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Summary 

The interaction between human immune cells and pathogens like Candida albicans (C. 

albicans) is a constant battle where both cells attack each other. Under normal conditions 

the human immune system clears infections with microbes. However, as C. albicans 

overcomes the strong human immune defense by employing immune evasion strategies 

people with an immuno-compromised immune system are at higher risk to become infected 

with the fungus. As part of the normal flora in the human body C. albicans acts as an 

opportunistic microbe but can also cause superficial and systemic infections. Recently we 

showed that monocytes release extracellular DNA traps (MoETs) in response to C. 

albicans. The DNA traps share high similarities to neutrophil extracellular traps and also 

contain citrullinated Histone 3, elastase, myeloperoxidase, and lactoferrin. MoeTs 

effectively trap and kill C. albicans. Furthermore, monocytes secrete cytokines such as IL-

1β, IL-6, but also IL-10 in response to C. albicans.  

C. albicans has the ability to bind human complement regulators onto its surface to evade 

the complement attack of the innate immune system. One of these regulators is complement 

factor H which retains its cofactor activity for factor I, cleaving the opsonin C3b into its 

inactive form iC3b and inhibiting further complement activation. Factor H accelerates the 

decay of the C3 convertase which results in reduced opsonisation of C. albicans, limiting 

recognition and contact with immune cells and enhancing survival of the pathogen. In this 

study, a novel function of factor H bound to the surface of C. albicans is identified.  C. 

albicans surface bound factor H modulates cytokine secretion of human peripheral 

monocytes by reducing IL-1β and IL-6 and increasing IL-10 secretion. A similar pattern 

of cytokine modulation is found when factor H is bound to the surface of apoptotic HUVEC 

cells, which are known to be immunologically silent. Moreover, factor H mediates the same 

effect when bound to microbial proteins from Staphylococcus aureus and Streptococcus 

pneumoniae. Reducing pro-inflammatory cytokine secretion of IL-1β and IL-6 creates a 

favorable condition for the pathogen to survive. In addition, a parallel increase in anti-

inflammatory cytokine IL-10 dampens the inflammatory response, favoring the survival of 

the fungus. The regulatory effect of factor H is dependent on factor H surface binding and 

the presence of normal human serum, likely complement C3. However, CR3 knockout in 
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THP1 cells via CRISPR/Cas9 results in an overall substantially reduced IL-1 but not 

TGF-β cytokine response to C. albicans and therefore represents the dominant recognition 

receptor of C. albicans. CR3 is responsible in signaling cascades that activate the 

inflamosome and the maturation and secretion of IL-1β. Factor H bound to C. albicans 

does not modulate IL-1β or IL-10 secretion of CR3KO THP-1 cells but enhances TGF-β 

release. Surface bound factor H generates together with factor I iC3b from C3b. This iC3b 

alone inhibits IL-1β secretion in LPS-induced monocytes, and induces secretion of IL- l0 

and TGF-β. The factor H induced cytokine pattern in monocytes is strong enough to induce 

naïve CD4+ T cells to differentiate into induced regulatory T cells (iTreg) as shown by 

increasing intracellular FOXP3 levels in the cells.  

Taken together, this study shows a new immune evasion mechanism by C. albicans. 

Recruiting the immune regulator factor H not only serves to reduce complement attack but 

also to dampen the immune response. Obviously, C. albicans exploits factor H function on 

apoptotic human cells. Elucidating the mechanisms on how C. albicans uses complement 

regulators can provide new strategies to combat fungal infections and to improve human 

life.   
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Zusammenfassung 

Die Interaktion zwischen humanen Immunzellen wie Monozyten und dem human-

pathogenen Pilz Candida albicans (C. albicans) ist durch einen gegenseitigen Angriff 

geprägt. Unter normalen Bedingungen kann die humane Immunantwort die meisten 

mikrobiellen Infektionen erfolgreich bekämpfen. Allerdings haben einige 

Mikroorganismen wie auch C.albicans Strategien entwickelt sich der Immunantwort zu 

entziehen, weswegen vor allem Patienten mit einem geschwächten Immunsystem ein 

höheres Risiko haben sich zu infizieren. Als Teil der normalen Flora im Menschen agiert 

C. albicans als opportunistischer Mikroorganismus, kann aber auch unter gegebenen 

Umständen lebensbedrohliche systemische Infektionen auslösen. Wir haben gezeigt, dass 

Monozyten in Kontakt mit C. albicans DNA Netze (MoETs) auswerfen um die 

Ausbreitung von C. albicans zu hemmen. Die DNA Netze sind sehr ähnlich zu denen von 

Neutrophilen und enthalten citrullinierte Histone, Elastase, Myeloperoxidase und 

Lactoferrin um C. albicans abzutöten. Außerdem sekretieren Monozyten Zytokine wie IL-

1β und IL-6, aber auch IL-10 in Antwort auf C. albicans.  

C. albicans hat die Fähigkeit humane Komplementregulatoren zu binden um sich vor der 

Komplementattacke des angeborenen Immunsystems zu schützen. Einer dieser 

Regulatoren ist Komplement Faktor H, welcher auf C. albicans seine Cofaktor-aktivität 

beibehält und zusammen mit Faktor I das Opsonin C3b auf C. albicans zu inaktivem iC3b 

umformt, welches die Erkennung und Eliminierung von C. albicans durch Immunzellen 

erschwert. In dieser Arbeit wurde eine neue Funktion von Faktor H auf C. albicans 

identifiziert. Gebunden an C. albicans reduziert Faktor H die IL-1β und IL-6 Sekretion von 

Monozyten und verstärkt die IL-10 Freisetzung. Ein ähnliches Zytokinmuster wird 

beobachtet, wenn Faktor H an apoptotische HUVEC Zellen gebunden ist, die als nicht 

inflammatorisch beschrieben sind. Auch wenn Faktor H an mikrobielle Proteine von 

Staphylococcus aureus oder Streptococcus pneumonia gebunden ist wird eine ähnliche 

Zytokinmodulation beobachtet.  Reduzierte IL-1β und IL-6 Level sind von Vorteil des 

Erregers, weil es die Inflammation reduziert. Ein gleichzeitiger Anstieg von IL-10, welches 

die Immunantwort weiter reduziert, erhöht die Überlebenschancen von C. albicans. Die 

Wirkung von gebundenem Faktor H auf Monozyten ist stark genug naive CD4+ T Zellen 
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vermehrt in induzierte regulatorische T Zellen zu differenzieren. Der regulatorische Effekt 

von Faktor H benötigt die Oberflächenbindung und vermutlich Konformationsänderung 

von Faktor H. Ebenso benötigt Faktor H aktives humanes Serum, wahrscheinlich C3, für 

diese Funktion. Die Deletion von CR3 als Bindungsrezeptor für C3b/iC3b/Faktor H auf 

THP-1 Zellen via CRISPR/ Cas 9 resultiert in einen substantiellen Erkennungsverlust von 

C. albicans durch Monozyten und zeigt eine zentrale Rolle von CR3 auf. IL-1β und IL-10 

Level sind in CR3 KO Zellen nicht durch Faktor H beeinflusst, aber TGF-β.  

Zusammenfassend zeigt diese Studie einen neuen Immunevasionsmechanismus von C. 

albicans. Durch die Rekrutierung von Faktor H nutzt C. albicans dessen 

immunmodulatorischen Effekt auf Monozyten aus, so wie Faktor H es vermutlich auf 

humanen apoptotischen Zellen ausübt. Die Erforschung dieser Evasions-Mechanismen 

hilft zum einen die Rolle der Regulatoren besser zu verstehen und bietet zum anderen 

Ansatzpunkte für eine neue Strategie um C. albicans Infektionen zu bekämpfen.   
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1. Introduction  

Humans are constantly surrounded by microorganisms. These microorganisms come in 

contact and interact with the human body either as normal flora causing beneficial effects, 

but also as pathogens causing harmful effects that can lead into diseases and eventually, 

death. In response to this constant interaction with microorganisms, the human organism 

employs the immune system to defend microbial attacks and also to maintain the beneficial 

effects received from normal flora. This balanced interaction between human and 

microorganisms has been developed over millions of years. Pathogens are permanently 

developing strategies to infect and to overcome the human immune system, on the other 

hand humans train their immune system to counteract infections of pathogens. 

Understanding the interaction between pathogens and the human immune system is crucial 

to improve survival and quality of human life. Elaborating the strategies of pathogens to 

infect and evade the immune system is a prerequisite for the development of new ways for 

reducing or eliminating infections and increasing the survival rate as well as quality of 

many human life.  

 

1.1 The human host 

1.1.1. The human immune system 

The human immune system is composed of several layers of defense including physical 

barriers, humoral defense, and cellular defense components which altogether work in 

tandem to protect the body from foreign microorganisms that can cause harm. The first line 

of defense are the physical barriers provided by the skin, cell surfaces below the skin and 

their secretions, normal flora that reside and mutually co-exist within the human body, and 

mechanical barriers such as tight cell junctions which protect the body from dangerous 

microorganisms. The next line of defenses are the humoral and cellular responses provided 

by the innate and adaptive immunity which work together in recognizing and clearing any 

remaining foreign microorganisms that surpass the physical barriers. 
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1.1.2. Innate and adaptive immunity 

Physical barriers are very efficient in protecting against invading microorganisms but in 

cases of infection the human immune system employs innate and adaptive immune 

reactions for a highly specific and long lasting immunity. The innate immune system is a 

spontaneous response to foreign surfaces in the human body. It consists of two arms, 

mainly a humoral part (such as complement system and anti-microbial peptides) and a 

cellular part provided by phagocytes (monocytes, neutrophils, and macrophages), 

basophils, eosinophils, natural killer cells, and dendritic cells. The humoral response of 

innate immunity (including complement system) is an evolutionary-conserved immune 

response system which is characterized by series of conserved immune recognition 

molecules encoded in the human genome. Consequently, since the number of genes in the 

human genome are limited, this directly limits the number of gene-encoded innate immune 

recognition molecules. Recognition molecules which are termed pattern recognition 

receptors (PRRs) detect specific conserved microbial structures, termed microbial 

associated molecular patterns (MAMPs), which are presented on nearly every type of 

microorganism [1]. PRRs are composed of lipopolysaccharide-, mannose-, complement-, 

toll-like- (TLRs), and scavenger receptors. Each receptors recognizes specific ligands and 

induces inflammatory reaction cascades. Most of these receptors recognize the PAMPs on 

the microbial surfaces. Mannose and lipopolysaccharides receptors recognizes repeated 

mannose units and lipopolysaccharides respectively, on the surfaces of infectious agents 

and their activation triggers endocytosis and phagocytosis. Toll-like receptors are heavily 

expressed on immune cells such as the phagocytes and lymphocytes. Interaction of TLRs 

with their specific PAMPs induces NF-κB signaling and the MAP kinase pathway, and 

induces the inflammasome for the secretion of pro-inflammatory cytokines. However, 

complement receptors are specific receptors that binds the complement molecules which 

are activated when the complement system is in contact with microbes, foreign materials, 

and modified self-cells in the human body. Once activated by a specific microbe, the 

complement system generates opsonins, anaphylatoxins and chemoattractants which 

induce the migration of phagocytes to the site of infection, promotes inflammation, and 

forms lytic pores on the invading microorganisms. After this initial responses, the human 

immune system continues to a later response by bridging the innate immunity into adaptive 
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immunity by transferring the information from innate immune response to the adaptive 

immune response via the antigen presenting cells (APCs). Dendritic cells (DCs) and 

macrophages are professional APCs that respond to pathogens through pattern recognition 

receptor (PRRs), which function in the recognition of the invading microorganism [2-3]. 

Over time APCs can activate the adaptive immune response to the invading pathogens by 

triggering T cell differentiation [4-5].  

The adaptive immunity is characterized by the generation of highly specified T and B 

lymphocytes equipped with only one clonally-derived antigen-specific receptor. Two 

broad adaptive immune responses act together: the antibody response and a cell-mediated 

immune response. Each response is carried out by a specific class of lymphocytes, B cells 

and T cells, respectively. B cells are activated to secrete antibodies, the immunoglobulins. 

The antibodies circulate in the bloodstream and permeate the other body fluids, where they 

bind specifically to the foreign antigen that stimulated their production. The antibody 

binding neutralizes toxins/foreign materials by, for example, blocking binding sites to 

receptors on host cells. Antibody binding also marks invading pathogens for clearance 

mainly by aiding the recognition by phagocytes of the innate immune system for 

phagocytosis [6].  

In cell-mediated adaptive immune responses, activated T cells react directly against a 

foreign antigen that is presented by APCs of the innate immune system. The T cell reacts 

to an infected host cell with foreign antigens on its surface, thereby eliminating the infected 

cell. In other cases, the T cell produces signal molecules that activate macrophages to 

destroy the phagocytosed microbes [6]. However, until receiving the antigen stimulus from 

the T cell receptor (TCR), naïve T cells are quiescent and largely metabolically inactive. 

Following the stimulation, T cells rapidly divide and acquire effector functions, whether 

becoming T effector cells (Teff) or T regulatory cell (Treg). Upon antigen recognition, 

CD4+ and CD8+ naïve T cells differentiate into Teff cells that exert their functions as 

CD4+ T helper cells or as CD8+ cytotoxic T lymphocytes. The CD4+ T helper cells are the 

activated T cells which react directly against infected host cells and produce signal 

molecules to activate macrophages. Alternatively, CD4+ T cells can acquire a regulatory 

T cell phenotype. Tregs expressing the Treg-specific transcription factor Foxp3 develop 

directly in the thymus as natural Treg (nTreg), but considerable fraction of Foxp3+ Tregs 
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is also induced from naïve T cells (iTreg) [7]. The nTregs help maintain tolerance against 

self-antigens and the iTregs are believed to be of functional importance for tolerance to 

food- and microflora-derived antigens [7-8]. The cytokine environment in which TCR 

stimulation occurs determines the differentiation of naïve T cells into one or several T cell 

subsets (Th1, Th2, Th17, Treg), each with its own specific functions to exert/modulate 

immune reaction (Table.1). Additionally, the activation of an adaptive immune response 

by components of the innate immune system generates an antigen-specific immunological 

memory carried by the memory T cell, which allows immediate recognition and removal 

of infectious agents on a second encounter [9].  

Table 1. Distinct CD4+ T cell subsets and their functions 

T cell 

subset 

Transcription 

factor 

Stimulus 

cytokine 

Secreted 

cytokine 

Function 

Th1 T-bet/Stat4 IL-12, IFN-γ IFN-γ, 

TNF 

Increase of TLRs, 

induction of cytokine 

secretion and 

macrophage activation. 

Mediates immune 

response against 

intracellular pathogens. 

Th2 GATA-3/Stat6 IL-4 IL-4, IL-

5, IL-9, 

IL-10, 

IL-13 

Cytokine secretion. 

Stimulates B cell 

proliferation and 

antibody production. 

Mediates immune 

response against 

parasites. 

Th17 ROR-γt/Stat3 IL-1, IL-6, IL-23, 

TGF-β 

IL-17, 

IL-21, 

IL-22, 

IL-25, 

IL-26 

B cell recruitment. 

Immune response 

against fungal pathogen. 

Treg Foxp3/Stat5 TGF-β, IL-2 IL-10, 

TGF-β 

Supresses T cell 

proliferation and 

experimental 

autoimmune disease. 

Anti-inflammatory 

cytokine secretion. 
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1.1.3. The Complement system 

Complement system is first described as heat-labile component of serum in 1896 by Jules 

Bordet. It was so named for its ability to ‘complement’ the antibacterial properties of 

antibody in the heat-stabile fraction of serum [10]. This system is a central part of host 

innate immunity and consists of more than 50 soluble and membrane-bound proteins, most 

of which are sequentially activated by proteolytic cleavage. The main attributes of 

complement functions are the opsonization of the target cell, lysis of the target cell, 

induction of inflammatory responses through the release of pro-inflammatory molecules, 

recruitment of effector cells, generation of anaphylactic peptides, cytolytic and 

antimicrobial compounds, and the induction of effector responses [11]. These effector 

functions are important to attack and clear infections but also as an efficient and rapid 

removal system of altered self-cells such as apoptotic and necrotic cells. Complement 

functions also direct the adaptive responses of the human immune system, co-stimulatory 

B cell activation and regulation of T cell immunity by the presentation of antigen which 

has been recognized by the APCs (macrophages and dendritic cells). 

 

1.1.3.1. Activation of the complement system 

Complement is activated by three major pathways: the alternative pathway, the classical 

pathway and the lectin pathway (Figure.1). These ways differ in the mechanisms of target 

recognition and activation, but ultimately converge into generation of complement 

component molecule C3b and C3 convertase which subsequently creates a loop of C3b 

generation to increase opsonization on target surfaces. The alternative pathway (AP) is 

activated by the spontaneous hydrolysis of the central complement component C3 to 

C3(H2O). Upon the formation of C3(H2O), the factor B binding site is exposed. This results 

in factor B binding to the C3(H2O) and subsequent cleaving by the protease Factor D into 

fragments Ba and Bb. Fluid phase C3 pro-convertase (C3(H2O)Bb) is formed and cleaves 

C3 into C3b and C3a. C3b exposes for a short time an internal thioester bond that allows 

stable covalent binding of C3b to hydroxyl groups on proximate carbohydrates and 

proteins; in this case the nearest cell surfaces [10]. Attached C3b is immediately bound by 

factor B which is cleaved by factor D resulting in the assembly of the C3 convertase, 

C3bBb, and the C3 cleaving cascade continues in an amplification loop. This loop is self-
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activating and self-amplifying as long as there are no complement regulators present on the 

opsonized surfaces. The classical pathway is initiated when C1q, in complex with C1r and 

C1s serine proteases (the C1 complex), binds to the Fc region of antibodies (IgG1 and IgM) 

which are attached to recognized surfaces (microorganisms, foreign materials, etc). 

Activation of C1r and C1s in turn cleave C4 and C2 into C4a, C4b and C2a, C2b fragments. 

C4b and C2b associate to form the classical C3 convertase C4bC2b on pathogenic surfaces 

and cleaves C3, like the alternative pathway C3 convertase. Upon the formation of the C3 

convertase, the cleavage of C3 on the target surfaces is enhanced. The lectin pathway is 

induced by mannose residues on the target surfaces which is recognized by the mannose-

binding lectin (MBL) to be activated. Similar to the classical pathway, the lectin pathway 

results in cleavage of C4 and C2, but without the presemce of antibody complexes or C1 

participation. MBL binds to certain mannose residues on activator surfaces and 

subsequently interacts with mannan-binding lectin associated serine proteases like MASP 

and MASP2. The MBL-MASP/-MASP2 complex is similar to Ab-C1q complex of the 

classical pathway and leads to cleavage of C4. The resulting fragment C4b exposes a 

binding site for C2 and C4b-bound C2 is subsequently cleaved by MASP2 into C2a and 

C2b. C2a is then released and C2b remains bound to C4b and forms the classical pathway 

C3 convertase (C4bC2b). If complement activation progresses, more C3b molecules are 

deposited on the surface close to the site of generation and surface-bound convertases 

amplify the cascade [11-12]. C3b as an opsonin is recognized by human cell receptors such 

as CR1 on neutrophils and CR1g mainly on tissue macrophages [13]. Receptors ligation 

initiates phagocytosis and subsequently clearance of the opsonized cells. The convertases 

from the alternative, the classical, and lectin pathways’ convertase can interact with 

deposited C3b on the same surfaces to form C5 convertases (C3bBbC3b and C4bC2bC3b). 

The C5 convertase cleaves C5 into C5a and C5b which, C5a functions similar as C3a; an 

anaphylatoxin and chemoattractant, and C5b is deposited on the surface and interacts with 

more complement molecules. C5a and C3a bind to their receptors (C5aR/C5a receptor like 

2, C3aR respectively) which are expressed on leucocytes and several non-immune cells. 

Upon binding, C5a and C3a stimulate an inflammatory response such as an increase of 

vascular permeability, extravasation of immune cells (diapedesis), and release of pro-

inflammatory mediators. Additionally, C5a and C3a also exert a chemotactic activity for 
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leucocytes, activated T and B cells, and mast cells, recruiting the immune cells towards the 

site of complement activation [14]. On the other hand, C5b on target surfaces exposes a 

binding site for C6 and subsequently binding C7 resulting in the formation of sublytic 

complex that drills into the target cells’ membrane. Further on, binding of C8 to the 

preformed C5b67 complex recruits additional molecule, C9, forming a lytic pore complex 

into the target membrane, termed C5b-9 terminal complement complex (TCC) or 

membrane attack complex (MAC) [15-16]. The TCC forces lysis on the target cells which 

later are recognized by the phagocytes and removed from the circulation by phagocytosis. 

However, nucleated cells are resistant to the TCC killing because of the presence of ion 

pumps and mechanisms that shed TCC. This sublytic attack of TCC increases the calcium 

concentration in the mitochondrial matrix as a consequence of pore formation, leading to 

loss of transmembrane potential and triggering of the NLRP3 inflammasome [17].  

 

1.1.3.2. Regulation of the complement system 

The human complement system is activated on all surfaces, self and foreign cells. In order 

to protect host cells from the complement attack, a number of regulators restrict convertase 

formation. These complement regulator proteins act as membrane-integrated and/or 

soluble proteins at different activation pathways of the system. Some of these regulator 

proteins have overlapping functions, to some extent share structural similarities, and 

function on inhibiting the C3/C5 convertases and the TCC (Table. 1). 

Factor H and its splice product factor H-like protein (FHL-1) are the major regulators of 

the alternative complement pathway. These two regulators share the same regulatory 

functions: binding to the surface bound or soluble C3b to prevent the formation of the C3 

convertase C3bBb, accelerating the decay of the existing C3bBb to reduce further C3b 

generation, and acting as cofactors of factor I-mediated inactivation of C3b, which 

transforms the active C3b molecule into its inactive form, iC3b [18]. There is also a 

regulator protein that enhances the activation of the alternative pathway on the surface of 

apoptotic human cells, named properdin, by stabilizing the alternative pathway convertases 

[19-20]. 

The classical pathway and lectin pathway share regulators since they generate the same C3 

and C5 convertases. The regulators generally work either on blocking the pathway initiator 
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molecules, as a decay accelerator of C3 convertase, or as a cofactor of factor I for general 

complement inhibition. C4BP and C1INH are the central regulators of both the classical 

and lectin pathways. Like factor H, C4BP acts as a cofactor of factor I and accelerates the 

C3 convertase from classical and lectin pathways [21]. Another example is C1INH (C1 

inhibitor) which blocks serine protease and acts as suicide substrate for C1r, C1s, MASP2, 

coagulation factors and C3b [22].  

The regulators for the terminal pathway work either on the C5 convertase or block the 

assembly of the TCC. One of the convertase regulators is FHR1, which binds C5b, inhibits 

C5 convertase activity, and inhibits TCC assembly [23]. Other terminal regulators of the 

TCC are vitronectin and clusterin, which bind to C7 and C8 respectively to block the 

assembly of TCC formation [24]. 
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Figure 1. The activation of the complement system via three different pathways.  

 

 

1.1.3.2.1. Factor H and factor H family proteins 

Factor H is composed of 20 homologous domains termed short consensus repeats (SCRs) 

and circulates in plasma in a high concentration of up to 800 μg/ml [25]. Unlike many other 

SCR-containing proteins, factor H harbors no other types of domains. Factor H is heavily 

glycosylated with a high sialic acid content. Deglycosylation of factor H is reported to be 

without any apparent effect to its function [26]. Several functional sites (Figure 2) we 

located along the 20 SCR domain structure of factor H. The major functional domains are 

located at the N-terminus (SCRs1-4) and the C-terminus (SCRs18-20). SCRs 1-4 of factor 
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H bind C3b and act as cofactor for factor I-mediated C3b inactivation. With these SCRs 

factor H also accelerates the decay of the alternative pathway C3 convertase [27-28]. Factor 

H binds C3b with two additional binding sites (Figure 2A) which have no direct 

complement regulatory functions and all three sites of factor H interact with distinct C3b 

domains [29]. The C terminal SCRs18-20 of cator H represent the major cell surface 

recognition region by interacting with sialic acids, heparin, cell surface exposed 

glycosaminoglycan (GAGs) and to C3 activation products [30]. As SCRs 18-20 direct 

factor H to the host cell surfaces, this region is of relevance which is also documented by 

disease associated mutations in this region [31-32]. Factor H recognizes and binds surface 

bound C3b and GAGs with SCR 19 and SCR 20 respectively [33-34]. With this dual 

recognition of GAGs and surface bound C3b by SCRs 18-20, factor H recognizes C3b on 

the surface of host cells and regulates complement activation. Via this mechanism factor 

H discriminates between self and foreign cell surfaces, as the latter one lacks the target 

molecules like GAGs. 

The factor H family comprises a group of highly related proteins that includes five 

complement factor H related proteins (FHR1, FHR2, FHR3, FHR4, FHR5), factor H, and 

the spliced variant of factor H-like protein 1 (FHL-1). Factor H and the five CFHR genes 

are located in a distinct DNA segment on human chromosome 1q32 within the regulation 

of complement activation (RCA) gene cluster. All CFHR genes cluster downstream of the 

factor H gene and [35]. The characteristics of the encoded related proteins are the 

composition of exclusive SCRs and a high degree of amino acid sequence identities to each 

other and to factor H. This is shown, for example, for the 3 C-terminal SCRs of FHR1, 

which share sequence identity from 97% to 100% at the protein level with factor H (Figure 

2B). This conservation in the recognition SCRs results in very similar ligand binding of 

FHR1 and factor H. In contrast, FHR1 lacks identity to the N-terminal factor H regulatory 

domains and thus does not have C3 convertase regulatory activities. Instead, the N-terminal 

SCRs of FHR1 can form homodimers or heterodimers with FHR2 molecules [36]. The N-

terminus also binds to C5b subsequently blocking the C5 convertase formation and TCC 

assembly [23].  
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Figure 2. A: Factor H sites and functions aligned to SCRs 1-20. B: FHR1 comparison to factor 

H. SCRs are aligned according to the amino acid sequence identities (in percentage).  

 

Table 2. Soluble complement regulators and their functions [11] 

Regulator Point of action Ligand Function 

Factor H Alternative 

pathway 

C3b and C3d Cofactor for factor I and 

acceleration of alternative 

pathway C3 convertase 

decay 

FHL-1 Alternative 

pathway 

C3b Cofactor for factor I and 

acceleration of alternative 

pathway C3 convertase 

decay 

Properdin Alternative 

pathway 

C3 Stabilization of alternative 

pathway convertases 

C4BP Classical and 

lectin pathway 

C4 Cofactor of factor I and 

acceleration of classical 

pathway C3 convertase 

decay 

C1INH Classical and 

lectin pathway 

C1r, C1s, and 

MASP2 

Blocks serine protease and 

is a suicide substrate for 

C1r, C1s, MASP2, 

coagulation factors, and 

C3b 
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CFHR1 Terminal pathway 

(TCC) 

C5 convertase 

and TCC 

Inhibition of C5 convertase 

and TCC assembly 

Clusterin Terminal pathway 

(TCC) 

C7, C8β, C9, and 

TCC 

Transport of cholesterol, 

HDL, APOA1, and lipids 

Vitronectin Terminal pathway 

(TCC) 

C5b-7 and TCC Adhesion protein, 

fibronectin-mediated cell 

attachment, and Arg-Gly-

Asp site coagulation in 

immune defence against 

Streptococcus spp. 

 

 

1.1.4. Human immune cells 

Human immune cells play a major role in human immune defense against microorganism, 

as well as clearance of foreign/dead self-cells from the body. They actively respond to 

invading microorganisms and act together with the innate immune response like 

complement and antibodies. Termed cellular immunity, immune cells display their 

protective capabilities by phagocytosis of pathogens, secretion of cytokines that induce 

inflammation, and secretion of toxic substances to attack extracellular microbes. Immune 

cells correspond with other cells to become involved and support innate and adaptive 

immune responses. Specialized immune cells called antigen presenting cells (APCs) 

stimulate and introduce foreign antigens to antigen-specific cytotoxic T cells. These 

stimulated T cells induce apoptosis in cells displaying epitopes of the foreign antigen on 

their surfaces, such as virus-infected cells, cells with intracellular bacteria, and cancer cells 

displaying tumor antigens. 

Leukocytes are a diverse group of immune cells that mediate the human immune response. 

They circulate through the blood and lymphatic system and are recruited to sites of tissue 

damage and infection. They are categorized into phagocytes, lymphocytes, and auxiliary 

cells. Phagocytes are the cells that directly attack foreign particles, including infectious 

agents, such as microorganisms by phagocytosis and intracellular killing. Neutrophils, 

monocytes, macrophages, and dendritic cells are the main phagocytes. They search and 

recognize foreign materials and subsequently eliminate any possible threat by infectious 

microbes. Phagocytes also induce cytokine secretion to signal other immune cells to 

migrate to the site of infection and promote inflammation. The lymphocytes include T cells, 
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B cells, and natural killer cells. Both T cells and B cells are the acting cells of adaptive 

immunity which react directly to the microbe differently with the help of innate immune 

cells. T cells are involved in cell immunity and B cells generate antibodies against foreign 

epitopes. Natural killer cells (NK cells) are part of the innate immune system that 

recognizes changes on the surfaces of infected cells. Virus infected cells has often a lower 

expression of antigen presenting major histocompatibility complex class I (MHC class I) 

enabling these cells to escape cytotoxic T cell killing. However, NK cells recognize this 

down-regulated antigen presenting molecules on the surface and immediately release 

cytotoxic (cell-killing) granules which then destroy the altered cells. MHC class I 

molecules are recognized by NK cell inhibitory receptors and the ligation of these receptors 

inhibits the activation of NK cells. Basophils, mast cells, and platelets are the main 

auxiliary cells that help mediate inflammation and recruit other immune cells to the sites 

of infection. Basophils are a mobile cells that contain granules which on degranulation 

release histamine, and platelet activating factor. These inflammatory mediators cause 

increased vascular permeability and smooth muscle contraction to help recruitment of 

immune cells. Mast cells are similar to basophils, they contain granules which are released 

when the cell is triggered, causing inflammation on the surrounding tissue since they are 

immobile and found close to blood vessel in all types of tissues. Platelets are cells that get 

activated with stimuli that trigger activation mechanism such as thrombin or platelet 

activating factor (PAF) and release inflammatory mediators to activate coagulation, 

inflammation, and wound healing. All of these immune cells work accordingly in tandem 

by interacting and signaling each other to generate inflammatory response in the immune 

defense.  

 

1.1.4.1. Monocytes 

Monocytes are mononuclear phagocytes circulating in blood vessel and have crucial but 

distinct roles in tissue homeostasis and immunity. This conserved population of leukocytes 

is present in all vertebrates and represent in humans about 10% of all blood nucleated cells 

[37]. Monocytes act as immune effector cells, equipped with chemokine receptors and 

adhesion receptors that mediate migration from bone marrow to blood and to tissues during 
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infection. They take up cells and foreign materials by phagocytosis and also produce a 

number of cytokines [38].  

Monocytes function primarily as phagocytes and mediators of inflammation. They are a 

source for replenishing macrophages and dendritic cells in tissues at sites of infections. The 

strong phagocytic capability is helpful to remove infected and dying cells, but monocytes 

also play a central role in adaptive immunity by differentiating into macrophages and 

dendritic cells that subsequently induce CD8+ T cell proliferation and activate CD4+ T 

cells [39]. Monocytes migrate from the circulation across the endothelium into tissues in 

response to endothelial cell–bound factors, such as chemokines, that deliver activating and 

chemoattracting signals. Endothelial cells express chemokine receptor 2 (CCR2) that play 

a critical role in responding to monocyte chemoattractant protein-1 (MCP-1; as known as 

CCR ligand 2/CCL2) [40]. CCL2 or MCP-1 is expressed by most nucleated cells in 

response to pro-inflammatory cytokines or stimulation of innate immune receptors by 

microbial molecules. CCL2 dimerizes and binds tissue GAGs [41] thereby forming 

gradients of CCL2 that guide monocytes towards the sites of inflammation. Before entering 

the sub endothelial space of the tissue, monocytes adhere to the endothelium via integrins. 

CD11a/CD18 (lymphocyte function-associated antigen 1; LFA-1) and CD11b/CD18 

(MAC-1; CR3) integrins on monocytes are responsible for adhesion to the intercellular 

adhesion molecule I (ICAM-1) of the endothelial cells whereas very late antigen-4 (VLA-

4; integrin α4β1) on monocytes interacts with vascular adhesion molecule-1 (VCAM-1) of 

endothelial cells. These interactions are enhanced upon stimulation of monocytes with pro-

inflammatory cytokine IL-1β [42]. 

Mainly three types of human monocytes are described (Table 2). The CD14hiCD16- 

monocytes travel along the endothelium of blood vessels and move to sites of 

inflammation. They also act as precursors of peripheral mononuclear phagocytes. 

CD14hiCD16+ monocytes or the intermediate monocytes CD16+ subset which actively 

produce pro-inflammatory cytokines. CD14lowCD16+ monocytes (non-classical 

monocytes) are non-inflamed monocytes which crawl on the luminal side of the 

endothelium and respond to local danger signals by recruiting neutrophils which trigger 

focal endothelial necrosis and, subsequently clear the resultant cellular debris [43, 44, 45]. 

CD14hiCD16- monocytes represent ‘classical monocytes’ which are recruited very rapidly 
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from the bloodstream to the site of infection as a phagocyte and serve as source for tissue 

macrophages. In contrast intermediate and non-classical monocytes are also recruited to 

the sites and act as cytokine and chemokine producer, enhancing and/or regulating the local 

immune response. Furthermore, we and others describe that monocytes also release 

extracellular DNA traps, similar to neutrophil, to trap and kill pathogens [46-47].  

Monocytes rely on pattern recognition receptors (PRRs) to recognize and interact with 

pathogen associated molecular patterns (PAMPs) of the invading pathogens. Upon PAMPs 

engagement, PRRs trigger intracellular signaling cascades culminating in the expression 

of a variety of pro-inflammatory molecules to promote inflammation and recruitment of 

other immune cells. One type of PRRs that has been studied extensively is the toll-like 

receptor (TLR) [48]. Monocytes expresses different types of TLRs (Table 3) to recognize 

bacterial lipoproteins, lipopolysaccharides, heparan sulfate fragments, RNA, and DNA to 

interact and activate the signaling cascade in monocytes to activate the inflammasome. 

Complement receptors (such as CR3, CR1, and CR4) on monocytes also play a dominant 

role in membrane surface recognition, differentiating between self and non-self by 

recognizing surface bound opsonin C3b, the inactive form C3b (iC3b), and surface bound 

complement regulators such as factor H and CFHR1 which all induce signaling cascades 

inside the cell. 

Table 3. Different monocyte types and their functions 

Monocytes type Markers Chemokine 

receptors 

Function 

Classical 

monocytes  

75%-85% of 

total monocytes 

CD14hI 

CD16-  

CD192hi 

(CCR2hi) 

Phagocytic and low pro-inflammatory 

cytokine production 

Intermediate 

Minor 

subpopulation 

of CD16+ subset 

CD14hi 

CD16+  

CD192low 

(CCR2low) 

CD195+ 

(CCR5+) 

Pro-inflammatory function active 

producer of IL-1β and IL-6 

Non-classical 

10-20% of total 

monocytes 

CD14low 

CD16hi 

CD192low 

(CCR2low) 

Anti-inflammatory, constitutively 

produces IL-1RA 
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Table 4. Monocytes TLRs and their functions 

Receptor Location Ligand Ligand 

location 

TLR1 Cell surface Triacyl lipopeptides Bacterial 

lipoprotein 

TLR2 Cell surface Glycolipids, lipoproteins 

and peptides, beta-glucan, 

lipoteichoic acid 

Bacterial 

peptidoglycans, 

fungi, Gram 

positive 

bacteria 

TLR4 Cell surface Lipopolysaccharide, heparin 

sulfate fragments  

Gram negative 

bacteria, host 

cells 

TLR5 Cell surface Bacterial flagellin Bacteria 

TLR6  Cell surface Diacyl lipopeptides Mycoplasma 

TLR8 Cell compartment Small synthetic compound, 

single strand RNA 

RNA viruses 

TLR9 Cell compartment Unmethylated CpG 

Oligodeoxynucleotide DNA 

Bacteria, DNA 

viruses 

TLR13 Cell compartment Bacterial ribosomal RNA 

“CGGAAAGACC” 

Virus, bacteria 

 

 

1.1.4.2. Complement receptor 3 (CR3) 

CR3 (αMβ2) is a heterodimeric transmembrane glycoprotein and belongs to the β2-

intergrin family, consisting of CD11b (αM) which is non-covalently associated with CD18 

(β2) [50]. Two distinct binding sites in CR3 were identified, an I-domain which is essential 

for binding and phagocytosis of complement-opsonized particles [50-51] and a lectin 

domain which is responsible for the non-opsonic binding of the microbes to CR3 (Figure 

3A).  

Recognition via the I-domain is mediated by complement proteins C3b and iC3b on the 

surface of the microbe, while the lectin domain binds β-glucan, lipopolysaccharides, and 

surface proteins on microorganisms [52,53,54]. For example, this lectin domain interacts 
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with the fungal PAMP β-glucan and serves as the dominant receptor for the recognition of 

fungal cells by human granulocytes. However, soluble β-glucan is not known to directly 

activate neutrophils through CR3 but rather is thought to initiate a primed state that leads 

to a faster or an enhanced response when encountering a second stimulus [55]. The soluble 

β-glucan caused an extension of the extracellular domain of CR3 priming the receptor to 

an active state to respond for further stimulus (Figure 3B).  

In addition, CR3 acts as factor H receptor on monocytes [56] and interacts with factor H 

SCR 7 and SCRs 19-20 as the major binding sites [57]. However, the functional 

consequences of this interaction has not been completely. Another study reported that 

binding of factor H to CR3 supported neutrophil adherence and enhanced the release of 

reactive oxygen species in primed neutrophils [58]. In monocytes, the factor H-CR3 

interaction and its intracellular signaling cascade has not been fully explored yet. However, 

the C3 cleavage product iC3b that is generated by factor I and its cofactor factor H has 

been reported to interact with CR3 on surfaces and mediates phagocytosis.  

 

A 
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B 

 
 

 

 

 
Figure 3. The two domains of CR3 [55]. (A) I-domain and lectin domain in their active state. 

Each domain can bind to different ligands; I-domain binds to iC3b, fibronectin, ICAM, fibrinogen, 

and heparin sulfate (B) after soluble β-glucan stimulus, CR3 becomes primed in the active state.  

 

 

1.2 Microbial pathogen 

1.2.1. Candida albicans 

The polymorphic fungus Candida albicans is a member of the normal human micro flora. 

It is a diploid fungus that lives in the gut, oral-pharyngeal, vulvo-vaginal areas, and on the 

skin of humans. Normally, Candida albicans (C. albicans) resides in an individual as a 

lifelong and harmless commensal. However, under certain circumstances it can cause 

infections that range from superficial infections of the skin to life-threatening systemic 

infections. C. albicans can cause infection and heavily colonizes the human host when 

physical barriers are disrupted physical barriers (such as skin and barriers below the skin) 

and/or in situations of an impaired immune system like immunodeficiency syndrome. In 

this case, another pathogen infection has weakened the immune system, or 

Inactive state Primed / active state 

Soluble 

β-glucan 
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immunosuppressive drugs from chemotherapy or transplantation were used in the patient. 

Despite applied anti-fungal therapies, both mortality and morbidity mediated by C. 

albicans infections are still high [59, 60, 61] and more than 75% of people with systemic 

candidiasis infection die. Moreover, resistant C. albicans strains are continuously 

increasing in recent years making C. albicans the most frequently isolated fungal pathogen 

from infected individuals. 

C. albicans has a number of traits that enhances the pathogenicity of the fungus, such as 

the ability to evade the human immune system [62], to switch from yeast to hyphal forms 

exerting pressure to human cells [63], to secrete proteases that degrade human host 

components [64], and to express adhesins and invasins [65, 66]. Altogether these traits 

support both commensalism and pathogenesis of C. albicans. In healthy individuals 

however, the infection with C. albicans is cleared by an active immune system and the 

micro flora of the host body. 

 

1.2.2. Candida albicans cell wall 

C. albicans interacts with human host cells through various components of the fungus cell 

surface. It consists of two different layers, the outer layer is composed of mannans and 

mannoproteins while the inner layer contains chitin, β-1.3 glucan, and 

Glycophosphatidylinositol (GPI) anchored proteins (Fig.4). Both layers are linked by β-

1,6 glucan. The attached fungal molecules used for immune evasion are embedded into the 

fungal cell wall, which comes into contact with the environment and the host immune 

components [67]. GPI-anchored proteins are attached to β-1,6 glucan while proteins with 

internal repeats are directly attached to β -1,3 glucan [68]. Cell wall proteins which are 

non-covalently bound are distributed heterogeneously on the cell surface. These proteins, 

termed moonlighting proteins, are likely secreted and play another role beside their main 

identified functions [69]. Pra1 is one of the moonlighting and immune evasion proteins that 

recruits complement regulators factor H, FHL-1, C4BP, and plasminogen to the surface 

[70, 71]. Pra1 is also secreted to block the activation and conversion of C3 [72] to prevent 

opsonization.  
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Figure 4. Candida albicans cell wall structure [62]. C albicans has a thick cell wall which is a 

highly complex structure composed of glucans (β-1.3 and β-1,6 glucans), chitin, GPI-anchored 

protein and mannoproteins inserted in network of polysaccharides. 

 

1.2.3. Candida albicans induces inflammasome activation 

Candida albicans cell wall is the major PAMPs recognized by the host’s innate immune 

cells which occurs via PRRs. The activation of PRRs of the Toll-like receptor (TLRs), 

RIG-I-like receptors (RLRs), Complement receptor 3 (CR3), or C-type lectin receptors 

(CLRs) initiates signaling cascades that result in pro-inflammatory gene expression IL-1β 

and IL-18 [73]. The IL-1β synthesis, processing, and release are tightly controlled and 

require at least two distinct stimuli (Fig. 5). An initial stimulus is received through PRRs, 

from the recognition of the cell wall of C. albicans, results in an accumulation of 

intracellular stores of pro IL-1β. A second stimulus activates a multi-protein complex 

containing one or more Nod-like receptors (NLRs), termed inflammasome, which controls 

the activation of caspase-1 and cleavage of pro-IL-1β and later on the release of active IL-

1β [74]. The NLRP3 is the main inflammasome responsible for C. albicans infection. 

Reactive oxygen species (ROS) which is a conserved danger signals, and K+ efflux are 

required to activate NLRP3 inflammasome known to date [75]. Interestingly, dectin-1/Syk 

– mediated release of reactive oxygen species and induction of caspases release was shown 

to be hold a critical role in inflammasome activation in C. albicans-infected murine and 
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human phagocytes [76]. However, secreted aspartic protease (Sap) 2 and Sap6 of C. 

albicans were demonstrated to induce caspase-1-dependent NLRP3 inflammasome 

activation [77]. The activation of the inflammasome by C. albicans culminates into the 

maturation of pro-IL-1β into mature IL-1β, which is an important pro-inflammatory 

cytokine that mediates inflammation.   

 

 
Figure 5. Candida albicans recognition induces inflammasome and IL-1β secretion [125]. The 

IL-1β synthesis, processing, and release are tightly controlled and require at least two distinct 

stimuli. Activation of the inflammasome is required to activate Caspase 1 which later on cleave Pro 

IL-1β to mature IL-1β. 
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1.2.4. Candida albicans and complement system 

As part of the human microflora, C. albicans is permanently in contact with the human 

immune system. Normaly, fungal overgrowth is suppressed by the human immune system 

and the other microflora that limit the growth space. Under certain conditions such as 

environmental triggers (high pH, high CO2, or 370C temperature) which might be harmful 

to some microbes of the microflora, C. albicans changes in morphology, forms filaments, 

and becomes generally more virulent [78]. The absence of a limiting growth factor like the 

microflora, or an impaired function of the immune system can lead to Candida invasion 

which ultimately can cause systemic candidiasis and sepsis. During systemic candidiasis, 

C. albicans is exposed to immune components of human blood, the complement system, 

and antibodies. Upon contact with the blood, C. albicans activates all three complement 

pathways, mainly the alternative pathway that is induced by the C3b deposition on the 

foreign surface. Similarly, β-1,6 glucans on the surface of C. albicans trigger the immune 

response [79, 80]. Anti- Candida albicans antibodies bind to Candida and subsequent 

recognition by C1q activate also the classical pathway. Mannan on Candida surface is 

recognized by mannan binding lectin (MBL) receptor which activates also the lectin 

pathway [81]. Activation of these complement pathways lead to the opsonization with C3b 

on the surface of C. albicans which enhances recognition of C. albicans by immune cells 

(phagocytes). Also the generation of C3a and C5a that have antimicrobial capabilities and 

augment cytokine secretion is enhanced [82, 83]. Neutrophils responded to the 

anaphylatoxic peptides C3a and C5a with a shape change and a respiratory burst [84]. C5a 

also acts as a chemoattracttant to recruit neutrophils, monocytes, macrophages, and other 

phagocytes to the site of infection. However, Candida albicans is known to recruit 

complement regulatory proteins to evade the human immune reactions. Complement 

regulators such as factor H, factor H-like protein 1 (FHL-1), and complement factor H-

related protein 1 (CFHR-1) bind to C. albicans and retain their activity. With factor H and 

FHL-1 inhibition of C3b opsonization and CFHR-1 inhibition of C5 convertase, C3a and 

C5a generation are inhibited, reducing the recruitment of phagocytes which ultimately 

reduces inflammation. On the other hand, there have been also reports that in without active 

complement system, factor H, FHL-1, and CFHR-1 increase the attachment of neutrophils 

to C. albicans. Surface bound factor H and CFHR1 also enhance the generation of reactive 
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oxygen species (ROS) and the release of antimicrobial protease lactoferrin by neutrophils 

[57].  

 

1.2.5. Candida albicans immune evasion 

Candida albicans is well known to recruit complement regulators onto its surface and 

retain their regulatory functions to control and evade a complement attack [11, 62]. 

Complement regulators factor H, FHL-1, C4BP, and plasminogen are recruited by C. 

albicans surface proteins also called CRASPs (Complement Regulator Acquiring Surface 

Proteins). The pH-regulated antigen 1 (Pra1) is one of multiple surface proteins of the C. 

albicans that binds complement regulators (factor H, FHL-1, C4BP, plasminogen) to evade 

immune response on the surface provided by alternative pathway and lectin pathway of the 

complement activation [70, 71]. Pra1 is also secreted as a complement inhibitor, binding 

C3 and blocks further cleavage of C3 to C3b and C3a. The reduced opsonization by C3b 

resulted in the complement cascade inhibition from the C3 level, which also affects the 

downstream process of C5 cleavage, inhibiting the formation of TCC.   

The importance of the recruitment of factor H for C. albicans evasion strategies is 

documented by expression of multiple C. albicans surface proteins dedicated to recruit 

these complement regulators. At present, there are 3 other fungal surface proteins that bind 

factor H, namely the phosphoglycerate mutase (Gpm1), the high-affinity transporter 1 

(Hgtp1), and glycerol-3-phosphate dehydrogenase 2 (Gpd2) [85, 86, 62]. Aside from 

binding complement regulators, C. albicans also secretes proteases Saps 4-6 which 

interfere and inactivate complement components C3b, C4b, and C5, while also inhibit the 

TCC formation [64, 87]. 

 

 

 

 

 

 

 



Introduction 

24 
 

1.3 Objective of the study 

Previous work showed that Candida albicans recruit human complement regulator factor 

H onto the surface to inhibit complement activation and to reduce opsonization and 

phagocytosis in the human host. So far, it was unclear whether microbe-bound factor H 

mediates further regulatory functions like dampening the inflammatory reaction by 

immune cells. Therefore, the role of complement regulator factor H bound to C. albicans 

was investigated. This study aimed at elucidating whether surface bound factor H 

modulates the level of secreted inflammatory cytokines of human blood monocytes in the 

presence of active complement system and affects the immune response to C. albicans. In 

a second step, it is was of interest to follow also the adaptive cellular immune response 

upon modulated monocytes by factor H. Determining naïve T cell differentiation 

challenged with supernatants of modulated monocytes was expected to show whether 

changes of the immune response by monocytes also affect downstream responses and 

influence adaptive immune responses. As factor H is recruited by a panel of pathogenic 

microbes, the results will extend the understanding about the immune evasion strategy of 

many pathogenic microbes, especially of C. albicans. 
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2. MATERIALS AND METHODS 

2.1. Materials 

2.1.1. Human sera and cells 

Normal human serum (NHS) were obtained from healthy laboratory personnel. Sera were 

stored at -800C prior to use. Buffy coats (Friedrich Schiller University Jena, Germany) or 

fresh blood were collected from healthy volunteers after informed consent according to 

guidelines from the local ethics committee. Human PBMCs were isolated from buffy coats 

or fresh blood by density gradient centrifugation with Ficoll-Paque PLUS (GE healthcare, 

Freiburg). Lymphocytes were removed from the isolated PBMCs using 46% Percoll (GE 

healthcare, Freiburg) and IMDM (Thermo Fischer scientific, Darmstadt) media density 

gradient centrifugation. Monocytes were further purified with negative selection using 

magnetic beads according the manufacturer’s protocol provided with pan monocyte 

isolation kit (Miltenyi Biotec, Bergish Gladbach). Purity of isolated cells was confirmed 

by identifying CD14 with FITC conjugated anti-human CD14 antibody (Biolegend, 

London) on the cells using flow cytometry. Human umbilical vein endothelial cells 

(HUVEC) and THP-1 monocytic cell line were purchased from ATCC (Vanassas, VA, 

USA). Naïve T cells were isolated similar to the monocytes isolation, the PBMC fraction 

was incubated with specific fluorescent dye-conjugated antibodies: anti-CD4 (PE) and 

anti-CD45RA (APC). Cells were washed twice with PBS and then sorted using cell sorter 

(FACS Aria Fusion special order system, BD) for PE and APC positive.  

 

2.1.2. Chemicals, reagents, kits, and plastic materials 

Unless specified otherwise, chemicals and reagents were purchased in the highest quality 

available from Sigma or Roth. RPMI 1640 medium, IMDM, and Dulbecco’s phosphate 

buffered saline (DPBS) were from Lonza (Verviers, Belgium). Cell detachment enzyme 

Accutase and human cell apoptosis inducer Staurosporin was purchased from eBioscience 

(Frankfurt, Germany) and New England Biolabs (Frankfurt, Germany) respectively. 

Gradient solution Ficoll-pague PLUS and Percoll were purchased from GE Healthcare 

(Freiburg, Germany). Pan monocyte isolation kit was purchased from Miltenyi Biotec 

(Bergish Gladbach, Germany). Amaxa human monocyte nucleofector kit was purchased 
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from Lonza (Cologne, Germany). Polybead®Sulfate 3µm microspheres were manufacture 

from Polysciences, Inc (Warrington, PA, USA). MaxiSorp microtiter plates were 

manufactured by Nunc (New York, NY, USA). Nunclon delta surface cell culture plates 

and Cellstar cell culture flasks for culturing human cells and cell lines were manufactured 

by Thermo Fisher Scientific (Roskilde, Denmark) and Greiner Bio-one (Frickenhausen, 

Germany).  

 

2.1.3. Microbial media and supplements 

Pichia pastoris yeast cells were cultivated in buffered complex glycerol-complex liquid 

medium (BMGY, 1% yeast extract, 2% peptone, 100mM potassium phosphate pH 6.0, 

1.34% yeast nitrogen base, 4x10-5% biotin, 1% glycerol) for protein expression purpose. 

Candida albicans cultivation media were YPD broth (2% glucose, 2% peptone, 1% yeast 

extract). Solid agar media were prepared as above with additional 1.5% agar. Escherichia 

coli cells were cultivated in Luria Broth medium (10gr bacto-tryptone, 5gr bacto-yeast 

extract, 10gr NaCl, pH adjusted to 7.2) or LB agar plates (LB + 1.5% agar). To select 

colonies containing desired plasmids, LB medium was supplemented with 100µg/ml 

ampicillin (Invitrogen).  

 

2.1.4. Purified and recombinant proteins 

Purified Human C3, C3b, iC3b, C3d, Factor B, Factor H, Factor I were purchased from 

Complement Technology (Tyler Texas, USA). Recombinant fungal protein Pra1 was 

expressed from Luo, et al., 2011. Recombinant Factor H fragment 18-20 was expressed by 

Nadine Flach (Department of Infection Biology, HKI, Jena, Germany). Recombinant 

staphylococcal protein Ssl11 was kindly provided by Anika Westphal (Department of 

Infection Biology, HKI, Jena, Germany) and recombinant streptococcal protein Pspc was 

kindly provided by Christian Meinel (Department of Infection Biology, HKI, Jena, 

Germany).  

 

2.1.5. Antibodies 

Primary antibodies used in immunodetection methods were either purchased or provided 

by colleagues as follows: goat anti-Factor H, goat anti-C3 (Complement Technology), 
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mouse anti-iC3b (Prof. Thurmann, USA), mouse anti-CD4, mouse anti-CD45RA, mouse 

anti-CCR7, and alexa 488 conjugated mouse anti-human FOXP3, mouse anti-CD11b 

(Biolegend, Koblenz, Germany). Corresponding secondary HRP-conjugated antibodies 

were obtained from Dako (Hamburg, Germany) and corresponding fluorescent dye-

coupled antibodies were purchased from Life Technologies (Darmstadt, Germany).  

 

2.2. Methods 

2.2.1 Microbiological methods 

2.2.1.1. Strains used 

Pichia pastoris 

Pichia pastoris X33 was used to produce the recombinant his-tagged C. albicans Pra1 

described in Luo et al. (2010). 

 

Escherichia coli  

DH5α competent E. coli was used for characterization, propagation, and maintenance of 

the plasmid construct for knocking out CD11b gene. 

 

Candida albicans 

The C. albicans strains used in this study were as follows: wild type strain SC5314 and 

GFP expressing strain. 

 

2.2.1.2. Cultivation and storage of microbial strains 

During the various experiments, C. albicans WT and GFP expressing strain were grown in 

YPD medium at 300C overnight with shaking at 180 rpm. Cultures for experiments were 

maintained on YPD agar plates at 40C and colonies were re-streaked on fresh YPD agar 

plates every 2 weeks. E. coli DH5α was grown in LB at 370C overnight with shaking at 

180 rpm in cloning experiment. During Pra1 protein expression, Pichia pastoris X33 were 

grown in BMGY medium according to the protocol.  
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2.2.2 Protein Biochemistry and Immunological methods 

2.2.2.1. Expression and purification of fungal protein Pra1 

Recombinant fungal protein Pra1 was expressed and purified in Pichia pastoris using the 

procedure of Luo et al. (2010). Protein expression was induced by feeding the yeast 

cultures with 1% pure methanol every 24h for 3 days. Then, culture supernatants were 

harvested by centrifugation (3000g, 30min), dissolved in 5x binding buffer (10nM 

Na2HPO4, 10mM NaH2PO4, 500mM NaCl, 10mM imidazole, pH 7.4), and the expressed 

proteins were purified from supernatants by metal-chelate affinity chromatography using 

HisTrap nickel columns (GE healthcare, Qiagen) and the FPLC Äkta purifier system (GE 

Healthcare). The colums were then washed with 7 column volumes of binding buffer 

followed by 10 column volumes of 5% elution buffer (binding buffer with 500mM 

imidazole). Bound proteins were eluted with 10 column volumes of 100% elution buffer. 

Eluted fractions containing the recombinant protein were combined and concentrated using 

10 kDa spin filters (Millipore). Buffer was exchanged to phosphate-buffered saline (PBS) 

during concentration. The purity of the proteins were assesd by silver staining (section 

2.2.2.3) and the concentration was determined using a spectrophotometer from NanoDrop.  

 

2.2.2.2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) 

The electrophoresis gels were prepared using 4% polyacrylamide stacking gels 

(acrylamide/bisacrylamide with 37.5:1, 0.5 M Tris-HCl, 10% SDS, 100 mg/ml ammonium 

persulfate (APS), 0.1% tetramethylethylenediamine (TEMED), pH 6.8 in distilled water) 

and 8% or 10% polyacrylamide separating gels (acrylamide/bisacrylamide with 37.5:1, 1.5 

M Tris-HCl, 10% SDS, 100 mg/ml APS, 0.1% TEMED, pH 8.8 in distilled water). Sample 

to be analyzed were mixed with 4x reducing buffer (RotiLoad, Roth) and heated at 950C 

for 5 min. Electrophoresis was done at 150mV and pre-stained protein marker (PageRuler, 

Fermentas) was used as protein size marker.  

 

2.2.2.3. Silver staining 

After electrophoresis process, gels were incubated in fixing buffer (30% ethanol, 30% 

acetate) for 30 min, washed twice with 20% ethanol, and sensitized in 0.02% sodium 

thiosulfate for 2 min. The gels were rinsed twice for 1 min in distilled water, then stained 



Materials and Methods 

 

29 
 

with 0.2% silver nitrate for 20 min, and then another twice rinsing in distilled water. 

Afterwards, gels were developed using developer solution (0.00007% formaldehyde 

(37%), 3% sodium carbonate, 0.001% sodium thiosulfate) and the reaction was stopped by 

rinsing with stop solution (2.5% acetic acid, 50% tris/base). 

 

2.2.2.4. Western Blotting (Immunoblotting) 

Migrated proteins in SDS PAGE process were transferred into a nitrocellulose membrane 

(Protran, GE Healthcare) by using the transfer cassette TransBlot turbo (Bio-rad). In the 

transfer cassette, gels and the membrane are immersed in the transfer buffer (0.045 M Tris, 

0.039 nM glycine, 20% methanol, 0.1% SDS) and kept between 2 x sets of 3 Whatmann 

papers. The blotting was performed with maximum 12V voltage and 1A current for 15 min. 

Proteins blotted onto the membrane were detected using the enhanced chemiluminescence 

(ECL) as follows: the blotted membrane was blocked in blocking buffer (1% bovine serum 

albumin (BSA), 4% milk powder, 0.1% tween 20) for 1h at room temperature or overnight 

at 40C. The blocked membrane was then incubated with appropriate first and secondary 

antibodies subsequently for 1h at room temperature, washed with wash buffer (0.05% 

tween in DPBS) and developed with ECL-substrate solution (Applichem) and blot image 

was captured using Fusion FX imager (Vilber Lourmat).  

 

2.2.2.5. Enzyme-linked immunosorbent assay (ELISA) 

In this study ELISA assay was performed to detect interleukins secreted by human primary 

monocyte cells and THP-1 monocytic cell line. The assay was done using Ready-set-Go® 

ELISA kit from eBioscience according to the manufacturer’s protocol.  

 

2.2.2.6. Flow cytometry 

Flow cytometry assays and analyses were performed using the LSR II flow cytometer (BD) 

and FACSDiva software. Fungal cells and/or human primary cells or cell lines were 

identified by forward and side scatters from 10000 cells. Primary (dye-conjugated or 

unconjugated) and corresponding secondary antibodies were used to stain the cells. Data 

generated from the assays were evaluated using FlowJo software (Tree Star Inc). 

Incubation and washing steps for the cells were performed in PBS. 
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2.2.2.7. Confocal laser scanning microscopy 

Recruitment of complement regulators on the fungal cell surface by C. albicans were 

visualized using confocal laser scanning microscopy using LSM 710 (Zeiss) and ZEN 

software. Factor H (25µg/ml) was incubated with C. albicans for 30 min at 370C in DPBS. 

Cells were then washed and bound factor H was detected with a polyclonal factor H goat 

antiserum (1:200) followed by secondary Alexa 647-conjugated rabbit anti-goat IgG 

(1:400). Fungal cell DNA was stained with 4’,6-diamidino-2-phenylindole (DAPI, Sigma). 

Samples (10µl) were spread on microscope slides and dried at 40C. A drop of mount fluor 

(Roti-Mount FluorCare, Roth) was put on the samples as fixing material before the cover 

slip. 

 

2.2.3. Functional Assays 

2.2.3.1. C. albicans uptake by monocytes via phagocytosis 

To elucidate the immediate response of monocyte to C. albicans, co-incubation of human 

primary monocyte and C. albicans cells were performed, and the uptake of the yeast cells 

by monocytes were quantified overtime. GFP expressing C. albicans cells (1x105) were 

incubated with DiD-dyed (30 min, 370C) human primary monocyte (1x106) at 370C for 

different time points ranging from 0 min – 240 min. At each time points, supernatants of 

the co-incubation were removed and monocytes were detached with accutase enzyme and 

washed twice with PBS. The washed monocytes were then measured in flow cytometry 

using forward and side scatters for size determination, DiD staining detection for monocyte 

and GFP staining for C. albicans. Double positive staining detection of DiD – GFP was 

measured as phagocytosis event and the amount of the event was compared to the total DiD 

detection for phagocytosis rate determination.  

 

2.2.3.2. Monocyte inflammatory cytokine response to C. albicans 

To determine the inflammatory response of monocyte to C. albicans, human primary 

monocytes (6x105) were co-incubated with C. albicans (6x105) in RPMI 1640 media 

supplemented with 2 mM l-glutamine (Lonza), 27.5µg/ml gentamycine (Lonza), and 10% 

normal human serum for 20 hr at 370C. Supernatants were collected and assayed for 

inflammatory cytokines (IL-1β, IL-6, IL-10, TGF-β) level using ELISA method.  
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2.2.3.3. Acquisition of factor H from serum by Candida albicans 

To determine if C. albicans can acquire factor H from human serum, binding assay in 

combination with laser scanning microscopy and flow cytometry were performed. Yeast 

cells (1 x 106) were washed twice in phosphate-buffered saline (PBS) and then incubated 

with 10% normal human serum (NHS) or with 25µg/ml purified factor H for 30min at 

370C. After incubation cells were then washed twice again with PBS. 

For flow cytometry, the factor H bound yeast cells were then incubated with antibody goat 

anti-factor H (1:200 in PBS) for 30 min at RT, with subsequent corresponding secondary 

antibody conjugated with Alexa 647 dye (1:200) for 30 min at RT. Then the dyed cells 

were then diluted in PBS for flow cytometry measurement. Forward and side scatters were 

measured to identify the cells and fluorescent events were measured from 10,000 cells. 

For microscopy measurement, the same process as flow cytometry preparation were done 

and the dyed cells were spread on microscope slides and dried at 40C. Fixing material was 

added before the cover slip and then samples were visualized with the microscope.  

 

2.2.3.4. Binding of factor H by Pra1/Ssl11/PspC microbeads 

To enunciate the immune-modulatory effect of factor H on a foreign surface, 25µg/ml 

Pra1/Ssl11/PspC microbial proteins were immobilized on the surface of 3µm sulfate 

microspheres (Polysciences) in PBS (30 min, 370C), washed twice, and the beads surface 

were blocked with 1% BSA in PBS (1 hr, 370C). The microbial protein microbeads were 

then incubated with/without 25µg/ml factor H or 25µg/ml fragmented factor H SCR 18-20 

for 30 min at 370C. The treated microbeads were then incubated with human primary 

monocyte in a similar way to C. albicans co-incubation and supernatants were assayed with 

ELISA to determine the monocytes inflammatory response. 

 

2.2.3.5. Recruited factor H cofactor activity assay 

Activity of C. albicans surface bound factor H was analyzed by detection of C3b cleavage 

product, iC3b, on the surface of C. albicans with western blot and fluorescent microscopy 

methods. Factor H was incubated with C. albicans in PBS for 30 min at 370C, washed 

twice, and then put on ice for 5 min. Afterwards the cells were diluted in 10% NHS with 

PBS for another 30 min at 370C and then washed twice with PBS. 
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For western blot, the treated cells were lysed using the 4x reducing buffer (RotiLoad, Roth) 

and heated at 950C for 5 min. The mixtures were then ran on SDS PAGE and continued 

with the western blot protocol, using the primary antibody mouse anti-iC3b. 

For Fluorescent microscopy, the treated cells spread on microscope slides and dried at 40C. 

Fixing material was added before the cover slip and then samples were visualized with the 

microscope. 

 

2.2.3.6. T cell regulation assay 

Supernatants from co-incubation of monocytes and C. albicans or factor H/factor H SCR 

18-20 bound C. albicans were diluted (10%) in RPMI supplemented with 2 mM l-

glutamine (Lonza), 27.5µg/ml gentamycine (Lonza), and 10% fetal calf serum. The diluted 

supernatants were incubated with the isolated naïve T cells for 6 – 9 days with a media 

change every 3 days. After incubation, T cells were fixed and permeabilized using the 

FOXP3 permeabilization buffer from eBioscience according to the manufacturer’s 

protocol. Cells were then internally stained with anti-FOXP3 transcription factor antibody 

conjugated with Alexa 488 dye. The stained cells were then quantified by flow cytometry. 

 

2.2.3.7. CR3 knockout THP-1 cells cytokine response to C. albicans 

This assay was performed as 2.2.3.2. Monocyte cytokine response to C. albicans, with CR3 

knockout THP-1 replacing human primary monocytes. 

 

2.2.4. Molecular Biological Methods 

2.2.4.1. THP-1 cells CD11b knockout 

The generation of CR3 knockout strain was performed using CRISPR/Cas9 method (Zhang 

lab). Four 20-base guide RNA sequences (oligos) were designed to target the sites in 

ITGAM gene each adjacent to protospacer adjacent motif (PAM) sequence that contains 

the canonical trinucleotide NGG. The guide RNA sequences were designed to be inserted 

into pSpCas9(BB)-2A-GFP (PX458) in the BbsI insertion site under  U6 promoter using 

the golden gate assembly protocol. The RNA guides were designed to target each from the 

5’ and 3’ of the ITGAM gene as follows: 
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1. 5’ gRNA (sense): 5’-CACCGCTTATGTCATGGGTTCAACT-3’ 

5’ gRNA (antisense):5’-AAACAGTTGAACCCATGACATAAGC-3’ 

2. 5’ gRNA (antisense): 5’-CACCGCGAAGCCCCTTGCGTTCTCT-3’ 

5’ gRNA (sense):5’-AAACAGAGAACGCAAGGGGCTTCGC-3’ 

3. 3’ gRNA (sense): 5’-CACCGACCGCCGCGCTGTACAAGCT-3’ 

3’ gRNA (antisense):5’- AAACAGCTTGTACAGCGCGGCGGTC-3‘ 

4. 3’ gRNA (asense):5’-CACCGTACTGGGGTTCGGCCCCCGG-3’ 

3’ gRNA (sense):5’-AAACCCGGGGGCCGAACCCCAGTAC-3’ 

The insertion of the gRNA sequences to the vector plasmid (pX458) were performed with 

series of reactions, starting first with a digestion of vector plasmid using a reaction of 1µg 

of the vector plasmid, 1 unit BbsI (New England Biolabs, NEB), 2 µl of 10x NEBuffer 

(New England Biolabs), and ddH2O until 20µl, incubated for 30 min at 370C. The cut 

vector plasmid were run on agarose gel and purified from the gel using QIAquick Gel 

Extraction Kit (Qiagen) according to the manufacturer’s protocol. The guide RNA oligo 

pairs were annealed with a reaction of 100 µM forward guide, 100 µM reverse guide, 1 µl 

10x T4 ligase buffer, 1 µl T4 PNK, and ddH2O until 10 µl total volume; run on PCR 

machine at 370C for 30 min, 950C for 5 min, and then ramp down to 250C at 50C/min. 

Annealed oligos were then diluted with ddH2O (1:200) before the ligation reaction with 

cut vector plasmid. The ligation reaction was performed with 50 ng of the digested vector 

plasmid, 1 µl of the 1:200 annealed oligos, 5 µl of 2x quick ligation buffer (NEB), 1 unit 

quick ligase enzyme (NEB), and ddH2O until 10 µl total volume with incubation at room 

temperature for 10 min. Ligated plasmid were then transformed into E. coli DH5α by heat 

shock. Then the transformants were plated on a selective LB agar containing ampicillin 

and grown for 24 hr at 370C. Selected colonies were incubated in LB for another 24 hr at 

370C and plasmids were isolated, cut with BbsI restriction enzyme, and run on agarose gels 

to determine the availability of the plasmids and oligo insertion. The uncut plasmids were 

the oligo inserted vector which then were used to be transfected into THP-1 cells using 

Amaxa® Human Monocyte Nucleofector® Kit according to Maeß, et al., 2014. After 3 

days incubation at 370C with 5% CO2, the transfected cells were stained with monoclonal 

antibody anti-Cd11b (and corresponding secondary antibody conjugated with Alexa-647) 

and sorted using cell sorter for FITC positive (from the plasmid vector) and Alexa-647 
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negative. Sorted cells were cultivated further and checked for CD11b availability using 

western blot; THP-1 cells were lysed before western blot. The CD11b negative cells were 

then cryo-frozen for storage and cultivated before usage in further experiments. 

 

2.2.5. Maintenance and cultivation of human cell lines 

THP-1 cells were maintained in RPMI 1640 media supplemented with 2 mM l-glutamine 

(Lonza), 27.5µg/ml gentamycine (Lonza), and 10% fetal calf serum (FCS, Gibco). Cells 

were incubated at 370C with 5% CO2. The cells were passaged every 3-4 days and after 30 

passages the cells were discarded and new cyro-stock cells were thawed for new passage 

line. 

 

2.2.6. Statistical analysis 

Standard deviation and significant differences between experiments data were analyzed by 

either t-test or analysis of variance (ANOVA) using GraphPad Prism 6 software (GraphPad 

Software Inc.). 
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3. Results 

3.1. The immediate response of monocytes to Candida albicans 

3.1.1. Monocytes uptake Candida albicans via phagocytosis 

To characterize the immediate response of human monocytes to C. albicans, 

uptake/phagocytosis of C. albicans by monocytes was analysed. Isolated human 

monocytes were stained with DiD cell dye and then co-incubated with GFP-expressing C. 

albicans at a ratio of 1:1 in growth medium with and without NHS. After 0 – 2 hrs 

incubation the uptake rate of the pathogen by monocytes was determined every 30 min 

(with additional time point in 15 min). Using flow cytometry, the phagocytosis rates were 

determined by comparing the double positive signals (DiD and GFP) representing 

internalized C. albicans to the total DiD signal representing the total number of monocytes. 

The monocytes phagocytosed C. albicans cells in medium and within 90 min about 30% 

of monocytes had engulfed the fungal cells. When the same assay was followd in NHS, the 

phagocytosis rate increased to 50% (Fig.6). Following in parallel is the survival rate of C. 

albicans shown by the amount of colony forming unit (CFU) on YPD agar plate (2 days, 

300C) after 90 min of co-incubation with monocytes. The assay revealed a survival rate of 

C. albicans of about 85% in medium but only 40% in 10% NHS. NHS alone already 

affected C. albicans and reduced C. albicans survival rate by 65%. Thus C. albicans 

becomes attacked by active components in the serum and opsonization of the fungal cells 

enhances phagocytosis by monocytes.  
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Fig. 6. Candida albicans is taken up by monocytes. Phagocytosis of Candida albicans by 

monocyte is enhanced in the presence of NHS as compared to the medium control. After 90 minutes 

of co-incubation of monocyte and C. albicans in 10% NHS, 20% more monocytes have taken up 

the pathogen as compared to monocytes in medium (without NHS). The survival rate of C. albicans 

was about 85% upon co-incubation with monocytes for 90 min in medium. About 40% of the fungal 

cells survived after co-incubation in medium with 10% NHS. However, C. albicans incubated in 

active NHS alone is killed by about 35%.  

 

3.1.2. Monocytes release extracellular traps as a response to C. albicans 

Monocytes immediately phagocytose C. albicans cells and also release extracellular DNA 

traps as seen by real time imaging of monocytes with C. albicans (Fig.7B). Blood isolated 

human monocytes were incubated with green fluorescent labelled C. albicans in presence 

of human serum and uptake of C. albicans and DNA release was followed in real time 

(with in-Cell Analyzer) over a time period of 90 - 240 minutes. Monocytes actively uptake 

C. albicans within minutes and continue phagocytosing the pathogen. This uptake was 

reduced around 70% when the cells were do-incubated in medium alone (Fig.6). DNA 

release in form of traps by monocytes was observed after about 90 minutes of co-

incubation. Similar to monocytes, neutrophils released extracellular DNA traps upon 90 

minutes of co-incubation with C. albicans (Fig.7A). Laser scanning microscopy of 

monocytes with C. albicans confirmed DNA trap formation (Fig.7B) and further 

comprehensive characterization of the traps showed the typical signs of extracellular traps 

[46]. 
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Fig. 7. Monocytes release extracellular DNA traps in response to C. albicans similar as 

neutrophils. (A) Monocytes are shown here to have phagocytosed C. albicans in 15 minutes after 

the start of co-incubation and released their DNA (shown in blue staining – DAPI) starting at minute 

90 and last until minute 240. This DNA release is similar to the extracellular DNA traps released 

by neutrophils as previously reported [88, 89], both from monocytes and neutrophils occuring about 

90 minutes after incubation with C. albicans. (B) Monocytes with internalized C. albicans cell 

decondensed the nuclear DNA after about 16 minutes, continued with DNA decondensation and 

extracellular DNA was released after 255 minutes. Interaction of monocytes with C. albicans was 

followed using live cell imaging and laser scanning microscopy [46]. 
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3.2. Later response of monocytes to Candida albicans 

3.2.1. Monocytes secrete inflammatory cytokines in response to C. albicans  

Having shown the immediate responses of monocytes to C. albicans, later responses of 

monocytes to C. albicans were determined by secretion of cytokines. Isolated human 

monocytes were again incubated with C. albicans or human apoptotic cells in NHS 

supplemented media for 20hr and a set of inflammatory cytokines (IL-1β, IL-6, and IL-10) 

were evaluated in the supernatants using ELISA. When incubated with C. albicans, 

monocytes generated a significantly higher secretion of IL-1β (3 times higher), IL-6 (10 

times higher), and IL-10 (2 times higher) (Fig.8.A). Pro-inflammatory cytokines, IL-1β 

and IL-6, were increased and also the anti-inflammatory cytokine IL-10. In contrast, no 

significant pro-inflammatory cytokines secretion by monocytes was detected in response 

to human apoptotic cells while the secretion of the anti-inflammatory cytokine IL-10 also 

increased (Fig.8.B). Thus human monocytes detect C. albicans as expected as foreign 

microorganism, while human apoptotic cells were recognized as ‘self’.  

 

3.2.2. Candida albicans recruits complement regulator factor H onto its surface 

Previous work has shown [70] that C. albicans expresses a protein called pH regulated 

protein 1 / Pra1 that binds to the surface of C. albicans and recruits the human complement 

regulator factor H. To confirm that complement regulator factor H is recruited to the 

surface of C. albicans, purified factor H was bound to C. albicans and detected using flow 

cytometry with polyclonal anti factor-H and antiserum and corresponding fluorescent dye 

conjugated secondary antibody (Fig.9.A). Binding of factor H to C. albicans was also 

evaluated by fluorescent microscopy (Fig 9.B). Factor H was bound on the surface of both 

C. albicans yeast form and hyphae form. To show that factor H from normal human serum 

also bound to C. albicans, the fungus was incubated in NHS and binding of factor H was 

determined as before. C. albicans also bound factor H from human serum to the surface 

(Fig 9.B). To establish factor H binding to C. albicans in vivo, liver tissue sections from 

C. albicans infected mice were stained for the presence of C. albicans using monoclonal 

antibody to Pra1 together with anti- mouse factor H to show the localization of the binding 

(Fig 9.C). C. albicans was detected in the tissue by anti Pra1 staining and factor H was 

shown to be co-localized with Pra1 (Fig 9.C). Having shown that Pra1 and factor H co-
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localize in vivo, the binding affinity of Pra1 to factor H was further evaluated using bio-

layer interferometry (BLItz) technique. Pra1 was immobilized as a layer on the chip surface 

and factor H binding affinity to Pra1 (KD = 1.87nM) was determined.  

 

 

Fig. 8. Monocytes secrete inflammatory cytokines in response to C. albicans.  

(A) Monocytes co-incubated with C. albicans for 20 hours release pro-inflammatory cytokines (IL-

1β and IL-6) and anti-inflammatory cytokine IL-10 (p value of 0.0089 and 0.0092 respectively) (B) 

In contrast to C. albicans, human monocytes do not secrete inflammatory cytokines IL-1β and IL-

6 when incubated with human apoptotic cells (apoptotic HUVEC cells). The level of anti-

inflammatory IL-10 secretion is increasing in both cases (p value of 0.0098 and 0.0257 

respectively). 
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3.2.3. Surface bound factor H modulates the cytokine response by monocytes 

As a human complement regulator acting on the surface of self-cells, factor H has a 

regulatory function by increasing the rate of C3 convertase decay that subsequently reduce 

the amount of C3b opsonization on the surface of the cells. Factor H also has cofactor 

activity for factor I in cleaving the bound C3b into the inactive form iC3b on the surface 

of cells.  

Recently, an immunomodulatory role of factor H was observed on macrophages [90]. 

Whether factor H on the surface of C. albicans mediate these immune-modulatory response 

has not been investigated so far. To investigate the modulatory effect of surface recruited 

factor H on human monocytes, C. albicans were incubated with purified factor H and then 

co-incubated with isolated primary human monocytes for 20hr in NHS supplemented 

media and the supernatants were analyzed for inflammatory cytokines secretion with 

ELISA. A fragment of factor H (scr 18-20) which harbors the C albicans binding region 

and C3b binding region was used to simulate binding to C. albicans without the regulatory 

region of factor H. Pro-inflammatory cytokines IL-1β and IL-6 were secreted significantly 

lower amounts when factor H bound C. albicans was co-incubated with monocytes as 

compared to C. albicans with the factor H fragment. In contrast anti-inflammatory cytokine 

IL-10 was secreted significantly higher (Fig 10.A.), showing that factor H on the surface 

has a modulatory effect on inflammatory cytokines secretion by monocytes. Factor H 

binding pushed the immune reaction more into an anti-inflammatory reaction. The same 

modulatory effects were observed in primary human macrophages upon co-incubation with 

factor H bound C. albicans. The pro-inflammatory cytokines (IL-1β and IL-6) were 

inhibited and the cytokine IL-10 level increased (Fig 10.B.). To investigate whether factor 

H mediates these immune response also via the original binding site on apoptotic cells, 

apoptotic HUVEC cells were incubated with factor H, washed and co-incubated with 

monocytes. Although cytokine production of monocytes to apoptotic self-cells is low 

(about 80-100 pg/ml IL-1β and about 200-400 pg/ml IL-6) enhanced factor H binding 

reduced the amount even further (IL-1β by 65% and IL-6 by 50%). IL-10 secretion 

increased about 60% from 80 pg/ml to about 130 pg/ml. Thus factor H bound to C. albicans 

or to apoptotic cells mediates an immune-modulatory effect (Fig 10.C.), indicating that C. 

albicans is recruiting this particular complement regulator inhibit inflammation.  
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3.2.4. Normal human serum is required for factor H immunomodulatory function 

Having shown that surface bound factor H has an immunomodulatory effect in the presence 

of NHS. We aimed to determine whether NHS is mandatory for the observed factor H 

modulatory effect. Therefore, recombinant Pra1 was attached onto sulphate microbeads. 

Loaded microbeads were incubated with monocytes for 20 hr in media with or without 

NHS. A significant inhibition of pro-inflammatory cytokines IL-1β and Il-6 and significant 

induction of anti-inflammatory cytokine IL-10 were observed in co-incubation with NHS 

while no significant changes in cytokine secretion was found in media without NHS (Fig 

11.A.). Also factor H scr 18-20 had no effect on the cytokine response. These results show 

that NHS is required for immune modulatory functions of factor H. The finding is in 

agreement with inhibitory functions observed with factor H bound to C. albicans and 

incubated with human monocytes with or without NHS (Fig 11.B.).  

 

3.2.5. Surface bound factor H retains its cofactor activity on C. albicans 

Factor H is a cofactor of factor I in cleaving the bound opsonin C3b into the inactive form 

iC3b on the surface of cells. To determine whether this cofactor activity is still retained 

when factor H is bound to the C. albicans surface, C. albicans was incubated in active NHS 

and C3b cleavage to iC3b on the surface was detected using monoclonal antibody anti 

C3d29 that binds to a region in iC3b but not C3b. Generation of iC3b was evaluated using 

fluorescent microscopy and western blot. Inactive form of C3b, iC3b, was observed on the 

surface C. albicans after co-incubation with NHS as shown by the fluorescent signals on 

C. albicans by microscopy (Fig 12.A). The cleaving of C3b into iC3b was increased over 

time as shown by increased iC3b bands over time in western blot analysis (Fig 12.B). These 

findings show that factor H retains its cofactor activity for factor I in cleaving C3b into 

iC3b on the surface of C. albicans.  
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Fig. 9. C. albicans recruits factor H to the surface  

(A) purified factor H (red) as well as factor H in NHS (blue) bind to C. albicans (white). A 

representative FACS experiment is shown (B) Factor H binds to the surface of C. albicans cells 

and hyphae. C. albicans yeast and hyphae were incubated for 30 min with human purified factor H 

or 1in 0% normal human serum and stained with monoclonal antibody anti-factor H combined with 

red Alexa 647 dye conjugated secondary antibody (in collaboration with Luke Halder). (C) Factor 

H is attached to C. albicans in mouse tissue. Murine liver tissue from C. albicans infected mice 

were stained with monoclonal antibody to Pra1 detecting C. albicans together with mouse-factor 

H antibodies. (D) The affinity constant (KD) of factor H – Pra1 interaction is 1.87nM, as measured 

by BLItz analysis.  
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Fig. 10. Surface bound factor H on C. albicans modulates the inflammatory cytokine secretion. 

Monocytes were co-incubated with factor H covered C. albicans in medium containing normal human serum 

(NHS). (A) Pro-inflammatory IL-1β and IL-6 secretion is reduced when full length factor H was bound to C. 

albicans compared to the factor H fragment (scr 18-20). IL-1β secretion is reduced by more than 60% (p= 

0.0012; arbitrary unit 1 = 1250pg/ml) while IL-6 secretion is reduced by 50% (p=0.008; arbitrary unit 1 = 

3000pg/ml). In contrast, anti-inflammatory IL-10 is weakly increased by about 20% (p=0.013; arbitrary unit 

1 = 50 pg/ml). (B) Similar secretion profile was observed when monocyte derived macrophages were co-

incubated with factor H treated C. albicans. IL-1β secretion was reduced by about 30% (p=0.0077; arbitrary 

unit 1 = 2000pg/ml), IL-6 secretion about 20% (p=0.0748; arbitrary unit 1 = 4000pg/ml) and IL-10 was 

induced by about 18% (p=0.0076; arbitrary unit 1 = 60pg/ml). (C) Using factor H covered human apoptotic 

cells instead of C. albicans showed similar effects on IL-1β (p=0.0147; arbitrary unit 1 = 100pg/ml), IL-6 

(p=0.0011; arbitrary unit 1 = 300pg/ml), and IL-10 (p=0.0010; arbitrary unit 1 = 130pg/ml) secretion, 

however, the cytokines level by apoptotic cells is very low.   
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3.2.6. iC3b modulates the LPS-induced inflammatory response in monocytes 

iC3b is generated on the surface of C. albicans as a result of C3b cleavage by co-factor 

activity of factor H for factor I [91]. To investigate whether iC3b has an immune 

modulatory effect on monocytes, C3b was freshly bound to a cell culture plate by cleaving 

soluble C3 with a pre-formed C3 convertase (incubation of C3b, factor B, factor P, and 

factor D in Mg EGTA buffer). Newly formed and bound C3b was then incubated with 

factor H and factor I to cleave C3b into iC3b. This freshly generated iC3b was subsequently 

incubated with LPS-induced monocytes and the secreted cytokines in the supernatant were 

analyzed (Fig 12.C.). Interestingly, iC3b inhibits the secretion of IL-1β but not IL-6, while 

surface bound C3b did not affect the secretion of pro-inflammatory cytokines IL-1β or IL-

6. In addition iC3b increased the secretion of IL-10 and TGF-β. C3b did not affect IL-10 

level but seemingly had an effect on TGF-β. In total iC3b reduces about 40% of IL-1β 

secretion, while increases about 55% of IL-10, and increases 32% of TGF-β secretion.  

 

3.2.7. Supernatants of monocytes co-incubated with C. albicans enhances Treg cell 

differentiation 

Having shown that factor H on the C. albicans surface is immune modulatory and inhibits 

inflammatory cytokine responses in monocytes, further regulatory functions were 

investigated. Having seen that also TGF-β response increased in monocytes, the 

supernatants of C. albicans incubated monocytes were assayed for the effect on T cell 

differentiation. The supernatant of co-incubated monocytes with factor H treated C. 

albicans were centrifuged to remove any cells and subsequently incubated with isolated 

naive CD4+ T cells for 5 – 7 days. Differentiation of T cells was followed by staining for 

intracellular FOXP3 transcription factors as regulatory T cells marker using flow 

cytometry. Incubation with supernatant from monocytes with C. albicans co-incubation 

resulted in higher number of FOXP3 positive T cells as with supernatants from monocytes 

alone. Pre-incubation of C. albicans with factor H prior to interation with monocytes 

resulted in two times more FOXP3 positive cells, but not when C. albicans was incubated 

with the factor H fragment 18-20 (Fig. 13.A). These data (Fig 13.B.) demonstrate that 

factor H recruited to the surface of C. albicans modulates the monocytes in cytokine 

secretion so that more naïve CD4+ T cells differentiate into a regulatory type. 
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Fig. 11. Factor H attached to C. albicans Pra1 covered microbeads modulates the cytokine response of 

monocytes. Recombinant Pra1 protein was bound onto microbeads and factor H or fragmented factor H SCR 

18-20 were bound to Pra1 and incubated with monocytes for 20 hours. (A, top) Monocytes pro-inflammatory 

cytokine (IL-1β and IL-6) secretion was inhibited by bound factor H (p value of 0.006 and 0.0266 

respectively) and IL-10 secretion increased (p=0.0132). Factor H fragment 18-20 had no effect. (A, bottom) 

No significant modulation of secreted cytokines occurred when the reaction was in medium without normal 

human serum (NHS). (B, top) Similar cytokine regulation by factor H was found with monocytes co-

incubated with factor H treated C. albicans in decreased IL-1β and IL-6 secretion (p= 0.0055 and p= 0.0303 

respectively) and IL-10 level increased (p= 0.0355). Again the regulatory effect by bound factor H was lost 

in medium (B, bottom). 
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Fig. 12. C3 cleavage product iC3b is generated on the surface of C. albicans.  

(A) Factor H recruited by C. albicans retains its cofactor activity for factor I and C3b is cleaved 

into iC3b in a time dependent manner. Cleavage product iC3b is detected on the surface of C. 

albicans after 20 minutes incubation in 10% normal human serum by laser scanning microscopy  

using monoclonal antibody anti-iC3b (C3d29,green). (B) C. albicans bound factor H with factor I 

generate iC3b rom C3b as detected by western blot analysis (first lane: iC3b band about 61KD). 

iC3b generation was followed over 30 minutes. (C)  Surface bound iC3b inhibits the secretion of 

IL-1β but not IL-6. iC3b also weakly induces IL-10. Surface bound C3b did not modulate the 

immune response. Monocytes were induced with 2ng/ml LPS in co-incubation with actively 

generated C3b or iC3b on a cell culture plate.  
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Fig. 13. FOXP3 transcription factor is detected in naïve T-cell after 6 days incubation in 

supernatant derived from monocytes co-incubated with factor H treated C. albicans.  

(A) FOXP3 transcription factor expression is induced in naïve T cells when incubated in 

supernatants from monocytes – C. albicans co-incubation. FOXP3 is detected using monoclonal 

antibody anti-FOXP3 conjugated with alexa 488 dye. Gated naïve T cells with intracellular FOXP3 

(1.38%) after 5-7 days are shown, M: monocyte supernatant, MC: supernatant of monocytes co-

incubated with C. albicans, and MC-FH: monocytes with factor H on C. albicans. (B) FOXP3 

concentration in T cells is increased when cells were incubated in supernatant of monocytes 

incubated with factor H-treated C. albicans (p=0.0237) compared to monocytes with C. albicans 

covered with factor H fragment scr 18-20. (C) Higher numbers of FOXP3 positive T cells were 

found after incubation in  the supernatant of iC3b stimulated monocytes incubated with LPS 

compared to C3b stimulation (p=0.0256). 

 

3.2.8. CD11b knockout in THP-1 monocytic cells using the CRISPR-Cas9 method 

C3b, iC3b, and factor H are described to bind to CR3 on neutrophils/macrophages [92, 57, 

93] To investigate whether CR3, also called CD11b (integrin αM) and CD18 (integrin β2), 

is the responsible receptor for factor H modulation of monocytes, a CD11b knockout was 

performed in monocytes. For this purpose, the monocytic cell line THP-1 cell was used 

and the ITGAM gene coding for the CD11b chain was disrupted using CRISPR-Cas9 

method. A vector plasmid harboring a set of promoter-genes (U6 promoter and cas9) of 
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Cas9 and the corresponding guide RNAs (gRNAs) for the ITGAM gene were created. Four 

different guide RNAs were created to ensure disruption of the ITGAM gene. THP-1 cells 

were transfected via nucleofector method with the gRNA containing vector plasmids. 

Transfected THP-1 cells were expected to synthesize the Cas9 protein. Together with the 

transfected gRNAs that lead the Cas9 protein to the ITGAM gene and Cas9 will cut the 5’ 

prime and 3’ prime regions of the ITGAM gene. The successful cut will create a point 

mutation, effectively disrupting the transcription of the gene.  

The gRNA sequences were designed using the web application from CRISPR design tool 

MIT (http://crispr.mit.edu:8079/) by supplying the web tool with human CD11b coding 

sequences acquired from the NCBI database. The web tool automatically detected the 

location of multiple PAM (protospacer adjacent motif) sequences and analyzed 20 

nucleotides upstream to determine the best possible position for the gRNA. The guide 

protein Cas9 should cut the section and eliminate off target sites outside the intended gene. 

The gRNAs were then scored and 4 of the highest scored 5’ prime and 3’ prime gRNAs, 

including top strand and bottom strand targets, were selected (Fig 14.B.). These selected 

gRNAs were generated as oligonucleotides and inserted into the vector plasmid.  

The insertion of the gRNAs into the PX458 vector plasmid (Fig 14.A.) downstream of the 

U6 promoter upstream the gRNA scaffold sequence were evaluated by digesting the 

plasmid with restriction enzyme BbsI. Successfully inserted vector plasmids were 

identified by cleavage with BbsI since the restriction sequence was disrupted after the 

insertion of the gRNA oligonucleotides (Fig 14.C.). One representative plasmid from each 

successful insertion (4 gRNAs  4 inserted plasmids) were chosen to transfect THP-1 cells 

using the nucleofection method. The THP-1 cells were transfected with each of the four 

vector plasmids in 4 different transfection cuvettes according to the protocol previously 

described by [94]. Transfected cells were grown for 7 days in fresh medium with exchange 

every third day. To separate transfected from untransfected cells, cells were sorted via anti-

CD11b and corresponding secondary antibody conjugated with Alexa 647 dye using the 

cell sorter. To ensure the availability of the vector plasmid and the absence of CD11b, cells 

were sorted according to GFP positive and Alexa 647 negative. The sorted cells were 

grown for another 7 days in medium and presence of CD11b was evaluated using western 

blot analysis (Fig 14.D.) as well as flow cytometry (Fig 14.E.). Clone 4 showed no CD11b 

http://crispr.mit.edu:8079/
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expression in western blot and in flow cytometry. The CD11b knockout THP-1 cells were 

cryo-frozen to be used for the following experiments. 

 

3.2.9. Factor H immunomodulatory signaling is mediated via CR3 

Complement receptor 3 (CR3) binds factor H, C3b, and iC3b [49, 57]. Having shown that 

surface bound factor H in normal human serum modulates human primary monocytes. This 

study aimed at investigating whether factor H modulates cytokines secretion via CR3, WT 

THP-1 cells and CR3KO THP-1 cells generated in this study were used as representatives 

of human monocytes and co-incubated with factor H bound C. albicans. No difference in 

IL-1β and IL-10 secretion by CR3KO THP-1 cells were observed when incubated with 

factor H treated C. albicans and factor H fragment scr 18-20 covered C. albicans. In 

contrast, WT THP-1 cells secreted less IL-1β and more IL-10 when co-incubated with 

factor H bound C. albicans (Fig. 15). This was similar to human primary monocytes. These 

results show factor H modulates IL-1β and IL-10 secretion via CR3. In contrast, secretion 

of TGF-β remained upregulated indicating that factor H does not regulate TGF-β via CR3, 

but a different pathway. 
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Fig. 14. CD11b knockout in THP-1 monocytic cell line via the CRISPR-Cas9 method. The 

CRISPR-Cas9 technique was used to knockout the transcription from the gene encoding CD11b in 

THP-1 cells. A vector plasmid (A) containing the gRNA oligo insertion site with downstream 

scaffold, Cas9 and EGFP genes under control of the U6 promoter were used. (B) The selected 

gRNAs and their recognition sites in the human ITGAM CDS (coding DNA sequence) with the 

PAM sequence is highlighted in red. (C) The evaluation of gRNA oligonucleotides insertions at 

the BbsI restriction site in the px458 vector plasmid was used, showing that all 16 clones show 

inserts in their BbsI sites. The plasmids lost their BbsI restriction sites as compared to the control 

vector px458. (D) Clone 4 showed loss of CD11b expression while still retaining the β-actin 

(housekeeping gene). CD11b expression of transfected THP-1 were analysed using western blot 

analysis. The numbering (1-4) represent the transfected clone number and ‘+’ represent WT THP-

1 cells and ‘-‘ represent empty lane as negative control. (E) Clone 4 showed no CD11b detection 

(red curve) compared to the WT THP-1 cell (green curve). Expression of CD11b by clone 4 was 

followed using flow cytometry using monoclonal CD11b antibody and corresponding secondary 

antibody conjugated with alexa 647 dye. 
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Fig. 15. Factor H immune-modulatory functions are mediated by CR3.  

IL-β but not IL-10 or TGF-β secretion is substantially reduced in CR3KO THP-1 cells as compared 

to WT THP-1 cells in response to C. albicans. Factor H attached to C. albicans reduced IL-1β (p 

value of 0.03) but not IL-10 synthesis in CR3KO THP-1 cells, which is increased (p value of 0.006).  

TGF-β regulation by factor H was unaffected by the CR3 knockout. The increase of TGF-β 

secretion on WT and CR3KO THP-1 cells by factor H on C. albicans were both significant (p value 

of 0.008 and 0.01 respectively. THP-1 and THP-1 CR3KO cells were incubated with C. albicans 

or factor H / factor H SCR 18-20 covered C. albicans and cytokine levels were measured by ELISA. 

Data represent 3 different experiments. 1 arbitrary unit in IL-1β is a range of 200–350 pg/ml, in IL-

10 graph: 50-60 pg/ml, in TGF-β graph: 1200-1500 pg/ml. 
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4. Discussion 

The human body is constantly exposed to microorganisms outside in the environment and 

also inside the human body. The microorganisms inside the human body that contribute to 

the human health are considered as microflora and coexist with the host, whereas 

microorganisms that enter the body and cause infections are considered as pathogens. In 

cases when the human host immune system is compromised like in HIV infected persons, 

in transplanted patients or in patients with diabetes, an opportunistic fungal pathogen such 

as Candida albicans can disseminate in the human body and cause damage to the tissues 

leading to impaired function of the human body or even cause death. Since this pathogen 

is also a normal microflora in human body, it is considered as a constant potential threat 

that can attack whenever the human immune system is compromised. 

Currently Candida albicans in one of the most prevalent cause in fungus infections in 

humans with a high mortality and morbidity rate. It is an opportunistic fungal pathogen 

possesses multiple virulence factors and also developed mechanisms to attack and evade 

human immune system. It has been known that this fungus evade human innate immune 

response provided by the complement system, although the exact mechanism is not yet 

well described. One of the known mechanism is the recruitment of human complement 

regulator on Candida albicans surface is helping the fungus to control the complement 

activation. This study shows that the fungus utilizes the human immune regulator to mask 

itself from the recognition and also secretes protein that bind and degrade immune effector 

proteins. Although this fungus is suppressed by the immune system and the other 

microflora in the body at healthy individuals, a drop in immune system fitness and defects 

in the immune regulatory system are windows for this fungus to flourish and attack the 

human host. 

The aim of this study is to describe the role of the recruited human complement regulator 

factor H on the surface of Candida albicans to the immune reponse of monocytes.  

 

4.1. The Immediate response of monocytes to C.albicans 

During the earlier time point of monocytes interaction with C. albicans in the complement 

active environment, phagocytosis events were prevalent and monocytes engulfed Candida 
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albicans which was supported by the complement system. Human monocytes are 

professional phagocytes that employ receptors on the cell surface to recognize foreign 

materials and microorganisms that infected human body [95]. The receptors on monocytes 

such as TLR2, TLR4, dectin 1, and CR3 recognize and interact with β-glucans and 

mannans on the surface of Candida albicans which enhances interaction and attachment of 

the immune cell to the invading microorganisms, thus increasing phagocytosis. On the 

other hand, IgG and C3 fragments from complement system (C3b and iC3b) play central 

roles in the phagocytic activities of monocytes and macrophages [96, 97]. All of the 

complement pathways are induced by Candida albicans. IgG with its Fc portion directly 

stimulates particle attachment and ingestion/phagocytosis. Moreover, this process is 

enhanced by opsonization of C3b on the surface and its inactivated form iC3b and the 

attachment mediated by complement receptors CR1 (CD35) and CR3 (CD11b/CD18).  

Candida albicans as fungal pathogen is immediately opsonized with C3 fragments when 

in contact with human blood, covering its surface with C3b. The complement cascade 

would be continued on the surface where C3 convertase will be formed from the bound 

C3b with Factor B (C3bBbC3b) which subsequently triggers more deposits of C3b on the 

surface of the fungus. This study demonstrates that in the environment with active 

complement system (10% normal human serum), monocytes uptake Candida albicans 

faster due to the fact of the enhanced attachment and recognition by the surface bound 

opsonin. The complement activation does not only deposits opsonins on the surface of the 

fungal pathogen, but also provided antifungal effect as incubation of C. albicans in 10% 

normal human serum reduced the survival of C. albicans while co-incubation with 

monocytes further reduced the survival of C. albicans. Similar observation has previously 

reported on neutrophils killing towards C. albicans in the presence of human serum or 

serum-opsonized C. albicans [98, 99]. The uptake of the fungi by neutrophils was greatly 

enhanced by the presence of human serum in the media or by pre-opsonizing the fungal 

cell before co-incubation.  

Here we observed also a burst release of nucleic acid from the monocytes towards C. 

albicans. Upon contact with C. albicans (<240 min) following the phagocytosis response, 

monocytes decondense their nuclear DNA and release the DNA which form monocyte 

extracellular traps (MoETs) that cover and fix C. albicans cells. These extracellular traps 
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share many similarities with neutrophil extracellular traps (NETs). For example MoETs 

contained citH3, elastase, MPO, and lactoferrin [46] described for NETs [100]. NETs 

effectively kill C. albicans with MPO, elastase, and also the release of lactoferrin was 

previously described [101] and formation of extracellular traps by monocytes with similar 

properties was confirmed by Halder, et al. 2017. Thus monocytes effectively reduce the 

survival of the fungus by a combination of phagocytosis and MoETs release. 

 

4.2. Advanced response of monocytes to Candida albicans 

4.2.1. Monocyte secretes inflammatory cytokines in response to C. albicans 

On inflammation settings, classical monocytes (CD14hiCD16-) are recruited rapidly to the 

site of inflammation from the bloodstream as phagocytes whereas the intermediate 

monocytes (CD14hiCD16+) and the non-classical monocytes (the CD14lowCD16+) are the 

cytokines producing cells that recruit neutrophils and other immune cells to the site. This 

cytokines secretion is considered a specific response of monocytes since the secretion is a 

process throughout the interaction between monocytes to C. albicans, starting from time 

point 0 until several days. The cytokines that were detected in this study were interleukin-

1β, interleukin-6, and interleukin-10.  

Co-incubation of monocytes and C. albicans revealed an increase in IL-1β and IL-6 

secretion showing spontaneous pro-inflammatory response by monocytes to C. albicans. 

The high secretion of IL-1β (400% increase; 1250 pg/ml) and IL-6 (1550% increase; 3300 

pg/ml) by monocytes in response to C. albicans was presumably because of the detection 

of the β-glucans on the surface of the fungus by monocytes and also by the contact and 

interaction enhancement by the deposited opsonins (C3 fragments) from the activated 

complement system on the fungus surface. The β-glucans are major components of fungal 

cell walls that trigger IL-1β secretion. Complement receptor 3 (CR3) and Dectin-1 play a 

crucial role in coordinating β-glucan-induced IL-1β processing as well as death response 

[102], in addition to the canonical NLRP3 inflammasome and caspase-1 maturation of IL-

1β. IL-6 was secreted in very high quantity in the co-incubation of monocytes with C. 

albicans showing a high pro-inflammatory reaction of monocytes to C. albicans. This high 

secretion of IL-6 is acting like a chemokine attracting more leukocyte especially 
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neutrophils and monocytes, increasing the inflammatory reaction on site also inducing the 

production of M-CSF receptor on monocytes, skewing the differentiation towards 

macrophages [103]. Interleukin-1β is a potent inflammatory cytokine that is crucial for 

host-defense responses to infection and injury [104]. It is an important mediator of the 

inflammatory response and is involved in cell proliferation, differentiation and apoptosis. 

IL-1β secretion is also a marker of an activated inflammasome, which catalyzes the 

proteolytic cleavage of pro IL-1β and pro IL-18 into their mature forms. IL-6 is one of the 

chemokines that together with IL-1β attract neutrophil to the secretion site. Saturation of 

IL-6 presence on site can induce a proteolytic processing of IL-6 by receptor of recruited 

neutrophils, subsequently drives IL-6 trans-signaling in the resident tissue cells leading to 

a switch from neutrophils to monocytes recruitment by suppressing the neutrophil-

attracting and enhancing monocyte-attracting chemokines [105].  

IL-10 however, is a cytokine with potent anti-inflammatory properties that plays a central 

role in limiting host immune response to pathogens, thereby preventing damage to the host 

and maintaining tissue homeostasis. Deficiencies in IL-10 revealed that the majority of 

intracellular infections are controlled better or cleared faster in the absence of IL-10 [106]. 

While the absence of IL-10 is often initially beneficial to the host, prolonged IL-10 

deficiency can often be detrimental in the long term since the enhanced and prolonged 

production of inflammatory cytokines can lead to septic shock in cases of infections 

without the suppressing effect of anti-inflammatory IL-10. Interestingly, IL-10 was 

upregulated in monocytes when co-incubated with C. albicans (90% increase; 38 pg/ml) 

similar to the IL-10 secretion of monocytes in response to apoptotic cells (50% increase; 

30 pg/ml). Presumably, C. albicans modulated the IL-10 secretion either by direct 

interaction with monocytes, or via the complement system similar to as previously reported 

in macrophages response to apoptotic cells [107].  

 

4.2.2. Surface bound factor H modulates the cytokine response by monocytes 

Numerous reports confirm that pathogens recruit human complement regulators on their 

surfaces to evade a complement attack and essentially evading innate immune responses. 

Candida albicans recruited human complement regulator factor H on its surface as shown 

in flow cytometry and fluorescent imaging in this study. The binding of factor H was not 
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only shown in vitro but for the first time also in vivo in mice. Factor H was recruited onto 

the surface of C. albicans, showing in vivo co-localization of fungal surface protein Pra1 

and factor H in C. albicans infected mice liver tissue. This study shows that surface bound 

factor H regulated the cytokine secretion of monocytes by inhibiting the secretion of IL-1β 

and IL-6, and inducing the secretion of IL-10 in a complement active environment. Similar 

regulatory effects were observed when factor H was bound to apoptotic HUVEC cells. 

Although the initial response of IL-1β and IL-6 secretion were not as high on monocytes 

response to apoptotic HUVEC cells compared to Candida albicans, the regulation pattern 

by surface bound factor H is the same. This demonstrates that surface bound factor H on 

any surfaces is regulating cytokine responses of monocytes. Interestingly, macrophages 

differentiated from human blood monocytes are also regulated by surface bound factor H 

the same way. Pra1 was reported to bind factor H and retains its complement regulatory 

functions [70] but the mechanisms or the function of the recruited regulator to the response 

of monocytes has not been described yet. The function of factor H in regulating 

complement activation is mainly degrading the opsonin C3b and blocking further 

opsonization by accelerating the decay of formed C3 convertase on the surface. The 

regulatory effect of factor H was only found when factor H was bound onto the surface, 

not in its soluble form. The additional factor H added to the co-incubation of monocytes 

with C. albicans did not assert any regulatory effect compared to the bound factor H on C. 

albicans surface prior to co-incubation (data not shown).  

Microbial pathogens such as Staphylococcus aureus and Streptococcus pneumoniae are 

also known to recruit factor H onto their surfaces [108, 109]. Each pathogen has its own 

surface expressed proteins that bind factor H named staphylococcal superantigen-like 

protein 11 (SSL11) and PspC, for Staphylococcus aureus and Streptococcus pneumonia 

respectively. Here we show that factor H once recruited by these pathogens also modulates 

the cytokine secretion of monocytes very similar to C. albicans (Fig. 16). These results 

show that these pathogens exploit the regulatory functions of factor H on their surfaces, 

cleaving C3b into iC3b and accelerating the decay of C3 convertase to reduce further 

opsonization. By reducing the secretion of IL-1β and IL-6, C. albicans, Staphylococcus 

aureus, Streptococcus pneumonia, and other factor H surface binder pathogens are able to 

actively impair the inflammatory response of monocytes. The lower level of inflammatory 
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cytokines creates a favorable condition of lower inflammation reaction and less recruitment 

of immune cells to attack C. albicans. The increased IL-10 secretion also supports C. 

albicans to further dampen the already low inflammatory response and to limit the response 

of the host immune system to the pathogen.  

 

Figure 16. Factor H recruited by S. aureus SSL11 and S. pneumonia PspC modulates cytokine 

secretion by monocytes. Each protein recombinant SSL11 and PspC was bound onto microbeads. 

Factor H or fragmented factor H SCR 18-20 were bound to the recombinant proteins and 

subsequently incubated with monocytes for 20 hours. (A) Monocytes pro-inflammatory cytokine 

(IL-1β and IL-6) secretion was inhibited by bound factor H on SSL11 microbeads (p value of 0.002 

and 0.04 respectively) and IL-10 secretion increased (p=0.02). Factor H fragment 18-20 had no 

effect. (B) Factor H bound to PspC on microbeads had a similar cytokine modulation pattern as 

SSL11. However, in this case the IL-1β and IL-6 inhibition and and IL-10 changes were statistically 

not significant.  
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4.2.3. Normal human serum is required for factor H immune modulatory function 

Factor H is a complement regulator of the alternative pathway of complement activation. 

To assert the role as a complement regulator, an active complement system is required. In 

this study we investigated the role of normal human serum in correlation with the 

immunomodulatory function of factor H in modulating the cytokines secretion by 

monocytes. Sulphate microbeads bound with Pra1 fungal protein was used to mimic 

foreign surfaces to activate complement. Factor H was subsequently bound to Pra1 

microbeads and incubated with monocytes in medium with and without additional normal 

human serum. The modulation of secreted cytokine by monocytes was dependent on the 

presence of normal human serum, suggesting that factor H immunomodulatory function 

requires components in active serum, presumably the complement system. The same 

principle was observed upon co-incubation of factor H treated C. albicans with monocytes, 

where factor H immunomodulatory functions were only active in normal human serum. 

This implies that surface bound factor H itself did not regulate the response of monocytes. 

Interaction between factor H and normal human serum is a prerequisite for factor H to exert 

its immune modulatory functions.  

In further experiments the effect of iC3b which is generated by factor H and factor I, was 

evaluated to be involved in the immune modulation of monocytes. A question arose 

whether iC3b itself regulates the cytokine response of monocytes. Freshly generated iC3b 

modulated LPS-induced monocytes cytokines secretion by inhibiting IL-1β secretion but 

not IL-6 and iC3b increased the secretion of IL-10 and TGF-β. As comparison, C3b did 

not modulate IL-1β, IL6, and IL-10 cytokines secretion. However, it seems that to our 

surprise that C3b has a slight effect on the increase of TGF-β although insignificant. This 

iC3b modulatory effect seems to contribute partly to surface bound factor H 

immunomodulatory effect on the monocytes cytokines secretion in the reduction of IL-1β 

and induction of IL-10 cytokines secretion. 

Factor H on C. albicans retains its cofactor activity to factor I and the inactive form of C3b, 

iC3b, was detected on the surface of C. albicans after short incubation with normal human 

serum. Since the surface bound C3b is cleaved into iC3b, further generation of C3b 

convertase on the surface was halted leading to lower opsonization of the surface and also 

lower recognition by monocytes. Ultimately, this likely leads to lower recognition and also 
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a lower response of monocytes towards C. albicans. Ross, et al reported very early that 

iC3b interacts with complement receptor 3 (CR3) on phagocytes and they suggested C3 

fragments as the major mediating immune clearance factor in vivo [110]. Deficiency in 

factor I prevents the generation of iC3b and predisposes to recurrent bacterial infection as 

reported previously [111]. However, a more recent studies [107] showed that iC3b on 

opsonized apoptotic cells mediates anti-inflammatory response on monocytes-derived 

macrophages by inhibition of pro-inflammatory cytokines (IL-1β and IL-6) and secretion 

of anti-inflammatory cytokine IL-10 but not TGF-β. The similar regulatory effect was 

shown in this study, on immunomodulatory functions of factor H on C. albicans surface 

and on apoptotic cells surface, suggesting the same mechanism of modulation.  

 

4.2.4. CR3 mediates Factor H immune modulatory signaling in monocytes 

Complement receptor 3 (CR3; CD11b/CD18) is present on all phagocytes strongly 

interacting with iC3b [92]. By binding to iC3b, CR3 mediates phagocytosis and 

inflammation. As shown here surface bound factor H, which together with factor I 

generates iC3b from C3b, modulates the cytokine secretion of monocytes. As iC3b and 

factor H bind CR3, a CR3 knockout (CD11b knockout) THP-1 monocytic cell line was 

created and the response of these cells to C. albicans was evaluated.  

CR3KO THP-1 cell showed a significant lower response of IL-1β secretion compared to 

THP-1 cells. This is explained by the fact that CR3 is, beside dectin-1, the responsible 

recognition receptor of β-glucans on the cell wall of the fungus [112, 41]. Recently CR3 

was shown to play an essential role for mediating IL-1β secretion of dendritic cells in 

response to heat killed and to lesser extent, living C. albicans [102].  However, the absence 

of CR3 does not totally abolish the recognition of β-glucans on C. albicans due to the 

recognition by receptors like dectin-1, which is recognizing mannan on the C. albicans cell 

surface. Factor H on C. albicans also showed a tendency to inhibit IL-β in THP-1 cells, but 

not in CR3KO THP-1 cells because of the already low levels of IL-1β in these cells. IL-1β 

maturation and secretion requires activation of the inflammasome which is triggered by at 

least two distinct stimuli. CR3 recognition of C3b and iC3b were abolish in the CR3KO 

THP-1 cells leading to less stimuli and formation and activation of inflammasome, which 

culminates to low secretion of IL-1β.  
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Factor H treated C. albicans also induced IL-10 secretion in on THP-1 cells but this effect 

was abolished in CR3KO THP-1 cells, indicating that factor H mediated induction of IL-

10 is mediated via CR3. In contrast, factor H on C. albicans induced TGF-β in THP-1 and 

CR3KO THP-1 cells demonstrating that factor H enhancement of this cytokine is not 

mediated via CR3. In summary CR3 is a central activator of IL-1β in monocytes and factor 

H acts on IL-10 secretion via CR3, to a minor extend on IL-1β secretion but not on TGF-

β via CR3. 

 

4.2.5. Monocytes inflammatory cytokines response to C. albicans suppresses adaptive 

immune response provided by T cells. 

Innate immune cells recognize fungal cells by their pattern recognition receptors (PRRs) 

which leads to secretion of specific cytokines including IL-1β, IL-6, and IL-23 [113, 68, 

114]. These cytokines in turn promote skewing of activated CD4+ T cells into the Th17 

lineage, which express IL-17, IL-17F, and IL-22. IL-17 and IL-17F signal through common 

receptor IL17R on , which is crucial for effective anti-Candida immunity by inducing 

innate immunity inflammation through NF-κB and C/EBP [115]. In this study we have 

identified factor H as a regulator on C. albicans which inhibited IL-1β and IL-6 while 

inducing IL-10 and TGF-β secretion from monocytes. Inhibition of IL-1β and IL-6 likely 

reduces the promotion of CD4+ Th17 lineage differentiation. As shown in (Fig.13.A and 

13.B), the supernatants of monocytes incubated with factor H treated C. albicans pushed 

naïve T cells into the direction of induced Treg (iTreg) differentiation as shown by the 

increasing intracellular FOXP3 detection. Regulatory T cells (Treg) are T cells which 

suppress the activation, proliferation and effector functions – such as cytokine production 

– of a wide range of immune cells including CD4+ and CD8+ T cells, NK cells, B cells, and 

APC. Moreover, transcription factor forkhead box P3 (FOXP3) is one of the intracellular 

marker for the detection of Treg. Induced regulatory T cells, iTreg, develop from 

conventional CD4+ T cells outside the thymus: a defining distinction between natural T reg 

(nTreg) with iTreg cells. IL-1β is known as one powerful cytokine that inhibit the 

differentiation of FOXP3+ Treg cells [116], inhibition of this cytokine increases the 

generation of FOXP3+ T cells. On the other hand, induction of IL-10 secretion is known to 

restrain Th17 cell-mediated inflammation [117]. IL-10 is also described to act with TGF-
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β leading to an expansion of FOXP3+ iTregs with enhanced CTLA-4 expression and 

suppressive capability, comparable to that of natural Tregs [118]. CTLA-4 is an inhibitory 

protein that exert immune regulatory function, suppressing T cell response by competing 

with CD28 T cell co-stimulatory molecule in binding to their ligands, CD80 and CD86. 

Although CTLA-4 regulatory pathway and T reg regulatory function are independent of 

each other, CTLA-4 was reported to assist T reg regulatory function by blocking the CD28 

pathway [119]. Moreover, the induction of TGF-β is possibly mediating suppression of T 

cell activation, differentiation and proliferation by newly generated Treg cells and known 

to convert naïve T cells into immune suppressive cells [120, 121, 122]. These induced 

suppressive cells expressed FOXP3, the critical transcription factor required for the 

development of CD4+ Treg cells. Induced Tregs display suppressive function similar to 

natural T reg (nTreg) measured by their ability to inhibit T cell proliferation and Th1/Th17 

– mediated autoimmune disease [123, 124]. Therefore, C. albicans will benefit at least 

locally to promote iTreg generation in order to inhibit the Th17 response.  

 

Conclusion 

In summary, this study characterizes responses of monocytes towards the fungal pathogen 

Candida albicans. First monocytes phagocytose the Candida albicans yeast forms and 

release monocytic extracellular traps (MoETs) to inhibit dissemination and infection of C. 

albicans. Extracellular traps released by monocytes are very similar to the neutrophil 

extracellular traps (NETs) and contain cit H3, elastase, MPO, and lactoferrin. These 

molecules within the extracellular traps act strongly anti-microbial and effectively reducing 

the survival of Candida albicans. Monocytes also recognize Candida albicans and secretes 

cytokines to induce inflammation and to recruit more immune cells to the site of infection. 

However, Candida albicans expresses fungal proteins that recuit the human complement 

regulator factor H on its surface to modulate complement activation on its surface. This 

complement regulator recruitment is also known for other microbial pathogen such as 

Staphylococcus aureus and Streptococcus pneumonia. The surface recruited factor H 

retains its regulatory functions as cofactor for factor I, cleaving C3b into iC3b and 

accelerate the decay of C3 convertase, effectively inhibiting further opsonisation on the 
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surface. Thus Candida albicans exploits the regulatory functions which subsequently 

decrease the recognition and response of monocytes towards the fungal pathogen. Factor 

H on C. albicans surface but no in fluid phase modulates the cytokine response of 

monocytes by inhibiting secretion of the central cytokines IL-1β and IL-6 and inducing IL-

10 secretion. The inhibition of IL-1β and IL-6 secretion leads to lower inflammation and 

the induction of IL-10 further dampens inflammation. The factor H regulation is acting 

partially via complement receptor 3 (CR3), as absence of CR3 diminishes the regulatory 

effect of surface bound factor H on monocytes IL-1β and IL-10 secretion but has no effect 

on IL-6 or TGF-β secretion. The cytokines of the modulated monocytes induces naïve T 

cell differentiation towards induced T regulatory cell (iTreg) shown by the increased 

FOXP3 detection. This iTreg differentiation will benefit Candida albicans in order to 

inhibit the natural inflammatory reaction of TH17 response towards Candida infection.  

The finding of this study contribute to further understanding on how Candida albicans 

interact with human innate immune system in general and monocytes in more detailed. The 

function of the recruited complement regulator factor H was characterized and shown to 

benefit Candida albicans survival by modulating monocytes responses directly and their 

subsequent effects on T cell differentiation for adaptive immune response. Application of 

the results presented here can be used to further understand how Candida albicans utilizes 

complement regulator to evade human complement attack. 
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