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1 GENERAL INTRODUCTION 

Plants make up the basis of most terrestrial food webs due to their function as primary 

producers. Plants are capable of using light energy and inorganic matter to produce biomass 

which is then consumed by herbivores. Vegetation is defining and framing ecosystems and 

drastically shapes the appearance of our planet. Regarding the multitude of herbivores, it is not 

self-evident that our planet is as green as it is. The total depletion of plants by herbivores is 

usually an exception. Although cases where plant populations are erased completely are possible, 

most plants remain more or less intact during their life. In 1960, a theory about community 

structure, population control and competition became famous as the “Green-World-

Hypothesis”(Hairston et al. 1960). Hairston claimed that our world would not be as green as it is, 

if there would be no top-down limitation of herbivores by predators. Although predation may be 

the major limiting factor for most herbivores, plants themselves are not as defenseless as they 

seem at first sight. They can promote the attraction of predators by production of herbivore 

induced plant volatiles (HIPVs; Kessler and Baldwin 2001, Schuman et al. 2012) and have 

developed a variety of defense and tolerance mechanisms against herbivores (Schuman and 

Baldwin 2016). 

Phytophagous insects make up the biggest and probably most heterogeneous group 

amongst herbivores. Often their relationship with the host plant is highly interwoven and 

characterized by a high specialization of the insect. The relationship of plants with herbivores is 

not only a hostile relation. Many plants are indeed dependent on some of their herbivores to 

produce fertile offspring. Herbivores are often not only devastating consumers or transmitters of 

diseases but at the same time also function as pollinators or disperse seeds of the plants.  

The multiple interactions with insects require a tight control of attractants for pollinators, 

defense metabolites against herbivores and investment in growth and seed-production. In that 
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regard, phytohormones play a key role in the regulation of a plant’s metabolism and its responses 

to herbivorous insects (Erb et al. 2012). 

In my thesis I will use the model plant Nicotiana attenuata and two of its most abundant 

herbivores Manduca sexta and Tupiocoris notatus to demonstrate how plant-insect interactions 

and in particular plant-herbivore interactions are shaped by cytokinins (CKs), a group of plant 

hormones. I will show, how CKs are involved in the modulation of anti-herbivore defenses and 

that they can shape the optimal distribution of defense metabolites. I will show that CKs are able 

to even influence feeding preferences of insects and that a free living, sap feeding insect is 

capable of manipulating the host plant’s metabolism by injecting CKs. 

1.1 Plant-herbivore interactions 

Plants are constantly attacked by phytophagous insects. We can assume that the history of 

insects consuming plants is almost as old as the history of plants and insects itself. The first 

evidence of terrestrial arthropod herbivores dates back to around 400 million years ago 

(Labandeira 2007). Since then, herbivorous insects and plants have been in a constant 

evolutionary arms race leading to specializations and adaptations on both sides.  

Plants developed defense mechanisms to defend against herbivores, which range from 

physical barriers, like thick cuticles and thorns, over the production of toxic or anti-digestive plant 

metabolites to the indirect defense by attraction of predators through the emission of HIPVs 

(Schuman and Baldwin 2016).  

The production of defenses is energy consuming and resource demanding, and can impair 

a plant’s growth and seed production in the case that the plants do not face an attack by 

herbivores; however it may provide an advantage in the presence of herbivores (Baldwin 1998). 

This drawback of defense production is partially circumvented, as some defense metabolites are 

not constitutively expressed, but only produced on demand after herbivore perception. 

The distinction of herbivory from mechanical wounding, which would not require defense 

activation, occurs through herbivory associated elicitors (HAEs) which are present in oral 

secretions, oviposition secretions or are degradation products of plant tissue (Mithofer and Boland 

2008, Hilker and Meiners 2010, Bonaventure 2014). Several compounds have been shown to act 

as HAEs, such as fatty acid amino acid conjugates (FACs; Alborn et al. 1997, Bonaventure et al. 

2011), disulfoxy fatty acids(caelifierins; Alborn et al. 2007), peptides released from digested plant 

proteins, like from the γ-subunit of the chloroplast ATPase (Schmelz et al. 2006), pectins and 

oligogalacturonides from cell wall degradation (Bishop et al. 1981), as well as enzymes like β-

glucosidase (Hopke et al. 1994, Mattiacci et al. 1995) or lipases (Schäfer et al. 2011). The 

perception of HAEs leads to changes in several signaling pathways in the plant (Wu and Baldwin 

2010, Bonaventure 2014), including changes in membrane potential and Ca2+ influx (Maffei et al. 

2004), reactive oxygen species (Orozco-Cardenas and Ryan 1999), mitogen activated protein 
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kinases (MAPK; Wu et al. 2007) as well as in the levels of phytohormones like jasmonic acid 

(JA), salicylic acid and ethylene (Schmelz et al. 2009). 

JA and JA-dependent signaling cascades have been identified as the key players in 

responses to herbivore attack (reviewed in Howe and Jander 2008, Wu and Baldwin 2010). Levels 

of JA are increased after herbivory and converted to a bioactive conjugate with isoleucine (JA-Ile) 

through JASMONATE RESISTANT (JAR) enzymes (Wang et al. 2007, Suza and Staswick 

2008). JA-Ile binds to CORONATIN INSENSITIVE 1 (COI1) of the Skp/Cullin/F-box complex - 

SCFCOI1 -leading to the ubiquitination of JASMONATE ZIM-DOMAIN (JAZ) proteins and their 

subsequent degradation by the 26S proteasome (Chini et al. 2007, Yan et al. 2007, Oh et al. 

2012). The degradation of JAZ proteins leads then to an activation of JA responsive genes, as they 

are repressors of transcription activators like MYC2 (Kazan and Manners 2008).  

Plants are capable of detecting different types of damage and different types of HAEs and 

respond differently to it (Voelckel and Baldwin 2004, Diezel et al. 2009, Erb, et al. 2012). The 

differentiated answer to different herbivores requires more than a simple unidirectional response 

cascade, but more likely a regulatory network connecting the JA signaling with other signaling 

cascades involving also other phytohormones (reviewed in Erb, et al. 2012). Considering this, we 

showed in manuscript I, how CK concentrations and CK related transcripts are influenced by 

herbivore feeding. In manuscript II, we show how CKs are modulating transcripts and levels of 

herbivore induced defenses and how they influence the JA signaling. 

The variability of responses to herbivory may also be due to adaptations to the huge 

variability of feeding strategies and specializations of insects. The most obvious cases of 

herbivores are chewing herbivores which remove parts of the plant tissue like leaves, flowers, 

seeds, stem or roots. Piercing-sucking insects do not cause such an obvious damage, even though 

its effect can be as devastating as those of chewing herbivores. Some of them, like aphids are 

specialized phloem feeders that extract nutrient rich photosynthate, others are feeding on cell-

content or the apoplast by regurgitating digestive enzymes and sucking on solved plant content.  

The majority of the chewing, as well as the piercing sucking insects, are able to move 

more or less freely on the plant, between plants and sometimes even between species. However, 

some insects have evolved an endophytic lifestyle within the plant tissue itself. Those endophytic 

insects usually spend their larval stages, within the plant. This live style requires high 

specialization as the insect is highly dependent on the chosen host plant. There are insects living 

in the stem pith of the plant, like Trichobaris mucorea in tobacco stalks (Diezel et al. 2011b). 

Some are living in leaf tissue, like leaf-miners. And others are living in specialized organs, called 

galls, whose development was triggered by the endophytic insects itself. At least in the case of 

leaf-miners and gall forming insects, it has been demonstrated that the insects are able to increase 

the quality of their nearby plant habitat (reviewed in Giron et al. 2016): Leaf-miners are known to 

cause the phenomenon called green islands around their feeding sites, which are green areas of 
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increased photosynthetic activity and higher nutrient content in senescent leaves (Engelbrecht 

1968, Behr et al. 2010, Kaiser et al. 2010, Body et al. 2013). Gall-forming insects are even 

capable of creating a new plant organ, which is metabolically active, rich in nutrients and usually 

features lower levels of defense compounds by reprogramming the expression of plant genes (e.g. 

Hartley 1998, Nabity et al. 2013). Both types of insects, gall formers and leaf-miners, have been 

shown to manipulate the plant metabolism to their own benefit via phytohormone-dependent 

processes (Engelbrecht 1968, Engelbrecht et al. 1969, Elzen 1983, Giron, et al. 2016).  

In manuscript VI, I show that the strategy of manipulating the plant metabolism via 

phytohormones might not only be a strategy used by endophytic insects, but also of piercing-

sucking herbivores. I show that the free living piercing-sucking herbivore T. notatus manipulates 

its host plant N. attenuata likely via direct injection of CKs. 

1.2 Plant defense theories 

To budget resources, plants have to regulate and minimize their investment in costly 

defense production. I just laid out in the last section of this introduction, how defense metabolites 

are only produced after induction by herbivore attack and adapted to the attacker. Besides their 

production on demand, plant defenses undergo further developmental regulation. To maximize its 

fitness in nature, a plant always has to balance its limited resources between growth, development 

and reproduction on one hand and plant defenses on the other hand. Several theories have been 

established in the past to explain this developmental regulation of defenses (reviewed in Stamp 

2003, Meldau et al. 2012, Schuman and Baldwin 2016) These theories do not exclude each other 

but overlap and focus on different aspects.  

Besides other important theories like the carbon:nutrient balance (CNB) hypothesis 

(Bryant et al. 1983, Tuomi et al. 1988) or the growth rate (GR) hypothesis (Coley et al. 1985), the 

most influential theories have been the growth-differentiation-balance (GDB) hypothesis (Herms 

and Mattson 1992) and the optimal defense (OD) theory (McKey 1974, Rhoades 1976). CNB, GR 

and GDB focus on the physiological parameters and resource availability, whereas the OD theory 

focuses on the functional aspect of defense distribution. 

The CNB hypothesis states that nutrient availability from the environment determines the 

form and ratio of defense metabolites via the carbon:nitrogen ratio (Bryant, et al. 1983, Tuomi, et 

al. 1988). 

The GR hypothesis (Coley, et al. 1985) states that the production of defense metabolites is 

dependent on the inherent growth rates of the plant, which is in turn dependent on the resource 

availability. If resources are limited, slow growth rates are favored over fast growth rates. Slow to 

intermediate growth rates in turn favor large investments in defenses, whereas fast growth rates 

are associated to low investment in defense. 
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The GDB hypothesis (Herms and Mattson 1992) divides plant activity on a cellular level 

in growth related processes and differentiation related processes, which include the production of 

defense metabolites. Growth and differentiation need to be balanced in a trade-off, as 

differentiation processes divert resources from the production of new leaf area and differentiation 

processes on the other side are constrained by cell-division and enlargement processes. As 

resource availability constrains both, growth and differentiation processes, the largest investment 

should occur at intermediate growth rates. 

Other than CNB, GR and GDB theories, the OD theory includes a functional level and 

evolution theory to explain the deployment and distribution of plant defenses (Rhoades 1979). 

The OD theory claims that the kind of defenses and its distribution that evolved in a particular 

plant might reflect the threats a particular plant or plant part faces or has faced during evolution 

(McKey 1974, Rhoades 1976). It claims that 1) production of plant defenses is costly as it diverts 

resources from growth and reproduction and 2) that defenses and their allocation evolved in a way 

that maximizes a plant’s fitness in a specific environment. Focusing on a single plant, the main 

observation is that plant defenses are unequally distributed in different plant parts. The OD theory 

predicts that the investment in defenses in a particular plant part is positively correlated with its 

risk of facing herbivore attack and its value for the plants fitness. Regarding leaves of an annual 

plant, this usually means that younger leaves should be better protected than older leaves. 

Younger leaves usually provide a higher value to the plant, as their remaining contribution to a 

plants carbon fixation at a given time is bigger than those of older leaves (Harper 1989, Barto and 

Cipollini 2005). 

Distributions of defenses predicted by the OD theory have been reported for many plant 

species and different types of defense metabolites. In various plant species it has been shown that 

alkaloids like nicotine follow an OD distribution (James 1950, Mothes 1955, Ohnmeiss et al. 

1997, Ohnmeiss and Baldwin 2000, Kariñho-Betancourt et al. 2015). Other direct defenses like 

iridoid glycosides in Plantago lanceolata (Bowers and Stamp 1992), cyanogenic glycosides in 

Eucalyptus cladocalyx (Gleadow and Woodrow 2000), xanthotoxin in Pastinaca sativa (Zangerl 

and Rutledge 1996), terpenoids in Solidago altissima (Heath et al. 2014), terpenoid aldehydes in 

cotton plants (Anderson and Agrell 2005), glucosinolates in Arabidopsis thaliana (Brown et al. 

2003) as well as other phenolic compounds in the seagrass Posidonia oceanica (Agostini et al. 

1998) and N. attenuata (Onkokesung et al. 2012) all show within plant or within developmental 

patterns supporting the OD predictions: more defenses in more important tissues, like 

reproductive tissue and young leaves. Also the distribution of indirect defenses, namely volatile 

organic compounds in Phaseolus lunatus and Ricinus communis have been shown to be higher in 

younger leaves (Radhika et al. 2008). 

Although there have been many confirmations of the OD theory, the underlying 

mechanisms regulating the developmental distribution of defenses remained elusive due to the 
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lack of possible manipulations (Meldau, et al. 2012). In manuscript III, I show how inducible 

defenses in N. attenuata follow a distribution predicted by the OD theory and how these 

distributions can be changed by genetically changing natural distributions of CKs. This study may 

provide a possible tool to further explore the mechanisms behind OD. In manuscript IV, we 

show that Myb8 an R2/R3 MYB transcriptional activator that was known to regulate 

phenolamides (Kaur et al. 2010), which follow OD predictions, is also involved in the regulation 

of other defenses following OD predictions like trypsin proteinase inhibitors (TPI), as well as a 

threonine deaminase (TD). Myb8 might play an important role in the regulation of defenses 

following an optimal distribution. 

1.3 Cytokinins 

CKs are a group of plant hormones that are involved in the control of numerous 

fundamental biological processes in plants (Werner and Schmülling 2009, Kaminek 2015). Their 

discovery goes back to the observations that certain compounds in the phloem sap of several 

plant-species could induce the division – or cytokinesis - of potato parenchyma cells (Haberlandt 

1913). It took more than 40 years to isolate and identify the first CK, kinetin from herring sperm 

(Miller et al. 1955a, Miller et al. 1955b, Miller et al. 1956) which is a secondary oxidation 

product from DNA (Hall and Deropp 1955, Barciszewski et al. 1997). The first natural plant CK 

discovered was trans-zeatin, named after the plant species Zea mays where it was isolated from 

immature maize kernels (Letham 1963, Miller 1965, Letham 1966). Since then several members 

of this group of hormones have been discovered (see for example Sakakibara 2006). 

Natural plant CKs are adenine derivatives carrying a sidechain at the N6-position (see 

figure 1). The most commonly found plant CKs are carrying an isprenoid sidechain, although in 

some cases also CKs with an aromatic sidechain are reported (Horgan et al. 1973, Strnad 1997). 

The naturally occurring, isoprene containing CK bases are trans-zeatin (tZ), cis-zeatin (cZ), 

dihydrozeatin (DHZ) and N6-isopentenyladenine (IP). Plant tissue also contains the ribosylated 

forms of those CKs, tZR, cZR, DHZR and IPR, as well as various glycosylated forms which are 

CK inactivation and degradation products (Sakakibara 2006). 
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CKs and especially the free bases occur in tiny amounts, down to a femto-molar range, 

making it hard to quantify them. Effective and economic ways for quantification with mass 

spectrometry have developed in the last two decades. In my studies, I used a CK extraction and 

quantification method based on the method published by Dobrev and Kaminek (2002) and 

Kojima et al. (2009). This method is based on a solid-phase extraction procedure and detection 

using LC-MS/MS. We developed this extraction method further and combined it with the 

detection of more than 100 plant metabolites in a high-throughput extraction procedure on a 96 

sample scale (Schäfer et al. 2016). 

Figure 1: Overview over the cytokinins and the cytokinin-pathway 

Known isoprenoid plant cytokinins (CKs) and the synthetic CK benzylaminopurine. The top line shows the 
CK core and the position of possible residues on the core. Below there is an overview on the different CKs 
that base on each of these four CK cores. The bottom right shows an overview of the CK-pathway. This 
figure is part of a figure that I designed for the manuscript of Schäfer, et al. (2016). 

 

Isoprenoid CKs consist of an adenine and an isoprene moiety. The adenine-part can 

originate from AMP, ADP or ATP or from tRNAs (Sakakibara 2006). If AMP, ADP and ATP are 

used as isoprene acceptors, adenosine phosphate-isopentenyltransferases (IPTs) catalyze the 

addition of the isoprene moiety to adenosine and forms CK nucleotides (di-, tri-, and 

monophosphates; Kakimoto 2001, Takei et al. 2001, Miyawaki et al. 2006). If tRNA is the 
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isoprene acceptor, tRNA-isopentenyltransferases are catalyzing the addition of the isoprene 

(Miyawaki, et al. 2006). cZR and its base cZ are thought to be synthesized from tRNA whereas 

tZ, DHZ and IP are synthesized from adenosine (Miyawaki, et al. 2006). Nevertheless, also IPR 

and tZR have been found in tRNA hydrolysates (Taller 1994). The isoprene moiety can originate 

either from the methylerythriol phosphate (MEP) or the mevalonate pathway (MVA). Isoprenes 

used by tRNA-IPT usually originate from MVA pathway, whereas those used by adenosine-IPTs 

originate mostly from MEP pathway (Kasahara et al. 2004). 

The di- and tri-phosphates originating from isoprenylation are dephosphorylated by 

phosphatases subsequently to monophosphates. The monophosphates are then converted by the 

cytokinin nucleoside 5’-monophosphate phosphoribohydrolases (LOGs) to the ribosides 

(Kurakawa et al. 2007), which can be converted to the free bases. 

CKs can be degraded by CK-oxidases (CKX) to adenine or adenosine and the 

corresponding aldehyde of the side-chain (Whitty and Hall 1974, Brownlee et al. 1975, Mok and 

Mok 2001). Inactivation of CKs occurs reversibly to the O-glucoside by the zeatin-O-

glucosyltransferase (ZOGT) and irreversibly to N-glucosides by the CK-N-glucosyltransferase 

(CK-N-GT; Brzobohaty et al. 1993). The occurring CK glucosides have so far not been proven to 

have a biological activity and are therefore generally considered to be inactive. 

The free bases have been shown to have the highest binding affinity to the CK receptors, 

making it by definition the active forms of CKs (Lomin et al. 2015). In classical tests for CK 

activity also some of the ribosides have shown biological activity and there are also reports that 

ribosides can bind to the receptors as well (Spichal et al. 2004, Yonekura-Sakakibara et al. 2004, 

Stolz et al. 2011). In activity tests tZ and IP have been identified as the most active CKs, whilst 

DHZ and cZ show lower to almost no activity. The binding affinities of particular CKs to specific 

receptors vary amongst different plant species and receptors (Lomin et al. 2012). Nevertheless, it 

became clear that also cZ and cZR, which are often much more abundant than other CKs, might 

play important roles in plants as well (Gajdosova et al. 2011a, Gajdosova et al. 2011b, 

Großkinsky et al. 2013). In a review article we summarized the current knowledge about the role 

of cis-type CKs in plant growth regulation and its role in responses to environmental factors 

(Schäfer et al. 2015). My contribution was to review the current knowledge about the role of cZ 

in plant growth and development. 

Changes in CK levels are perceived through CHASE (cyclase/histidine kinase associated 

sensing extracellular) domain containing hisitidine kinases (CHKs; Yamada et al. 2001) as part of 

a His-to-Asp phosphorelay (Gruhn and Heyl 2013). Via hisitidine-containing phosphotransfer 

proteins (HPTs) type-B response regualtors (RRB) are activated and act as transcription factors 

(Hwang et al. 2012) to induce the expression of CK responsive genes, including type-A response 

regulators (RRAs). 
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CKs are named after the first discovered function, the cytokininesis or promotion of cell 

division. This is what has been defined as the “classical” function of CKs and where many tests of 

CK-function, for example with oat leaves or tobacco pith, are based on (reviewed in Gyulai and 

Heszky 1994). Due to their cell-division stimulating function, synthetic CKs like 6-

benzylaminopurine are widely used in plant cell culture. Until now, CKs have been associated to 

many other biological processes in plants, especially in growth and development (Werner and 

Schmülling 2009). CKs have been shown to regulate cell-cycle control (Frank and Schmülling 

1999), regulate apical dominance (Werner et al. 2003) and meristem function (Kurakawa, et al. 

2007, Kyozuka 2007), they inhibit senescence (Richmond and Lang 1957, Gan and Amasino 

1995, Ori et al. 1999), are involved in nutrient homeostasis and source-sink relationships (Roitsch 

and Ehness 2000, Mok and Mok 2001) and have been shown to play important roles in responses 

to abiotic and biotic stresses including responses to pathogens and herbivores (Smigocki et al. 

2000, Argueso et al. 2009, Dervinis et al. 2010, Werner et al. 2010, Reguera et al. 2013). CKs 

often act in concert with and mainly as antagonists of auxins (Müller and Leyser 2011). Other 

studies have revealed crosstalk of CKs and CK-dependent signaling pathways with several other 

plant hormones (Robert-Seilaniantz et al. 2011, Durbak et al. 2012, Naseem et al. 2012, El-

Showk et al. 2013, Meza-Canales et al. 2016).  

The fact that CKs have such tremendous effects on a plants development and growth 

makes manipulations, especially transgenic manipulations very difficult. CK manipulations often 

cause massive developmental effects and often lead to lethal genotypes (e.g. Klee et al. 1987). 

Also the fact that CKs are used in cell-culture and callus-induction makes a manipulation of the 

CK perception critical, as this already interferes with established transformation techniques. In the 

past, some strategies have been developed to circumvent these obstacles. Besides external 

application of CKs, IPT genes have been expressed under the control of stress- or 

developmentally induced promoters (Smigocki et al. 1993, Gan and Amasino 1995, Jordi et al. 

2000, Qin et al. 2011). In my studies, I used three different transgenic approaches to achieve CK 

manipulations with a minimal interference with the plants development: In manuscript II and 

VI, I used N. attenuata plants with two of the three known CK-receptors silenced (irchk2-3) to 

explore the role of CK perception and signaling on plant herbivore interactions. In manuscript 

III, I was using transgenic N. attenuata plants with a senescence activated IPT from Arabidopsis 

(SAG-IPT4). This construct is inactive until the plants start their reproductive phase. This enables 

a normal development of the plant until flowering. With this construct we could examine the 

effects of increased CK production in old plant parts that usually feature low CK levels, on its 

interaction with herbivores. In manuscript III and V, I used transgenic plants with an IPT under 

the control of a chemically-inducible pOp6/LhGR expression system (i-ovipt). This construct is 

inactive until induced by the elicitor dexamethasone (DEX). I used these plants to examine the 
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influence of locally and temporally restricted increase in CK production on the interaction with 

herbivores. 

1.4 Cytokinins and insects - a special case for endophytes? 

After the first natural CKs have been identified (Letham 1963), it only took a few years, 

until the first evidence for the involvement of CKs in plant-insect interactions were found in the 

late sixties. CK activity has been detected in leaf-gall tissue and later confirmed to be caused by 

high levels of CKs in this tissue (Matsubar.S and Nakahira 1967, Elzen 1983). Almost at the same 

time increased levels of CKs have been found in green islands around the feeding sites of leaf-

miners (Engelbrecht 1968, Engelbrecht, et al. 1969). Green islands and leaf-galls share that they 

can be caused by endophytic insects. Endophytic insects are tightly bound to their hostplant and 

need to control the conditions in the hostplant, as they are unable to move to other plants and need 

to assure their nutrient supply. The assurance of their nutrition requires a metabolically active 

tissue locally around their feeding sites. It has been shown that leaf-miners and gall-forming 

insects are able to hijack the plants metabolism and locally increase the levels of photosynthesis 

and nutrients and – in case of gall-forming insects – even cause the formation of an entirely new 

plant organ (Stone and Schönrogge 2003, Shorthouse et al. 2005, Behr, et al. 2010, Body, et al. 

2013, Giron, et al. 2016, Zhang et al. 2016). As processes like inhibition of senescence, increase 

of photosynthesis and generation of sinks have been accounted to CKs, it seems obvious that CKs 

are considered as a main factor in this manipulation. 

Indeed higher levels of CKs have not only been found in gall-tissue and green-islands, but 

also have been found in high amounts in the body and salivary glands of gall-forming insects and 

leaf-mining insects (Engelbrecht, et al. 1969, Matsui et al. 1975, Mapes and Davies 2001, 

Dorchin et al. 2009, Straka et al. 2010, Yamaguchi et al. 2012, Body, et al. 2013, Tanaka et al. 

2013). As some bacteria and microorganisms were also known to produce CKs, and gall- and 

green island formation can also be caused by microorganisms, it was hypothesized that CKs in 

insects might be produced by endosymbiotic bacteria (Kaiser, et al. 2010). Studies with 

Phyllonorycter blancardella demonstrated that antibiotic treatment of the insects eliminated the 

green islands effect caused by the insect (Body, et al. 2013). This provides strong evidence, that 

endosymbiotic bacteria in the insects provide high amounts of CKs that are transferred by the 

insect to the plant to manipulate the host-plants metabolism. The transfer of CKs to the plant has 

been generally assumed, but a rigorous test has been elusive so far.  

Furthermore, studies on the CK-mediated manipulation of plant metabolism have so far 

only focused on endophytic herbivores, which represent some very specialized cases. Only little is 

known about the role of CKs in the interaction of plants with free living herbivorous insects. It 

has been shown that CKs can influence plant defenses against herbivores and pathogens 

(Smigocki, et al. 1993, Smigocki, et al. 2000, Choi et al. 2010, Grosskinsky et al. 2011, Argueso 
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et al. 2012, Grosskinsky et al. 2016) and also prime plant-defense responses against herbivores 

(Dervinis, et al. 2010). But nothing was known about the capability of free-living insects to 

manipulate the plants metabolism similarly to an endophytic insect. In my thesis, I analyzed the 

multiple roles of CKs in the interaction between plants and herbivores using the ecological model 

plant N. attenuata and two free living natural herbivores: M. sexta and T. notatus. In manuscript 

I, we show how that wounding and herbivore-associated elicitors are modulating the plants CK 

levels and CK signaling responses. In manuscript II, we show that changes in CK levels or CK 

signaling in the plant influences the plants anti-herbivore defense. In manuscript III, I show that 

CKs are sufficient to alter developmental gradients of defense metabolites in the plant and 

therefore play an important role in the establishment of optimal defense regulation. In 

manuscript V, I show that increased levels of CKs do not only increase levels of defense 

metabolites, but also increase the attractiveness to T. notatus. In manuscript VI, I demonstrate 

that the free living insect T. notatus contains high amounts of the CK IP similar to endophytic 

insects. With 15N-labeling experiments I could show that these insects are able to transfer IP to the 

leaves through their oral secretions. I hypothesize that T. notatus is also able to manipulate its host 

plant and that CK mediated manipulation of the host plant is a far more widespread phenomenon 

that does not only occur in endophytes. 

1.5 Nicotiana attenuata 

In my studies, I used the model plant N. attenuata, a wild tobacco species native to the 

southwestern part of North-America (figure 2). This plant naturally grows in arid habitats and 

germinates in nitrogen rich soils in the first years after fires as its germination is triggered by 

smoke-derived germination cues (Baldwin et al. 1994). As a pioneering plant in post-fire habitats, 

it is exposed to a variety of different herbivores and has evolved a great arsenal of anti-herbivore 

defenses. Due to its exceptional ecological niche and its untouched genome that never underwent 

plant breeding by humans, this plant has evolved as a model plant for ecological studies and in 

particular for plant-herbivore interactions.  

This annual plant has been well studied in its molecular and ecological interactions with 

herbivores, especially the specialist M. sexta (Baldwin 1998, Baldwin 1999, Ohnmeiss and 

Baldwin 2000, Halitschke et al. 2001, Kessler and Baldwin 2002, Paschold et al. 2007, Wu and 

Baldwin 2010). The plant became famous for the research done on HIPVs as indirect defenses 

(Kessler and Baldwin 2001, Schuman, et al. 2012), as well as the production of toxic and anti-

digestive compounds upon induction by herbivore attack. N. attenuata produces a set of various 

defense metabolites that have been proven to feature a protective function against herbivores. The 

best studied defense metabolite is nicotine (e.g. Steppuhn et al. 2004). Furthermore anti-digestive 

petides, like trypsin proteinase inhibitors (TPI; Zavala et al. 2004) or N-acetylated polyamines 
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(phenolamides; PAs) like caffeoylputrescine (CP; Kaur, et al. 2010) have been characterized in N. 

atteunata.  

In the past two decades, more than 200 transgenic plants have been created and a genome 

has been sequenced (Xu et al. 2017). Many genomic, metabolomics and transcriptomic tools are 

available (Brockmöller et al. 2017), including transcriptomes of the most abundant herbivores 

(Crava et al. 2016) and recombinant inbred lines from different ecotypes. This toolbox together 

with the possibility for experiments with transgenic plants in the natural habitat made it a useful 

tool in exploring a plant’s ecological interactions with its abiotic and biotic environment. 

Figure 2: Nicotiana attenuata and its natural habitat 

A shows a flowering N. attenuata plant in its natural environment. B shows a typical arid habitat in the 
Great Basin desert in south-western Utah, USA. C shows a bushfire that is necessary to promote the 
germination of N. attenuata. D shows a young N. attenuata plant in a post-fire environment. Pictures: A, C, 
D: Danny Kessler, B: Christoph Brütting 
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1.6 Manduca sexta and Tupiocoris notatus 

N. attenuata faces the attack of a tremendous amount of different phytophagous insects in 

nature. Due to its character as a pioneering plant in post-fire environments it provides a potential 

food-source for many insects. In previous studies, many of those interactions with specialized 

insects like M. sexta, leafhoppers, mirids, stem borers, negro bugs and others have been described 

(Heidel and Baldwin 2004, Kessler and Baldwin 2004, Kallenbach et al. 2012, Lee et al. 2016, 

Stanton et al. 2016, Adam et al. 2017). Amongst those herbivores, T. notatus is probably the most 

abundant herbivore in the natural environment and M. sexta is, together with its close relative M. 

quinquemaculata, the insect species which can cause the most severe damage. 

N. attenuata’s interaction with M. sexta, the tobacco hawk moth or Carolina sphinx moth, 

is certainly the best explored interaction. M. sexta is a sphingid Lepidopteran moth (figure 3) and 

plays a two-sided role for N. attenuata. Whilst the adult moth functions as pollinator for the plant, 

the larvae, named tobacco hornworms, are feeding on the plants. The eggs get laid on the abaxial 

side of leaves of N. attenuata, as well as other tobacco and solanaceous plants like tomato or 

Datura. The larvae grow from about 1 mg up to around 5 g in about two weeks, passing 5 larval 

stages. In the early larval stages the caterpillars are especially prone to predation. Predators of the 

larvae are attracted by HIPVs that are emitted in response to herbivory, making HIPVs a form of 

indirect defense against M. sexta (Schuman, et al. 2012).  

The larvae are inducing JA dependent defenses triggered by compounds present in their 

oral secretions, the FACs (Halitschke, et al. 2001, Halitschke et al. 2003, Kallenbach et al. 2010). 

M. sexta is resistant or tolerant to some toxic compounds produced by N. attenuata, including 

nicotine (Wink and Theile 2002). Nonetheless if defense compounds like nicotine (Voelckel et al. 

2001, Steppuhn, et al. 2004), PAs (Kaur, et al. 2010) or TPIs (Zavala, et al. 2004) are not 

produced or JA is not perceived by the plant (Paschold, et al. 2007), the growth rates of the larvae 

are increased. Studies have demonstrated that M. sexta larvae can metabolize and excrete nicotine 

and can even use nicotine for their own protection against predators (Kumar et al. 2014). 

Due to the size of the later larval instars and the adults, as well as the relative ease of 

rearing in laboratories, M. sexta has established as a model system not only in plant-herbivore 

interactions but also in neurobiology. I used M. sexta or M. sexta oral secretions to induce 

herbivore elicited defense mechanism in N. attenuata in manuscripts I, II, III, IV and V. 
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Figure 3: Manduca sexta in different developmental stages 

A shows mating adult moths. B shows eggs and a neonate larva on the abaxial side of a leaf from N. 
attenuata. C shows an almost fullygrown caterpillar. Pictures: A, B: Danny Kessler, C: Christoph Brütting 

 

The other herbivore I worked with in manuscripts V and VI, T. notatus is a small mirid 

bug (figure 4), feeding exclusively on tobacco and sometimes closely related solanaceous plants 

like Datura. It is part of the family Miridae in the suborder Heteroptera. Adult insects reach a 

length of about 3 mm and a weight of about 0.5 mg. Typical for Heteroptera mirids have a 

hemimetabolous development with five nymphal stages. Eggs are laid under the epidermal layer 

of stem and midveins (figure 4). All nymph stages as well as adults are piercing sucking sap-

feeders. The total life cycle of the insects is – depending on the conditions - around 30 days. 

Using field observations and camera monitoring, I could find out that T. notatus is mainly night 

active in nature (Joo et al. submitted). Mirids are feeding mainly on the abaxial side of the leaf 

and are very mobile on the plant, with adults are even able to fly. If disturbed they are hiding on 

the bottom of the stem below the rosette leaves and come back to their feeding sites later. They 

prefer to feed on young growing leaf tissue such as the young stem leaves, apical buds as well as 

axial buds as I will show in manuscript VI. Generally, their interaction with N. attenuata is less 

explored as the interaction of M. sexta. Nonetheless, it is known that they are inducing defense 

metabolites similar to M. sexta (Kessler and Baldwin 2004). So far only few traits that affect T. 

notatus’ performance on N. attenuata have been discovered, like UV dependent 17-

hydroxygeranyllinalool diterpene glycoside production (Dinh et al. 2013). Generally, mirids are 

colonizing plants independently from the plants JA production (Kessler and Baldwin 2001). In a 

recent study, we could show using an RNAseq approach, that T. notatus is expressing genes for 

detoxification (Crava, et al. 2016) which could provide an explanation for their resistance. In 

manuscript V, we found another trait that influences mirid feeding preferences. We show that 

increasing levels of CKs using a DEX-inducible IPT construct (i-ovipt) is attractive to mirids and 

suffers from more damage in the field. In manuscript VI, we then also show that impairing CK 

perception using transgenic irchk2/3 plants is decreasing the attractiveness to mirids. 
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T. notatus damage is less obvious and less detrimental to the plant than damage by M. 

sexta. In fact, in studies in the natural environment T. notatus feeding did not decrease the plants 

seed production (Kessler and Baldwin 2004). The feeding leads to chlorotic spots on the leaves 

but the loss of photosynthetic tissue seems to be compensated by a higher photosynthetic rate in 

undamaged tissue which is induced by a compound in the oral secretions of the insect (Halitschke 

et al. 2011). In manuscript VI, I could show that mirids contain the CK IP in their body and oral 

secretions and are able to transfer it to the plant. I hypothesize that this might be the compound 

leading to the previously observed increase in photosynthesis and that this strategy to actively 

increase the food quality is a strategy previously only known from endophytes. 

 

Figure 4: Tupiocoris notatus 

A Adult from the top and B adult female from below. C shows the ovipositor sticking in the epidermal layer 
of the stem of a N. attenuata plant. D shows an egg (e) still sticking in the ovipositor. E shows eggs in a 
preparation of the epidermal layer of the stem of N. attenuata. F shows an egg dissected from an insect. G 
and H show nymphs of T. notatus. I shows typical damage caused by T. notatus feeding on leaves of N. 
attenuata. Pictures: Christoph Brütting  
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1.7 Objective of the thesis 

This thesis will shed light on the variety of influences CKs and CK-dependent signaling 

has on the interaction of N. attenuata and two of its major herbivores, M. sexta and T. notatus. 

Specifically, I will show how CKs are modulating defense responses upon herbivore attack by M. 

sexta and how they can alter optimal developmentally regulated distributions of defense 

metabolites in the plant. I will show that high CK levels in leaves increase its attractiveness to T. 

notatus and that the insect itself is capable of injecting CKs in the plant. For this purpose, I used 

state of the art analytical and molecular biological tools to give answers to classical questions 

from plant-herbivore research like the regulation of optimal defense patterns in plants and the role 

of phytohormones in regulation of plant-insect interactions. 
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Manuscript I: 

Cytokinin levels and signaling respond to wounding and the perception of herbivore 

elicitors in Nicotiana attenuata 
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Vanková, Ian T. Baldwin and Stefan Meldau  

Published in Journal of Integrative Plant Biology 2015, 57 (2): 198-212; DOI: 
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In manuscript I, we describe the cytokinin (CK) pathway of N. attenuata and its response 

to wounding and herbivore perception. We found complex changes throughout the CK pathway 

after wounding and herbivore perception in treated local leaves, as well as in the adjacent, 

untreated leaves and the roots. JA pathway manipulations revealed that this key regulator of 

herbivory-induced responses was not necessary for herbivory-induced CK pathway changes but 

even suppressed the CK-signaling response. Interestingly, CK pathway responses to herbivory 

were also found in A. thaliana. 

 

MS designed and performed experiments, analyzed data and drafted the manuscript. 

IDMC designed and performed experiments for systemic CK pathway changes, analyzed data 

and corrected the manuscript. ANQ designed and performed the phylogenetic experiments 

and helped with drafting the manuscript. CB contributed to the experimental design, analyzed 

data and corrected the manuscript. RV contributed analytical tools for the CK measurement 

and corrected the manuscript. ITB coordinated the study and helped with drafting the 

manuscript. SM initiated and coordinated the study, performed experiments, analyzed data 

and helped with drafting the manuscript. 
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Manuscript II: 

Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 

(NaCHK2) - and NaCHK3-mediated perception modulate herbivory-induced 

defense signaling and defenses in Nicotiana attenuata  

 

Martin Schäfer, Ivan D. Meza-Canales, Christoph Brütting, Ian T. Baldwin and Stefan Meldau  

Published in New Phytologist 2015, 207 (3): 645-658; DOI: 10.1111/nph.13404 

 

In manuscript II, we analyzed the influence of the CK pathway on the herbivory-

induced defenses of N. attenuata. Increased CK levels enhanced the herbivory-induced 

accumulation of phenolamides (Pas), such as caffeoylputrescine (CP) and partially also the 

induced trypsin proteinase inhibitor (TPI) activity. The analysis of transgenic plants silenced 

in two of the three histidin kinases that are involved in CK perception (NaCHK2 and 

NaCHK3) revealed that a functional CK pathway is indispensable for the regular induction of 

these defense responses. Interestingly, impaired CK signaling also attenuates the systemic 

accumulation of CP in response to simulated herbivory. 

 

MS designed and performed experiments, analyzed data and drafted the manuscript. 

IDMC designed and performed experiments with the stable CK receptor silenced plants, 

analyzed data and corrected the manuscript. CB contributed to the experimental design, 

performed external CK application experiments, analyzed data and corrected the manuscript. 

ITB coordinated the study, designed experiments and helped with drafting the manuscript. 

SM initiated and coordinated the study, performed experiments, analyzed data and helped to 

draft the manuscript. 
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Manuscript III: 

Changes in cytokinins are sufficient to alter developmental patterns of defense 

metabolites in Nicotiana attenuata 

 

Christoph Brütting, Martin Schäfer, Radomira Vanková, Klaus Gase, Ian T. Baldwin and Stefan 

Meldau 

Published in The Plant Journal 2017, 89 (1): 15-30; DOI: 10.1111/tpj.13316 

 

In manuscript III, we demonstrate that CKs modulate ontogeny-dependent defenses in N. 

attenuata. We found that distribution of inducible defense metabolites like CP and TPI and 

associated transcripts following predictions made by the optimal defense theory (ODT) with 

higher levels in young leaves and low levels in old leaves. Interestingly, CK levels highly 

correlated with inducible defenses. We genetically manipulated the developmental patterns of two 

different cytokinin classes by using senescence- and chemically-inducible expression of cytokinin 

biosynthesis genes. Genetically modifying the levels of different cytokinins in leaves was 

sufficient to alter ontogenic patterns of defense metabolites: We could recover inducibility of 

defenses in old leaves. 

 

CB designed and performed the experiments, analyzed the data and drafted the 

manuscript. MS contributed to the experimental design, helped with experiments with chemically-

inducible plants and CK measurements and helped with drafting the manuscript. RV measured 

CKs of the senescence inducible plants and corrected the manuscript. KG generated the transgenic 

constructs and corrected the manuscript. ITB contributed to the design of the study, and helped 

with drafting the manuscript. SM initiated and coordinated the project, contributed to the 

experimental design and helped with drafting the manuscript. 

 

 

     

  



Manuscript overview 

33 

 

Manuscript IV: 

NaMYB8 regulates distinct, optimally distributed herbivore defense traits 

 

Martin Schäfer, Christoph Brütting, Shuqing Xu, Zihao Ling, Anke Steppuhn, Ian T. Baldwin and 

Meredith C. Schuman 

Submitted as Letter to the Editor in Journal of Integrative Plant Biology (06.05.2017) 

 

In manuscript IV, we show that multiple defenses regulated by the R2/R3 MYB 

transcriptional activator NaMYB8 meet predictions by the ODT. NaMYB8 has been described 

before as a specific regulator of PA accumulation. Interestingly, we discovered that transcriptional 

regulation of biochemically very distinct TPIs and a threonine deaminase (TD) also depend on 

MYB8 expression. Induced distributions of PAs, TD and TPIs all meet predictions of optimal 

defense theory: their leaf concentrations are highest in young tissues, which have the highest 

fitness value and probability of attack. We suggest that these defensive compounds have evolved 

to be co-regulated by MYB8. 

 

MS designed and performed experiments, analyzed data and drafted the manuscript. CB 

designed and performed experiments, analyzed data and helped to draft the manuscript. SX 

conducted promoter-motif and microarray analysis and helped to draft the manuscript. ZL 

conducted promoter-motif analysis and corrected the manuscript. AS provided first data on a 

regulation of TPI by MYB8 and helped to draft the manuscript. ITB initiated the project, 

contributed to the design of the study and helped to draft the manuscript. MCS coordinated the 

project, performed experiments and helped to draft the manuscript. 
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Manuscript V: 

'Real time' genetic manipulation: a new tool for ecological field studies  

 

Martin Schäfer, Christoph Brütting, Klaus Gase, Michael Reichelt, Ian T. Baldwin and Stefan 

Meldau  

Published in The Plant Journal 2013, 76 (3): 506-18 

 

In manuscript V, we established a method for chemically-inducible gene expression 

and gene silencing in N. attenuata that is also applicable under field conditions. The method 

was evaluated by spatial, temporal and quantitative controlled expression, among others of an 

isopentenyltransferase, thereby also providing the tool for fine-tuned manipulation of 

endogenous CK levels used in manuscript II, III and VI. The analysis of CK-mediated effects 

on the natural herbivore community revealed a positive correlation between the CK level and 

the damage inflicted by the specialist herbivore T. notatus. 

 

MS designed and performed experiments, established the method for CK 

measurements, analyzed data and drafted the manuscript. CB designed and performed 

experiments with T. notatus, helped with CK measurement development, analyzed data and 

helped to draft the manuscript. KG coordinated the transformation and screening of the plants 

and corrected the manuscript. MR established the method for CK measurements (mass 

spectrometry) and corrected the manuscript. ITB initiated and coordinated the study and 

helped to draft the manuscript. SM initiated and coordinated the study, performed 

experiments, established the method for CK measurements and helped to draft the 

manuscript. 
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Manuscript VI: 

Cytokinin transfer by the free living insect Tupiocoris notatus to its host-plant 

Nicotiana attenuata recapitulates a strategy of endophytic insects  

 

Christoph Brütting, Cristina M. Crava, Martin Schäfer, Meredith C. Schuman, Stefan Meldau and 

Ian T. Baldwin 

In preparation for eLIFE 

 

In manuscript VI, we analyzed the CK-dependent interaction of the free-living cell-

content feeding herbivore Tupiocoris notatus with its hostplant N. attenuata. T. notatus attack 

elicits increases in transcripts related to CK degradation and decreases in biosynthetic genes 

suggesting active CK manipulation. Surprisingly also high levels of the CK 6-isopentenyladenine 

(IP) were found in T. notatus bodies and saliva. Using 15N-isotope labeling experiments we could 

prove that IP could be transferred from the insect to the plant in high amounts. Stable nutrient 

levels in attacked leaves, as well as a reduced attractiveness of plants with silenced CK receptors 

to mirids suggest an important role of CK injection to mirids; a strategy so far only known from 

endophytic insects. 

 

CB initiated the project, designed and performed experiments, analyzed data and drafted 

the manuscript. CMC contributed to the experimental design and performed experiments, 

analyzed data and helped to draft the manuscript. MS contributed to the experimental design 

performed experiments and helped to draft the manuscript. MCS and SM contributed to the 

experimental design and corrected the manuscript. ITB coordinated the project, contributed to the 

experimental design and helped to draft the manuscript. 
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3 MANUSCRIPTS 

3.1 Manuscript I 

Cytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in 

Nicotiana attenuata 
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3.2 Manuscript II 

Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE (NaCHK2)- and NaCHK3-

mediated perception modulate herbivory-induced defense signaling and defenses in Nicotiana 

attenuata 
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3.3 Manuscript III 

Changes in cytokinins are sufficient to alterdevelopmental patterns of defense metabolites in 

Nicotiana attenuata 
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Fig. S1. The herbivory-induced phenolamide pathway in 8 developmentally 

consecutive leaves of flowering Nicotiana attenuata plants follows a developmentally 

determined pattern. 

(A) Relative transcript accumulation of NaDH29 and (D) NaCV86 (biosynthesis 

of dicaffeoylspermidine). (C) Dicaffeoylspermidine. Levels were quantified in different 

leaf classes representing a developmental sequence from rosette leaves R-1 (youngest) to 

R-4 (oldest) and stem leaves S+1 (oldest) to S+4 (youngest). Plants were sprayed for two 

days with 1 mM methyl jasmonate (2 d MJ; dotted bars) or water as control (open bars). 

Data were analyzed by two-way ANOVAs (A) or generalized least squares models (B, 

C), p-values indicate influence of the single factors leaf and MJ-treatment or the 

interaction of both (Leaf * MJ-treat.). Error bars depict standard errors (N ≥ 5). FM, fresh 

mass.  
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Fig. S2. Non-phenolic defenses in 8 developmentally consecutive leaves only 

partially follow a developmental gradient within flowering plants of Nicotiana 

attenuata. 

(A) Relative transcript accumulations of NaTPI of trypsin proteinase inhibitor and 

(B) nicotine levels in different leaf classes (rosette leaves R-1 (youngest) to R-4 (oldest) 

and stem leaves S+1 (oldest) to S+4 (youngest) of flowering plants. Plants were sprayed 

for two days with 1 mM methyl jasmonate (2 d MJ; dotted bars) or water as control (open 

bars). Data were analyzed by two-way ANOVAs, p-values indicate influence of the single 

factors leaf and MJ-treatment or the interaction of both (Leaf * MJ-treat.). Error bars 

show standard errors (N ≥ 5). FM, fresh mass. 
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Fig. S3. Herbivory-induced defense metabolites (HIDs) and cytokinins follow 

the same within-plant distributions in Nicotiana attenuata. 

(A) Experimental design. (B) CKs (cis-zeatin, cZ; cis-zeatin riboside, cZR; 

dihydrozeatin, DHZ; dihydrozeatin riboside, DHZR; isopentenyladenine, IP; 

isopentenyladenosine, IPR; trans-zeatin, tZ; trans-zeatin ribosides, tZR; other CKs in 

table S3), (C) caffeoylputrescine, (D) dicaffeoylspermidine, (E) trypsin proteinase 

inhibitor activity and (F) nicotine levels in different leaf-classes (youngest 3 rosette leaves 

R-1-3; next older rosette leaves 4-6, R-4-6; first 3 stem leaves, S+1-3; stem leaves 4-6, 

S+4-6) of a flowering plant. Plants were sprayed for two days with 1 mM methyl 

jasmonate (2d MJ) or water (control). Open bars: control values, dotted bars: MJ induced 

levels. Data were analyzed by two-way ANOVAs, p-values indicate influence of the 

single factors leaf and MJ-treatment or the interaction of both (Leaf * MJ-treat.). 
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Statistics for CKs can be found in table S4. Different letters indicate significant 

differences (if interaction was significant: Tukey HSD post hoc test: p<0.05). Error bars 

depict standard errors (N ≥ 5). FM, fresh mass.  
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Fig. S4. The developmentally regulated pattern of the herbivory-induced 

phenolamide pathway of dicaffeoylspermidine in Nicotiana attenuata.  

(A) Picture of the two growth stages of N. attenuata used for the experiments. 

Sampled leaves are highlighted by white boxes. (B) relative transcript abundance of 

NaDH29 and (C) NaCV86 (biosynthesis of dicaffeoylspermidine) and (D) 

dicaffeoylspermidine. Levels were determined in rosette leaves of vegetative rosette 

plants and reproductive flowering plants each in control plants (open bars) and after 3 d 

of M. sexta feeding (diagonal striped bars). Data were analyzed by two way ANOVAs, p-

values indicate influence of the single factors growth-stage (GS) and M. sexta (M.s.) 

feeding or the interaction of both (GS * M.s.-feeding). Different letters indicate 

significant differences (if interaction was significant: Tukey HSD post hoc test: p<0.05). 

Error bars show standard errors (N ≥ 9). FM, fresh mass. 

  



Manuscript III 

146 

 

 

Fig. S5. Developmental regulation of protease inhibitor activity and nicotine 

levels in leaves of Nicotiana attenuata. 

(A) Trypsin proteinase inhibitor activity and (B) levels of nicotine in leaves of 

plants in two different growth stages (rosette, flowering) after 3 d Manduca sexta feeding 

(diagonally striped bars) and in untreated control plants (open bars). Data were analyzed 

by two way ANOVAs, p-values indicate influence of the single factors growth-stage (GS) 

and M. sexta (M.s.) feeding or the interaction of both (GS * M.s.-feeding). Different 

letters indicate significant differences (if interaction was significant: Tukey HSD post hoc 

test: p<0.05). Error bars show standard errors (N ≥ 9). FM, fresh mass. 
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Fig. S6. Correlations of cytokinin levels with the accumulations of different 

anti-herbivore defenses in Nicotiana attenuata.  

Caffeoylputrescine, dicaffeoylspermidine, NaTPI transcript levels and nicotine in 

different leaves of flowering plants were plotted against CKs (isopentenyladenine, IP; 

isopentenyladenosine, IPR; trans-zeatin, tZ; trans-zeatin riboside, tZR) in the same 

leaves. Values are from leaves induced two days with 1 mM methyl jasmonate. p-values 

in the graphs represent results of a Pearson Product Moment Correlation. (N ≥ 78). FM, 

fresh mass. 
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Fig. S7. Manipulating the within-plant cytokinin gradient alters the 

distribution of dicaffeoylspermidine in Nicotiana attenuata. 

(A) Relative transcript accumulation of NaDH29 and (B) NaCV86 (biosynthesis 

of dicaffeoylspermidine) and (C) dicaffeoylspermidine in different leaf classes (rosette 

leaves 4-6, R-4-6,rosette leaf 3, 2 and 1 with R-1 being the youngest and R-6 being the 

oldest, first 3 stem leaves 1-3 (S+1-3) and stem leaves 4-6 (S+4-6)) of flowering plants 

transformed with a construct for dexamethasone-inducible expression of the CK 

biosynthesis enzyme isopentenyltransferase (i-ovIPT). One young rosette leaf (R-2) was 

treated with 5 µM dexamethasone and 1% DMSO in lanolin paste (DEX; red color; ↑CK) 

to increase levels of tZ-type CKs in the leaves or with 1% DMSO in lanolin as control 

(Mock, white color). All other leaves were mock-treated. Grey bars indicate levels from 

plants in which one leaf was DEX-treated. Plants were sprayed for two days with 1 mM 

methyl jasmonate (MJ). p-values from a t-test comparing the mock with the DEX treated 

R-2. Error bars depict standard errors (N ≥ 4). FM, fresh mass. 
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Fig. S8. Manipulating the within-plant cytokinin gradient does not alter the 

distribution of nicotine and trypsin proteinase inhibitor activity in Nicotiana 

attenuata.  

(A) Trypsin proteinase inhibitor activity and (B) levels of nicotine in different leaf 

classes (Rosette leaves 4-6, R-4-6, rosette leaf 3, 2 and 1 with R-1 being the youngest and 

R-6 being the oldest, first 3 stem leaves 1-3 (S+1-3) and stem leaves 4-6 (S+4-6)) of 

flowering plants transformed with a construct for dexamethasone-inducible expression of 

the CK biosynthesis enzyme isopentenyltransferase (i-ovIPT). One young rosette leaf (R-

2) was treated with 5 µM dexamethasone and 1% DMSO in lanolin paste (DEX; red 

color; ↑CK) to increase levels of tZ-type CKs in the leaves or with 1% DMSO in lanolin 

as control (Mock, white color). All other leaves were mock-treated. Grey bars indicate 

levels from plants in which one leaf was DEX-treated. Plants were sprayed for two days 

with 1 mM methyl jasmonate (MJ). p-values are derived from a t-test comparing the 

mock with the DEX treated R-2. Error bars depict standard errors (N ≥ 4). FM, fresh 

mass. 
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Fig. S9: Manipulating the within-plant cytokinin gradient alters the 

distribution of two phenolamides but not of nicotine and trypsin proteinase 

inhibitors (TPI) in Nicotiana attenuata. (A) Experimental setup (B) CKs (cis-zeatin, cZ; 

cis-zeatin riboside, cZR; dihydrozeatin, DHZ; dihydrozeatin riboside, DHZR; 

isopentenyladenine, IP; isopentenyladenosine, IPR; trans-zeatin, tZ; trans-zeatin riboside, 

tZR; ; other CKs in table S8). (C) Caffeoylputrescine, (D) dicaffeoylspermidine, (E) TPI-

activity and (F) nicotine in different leaf classes (Rosette leaves R-2 and R-1 and stem 

leaves S+1 and S+2) of flowering plants transformed with a construct for dexamethasone-

inducible expression of the CK-biosynthesis enzyme isopentenyltransferase (i-ovIPT). 

Leaves were either treated with 5 µM dexamethasone and 1% DMSO in lanolin paste 

(DEX; red color; ↑CK) to increase levels of tZ-type CKs in the leaves or with 1% DMSO 
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in lanolin as control (Mock, grey color). Plants were sprayed for two days with 1 mM 

methyl jasmonate (MJ). Data were analyzed by two-way ANOVAs (C-F), p-values 

indicate influence of the single factors leaf and DEX-treatment or the interaction of both 

(Leaf * DEX-treat.). Statistics for CKs can be found in table S9. Error bars depict 

standard errors (N ≥ 11). FM, fresh mass. 
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Fig. S10. Characterization of SAG-IPT4 transgenic Nicotiana attenuata 

plants. 

(A) Plasmid vector pRESC2IPT4 for the overproduction of the Arabidopsis 

thaliana isopentenyltransferase 4 (AtIPT4) driven by the promotor of A. thaliana 

senescence-associated gene 12 (PSAG). LB/RB: left- and right border of the T-DNA; 

PNOS/TNOS: promoter/terminator of the nopaline synthase gene from the Ti plasmid of 

Agrobacterium tumefaciens; hptII: hygromycin phosphotransferase gene from 

pCAMBIA-1301 (AF234297); TCaMV: terminator from cauliflower mosaic virus; bla: 

beta-lactamase gene (ampicillin resistance); nptII, aminoglycoside phosphotransferase 

class II. (B) PSAG Promotor activity: relative transcript accumulation of AtIPT4 in WT 

and SAG-IPT4 lines (light red background). Levels were determined in youngest rosette 

leaf of a flowering plant after three days of Manduca sexta feeding (diagonal striped bars) 

and in leaves of unattacked control plants (open bars). Asterisks indicate significant 

differences between control and M. sexta-induced leaves (p<0.05; Wilcoxon rank sum 
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test). Error bars show standard errors (N ≥ 9). (C) Growth phenotype of SAG-IPT4 plants 

in flowering (1) and rosette stage (2).  
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Fig. S11. Restoring cytokinin levels to an earlier developmental stage 

recovers inducibility of a major phenolic defense pathway in Nicotiana attenuata. 

(A) Relative transcript accumulation of NaDH29 and (B) NaCV86 (biosynthesis 

enzymes of dicaffeoylspermidine) and (C) dicaffeoylspermidine in WT and senescence-

activated CK overproducing SAG-IPT4 lines. Levels were determined in the youngest 

rosette leaf of a flowering plant after three days of Manduca sexta feeding (diagonal 

striped bars) and in leaves from unattacked control plants (open bars). Data were analyzed 

by two-way ANOVAs (C) or generalized least squares-models (A, B), p-values indicate 

influence of the single factors genotype (line) and M. sexta (M.s.) feeding or the 

interaction of both (Line * M.s.-feeding). Results for line SAG-IPT4-2 can be found in 

tables S12 – S15. Different letters indicate significant differences (if interaction was 

significant: Tukey HSD post hoc test, p<0.05). Error bars show standard errors (N ≥ 5). 

FM, fresh mass. 
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Fig S12. Protease inhibitor activity and nicotine levels in leaves of cytokinin-

overproducing SAG-IPT4 Nicotiana attenuata plants.  

(A) Nicotine and (B) trypsin proteinase inhibitor activity in WT and a senescence-

activated CK overproducing SAG-IPT4 line. Experiments were conducted with the 

youngest rosette leaf of a flowering plant after three days of Manduca sexta feeding 

(diagonal striped bars) and with the same leaf position on unattacked control plants (open 

bars). Data were analyzed by two-way ANOVAs, p-values indicate influence of the single 

factors genotype (line) and M. sexta (M.s.) feeding or the interaction of both (Line * M.s.-

feeding). Results for line SAG-IPT4-2 can be found in tables S12 and S13. Different 

letters indicate significant differences (if interaction was significant: Tukey HSD post hoc 

test: p<0.05). Error bars show standard errors (N ≥ 5). FM, fresh mass. 
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3.4 Manuscritp IV 

NaMYB8 regulates distinct, optimally distributed herbivore defense traits 

 

Martin Schäfer1, Christoph Brütting1, Shuqing Xu1, Zhihao Ling1, Anke Steppuhn2, Ian T. 

Baldwin1 and Meredith C. Schuman1* 

 
1Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-

Str.8, 07745 Jena, Germany 

2Molecular Ecology, Dahlem Centre of Plant Sciences (DCPS), Institute of Biology, Freie 

Universität (FU) Berlin, Haderslebener Str. 9, 12163 Berlin, Germany 

 

 

* To whom correspondence should be addressed. Email: mschuman@ice.mpg.de 

 

Submitted as Letter to the Editor in Journal of Integrative Plant Biology (06.05.2017) 

 

Summary 

When herbivores attack, plants specifically reconfigure their metabolism. Herbivory on 

the wild tobacco Nicotiana attenuata strongly induces the R2/R3 MYB transcriptional activator 

MYB8, which was reported to specifically regulate the accumulation of phenolamides (PAs). We 

discovered that transcriptional regulation of trypsin protease inhibitors (TPIs) and a threonine 

deaminase (TD) also depend on MYB8 expression. Induced distributions of PAs, TD and TPIs all 

meet predictions of optimal defense theory: their leaf concentrations increase with the fitness 

value and the probability of attack of the tissue. Therefore, we suggest that these defensive 

compounds have evolved to be co-regulated by MYB8. 

 

Running Title: NaMYB8 as an “optimal defense” regulator 

 

Keywords: MYB8, Nicotiana attenuata, Manduca sexta, trypsin protease inhibitor, threonine 

deaminase, phenolamides, optimal defense hypothesis, herbivory  
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 As primary producers, plants have developed intricate strategies to defend 

themselves against herbivores, including chemical defenses that act as anti-digestives, toxins, or 

repellents, or attract predators and parasitoids of herbivores. These responses are often tailored to 

particular herbivores, who reveal themselves by the elicitors they secrete, and other feeding-

associated traits. The tailoring of defense in response to herbivore elicitation helps plants to 

respond appropriately to different attackers, and to avoid fitness costs incurred by unnecessary 

production of defensive compounds (Baldwin 1998).  

 In the wild tobacco, Nicotiana attenuata, the recognition of fatty acid-amino acid 

conjugates, elicitors present in the oral secretions (OS) and regurgitant of its specialist herbivore 

Manduca sexta (Halitschke et al. 2001), induce the rapid accumulation of jasmonate hormones, 

which can activate the transcription of secondary regulators like MYB8 via transcription factors 

such as MYC2, to induce specific defense responses (Woldemariam et al. 2013). MYB8 was 

discovered as a homolog of the R2/R3-type MYB transcription factor NtMYBJS1 from cultivated 

tobacco (Nicotiana tabacum) and shown to regulate the accumulation of phenolamides (PAs) in 

BY-2 tobacco cell cultures in a JA-dependent manner (Galis et al. 2006). In N. attenuata MYB8 

transcripts accumulate after herbivory, resulting in the transcription of genes related to 

phenolamide (PA) biosynthesis, in particular the three hydroxycinnamoyl-coenzyme A: 

polyamine transferases, AT1, DH29 and CV86 (Kaur et al. 2010; Onkokesung et al. 2012). Plants 

rendered deficient in MYB8 by RNA interference (RNAi, irMYB8) have drastically lower levels 

of PAs including caffeoylputrescine, but are similar to wild-type (WT) plants in their 

accumulation of other phenolic compounds, including rutin and chlorogenic acid. Kaur et al. 

(2010) showed that M. sexta and Spodoptera littoralis caterpillars grow faster on irMYB8 than on 

WT plants and that spraying caffeoylputrescine on irMYB8 plants reduces M. sexta growth, 

suggesting a defensive function of  the PAs regulated by MYB8 (Kaur et al. 2010).  

 The microarray data presented by Kaur et al. (2010) also shows a reduction in 

trypsin proteinase inhibitor (TPI) transcripts, indicating that MYB8 might additionally regulate 

other plant defense responses. To follow up on that observation, we present experimental data that 

implicate MYB8 as a regulator of the within-plant distribution of multiple plant defense 

compounds. For detailed information about the experimental conditions see Supplemental 

Material and Methods. 

 

 To confirm the influence of MYB8 silencing on TPI transcript accumulation and 

activity, we conducted qPCR analysis (Fig. 1A) and a radial diffusion TPI activity assay (Fig. 1B, 

S1). Similar to the microarray results from Kaur et al. (2010), TPI transcript levels were 

attenuated to less than half of WT levels, as was basal and induced TPI activity. However, 
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hemizygous crosses with TPI-deficient plants indicate that the increased growth of M. sexta 

caterpillars on irMYB8 plants can be largely attributed to other MYB8-regulated factors, such as 

PAs, as proposed by Kaur et al. (2010) (Fig. S2). The dependence of TPI expression on MYB8 

can elegantly explain the primed induction of PAs and TPIs but no other JA-mediated traits in N. 

attenuata plants that were oviposited by Spodoptera exigua (Bandoly et al. 2015). 

 

 To identify other potential MYB8-regulated herbivory responses we conducted a 

complete microarray analysis using a whole-transcriptome array. This comprehensive analysis 

confirmed the effect of MYB8 on genes related to PAs (Fig. 1 C, S3-S8). To identify further 

targets of MYB8 we conducted a promotor motif analysis for regions 2 kb upstream of genes. The 

identified motif (Fig. 1C) is similar to the motif for the tobacco homologue NtMYBJS1 identified 

by gel mobility shift assays (Galis et al. 2006). Forty out of sixty-one genes (65.6%) which were 

down-regulated in irMYB8 plants contained the promotor motif (Fig. 1 C, Table S2). We did not 

identify this motif in the 2kb region upstream of the TPI gene. The TPI gene contains repetitive 

regions (Wu et al. 2006) and thus the assembly of the gene sequence and upstream elements is 

less certain than for other target genes. Thus further investigation is required to determine whether 

the regulation of TPI by MYB8 is direct or indirect. 

 

 Instead we found that one of four threonine deaminase (TD) homologues had the 

motif located within 2kb upstream region and its transcripts were reduced in irMYB8 plants (Fig. 

1D, S9). TDs catalyze the deamination of Thr to α-ketobutyrate, which is a precursor of Ile. TDs 

are thus required for accumulation of JA-Ile (Kang et al. 2006). TD activity is usually limited by 

substrate-level feedback, but Chen et al. (2005) described a JA-inducible TD isoform in Solanum 

lycopersicum that lacks its regulatory domain after proteolytic digestion and deaminates Thr in M. 

sexta guts, depriving larvae of this essential amino acid. Since irMYB8 plants were shown to be 

not impaired in JA-Ile formation (Kaur et al. 2010; Fig. S10) and the Thr and Ile levels were 

hardly affected in MYB8 silenced plants (Fig. S10), we propose an anti-nutritive function of the 

MYB8-regulated TD similar to that reported by Chen et al. (2005). This hypothesis is supported 

by an analysis of amino acids extracted from the guts content of M. sexta larvae, showing an 

increase in Thr as a molar percent of amino acids for larvae feeding on irMYB8 versus WT plants 

(Fig. 1E). 

 The data presented by Kaur et al. (2010) and Onkokesung et al. (2012) showed 

that the induced accumulation of PAs is specifically localized within the plant. The distribution 

follows patterns similar as described by the optimal defense hypothesis (ODH), which states that 

tissues which face a high attack risk and contribute the most to fitness should be most defended 

(McKey 1974). Recently, it was shown that cytokinins can regulate these PA distribution patterns, 
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likely via MYB8 (Schäfer et al. 2015; Brütting et al. 2017; Fig. 2B, C). TPI transcript levels were 

also associated with cytokinin content in leaves and had a distribution pattern similar to that of 

PAs (Schäfer et al. 2015; Brütting et al. 2017) Fig. 2D). Here, we show that TD2.1 transcripts also 

accumulate to higher levels in younger leaves than older leaves after jasmonate induction (Fig. 

2E).  

 Steppuhn and Baldwin (2007) demonstrated that TPI activity induced 

compensatory feeding in S. exigua, increasing the susceptibility of larvae to nicotine-producing 

plants. MYB8 regulates not only the accumulation of compounds with a potential toxic effect 

(PAs, Kaur et al. 2010), but also one known, and one potential anti-nutritional defense (TPI, 

Zavala et al. 2004; TD, Chen et al. 2005 and Kang et al. 2006). This raises the question whether 

similar synergisms occur for MYB8-regulated defense responses. We hypothesize that TPI and 

TD activity increase the susceptibility of herbivores to PAs, or, alternatively, that the combination 

of TPI, TD and PAs acts to reduce protein availability for herbivores more than the summed 

effect of each individually.     
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Figure 1: Trypsin protease inhibitor (NaTPI) transcripts and activity, and the herbivory-

inducible threonine deaminase (TD) homolog NaTD2.1 depend on MYB8 expression  

(A) Relative NaTPI transcript abundance in Nicotiana attenuata leaves 5 h after wounding and 

application of Manduca sexta oral secretions (W+OS) to the puncture wounding sites, as well as 

from untreated control plants (C). (B) TPI activity in N. attenuata leaves 48 h after W+OS 

treatment versus controls (C). (C) Model of the phenolamide pathway. Genes that are 

transcriptionally downregulated in MYB8 silenced plants (irMYB8) are marked with a green 
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arrow and those that contain the MYB8 specific promoter motive with a red dot. Different gene 

copies are indicated separately. Detailed transcript levels and promotor motif information are 

given in Fig. S3-S8 and Table S2. Genes that were not represented in the microarray are marked 

with a hash. (D) Transcript abundance of NaTD2.1 in N. attenuata leaves 1 h after W+OS versus 

controls (C). (E) Thr level in the gut content of M. sexta caterpillars after 8 d feeding on WT or 

irMYB8 plants. The Thr level was expressed as proportion of the free amino acid content. All 

experiments were done with wild-type (WT) and MYB8 silenced plants (irMYB8). 

(A, B and C) Line (WT, irMYB8) and treatment (C, W+OS) effects and their interactions were 

analyzed using univariate two-way ANOVAs. (E) Asterisks indicate significant differences 

among the WT and irMYB8 fed caterpillar (independent samples t test: * p≤0.05). Error bars are 

standard errors (A, D: N=3; B: N=5; E: N≥11).  



Manuscript IV 

182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Transcripts of NaMYB8 and its target genes follow a within-plant distribution 

according to the optimal defense hypothesis  

(A) Experimental design. Relative transcript abundance of NaMYB8 (B), NaAT1 (C), NaTPI (D) 

and NaTD2.1 (E) in different leaf-classes of flowering Nicotiana attenuata plants: rosette leaves 

R-1 (youngest) to R-4 (oldest) and stem leaves S+1 (oldest) to S+4 (youngest). Plants were 

sprayed for two days with 1 mM methyl jasmonate (MJ) or water as control (C). A-D were 

modified from Brütting et al. (2017).  

Leaf position and treatment (C, MJ) effects and their interactions were analyzed using univariate 

two-way ANOVAs. Error bars depict standard errors (N ≥ 5). FM, fresh mass. 
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3.5 Manuscript V 

“Real time” genetic manipulation: a new tool for ecological field studies 
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Table S1. Temperature conditions at the Utah field site at one day within the field season (4pm, 02.06.2012). 

    Air1          Soil2     Petiole3 

min. Temp [°C]     39             61        36 

max. Temp [°C]   40       66         43 

1Air temperature measured in the shade; 2Soil temperature direct next to the test plants; 3Surface temperature of the lower side of the petiole. 

Soil and petiole temperature was measured with the MiniTemp MT from Raytek.    
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Table S2. Sequences of primers used for qPCR. 

Gene/construct   Forward primer    Reverse primer 

NaActin   5‘ggtcgtaccaccggtattgtg3’  5‘gtcaagacggagaatggcatg3’ 

NaPDS   5‘gcattgattatccaagaccagagc3’  5‘cagacctgcaccagcaataaca3’ 

pOp6 driven construct1 5‘ccgcaaaaatcaccagtctctc3’  5‘catgagcgaaaccctataagaacc3’ 

1irpds/ipt by detection of the corresponding terminator region 
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Table S3. Sequences of primers used for PCR. 

Target cassette         Forward primer      Reverse prime 

LhGR        5‘atctccactgacgtaagggatgacgc 3’     5‘gcggcggtcgaccagcttctgaataagccctcg3’ 

pOp6-ipt         5‘cgccagggttttcccagtcacgac3’      5‘cactgatagtttaaaccgaaggcggg3’ 
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Table S4. Multi-reaction-monitoring settings for DEX quantification in negative ionization mode. 

Analyte   Q1 [m/z]     → Q3 [m/z]  Capillary CID [V]  Collision energy [V]  

DEX    437  361  -35   14 

[9,10-2H]dihydro-JA   213  59  -35   12 
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Table S5. Multi-reaction-monitoring settings for cytokinin quantification in positive ionization mode. 

Analyte   Q1 [m/z]     → Q3 [m/z]  DP   CE   CXP  

tZ    220.200  136.300  26  25  16 

tZR    352.200  220.300  76  25  30 

tZROG    514.100  382.100  96  25  16 

tZ7G   382.100  220.000  71  31  16 

D5-tZ   225.200  136.300  26  25  16 

D5-tZR   357.200  225.300  76  25  30 

D5-tZROG  519.100  387.100  96  25  16 

D5-tZ7G    387.100  225.000  71  31  16 
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ABSTRACT: 

As plants have evolved strategies to respond to insect feeding, insects have countered to 

manipulate plants in their favor. It has been suggested that endophytic insects manipulate the host 

plants’ source/sink relationships and increase the nutritional value of the infested tissue by 

transferring cytokinins (CK). Nevertheless, unambiguous tests of transfer and studies with free 

living insects have been elusive. Our study with the free living herbivore Tupiocoris notatus on 

Nicotiana atteunata revealed stable nutrient levels, increased CK levels and influences on CK-

related transcripts in attacked leaves. With 15N-isotope labeled plants, we found the CK 6-

isopentenyladenine (IP) being transferred in significant amounts from the insects to the plant via 

its oral secretions. As plants with altered CK metabolism changed the feeding-preferences of T. 

notatus, we suggest insect triggered CK dependent manipulations of source/sink regulations an 

important part of the interaction of plants also with free living insects. 

 

KEYWORDS: 

Cytokinins, N6-isopentenyladenine, phytohormones, herbivores, plant defense, 

source/sink, plant manipulation, tolerance, effectors, Tupiocoris notatus, Nicotiana attenuata  
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ELIFE DIGEST: 

As plants have evolved strategies to respond to insect feeding, insects have countered to 

manipulate plants in their favor. Endophytic insects, such as leaf miners and gall-forming species, 

may even create local resource sinks in the tissues they infest. One way they are thought to do this 

is by transferring cytokinin (CK) plant hormones which manipulate the host plants’ source/sink 

relationships and increase the nutritional value of the infested tissue. However, unambiguous tests 

of CK transfer have been elusive. Furthermore, the majority of insect herbivores are free-living, 

yet the ability of mobile herbivores to manipulate host plants via CKs remains unstudied. We 

analyzed the CK-dependent interaction of the free-living cell-content feeding herbivore 

Tupiocoris notatus with its native host plant, Nicotiana attenuata. T. notatus attack elicits 

increases in transcripts related to CK degradation and decreases in biosynthetic genes, suggesting 

active CK manipulation. Interestingly, the levels of CKs increased or did not change in attacked 

leaves, and high levels of two of them, 6-isopentenyladenine and 6- isopentenyladenosine, were 

found in T. notatus bodies, which were likely produced either by the insects themselves, or their 

associated microbial community. To test whether these insect-derived CKs were transferred to the 

plant, we used 15N-isotope labeling experiments. After several days of heavy T. notatus feeding, 

48% of the 6-isopentenyladenine content in leaves were identified as originating from the insects, 

likely transferred through oral secretions, which were highly enriched in CKs. Heavily attacked 

leaves showed only minor changes in its photosynthetic rate, protein, amino acid, sugar and starch 

content, even though jasmonic acid signaling was strongly induced, which usually results in 

decreased photosynthesis and triggers the onset of senescence. Plants with suppressed CK-

dependent signaling were less attractive to T. notatus than wild-type plants and seemed to suffer 

more from an attack by the insects. We infer that free-living T. notatus use CKs to counteract 

herbivory-induced senescence processes and increase sink strength, thereby borrowing a page 

from the playbook of endophytic herbivores.  
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INTRODUCTION 

Insect herbivores are under constant pressure from their host plants: they must adapt to 

toxic or anti-digestive defense compounds; low nitrogen to carbon ratios; and a food source 

whose nutritional value changes dramatically as leaves mature and senesce. Insects have 

developed strategies to overcome the low nutritional value of their diet and evolved specialized 

mechanisms to tolerate, or even employ toxic plant defense metabolites for their own uses, in an 

apparent evolutionary arms race (Despres et al. 2007, Winde and Wittstock 2011, Schuman and 

Baldwin 2016). As plant defense mechanisms against herbivores differ, so do the strategies that 

insects use to counter these defenses.  

Generally, phytophagous insects are categorized as either endophytic or free-living. This 

distinction is not binary and many transitional forms exist even within the same taxa. However, 

this broad difference in lifestyle has resulted in various feeding strategies and different plant 

defense responses. Free-living insects are mobile on their hostplant, between plants, and 

frequently among different plant species. They can freely choose plant tissues that are most 

nutritious or least defended —the most nutritious tissues are often highly defended, resulting in a 

potential tradeoff for herbivores (Herms and Mattson 1992, Ohnmeiss and Baldwin 2000, 

Brütting et al. 2017). To avoid herbivore-induced defenses, mobile free-living insects often move 

to other plant parts or even other host plants in response to defense activation, a phenomenon 

readily seen when induced defenses are abrogated (Paschold et al. 2007) or manipulated 

independently of insect attack (Van Dam et al. 2001)  

In contrast, endophytic insects have a more intimate relationship with their host plants 

since they spend a large portion of their life cycle within plant tissues. As a consequence, the 

effects of their feeding for the host plant is frequently less detrimental compared to the effects of 

free-living herbivores, although their high level of specialization to their host plant often makes 

them difficult to eliminate. There are many strategies to resist or tolerate free-living insects 

including production of toxins, attraction of predators or parasites of herbivores via indirect 

defense mechanisms like plant volatiles or extrafloral nectar, and re-allocation of nutrients away 

from attacked tissue into storage or reproductive organs (Forkner 2014, Schuman and Baldwin 

2016). Endophytic herbivores, in contrast, must be contained or tolerated and if neither is 

successful, the infested tissues can be abscised to minimize negative impacts (Fernandes et al. 

2008). 

Intimacy is always challenging, but has benefits for herbivores: some endophytic species 

hijack their host’s physiology, inhibit the production of defense compounds and manipulate their 

host to create nutritional resources, or even structures, which benefit the insects at the expense of 

plant growth and reproduction (Giron et al. 2016). To date, the best studied plant-manipulating 

species are those that spend a large portion of their life-cycle within the plant tissues: gall-forming 
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insects and leaf-miners, whose achievements are often featured in textbooks (Giron, et al. 2016). 

Gall-forming organisms, which include not only several orders of insects but also mites, 

nematodes and microbes, promote abnormal plant growth by reprogramming the expression of 

plant genes, to create novel organs that provide favorable environments for the exploiter (Stone 

and Schönrogge 2003, Shorthouse et al. 2005, Giron, et al. 2016). Advantages for the gall-formers 

range from an improved nutritional value, with reduced defense levels, to protection from disease, 

competitors, predators, parasitoids and unfavorable abiotic conditions (Hartley 1998, Stone and 

Schönrogge 2003, Allison and Schultz 2005, Harris et al. 2006, Saltzmann et al. 2008, Nabity et 

al. 2013, Giron, et al. 2016).  

The manipulations of leaf-mining larvae are often less spectacular and rarely result in the 

formation of new macroscopic structures, but are often revealed in senescence of host tissues, 

where green islands appear around the active feeding sites (Engelbrecht 1968, Engelbrecht et al. 

1969, Kaiser et al. 2010, Giron, et al. 2016). Such green islands maintain a high level of 

photosynthetic activity typical of non-senescent leaves, thus providing an adequate concentration 

of nutritional substances to the larvae, which feed on them (Behr et al. 2010, Body et al. 2013, 

Zhang et al. 2016). In this way green islands reflect the battle during the nutrient recovery phase 

that precedes abscission. The host plant tries to recover nutrients from the senescent leaf, whereas 

the insect tries to maintain a nutritious environment. 

In addition to the observable effects on plant phenotype, manipulation strategies of gallers 

and miners share several attributes: 1) an improved nutritional value at the feeding sites, with 

increases in minerals, lipids, proteins, amino acids, sugar and starch contents; 2) a local decrease 

in allelochemicals; 3) a change in phytohormone balance compared to the rest of the plant 

(reviewed in Giron, et al. 2016). Although these effects have been observed and studied in a 

number of plant-insect interactions, little is known about the effectors used by insects to 

manipulate a plant’s normal physiological response to wounding. Among the candidates, the 

prime suspects are phytohormones, since significant levels of some well-known wound-

responsive phytohormones, including cytokinins (CKs), abscisic acid (ABA) and auxins, have 

been found in the body and salivary secretions of a number of gall-forming insects (Matsui et al. 

1975, Mapes and Davies 2001, Dorchin et al. 2009, Straka et al. 2010, Tooker and De Moraes 

2011b, Tooker and De Moraes 2011a, Yamaguchi et al. 2012, Tanaka et al. 2013), as well as in 

the labial glands of several leaf-mining larvae (Engelbrecht, et al. 1969, Body, et al. 2013). 

Amongst those phytohormones, CKs deserve additional discussion due to their long-presumed 

role in the formation of green islands.  

CKs are a group of growth hormones, which are adenine derivatives and play a key role 

in the regulation of plant growth and development (Sakakibara 2006). They are known for their 

capacity to increase photosynthetic activity (Jordi et al. 2000), determine sink strength (Mok and 

Mok 2001) and inhibit senescence (Richmond and Lang 1957, Gan and Amasino 1995, Ori et al. 
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1999), as well as regulating herbivory-induced defense signaling (Schäfer et al. 2015c, Brütting, 

et al. 2017). The long history of investigating CKs in the formation of green islands date back to 

the late sixties, to reports of increased levels of CKs in affected tissues (Engelbrecht 1968, 

Engelbrecht, et al. 1969). In the last decade, studies on the leaf-mining larvae of Phyllonorycter 

blancardella species identified CKs as the causative factors for the “green island” phenomenon 

(Giron et al. 2007, Kaiser, et al. 2010, Body, et al. 2013). These studies suggested that insects 

could be the source of phytohormones used to manipulate plant physiological responses (Giron 

and Glevarec 2014). However clear demonstrations of the ability of insects to transfer CKs to a 

hostplant remains elusive (Giron, et al. 2016). 

To date, reprogramming and manipulating of plant physiology via growth hormones is 

usually associated only with gall-forming and leaf-mining insects in literature. These species– at 

least during some developmental stages – are immobile and rely on their intimate relationships 

with specific hosts. In contrast, free-living herbivores that can select the best tissues for feeding 

are not thought to be in need to manipulate their hosts’ physiology. As such, plant manipulation is 

thought to be evolved together with endophytophagy, which has been seen as an adaptive 

response to natural threats (Price et al. 1987, Giron, et al. 2016). In principle, all herbivores could 

benefit from manipulating their hosts; there is always some cost to movement and any strategy to 

subvert host plant defense may be adaptive. Thus plant manipulation by insects may be far more 

widespread amongst herbivores than we realize. 

Here, we will address two major questions: 1) can a free-living insect actively manipulate 

a plant physiology, similarly to endophytic insects? 2) Does a free-living insect actively transfer 

CKs to the plant? To tackle these questions we worked with the well-established ecological 

model-plant Nicotiana attenuata and one of its most abundant herbivore, Tupiocoris notatus 

(Glawe et al. 2003). N. attenuata is a natural tobacco species native to the southwest of North 

America and well-studied for its interactions with herbivores like the lepidopteran Manduca sexta 

and the heteropteran T. notatus (Baldwin 1998, Kessler and Baldwin 2001, Kessler and Baldwin 

2002, Voelckel and Baldwin 2004, Paschold, et al. 2007, Wu and Baldwin 2010). T. notatus is a 

free-living, small, 3-4 mm mirid bug (Miridae, Heteroptera). It is a piercing sucking cell-content 

feeder and is specialized to tobacco species and few other solanaceous plants like Datura wrightii 

(Gassmann and Hare 2005, Adam et al. 2017).  

Through local manipulation of the endogenous levels of N. attenuata CKs, by using 

transgenic plants with a dexamethasone (DEX) inducible IPT (i-ovipt), we previously observed 

increased damage by T. notatus in tissues richer in CKs. Individual DEX treated leaves of field 

grown plants suffered from more damage than mock-treated leaves. This led to the hypothesis that 

increased CK levels promote better nutritional quality, which in turn attracts T. notatus feeding 

(Schäfer et al. 2013). Infestation with T. notatus surprisingly does not decrease plant fitness 

(Kessler and Baldwin 2004), despite damaging large parts of the photosynthetically active leaf-
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surface during their feeding. Tissues around T. notatus feeding sites have increased rates of 

photosynthesis per chlorophyll content that may compensate for the damage from herbivore 

feeding. The increase in photosynthesis results from an active ingredient of the oral secretion of T. 

notatus, which has not yet been identified (Halitschke et al. 2011). 

Here, we report that T. notatus adults and nymphs contain high concentrations of two 

types of CKs. When confined to feeding on single N. attenuata leaves, concentrations of CKs 

increase in attacked leaves throughout the feeding period, with consequences for nutrients and 

CK-related transcripts. Using 15N-labeled tracers, we test the hypothesis that T. notatus transfer 

CKs to the leaves during feeding. Finally, we analyzed how changes in CK-metabolism in plants 

affect the feeding preferences. We conclude that CK-dependent manipulation of plant-metabolism 

is not only a strategy used by gall-forming insects or leaf-miners but is a more general strategy 

also employed by free-living insects.  
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RESULTS: 

Tupiocoris notatus feeding induces the JA pathway and associated defenses in 

Nicotiana attenuata 

To characterize the defensive response of N. attenuata to mirid attack, we analyzed 

jasmonate hormones and defense metabolites that are known to be induced by M. sexta as well as 

T. notatus feeding (Kessler and Baldwin 2004). Continuous feeding by T. notatus (Fig. 1 A) 

causes severe damage on N. attenuata leaves (Fig 1 B) and induces defense reactions in attacked 

leaves (Fig. 1). Three days of T. notatus feeding induced levels of the defense metabolites 

nicotine (Wilcoxon-Mann-Whitney test (WMW): p=0.022), caffeoylputrescine (CP; WMW: 

p=0.001) and trypsin proteinase activity (TPI; p<0.001). T. notatus feeding also elevated the 

levels of jasmonic acid (JA;WMW: p<0.001), as well as its precursor cis-(+)-12-oxophytodienoic 

acid (OPDA; WMW: p<0.001) and its bioactive isoleucine conjugate (JA-Ile; WMW: p<0.001). 

Interestingly, there was also a significant increase in salicylic acid (SA; WMW: p<0.001) but no 

influence on abscisic acid (ABA; WMW: p=0.620) (Fig.1 I, J). After six days of feeding, JA and 

JA-Ile accumulated and remained at high levels regardless of whether insects were allowed to 

feed on whole plants or caged on only one leaf (Fig. 1 S1). 

T. notatus feeding reduces protein contents and photosynthesis rates, but elevates 

starch and sugar, with mild effects on chlorophyll content 

Feeding of M. sexta elicits downregulation of photosynthesis in unattacked tissue 

(Halitschke, et al. 2011, Barron-Gafford et al. 2012) and a reduction in sugars and starch 

(Machado et al. 2013). As it has been shown before that feeding of T. notatus is increasing 

photosynthesis in unattacked tissue, we wanted to see how continuous feeding of T. notatus over 

several days affects the nutritional quality of the attacked leaves. We analyzed protein, sugar and 

starch levels as well as photosynthesis and chlorophyll content in leaves over a period of 144 h. 

Surprisingly, even leaves heavily damaged did not show significant decrease in these nutrient 

levels when mirids were only feeding on one leaf of the plant. We restricted their movement by 

small plastic cages surrounding the leaf (Fig. 2). Although protein levels decreased with time 

(Two-Way-ANOVA (TWA): P=0.005), mirid feeding did not have a significant influence (TWA: 

P=0.125; Fig. 2 B). Mirid feeding tended to increase levels of starch compared to mock-treated 

leaves. This increase was significant after 144 h (t-test with Bonferroni correction (tt): P=0.004; 

Fig. 2 C). Mirid feeding showed no significant change in sucrose levels but attacked leaves tended 

to have slightly higher levels (TWA: P=0.056; Fig. 2 D). Pairwise t-tests with Bonferroni 

corrections showed that sucrose levels were higher after 96 h (tt: P=0.017) and 144 h (tt: 
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P=0.045). Mirid feeding had no significant influence on glucose (TWA: P=0.708; Fig. 2 E) or 

fructose levels (TWA: P = 0.476; Fig. 2 F).  

Although we did not see large changes in carbohydrate levels, photosynthesis was 

significantly reduced in attacked leaves (TWA: P < 0.001; Fig. 2 S1 B). Levels of photosynthesis 

were significantly decreased after 48 h (tt: P = 0.020), 72 h (tt: P = 0.0132), 120 h (tt: P = 0.031) 

and 144 h (tt: P = 0.0046). Mirid feeding also tended to have an influence on chlorophyll content 

(TWA: P = 0.056). After 96 h chlorophyll content was slightly higher in mirid-attacked leaves (tt: 

P = 0.048). 

While levels of nutrients were not much influenced by mirid feeding if only one leaf was 

attacked, larger changes in nutrient levels in the plant became visible when whole plants were 

infested with mirids (Fig. 2 S2). This became especially evident for protein levels. Protein levels 

decreased after mirid feeding (TWA: P < 0.001; Fig. 2 S2 B) and were significantly lower after 

120 h of mirid feeding (tt: P = 0.002). When whole plants were attacked, levels of starch (TWA: P 

= 0.533; Fig. 2 S2 C), sucrose (TWA: P = 0.0891; Fig. 2 S2 D), glucose (TWA: P = 0.9233; Fig. 2 

S2 E) and fructose (TWA: P = 0.535; Fig. 2 S2 F) were not affected by mirid feeding when 

analyzing the whole time series of 144 h. Nonetheless, comparisons at single time points revealed 

increased levels of starch after 96 h (tt: P = 0.024), sucrose after 72 h mirid feeding (WMW: P = 

0.029), glucose levels after 48 h of feeding (tt: P = 0.033) and fructose after 48 h (WMW: P = 

0.029). 

Both, chlorophyll content (TWA: P < 0.001) and photosynthesis rates (TWA: P < 0.001; 

Fig. 2 S3) significantly decreased after T. notatus whole-plant attack. Wilcoxon tests revealed 

significantly lower photosynthesis activity in response to mirid feeding at all time points except 

24 h where it was only a tendency (P = 0.057) and a lower chlorophyll content from 48 to 120 h 

(Welch t-tests).  

T. notatus attack increases the abundance of cytokinin levels and transcripts 

responsible for cytokinin degradation  

Cytokinins (CKs) are known to regulate source sink relationships and stabilize nutrient 

levels in tissues fed on by endophytic insects. As we did not see a strong decrease in nutrients 

after mirid feeding, we analyzed transcripts involved in CK metabolism. Mirid feeding 

significantly increases the accumulation of NaCKX5 transcripts (TWA: P < 0.001), coding for a 

CK oxidase/dehydrogenase responsible for CK degradation (Fig. 3 A). Welch-t-tests revealed 

significantly increased transcript levels after 1 h (tt: P = 0.043), 72 h (tt: P = 0.019) and 96 h (tt: P 

= 0.04706) mirid attack. Transcript levels of NaZOG2, which codes for a CK glucosyltransferase 

responsible for CK inactivation (TWA: P < 0.001; Fig. 3 S1 B), as well as transcripts of NaLOG4 

(TWA: P < 0.001; Fig. 3 S1 C), which is involved in CK biosynthesis were also increased after 
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mirid feeding. Transcript levels of the isopentenyltransferase NaIPT5, which catalyzes the rate 

limiting step of CK biosynthesis, were reduced after mirid feeding (TWA: P < 0.001; Fig. 3 S1 

D). Nevertheless, feeding of T. notatus did not change levels of the CK response regulator 

NaRRA5 (Fig. 3 S1 A). 

We then measured analyzed the CK levels in the attacked leaves. Even though transcript 

levels of enzymes responsible for CK degradation increased and levels of a gene for CK 

biosynthesis decreased, we saw no decrease, but an increase of CKs over time when whole plants 

were infested with T. notatus (sum of free bases and ribosides; TWA: P = 0.004; Fig. 3 B). 

When looking at single CKs (Fig. 3 C, Fig. 3 S2), we saw changes in different CKs 

depending on time and type of induction by mirid feeding. Levels of cis-zeatin (cZ; TWA: P < 

0.001; Fig. 3 S2 A), cis-zeatin riboside (cZR; TWA: P = 0.0210; Fig. 3 S2 D), trans-zeatin (tZ; 

TWA: P = 0.0294; Fig. 3 S2 B) and trans-zeatin riboside (tZR; TWA: P < 0.001; Fig. 3 S2 E) 

were significantly higher after T. notatus attack. Levels of isopentenyladenine (IP) remained 

unaffected by mirid feeding (TWA: P = 0.142; Fig. 3 S2 C) and levels of isopentenyladenosine 

(IPR) decreased in attacked leaves (TWA: P < 0.001; Fig. 3 S2 F). This decrease was significant 

in the first 48 h after the initiation of mirid attack and disappeared at later time points.  

If mirids were only allowed to feed on a single leaf, we could not see any changes in 

levels of summed CKs over the whole time series (TWA: P = 0.169; Fig. 3 S3 B). Nevertheless, 

Bonferroni corrected t-tests revealed increased levels after 144 h of feeding (tt: P = 0.026). We 

found significantly increased levels of cZ (TWA: P < 0.001; Fig. 3 S3 C) and decreased levels of 

cZR (TWA: P = 0.005; Fig. 3 S3 F). IP levels were significantly higher after mirid feeding (TWA: 

P = 0.011; Fig. 3 S3 C) although pairwise comparisons for each time point did not reveal 

significant changes at any given time point, while tZ, tZR and IPR remained unaffected by mirid 

feeding if only one leaf was attacked. 

T. notatus contains high levels of IP  

We found that mirid attack increases the levels of cZ and cZR. This fits to the observation 

of Schäfer, et al. (2015c) and Brütting, et al. (2017) that herbivory, wounding, as well as JAs can 

promote the accumulation of cZ-type CKs over a longer period of time. However, mirid feeding 

and the associated JA accumulation did not decrease IP levels as it would be indicated by the 

same publications (Schäfer, et al. 2015c, Brütting, et al. 2017). To find a possible explanation as 

to why CKs and in particular IP do not decrease in mirid attacked leaves even though degradation 

and inactivation processes seem to be activated, we analyzed CK levels in T. notatus insects as a 

possible external source of CKs. Surprisingly, we found very high levels of IP and high levels of 

IPR in extracts from the insect bodies (Fig. 3 C). While concentrations of IPR were comparable to 

those in leaves, around 1 pmol per g fresh mass (FM), levels of IP exceeded concentrations in the 
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leaves by a factor of 10 to 1600. While levels in leaves usually were in a range of 0.01 to 0.1 pmol 

g FM-1, levels in insects were between 1 and 5 pmol g FM-1 but reached levels up to 16 pmol g 

FM-1. Insects collected from their natural environment at our field site in Utah, USA, also 

contained high amounts of IP. In a pooled sample we measured 18.26 pmol IP per g FM of 

insects. 
Mirids contained high CK levels in their body independently from their sex, 

developmental stage or their food source (Fig. 3 S4). IP concentration in nymphs was about half 

as high as in adult males (Tukey HSD after one way ANOVA: P = 0.003) and females (P < 0.001) 

but still several times higher than in leaves. Sex of the insect did not have any effect on the IP 

levels (P = 0.257; Fig. 3 S4 A). IPR levels were not affected by developmental stage or sex.  

To exclude that T. notatus accumulates IP from the plant tissue, we reared the insects for 

5 days either on artificial diet (containing no CKs) or on plants. Insects raised on artificial diet had 

IP levels in their body that were not different from levels in insects raised on plants (Fig. 3 S4 B; 

tt: P = 0.341) and IPR levels were also unchanged (tt: P = 0.6695) 

T. notatus transfers IP into the plant via its oral secretions  

To test whether CKs can be transferred to the plant we conducted 15N-isotope labeling 

experiments (Fig. 4, Fig. 4 S1, S2, S3). We grew plants in hydroponic culture with 15N labeled 

KNO3 as the only source of nitrogen. We furthermore created a stock of T. notatus insects that 

were 15N labeled by raising them for a whole generation on the 15N labeled plants. We then 

performed two different experiments to trace back the origin of CKs in T. notatus attacked leaves: 

we either used 14N plants that we exposed to 15N labeled insects or we used 15N labeled plants and 

exposed them to 14N insects. CKs are adenine derivatives that contain 5 nitrogen atoms. 

Therefore, CKs produced by 15N labeled plants or insects are labeled 5 times with 15N and can 

therefore easily be distinguished from 14N CKs by mass spectrometry.  

In the first approach, we used a low-infestation setup by placing 20 15N labeled T. notatus 

adults in a small cage on the leaf of a 14N labeled plant for 5 days (Fig. 4 S1, S3). After 4 days of 

continuous feeding we found detectable amounts of 15N labeled IP and IPR in the leaves. While 

IPR was barely detectable in attacked leaves (Fig. 4 S3), we found around 2.35 fmol [15N5]-IP per 

g FM in the attacked leaves (Fig. 4 S1). This means about 3.3 % of the total IP in the leaves was 

[15N5]-IP. The labeled IP was most likely originating from the insects, as a natural occurrence of 

IP with 5 15N is stochastically nearly impossible. With a natural abundance of below 0.4 % an IP 

with five 15N would occur with a chance of about once in a trillion. If calculated back, one mirid 

feeding on one leaf for 5 days accounts for a transfer of at least 0.12 fmol IP per g FM (Table S1) 

not taking any CK degradation or conversion to other CK forms into account.  



Manuscript VI 

238 

 

In the reverse experiment, we used 15N plants grown on 15N labeled hydroponic culture 

and insects raised on non-labeled 14N plants (Fig. 4). We placed the 15N labeled plants in the cages 

where T. notatus was reared on 14N plants. The plants were switched to another cage once per day 

to ensure that the plants were mainly attacked by fresh 14N insects and to prevent a potential 

accumulation of 15N in the 14N insects. We found [14N5]-IP in the leaves of 15N plants after 24 h of 

feeding by 14N T. notatus. After 5 days, an average of around 48 % of IP was 14N labeled and 

therefore originating from the insects feeding on the leaf. In this stronger induction setup, IPR 

could also be detected to be transferred from the insect to the plant. We found [14N5]-IPR in 

leaves of 15N plants already after 24 h which increased to a share of 19 % after 5 d (Fig. 4 S2).  

To find out how IP and IPR were transferred to the leaf, we analyzed CK content in oral 

secretions and frass of T. notatus, which we considered the most likely means of transfer. Mirids 

were fed on sugar solution without CKs. The solution was covered with parafilm, allowing 

penetration of the film by the insects’ stylet but preventing an evaporation of the liquid and a 

transfer of frass into the liquid. We measured CKs in the liquid, which should contain substances 

that are transferred by the oral secretions, as well as in the surface wash, which contains 

excretions by the insects (Fig. 5, Fig. 5 S1). We found high amounts of IP mainly in the oral 

secretions (i.e. the sugar solution mirids were feeding on) and only in much lower amounts in the 

frass of the mirids (i.e. the surface wash; Fig. 5). IPR was found in oral secretions and in frass in 

similar amounts (Fig. 5 S1).  

Altered CK metabolism in N. attenuata affects its interaction with T. notatus 

In nature, T. notatus feeds on young plant tissue, such as younger stem leaves and young 

growing leaves. This was observed in damage distributions on whole plants in the natural 

environment (Fig. 6 S1 A) as well as in two-choice assays (Fig. 6 S1 B; P= 0.013). Those young 

leaves preferred by T. notatus are usually rich in CKs (Brütting, et al. 2017). To see how CK 

metabolism affects the interaction of N. attenuata with T. notatus, we used transgenic plants 

altered either in CK production (i-ovipt) or in CK perception (irc2/3). Transgenic i-ovipt plants 

contain a dexamethasone (DEX) inducible promotor system coupled to an IPT gene that allow a 

chemically inducible induction of CK overproduction. irchk2/3 plants are silenced for two of three 

CK receptors. 

Our previous study has shown that T. notatus prefers leaves of i-ovipt plants which have 

been treated with DEX and therefore have higher levels of CKs (P = 0.01595; Fig. 6 A; Schäfer, 

et al. (2013). If T. notatus is given the choice between empty vector (EV) and irchk2/3 plants, 

mirids show a strong preference towards EV plants, as shown in lower damage levels on irchk2/3  

plants (P < 0.001; Fig. 6 B). Furthermore, we found differences in the reaction of the plants to the 
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damage caused by T. notatus. Mirid attack caused necrotic lesions in irchk2/3 plants, whereas this 

did not happen in WT, EV or i-ovipt plants (Fig. 6 C).  

To find a possible explanation for the feeding preferences of T. notatus, we measured 

nutrient levels in unattacked irchk2/3 and DEX-induced i-ovipt plants and compared it to EV 

plants (Fig. 7). Starch and sucrose did not differ between the lines (Fig. 7 C, F). However i-ovipt 

plants had higher concentrations of protein, free amino acids, glucose and fructose than irchk2/3 

plants. Also, i-ovipt tended to have higher nutrient levels than EV plants but only contained 

significantly higher amounts of glucose (Fig. 7 D). irchk2/3 plants tended to have lower nutrient 

levels but they only contained significantly lower concentrations of fructose (Fig. 7 E). 
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DISCUSSION 

Endophytic insects have been long known for their ability to manipulate plants via 

phytohormones like cytokinins (CKs). The common opinion is that CK-dependent manipulation 

of plant metabolism by insects is a specialized mechanism that evolved during the intimate 

relationship between endophytic specialists like gall-formers and leaf-miners. In our study we 

provide evidence that the free living mirid bug T. notatus is capable of transferring CKs to its host 

plant Nicotiana attenuata and possibly manipulates the host plant’s metabolism for its own 

benefit. This strategy, not known for free living insects so far, could indicate that CK-mediated 

manipulation of plant metabolism by insects could be a mechanism far more widespread than 

previously thought.  

Mirid feeding does not strongly decrease levels of nutrients in attacked plants 

Earlier studies have shown that colonization by Tupiocoris notatus does not decrease 

plants’ overall fitness in nature (Kessler and Baldwin 2004). Commonly, herbivore feeding 

decreases plant fitness by damaging or removing photosynthetically active tissue and inducing 

costly defense reactions (van Dam and Baldwin 1998, Huot et al. 2014). It could be shown that 

the loss of photosynthetically active tissue caused by T. notatus feeding could be compensated by 

an increase of photosynthesis rates in undamaged tissue and therefore could provide an 

explanation for the insignificant effect on plant fitness (Voelckel and Baldwin 2003, Halitschke, 

et al. 2011). This suggests either a tolerance response by the plant or an active manipulation by 

the insect. Herbivore attack, including attack of T. notatus leads to increases in levels of 

jasmonates, especially jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) (Baldwin et al. 

1994, Krumm et al. 1995, Baldwin 1996, Kang et al. 2006, Erb et al. 2012, Campos et al. 2014). 

Herbivore attack and JA accumulation are known to decrease photosynthesis and levels of 

nutrients in affected tissue (Herms and Mattson 1992, Baldwin 1998, Barron-Gafford, et al. 2012, 

Machado, et al. 2013, Attaran et al. 2014). These reductions are part of senescence processes 

activated by JA (Satler and Thimann 1981, Ueda and Kato 1981, Ueda et al. 1981). 

We also found that levels of SA, JA, JA-Ile and JA-dependent defenses increased after 

mirid attack (Fig. 1). Nevertheless, we could not observe a significant reduction of nutrients in 

leaves attacked by T. notatus except whole plants were severely attacked. We found levels of 

protein, starch, glucose, fructose and sucrose to be relatively stable after mirid attack (Fig. 2, 2 

S2). This already suggests some other factor influencing the nutrient balance in attacked leaves. 

Previously it could be demonstrated that mirid feeding cause an increase of photosynthesis in 

unattacked tissue surrounding their feeding sites probably by an “active ingredient” in their oral 

secretions (Halitschke, et al. 2011). However we could not detect an increase of photosynthesis 

but an overall decrease in photosynthesis in attacked leaves (Fig. 2 S1, 2 S3) This discrepancy 
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could possibly be explained, as we had a more severe attack than in previous studies and we did 

not normalize to unattacked leaf-tissue but did include the whole leaf surface including damaged 

and undamaged area. The decrease in photosynthetic assimilation in response to herbivory has 

recently been shown to be caused by early JA signaling responses, namely OPDA (Meza-Canales 

et al. 2017). OPDA, which is also increased by T. notatus feeding (Fig. 1) has been shown to 

reduce stomatal conductance which leads to the reduced rates of photosynthesis. 

In either case it seems unlikely that a stable level of nutrients in the leaves is due to an 

increase in photosynthesis and anabolism in attacked leaves. We think that the stable levels of 

nutrients are rather due to an inhibition of senescence or even a transport of nutrients to the 

attacked leaves than to an increased production of proteins and sugars at the site of attack. Similar 

cases are known from endophytic insects, which can increase sink strength, inhibit senescence, 

and increase nutrient transport to their feeding sites (Engelbrecht 1968, Hartley 1998, Harris, et al. 

2006, Saltzmann, et al. 2008, Body, et al. 2013, Giron, et al. 2016, Zhang, et al. 2016). We found 

that protein levels only drop in infested leaves if whole plants, and not only single leaves were 

infested (Fig. 2, 2 S2). It is possible that the feeding activity of T. notatus inhibits senescence or 

elevates sink strength in infested leaves. If only one leaf is infested, it is possible that allocation of 

nutrients to the infested tissue occurs as a consequence of sink generation by the insect feeding. 

From leaf-miners it is known that increase in photosynthesis in attacked tissue comes at the cost 

of increased senescence in the rest of the plant (Behr, et al. 2010). If all leaves are induced 

equally, the effect of a sink at infested tissue is likely to disappear due to a lack of a gradient in 

sink strength. Furthermore, the plant suffers from much greater tissue loss if the whole plant is 

infested, which might limit the capability of the plant to compensate for tissue damage at a 

particular infested leaf. 

To determine whether a sink is created, further experiments like 14C pulse labeling of 

source leaves (techniques reviewed e.g. in Epron et al. 2012) and 15N pulse labeling (Ullmann-

Zeunert et al. 2012) would be necessary to trace fluxes of nutrients and defense metabolites upon 

herbivore attack. Previous studies with endophytes demonstrated the importance of CKs in the 

insect-triggered generation of sinks (Engelbrecht 1968, Engelbrecht, et al. 1969, Elzen 1983, 

Body, et al. 2013, Kudoyarova et al. 2014, Giron, et al. 2016, Zhang, et al. 2016). Furthermore we 

found mirids to prefer leaves with higher CK content (Fig. 6, 6 S1; Schäfer, et al. 2013). We 

therefore focused our investigation on CK levels and CK metabolism in the plant after attack, as 

well as into CK levels in insects and their oral secretions. 

Cytokinin levels increase after mirid feeding 

It is known from endophytic insects that CK levels increase around the feeding sites, 

namely the galls and green islands (reviewed in Giron, et al. 2016). We measured levels of CKs in 
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attacked tissue and found an increase of several CKs after feeding of T. notatus (Fig. 3, 3 S2, 3 

S3). The greatest differences were found in cZ levels and cZR levels, when whole plants were 

attacked. An increase of cZ and cZR could be a general response to the wounding of the leaves 

and JA increase (Schäfer et al. 2015a, Schäfer, et al. 2015c, Brütting, et al. 2017). Other CK 

levels did not show differences (IP, tZR). From previous studies, we know that JA increase (by 

application of Methyl-jasmonate) decreases levels of IPR and IP (Schäfer, et al. 2015c, Brütting, 

et al. 2017).  

Surprisingly we found levels of transcripts for CK degradation and inactivation increasing 

and of the CK biosynthesis gene NaIPT5 decreasing (Fig. 3, 3 S1), which conflicts with the 

observation that CKs do not decline. Previous studies showed a similar decrease of NaIPT5, and 

an increase of NaCKX5, NaZOG2 and NaLOG4 after wounding (Schäfer, et al. 2015c), which 

suggests that the transcriptional response could be a more general reaction to wounding. Unlike 

the results of methyl jasmonate application (Schäfer, et al. 2015c, Brütting, et al. 2017), we did 

not find a decrease in IP, and no long term decrease in IPR, although JAs were accumulating 

more and more in mirid infested leaves. There are several possible reasons for that discrepancy: 

There could be increased biosynthesis of CKs in attacked leaves, but because we observe reduced 

transcript levels of an IPT gene, this seems unlikely. Admittedly, we cannot exclude that there are 

other IPTs in attacked leaves that are upregulated upon mirid attack. Also, it is possible that 

precursors of CKs are converted to active forms to compensate inactivation and degradation. 

Enzymes of the LONELY GUY (LOG) group convert CK phosphoribosides to free bases and are 

therefore responsible for their activation (Kuroha et al. 2009). As NaLOG4 transcripts increase 

after mirid feeding, it is possible that an increased conversion of phosphoribosides to ribosides 

can account for the stable levels of CKs. Nevertheless, this seems unlikely without elevated 

biosynthesis of CK phosphoribosides. A broader analysis of CK-dependent transcripts and CK 

glycosides after mirid feeding would help to gain deeper insight into CK biosynthesis and 

activation. Another possible explanation would be a flux from other plant parts, for example 

roots, to the infested tissue to compensate for the CK loss by degradation and inactivation. To test 

this hypothesis, isotopic labeling experiments would be required to trace CK flux through the 

plant.  

Lastly, there could be an external source of CKs compensating for the CK loss. CK 

application can also trigger transcriptional changes of CK biosynthesis and degradation enzymes 

as has been observed after mirid feeding (Schäfer, et al. 2015c). We know from endophytic 

insects that insects themselves might be a source of CKs in leaf-galls and green islands 

(Engelbrecht, et al. 1969, Matsui, et al. 1975, Mapes and Davies 2001, Giron, et al. 2016) and so, 

we considered T. notatus as a possible source of CKs in attacked leaves. 

Mirids contain CKs in their body and in their oral secretions 
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We determined levels of CKs in insects as well as their oral secretions (OS) and their 

frass. We found extraordinary high concentration of the active CK IP in the insects, in the OS and 

in traces in the frass of T. notatus (Fig. 3, 3 S4, 5). Abundance of high concentrations of IP has 

been reported before in several cases of endophytic insects like leaf miners and gall-formers 

(Mapes and Davies 2001, Body, et al. 2013). We also detected IPR in the insects, their OS and 

frass (Fig. 3, 3 S4, 5 S1), but concentrations were similar as in plant tissue and much lower as 

concentrations of IP. We therefore hypothesize that IPR might play a minor role and possibly only 

be a precursor or a side-product of IP. 

This raises the question: What is the source of IP in the insects? There are two possible 

explanations: Either it is accumulated from their food source or it is synthesized by the insects or 

their symbionts. An accumulation of IP from the food source seems rather unlikely. We did only 

find IP and, in lower concentrations, IPR but no other active CKs in insects, which means that the 

accumulation should be very specific for IP. Furthermore we can detect comparable levels of IP 

also in insects reared on artificial diet for 5 days (Fig. 3 S4). Based on our IP measurements in 

insects reared on artificial diet each mirid contains about 0.85 fmol IP. If calculated back from the 

measurement of IP in OS, each T. notatus insect excreted about 0.33 fmol IP within one day, 

which accounts for about 39 % of the IP found in the insects. Considering the high amount of IP 

excreted each day it seems unlikely that IP levels in insects reared on artificial diet without an IP 

source remain at a level comparable to insects fed on plants. For the less abundant IPR the effect 

was even stronger (approximately 0.13 fmol IPR in each insect vs. 0.07 fmol excreted by these 

insects within a day) and additionally some IP and IPR was excreted by frass (approximately 0.01 

fmol IP and 0.09 fmol IPR per insect within a day). Even if this is just a rough calculation of an 

exemplary data set, it strongly suggests that 5 days artificial diet feeding should heavily deplete 

the CK pool of mirids if they would not be able to gather more in a plant feeding-independent 

way. Therefore this supports the hypothesis that mirids are directly or indirectly capable to 

produce the CKs IP and IPR. 

Although it is possible that insects themselves are able to produce IP for example via a 

tRNA derived biosynthesis of IP (Persson et al. 1994, Kaminek 2015), the common opinion 

considers endosymbiontic bacteria as the most likely producers of IP in insects. Antibiotic feeding 

experiments have revealed that endosymbionts like Wolbachia are the most likely producers of 

CKs in the leaf-miners (Kaiser, et al. 2010, Frago et al. 2012, Body, et al. 2013, Giron et al. 2013, 

Giron and Glevarec 2014). 

So far the data we have is neither sufficient to confirm nor to disprove that endosymbionts 

are responsible for IP production in T. notatus. Recent investigations on the microbial community 

did not provide an obvious candidate for IP production, as microbial communities differed 

between different samples and between field and lab collected insects (Crava et al. 2016, Adam, 

et al. 2017). We also find IP in insects collected in the natural habitat, which indicates that the IP 



Manuscript VI 

244 

 

data are reliable also under natural conditions. We are therefore searching for a symbiotic 

organism that is present in animal samples from the lab and from nature, which we could not 

identify so far. Using an RNAseq approach sequencing the transcriptome of T. notatus we 

revealed 125 hits for sequences from bacteria including 11 hits for Wolbachia (Crava, et al. 2016). 

But also Wolbachia could only be found in one out of nine samples using a pyrosequencing 

approach and PCR of 16S rRNA amplicons (Adam, et al. 2017). This indicates that maybe 

another organism is responsible for the production of IP. The fact that we did not find a candidate 

yet might be due to the fact that a bacterium not characterized so far as CK producer is 

synthesizing the IP, the bacterium we are looking for is underrepresented in a sample of the whole 

body of T. notatus or that organisms other than bacteria are responsible for the IP biosynthesis. 

Some fungi are also capable of producing IP (Jameson 2000, Walters et al. 2008, Giron, et al. 

2013). It is also possible that fungi are associated to T. notatus and are responsible for the IP 

biosynthesis.  

To elucidate the origin of IP in the insects further experimental steps will be necessary. 

First the localization of highest concentrations of IP would need to be specified. IP labeling with 

antibodies in slices of insects or measurement of IP in single insect organs like labial glands or 

midgut could be used to identify location of highest IP concentration. An RNAseq or 

metagenomics approach could then identify possible candidates for IP production at the site of 

highest IP concentration in the insect. Future work could then target those candidate organisms 

and cure insects from endosymbionts to find out its function in insect plant interactions. 

Mirids are able to transfer CKs to the leaves of the hostplant with their oral secretions 

Independently from its origin, we were able to show with 15N labeling experiments that T. 

notatus is able to transfer IP and IPR to its hostplant (Fig. 4, 4 S1, 4 S2, 4 S3). After 6 d of mirid 

attack, almost half of the IP in attacked leaves could be traced back to insects, as it was 14N IP 

in 15N-labeled plants. Other explanations for high levels of unlabeled IP, like contaminations of 

plants, of medium or during measurement are very unlikely for several reasons: 1) We find 

transferred IP in two independent experiments, where 14N and 15N insects and plants were 

reversed. 2) The share of insect derived IP is substantial and increases over time and does not 

occur in unattacked plants. 3) We only find hints for transfer for exactly those two CKs, which are 

also present in the insects, namely IP and IPR. Also the possibility that we are detecting natural 

isotopes seems statistically almost impossible due to their mass difference of 5 and the big 

proportion of IP we can detect.  

As we found IP and IPR in the OS (Fig. 5, 5 S1), we consider OS the most likely way of 

transfer of IP and IPR to the leaves. Although mirid excretions might contribute to that transfer in 
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a minor extend. As CKs can also be incorporated via the leaf-surface, this also seems to be a 

functional way of transfer in addition to the transfer via OS.  

Changes in the CK metabolism of the hostplant alters feeding preferences of the mirids 

In endophytic insects CKs are considered one of the key factors influencing the 

performance of leaf miners and gall formers on their hostplant as they increase the quality of their 

food (Body, et al. 2013, Giron, et al. 2013, Giron, et al. 2016). Whether a transfer of IP has a 

similar function for free living mirids as it has for endophytes is a question that remains not fully 

answered. As nutrient levels do not drop in leaves attacked by T. notatus (Fig. 2, 2 S2), we can at 

least suggest, that IP may play a role in the stabilization of nutrients by possibly delaying 

senescence processes.  

Choice assays provide a hint that CKs play an important role in regulating plant features 

that effect feeding preferences and performance of insects on the plant. T. notatus is attracted to 

tissue with higher CK levels. They are attracted, either if CK levels are naturally higher (Fig. 6 

S1), like in young plant tissues or if CKs were artificially increased using transgenic plants (Fig. 

6; Schäfer, et al. 2013). When CK perception is impaired in transgenic irchk2/3 plants, mirids 

preferred WT or EV plants over the transgenic plants as displayed by different damage levels 

(Fig. 6).  

This particular preference for high CK levels and against irchk2/3 plants could either be a 

direct effect of CKs or – more likely – an indirect effect of CK-related processes. A direct 

attraction to CKs is possible but not very likely, although a direct influence of CKs on insects has 

been discussed (Robischon 2015). To our knowledge there is so far no evidence toward a direct 

sensation of CKs by insects; also CK levels are not reduced in irchk2/3 plants (Schäfer, et al. 

2015c). More likely, insects and in particular T. notatus are attracted by some metabolites 

associated with high CK levels. Those metabolites could be for example volatiles or other 

specialized metabolites. T. notatus is attracted to quercetin (Roda et al. 2003). If quercetin is 

associated to high CK levels is not known so far and could be a target of future research. In 

previous research we found at least other closely related phenolic compounds being influenced by 

CKs (Schäfer, et al. 2015c, Brütting, et al. 2017). Or it could simply be an attraction to high 

nutrient levels, which correlate to young, CK rich tissues. High levels of nutrients seem to be the 

most likely explanation to us and they could be detected from T. notatus by probing the tissue. 

Higher protein levels in EV compared to irchk2/3 (Fig. 7) could explain the feeding preferences. 

Nonetheless we can summarize that mirids are attracted to traits associated with CKs. If CK 

metabolism or signaling is altered, it affects the interaction with the plant. More CKs and a 

functioning CK perception seems to be attractive for T. notatus and could possibly be beneficial 

for the insects.  
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By injecting IP in the leaves, T. notatus could eventually stabilize the quality of its food 

source. Especially it could be a way to keep the high levels of CKs and the associated high levels 

of nutrients over a prolonged period of time, if feeding continues for several days on the same 

plant or even the same leaf. 

If the injection of IP also provides a beneficial effect for the plant compared to damage 

without IP injection remains elusive so far. We saw evidence that an altered CK metabolism 

increases the damage rate (i-ovipt) and a non-fully functioning perception of CKs (irchk2/3) alters 

the response to mirid attack. We see necrotic lesions in attacked leaves of irchk2/3 plants (Fig. 6). 

This is a hint for higher stress levels and a non-functional response to mirid feeding. N. attenuata 

seems to require a functioning CK-signaling and perception for a fully functioning tolerance to 

stresses like herbivore attack. To see how a functioning CK signaling affects the effects of T. 

notatus feeding on the fitness of N. attenuata plant fitness could be determined in WT and 

irchk2/3 plants with and without damage by T. notatus by comparing influence of feeding on 

seed-production. 

Manipulation of the host plant by a free living insect? An evolutionary more ancient 

trait? 

Summarizing, our results provide evidence that a free living insect could be capable of 

manipulating its host plant metabolism for its own benefit by injecting CKs into the plant. CK-

mediated plant manipulation strategies have so far only been known from endophytic insects 

(Giron, et al. 2016). The common theory is that endophytic insects that are so tightly bound to 

their hostplant and so lowly mobile had to evolve mechanisms to increase the food quality locally 

to be able to sustain in the host plant. 

Insects that are known for their CK-dependent manipulation of hostplants share similar 

endophytic lifestyles. Phylogenetically they are not very closely related to each other. There are 

known examples of leaf mining insects from the orders of Lepidopterans, Coleopterans 

(Buprestidae) and Dipterans (Agromyzidea). Although not all leaf miners cause green islands and 

are known to manipulate the hostplant using CKs, it is known for some lepidopterans like 

Phyllonorycter blancardella (Giron, et al. 2007, Kaiser, et al. 2010, Body, et al. 2013) or 

Stigmella argentipedella (Engelbrecht, et al. 1969) and could at least be assumed for other 

lepidopterans causing green islands like Ectoedemia argyropeza. From some gall-midges like 

Bruggmannia (Diptera: Cecidomyiidae) it is known that they are also capable of producing green 

islands (Fernandes, et al. 2008). Leaf-Gall forming insects can be found in Hymenopterans like 

gall-wasps, Dipterans like gall-midges and gall-flies, Hemipterans like psyllids, as well as gall-

aphids. A role of CKs in the formation of galls (see also Elzen 1983) has been shown for 

Dipterans like Eurosta solidaginis (Mapes and Davies 2001) or Rhopalomyia yomo-gicola 
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(Tanaka, et al. 2013), Hymenopterans like the gall wasp Dryocosmus kuriphilus (Matsui, et al. 

1975) or sawflies of the genus Pontania (Yamaguchi, et al. 2012) and Hemipterans like 

Pachypsylla celtidis (Straka, et al. 2010) or the gall-aphid Tetraneura nigriabdominalis (Takei et 

al. 2015). The fact that insects from different orders have developed a similar mechanism either 

suggests an evolutionary ancient manifestation or a convergent evolutionary trait. 

In both cases it is likely, that CK-dependent plant manipulation has not only evolved in 

those very special cases. IP has been found in many organisms other than plants including fungi 

(Chanclud et al. 2016), bacteria (Costacurta and Vanderleyden 1995) and animals like nematodes 

(Siddique et al. 2015). It is thought that IP and IPR derived from tRNA might be a source of IP 

shared by almost all organisms (for review see Persson, et al. 1994). Especially, as it has been 

shown in previous studies that CKs in endophytic insects seems to be produced by endosymbiotic 

bacteria (Kaiser, et al. 2010, Giron and Glevarec 2014), it seems likely that the potential for CK 

secretion is common amongst many insects, as likely all insects may have endosymbiotic bacteria. 

A broader analysis of insects from different orders regarding their ability to secrete CKs could 

further illuminate this interesting field of plant-herbivore research and show if T. notatus is an 

exception among freely moving insects, or if this is a more general phenomenon. 

Free living phytophagous insects have been considered so far as not being in need of the 

possibility to manipulate their food plant in this way, as they are able to choose the best feeding 

spots. Now, we can suggest that at least some insect species might combine the benefits of the 

two different lifestyles: The ability to move, hide, choose the best feeding spot and being able to 

manipulate the hostplant for their own benefit. 
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MATERIALS AND METHODS 

Plant cultivation and transgenic plants 

We used 31st inbred generation of Nicotiana attenuata (TORR. ex S. Wats.) originating 

from a population at the Great Basin desert (Washington County, Utah, USA) as wildtype (WT) 

plants. Transgenic plants were generated from WT N. attenuata as described by (Krügel et al. 

2002) by Agrobacterium mediated transformation. Empty vector plants (EV) were used instead of 

WT in experiments, where we used transgenic plants. 

In our experiments we used two different types of previously described transgenic plants:  

The first transgenic line, irchk2/3 has a construct silencing two of the three known 

cytokinin (CK) receptor homologs (CHASE DOMAIN CONTAINING HISTIDINE KINASE 2 and 3; 

NaCHK2 and NaCHK3) at a silencing efficiency of about 50 % (Schäfer et al. 2015b). We used 

line A-12-356 for experiments.  

The second transgenic line, i-ovipt contains a gene encoding for the rate limiting step of 

CK biosynthesis, the isopentenyltransferase (IPT) from Agrobacterium tumefaciens (Tumor 

morphology root; Tmr). The IPT gene is controlled by the pOp6/LhGR expression system, which 

allows transcriptional regulation by the application of dexamethasone (DEX; Schäfer, et al. 2013). 

Application of DEX to the leaves of the plant induces the transcription of IPT which increased 

CK levels locally. We used line number A-11-92 x A-11-61.  

DEX was solved in lanolin paste with 1% DMSO at a final concentration of 5 µM. For 

control treatments we used 1% DMSO in lanolin. The lanolin paste was applied to the petioles of 

the leaves 24 h prior to following treatment (Schäfer, et al. 2015b). 

Plant cultivation was performed as described by Krügel, et al. (2002) with the 

modifications described by Brütting, et al. (2017): Ten days after germination plants were 

transplanted to TEKU pots containing soil, and maintained under greenhouse conditions (27°C; 

ca. 60% RH, 18:8 light:dark regime). Soil growth conditions have been previously described 

(Krügel, et al. 2002).  

Hydroponic plants have been grown as described by Ullmann-Zeunert, et al. (2012).  

To prevent spreading of Tupiocoris notatus in our greenhouse facilities, we transferred 

the plants right before start of flowering, when the plants were about 25 cm elongated, to a 

separate greenhouse designated for T. notatus experiments for treatment with insects. In both 

greenhouses we kept plants at comparable growth conditions. After transferring the plants to the 

second greenhouse, we waited at least 2 days before we started the experiments to allow them to 

acclimatize to the new environment.  
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Insect colony 

We used a lab colony of T. notatus (DISTANT, 1893; Fig. 1B) originating from insects 

caught in the Great Basin desert (Washington County, Utah, USA; Kessler and Baldwin (2001). 

Lab colonies are regularly refreshed by insects caught in nature. Lab colonies are kept in cages 

made of acrylic glas (2 * 1 * 1 m) with a fine mesh for air circulation. The cages are placed in the 

same greenhouse where the experiments with plants were done under the same light and 

temperature regime. We feed insects with hydroponically grown N. attenuata plants. Fresh plants 

are provided weekly and old plants are kept in the cages for several weeks to allow neonates to 

hatch from eggs laid in the food-plants. We collected insects from the cage for experiments using 

an insect exhauster. For separation between adults and nymphs, insects were stunned with CO2.  

Herbivory treatment 

We used two different ways of herbivory treatment of N. attenuata plants. Either we 

exposed only one leaf to T. notatus or the whole plant.  

To treat one leaf we enclosed twenty T. notatus adults on the first stem leaf with a round 

plastic clip-cage (7 cm dimeter, 5 cm height). Clip-cages had holes covered with a fine mesh for 

air ventilation. Only one clip-cage per plant was applied. Control plants received empty clip-cages 

to distinguish from potential cage effects. Before sampling, mirid mortality was scored, and 

samples with more than 50% mortality were discarded. Control and damaged leaf lamina were 

collected at seven time-points (0, 24, 48, 72, 96, 120 and 144 h), snap frozen in liquid nitrogen 

and kept at -80°C until analysis.  

To treat whole plants, plants were placed in the mirid rearing cage and control plants were 

placed in a cage without mirids. Damaged lamina of first stem leaf was sampled at the same time-

points than the experiment described before or at time points given in the description of the 

according experiment. Both experiments were started in the morning (09:00 – 12:00). 

Measurement of caffeoylputrescine and nicotine 

Caffeoylputrescine and nicotine were determined using UHPLC-ToF-MS by analyzing 

extracted ion chromatograms as described in Schäfer, et al. (2015b) and (Brütting, et al. 2017).  

80 % MeOH (v/v) was used for extraction of approximately 100 mg of frozen and ground 

leaf material from each sample. Values are presented as peak area * g FM-1. 

Trypsin Proteinase inhibitor (TPI) assay 

TPI activity was determined using a radial diffusion assay (Jongsma et al. 1994) with 

approximately 50 mg of frozen and ground leaf-material. TPI-activity was normalized to leaf 
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protein content. The protein content of the extracts used for the TPI assay was determined with 

the Bradford-assay (Bradford 1976). 

Measurement of jasmonic acid (JA), jasmonoyl-isoleucine conjugate (JA-Ile), cis-(+)-12-

oxophytodienic acid (OPDA), salicylic acid (SA) and abscisic acid (ABA) 

JA, JA-Ile, OPDA and SA were extracted and analyzed as described by Kallenbach et al. 

(2010). ABA was extracted in the same way and analyzed as described in Dinh et al. (2013).  

Quantification of protein levels 

Protein levels were determined using a Bradford assay (Bradford 1976) on a 96-well 

microtiter plate. We used around 50 mg of ground plant tissue and extracted it with 0.5 ml of 0.1 

M TRIS HCL buffer (pH 7.6).  

Measurement of starch, glucose, fructose and sucrose with a hexokinase assay 

Glucose, fructose, sucrose and starch were determined in control and mirid-damaged leaf 

lamina following the protocol described by Machado, et al. (2013). Briefly, for soluble sugars 100 

mg plant tissue was extracted first with 80% (v/v) ethanol and later twice with 50% (v/v) ethanol, 

each by incubation for 20 min at 80°C. Supernatants from all extractions were pooled together, 

and sucrose, glucose and fructose were quantified enzymatically as described by Velterop and 

Vos (2001). The remaining pellets were used for an enzymatic determination of starch content 

(Smith and Zeeman 2006). 

Quantification of free amino acids 

Free amino-acids were extracted from leaf material with acidified MeOH 

[MeOH:H2O:HCOOH 15:4:1 (v/v/v)] and analyzed by LC-MS/MS (Bruker EVOQ Elite, 

www.bruker.com), as described by Schäfer et al. (2016).  

Photosynthesis measurement 

Photosynthesis rate was measured using a LI-COR LI-6400/XT portable photosynthesis 

measurement system. We measured photosynthesis rate at control leaves and leaves damaged by 

T. notatus. Leaves with clip-cage were analyzed in the covered area.  
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Chlorophyll measurement 

Chlorophyll was quantified using a Minolta SPAD Chlorophyll meter 502. Chlorophyll 

content is displayed in arbitrary SPAD-units. We measured chlorophyll content at 3 different 

random spots of each analyzed leaf and used the average value as its chlorophyll content. Leaves 

with clip-cage were analyzed in the covered area. 

Quantification of cytokinin related transcripts with qPCR 

RNA was extracted with TRIzol (Invitrogene), according to the manufacturer instructions. 

cDNA was synthesized by reverse transcription using oligo(dT) primer and RevertAid reverse 

transcriptase (Invitrogen). qPCR was performed using actin as standard on a Stratagene Mx3005P 

qPCR machine using a SYBR Green reaction mix (Eurogentec; qPCR Core kit for SYBR Green I 

No ROX). The primer sequences are provided in Table S2. 

Cytokinin measurement 

CK-measurement was done as described by Schäfer, et al. (2016). In brief, CKs were 

extracted from 100 mg of fresh ground leaf material or around 10 mg of insects (around 20 adults) 

using acidified methanol and purified on reversed phase and cation exchange solid-phase 

extraction columns. The measurements were done via liquid chromatography coupled to a triple 

quadrupole MS (LC-MS/MS; Bruker EVOQ Elite, www.bruker.com) equipped with a heated 

electrospray ionization source. The method was extended for detection of 15N labeled CKs. The 

parent  product ion transitions for 15N labeled CKs are listed in Table S3. Chromatograms of IP, 

[D6]-IP, [15N5]-IP as well as IPR, [D6]-IPR and [15N5]-IPR are shown in Figure 7 S4 and 7 S5. 

Rearing T. notatus on artificial diet 

For the artificial diet we dissolved amino acids (L-alanine, 50 mg; L-arginine, 30 mg; L-

cysteine, 20 mg; glycine, 20 mg; L-histidine, 30 mg; L-leucine, 30 mg; L-lysine, 20 mg; L-

phenylalanine, 30 mg; L-proline, 80 mg; L-serine, 100 mg; L-tryptophan, 500 mg; L-tyrosine, 10 

mg; L-valine, 40 mg; L-asparagine, 200 mg; L-aspartic acid, 200 mg; L-glutamine, 500 mg; L-

glutamic acid, 300 mg; L-isoleucine, 20 mg; L-methionine, 10 mg; L-threonine, 100 mg), sugars 

(glucose, 400 mg; fructose, 150 mg; sucrose, 800 mg) and vitamins (Vanderzant Vitamine mix, 

650 mg) in 40 mL water and sterile filtrated it. Additionally, we prepared an agar solution (1 g 

Agar-Agar in 60 mL water) that was sterilized by autoclaving. After cooling down the liquid agar 

solution to approximately 60°C in a water bath we added the amino acid/sugar/vitamin solution 

and aliquoted each 400 µL of the diet under sterile conditions in single 0.5 mL reaction tubes 

where it solidified. The tubes were stored in the fridge until use.  
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For the experiment mirids were placed in plastic boxes (10 * 6 * 6 cm), covered with 

paper tissue and sealed with a perforated lid. 15 to 20 mirids were placed in each box and a tube 

of the described artificial diet was offered as sole food and water source. To prevent the diet to get 

moldy it was replaced each day with a new tube. The boxes were kept at a shaded place under 

greenhouse conditions described above. After 5 days the surviving mirids were collected and 

shock frozen in liquid nitrogen and stored at -80°C until extraction. 

15N labeling of plants and insects to track transfer of cytokinins 

N. attenuata plants with more than 98% total nitrogen content represented by 15N were 

obtained following the protocol described by Ullmann-Zeunert, et al. (2012). Briefly, twelve days 

after germination, plants were transferred into 50 ml hydroponic culture single pots containing 

only Ca(15NO3)2 as nitrogen source. Ten days later, they were moved to 1 L hydroponic culture 

pots with the same 15NO3- concentration in the form of K15NO3. Once per week, the plants were 

fertilized with 1 mM K15NO3 and the pots were filled up to 1 L with water. 

To generate 15N labeled T. notatus we reared them for a generation on 15N-labelled N. 

attenuata plants. Two-hundred adult females were transferred to a 47.5x47.5x93 cm insect cage 

with four early elongated 15N-labelled N. attenuata plants. Females were allowed to lay eggs for 

four days and were then removed. 15N-labelled plants were fertilized once a week (as described 

above), and after three weeks two fresh 15N-labelled plants were added into the insect cage. One 

week after the first adults emerged, the 15N labeled mirids were collected and used for the 

cytokinin transfer experiment. 

Cytokinin transfer experiment 

We performed studies of transferring of cytokinins from mirids to N. attenuata plants in 

two ways. In the first experiment, twenty 15N-labelled T. notatus adults were quickly anesthetized 

with CO2 prior to be clip-caged on the first stem leaf. Only one clip-cage per plant was applied. 

We collected leaf lamina corresponding to the area included in the clip-cage and thus damaged by 

mirids at different time-points: 0, 3, 6, 24, 48, 72, 96 and 120 h, and froze it in liquid nitrogen. We 

conserved samples at -80°C until analysis.  

In the second experimental setup we directly placed five 15N-labelled N. attenuata plants 

in the mirid rearing cage. We sampled the first stem leaf at different time-points: 0, 3, 6, 24, 48, 

72, 96 and 120 h. We transferred plants once per day to a different cage to ensure that mirids do 

not accumulate 15N metabolites. We separated the leaf lamina from the mid-rib and froze it in 

liquid nitrogen. We conserved the samples at -80°C until analysis. 
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Determination of CKs in oral secretions and frass 

The collection of mirid oral secretions was done similar as described by Halitschke, et al. 

(2011) with some modifications. In brief, we placed mirids in plastic boxes (10 * 6 * 6), covered 

with paper tissue and sealed with a perforated lid. We placed 15 to 20 mirids in each box and 

offered an upside-down lid of a scintillation vial filled to the top with sugar water (~3 mL, 40 mM 

glucose) as sole food and water source. To separate oral secretions from frass and to prevent 

insects from drowning, we covered the lids with a thin layer of Parafilm. After 24h we collected 

the lids, removed the sugar water with a syringe and washed off the frass spots on the parafilm 

with MeOH. As control we used sugar water containing lids that were kept in boxes without 

mirids under the same conditions. We pooled frass samples and sugar water samples originating 

from approximately 100 mirids. We evaporated the sugar solution in a freeze dryer overnight. We 

extracted and analyzed the CKs as described for plant and insect tissues (We used extraction 

buffer to dissolve the evaporated sugar solution). 

Damage distribution under field conditions in WT plants 

Damaged area on different leaf types was estimated in % of the total leaf surface. We 

estimated the damaged proportion in 3 different leaf types (See Fig. 6 S1 A): Rosette leaf, the first 

3 stem leaves and all younger stem leaves and side branches. 

Choice assays under field conditions 

We collected insect from their natural environment at our field station in Utah, USA. 10-

15 T. notatus insects were placed in a plastic cup. The cup was connected to two other plastic 

cups (Fig. 6 S1 B), one with a fully grown stem leaf inside and the other with a young, growing 

tissue (apical meristem and small growing leaves). Plant material was attached to a 2 ml plastic 

tube filled with water to prevent it from drying out. We gave insects one night (12 h) to choose 

one of the two cups. In the morning we counted the number of mirids in each cup.  

Choice assays between EV and irchk2/3 plants 

We placed WT and irchk2/3 plants in a big cage in our greenhouse (3 * 4 * 1.6 m). The 

cage was covered with a fine mesh to prevent insects from escaping. We released about 500 T. 

notatus in the cage and estimated the damage on each plant (as described above) after 10 days of 

exposition to T. notatus. 
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Choice assays using i-ovipt plants 

Data from choice assays were taken from the dataset published in (Schäfer, et al. 2013). i-

ovipt plants were either treated with LAN (control) or with DEX as described above. We treated 

the first 10 stem leaves of a flowering plant. We placed each one DEX and one LAN treated plant 

in one 47.5x47.5x93 cm insect cage and added about 100 T. notatus. We estimated damaged area 

on leaves after 10 days. We calculated an average damage level from all 10 treated leaves from 

each plant, which was counted as one replicate.  

Chemicals 

All used chemicals were obtained from Sigma‐Aldrich (http://www.sigmaaldrich.com/), 

Merck (http://www.merck.com/), Roth (http://www.carlroth.com/) or VWR 

(http://www.vwr.com), if not mentioned otherwise in the text. CK standards were obtained from 

Olchemim (http://www.olchemim.cz), DEX from Enzo Life Sciences 

(http://www.enzolifesciences.com/), HCOOH for ultra-performance LC from Fisher Scientific 

(http://www.fisher.co.uk/), otherwise from Riedel-de Haën (http://www.riedeldehaen.com/) and 

GB5 from Duchefa (http://www.duchefa-biochemie.nl/). 

Statistical analysis 

Data were analyzed using R 3.3.1 (2016-06-21; http://www.r-project.org). Relevant tests 

and number of replicates are mentioned in the figure legends. We used two-way ANOVAs 

(TWA) to analyze effect of mirid feeding, time after start of mirid attack and interaction of both 

factors in Figures 1 S1, 2, 2S1, 2 S2, 2 S3, 3 A and B, 3 S1, 3 S2, 3 S3. In all experiments, where 

clip-cages were used, we only used data from control clip-cages and clip-cages with mirids for 

analysis. Additionally, we carried out Welch t-tests or Wilcoxon–Mann–Whitney tests (if not 

homoscedastic) between control and T. notatus attacked samples. These tests were done for each 

time point of induction separately. The comparisons of the clip-cage experiments were Bonferroni 

corrected. 

Data in Figure 1 and 3 C have been analyzed with a Wilcoxon–Mann–Whitney test. Data 

in Figure 3 S4A, 6 S1, 7A have been analyzed with a one-way ANOVA followed by a Tukey’s 

HSD post hoc test. Data in Figure 3 S4 B, 6 and 6 S1 B have been analyzed by Welch t-test. If 

necessary, data were transformed to fit requirements of the particular test (homoscedasticity, 

normality) 

Error bars in the figures represent standard errors. Differences were considered significant 

if p < 0.05.   

http://www.r-project.org/


Manuscript VI 

255 

 

ACKNOWLEDGEMENTS: 

This work was funded by the Max-Planck-Society. Brütting and Meldau and Schuman 

were funded by Advanced Grand no. 293926 of the European Research Council to Baldwin. 

Martin Schäfer and Cristina Crava were funded by Collaborative Research Centre "Chemical 

Mediators in Complex Biosystems - ChemBioSys" (SFB 1127). We thank Mario Kallenbach, 

Matthias Schöttner, Thomas Hahn, Antje Wissgott, Wibke Kröber, Celia Diezel, and Eva Rothe 

for technical assistance. We thank Claire Poore, Thomas Steier, Anja Hartmann, Spencer Arnesen 

and Katrina Welker for help with sample processing and Tamara Krügel, Andreas Weber, 

Andreas Schünzel and the entire glasshouse team for plant cultivation. We thank Rayko 

Halitschke for helpful discussions. 

  



Manuscript VI 

256 

 

FIGURES 

 

Figure 1: Tupiocoris notatus feeding induces JA-dependent defense reactions in Nicotiana 

attenuata. 

A Control leaf of N. atteunata and a leaf after 3 d attack by T. notatus. B T. notatus adult. C-J 

Defense metabolites and stress related hormone levels induced by 3 d T. notatus attack (dark 

columns) and in control leaves (white): C nicotine, D caffeoylputrescine (CP), E trypsin 

proteinase inhibitor (TPI) activity, F jasmonic acid (JA), G jasmonic acid-isoleucine conjugate 

(JA-Ile), H cis-(+)-12-oxophytodienoic acid (OPDA), I salicylic acid (SA) and J abscicic acid 

(ABA). Wilcoxon-Mann-Whitney test: * p<0.05, ** p<0.01, *** p<0.001, n.s.: not significant. 

Error bars depict standard errors. N≥6. FM, fresh mass. 
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Figure 1 S1: Tupiocoris notatus feeding increases levels of JA and JA-Ile. 

A Experimental setup corresponding to B and C. On each plant we caged one leaf in a plastic 

clipcage with (clipcage + T. notatus) or without (clipcage) 20 T. notatus. Additionally, we 

collected untreated control leaves (control, dotted line). B Jasmonic acid (JA) and C jasmonic 

acid-isoleucine conjugate (JA-Ile) were monitored over 144 h. Wilcoxon rank sum test with 

Bonferroni correction between clipcage and clipcage + T. notatus (B,C) for each time point: • P < 

0.1, * P < 0.05. Error bars depict standard errors. N ≥ 3. D Experimental setup corresponding to E 

and F. A whole plant was caged in an insect cage with (cage + T. notatus) or without (control 

cage) T. notatus adults. E JA and F JA-Ile kinetics were monitored over 144 h. Wilcoxon–Mann–

Whitney test between control and T. notatus attacked leaves (E, F) for each time point: * P < 0.05. 

Error bars depict standard errors. N=4. FM, fresh mass. 
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Figure 2: Tupiocoris notatus feeding is not significantly changing nutrient levels. 

A Experimental setup: On each plant we caged one leaf in a plastic clipcage with 20 T. notatus 

(clipcage + T. notatus; solid line) or without (clipcage, dashed line). Additionally, we collected 

untreated control leaves (control, dotted line). B Protein, C starch, D sucrose, E glucose and F 

fructose were analyzed in a time-kinetic from 1 – 144 h. Pairwise t-test (B, C, D and F) or 

Wilcoxon rank sum test (E) with Bonferroni correction between clipcage and clipcage + T. 

notatus for each timepoint: • P < 0.1, * P < 0.05, ** P < 0.01. Error bars depict standard errors. N 

≥ 3. FM, fresh mass. 



Manuscript VI 

259 

 

 

Figure 2 S1: Tupiocoris notatus feeding is decreasing photosynthetic activity while not 

influencing chlorophyll content. 

A Experimental setup: On each plant we caged one leaf in a plastic clipcage with 20 T. notatus 

(clipcage + T. notatus; solid line) or without (clipcage, dashed line). Additionally, we collected 

untreated control leaves (control, dotted line). B Photosynthetic assimilation and C chlorophyll 

content in a time-kinetic from 1 – 144 h (120 h). Pairwise t-test with Bonferroni correction 

between clipcage and clipcage + T. notatus: • P < 0.1, * P < 0.05, ** P < 0.01. Error bars depict 

standard errors. N ≥ 3. 
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Figure 2 S2: Tupiocoris notatus feeding on whole plants is affecting nutrient levels in leaves of 

Nicotiana attenuata. 

A Experimental setup: whole plants were caged with T. notatus (cage + T. notatus attacked; solid 

line) or without (control cage, dotted line). B Protein, C starch, D sucrose, E glucose and F 

fructose were monitored in a time-kinetic from 24 – 144 h. Welch t-test (B, C and E) or 

Wilcoxon–Mann–Whitney test (D, F) between control and T. notatus attacked: • P < 0.1, * P < 

0.05, ** P < 0.01. Error bars depict standard errors. N ≥ 4 (3:B, D). FM, fresh mass. 

  



Manuscript VI 

261 

 

 

Figure 2 S3: Tupiocoris notatus feeding is decreasing photosynthetic activity and chlorophyll 

content in leaves of Nicotiana attenuata.. 

A Experimental setup: whole plants were caged with T. notatus (cage +T. notatus; solid line) or 

without (control cage, dotted line). B Photosynthetic assimilation and C chlorophyll content were 

monitored in a time-kinetic from 24 – 144 h (120 h). Welch t-test (C) or Wilcoxon–Mann–

Whitney test (B) between control and T. notatus attacked: • P < 0.1, * P < 0.05. Error bars depict 

standard errors. N = 4. 
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Figure 3: Tupiocoris notatus is influencing Nicotiana attenuata’s cytokinin (CK) metabolism and 

contains high amounts of CKs in its body. 

A Transcript accumulation of NaCKX5: cytokinin oxidase/dehydrogenase 5 (inactivation of CKs 

by oxidation) and B CK levels in leaves: sum of cis-zeatin (cZ), trans-zeatin (tZ), N6-

isopentenyladenine (IP) and their ribosides (cZR, tZR, IPR) in leaves exposed to T. notatus 

feeding (cage + T. notatus, solid line) and control leaves (control cage, dotted line) at different 

time points after start of exposure. C Single CK types in leaves after 144 h of exposure to T. 

notatus and in the insects themselves. Wilcoxon-Mann-Whitney test between control and attacked 

leaves at single time points: • P < 0.1, * P < 0.05. Error bars depict standard errors. A: N ≥ 2; B, 

C: N = 4. FM, fresh mass. 
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Figure 3 S1: Tupiocoris notatus feeding is influencing transcript levels of cytokinin inactivation 

and cytokinin biosynthesis genes in Nicotiana attenuata. 

Relative transcript accumulation (NaActin as reference gene) in leaves infested with T. notatus 

(cage + T. notatus, solid line) and control leaves (control cage, dotted line) at different time points 

after start of exposure. A NaRRA5: CK response regulator 5. B NaZOG2: Zeatin-O-

glucosyltransferase 2. C NaLOG4: Cytokinin riboside 5'-monophosphate phosphoribohydrolase 

LOG (LONELY GUY) 4. D NaIPT5: Isopentenyltransferase 5. Welch-Two-Sample-t-test control 

and attacked leaves at single time points: • P < 0.1, * P < 0.05. Error bars depict standard errors. N 

≥ 2. 
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Figure 3 S2: Tupiocoris notatus feeding affects cytokinin (CKs) levels in Nicotiana attenuata 

leaves. 

CK levels in leaves infested with T. notatus (cage + T. notatus, solid line) and control leaves 

(control cage, dotted line) at different time points after start of exposure. A cis-Zeatin (cZ), B 

trans-zeatin (tZ), C N6-isopentenyladenine (IP) and their ribosides D cZR, E tZR, F IPR. 

Wilcoxon-Mann-Whitney test between control and attacked leaves at single time points: • P < 0.1, 

* P < 0.05. Error bars depict standard errors. N = 4. FM, fresh mass. 
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Figure 3 S3: Influence of Tupiocoris notatus single-leaf feeding on cytokin levels. 

A Experimental setup: one leaf is caged with plastic clipcage with 20 T. notatus (clipcage + T. 

notatus; solid line) or without (clipcage, dashed line). Additionally, we collected untreated control 

leaves (control, dotted line). B – H CK values in leaves at different time-points after start of 

exposure: B sum of cis-zeatin (cZ), trans-zeatin (tZ), N6-isopentenyladenine (IP) and their 

ribosides (cZR, tZR, IPR). C cZ, D tZ, E IP, F cZR, G tZR and H IPR. Pairwise t-tests with 
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Bonferroni correction between clipcage and clipcage + T. notatus for each timepoint: • P < 0.1, * 

P < 0.05, ** P < 0.01, *** P < 0.001. Error bars depict standard error. N ≥ 3. FM, fresh mass.  



Manuscript VI 

267 

 

 

Figure 3 S4: Tupiocoris notatus contains high amounts of N6-isopentenyladenine (IP) in its body 

independent from its sex or food source. 

A IP and IPR (N6-isopentenyladenosine) in nymphs, males and females of T. notatus. One-Way-

ANOVA with Tukey HSD posthoc test. N ≥ 3. B IP and IPR in T. notatus adults reared on plants 

or on artificial diet. Green dotted lines present representative levels of IP and IPR in leaf tissue. 

Welch-t-test. N.s: not significant. N ≤ 7. Error bars depict standard errors. FM, fresh mass. 
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Figure 4: Tupiocoris notatus transfers IP to leaves of its hostplant.  

A and B Experimental setup and chromatograms of IP: A T. notatus raised on hydroponic plants 

grown on a 14N containing N-source have only [14N5]-IP in their body. B Plants raised on a 

hydroponic medium containing only a 15N containing N-source have only [15N5]-IP in leaves. 15N 

labeled plants and 14N labeled insects were placed in the same cage for 5 days. Ratio of [14N5]-IP 

(originating from insects, blue) and [15N5]-IP (from hostplant, yellow) were determined in 

attacked leaves. C Chromatogram of [14N5]-IP and [15N5]-IP in the leaves of 5d attacked plants. D 

Ratio of [14N5]-IP and [15N5]-IP at different time-points after start of exposure to T. notatus. N ≥ 

3. 
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Figure 4 S1: Few individuals of Tupiocoris notatus transfer detectable amounts of IP to leaves of 

its host plant. 

A and B Experimental setup and chromatograms of IP: A T. notatus raised on hydroponic plants 

grown on a 15N containing N-source have only [15N5]-IP in their body. B Plants raised on a 

hydroponic medium containing only 14N containing N-source have only [14N5]-IP in leaves. 

20 15N labeled insects were placed in small cages on one leaf of 14N labeled plants for 5 days. 

Ratio of [15N5]-IP (originating from insects, yellow) and [14N5]-IP (from hostplant, blue) were 

determined in attacked leaves. C Chromatogram of [15N5]-IP and [14N5]-IP in the leaves that were 

5d attacked. D Ratio of [15N5]-IP and [14N5]-IP at different time-points after start of exposure to 

T. notatus. N ≥ 3. 
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Figure 4 S2: Tupiocoris notatus transfers IPR to leaves of its hostplant. 

A and B Experimental setup and chromatograms of IPR: A T. notatus raised on hydroponic plants 

grown on a 14N containing N-source have only [14N5]-IPR in their body. B Plants raised on a 

hydroponic medium containing only a 15N containing N-source have only [15N5]-IPR in 

leaves. 15N labeled plants and 14N labeled insects were placed in the same cage for 5 days. Ratio 

of [14N5]-IPR (originating from insects, blue) and [15N5]-IPR (from hostplant, yellow) were 

determined in attacked leaves. C Chromatogram of [14N5]-IPR and [15N5]-IPR in the leaves of 5d 

attacked plants. D Ratio of [14N5]-IPR and [15N5]-IPR at different time-points after start of 

exposure to T. notatus. N ≥ 3. 
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Figure 4 S3: Few individuals of Tupiocoris notatus transfer barely detectable amounts of IPR to 

leaves of its host plant. 

A and B Experimental setup and chromatograms of IP: A T. notatus raised on hydroponic plants 

grown on a 15N containing N-source have only [15N5]-IPR in their body. B Plants raised on a 

hydroponic medium containing only 14N containing N-source have only [14N5]-IPR in leaves. 

20 15N labeled insects were placed in small cages on one leaf of 14N labeled plants for 5 days. 

Ratio of [15N5]-IPR (originating from insects, yellow) and [14N5]-IPR (from hostplant, blue) were 

determined in attacked leaves. C Chromatogram of [15N5]-IPR and [14N5]-IPR in the leaves that 

were 5d attacked. D Ratio of [15N5]-IPR and [14N5]-IPR at different time-points after start of 

exposure to T. notatus. N ≥ 3. 
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Figure 4 S4: Chromatograms of IP, [D6]-IP, [15N5]-IP. 

Dashed lines show the retention-time shifts between [14N5]-IP , [D6]-IP (internal standard) and 

[15N5]-IP. Color coding is the same as in the according chromatograms. The parental  daughter 

ion transitions that have been monitored are given in the top right of each chromatogram.   
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Figure 4 S5: Chromatograms of IPR, [D6]-IPR and [15N5]-IPR 

Dashed lines show the retention-time shifts between unlabeled IP, [D6]-IP (internal standard) and 

[15N5]-IP Color coding is the same as in the according chromatograms. The parental  daughter 

ion transitions that have been monitored are given in the top right of each chromatogram.  
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Table S1: Calculation of the minimum amount of IP transferred by a single mirid in Experiment 2 

and estimation of the amount of mirids necessary to transfer the measured amount of IP in 

Experiment 1 

 
After 120 h 

constant feeding 

Experiment 2 Experiment 1 

Transferred 
[15N5]-IP/IPR: 

fmol / g FM leaf 
fmol IP/mirid 

Transferred 
[14N5]-IP/IPR: 

fmol / g FM leaf 

estimated number of 
mirids on one leaf: 

IP 2.3505 0.117523758 15.641 133.0905159 

IPR 34.8575 1.74287662 135.36 77.66555141 
 

Experiment 2: Each 20 15N labeled mirids feeding on single leaves of 14N labeled plants for 5 days. 

Experiment 1: 15N labeled plants exposed to an unknown amount of 14N labeled mirids. 

FM, fresh mass. 

  



Manuscript VI 

275 

 

 

Figure 5: Tupiocoris notatus contains IP in its saliva and in small amounts in its frass.  

Chromatograms showing the signal intensity of a MS/MS- trace for IP (204.1  136.0). A IP 

signal of pure sugar solution (black line) or sugar solution that has been used as diet for T. notatus 

for 5 days (red line). The sugar solution was covered with a thin layer of parafilm that allows 

piercing and feeding on the solution but prevents contamination with T. notatus frass. B 

Chromatogram of the surface wash of the parafilm covering the sugar solution after T. notatus 

feeding (red line, covered with visible frass spots) or without (control wash, black line). 
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Figure 5 S1: Tupiocoris notatus contains IPR in its saliva and in its frass. 

Chromatograms showing the signal intensity of a MS/MS- trace for IPR (336.1  204.1). A IPR 

signal of pure sugar solution (black line) or sugar solution that has been used as diet for T. notatus 

for 5 days (red line). The sugar solution was covered with a thin layer of parafilm that allows 

piercing and feeding on the solution but prevents contamination with T. notatus frass. B 

Chromatogram of the surface wash of the parafilm covering the sugar solution after T. notatus 

feeding (red line, covered with visible frass spots) or without (control wash, black line). 
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Figure 6: Cytokinin-regulated traits mediate Tupiocoris notatus feeding preferences and alter leaf 

responses to feeding.  

A and B: Surface damage on N. attenuata plants after 10 d of T. notatus feeding. A T. notatus 

could choose between dexamethasone-inducible isopentenyltransferase-overexpressing plants (i-

ovipt) treated with dexamethasone-containing lanolin paste (+DEX) or lanolin paste without 

dexamethasone as control (+LAN; figure based on data from Schäfer et al. 2013). N = 7, Welch t-

test: * p < 0.05. B Choice between empty vector (EV) and irchk2/3 plants silenced in the two 

cytokinin receptor genes NaCHK2 and NaCHK3 (irchk2/3). N = 6, Welch t-test: *** p < 0.001. 

Error bars depict standard errors. C Exemplary pictures of leaves of EV or irchk2/3 plants with or 

without T. notatus damage. Magnifications show necrotic lesions occurring only in irchk2/3 plants 

after several days of mirid feeding. 
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Figure 6 S1: Tupiocoris notatus prefers to feed on young leaves.  

A Distribution of T. notatus damage in flowering Nicotiana attenuata plants under field 

conditions. Picture 1) field plot at Lytle Preserve, Utah, 2) a growing N. attenuata plant in the 

field, 3) a typically damaged leaf. Below: Damaged leaf-area in %. Leaves were grouped into 

rosette leaves, lower stem leaves and upper stem leaves and side branches as indicated in the 

schematic drawing on the left. N=21, One-Way-ANOVA, Tukey HSD posthoc test, different 

letters indicate significant differences (p < 0.05), error bars depict standard errors. B Choice 

assay: 10 mirids were placed in an arena with two tubes connected to either a fully grown leaf or a 

young growing leaves on a stem tip. Number of mirids on each side was counted after 12 hours. 

N=12, Welch t-test **: p < 0.01, error bars depict standard errors.  
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Figure 7: Transgenic Nicotiana attenuata plants altered in their cytokinin metabolism are changed 

in their nutrient content.  

We compared empty vector (EV) plants, plants silenced in the two cytokinin receptor genes 

NaCHK2 and NaCHK3 (irchk2/3) and dexamethasone-inducible isopentenyltransferase-

overexpressing plants (i-ovipt) treated with dexamethasone-containing lanolin paste (DEX) 

leading to increased CK levels. Concentrations were determined in untreated rosette leaves of N. 

attenuata: A Protein, B free amino acids, C starch, D glucose, E fructose and F sucrose. One-way 

ANOVA and Tukey HSD post hoc test. Different letters indicate significant differences. Starch 

data was log-transformed. N = 4. Error bars depict standard errors. FM, fresh mass.  
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Table S2: Sequences of primers used for qPCR 

Gene Forward primer Reverse primer 

NaActin 5'ggtcgtaccaccggtattgtg3' 5'gtcaagacggagaatggcatg3' 

NaCKX5 5'ttgtcggcttattgtaaccgtcg3' 5'gttaagaactgccatcggctc3' 

NaRRA5 5'agatgagttgcatgttcttgctgt3' 5'tcaatccccacagaggtcttct3' 

NaZOG2 5'agtcatgcaagtcaatttaagagctc3' 5'aggaaatttgggaagaaggtgtaag3' 

NaLOG4 5'ctcagctcacaaagtcttcacg3' 5'ccattaagccaacacttccacc3' 

NaIPT5 5'tcagccacttattaatttccgagag3' 5'ttggctagatcaatggatagtctag3' 



Manuscript VI 

281 

 

Table S3. Multi-reaction-monitoring settings for the quantification of [14N5]-, [15N5]- and 

deuterated cytokinins in positive ionization mode. 

Analyte  RT [min] Q1 [m/z] →  Q3 [m/z]a,b    CE [V]a    Standardc         

[15N5]-IP  5.12  (+)209.10 → 141.00 -14 D6-IP 

[15N5]-IPR  6.14  (+)341.10 → 209.30 -12 D6-IPR 

     (+)341.10 → 141.00 -28 

cZ    2.53  (+)220.20 → 136.30 -16 D5-tZ  

     (+)220.20 → 148.30 -16 

cZR    4.45  (+)352.20 → 220.30 -16 D5-tZR 

     (+)352.20 → 136.00 -25 

IP    5.18  (+)204.10 → 136.00 -14 D6-IP  

IPR    6.10  (+)336.10 → 204.30 -12 D6-IPR 

     (+)336.10 → 136.50 -28 

tZ    2.25  (+)220.20 → 136.30 -16 D5-tZ  

     (+)220.20 → 148.30 -16 

tZR    4.04  (+)352.20 → 220.30 -16 D5-tZR 

     (+)352.20 → 136.00 -25 

D6-IP   5.11  (+)210.10 → 137.00 -14   

D6-IPR    6.04  (+)342.00 → 210.00 -12 

     (+)342.00 → 136.50 -28 

D5-tZ   2.22  (+)225.20 → 136.60 -16 

D5-tZR    3.98  (+)357.20 → 225.50 -16  

   
RT: retention time 

CE: collision energy 
a Qualifiers are depicted in grey 
b Resolution: Q1: 0.7, Q3: 2 
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4 GENERAL DISCUSSION 

CKs are long known regulators of growth and development and also their involvement in 

responses to abiotic and biotic stresses has been discovered long time ago (reviewed in Argueso, 

et al. 2009, Werner and Schmülling 2009). When I started my PhD, the role of CKs in plant-

herbivore interaction has only attracted minor attention compared to the role of CKs in response 

to abiotic stresses (e.g. Rivero et al. 2007, Werner, et al. 2010) or its role in tolerance to 

pathogens (Choi, et al. 2010, Grosskinsky, et al. 2011, Argueso, et al. 2012, Grosskinsky, et al. 

2016). Still, an involvement of CKs in manifestation of endophytes in plants was hypothesized 

just a few years after the discovery of CKs (Matsubar.S and Nakahira 1967, Engelbrecht 1968, 

Engelbrecht, et al. 1969). Due to the early discovery of CKs as important factors in the infestation 

processes of leaf-miners and gall-insects, research in the CK-plant-herbivory interactions has 

mainly focused on these prominent examples (reviewed in Giron, et al. 2016). 

Phytohormones have so far never been found to be functionally isolated, but to act in 

concert with other phytohormones and signaling cascades (e.g. Robert-Seilaniantz, et al. 2011, 

Durbak, et al. 2012). Phytohormone signaling in response to herbivory is no exception from that 

rule (Erb, et al. 2012). The JA pathway has been identified as the core part of the herbivore 

triggered signaling (Koo and Howe 2009, Ballare 2011, Wasternack and Hause 2013, Campos et 

al. 2014). Nevertheless, many interactions of that pathway with other phytohormones have been 

described, such as with SA (Smith et al. 2009), ABA (Hou et al. 2010) or ethylene (Diezel et al. 

2011a). Backed up by first findings that CK primes plant responses to herbivory (Dervinis, et al. 

2010), that CK overexpression increased the resistance of Nicotiana tabacum to M. sexta 

(Smigocki, et al. 1993), and that CK levels can interfere with JA levels after wounding (Sano et 

al. 1996), it has been hypothesized that CKs also play an important role in a plant’s interaction 

not only with endophytic insects, but also with other herbivores (Erb, et al. 2012). Due to their 

role in plant-development, it has particularly been hypothesized that they could be responsible for 

developmental regulation of plant defenses. This developmental regulation has been described in 

many cases before and predicted by theories like the OD theory (Meldau, et al. 2012). 

In our model plant N. attenuata, CK-related transcripts were amongst the heavily 

regulated transcripts after simulated herbivore treatment (Hui et al. 2003, Gilardoni et al. 2010), 

making an involvement in responses to herbivores likely. Due to that growing evidence, I decided 

to study the role of CKs in interactions of plants with freely moving herbivores from different 

feeding guilds on N. attenuata. 

By the end of my thesis, I could demonstrate that CK levels and signaling are influenced 

by attack of free living herbivores from different feeding guilds on N. attenuata and A. thaliana 

(manuscript I and VI). I showed that manipulations in CK levels or signaling influence anti-
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herbivore defense responses (manuscript II, III and V) and that CK manipulations are sufficient 

to alter developmental gradients of defense metabolites (manuscript III), which are all at least 

partially controlled by the transcription factor NaMyb8 (manuscript IV). Finally, I also found 

that not only endophytic insects, but also a free living insect species is capable of manipulating 

their host plants by injection of CKs (manuscript VI).  

4.1 Wounding and herbivory from different herbivores affects CK signaling 

It has been long known that endophytic insects are able to interfere with the plant CK 

metabolism and signaling (Matsubar.S and Nakahira 1967, Engelbrecht 1968). The formation of 

leaf-galls and green islands are examples that can be found in almost any plant physiology 

textbook. In those prominent cases the changes in the CK pathway, as well as in CK levels are 

thought to be caused by an external transmission of CKs by the insect or its associated microbes 

(Mapes and Davies 2001, Giron et al. 2013, Giron and Glevarec 2014, Giron, et al. 2016). But 

only little was known about the interference of feeding of free living herbivores with the CK 

pathway. In manuscript I we were exploring the changes in CK levels, as well as in CK-related 

genes in N. attenuata after wounding and the attack of the free living Lepidopteran specialist M. 

sexta. Coinciding with previous literature (Conrad and Kohn 1975, Mitchell and Vanstaden 1983, 

Crane and Ross 1986) we found an increase of CKs, in particular cZR and IPR, in leaves after 

wounding. Furthermore we found several transcripts of the CK pathway changed after wounding. 

These responses in CK levels and transcript changes were even amplified after application of oral 

secretions (OS) of M. sexta or its elicitor FACs to wounded tissue. Previous microarray analyses 

already provided hints that CK related transcripts might be affected by wounding and application 

of FACs (Hui, et al. 2003, Gilardoni, et al. 2010). In addition, I show in manuscript III that 

levels of cZR in leaves are still increased after several days of herbivory, whereas levels of IPR 

are not. Regarding the fast responses after wounding and OS application, we found similar 

increases of cZR and IPR also in A. thaliana leaves after wounding and application of OS from 

Schistocerca gregaria, suggesting that this is a more common response to feeding of chewing 

herbivores. 

To expand our studies about responses of the CK pathway to herbivory, I decided to 

extend the study in manuscript VI to T. notatus, a piercing-sucking herbivore from a different 

feeding guild and a different insect order. T. notatus, which has a completely different feeding 

behavior, caused changes in CK levels and CK transcripts similar to those caused by M. sexta or 

S. gregaria feeding or simulated feeding. After several days of T. notatus feeding we found levels 

of cZR and cZ increased, while IPR levels where unaffected. The increase in cZR is common for 

all three model systems and could be a general wound- or stress response. In our review , we 

discussed this potential function of cZ type CKs (Schäfer, et al. 2015). 
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Not only changes in CK levels, but also transcriptional changes after the attack of these 

two different herbivores, M. sexta and T. notatus, on N. attenuata were similar. In both cases, 

transcript levels of the CK biosynthesis gene NaIPT5 are lower, and transcript levels of NaCKX5, 

which codes for a CK-oxidase and NaZOG2, which codes for a CK inactivating 

glucosyltransferase, are higher after herbivore attack. These similarities suggest that the influence 

of herbivore feeding on the CK pathway might be a more general response to herbivory in N. 

attenuata. Further studies with different plant and insect species could illuminate the prevalence 

of these responses within the plant kingdom. 

Although the responses to herbivory seemed to be similar amongst different plant and 

herbivore species, the underlying mechanistically connection between responses to herbivory and 

the CK pathway could not be fully elucidated in our study. The JA-pathway has been identified as 

the control center of anti-herbivore responses in plants (Koo and Howe 2009, Ballare 2011, 

Wasternack and Hause 2013, Campos, et al. 2014). Therefore the conclusion that the increase of 

JA and downstream effects could cause these effects on the CK pathway seems obvious. Indeed 

we found an effect of MeJA treatment on several CKs, where cZR seems to be positively 

influenced by herbivory and IPR negatively (manuscript I). On the other hand, transgenic plants 

with impaired JA production or JA perception still partially showed the responses in CK 

metabolism after herbivory. This indicates a CK response independently from JA and a HAMP-

specific regulation of CK metabolism somewhere upstream of JA, possibly additionally to a JA 

mediated regulation. Another possible explanation for increases of CKs might be the application 

of those CKs through the OS or excretions of the feeding insect as it was already suggested for 

endophytic insects (e.g. Engelbrecht, et al. 1969, Matsui, et al. 1975, Elzen 1983, Mapes and 

Davies 2001, Giron et al. 2007, Kaiser, et al. 2010, Giron, et al. 2016). In manuscript VI, I could 

measure high levels of the CK IP in the OS of T. notatus and could prove with 15N labeling 

experiments that they are able to transfer it to the host-plant. To my knowledge, this behavior was 

formerly not observed amongst free living insects. After five days of feeding almost half of the IP 

in the attacked leaves of a heavily attacked plant originated from the insects. Nevertheless, the 

absolute levels of IP did not change after attack. The type of CK injected (mainly IP) and the 

types of CKs increasing in the attacked leaves (mainly cZ and cZR) are not the same. This makes 

it unlikely that increases in CKs in the leaf tissue are directly caused by injections of CKs from 

the insect. More likely the injection causes CK-related processes that lead to the observed changes 

in the CK pathway. The injected IP in the leaves could possibly be degraded, or transported away 

from the feeding site to maintain a physiological level of CKs in attacked leaves. Levels of 

transcripts support the conclusion that the plant reacts to increased CK levels after herbivory with 

a decrease of CK biosynthesis and an increase of CK inactivation and degradation probably as 

kind of a countermeasure activated by some feedback regulation. We could also see similar 

changes in transcripts after CK application to the leaves (supplemental figure S 11 of manuscript 
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I). If M. sexta is also capable of transferring CKs to its hostplant remains elusive until 

measurements of CKs in M. sexta oral secretions have been carried out. The increased levels of 

cZ and cZR after M. sexta attack are possibly a more general response to wounding and the 

increase in JA.  

This still leaves the open question about the biological function of an activation of the CK 

pathway. An activation of CK triggered responses after herbivory could have several different 

conceivable functions. CKs are known for its stimulation of cell division (Letham 1963, Werner 

and Schmülling 2009). This could favor the healing of wounded plant tissue after herbivore 

attack, as it was already proposed long ago (Conrad and Kohn 1975). Another possible advantage 

of the activation of the CK pathway after herbivore attack could be an influence on the resource 

allocation in the plant. CKs are known to be able to create a sink at sites of their highest 

concentration (Roitsch and Ehness 2000, Arnold et al. 2004). An attraction of nutrient to 

wounded tissue (Quilliam et al. 2006) could therefore promote the biosynthesis of defense 

metabolites. The fact that we also see changes in unattacked systemic tissue, could provide a 

biological implication to the priming effect of CKs that has been described before (Dervinis, et al. 

2010). If CK levels increase in unattacked systemic tissue after wounding, the CK signal could 

possibly prime the so far unattacked leaf for an imminent attack by the herbivore. 

4.2 Cytokinin levels and cytokinin signaling is modulating anti-herbivore defenses 

Besides the possible role in wound healing, resource acquisition for defense metabolites, 

caused by herbivory triggered changes in the CK pathway, suggests that CK and CK signaling 

might influence a plants defense reactions to herbivory. The rare studies that have been published 

before I started my PhD, provided first evidence of a positive influence of CKs on defense 

reactions (Dervinis, et al. 2010), JA accumulation (Sano, et al. 1996) or on resistance to insects 

(Smigocki, et al. 1993, Smigocki, et al. 2000). In these studies an influence on defense 

compounds has been suggested but not fully validated. Nonetheless, other studies have shown that 

CKs can upregulate specialized plant metabolites (Hino et al. 1982, Ozeki and Komamine 1986, 

Grosskinsky, et al. 2011). Based on these studies we examined in manuscript II, how CK 

manipulations affect the defense reactions of N. attenuata.  

A major problem in CK manipulation has always been the production of severe side-

effects on growth and development of the plant. Constitutive expression of CK-biosynthesis genes 

like IPTs can cause severe developmental implications (Klee, et al. 1987). To circumvent these 

problems, two major strategies have been used in the past: Either CKs have been externally 

applied, for example by spraying (e. g. Sano, et al. 1996), or IPTs have been expressed under the 

control of developmentally or stress regulated promoters (e. g. Smigocki, et al. 1993, Gan and 

Amasino 1995, Qin, et al. 2011). External CK application is certainly the simpler method, but 
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carries problems of CK localization, dosing and CK transport away from treated tissue as well as 

side effects of the spraying procedure itself.  

In my manuscripts, I used five different methods to manipulate CK levels and CK 

signaling to minimize effects on the development of the plant and maximize the confirmation of 

CK effects on defense. To increase CK levels, we sprayed tZ on the leaves (manuscript II), we 

used a senescence activated promoter system (SAG-IPT4), which lead to plants that only 

overproduce IP-type CKs in senescing tissues (manuscript III) and we used a DEX-inducible 

promoter system (i-ovipt), which allowed us to locally increase the tZ-type CK levels 

(manuscript II, III, V and VI). Especially the DEX-inducible system (described in manuscript 

V) allowed us to trigger CK overproduction in a locally and temporally highly controlled way. To 

impair the CK perception we first used virus-induced gene silencing (VIGS) of different 

combinations of the three known receptor homologs for CKs in N. attenuata (manuscript II; 

description of the receptors in manuscript I). Then we used stable transient co-silencing of two 

of these receptors (irchk2/3; manuscript II and VI). 

Independently from the method we used, we always triggered an increase herbivory 

induced defenses like TPI and CP if we increased CK levels in the leaves. If the two receptors 

CHK2 and CHK3 were silenced together either by VIGS or transiently in stable lines, we saw 

lower levels of herbivory induced defenses. This confirmed the positive influence of CKs on the 

accumulation of plant defense metabolites, as this was the opposite effect on herbivore induced 

defenses compared to increased CK levels. 

All defenses that we found to be influenced by CK manipulations were defenses that were 

inducible by herbivore feeding. Affected defenses were TPIs and PAs like CP, 

dicaffeoylspermidine (DCS) and other PAs. The basal levels of those defenses seemed to be 

unaffected by CK manipulations, which suggests again an involvement of CKs in HAMP 

triggered herbivore defenses. In manuscript IV we provide evidence, that the R2/R3 MYB 

transcriptional activator NaMyb8, which was thought to be a specific regulator of PAs (Kaur, et 

al. 2010) is regulating also other defenses influenced by CKs, especially TPI but also a threonine 

deaminase (TD). As several studies have found an interaction between CKs and MYB 

transcription factors (Sardesai et al. 2013, Schmidt et al. 2013, Bar et al. 2016), this seems to be 

an interesting target of future research. Transcript levels of NaMyb8 were also affected by CK 

manipulations (manuscript II and VI); nevertheless the influence on this transcription factor, as 

well as on the transcript levels of biosynthetic genes was not as strong as on the defenses and 

sometimes even not significant. This suggests for example additional posttranscriptional or 

posttranslational mechanisms that are influenced by CK signaling. Another possible 

mechanism is the idea that the influence of CKs is also due to a regulation of precursors. CKs 

are for example increasing photosynthetic activity (Jordi, et al. 2000) and create a sink 
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strength (Roitsch and Ehness 2000). Therefore CKs could favor the production of defense 

metabolites by the promotion of increased levels of precursors of the defense metabolites, 

such as amino acids like phenylalanine or arginine which are important for PA biosynthesis 

(Kaur, et al. 2010). 

As also JA levels are changed by CK manipulations, it is likely that CKs also interfere 

with the defense pathway upstream of JA, as already suggested before (Dervinis, et al. 2010). 

Surprisingly, JA-Ile, which is thought to be the main active regulator of JA-dependent responses 

(Kang et al. 2006), is not affected by CK treatment (manuscript II). CKs might promote other 

active jasmonates that we did not measure but can also play a role in plant defense processes 

(Stintzi et al. 2001, van Doorn et al. 2011). It is likely that CKs interact with the pathway at 

multiple points, upstream and downstream of JA, as well as indirectly via precursor availability. 

Similar effects have also been reported in SA-dependent defense reactions to pathogens before 

(Choi, et al. 2010). Furthermore an interaction with other phytohormones seems likely. CK-

promoted elevation of the defensive compound scopoletin for example has been shown to be 

indirectly regulated by ABA in tobacco (Grosskinsky et al. 2014). Another example is GA, which 

is attenuating JA responses (Hou, et al. 2010) and can be suppressed by CKs (Jasinski et al. 

2005, Fleishon et al. 2011). GA-CK interaction in plant-herbivore responses might therefore 

provide also a possible future target of research.  

In all my studies, I did not see an effect of CK manipulations on the accumulation of 

nicotine. In contrast to defenses like CP, other PAs or TPI, nicotine is already produced in high 

amounts without induction by herbivores. It is possible that CKs only affect plant defenses, which 

are inducible. In manuscript III, I show that nicotine levels are not inducible under the 

conditions and with the treatments I used, although an inducibility of nicotine has been 

demonstrated before (Baldwin 1996). However, it also has been described before that induction of 

nicotine gets lost in plants in pots, like they are used in greenhouse experiments (Baldwin 1988). 

As nicotine is produced mainly in the roots (Iljin 1958), this effect may be caused by the restricted 

growth potential of the root system in pots. It is possible that nicotine levels respond to CK 

manipulations, if the plants are not pot-bound and nicotine levels are inducible. Studies in the 

natural environment or in much bigger pots could clarify this hypothesis. 

4.3 Cytokinins are controlling the developmental regulation of anti-herbivore 

defenses 

The question about the evolutionary advantage of a connection between a growth 

hormone and the defense pathway turns out to be very fascinating. CKs are associated to young 

growing tissue, i.e. cell-division and growth (Hewett and Wareing 1973; manuscript III). This 

means that high CK levels are normally associated to metabolically active tissue, which provides 
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a higher future productivity to a plant than senescing or old tissue, which has lower levels of CKs. 

For a plants fitness, meaning its seed production, young active leaf tissue is more valuable than 

old tissue (Harper 1989). Therefore, CK levels might be indirectly associated to the fitness value 

of a particular tissue. Protecting the tissue that provides a bigger fitness value for the plant more 

than tissue with a lower value, is predicted by the OD theory (McKey 1974, Stamp 2003). 

Therefore, we wondered if the distribution patterns predicted by the OD theory might be 

influenced by the CK content of a certain tissue. We hypothesized that the observed patterns of 

defenses might be a reflection of the distribution pattern of CKs in the plant. 

In earlier studies, it has been shown that defenses follow distributions predicted by the 

OD theory with high levels of defense in young tissue and low levels in old tissue (e.g. James 

1950, Mothes 1955, Ohnmeiss and Baldwin 2000, Gutbrodt et al. 2011, Massad et al. 2014). 

Additionally, other studies have shown that CK levels are high in young, growing tissue, but low 

in senescing tissue (Hewett and Wareing 1973, Ori, et al. 1999). But so far, a connection between 

CKs and developmental defense patterns has only been hypothesized (Meldau, et al. 2012).  

In manuscript III, we analyzed levels of defenses and CKs simultaneously in leaves of 

different ages in N. attenuata and could find a clear positive correlation between inducible 

defenses and CKs. Especially defenses were correlating with tZ- and IP-type CKs. The defenses 

that followed OD predictions and correlated with CK levels were again those inducible defenses 

that we showed to be influenced by CK manipulations in manuscripts II and V. Namely those 

defenses were CP, DCS and TPI transcripts. Furthermore in manuscript IV we show another 

potential defensive TD to follow the same gradual distribution in the plant. In a preliminary 

experiment, we could show that spraying tZR on plants increased the levels of TD transcripts after 

wounding (figure 5). Further experiments must proof, if also other CK manipulations affect TD 

transcript levels, but it seems likely that also developmental TD distribution is dependent on CK 

levels. In case of CP, DCS and TPI, we show in manuscript III that a change in the 

developmental distribution of CK levels also changed levels of the defenses following the 

predicted OD patterns. Using the DEX inducible i-ovipt plants it was possible to manipulate 

within plant distributions of CKs and therefore defenses, whereas the SAG-IPT4 plants allowed to 

prevent a decrease of CKs and defenses in aging leaves. In the past a rigorous test of the OD 

theory has often been confounded by the lack of possible manipulations of developmental 

distribution patterns of defenses. As I now have identified that CK manipulations are sufficient to 

manipulate defense distributions, CKs could be used as a potential tool in the future research on 

ontogenic defense regulation. 

All the defenses we found following the OD gradients, and being influenced by CK 

manipulations, were dependent on the expression of the R2/R3 MYB transcription factor 

NaMyb8. The transcripts of NaMyb8 itself did also follow OD distributions and were affected by 

the CK manipulations. One of the major defensive compounds, nicotine that was not affected by 
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CK manipulations, also did not show a gradient following OD predictions, and is also 

independent of NaMyb8 (Kaur, et al. 2010). Therefore, we consider NaMyb8 an important 

regulator in the CK dependent regulation of developmental gradients of defenses predicted by the 

OD theory. Further experiments using NaMyb8 silenced transgenic lines, as in manuscript IV 

could help to find out, if NaMyb8 is necessary for the CK influence on developmental regulation 

of inducible defenses. As mentioned before, it is of course possible and also likely that this 

influence is due to several direct and indirect influences of CKs on the herbivore defense 

pathway.  

Clearly, I could demonstrate in manuscript III, that a manipulation of the distribution of 

CKs is sufficient to manipulate the distribution of defenses in the plant. Therefore, we consider 

CKs as key players in the developmental regulation of defense metabolites that underlie the OD 

theory. The fact that a growth hormone is involved in the regulation of OD gradients could also be 

a link to connect OD theory with other defense theories, like the GDBH.  

 

Figure 5: Spraying of the CK tZR increases transcript levels of an herbivory-induced threonine 
deaminase (NaTD2.1) 

A One rosette leaf was induced by wounding and application of oral secretions. Whole plants were either 
sprayed with 5 µM tZR (tZR) or 0 µM tZR (mock) two times per day for two days. B Relative transcript 
accumulation of threonine deaminase NaTD2.1 in treated leaves. T-test: * P < 0.05. N = 5. Methods are 
described in the appendix. 
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4.4 The drawbacks of staying “forever young”- the suboptimal defense 

Due to the capacity of CKs to delay senescence (Richmond and Lang 1957, Gan and 

Amasino 1995, Ori, et al. 1999), to increase drought tolerance (Rivero, et al. 2007) or their 

potential for biocontrol of pathogens (Grosskinsky, et al. 2016), CK manipulations have been 

target of plant breeders all over the world. Often, creating plants with enhanced CK levels and 

delayed senescence have been discussed as a way to increase yield and stress tolerance of certain 

crops (Ma 2008, Zalabak et al. 2013, Koprna et al. 2016). Some studies (nicely summarized in 

Koprna, et al. 2016) already showed that CK overproduction increases yield especially under 

abiotic stress conditions like salinity or drought for example in peanut (Qin, et al. 2011), tomato 

(Ghanem et al. 2011) or rice (Peleg et al. 2011).  

Looking at my results, the positive influence on defense metabolites might seem to be a 

way to create plants more resistant to insect herbivore attack. This hypothesis comes at the 

presumption that more defenses always mean more protection against herbivores. Although, 

studies have demonstrated that less defenses mean a higher susceptibility to herbivores (Steppuhn, 

et al. 2004, Zavala and Baldwin 2004, Kaur, et al. 2010), the reverse presumption that genetically 

increasing defenses always means better protection can be doubted to be universal for several 

reasons: 1) manipulations of plant metabolism practically always affects other non-target 

metabolic processes and 2) because defense production comes at a cost and 3) toxic defense 

metabolites may not be effective enough against highly specialized insects and may even be toxic 

for the plant’s metabolism. Therefore to make an assumption, of whether an increase of defenses 

by increases in CKs is an effective protection against herbivores or not, requires at least three 

further explorations: 1) The broad analysis of metabolic changes that occur upon a certain 

manipulation, to assess possible side effects; 2) efficacy trials to assess the performance of 

herbivores on the manipulated plants, which are ideally performed in the natural environment. 3) 

Furthermore the yield, i.e. the fitness of a manipulated plant, would need to be assessed as the 

final measure of a potential benefit of a trait is the production of offspring. Only, if the CK-

induced increase in defenses brings an overall fitness benefit under given circumstances, the trait 

can be assessed as beneficial. In our case with N. attenuata we did not yet perform such a broad 

analysis. Nevertheless, we performed first studies, which question the effectiveness of CK 

manipulations to improve resistance against herbivores. 

In manuscript V, I could show that an increase of CKs in certain plant parts, or even 

single leaves, using the DEX inducible i-ovipt plants, increased the attractiveness of the tissue to 

the highly specialized herbivore T. notatus. Even though we could show that an increased level of 

CKs increased the levels of defense metabolites. A reduced attractiveness for T. notatus of plants 

silenced for the CK receptors in manuscript VI matches to the hypothesis, that enhanced CK 

levels and CK-dependent processes benefit T. notatus on N. attenuata. In preliminary tests, we 
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also could demonstrate that M. sexta performs much better on CK overproducing SAG-IPT4 

plants in the greenhouse (figure 6). Previous studies have reported an opposite effect of CK 

overexpression (Smigocki, et al. 1993, Smigocki, et al. 2000, Dervinis, et al. 2010). Dervinis and 

colleagues performed experiments with Poplar and an application of 6-benzylaminopurine, 

whereas Smigocki et al. used Nicotiana and tomato species and transgenic IPT expression with 

the promoter of a PI gene. This highlights the dependency on plant and insect species and the type 

of manipulation on the effects of CK manipulations on biotic interactions.  

 

 

Figure 6: M. sexta larvae show increased larval growth on CK overproducing SAG-IPT4 plants with 
higher protein levels. 

A M. sexta larval growth on flowering wildtype (WT) plants and two independently transformed SAG-IPT4 
plants with increased CK levels. T-test with Bonferroni correction for comparisons between WT and both 
lines at each timepoint: all comparisons P < 0.001. N = 15 – 49. B Concentrations of free soluble protein in 
rosette leaves of flowering WT and SAG-IPT4 plants. One-way-ANOVA with TukeyHSD posthoc test: P < 
0.05. N = 10.FM, fresh mass. Methods are described in the appendix. 

 

Obviously, the increased levels of CKs do not enhance the protection against specialized 

insect herbivores in our case, although we tested this with two different manipulation strategies. 

All defense strategies of a plant and its defense regulation are the consequence of a long 

evolutionary history. All traits that evolved in the past provided a benefit at some point of 

evolution. It can be assumed that the current defense strategy has been the optimal strategy in the 

past, which is already included in the term “optimal defense” in the OD theory. Our preliminary 

results support the idea that an increase of CK levels does not create an even “more optimal” 

defended plant but rather comprises the optimal defense strategy and causes a “suboptimal 

defense”. 

The big question is why the increase of defense metabolites through enhanced CK levels 

does not improve the protection against herbivores. The major reason probably lies somewhere in 
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the side-effects of CKs on other metabolic processes. CKs are known to create a sink strength 

(Roitsch and Ehness 2000, Mok and Mok 2001), increase photosynthetic activity (Jordi, et al. 

2000), delay senescence (Richmond and Lang 1957, Gan and Amasino 1995, Ori, et al. 1999), 

and therefore, high levels of CKs are often associated to high levels of nutrients. It is known that 

nutrient content of a plant tissue can strongly influence the performance of herbivores on the plant 

(Mattson 1980). It can be assumed that increased levels of CKs not only increase levels of 

defenses, but also nutrients in N. attenuata. Indeed, in manuscript VI and in preliminary 

studies (figure 6), I could measure higher levels of nutrients like soluble proteins in leaves 

with enhanced CK levels (i-ovipt plants and SAG-IPT4 plants). Those higher levels could 

account for the higher larval mass of M. sexta on SAG-IPT4 plants and the preference of T. 

notatus for plants with enhanced CK levels. Especially for highly specialized insects like M. 

sexta and T. notatus the levels of defense metabolites may only play a minor role in the plants 

defense strategy. M. sexta has been suggested to be able to metabolize nicotine (Kumar, et al. 

2014), and we could show that also T. notatus is able to express transcripts related to 

detoxification enzymes (Crava, et al. 2016). Although detoxification of toxins demands 

energy and defenses in the plant like nicotine, CP or TPI, are known to limit growth of M. 

sexta (Steppuhn, et al. 2004, Zavala and Baldwin 2004, Kaur, et al. 2010), this drawback 

might be overcompensated by the higher nutritional value of the leaves with enhanced CK 

levels. Also it cannot be excluded, that other defensive compounds that we do not know so far 

might be decreased by higher CK levels. Therefore, it would be interesting to evaluate the 

performance of non-specialized insects on CK overproducing plants. It is possible that in 

those cases the higher levels of toxic compounds might not be compensated by the higher 

levels of nutrients, due to the higher sensitivity to defense compounds by generalist 

herbivores.  

If similar effects would occur in crops, the higher vulnerability of plants with higher 

CK levels to specialized herbivores might make a higher investment in plant protection and 

pesticides necessary and therefore might reduce the economic yield. Furthermore a faster and 

better development of herbivores on CK-overproducing plants might favor a higher 

reproductive rate, higher survival and faster population growth of the herbivores. In 

combination with prolonged growth periods of CK-overproducing plants with delayed 

senescence, this might even favor more reproductive cycles of the pest, which additionally 

increases the herbivore pressure.  

To defend against highly specialized herbivores, the plant might also need to rely on 

defense strategies other than toxin production. One of them could be the attraction of 

predators through HIPVs (Kessler and Baldwin 2001, Schuman, et al. 2012, Schuman and 
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Baldwin 2016). In manuscript II we could show that particular green leaf volatile (GLV) 

esters are decreased by CK increase. Therefore, it seems likely that GLV-mediated indirect 

defense is also decreased upon CK increase, which could provide another disadvantage for 

the plant in natural environments. The ecological consequence of the diminished GLV 

production remains to be tested for example by egg-predation essays in the field (e.g. 

described in Schuman, et al. 2012). 

Another possible strategy to react to herbivore attack is tolerance. This means an 

allocation of resources away from the attacked tissue to other leaves or storage- and 

reproductive organs to minimize the loss of resources (Schwachtje et al. 2006, Frost and 

Hunter 2008, Schultz et al. 2013). In that way, a plant might additionally be able to starve an 

herbivore by resource mobilization and slow down its growth. Possibly these reactions could 

also be interpreted as a form of stress-induced senescence reaction. In the past, studies could 

demonstrate that simulated herbivory advances autumn phenology in Acer rubrum (Forkner 

2014), that JA can induce senescence processes (He et al. 2002, Shan et al. 2011) and in 

manuscript III, I could show that the senescence activated SAG12 promoter from 

Arabidopsis is activated by herbivore feeding. This supports the idea that herbivory induced 

senescence is a part of a plants defense response. Especially this process might be very 

important in the protection against specialized herbivores. As CKs are able to inhibit 

senescence (Richmond and Lang 1957, Gan and Amasino 1995, Ori, et al. 1999, Guo and 

Gan 2011), they possibly also inhibit senescence-like processes that occur after herbivory. 

The senescence inhibition caused by CK overproduction might therefore account for the 

herbivore phenotype. 

Plant breeding has often aimed for an inhibited senescence in order to increase yield by a 

longer growth period. Due to the complexity of their effects, CKs have not yet found their way 

into large scale agricultural application (Koprna, et al. 2016). In the creation of “forever young” 

plants in agriculture, the inhibition of herbivory- or other stress-induced senescence processes 

might be a big drawback of that breeding approach and requires to be considered. In an ideal 

situation the delay of senescence might occur for higher yield, but in a natural environment with 

all kinds of abiotic and biotic stresses, this might also become a disadvantage.  

Besides the higher susceptibility to herbivores, the seed production and fruit ripening will 

be likely delayed. With our SAG-IPT4 plants, we observed a later onset of seed production. 

Although possibly at the very end of the seed production this deficit might be caught up or even 

overhauled by the transgenic plants, in nature a delayed seed production and ripening might 

account for some problems: First, the time span the plant is exposed to abiotic and biotic stresses 

is prolonged for plants with delayed senescence. This might increase the probability of factors 

like frost, heavy rain, drought or insect outbreaks to occur during their growth period. Second, 
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their delayed fruit ripening might be problematic in temperate regions, where possibly the growth 

period of a plant with inhibited senescence might exceed the favorable weather conditions and 

fruit ripening might be impaired by to dry, to cold or to humid weather conditions. This might be 

especially problematic in regions with short vegetation periods. 

Regarding our findings that an inhibited senescence makes plants more susceptible to 

herbivores and possibly delays fruit and seed ripening, this breeding goal might be viewed 

critical. Nonetheless, under the right circumstances CK-dependent senescence inhibition in plants 

might be a useful tool for agriculture.  

4.5 Cytokinin manipulations as a potential opportunity to hijack the plants 

metabolism not only for endophytes 

The discussion so far has only been focused on the function of CKs from the plant side of 

the plant-herbivore interactions. I could demonstrate that increased levels of CKs do even benefit 

specialized insects on N. attenuata. Therefore, CKs are a possible point of attack for insects to 

improve the quality of their food. It is actually not surprising, that strategies to manipulate CK 

metabolism have evolved amongst insects. For leaf-miners and gall forming insects, it has been 

shown that an infestation with these insects causes an accumulation of nutrients and an increase in 

CKs in infested tissue (e.g. Matsubar.S and Nakahira 1967, Engelbrecht, et al. 1969, Hartley 

1998, Mapes and Davies 2001, Giron, et al. 2007, Behr, et al. 2010, Body, et al. 2013, Zhang, et 

al. 2016). Leaf-miners and gall forming insects have been identified as a potential source of the 

CK increase, as their body and saliva contain CKs (e.g. Engelbrecht, et al. 1969, Matsui, et al. 

1975, Mapes and Davies 2001, Body, et al. 2013, Tanaka, et al. 2013).  

With the study presented in manuscript VI, I added two major new findings: 1) I showed 

that a non-endophytic, free living insect, T. notatus also contains CKs in its body and its saliva 

and is likely to produce IP itself or with the help of an endosymbiont. So far it was assumed that 

this behavior is exclusive to endophytes. 2) I used a 15N labelling experiment to proof that IP 

originating from the insect is transferred to the plant. It was already proposed that the increase of 

CKs around the feeding sites of endophytes was caused by the transfer and not by reactions of the 

plant to the herbivore (Mapes and Davies 2001, Giron, et al. 2016), but so far this transfer itself 

has not been demonstrated to my knowledge. 

Still it is unclear, what causes the high levels of CKs in T. notatus. Studies with the leaf 

miner Phyllonorycter blancardella have shown that CKs in the insects are produced by 

endosymbiotic bacteria (Kaiser, et al. 2010, Body, et al. 2013). If CKs in T. notatus are also 

produced by endosymbionts, remains to be found out in future studies. As I discussed in 

manuscript VI, CK production by endosymbionts seems to be the most likely explanation, as we 

found no evidence for an accumulation of plant derived CKs in the insect. We found transcripts of 
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bacteria, like Wolbachia, that are main suspects to produce CKs in insects (Kaiser, et al. 2010, 

Body, et al. 2013), in the transcriptome of T. notatus (Crava, et al. 2016). Also the increase in SA 

levels after T. notatus attack that I show in manuscript VI, provides another hint for an 

involvement of microbes in this interaction. From interaction with aphids it was already suggested 

that aphid induced defense responses are triggered by effectors like the chaperononin GroEL 

derived from the endosymbiont Buchnera (Bos et al. 2010, Chaudhary et al. 2014, Elzinga et al. 

2014). Therefore, an exploration of the involvement of microbes in this interaction might be a 

worthwhile direction for future research. Nonetheless, I cannot exclude that CKs are produced by 

other organisms like fungi, or the insect itself, as I discussed in manuscript VI. 

From a co-evolutionary perspective, another interesting question is, if the insect derived 

CKs are beneficial for the plant as well to tolerate the insect infestation. It is possible that those 

CKs are important to have an adequate response to this insect herbivore. We cannot answer this 

question yet, but at least the fact that plants with silenced CK receptors (irchk2/3; manuscript VI) 

seem to suffer more from an attack by T. notatus, hints into that direction. 

4.6 Do cytokinins function as direct effectors? 

My results from manuscript VI show, that endophytic insects are not the only insects 

that contain CKs. The fact that I found it also in a free living sap feeding insect suggests that the 

CK mediated manipulation of plants by insects is a mechanism that is possibly much more 

widespread than previously thought. The fact that also endophytes that are known for their CK-

dependent plant manipulation are phylogenetically not very closely related, hints that this 

mechanism is either evolutionary very old, or that this mechanism has evolved several times. In 

both cases it seems likely that many more species might be able to accumulate CKs. Further 

investigations would be very helpful to find out, how widespread this phenomenon is.  

To go one step further, one could extend the question about the abundancy of CKs in 

insects to the question, if CK abundancy is limited to phytophagous insects and what additional 

roles CKs could play in insects. Especially IP has been found in many organisms, including 

animals like nematodes (Siddique et al. 2015). The tRNA derived synthesis of IP and IPR could 

be a potential source of IP in almost all organisms (Persson et al. 1994). But CKs have not only 

been found inside organisms but also in the environment. There are reports of CKs being found in 

litter and soil, as well as fresh and marine water (Stirk and van Staden 2010). These observations 

have even led to the hypothesis that CKs could function as some kind of a cross-kingdom 

signaling molecule, comparable to ethylene (Schultz 2002, Schultz and Appel 2004, Robischon 

2015). The question is, if this almost ubiquitous abundancy of CKs is a by-product of degradation 

processes of tRNA (McLennan 1975) or if CKs are sequestered by organisms for signaling 

purposes remains unclear.  
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So far, I have discussed the role of CKs in plant-insect interactions only as being 

causative for metabolic changes like defenses or nutrient allocation in the plant, which influence 

the interaction between the plant and the insect. But it is also not inconceivable that CKs 

themselves have the potential to influence the insects physiology and development. This could be 

seen as the counterpart to the insect-triggered CK manipulations of plants (Robischon 2015). 

Indeed, CKs have also been shown to have a direct influence on insects and other animals. Most 

of the experiments about a direct influence of CKs have been made with kinetin. Kinetin in the 

diet of Zaprionus fruitflies for example had a direct influence on development and fecundity of 

the flies and turned out to have an “anti-aging” effect (Sharma et al. 1995, Sharma et al. 1997). 

Nevertheless, only little work on the direct influence of CKs on insects has been published since 

then. Some studies have even examined the function of CKs in humans. Kinetin and zeatin have 

been demonstrated to have a “gerontomodulatory and youth-preserving” effect on human 

fibroblasts (Rattan and Clark 1994, Rattan and Sodagam 2005, Yang 2013) or keratinocytes 

(Berge et al. 2006) which lead to their application in costly “anti-aging” creams (Cronin and 

Draelos 2010). Also their potential influence on cancer cells (Dudzik et al. 2011, Siveen et al. 

2017) or thymus and immune function (Li et al. 2016) has been reported. While an application of 

CKs in medicine or cosmetics might only be an interesting potential, a direct influence of CKs on 

insects might have huge implications for their interaction with plants. CKs could potentially 

interfere with insect performance and population dynamics. Recently, colleagues published a shift 

in sex-ratio of T. notatus on irchk2/3 plants with silenced CK receptors (Adam, et al. 2017). 

Although this could also be an indirect effect of the impaired CK signaling, this gives at least a 

starting point for future research. 

Generally, a test for a direct effect of CKs on phytophagous insects is tricky, as it is hard 

to distinguish between direct and indirect effects. In plants, indirect effects of CKs might mask 

the direct effects. Therefore, one could first try to use artificial diet experiments and perform 

empirical studies on different insect species. A follow up study on plants could then use 

potentially transgenic plants silenced in different metabolic pathways to unravel the indirect from 

the direct CK effects. 

Still the hypothesis that there is a direct influence of CKs on insects and that CKs also 

evolved as a cross-kingdom signal is very speculative, but not completely unsubstantiated by 

previous observations. Examining CKs as cross-kingdom signals certainly would open a 

completely new field of research and increase the complexity and significance of CK research. 
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5 SUMMARY 

Phytohormones play a crucial role in the interaction between plants and insect. Besides 

jasmonates and jasmonate dependent signaling, which represent the core part of a plant’s defense 

against insect herbivores, other phytohormones have been shown to influence this interaction. It 

has been known for decades that endpophytic insects, like gall-formers and leaf-miners can use 

cytokinins (CKs), a group of growth hormones, to manipulate the plants metabolism in their own 

favor. When I started my thesis, almost nothing was known about the relevance of CKs in the 

interaction of plants with free living phytophagous insects. 

In my thesis I characterized the role of CKs in the interaction of the ecological model 

plant Nicotiana attenuata with two of its most abundant free living herbivores: the larvae of the 

Tobacco Hawkmoth Manduca sexta and the small mirid species Tupiocoris notatus. 

We could show that real or simulated herbivory increased the levels of some CKs and 

changed the accumulation of CK-dependent transcripts in leaves of N. attenuata. We observed 

these changes after damage by M. sexta, as well as T. notatus, a sap-feeder with a totally different 

feeding behavior. As we also found comparable changes in CK levels in Arabidopsis thaliana, I 

hypothesize that reactions of the CK metabolisms could be a widespread reaction to herbivory. 

To understand the function of a reaction of the CK metabolism to herbivory, we examined 

the influence of CKs on the defense reactions of the plant. I used several transgenic and non-

transgenic approaches to change CK levels and perception to recognize and minimize side effects 

on growth and development that can be triggered by CK changes. Amongst others, we established 

transgenic plants silenced in the expression of two of three known CK receptors (irchk2/3); plants 

with senescence activated biosynthesis of CKs (SAG-IPT4); as well as plants with a construct 

which allows for dexamethasone inducible CK biosynthesis (i-ovipt), which we also established 

as a tool for field experiments. 

CK increases always led to increases in herbivory induced defense metabolites (HID) 

independently from the method we used, whereas an impaired CK perception led to a decrease in 

defense metabolites. 

During our research we recognized that CKs and HID follow the same distribution 

pattern: We found high levels of CKs and HID in young leaves and low levels in old leaves. This 

pattern has been predicted by the “optimal defense theory”: Young leaves provide a larger fitness-

value for the plant and are therefore better defended than old leaves. This developmentally 

regulated distribution of defense metabolites has been reported several times but the underlying 

mechanisms remained elusive so far. Based on our observations I hypothesized that CKs are 

playing a role in the developmental regulation of defenses in the plant. Indeed we found that 

increasing CK levels in old leaves, using SAG-IPT4 and i-ovipt plants was sufficient to increase 
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levels of HID to the levels found in young leaves, whilst HID levels in comparable old leaves in 

WT plants were barely detectable.  

The transcription factor Myb8 has been identified as a potential link of CKs to the 

developmentally dependent regulation of defenses, as its transcript levels were influenced by 

CKs. So far Myb8 was thought to be a specific regulator of phenolamide biosynthesis. We could 

show that further HID that are developmentally regulated, such as trypsin proteinase inhibitors 

and a threonine deaminase, were also influenced by Myb8 expression. 

Although CK increases enhanced the plants defenses, we found leaves with increased CK 

levels (i-ovipt) more attractive to T. notatus, which might be due to simultaneously increased 

levels of nutrients. This led me to the hypothesis, that a manipulation of CK-metabolism could not 

only be beneficial for endophytes but also for free living insects. Therefore I examined if a CK-

dependent manipulation of the host plant by a free living insect could also be possible. We found 

high levels of the CK N6-isopentenyladenine (IP) in the T. notatus insects as well their oral 

secretions. Using 15N labeled plants, we could show that IP is being transferred in big amounts 

from the insects to the host plant. Potentially this is a way to stabilize and improve nutrient 

content in infested tissue. 

In my thesis, I could show that CKs significantly influence the regulation of plant defense 

against insects and could be used by free living insects to manipulate the host plant. This suggests 

that the role of CKs goes far beyond the known cases of endophytes and that CKs have rather a 

key role in the interaction of plants and insects. 
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6 ZUSAMMENFASSUNG 

In der Interaktion von Pflanzen mit Insekten, spielen Phytohormone eine entscheidende 

Rolle. Neben Jasmonaten und dem Jasmonatweg, die das Herzstück in der pflanzlichen 

Verteidigung gegen pflanzenfressende Insekten darstellen, können auch andere Phytohormone 

diese Interaktionen beeinflussen. Von endophytischen Insekten, wie Gallbildnern oder 

Blattminierern ist seit Jahrzehnten bekannt, dass sie Cytokinine (CK), eine Gruppe von 

Wachstumshormonen nutzen um den Pflanzlichen Stoffwechsel zu ihrem Vorteil zu 

manipulieren. Zu Beginn meiner Arbeit war jedoch kaum etwas über die Relevanz von CK in der 

Interaktion von Pflanzen mit freilebenden pflanzenfressenden Insekten bekannt. 

In meiner Doktorarbeit habe ich die Rolle von CK in der Interaktion der ökologischen 

Modellpflanze Nicotiana attenuata und zwei ihrer häufigsten freilebenden Fraßfeinde, den Larven 

des Tabakschwärmers Manduca sexta sowie der kleinen Wanzenart Tupiocoris notatus 

charakterisiert. 

Wir konnten feststellen, dass tatsächlicher oder simulierter Insektenfraß die 

Konzentrationen einiger CK in den Blättern von N. attenuata erhöhte und die Akkumulation 

mehrerer CK abhängiger Transkripte veränderte. Diese Veränderungen konnten sowohl bei 

Schaden durch M. sexta, als auch T. notatus, einem Pflanzensaftsauger mit völlig anderem 

Fraßverhalten, beobachtet werden. Da ähnliche Veränderungen der CK Konzentrationen auch in 

Arabidopsis thaliana bestätigt werden konnten, stelle ich die These auf, dass Reaktionen des CK-

Metabolismus eine weit verbreitete Reaktion auf Insektenfraß darstellen. 

Um die Funktion einer Reaktion des CK Metabolismus auf Herbivorie zu verstehen 

untersuchten wir den Einfluss von CK auf die Verteidigungsreaktionen der Pflanze. Um 

Wachstums- und Entwicklungsstörungen, die CK-Veränderungen verursachen können, zu 

erkennen und zu minimieren, nutzte ich mehrere transgene und nicht-transgene Ansätze um CK-

Konzentrationen und CK-Wahrnehmung der Pflanzen zu verändern. Unter anderem etablierten 

wir transgene Pflanzen, mit stark reduzierter Expression von zwei von drei bekannten CK 

Rezeptoren (irchk2/3); Pflanzen, mit Seneszenz-aktivierter Biosynthese von CK (SAG-IPT4); 

sowie Pflanzen, deren CK Biosynthese mittels eines Dexamethason-induzierbaren Promotors 

aktiviert werden kann (i-ovipt) und die wir auch als Werkzeug für Feldversuche etablieren 

konnten. 

Erhöhungen von CK führte unabhängig von der Art der Manipulation zu einer Erhöhung 

von Verteidigungsmetaboliten, die durch Herbivorie induziert wurden (Herbivore induced 

defenses: HID), wohingegen eine eingeschränkte Perzeption von CKs niedrigere Konzentrationen 

von Verteidigungsmetaboliten hervorrief. 
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Bei unseren Forschungsarbeiten erkannten wir, dass CK und und HID einem ähnlichen 

Verteilungsmuster folgen: Wir fanden hohe Werte von CK und HID in jungen Blättern und 

niedrige Werte in alten Blättern. Diese Verteilung von Verteidigungsmetaboliten wird durch die 

„Optimale Verteidiguns-Theorie“ vorhergesagt: Junge Blätter sind für den pflanzliche 

Reproduktionserfolg wichtiger und sind daher besser Verteidigt als alte. Diese 

entwicklungsabhängige Verteilung von Verteidigungsmetaboliten wurde oft beschrieben, jedoch 

waren die zugrundeliegenden Mechanismen bisher unbekannt. Aus unserer Beobachtung erwuchs 

die Hypothese, dass CKs eine Rolle in der entwicklungsgesteuerten Regulation der Verteidigung 

der Pflanze spielen. Tatsächlich konnten wir feststellen, dass in alten Blättern CK-Erhöhungen 

mittels SAG-IPT4 oder i-ovipt Pflanzen ausreichend waren um eine Erhöhung von HID auf den 

Wert von jungen Blättern zu bewirken, wohingegen alte Blätter in WT pflanzen kaum noch 

messbare HID-Konzentrationen zeigten. 

Als ein möglicher Angriffspunkt für CKs in der entwicklungsgesteuerten Regulation der 

Verteidigung stellte sich der Transkriptionsfaktor Myb8 heraus, dessen Transkriptakkumulation 

durch CK-Konzentrationen beeinflusst wurde. Von Myb8 war bislang angenommen worden, dass 

er spezifisch die Biosynthese von Phenolamiden reguliert. Wir konnten zeigen, dass weitere HID, 

die einer entwicklungsabhängigen Verteilung folgen, nämlich Trypsin Proteinase Inhibitoren und 

eine Threonindeaminase, von Myb8 beeinflusst werden. 

Obwohl CK-Erhöhungen die Verteidigung der Pflanze verstärkte, waren Blätter mit 

höheren CK Konzentrationen (i-ovipt) dennoch attraktiver für T. notatus, was möglicherweise auf 

einen gleichzeitig erhöhten Nährstoffgehalt zurückzuführen ist. 

Dies veranlasste mich zu der Hypothese, dass eine Manipulation des CK-Metabolismus 

nicht nur für endophytische, sondern auch für freilebende Insekten vom Vorteil sein könnte. 

Daher untersuchte ich, ob eine CK-abhängige Manipulation der Wirtspflanze auch durch ein 

freilebendes Insekt möglich ist. Wir fanden in T. notatus Insekten, sowie in deren während des 

Fraßes abgegebenen Sekreten hohe Konzentrationen des CKs N6-Isopentenyladenin (IP). 

Mittels 15N markierten Pflanzen zeigten wir, dass IP von T. notatus in großen Mengen auf die 

Pflanze übertragen wird. Möglicherweise dient dies der Stabilisierung und Verbesserung des 

Nährstoffgehalts der befallenen Blätter. 

Meine Arbeit zeigt, dass CKs sowohl die Regulation der Verteidigung gegen Insekten 

maßgeblich beeinflussen, als auch von freilebenden Insekten zur Manipulation der Wirtspflanze 

genutzt werden könnten. Dies legt nahe, dass die Rolle der CK weit über die bisherigen bekannten 

Fälle von endophytischen Insekten hinausgeht und CK vielmehr von zentraler Bedeutung in der 

Interaktion zwischen Pflanze und Insekt sind. 
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11 APPENDIX 

11.1 Method for figure 5 

One fully expanded rosette leaf of rosette stage WT plants was wounded using a pattern-

wheel and oral secretions of M. sexta were applied as described in manuscript I and IV. 

Additionally whole plants were sprayed two times a day (morning and evening) with 5 µM (tZR 

spray) or 0 µM tZR (mock spray) solution. tZR stock solution in 70 % EtOH is dissolved in water 

with 0.02% Tween 20 to a final concentration of 0.07 % EtOH in water. Mock-solution contains 

only Tween 20 and EtOH.  

After 48 h, leaves were harvested and flash frozen in liquid nitrogen. RNA was purified, 

transcribed to cDNA and a qPCR analysis of NaTD transcript levels was performed as described 

in manuscript IV. Effect of tZR spraying was tested using a t-test. 

11.2 Method for figure 6 

Manduca sexta performance assay 

We placed five freshly hatched M. sexta caterpillars on each plant. After 3 days we 

reduced the number of caterpillars to two on each plant to correct for caterpillars that died within 

the first 3 days. We then determined weight of every individual caterpillar (replicate) at 6, 8, 10, 

12 and 14 days after hatching. We performed individual Bonferroni corrected t-tests for each time 

point between WT and each of the two transgenic SAG-IPT4 lines.  

Soluble protein: 

Soluble proteins were determined in the youngest fully expanded rosette leaf of a 

flowering N. attenuata plant with a Bradford assay as described in manuscript VI. 
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