝑀′. Extended, if 𝑀𝑀′ is
directly reachable from 𝑀𝑀 and 𝑀𝑀′′ is directly reachable from 𝑀𝑀′, then 𝑀𝑀′′ is reachable
from 𝑀𝑀.

Two types of state transitions are distinguished:

• Firing of a transition (and the corresponding state transition) is considered as an
immediate transition, which takes no time, and the occurrence of two events at
the same time is impossible. In this case, the simulated state transition is called
immediate. Immediate transitions are instantaneous and not simultaneous.

(Sometimes this is justified by the fact that the time is a continuous real variable.
Therefore, if the time of firing of each state transition is assigned to the transition
time, the probability, that any two randomly selected continuous real variables will
be the same, is equal to zero, and therefore the events are not simultaneous.)

• Non-immediate (exponential) are such state transitions, which duration is
different from zero. They can overlap in time. Since the implementation of most
events in the real world takes some time, they are non-immediate events and
therefore, cannot be properly modeled by state transitions in Petri nets. However,
this causes no problems in modeling systems. A non-immediate state transition
can be represented as two immediate state transitions: “the beginning of a non-
immediate state transition” and “the end of the non-immediate state transition”
and the condition “non-immediate state transition takes place”.

An another situation, in which the simultaneous firing of the state transitions is
difficult and which is characterized by the impossibility of simultaneous occurrence of
events, is when two enabled transitions are in conflict. Only one transition can be fired,
since it removes the token of the total input and prohibits the firing of the other transition.

 35

3. DESCRIBING AN EMBEDDED SYSTEM
BY MEANS OF UML AND MARTE PROFILE

In the presented method, each embedded system is considered as consisting of
hardware and software parts.∗ Its system model is denoted as 𝑆𝑆𝑆𝑆.

The hardware part of the system is reflected in the operational model 𝑂𝑂𝑂𝑂. In this
model, all possible states and transitions of the system must be given. One embedded
system can be described by means of only one operational model as the hardware part
of an embedded system remains the same. In case of changing components of the
embedded system under consideration, the new composition must be taken as a new
embedded system, for which a new operational model is needed.

The software part, i.e., a set of applications running in the system, is described in
the application model 𝐴𝐴𝐴𝐴. This model contains information about the states used in the
specified program, the algorithm sequence, and durations of steps. Any modification of
the software part of the system must be reflected in the application model, yet the
operational model remains the same.

Thus, an embedded system 𝑆𝑆𝑆𝑆 can be represented by means of one operational
model 𝑂𝑂𝑂𝑂 and an application model 𝐴𝐴𝐴𝐴 referring to it, and is specified with the following
tuple:

𝑆𝑆𝑆𝑆 = (𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴)

For building both model types, state chart – one of the behavioral UML diagrams
– is chosen. Only a few elements of this diagram class are used in the presented
method. The correspondent subclass of UML is denoted as 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑆𝑆𝑆𝑆∗.

The operational model is described by a MARTE-extended UML state chart
containing the following elements:

𝑂𝑂𝑂𝑂 = (𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂, 𝐼𝐼𝑂𝑂𝑂𝑂, 𝐽𝐽𝑂𝑂𝑂𝑂, 𝐶𝐶𝑂𝑂𝑂𝑂, 𝑇𝑇𝑇𝑇𝑂𝑂𝑂𝑂, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑂𝑂𝑂𝑂, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂),

where 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 denote regular states, 𝐼𝐼𝑂𝑂𝑂𝑂 – initial pseudostates, 𝐽𝐽𝑂𝑂𝑂𝑂 – join pseudostates,
𝐶𝐶𝑂𝑂𝑂𝑂 – choice pseudostates and 𝑇𝑇𝑇𝑇𝑂𝑂𝑂𝑂 – transitions of 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑆𝑆𝑆𝑆∗. The MARTE-related
additional information is captured in the attributes for power consumption 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂,
execution times 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑂𝑂𝑂𝑂, and path splitting probabilities 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂.

Each of the application models 𝐴𝐴𝐴𝐴 is similar to 𝑆𝑆𝑆𝑆 and defined as follows:

𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴, 𝐼𝐼𝐴𝐴𝐴𝐴, 𝐽𝐽𝐴𝐴𝐴𝐴, 𝐶𝐶𝐴𝐴𝐴𝐴, 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴)

∗ The approach was first introduced in (Shorin & Zimmermann, 2011), then developed in (Shorin, et al.,
2012) and, finally, the method was formally described in (Shorin & Zimmermann, 2014b).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 36

Two models include all the necessary information for estimating the power
required for the system. At the same time, the data is not redundant; no data is
duplicated. Another advantage of the models division: the application creator may not
care about the necessary power. He or she can even have no information at all about
this parameter, but it is still important to know the general appearance of the operational
model to be able to create a correct application model.

The presented method restricts the number of outgoing transitions to one, firstly,
to exclude user's mistakes by creating models, when parallel activities begin, but can
never end. Secondly, the system multiplicity will lead to additional rules for creating
models in UML. The presented method proposes to examine complex systems
containing two or more sub-systems (e.g. several processors) as two or more separate
systems, to build operational and application models for each of them, to analyze them
separately, and, finally, to calculate the total power consumption as the sum of the
power consumption values of all separate systems.

For the same reason, to avoid forking, no fork pseudostate of the UML state
charts is used in the method.

This chapter presents:

• UML elements that may be used for building both models (3.1),
• the differences between operational (3.2) and application (3.3) models, and
• the way they correspond to each other (3.4).

3.1. COMMON ELEMENTS
The following statements apply to all model-specific subsets; e.g., a definition or

restriction for a generic 𝑆𝑆𝑆𝑆 covers all corresponding sets 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 and 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 in a similar
manner:

• regular states∗
The (finite) set of 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑆𝑆𝑆𝑆∗ regular states is denoted as 𝑆𝑆𝑆𝑆.

𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆

• pseudostates:
o initial pseudostates

The (finite) set of initial pseudostates is denoted as 𝐼𝐼.

𝑖𝑖 ∈ 𝐼𝐼

∗ For sake of clarity, 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑆𝑆𝑆𝑆∗ simple states (excluding pseudostates) are denoted as regular states.

3. DESCRIBING AN EMBEDDED SYSTEM BY MEANS OF UML AND MARTE PROFILE

 37

o join pseudostates
The (finite) set of join pseudostates is denoted as 𝐽𝐽.

𝑗𝑗 ∈ 𝐽𝐽

o choice pseudostates
The (finite) set of choice pseudostates is denoted as 𝐶𝐶.

𝑐𝑐 ∈ 𝐶𝐶

For notational convenience, all states of a model (operational or application-
specific) including the set of regular states 𝑆𝑆𝑆𝑆 and all sets of pseudostates are
united in the set 𝑆𝑆𝑆𝑆∗:

𝑆𝑆𝑆𝑆∗ = 𝑆𝑆𝑆𝑆 ∪ 𝐼𝐼 ∪ 𝐽𝐽 ∪ 𝐶𝐶

• transitions
The (finite) set of 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑆𝑆𝑆𝑆∗ transitions that represent connections between all
types of states is denoted as 𝑇𝑇𝑇𝑇.

𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 ⊆ 𝑆𝑆𝑆𝑆∗ × 𝑆𝑆𝑆𝑆∗

Some restrictions apply, which are detailed further.

To simplify some later definitions and restrictions, the set of incoming 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠)
and outgoing transitions 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠) are defined for a state 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆∗ as follows:

• An incoming transition represents a connection from any state to the current one.

∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆∗: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠): {𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 ∣ 𝑡𝑡𝑡𝑡 = (⋅, 𝑠𝑠𝑠𝑠)}

• An outgoing transition represents a connection from the current state to any other.

∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆∗: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠): {𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 ∣ 𝑡𝑡𝑡𝑡 = (𝑠𝑠𝑠𝑠,⋅)}

For better understanding of the used terminology, the aforementioned elements
are depicted in Fig. 3.1.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 38

Fig. 3.1. Elements of the UML models defined in the presented method

Whereas each state has a unique label, the same transitions can be named
differently depending on the point of view. By considering the set of all transitions, one
of the transitions is labeled as 𝑡𝑡𝑡𝑡3. At the same time, it connects the choice pseudostate
𝑐𝑐1 with the regular state 𝑠𝑠𝑠𝑠2 and, thus, can be denoted as (𝑐𝑐1, 𝑠𝑠𝑠𝑠2) as well. If the regular
state 𝑠𝑠𝑠𝑠2 is brought into focus of interest, the transition 𝑡𝑡𝑡𝑡3 is considered as incoming to
this state and is named as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠2). From the same point of view, the transition 𝑡𝑡𝑡𝑡5 is
considered as outgoing from the state 𝑠𝑠𝑠𝑠2 and is labeled as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠2). The following
equality is true for the transition 𝑡𝑡𝑡𝑡3:

𝑡𝑡𝑡𝑡3 = (𝑐𝑐1, 𝑠𝑠𝑠𝑠2) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1(𝑐𝑐1) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠2)

In the following, the common properties of the elements for both operational and
application models are presented:

• regular states
Each regular state has at least one incoming and exactly one outgoing transition.

∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆: |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠)| ≥ 1 ∧ |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠)| = 1

The presence of the incoming transitions is not a requirement of UML; however,
a regular state without any incoming transitions will never be activated, and is
thus obsolete.

• pseudostates:
o initial pseudostates

Each initial state has no incoming and at least one outgoing transition.

∀𝑖𝑖 ∈ 𝐼𝐼: |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)| = 0 ∧ |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)| = 1

3. DESCRIBING AN EMBEDDED SYSTEM BY MEANS OF UML AND MARTE PROFILE

 39

o join pseudostates
Each join pseudostate has more than one incoming and exactly one
outgoing transition.

∀𝑗𝑗 ∈ 𝐽𝐽: |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑗𝑗)| > 1 ∧ |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑗𝑗)| = 1

o choice pseudostates
Each choice pseudostate has at least one incoming and more than one
outgoing transitions.

∀𝑐𝑐 ∈ 𝐶𝐶: |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑐𝑐)| ≥ 1 ∧ |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑐𝑐)| > 1

A pseudostate should not directly follow another pseudostate to avoid
ambiguities in the later transition probability specification. This is a
restriction of UML.

∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆: |{𝑐𝑐 ∈ 𝐶𝐶 ∣ (𝑐𝑐, 𝑠𝑠𝑠𝑠) ∈ 𝑇𝑇𝑇𝑇}| ≤ 1

Prohibited elements are all other pseudostates, i.e., terminate, forks, entry/exit
points, shallow / deep history; they are not used in the presented method.

Non-functional properties are described using the MARTE profile (Object
Management Group (OMG), 2011). Table 3.1 shows which stereotypes and attributes
are used in the 𝑈𝑈𝑈𝑈𝐿𝐿 − 𝑆𝑆𝑆𝑆∗ models and if they are mandatory or optional.

Stereotype Attribute Operational model Application model

«ResourceUsage»
powerPeak mandatory not applicable
execTime optional mandatory

«GaStep» prob∗ optional mandatory

Table 3.1. Stereotypes and attributes used in the presented method

The states are described by means of the «ResourceUsage» and «GaStep»
stereotypes of the MARTE profile (s. 2.2). The attribute 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 reflects the duration
of staying in each state (in seconds), 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 – the power required for the state (in
Watt), and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 – the probability of the step to be executed (for a conditional execution)
(Object Management Group (OMG), 2011).

∗ This attribute can be applied only by the states that immediately follow choice pseudostates.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 40

3.2. OPERATIONAL MODEL
In the operational model, all possible states and transitions of the system under

consideration are described.

All regular states must have a (real and positive) attribute 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, which
specifies the power consumption of the system in the modeled state.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂: 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 → ℝ+

Some regular states may have an attribute 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , which specifies the
(execution) time spent in the states. If the user refers to the non-application-specific
states, the attribute value must be real and positive; otherwise, the attribute must
remain empty.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑂𝑂𝑂𝑂: 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 → ℝ+ ∪ {𝜀𝜀}6F

∗

The attribute 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 should be applied, if the execution time for some regular
states is known and remains the same regardless of the application executed.

There are some possibilities that might be useful in difficult cases, when a
developer does not have enough information available and cannot gain it:

• describing only the states that are indeed in use. The unused modes may be
skipped. In this case, the operational model will not represent the real state of the
system, but the method will still show its workability.

• if the power consumption of some regular states cannot be measured, but still
must be given, this parameter can be roughly estimated. Depending on the aims,
the developer can take the maximum power possible for the respective state, its
minimum or the average value.

3.3. APPLICATION MODEL
In the application model, states and transitions of an application (a program, a

thread, etc.) are described.

All regular states may have an attribute 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. This is mandatory if the value
was not specified in the corresponding regular state of the operational model to avoid
missing information:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠): 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 → ℝ+ ∪ {𝜀𝜀}

∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑂𝑂𝑂𝑂(𝑠𝑠𝑠𝑠) = 𝜀𝜀 → 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠) ∈ ℝ+

∗ In this and following formulas, 𝜀𝜀 means that the attribute has no numeric value, i.e., is undefined or
empty.

3. DESCRIBING AN EMBEDDED SYSTEM BY MEANS OF UML AND MARTE PROFILE

 41

To abstract in later formulas from the place where the execution time has been
specified for a state, a generic execution time is defined:

∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠) = �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠), 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠) ∈ ℝ+

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑂𝑂𝑂𝑂(𝑠𝑠𝑠𝑠), 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

In the application model, regular states immediately following a choice
pseudostate must have an attribute 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 specifying the probabilities of following the
path to the corresponding regular states. The value of probability must be a real and
positive number.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠): {𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 ∣ (𝑐𝑐, 𝑠𝑠𝑠𝑠) ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴 ∧ 𝑐𝑐 ∈ 𝐶𝐶𝐴𝐴𝐴𝐴} → ℝ+ ∪ {𝜀𝜀}

The attribute 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 has to be specified in the application model.

∀𝑐𝑐 ∈ 𝐶𝐶𝐴𝐴𝐴𝐴 ,∀ 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴, (𝑐𝑐, 𝑠𝑠𝑠𝑠) ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴(𝑠𝑠𝑠𝑠) ∈ ℝ+

The sum of the probabilities of the regular states, which immediately follow the
choice pseudostate, should be equal to one. This restriction helps the user understand
the real probabilities of the execution of the following regular states.

∀𝑐𝑐 ∈ 𝐶𝐶: � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠)
(𝑐𝑐,𝑠𝑠𝑠𝑠)∈𝑇𝑇𝑇𝑇

= 1

However, non-observance of this recommendation will not cause any problems
by transformation the models into a Petri net because the numbers will be then
transformed into weights, which are automatically normalized.

The application model must have exactly one initial state.

|𝐼𝐼𝐴𝐴𝐴𝐴| = 1

The application model can describe pseudo-parallel processes thanks to
scheduling (s. example in Chapter 6), however, the real parallelism cannot be modeled
yet.

3.4. CORRESPONDENCE BETWEEN THE MODELS
The correspondence function specifies the relationship between application and

operational models.

As an application runs on the system hardware, it cannot add new system states
to the model, but instead only refer to them. Thus, the application states are subsets of
the operational model states for a system.

𝑆𝑆𝑆𝑆 = (𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴): 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 ⊆ 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂

Therefore, each regular state of the operational model can be either referenced
by one or more regular states in the application model or not used at all (Fig. 3.2).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 42

 application model operational model

Fig. 3.2. Linking of regular states between application and operational models

The same is – for the normal case – required for state transitions.

𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴 ⊆ 𝑇𝑇𝑇𝑇𝑂𝑂𝑂𝑂

However, there are practical cases when it would be cumbersome to list purely
technical intermediate steps in the operation of, e.g., a microcontroller, in the application
model and would clutter the model by repeating them each time. As a notational
convenience for modelers, it is allowed to skip such intermediate states of the
operational model in the referencing application model. This is only possible as long as
some restrictions are obeyed to avoid missing or ambiguous information. Informally,
when a state transition in the application model does not exist in the operational model,
there must be a path of state transitions and states in the operational model that links
the source and destination states referenced by the application model. Moreover, the
execution times must be defined in the operational model for all of these transitions. In
case of several paths, the one with the lowest power consumption is assumed to be
meant, also avoiding circular paths.

3. DESCRIBING AN EMBEDDED SYSTEM BY MEANS OF UML AND MARTE PROFILE

 43

First, a (non-circular, finite) 𝑝𝑝𝑝𝑝𝑝𝑝ℎ in the operational model between two states 𝑠𝑠𝑠𝑠1
and 𝑠𝑠𝑠𝑠𝑘𝑘 is formally defined as follows:

∀𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂: 𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘) = {(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2), (𝑠𝑠𝑠𝑠2, 𝑠𝑠𝑠𝑠3), … , (𝑠𝑠𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑠𝑠𝑘𝑘) ∈ 𝑇𝑇𝑇𝑇𝑂𝑂𝑂𝑂 ∣
𝑠𝑠𝑠𝑠1 ≠ 𝑠𝑠𝑠𝑠2 ≠ 𝑠𝑠𝑠𝑠3 ≠ ⋯ ≠ 𝑠𝑠𝑠𝑠𝑘𝑘,∀𝑖𝑖 = 2 … 𝑘𝑘 − 1: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑂𝑂𝑂𝑂(𝑠𝑠𝑠𝑠𝑖𝑖) ≠ 𝜀𝜀}

The normal case of a direct connection between two states is a valid (minimal)
path with 𝑘𝑘 = 2 then. The execution time of the source state 𝑠𝑠𝑠𝑠1 does not have to be set
in the operational model; it can be given in the application model as well.

Based on this, the set of all paths 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 between the two states 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠𝑘𝑘 in the
operational model is given by

∀𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑡𝑡𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘) = {𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘)}

For each individual 𝑝𝑝𝑝𝑝𝑝𝑝ℎ between the states 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠𝑘𝑘, the overall path power
consumption is then defined by

∀𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂,∀𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑗𝑗 = {(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2), (𝑠𝑠𝑠𝑠2, 𝑠𝑠𝑠𝑠3), … , (𝑠𝑠𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑠𝑠𝑘𝑘)} ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘):
𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑗𝑗� =

= 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠1) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂(𝑠𝑠𝑠𝑠1) + �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑂𝑂𝑂𝑂(𝑠𝑠𝑠𝑠𝑖𝑖) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂(𝑠𝑠𝑠𝑠𝑖𝑖)
𝑘𝑘−1

𝑖𝑖=2

The power-consumption shortest path 𝑝𝑝𝑝𝑝𝑝𝑝ℎ− between 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠𝑘𝑘 is of special
interest for the presented energy-aware method.

∀𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂: 𝑝𝑝𝑝𝑝𝑝𝑝ℎ−(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘) = arg min
𝑝𝑝𝑝𝑝𝑝𝑝ℎ∈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠1,𝑠𝑠𝑠𝑠𝑘𝑘)

𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝ℎ)

Technically, this means a standard search for the shortest path in a directed,
weighted graph.∗ It should be noted that a direct connection between 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠𝑘𝑘 will
always form the shortest path if it exists, independent of whether the other valid paths
are available.

With these preliminaries, it is possible to restrict the relationship between state
transitions in application and operational models following the informal description given
at the beginning of this subsection. For each state transition in the application model,
there must be (at least) a corresponding valid path in the operational model.

∀(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘) ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘) ≠ ∅

∗ For the sake of simplicity, the shortest path is assumed as uniquely defined; in case of several paths
with equal power consumption, the modeler will be warned by the software tool about the possible
ambiguity.

 45

4. TRANSFORMING MODELS
INTO STOCHASTIC PETRI NETS

To analyze the power consumption of the system, application and operational
models are combined and converted into a Petri net.∗ For this operation, the application
model is taken as the basic structure. The operational model delivers missing
information such as power consumption, missing states from paths, and their duration.

To denote the exact correspondence between UML models and their
counterparts in the Petri net after the transformation, the method assumes a (in many
cases one-to-one) relationship between elements of both model types, which is
technically implemented by using the same names, and denotes it by 𝑠𝑠𝑠𝑠〈𝑝𝑝〉, i.e., the
state 𝑠𝑠𝑠𝑠 corresponding to the place 𝑝𝑝, and 𝑝𝑝〈𝑠𝑠𝑠𝑠〉, denoting the place 𝑝𝑝 related to the
state 𝑠𝑠𝑠𝑠.

States and their outgoing transitions are transformed simultaneously because
UML transitions after different state types are transformed either into exponential or
immediate transitions.

This chapter describes five transformation rules of the presented method:

• transformation of regular states (4.1);
• transformation of choice pseudostates (4.2);
• transformation of join pseudostates (4.3);
• transformation of the initial pseudostate (4.4);
• transformation of the attribute 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (4.5).

4.1. TRANSFORMING REGULAR STATES
regular state (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = “𝑥𝑥”) + outgoing transition

↓
place + outgoing exponential transition (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥)

Each UML regular state 𝑠𝑠𝑠𝑠1 of the application model with its outgoing transition
(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘) ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴 is transformed into a Petri net place 𝑝𝑝〈𝑠𝑠𝑠𝑠1〉 and a transition 𝑡𝑡〈𝑠𝑠𝑠𝑠1〉 if
such a direct transition between two states exists in the operational model. If not, the
most power-efficient path must be found via other states in the operational model as
defined earlier, such that all necessary information (execution time and power
consumption) is given. If more than one way exists, the one must be chosen, in which
the system consumes less power. The well-known Dijkstra algorithm (Dijkstra, 1959)
can be used for this task.

∗ The first results on this part were published in (Shorin, et al., 2012) and finally defined in (Shorin &
Zimmermann, 2014b).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 46

In case of such paths, the corresponding states of the operational model lead to
additional places and transitions in the Petri net each time they are referenced in the
application model, just like a macroinstruction in a programming language. Therefore,
the added places and transitions need to be identified based on both the source state
and the sequence number in the path.

Each execution time value of the regular states (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is transformed into
the attribute 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of the appropriate exponential transition of the Petri net.

∀𝑠𝑠𝑠𝑠1 ∈ 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴, 𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘) ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴,
𝑝𝑝𝑝𝑝𝑝𝑝ℎ−(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑘𝑘) = {(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2), … , (𝑠𝑠𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑠𝑠𝑘𝑘)}

→ 𝑝𝑝〈𝑠𝑠𝑠𝑠1〉 ∈ 𝑃𝑃 (source place)
∀𝑖𝑖 = 2 … 𝑘𝑘 − 1:𝑝𝑝〈𝑠𝑠𝑠𝑠1,𝑖𝑖〉 ∈ 𝑃𝑃 (other places)
𝑝𝑝〈𝑠𝑠𝑠𝑠𝑘𝑘〉 ∈ 𝑃𝑃 (destination place)
∀𝑖𝑖 = 1 … 𝑘𝑘 − 1: 𝑡𝑡〈𝑠𝑠𝑠𝑠1,𝑖𝑖〉 ∈ 𝑇𝑇 (transitions)
∀𝑖𝑖 = 1 … 𝑘𝑘 − 1:𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑡𝑡〈𝑠𝑠𝑠𝑠1,𝑖𝑖〉� = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠1) (delays)
𝐴𝐴�𝑝𝑝〈𝑠𝑠𝑠𝑠1〉, 𝑡𝑡〈𝑠𝑠𝑠𝑠1,1〉� = 1 (first arc)
∀𝑖𝑖 = 2 … 𝑘𝑘 − 1:𝐴𝐴�𝑡𝑡〈𝑠𝑠𝑠𝑠1,𝑖𝑖−1〉,𝑝𝑝〈𝑠𝑠𝑠𝑠1,𝑖𝑖〉� = 1 (arcs)
∀𝑖𝑖 = 2 … 𝑘𝑘 − 1:𝐴𝐴�𝑝𝑝〈𝑠𝑠𝑠𝑠1,𝑖𝑖〉, 𝑡𝑡〈𝑠𝑠𝑠𝑠1,𝑖𝑖〉� = 1 (arcs)
𝐴𝐴�𝑡𝑡〈𝑠𝑠𝑠𝑠1,𝑘𝑘−1〉,𝑝𝑝〈𝑠𝑠𝑠𝑠𝑘𝑘〉� = 1 (final arc)

The places derived during this transformation build a set 𝑃𝑃𝑆𝑆 containing only
places representing regular states.

𝑃𝑃𝑆𝑆 ⊆ 𝑃𝑃

This transformation is graphically presented in Fig. 4.1 for the simple case of a
direct connection and depicts the execution time transformation.

Fig. 4.1. Transformation of regular states

4. TRANSFORMING MODELS INTO STOCHASTIC PETRI NETS

 47

4.2. TRANSFORMING CHOICE PSEUDOSTATES
choice pseudostate + outgoing transition (+ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = “𝑥𝑥” of the following regular states)

↓
place + outgoing immediate transitions (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 = 𝑥𝑥)

Each UML choice pseudostate of the application model is transformed into a
Petri net place, which is followed by immediate transitions modeling the probabilistic
choice.

Each probability value of the regular states, which immediately follow UML choice
pseudostates, is transformed into the attribute 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 of the appropriate immediate
transition of the Petri net.

∀𝑐𝑐1 ∈ 𝐶𝐶𝐴𝐴𝐴𝐴, 𝑡𝑡𝑡𝑡(𝑐𝑐1, 𝑠𝑠𝑠𝑠𝑖𝑖) ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴
→ 𝑝𝑝〈𝑐𝑐1〉 ∈ 𝑃𝑃 (choice place)
∀𝑖𝑖 = 1 … 𝑘𝑘: 𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑐𝑐1, 𝑠𝑠𝑠𝑠𝑖𝑖)〉 ∈ 𝑇𝑇 (transitions)
∀𝑖𝑖 = 1 … 𝑘𝑘:𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑐𝑐1, 𝑠𝑠𝑠𝑠𝑖𝑖)〉) = 0 (no delay)
∀𝑖𝑖 = 1 … 𝑘𝑘:𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑐𝑐1, 𝑠𝑠𝑠𝑠𝑖𝑖)〉) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠𝑖𝑖) (probabilities)
∀𝑖𝑖 = 1 … 𝑘𝑘:𝐴𝐴(𝑝𝑝〈𝑐𝑐1〉, 𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑐𝑐1, 𝑠𝑠𝑠𝑠𝑖𝑖)〉) = 1 (arcs)
∀𝑖𝑖 = 1 … 𝑘𝑘:𝐴𝐴(𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑐𝑐1, 𝑠𝑠𝑠𝑠𝑖𝑖)〉,𝑝𝑝〈𝑠𝑠𝑠𝑠𝑖𝑖〉) = 1 (arcs)

This transformation is graphically presented in Fig. 4.2.

Fig. 4.2. Transformation of choice pseudostates

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 48

4.3. TRANSFORMING JOIN PSEUDOSTATES
join pseudostate + outgoing transition

↓
place + outgoing immediate transition

Each UML join pseudostate of the application model is transformed into a Petri
net place, which is followed by an immediate transition (Fig. 4.3).

∀𝑗𝑗1 ∈ 𝐽𝐽𝐴𝐴𝐴𝐴, 𝑡𝑡𝑡𝑡(𝑗𝑗1, 𝑠𝑠𝑠𝑠1) ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴
→ 𝑝𝑝〈𝑗𝑗1〉 ∈ 𝑃𝑃 (join place)
𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑗𝑗1, 𝑠𝑠𝑠𝑠1)〉 ∈ 𝑇𝑇 (transition)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑗𝑗1, 𝑠𝑠𝑠𝑠1)〉) = 0 (no delay)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑗𝑗1, 𝑠𝑠𝑠𝑠1)〉) = 1 (probability)
𝐴𝐴(𝑝𝑝〈𝑗𝑗1〉, 𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑗𝑗1, 𝑠𝑠𝑠𝑠1)〉) = 1 (arc)
𝐴𝐴(𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑗𝑗1, 𝑠𝑠𝑠𝑠1)〉,𝑝𝑝〈𝑠𝑠𝑠𝑠1〉) = 1 (arc)

Fig. 4.3. Transformation of join pseudostates

4. TRANSFORMING MODELS INTO STOCHASTIC PETRI NETS

 49

4.4. TRANSFORMING THE INITIAL PSEUDOSTATE
initial pseudostate + outgoing transition

↓
place (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1) + outgoing immediate transition

Each UML initial state is transformed into a Petri net place, which is followed by
an immediate transition. The attribute 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 of the Petri net place is set to one,
thus setting one token as initial marking (Fig. 4.4).

∀𝑖𝑖1 ∈ 𝐼𝐼𝐴𝐴𝐴𝐴, 𝑡𝑡𝑡𝑡(𝑖𝑖1, 𝑠𝑠𝑠𝑠1∗) ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴
→ 𝑝𝑝〈𝑖𝑖1〉 ∈ 𝑃𝑃 (initial state place)
𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑖𝑖1, 𝑠𝑠𝑠𝑠1∗)〉 ∈ 𝑇𝑇 (transition)
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝〈𝑖𝑖1〉) = 1 (initial marking)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑖𝑖1, 𝑠𝑠𝑠𝑠1∗)〉) = 0 (no delay)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑖𝑖1, 𝑠𝑠𝑠𝑠1∗)〉) = 1 (probability)
𝐴𝐴(𝑝𝑝〈𝑖𝑖1〉, 𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑖𝑖1, 𝑠𝑠𝑠𝑠1∗)〉) = 1 (arc)
𝐴𝐴(𝑡𝑡〈𝑡𝑡𝑡𝑡(𝑖𝑖1, 𝑠𝑠𝑠𝑠1∗)〉,𝑝𝑝〈𝑠𝑠𝑠𝑠1∗〉) = 1 (arc)

Fig. 4.4. Transformation of the initial pseudostate

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 50

4.5. TRANSFORMING THE ATTRIBUTE 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
for each regular state (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = “𝑥𝑥”)

↓
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑃𝑃{#𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 > 0} ∙ 𝑥𝑥

Each UML regular state of the application model has its power consumption. The
relevant value is taken from the corresponding regular state of the operational model.
By each transformation, the (initially empty) formula 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) (average
reward) is being extended for power consumption estimation with a summand
𝑃𝑃{#𝑝𝑝𝑖𝑖 > 0} ∙ 𝑥𝑥, where 𝑃𝑃{#𝑝𝑝𝑖𝑖 > 0}9F

∗ is a probability of activation of the regular state 𝑠𝑠𝑠𝑠𝑖𝑖〈𝑝𝑝𝑖𝑖〉
(steady-state distribution) and 𝑥𝑥 is its power consumption value (reward). The + in this
formula is taken as a shorthand for expression concatenation (Fig. 4.5).

∀𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃𝑆𝑆 → 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑃𝑃{#𝑝𝑝𝑖𝑖 > 0} ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠𝑖𝑖〈𝑝𝑝𝑖𝑖〉)
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑆𝑆

Fig. 4.5. Transformation of the attribute 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒆𝒆𝒂𝒂𝒂𝒂

All the other elements used in the UML state charts (text boxes, separators,
notes) are not taken into account in the course of transformation.

After finishing the transformation of the UML models into a Petri net, the power
consumption of the system can be automatically calculated by software tools supporting
stochastic Petri nets. The energy consumption 𝐸𝐸 for a certain period of time can be then
calculated with the common physical formula as power 𝑁𝑁 multiplied with time 𝑡𝑡:

𝐸𝐸 = 𝑁𝑁 ∙ 𝑡𝑡

TimeNET (Zimmermann, 2017) presented in the next chapter is employed for
modeling and analysis of stochastic Petri nets with non-exponentially distributed firing
times.

∗ The notations for regular states 𝑝𝑝𝑖𝑖 and 𝑃𝑃𝑆𝑆 are not to confuse with the one for probability 𝑃𝑃 (with no
subscript)

 51

5. SOFTWARE IMPLEMENTATION
This chapter introduces an extension of the software tool TimeNET implementing

the concepts of the presented method.∗ An earlier work (Trowitzsch, et al., 2007) added
stochastic UML state charts to the tool. This existing extension was primarily aimed at
reliability modeling and evaluation. This monograph presents the further extension of
the tool by energy use description and evaluation.

This chapter:

• gives general information about the software tool (5.1);
• describes in detail the integration of the new extension into TimeNET, especially

corresponding to the two new necessary net classes (5.2);
• presents the tool functionality (5.3).

5.1. TOOL DESCRIPTION
TimeNET (German, et al., 1995) is a software tool supporting modeling and

performance evaluation of stochastic Petri nets, especially for models with non-
exponentially distributed firing delays (German, 2000). TimeNET analyzes extended
stochastic Petri nets and colored stochastic Petri nets. An earlier development of the
software tool (Trowitzsch, et al., 2007) also let the user create UML state charts, which
will be then transformed into stochastic Petri nets for the further analysis.

The software tool has been originally built at the Technische Universität Berlin
and is being developed by the Group for Systems and Software Engineering of the
Technische Universität Ilmenau since 2008. The functionality of the software is being
continuously advanced, so that it covers more and more aspects of Petri net analysis
and related models. The modular tool architecture lets computer engineers extend the
program code easily and, thus, enlarge the possibilities of the software. The latest
version of the software 4.4 appeared in September 2017 (Technische Universität
Ilmenau, 2017).

The interactions between components of TimeNET are comprehensively
described in (Zimmermann, 2017). The central connecting module is the graphical user
interface (GUI). It is programmed in Java for portability and uses data and model
schemata specified in XML. The GUI calls different simulation and analysis algorithms
as requested by the user. These components are written in C and C++, often including
code generated at run time for efficiency reasons.

After starting a simulation process, the GUI creates a master process. It gathers
all the given parameters of the user models and compiles all the necessary information

∗ This chapter was first published in (Shorin & Zimmermann, 2014a).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 52

from the GUI. It then starts slave processes that execute the actual simulation. The
interaction between GUI and analysis algorithms is realized with data files, while
sockets are used between analysis processes. The master process controls interactions
between slave processes and, finally, reads the results. These are sent to the GUI
where they are presented to the user.

TimeNET can be used in both Linux- and Windows-based operating systems.
The GUI (PENG, Platform-independent Editor for Net Graphs (Jakop, 2003)) is generic
and lets the user easily implement any graph-like modeling formalism. Thus, TimeNET
is not restricted to stochastic Petri nets, but can be extended for using other graphs
such as UML state charts or automata. The software can be extended by new net
classes, which use specific algorithms. While creating a new model in TimeNET, the
user chooses the applicable net class and the GUI is being extended by the respective
algorithms.

Fig. 5.1. Main window of TimeNET

The main window of TimeNET (Fig. 5.1) includes a standard menu panel, which
lets the user work with files, edit models, change the model’s view and choose one of
the algorithms specific for the current net class. For example, for building the model in
Fig. 5.1, the net class eSMapp is used, one of the two new net classes described in 5.3.

The toolbar below the menu panel contains buttons for the most frequently used
commands. The next toolbar from the top lets the user switch between models opened
in the software tool. The main part of the window is occupied by the graphical
workspace for building models. The model elements, which can be used in the given net
class, are shown below the main window in the icon bar at the left. The panel on the
right-hand side serves for changing model element properties and adding attributes.

5. SOFTWARE IMPLEMENTATION

 53

The user’s interaction with the GUI does not differ from common standards. The
user chooses an element in the bar at the bottom of the screen and clicks on the
workspace to place it. In the mode select, which is depicted by a white arrow, the user
can move elements in the workspace, edit them and set their properties in the panel on
the right-hand side.

5.2. INTEGRATION OF ENERGY-AWARE STATE MACHINES
INTO TIMENET

For estimating power consumption, two new net classes were implemented in
TimeNET. Both deal with energy-aware UML state charts (eSM). The operational model
is created within the net class eSMoper, the other net class eSMapp serves for creating
application models, such as described in Chapter 3. They have similar structure, but
support the differences between two types of models. The XML schemata implemented
for these net classes are based on the schema for the net class sSM, which was
created for modeling UML stochastic state machines (Trowitzsch, et al., 2007). A
necessary subset of UML elements described in Chapter 3 was implemented in the
current prototype and can, thus, be used in the given net classes.

Fig. 5.2. Integration of eSMoper and eSMapp net classes

The integration of the net classes eSMoper and eSMapp into TimeNET is
depicted in Fig. 5.2. Using the TimeNET GUI, the user can build operational and
application models by means of these two net classes. The models will be saved in two
XML files. Any application model has to be conceptually linked to an operational model
– this relation is provided by the user in the application model (s. 5.3). Each net class
has its specific functions, which are represented in the menu bar. Thus, the user can
start the transformation into an eDSPN model only while using the net class eSMapp.
The command starts the conversion based on the rules given in Chapter 4. During this
procedure, the information from two models is being merged and a final SPN is, thus,
being created. The resulting Petri net belongs to the net class eDSPN, a fundamental

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 54

class of TimeNET, for which analysis and simulation functions are available. The
stationary analysis of the Petri net results in the estimated power consumption of the
analyzable system.

Fig. 5.3. Elements for creating an application model

The net classes eSMoper and eSMapp provide the user only with the UML state
chart elements depicted in Fig. 5.3. Thus, they both support modeling of regular (simple)
states, initial, join, and choice pseudostates, as well as transitions. The element Import
can be used only in the application model.

Regular states can be extended by some stereotypes of the MARTE profile.
Table 3.1 (p. 39) indicates the stereotypes and tags supported by the net classes and
shows if they are mandatory in operational and application models. Furthermore, state
charts built in these two classes must fulfill the conditions given in the method
description (Chapter 3).

5.3. TOOL FUNCTIONALITY
In Fig. 5.1 (p. 52), the GUI is shown while creating an application model. The

menu panel includes section eSMapp, which contains functions specific for the net class.
Its function eSMapp to eDSPN converts two models into an SPN for further analysis.
The icon bar at the bottom of the screen includes following modeling elements: mode
select, simple state, initial, join, and choice pseudostates, state transition, and the
element Import. The last one can be used to set the operational model linked to the
current application model. The TimeNET window while working in the net class
eSMoper looks similar with two exceptions:

• The section eSMoper of the menu panel does not let the user create an SPN out
of the operational model.

• The icon bar at the bottom of the screen does not include the element Import.
The reason for this is that one operational model can be linked to numerous
application models.

Elements that can be used for creating an application model are shown in
Fig. 5.3:

• A simple state is represented by an empty rectangle with rounded corners.
• The initial pseudostate is depicted as a small solid black circle.
• A join pseudostate is shown as a small solid black rectangle with a letter “J”

above it.

5. SOFTWARE IMPLEMENTATION

 55

• A choice pseudostate is depicted as an empty rhombus.
• Transitions are displayed as arrows directed from the outgoing state to the

incoming state.
• The Import specification is represented by an empty rectangle with standard

sharp corners. Inside the figure, there is a word “Import” with a semicolon and the
name of the file containing the operational model linked to the current application
model.

By selecting a simple state in the selection mode, the user can add attributes and
change its name in the panel at the right-hand side of the screen (Fig. 5.1, p. 52).
Initially, each simple state gets a name that consists of the word ”state” and an ordinal
number beginning from zero automatically. The user can change the name in the
property text and add attributes to the element in the property stereotypes. The latter
can be filled up automatically by using the fields below. The stereotypelist demonstrates
all the attributes added to the chosen state. In the field Choose stereotype, the user can
choose between the «ResourceUsage» and the «GaStep» stereotypes. Depending on
the choice, the field Choose TAG offers to define either execution time in the attribute
execTime (in the case of the «ResourceUsage» stereotype) or the state probability in
the attribute prob (stereotype «GaStep»). By creating an operational model, the attribute
powerPeak of the «ResourceUsage» stereotype is also available for stating the power
consumption of the simple state. This attribute is not available in the application model
because it is stipulated by the presented method (Chapter 3). In the text field Set Value,
the user states a value of the chosen attribute. By clicking the button Add Stereotype,
the chosen attribute will be added to the stereotype list above. The further buttons
Remove and Remove all let the user delete either a single chosen attribute or all of
them, respectively.

The element Import has an additional property field filename, which is used to set
the name of the XML file containing the corresponding operational model.

After creating both operational and application models, the user can start
transformation to a Petri net via the menu item eSMapp → eSMapp to eDSPN.
TimeNET asks for the name of the resulting XML file to save the results. After the
transformation, the created file containing a new eDSPN should be opened and the
stationary analysis (menu Evaluation) started. The results will be displayed in the field
measure in the TimeNET workspace. The value gives an estimation of the system
power consumption.

A short manual for the new implementations in TimeNET is presented in
“Appendix. Software Manual”.

 57

6. EXAMPLE 1. MICROCONTROLLER
This example adopts the energy-controllable Atmel microcontroller

ATxmega128A1 (Atmel Corporation, 2013) on the development board Xplain (Atmel
Corporation, 2010).∗ This microcontroller development board (Fig. 6.1) was chosen as a
research target because its structure is simple enough for the purposes of the
presented methodology and it supports different operating modes for power-saving. It
belongs to the XMEGA series (Atmel Corporation, 2012) that supports the so-called
picoPower® technology.

Fig. 6.1. Microcontroller development board Xplain

This chapter shows the processes of

• creating an operational model (6.1),
• creating an application model (6.2), and
• transforming the models into an SPN (6.3).

6.1. OPERATIONAL MODEL
First, an operational model is being created to specify all the possible states and

their properties for analyzing the system under consideration. The power required for
each regular state must be provided. Regular state duration should be given if for some
regular states it is a constant value, regardless of a program executed on the system.
All the state names have to be unique.

∗ The microcontroller has been used for a long time as a test-bench for the presented method. The first
version of the example presented in this chapter was published in (Shorin & Zimmermann, 2011),
completed in (Shorin, et al., 2012) and finally refined in (Shorin & Zimmermann, 2013).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 58

To derive the necessary basic information, the microcontroller board has been
tested and measurement experiments have been carried out. Thereafter, a state chart
diagram was developed by means of UML. It represents all the possible activities of the
microcontroller in the non-active mode under the following conditions:

• operating frequency of the internal oscillator: 2 𝑀𝑀𝑀𝑀𝑀𝑀;
• supply voltage: 𝑉𝑉𝐶𝐶𝐶𝐶 = 3.3 𝑉𝑉;
• ambient air temperature: 𝑇𝑇 = 24℃.

According to (Atmel Corporation, 2013), the microcontroller under consideration
requires one clock cycle for falling asleep independent of the chosen sleep mode. With
the oscillator frequency of 2 𝑀𝑀𝑀𝑀𝑀𝑀, this means exactly 0.5 𝜇𝜇𝜇𝜇. The power consumption of
the falling asleep state remains approximately the same as in the active mode
(measured average value: 12.4 𝑚𝑚𝑚𝑚).

The duration of the sleep mode is not specified in this model because it depends
on the actual application program. The power consumption of the sleep modes varies
considerably. It has a significant influence on overall power consumption of the
microcontroller. The highest value (9.32 𝑚𝑚𝑚𝑚 in the Idle sleep mode) and the lowest one
(0.0036 𝑚𝑚𝑚𝑚 in the Power-save and Power-down sleep modes) differ by several orders
of magnitude. The choice of the right sleep mode depends on which parts of the
microcontroller need to stay active.

As opposed to the sleep modes where the power values vary considerably, the
power consumption of the microcontroller in the active mode remains constant in close
limits. It is, thus, reasonable to take the average value of the necessary power
(12.4 𝑚𝑚𝑚𝑚). The experiments showed that for different operations, the microcontroller
requires from 11.79 𝑚𝑚𝑚𝑚 to 13.02 𝑚𝑚𝑚𝑚 . In this case, the maximal relative error of the
calculation will be not more than 5%.

Awakening of the microcontroller requires approximately the same power as the
active mode. The duration of this process depends on the sleep mode and the type of
the oscillator in use (external or internal) as well as its frequency. According to (Atmel
Corporation, 2013), sleep modes can be divided into two groups depending on the
“sleep depth”. Members of these groups are joined by the black circles in Fig. 6.2. In
each of these groups, all the sleep modes require the same time for awakening. As a
result, there are only two states expressing all the possible ways of the microcontroller's
awakening under the specified conditions.

6. EXAMPLE 1. MICROCONTROLLER

 59

Fig. 6.2. Operational model of the microcontroller

Without exception, all the regular states contain information about the power
required for a specified operating frequency of the microcontroller. Besides, the
execution time is already given in the operational model for falling asleep and both
awakening modes (Fig. 6.2). This is due to the fact that the above-mentioned modes
always last a certain given time (Atmel Corporation, 2013).

This example also contains a sleep mode choice. According to the command
used in the program of the microcontroller, one or another sleep mode can be chosen
and therefore, different power is required for this action. Thus, the sleep mode choice is
deterministic.

No thorough investigation of the power consumption for the falling asleep and
both awakening modes could have been done because the power consumption in these
modes was hard to detect and it does not affect the end result significantly. An estimate
is used instead. This is an example of the simplification mentioned in 3.2.

6.2. APPLICATION MODEL
At the second stage of the presented method, an application model has to be

created. It contains information about the states used in the specified program and their
duration. The order of transitions between the modes must comply with the order
specified in the operational model. However, the states, by which both the power
consumption and the execution time given in the operational model, may be skipped in
the application model. For the correspondence detection between these two models,
the modes implemented in the application model must be named identical to the states
of the operational model. They may also include subsidiary signs or numbers. In the
application model, the states which duration has not been yet specified in the
operational model must be placed. If an application contains a choice, probabilities of

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 60

each alternative should be defined. If not, all the options are considered as
equiprobable. It is imperative to mark the initial state of the system.

Some works related to the analysis of power consumption of the embedded
systems, e.g., (Hagner, et al., 2011), concentrate on different types of tasks. In the
following example application, the microcontroller has three processes to execute. Two
of them are periodic and one aperiodic. Process 1 has the duration of 1 𝑚𝑚𝑚𝑚 and must be
executed every 3 𝑚𝑚𝑚𝑚. Process 2 has the duration of 4 𝑚𝑚𝑚𝑚 and is being executed every
15 𝑚𝑚𝑚𝑚. Process A is aperiodic; it appears in 50% of cases and should be executed for
3 𝑚𝑚𝑚𝑚 within the global period of 15 𝑚𝑚𝑚𝑚. The microcontroller falls asleep if there are no
more tasks left at the moment.

First, the tasks have to be scheduled to be executed by the microcontroller.
There are different methods for this. Because there is an aperiodic process in the
application, it forces to use one of the advanced algorithms that can consider aperiodic
jobs as well as periodic. For this application, the polling method was chosen.

A poller is a periodic task with a polling period and its execution time. The poller
is ready for execution periodically and is scheduled together with the periodic tasks in
the system according to the given priority-driven algorithm. When it executes, it
examines the aperiodic job queue. If the queue is non-empty, the poller executes the
job at the head of the queue. The poller suspends its execution or is suspended by the
scheduler either when it has executed for the allowed unites of time in the period or
when the aperiodic job queue becomes empty. If at the beginning of a polling period the
poller finds the aperiodic job queue empty, it suspends immediately and will not be able
to examine the queue again until the next polling period (Liu, 2000).

The example uses a schedule of real-time processes following a rate-monotonic
approach (Liu & Layland, 1973) as an arbitrary application example for the presented
method. However, incorporating description, transformation, and analysis of energy-
consuming embedded systems, the method is not restricted to such simple scheduling
setups.

A request for the aperiodic task can appear equiprobable during the global period
time. However, according to the method, it could be executed only during the polling
time. The poller period of 3 𝑚𝑚𝑚𝑚 and its execution time of 1 𝑚𝑚𝑚𝑚 are specified. Thus, the
probability of the event that a request for executing the aperiodic process appears is
10% for each of 5 poller periods of 3 𝑚𝑚𝑚𝑚. However, requests appearing after the sixth
microsecond of the global period can be executed only in the course of the next global
period, because if not, after the sixth microsecond of the period, there is no enough
polling time for finishing the aperiodic task.

Thus, using the polling method, the following schedule alternatives were found
(Fig. 6.3).

6. EXAMPLE 1. MICROCONTROLLER

 61

(a) 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟 ∈ (6, 15] 𝑚𝑚𝑚𝑚; 𝑃𝑃 = 30%

(b) 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟 ∈ (0, 3] 𝑚𝑚𝑚𝑚; 𝑃𝑃 = 10%

(c) 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟 ∈ (3, 6] 𝑚𝑚𝑚𝑚; 𝑃𝑃 = 10%

(d) 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟∄; 𝑃𝑃 = 50%

Fig. 6.3. Tasks schedule

As mentioned above, the aperiodic process does not appear in 50% of cases
(Fig. 6.3 (d)). Cases when the aperiodic request appears either in the first or in the
second polling period occur each with the probability of 10% (Fig. 6.3 (b)–(c)). The case
when the aperiodic task is executed immediately after the beginning of the global period
(Fig. 6.3 (a)) can occur with the possibility of 30% because the execution of all requests
appeared after the sixth microsecond is moved to the next global period.

The schedule lets the user create an application model in UML (Fig. 6.4).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 62

Fig. 6.4. Application model for the microcontroller

6. EXAMPLE 1. MICROCONTROLLER

 63

The order of the transitions between the modes strictly corresponds to the
operational model (Fig. 6.2, p. 59). Falling asleep and awakening modes are not
reflected in this model because the necessary information concerning power
consumption and execution time has already been presented in the operational model.
The values of the execution time given in the application model relate only to the modes,
by which this parameter was not specified earlier, namely, by the active and sleep
modes. It is caused by the fact that these time parameters are specified by the
programmer and, hence, can be changed in any way. The beginnings of the state
names in this state chart are identical to the existing in the operational model. However,
each state name has an extension in form of numbers. This is due to the fact that the
state names in any UML model must be unique if the states are not duplicated.

The following conventional signs were implemented: For the active mode, X.Y.Z
means that the process number X (1, 2 or A for aperiodic) will be executed in the branch
number Y (see cases of Fig. 6.3, p. 61) and this is the microsecond number Z of the
respective task in the present global period. For the sleep mode, the parameter X falls
away because the sleep modes already vary by their names.

This model also contains choice elements (Aperiodic process?), which are
numbered in succession. The states after these elements also contain information about
the probability of executing each of them. In each case, the sum of the choice states
equals one.

Note that the indicated probabilities of the states Active Mode A.2.1 and Active
Mode A.3.1 are not equal, though the probability of the second and the third branches
are (Fig. 6.3 (b)–(c), p. 61). The reason is that in the first case, the probability of 10% is
a part of the rest probability for three branches 70% (10% 70% ≅ 0.1429⁄), while in the
second case, the probability of 10% is a part of the rest probability for two branches
60% (10% 60% ≅ 0.1667⁄).

The application model in Fig. 6.4 looks overloaded and can be simplified. As it
was mentioned in 6.1, the power consumption of the active mode stays at almost the
same level independently of the process executed by the microcontroller. Thus, all the
active modes can be united and presented as one with the respectively longer
execution time. In doing so, no inaccuracy in the process of power consumption
estimation will be caused. The simplified application model is presented in Fig. 6.5.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 64

Fig. 6.5. Simplified application model for the microcontroller

6. EXAMPLE 1. MICROCONTROLLER

 65

Now, two created models include all the necessary information for estimating the
power required for the system.

6.3. TRANSFORMING THE EXAMPLE INTO AN SPN
In the operational model, active and sleep modes are not connected directly.

Thus, the transition from an active to any sleep mode can only be done via falling
asleep state. Analogously, the awakening mode will be included to the path between
any sleep and active modes. According to the transformation rule for regular states
(s. 4.1), the Petri net will be extended by the states missed in the application model.
Thus, it is not one-in-one transformation.

In the process of transformation, the state duration given for user's convenience
in seconds in the UML models will be transformed into the delay in clock cycles in the
Petri net. By the operating internal oscillator frequency of 2 𝑀𝑀𝑀𝑀𝑀𝑀, one clock cycle is
equal to 0.5 𝜇𝜇𝜇𝜇.

A Petri net created according to the given application and operational models
(Fig. 6.5, p. 64 and Fig. 6.2, p. 59) using the transformation rules described in Chapter 4
is presented in Fig. 6.6.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 66

Fig. 6.6. Petri net reflecting the application execution

6. EXAMPLE 1. MICROCONTROLLER

 67

The presented Petri net is then opened in TimeNET. The calculation of the power
occurs automatically in the course of the static analysis. The result (in milliwatt) is
presented in Fig. 6.6 under the notation Power. In this case, 20.474 𝑚𝑚𝑚𝑚 is the average
power needed for executing the application. The energy consumption of the
microcontroller after a certain time could be determined as the power multiplied by the
time.

For example, the energy consumption in one minute of executing this application
will be:

𝐸𝐸 = 20.474 𝑚𝑚𝑚𝑚 ∙ 60 𝑠𝑠 = 1.2284 𝑊𝑊 ∙ 𝑠𝑠 = 3.412 ∙ 10−7 𝑘𝑘𝑘𝑘 ∙ ℎ

 69

7. EXAMPLE 2. WORKBENCH
This example shows the wide applicability of the method and software application

and demonstrates how the method can be used for analyzing not an embedded, but an
industrial control system.∗

The component production by a workbench with a main and two spare motors is
considered in this example.

This chapter shows the processes of

• creating an operational model (7.1),
• creating an application model (7.2), and
• transforming the models into an SPN (7.3).

7.1. OPERATIONAL MODEL
The structure of the system is depicted in Fig. 7.1. This time, the operational

model of the workbench is built using the modeling possibilities of the software tool
TimeNET.

Fig. 7.1. Operational model of the workbench

The workbench gets its first order and is being started (represented by the state
Start). The process goes through the fictitious state Continue (explanation follows) and
the order is being adapted. Furthermore, there are three possibilities of producing
components depending on performance requirements. The first one is called Slow
production; it takes 5 minutes to create one unit. By choosing the second mode, one
more motor is started and, thus, the production speed reduces to 3 minutes. The third

∗ This chapter was originally published as an example in (Shorin & Zimmermann, 2014a).

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 70

possibility is to start two spare motors and to produce the component in only one minute.
The fastest way could be the most preferable, but the difference between these three
modes is also in the power consumption. It is assumed that the longer it takes the
workbench to produce a unit, the less overall power it needs for this operation. The
energy needed for the workbench to function in the first mode is 2.5 watt-seconds, in
the second one 3 𝑊𝑊 · 𝑠𝑠 and in the third – 5 𝑊𝑊 · 𝑠𝑠. Thus, the example shows a design
trade-off between power consumption and other conflicting non-functional properties of
a system. An overview of the attributes related to the states in Fig. 7.1 is given in
Table 7.1.

State name powerPeak, W execTime, min.
Start 5 2

Waiting 0.1
Continue 0 0.00001

Adaptation 0.2 0.1
TurnOn1 2 0.2
TurnOn2 4 0.2
SlowProd 0.5 5
MidProd 1 3
FastProd 5 1
TurnOff1 0.1 0.1
TurnOff2 0.2 0.1
TurnOff3 0.1 0.4

Packaging 0.3 0.2
Cleaning 0.3 0.1
FullClean 1 0.5

Drying 0.4 0.1

Table 7.1. Attributes stated in the operational model

If one or two spare motors are used in the production process, it takes extra time
and power to turn them on and off (states TurnOn1, TurnOn2, TurnOff1, TurnOff2).
When the component is produced, it will be packed (Packaging). After each procedure,
the workbench must be cleaned. The cleaning can be of two types: either a normal
quick Cleaning or a Full Cleaning, which takes more time and demands the main motor
also to be stopped (TurnOff3). After that, it takes a little time to dry the workbench
(Drying). If necessary, the main motor is being started during this process. Thus, the
workbench finishes its work on the unit and goes either in the standby mode (Waiting)
or continues its work without a pause. The value 0.00001 given in the Continue state is
caused by the requirement for the exponential transitions of Petri nets: the delay value
(representing the execution time here) may not be equal to zero. Otherwise, the Petri
net cannot be properly analyzed. However, this substitution does not influence the end
result. The only function of the state Continue is to be a regular (non-pseudo) state after
the choice pseudostate. This restriction of UML has been described in 3.1.

7. EXAMPLE 2. WORKBENCH

 71

7.2. APPLICATION MODEL
The application chosen for this example is presented in Fig. 7.2.

Fig. 7.2. Application model for the workbench

An overview of the attributes given to the states in Fig. 7.2 is summarized in
Table 7.2.

State name execTime, min. prob
Start1

Packaging1
Cleaning1 0.9
FullClean1 0.1

Drying1
Waiting1 1 0.2

Continue1 0.7
Waiting2 5 0.1

Adaptation1
SlowProd1 0.2
MidProd1 0.3
FastProd1 0.5

Table 7.2. Attributes stated in the application model

When the first order arrives, the workbench starts working (Start1). Because it is
necessary to produce one unit, no matter how quickly it will be, it is enough to simply
place a state Packaging1. The production mode will be chosen automatically while
creating an SPN. The Full Cleaning mode should take place after each 10 production
steps. Thus, the state Cleaning1 has a probability (prob) of 90% and FullClean1 – 10%.
After the Drying, the workbench continues its work (with the probability of 70%) or has
either a short (1 minute long, 20% probability) or a long break (5 minutes long, 10%
probability). These probability values were chosen on the basis of the statistical data.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 72

The further choice of the production mode depends on the demand. Though, the
longest mode (SlowProd1) is the most power-efficient, statistically it can be used only in
20% of cases. 3 out of 10 units are produced in the middle-speed mode (MidProd1),
and the half of all orders must be done while using both spare motors (FastProd1). The
component is then being packed (Packaging1) and the production cycle is looped at this
point. The element Import states the XML file containing operational model linked to the
current application model.

7.3. TRANSFORMING THE EXAMPLE INTO AN SPN
To transform both models into an SPN, the user chooses eSMapp → eSMapp to

eDSPN in the menu of TimeNET. The information from the application model is being
analyzed and the missing data is being taken from the operational model. Thus, the
power consumption is given only in the operational model. For the states, where
execution time was not defined in the application model, the values are also taken from
the operational model (e.g. Start1, Packaging1, Cleaning1, and so on). Missing states
between two regular states are added to make the transition stated in the application
model possible (e.g. states Continue, Adaptation and SlowProd are missed between the
states Start1 and Packaging1). The parameter delay of the exponential transitions is
filled up with the information from the attribute execTime of the respective regular states.
The formula for estimating the power consumption is being composed using the
information from the attribute powerPeak. The resulting Petri net is shown in Fig. 7.3.

Fig. 7.3. Resulting Petri net of the system

The stationary analysis of the Petri net results that the power consumption of the
system is equal to approximately 2.08 Watt.

 73

8. SUMMARY, CONCLUSION, AND OUTLOOK
This monograph presented a methodology for model-based engineering of

energy-efficient automation systems. UML extended with the MARTE profile is used for
the modeling process. For the modeling part, a system is described with operational and
application models, which reflect correspondingly hardware and software parts of the
system. These two models are converted automatically into a stochastic Petri net, which
is then used for the performance evaluation. The transformation methodology is formally
described.

Finally, the design process for embedded systems is supported by predicting the
power consumption thanks to the extension of the software tool TimeNET for model-
based estimation of power consumption of embedded systems. Two new net classes
are implemented in the software tool for modeling the system under consideration. The
stationary analysis implemented in TimeNET lets the user estimate power consumption
of the whole system.

An Atmel microcontroller board was used as an application example, for which
the power consumption was calculated based on the model. The second example
concerned an industrial control system, demonstrating that the method is not restricted
to microcontroller-based embedded systems.

The instances presented in this monograph should be considered as simplified
examples for describing the possibilities of the presented method. Actually, more
complex systems can be analyzed. Increase of the number of the states will lead to the
growth of the scheduling options quantity and, thus, to the expansion of the models. In
future work, the influence of this demerit can be considerably reduced by implementing
scheduling policies into Petri nets. Thus, it will not be necessary to make a preliminary
calculation like in Fig. 6.3 (p. 61). Different scheduling algorithms for hard and soft real-
time systems can be implemented as well.

The analysis of complex systems is restricted at the moment. For example,
a control system has to be examined in parts – as an operating system (e.g.,
microcontroller) and a controlled system (e.g., motor). This example was explored within
the frameworks of the current research, but still, no easier solution was found for this
challenge. Distributed systems cannot be easily analyzed so far.

The more complex the system is, the more modeling means should be available
to let the user model the system completely. On the one hand, the state chart elements,
which were not used in the presented method, can be included, especially when such
developments already exist (André, et al., 2016). On the other hand, UML provides a
wide range of modeling means. Depending on the aim, the system under consideration
can be described using other types of diagrams. The method presented in this
monograph can be extended by providing a possibility of using different types of UML
diagrams for modeling different aspects of one system.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 74

At the moment, the UML models must be created directly in TimeNET to make it
possible convert them into an analyzable Petri net. However, there are also other
software tools for developing UML models. One of the most well-known is Papyrus
(Eclipse, 2017b) widely distributed thanks to its open source licence. In this regard, the
latest development of Eclipse – Papyrus for Real-Time (Papyrus-RT) (Eclipse, 2017a) –
seems to be especially interesting for the aims of modeling of real-time systems. One of
the further development directions for the approach presented in this monograph can be
implementation of the automatic conversion of the UML models from Papyrus(-RT) into
TimeNET Petri nets. For the presented method, this could mean standardization, the
necessity of which is mentioned in 1.1.

The global aim for developing this method is to help engineers design optimal
systems already on the early design stages, which is presented in Fig. 1.1 (p. 15). The
software can be further developed in the direction of automatic search of the optimal
decision within the frameworks set by the developer.

The method efficiency should be examined on a real embedded system to prove
that exactly the modeled processes take place in the real system. The benchmarks of
the Standard Performance Evaluation Corporation (SPEC) (Standard Performance
Evaluation Corporation, 2017) could be used for checking the efficiency of the method.

 75

OWN PUBLICATIONS
Shorin, D. & Zimmermann, A., 2010. Model-based Development of Energy-efficient
Automation Systems. Proceedings of the 55th International Scientific Colloquium
Ilmenau (IWK 2010), 13–17 September.

Shorin, D. & Zimmermann, A., 2011. Model-based Development of Energy-efficient
Automation Systems. Proceedings of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2011, WiP), 11–14 April.

Shorin, D., Zimmermann, A. & Maciel, P. R. M., 2012. Transforming UML State
Machines into Stochastic Petri Nets for Energy Consumption Estimation of Embedded
Systems. Proceedings of The Second IFIP Conference on Sustainable Internet and ICT
for Sustainability (SustainIT 2012), 04–05 October.

Shorin, D. & Zimmermann, A., 2013. Evaluation of Embedded System Energy Usage
with Extended UML Models. Softwaretechnik-Trends, 33(2).

Shorin, D. & Zimmermann, A., 2014a. Extending the Software Tool TimeNET by Power
Consumption Estimation of UML MARTE Models. Proceedings of the 4th International
Conference on Simulation and Modeling Methodologies, Technologies and Applications
(SIMULTECH 2014), 28–30 August, p. 83–91.

Shorin, D. & Zimmermann, A., 2014b. Formal Description of an Approach for Power
Consumption Estimation of Embedded Systems. Proceedings of the 24th International
Workshop on Power And Timing Modeling, Optimization and Simulation (PATMOS /
VARI 2014), 29 September – 1 October.

 77

BIBLIOGRAPHY
ABB, 2010. The benefits of energy efficiency: Doing more while lowering costs. [Online]
Available at: https://library.e.abb.com/public/5f7f2c55771fc2ffc12577f4004bf96d/
10ABB035_EE_rgb_V23_low.pdf [Accessed 05 November 2017].

Ajmone Marsan, M. et al., 1996. Modelling with Generalized Stochastic Petri Nets.
New York (NY), USA: John Wiley & Sons

Amparore, E. G., 2014. A New GreatSPN GUI for GSPN Editing and CSL(TA) Model
Checking. Proceedings of the 11th International Conference on Quantitative Evaluation
of Systems (QEST) 2014, 8–10 September, p. 170–173.

Andrade, E. et al., 2009. Performance and energy consumption estimation for
commercial off-the-shelf component system design. Innovations in Systems and
Software Engineering, 6(1–2), p. 107–114.

André, É., Benmoussa, M. M. & Choppy, C., 2016. Formalising Concurrent UML State
Machines Using Coloured Petri Nets. Formal Aspects of Computing, September, 28(5),
p. 805–845.

Apvrille, L., Courtiat, J.-P., Lohr, C. & de Saqui-Sannes, P., 2004. TURTLE: A Real-
Time UML Profile Supported by a Formal Validation Toolkit. IEEE Transactions on
Software Engineering, July, 30(7), p. 473–487.

Arpinen, T., 2011. On the Development of UML-Based Methods for Embedded System
Design. Tampere, Finland: Tampere University of Technology.

Arpinen, T., Salminen, E., Hämäläinen, T. & Hännikäinen, M., 2010. Extension to
MARTE profile for modeling dynamic power management of embedded systems.
Proceedings of the 1st Workshop on Model Based Engineering for Embedded Systems
Design (M-BED) 2010, 12 March, p. 1–6.

Atanassov, K., 1984. On the concept “Generalized net”. AMSE Review, 1(3), p. 39–48.

Atitallah, R. B. et al., 2007. Gaspard2 UML profile documentation. [Online] Available at:
https://hal.inria.fr/inria-00171137v1/document [Accessed 05 November 2017].

Atmel Corporation, 2010. AVR1907: Xplain Hardware User's Guide. [Online]
Available at: http://www.atmel.com/Images/doc8203.pdf [Accessed 05 November 2017].

Atmel Corporation, 2012. AVR XMEGA A Manual. [Online] Available at:
http://www.atmel.com/Images/doc8077.pdf [Accessed 05 November 2017].

Atmel Corporation, 2013. ATxmega128A1 / ATxmega64A1 Preliminary. [Online]
Available at: www.atmel.com/Images/doc8067.pdf [Accessed 05 November 2017].

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 78

Aydin, H., Melhem, R., Mossé, D. & Mejía-Alvarez, P., 2004. Power-Aware Scheduling
for Periodic Real-Time Tasks. IEEE Transactions on Computers, May, 53(5),
p. 584–600.

Bernardi, S., Donatelli, S. & Merseguer, J., 2002. From UML Sequence Diagrams and
Statecharts to Analysable Petri Net Models. Proceedings of the 3rd International
Workshop on Software and Performance (WOSP '02), p. 35–45.

Billington, J., 2002. High-level Petri Nets — Concepts, Definitions and Graphical
Notation. Final Draft International Standard ISO/IEC 15909, v. 4.7.3. Geneva,
Switzerland

Callou, G. R. d. A. et al., 2008. A Coloured Petri Net Based Approach for Estimating
Execution Time and Energy Consumption in Embedded Systems. Proceedings of the
21st Annual Symposium on Integrated Circuits and System Design, p. 134–139.

Campos, J. & Merseguer, J., 2006. On the Integration of UML and Petri Nets in
Software Development. Petri Nets and Other Models of Concurrency. Proceedings of
the 27th International Conference on Applications and Theory of Petri Nets and Other
Models of Concurrency (ICATPN 2006), 26–30 June, p. 19–36.

CEA, I-Logix, Uppsala, OFFIS, PSA, MECEL, ICOM, 2003. UML-based methodology
for real-time embedded systems, Version 1.0. Project IST 10069 AIT-WOODDES, April.

Dave, B. P., Lakshminarayana, G. & Jha, N. K., 1997. COSYN: Hardware-Software
Co-Synthesis of Embedded Systems. Proceedings of the 34th Design Automation
Conference 1997, 9–13 June, p. 703–708.

Dijkstra, E. W., 1959. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1), p. 269–271.

Eclipse, 2017a. Papyrus for Real Time (Papyrus-RT) 1.0.0. [Online] Available at:
https://eclipse.org/papyrus-rt/ [Accessed 05 November 2017].

Eclipse, 2017b. Papyrus 3.1.0 Oxygen. [Online] Available at: https://eclipse.org/papyrus/
[Accessed 05 November 2017].

Eisentraut, C., Hermanns, H., Katoen, J.-P. & Zhang, L., 2013. A Semantics for Every
GSPN. Proceedings of the 34th International Conference on Application and Theory of
Petri Nets and Concurrency (PETRI NETS 2013), 24–28 June, p. 90–109.

Fowler, M., 2003. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 3rd ed. Boston (MA), USA: Pearson Education, Inc.

Geist, A. et al., 1994. PVM: Parallel Virtual Machine: A Users' Guide and Tutorial for
Network Parallel Computing. Boston (MA), USA: Massachusetts Institute of Technology.

Gerarden, T. D., Newell, R. G. & Stavins, R. N., 2015. Assessing the Energy-Efficiency
Gap, Cambridge, UK: National Bureau of Economic Research.

BIBLIOGRAPHY

 79

German, R., 2000. Performance Analysis of Communication Systems, Modeling with
Non-Markovian Stochastic Petri Nets. New York (NY), USA: John Wiley and Sons.

German, R., Kelling, C., Zimmermann, A. & Hommel, G., 1995. TimeNET – A Toolkit for
Evaluating Non-Markovian Stochastic Petri Nets. Performance Evaluation, Volume 24,
p. 69–87.

Gómez-Martínez, E. & Merseguer, J., 2005. A Software Performance Engineering Tool
based on the UML-SPT. Proceedings of the 2nd International Conference on the
Quantitative Evaluation of Systems, 2005, p. 247–248.

Graf, S., Ober, I. & Ober, I., 2006. A real-time profile for UML. International Journal on
Software Tools for Technology Transfer, April, 8(2), p. 113–127.

Hagner, M., Aniculaesei, A. & Goltz, U., 2011. UML-Based Analysis of Power
Consumption for Real-Time Embedded Systems. Proceedings of the 10th IEEE
International Conference on Trust, Security and Privacy in Computing and
Communications 2011, 16–18 November, p. 1196–1201.

Harel, D., 1987. Statecharts: A Visual Formalism For Complex Systems. Science of
Computer Programming, June, 8(3), p. 231–274.

International Energy Agency (IEA), 2010. Energy Technology Perspectives 2010 —
Scenarios & Strategies to 2050. Paris, France: IEA.

International Energy Agency (IEA), 2016. Energy Efficiency Market Report 2016. Paris,
France: IEA.

International Organization for Standardization, 2011. Energy management systems —
Requirements with guidance for use (ISO 50001:2011).

International Partnership for Energy Efficiency Cooperation (IPEEC), 2017. Supporting
energy efficiency progress in major economies (Annual report 2016), Paris, France:
IPEEC.

International Telecommunication Union (ITU), 2016. Specification and Description
Language – Overview of SDL-2010. [Online] Available at:
http://handle.itu.int/11.1002/1000/12846 [Accessed 05 November 2017].

Jakop, F., 2003. PENG – Plattformunabhängiger Editor für NetzGraphen. Berlin,
Germany: Technische Universität Berlin.

Jensen, K., Kristensen, K. L. & Wells, L., 2007. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer (STTT), Volume 9, p. 213–254.

Junior, M. et al., 2006. Analyzing Software Performance and Energy Consumption of
Embedded Systems by Probabilistic Modeling: An Approach Based on Coloured Petri
Nets. Petri Nets and Other Models of Concurrency – ICATPN 2006, p. 261–281.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 80

King, P. & Pooley, R., 1999. Using UML to Derive Stochastic Petri Net Models.
Proceedings of the 15th Annual UK Performance Engineering Workshop (UKPEW'99),
22–23 July, p. 45–56.

Labrosse, J. J. et al., 2007. Embedded Software. Newton (MA), USA: Newnes.

Le Dang, H., Dubois, H. & Gérard, S., 2008. Towards a traceability model in a MARTE-
based methodology for real-time embedded systems. Innovations in Systems and
Software Engineering, 4(3), p. 189–193.

Lian, J., Hu, Z. & Shatz, S. M., 2008. Simulation-Based Analysis of UML Statechart
Diagrams: Methods and Case Studies. Software Quality Journal, 16(1), p. 45–78.

Lindemann, C. et al., 2002. Performance Analysis of Time-enhanced UML Diagrams
Based on Stochastic Processes. Proceedings of the 3rd International Workshop on
Software and Performance (WOSP '02), p. 25–34.

Liu, C. L. & Layland, J., 1973. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM (JACM), 20(1), p. 46–61.

Liu, J. W. S., 2000. Real-Time Systems. NJ, USA: Prentice Hall.

López-Grao, J. P., Merseguer, J. & Camp, J., 2004. From UML Activity Diagrams To
Stochastic Petri Nets: Application To Software Performance Engineering. ACM
SIGSOFT Software Engineering Notes, Volume 1, p. 25–36.

Marsan, M. A. et al., 1994. Modelling with Generalized Stochastic Petri Nets. 1 ed.
New York (NY), USA: John Wiley & Sons.

Mealy, G. H., 1955. A Method for Synthesizing Sequential Circuits. The Bell System
Technical Journal, September, 34(5), p. 1045–1079.

Merseguer, J. & Campos, J., 2004. Software Performance Modeling Using UML and
Petri Nets. Performance Tools and Applications to Networked Systems, p. 265–289.

Message Passing Interface Forum, 2015. MPI: A Message-Passing Interface Standard,
Version 3.1. [Online] Available at:
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf [Accessed 05 November 2017].

Moore, E. F., 1956. Gedanken-experiments on sequential machines. Annals of
Mathematics studies, Volume 34, p. 129–153.

Object Management Group (OMG), 2005. UML Profile for Schedulability, Performance,
and Time Specification, Version 1.1. [Online] Available at:
http://www.omg.org/spec/SPTP/1.1/PDF [Accessed 05 November 2017].

Object Management Group (OMG), 2011. UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems, Version 1.1. [Online] Available at:
http://www.omg.org/spec/MARTE/1.1/PDF [Accessed 05 November 2017].

BIBLIOGRAPHY

 81

Object Management Group (OMG), 2015. OMG Unified Modeling Language™ (OMG
UML), Version 2.5. [Online] Available at: http://www.omg.org/spec/UML/2.5/PDF
[Accessed 05 November 2017].

Object Management Group (OMG), 2017. OMG Systems Modeling Language (OMG
SysML™), Version 1.5. [Online] Available at: http://www.omg.org/spec/SysML/1.5/PDF
[Accessed 05 November 2017].

Pérez-Palacín, D., Mirandola, R. & Merseguer, J., 2012. QoS and energy management
with Petri nets: a self-adaptive framework. Journal of Systems and Software, December,
85(12), p. 2796–2811.

Petri, C. A., 1962. Kommunikation mit Automaten. Darmstadt, Germany: Technische
Hochschule Darmstadt.

Rajabi, B. A. & Lee, S. P., 2009. A Study of the Software Tools Capabilities in
Translating UML Models to PN Models. International Journal of Intelligent Information
Technology Application, 2(5), p. 224–228.

Sanders, W. H. & Meyer, J. F., 1991. A Unified Approach for Specifying Measures of
Performance, Dependability and Performability. In: Springer, ed. Dependable
Computing for Critical Applications. Vienna, Austria: Springer, p. 215–237.

Schmitz, M. T., Al-Hashimi, B. M. & Ele, P., 2004. System-Level Design Techniques for
Energy-Efficient Embedded Systems. Boston (MA), USA: Kluwer Academic Publishers.

Standard Performance Evaluation Corporation, 2017. SPEC – Standard Performance
Evaluation Corporation. [Online] Available at: https://www.spec.org/
[Accessed 05 November 2017].

Talarico, C., Rozenblit, J. W., Malhotra, V. & Stritter, A., 2005. A New Framework for
Power Estimation of Embedded Systems. Computer, February, 38(2), p. 71–78.

Technische Universität Ilmenau, 2017. TimeNET. [Online] Available at:
https://timenet.tu-ilmenau.de/ [Accessed 05 November 2017].

Tiwari, V., Malik, S. & Wolfe, A., 1994. Power Analysis of Embedded Software: A First
Step Towards Software Power Minimization. Proceedings of the 1994 IEEE/ACM
International Conference on Computer-aided Design (ICCAD '94), p. 384–390.

Trowitzsch, J., 2007. Quantitative Evaluation of UML State Machines Using Stochastic
Petri Nets. Berlin, Germany: Technische Universität Berlin.

Trowitzsch, J., Jerzynek, D. & Zimmermann, A., 2007. A Toolkit for Performability
Evaluation Based on Stochastic UML State Machines. Proceedings of the 2nd
International Conference on Performance Evaluation Methodologies and Tools
(VALUETOOLS 2007), 23–25 October, p. 30:1–30:7.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 82

Trowitzsch, J. & Zimmermann, A., 2005. Towards Quantitative Analysis of Real-Time
UML Using Stochastic Petri Nets. Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS '05), 04–08 April, p. 139b.

Vidal, J., de Lamotte, F., Gogniat, G. & Soulard, P., 2009. A co-design approach for
embedded system modeling and code generation with UML and MARTE. 2009 Design,
Automation Test in Europe Conference Exhibition, 20–24 April, p. 226–231.

Zimmermann, A., 2007. Stochastic Discrete Event Systems – Modeling, Evaluation,
Applications. Berlin, Germany: Springer.

Zimmermann, A., 2017. Modelling and Performance Evaluation with TimeNET 4.4.
In: Quantitative Evaluation of Systems: 14th International Conference (QEST 2017).
Berlin, Germany: Springer International Publishing, p. 300–303.

Zimmermann, A. & Hommel, G., 1999. Modelling and Evaluation of Manufacturing
Systems Using Dedicated Petri Nets. The International Journal of Advanced
Manufacturing Technology, Volume 15, p. 132–137.

 83

APPENDIX. SOFTWARE MANUAL
By starting TimeNET, the main window of the software appears (Fig. 0.1).

Fig. 0.1. Main window of TimeNET

Under the title line, there is a menu panel. It includes following elements:

Fig. 0.2. Opened menu File

• File (Fig. 0.2): actions with files:
o New… (Ctrl+N): create a new file;
o Open… (Ctrl+O): open an existing file;
o Open Recent File: open a recently used file from the list;
o Settings: change settings of the software tool;
o Exit (Alt+Q): close the program;

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 84

Fig. 0.3. Opened menu Help

• Help (Fig. 0.3): information about the software:
o About… (Ctrl+Shift+A): open the information window about the version of

the software tool;
o Help: open the user manual.

To start creating models, click File – New… .The software offers to choose
between net classes (Fig. 0.4).

Fig. 0.4. Window for choosing a new net class

Two classes are necessary for creating models within the frameworks of the
method presented in this monograph:

• eSMapp: create an application model;
• eSMoper: create an operational model.

For each system, an operational model must be created firstly. The main window
of the software changes to the following state (Fig. 0.5).

APPENDIX. SOFTWARE MANUAL

 85

Fig. 0.5. Window for creating an operational model

The menu panel looks now as follows:

Fig. 0.6. Menu File by creating an operational model

• File (Fig. 0.6): actions with files:
o New… (Ctrl+N): create a new file;
o Open… (Ctrl+O): open an existing file;
o Open Recent File: open a recently used file from the list;
o Save (Ctrl+S): save the current model to the opened file;
o Save as…: save the current model to another file;
o Export as SVG: save the current model as SVG (Scalable Vector

Graphics);
o Export as PDF: save the current model as PDF (Portable Document

Format);
o Settings: change settings of the software tool;
o Exit (Alt+Q): close the program;

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 86

Fig. 0.7. Opened menu Edit

• Edit (Fig. 0.7): edit selected elements:
o Undo: [action] (Ctrl+Z): undo the last action;
o Cut (Ctrl+X): cut selected elements to the clipboard;
o Copy (Ctrl+C): copy selected elements to the clipboard;
o Paste (Ctrl+V): paste selected elements from the clipboard;
o Hide Output: hide simulation output windows;

Fig. 0.8. Opened menu View

• View (Fig. 0.8): change appearance of the software tool:
o Create new view on file: opens a new window with the same net structure;
o Grid activation: bound elements to the grid;
o Sharp edges: do not smooth transition arcs;
o Scale down Image: scale down the current model;
o Scale up Image: scale up the current model;
o Scale to normal size: scale the current model to the default size;
o Close: close the current window without saving;
o Close all views (Ctrl+W): close all windows with the current model without

saving;
• eSMoper: specific functions for the current net class:

o [no active functions available];

APPENDIX. SOFTWARE MANUAL

 87

Fig. 0.9. Opened menu Window

• Window (Fig. 0.9): change the windows locations:
o Cascade: cascade windows;
o Tile: tile windows;
o [window name]: call a specified window;

• Help (Fig. 0.3, p. 84): information about the software:
o About… (Ctrl+Shift+A): open the information window about the version of

the software tool;
o Help: open the user manual.

Under the menu panel (Fig. 0.5, p. 85), there is a toolbar, which contains buttons
for the most often used commands:

• File: new, open, save;
• Edit: undo, delete;
• View: scale up, scale down, scale to 100%, align to grid.

The left-hand side of the main window of TimeNET (Fig. 0.5, p. 85) represents a
workspace where the user builds an operational model. Below this window, there is a
bar with the available elements:

• Select: select the objects;
• Simple state: place a regular state;
• Initial state: place an initial pseudostate;
• Join state: place a join pseudostate;
• Choice state: place a choice pseudostate;
• Transition: connect two states with a transition.

The bar on the right-hand side of the main window of TimeNET (Fig. 0.10) serves
for changing the state properties.

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 88

Fig. 0.10. Right-hand side of the main window

The following properties are available:

• text: name of the state;
• stereotypes: stereotypes, their tags and values (is filled automatically);
• stereotypelist: list of the stereotypes and tags (is filled automatically);
• Choose stereotype: here, the user can switch between two stereotypes:

«ResourceUsage» and «GaStep»;
• Choose tag: here, the user can choose either a tag powerPeak or execTime from

the stereotype «ResourceUsage» or a tag prob from the stereotype «GaStep»;
• Set Value: value of the tag is being given here;
• Add stereotype: by clicking the button, the tag will be added;
• [no other buttons are used in the operational model].

APPENDIX. SOFTWARE MANUAL

 89

The window for creating an application model has two differences to the one for
creating an operational model (Fig. 0.5, p. 85):

• The menu bar contains the menu eSMapp instead of eSMoper. The only active
command inside the menu is eSMapp to eDSPN. It converts the two UML
models into a stochastic Petri net.

• On the bottom side of the window, one more element is available for creating an
application model: specification Import. It includes the file name of the
operational model linked to this application model.

 91

GLOSSARY
𝐴𝐴 set of Petri net arcs

𝐴𝐴𝐴𝐴 application model

𝐶𝐶 set of UML choice pseudostates

𝑐𝑐 UML choice pseudostate

CPN colored Petri net

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 property of transitions in Petri nets

eDSPN extended deterministic and stochastic Petri net

𝑒𝑒𝑒𝑒𝑒𝑒 TimeNET class for energy-aware UML state charts

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 TimeNET class for creating application models

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 TimeNET class for creating operational models

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 attribute of UML states meaning execution time

GSPN generalized stochastic Petri net

𝐼𝐼 set of UML initial pseudostates

𝑖𝑖 UML initial pseudostate

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 property of places in Petri nets

𝐽𝐽 set of UML join pseudostates

𝑗𝑗 UML join pseudostate

𝑀𝑀 marking of a Petri net

𝑀𝑀0 initial marking of a Petri net

MARTE Modeling and Analysis of Real-Time and Embedded Systems
(UML profile)

ℕ set of non-negative integer numbers

𝑂𝑂𝑂𝑂 operational model

𝑃𝑃 set of Petri net places

𝑝𝑝 Petri net place

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 set of all paths

𝑝𝑝𝑝𝑝𝑝𝑝ℎ path in the operational model between two states

𝑝𝑝𝑝𝑝𝑝𝑝ℎ– shortest path in the sense of power consumption

𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 power consumption of the path

MODEL-BASED DEVELOPMENT OF ENERGY-EFFICIENT AUTOMATION SYSTEMS

 92

𝑃𝑃𝑃𝑃 Petri net

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 attribute of UML states meaning power consumption

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 attribute of UML states meaning probability

𝑃𝑃𝑆𝑆 places of Petri nets representing only regular states of the UML
models

𝑝𝑝〈𝑠𝑠𝑠𝑠〉 Petri net place 𝑝𝑝 relating to the UML state 𝑠𝑠𝑠𝑠

𝑅𝑅 performance measure (reward function)

ℝ+ set of positive real numbers

regular state UML state chart state (excluding pseudostates)

𝑆𝑆𝑆𝑆 system model

SPN stochastic Petri net

𝑆𝑆𝑆𝑆 set of UML regular states

𝑠𝑠𝑠𝑠 UML regular state

𝑆𝑆𝑆𝑆∗ set of all UML states including pseudostates

𝑠𝑠𝑠𝑠∗ any UML state including pseudostates

𝑠𝑠𝑠𝑠〈𝑝𝑝〉 UML state 𝑠𝑠𝑠𝑠 relating to the Petri net state 𝑝𝑝

state any regular or pseudostate

𝑇𝑇 set of Petri net transitions

𝑡𝑡 Petri net transition

𝑇𝑇𝑇𝑇 set of UML transitions

𝑡𝑡𝑡𝑡 UML transition

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠𝑥𝑥∗) UML transition coming into the state 𝑠𝑠𝑠𝑠𝑥𝑥∗

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠𝑠𝑠𝑥𝑥∗) UML transition going out of the state 𝑠𝑠𝑠𝑠𝑥𝑥∗

UML Unified Modeling Language

𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑆𝑆𝑆𝑆∗ subclass of UML state charts used in the current monograph

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 property of immediate transitions in Petri nets

Petri net arc weight

𝛿𝛿 change function

𝜀𝜀 value indicating that an attribute is not defined

 93

DECLARATION OF AUTHORSHIP
I certify that I prepared the submitted thesis independently without undue

assistance of a third party and without the use of others than the indicated aids. Data
and concepts directly or indirectly taken over from other sources have been marked
stating the sources.

In the process of developing the software described in Chapter 5, ”Software
Implementation”, Andres Canabal Lavista helped me within the frameworks of his
master studies free of charge.

Further persons were not involved in the content-material-related preparation of
the submitted thesis. In particular, I have not used the assistance against payment
offered by consultancies or placing services (doctoral consultants or other persons).
I did not pay any money to persons directly or indirectly for work or services that are
related to the content of the submitted thesis.

So far, the thesis has not been submitted identically or similarly to an
examination office in Germany or abroad.

I have been notified that any incorrectness in the submitted above mentioned
declaration is assessed as attempt to deceive and, according to § 7 paragraph 10 of the
PhD regulations of the Technische Universität Ilmenau, this leads to a discontinuation of
the doctoral procedure.

Ilmenau, 15 May 2018 Dmitriy Shorin

	Title
	Abstract
	Contents
	1. Introduction
	1.1. Related Work
	1.2. Overview of the Approach
	1.3. Outline

	2. Background
	2.1. Unified Modeling Language (UML)
	2.1.1. State Charts
	2.1.2. States
	2.1.3. Substates
	2.1.4. Events
	2.1.5. Transitions

	2.2. UML MARTE Profile
	2.3. Stochastic Petri Nets
	2.3.1. Petri Nets as a Modeling Tool
	2.3.2. Formal Description
	2.3.3. Enabling and Firing Rules
	2.3.4. State Transitions

	3. Describing an Embedded System by Means of UML and MARTE Profile
	3.1. Common Elements
	3.2. Operational Model
	3.3. Application Model
	3.4. Correspondence Between the Models

	4. Transforming Models into Stochastic Petri Nets
	4.1. Transforming Regular States
	4.2. Transforming Choice Pseudostates
	4.3. Transforming Join Pseudostates
	4.4. Transforming the Initial Pseudostate
	4.5. Transforming the Attribute 𝒑𝒐𝒘𝒆𝒓𝑷𝒆𝒂𝒌

	5. Software Implementation
	5.1. Tool Description
	5.2. Integration of Energy-Aware State Machines into TimeNET
	5.3. Tool Functionality

	6. Example 1. Microcontroller
	6.1. Operational Model
	6.2. Application Model
	6.3. Transforming the Example into an SPN

	7. Example 2. Workbench
	7.1. Operational Model
	7.2. Application Model
	7.3. Transforming the Example into an SPN

	8. Summary, Conclusion, and Outlook
	Own Publications
	Bibliography
	Appendix. Software Manual
	Glossary
	Declaration of Authorship

