Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 18/09

On a class of non-Hermitian matrices with positive definite Schur complements

Thomas Berger, Juan Giribet,
Francisco Martinez Peria and Carsten Trunk

Juli 2018

URN: urn:nbn:de:gbv:ilm1-2018200139

Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677 69-3621
Fax: $\quad+493677$ 69-3270
http://www.tu-ilmenau.de/math/

ON A CLASS OF NON-HERMITIAN MATRICES WITH POSITIVE DEFINITE SCHUR COMPLEMENTS

THOMAS BERGER, JUAN GIRIBET, FRANCISCO MARTÍNEZ PERÍA, AND CARSTEN TRUNK

Abstract

Given a positive definite matrix $A \in \mathbb{C}^{n \times n}$ and a Hermitian matrix $D \in \mathbb{C}^{m \times m}$, we characterize under which conditions there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that the non-Hermitian block-matrix $$
\left[\begin{array}{cc} A & -A K \\ K^{*} A & D \end{array}\right]
$$ has a positive definite Schur complement with respect to its submatrix A. Additionally, we show that K can be chosen such that diagonalizability of the block-matrix is guaranteed and we compute its spectrum. Moreover, we show a connection to the recently developed frame theory for Krein spaces.

1. Introduction

Given a matrix $S \in \mathbb{C}^{(n+m) \times(n+m)}$ assume it is partitioned as

$$
S=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right],
$$

where $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{n \times m}, C \in \mathbb{C}^{m \times n}$ and $D \in \mathbb{C}^{m \times m}$. If A is invertible, then the Schur complement of A in S is defined by

$$
S_{/ A}:=D-C A^{-1} B .
$$

This terminology is due to Haynsworth [11, 12], but the use of such a construction goes back to Sylvester [15] and Schur [14]. The Schur complement arises, for instance, in the following factorization of the block matrix S :

$$
\left[\begin{array}{cc}
A & B \tag{1.1}\\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & 0 \\
C A^{-1} & I_{m}
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right]\left[\begin{array}{cc}
I_{n} & A^{-1} B \\
0 & I_{m}
\end{array}\right],
$$

which is due to Aitken [1]; note that I_{k} denotes the identity matrix of size $k \times k$. It is a common argument in the proof of some well-know results in matrix analysis such as the Schur determinant formula [3]:

$$
\begin{equation*}
\operatorname{det}(S)=\operatorname{det}(A) \cdot \operatorname{det}\left(S_{/ A}\right) \tag{1.2}
\end{equation*}
$$

the Guttman rank additivity formula [10], and the Haynsworth inertia additivity formula [13].

[^0]The Schur complement has been generalized in numerous ways, for example to the case in which A is non-invertible, where generalized inverses can be used to define it. It is a key tool not only in matrix analysis but also in applied fields such as numerical analysis and statistics. For further details see [16].

If S is a Hermitian matrix, then $C=B^{*}$ and the Schur complement of A in S is $S_{/ A}=D-B^{*} A^{-1} B$. In this particular case (1.1) reads

$$
\left[\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & A^{-1} B \\
0 & I_{m}
\end{array}\right]^{*}\left[\begin{array}{cc}
A & 0 \\
0 & D-B^{*} A^{-1} B
\end{array}\right]\left[\begin{array}{cc}
I_{n} & A^{-1} B \\
0 & I_{m}
\end{array}\right]
$$

which implies the following well-known criteria to determine the positive definiteness of S : the block-matrix S is positive definite if and only if A and $S_{/ A}$ are both positive definite. This equivalence is not true for positive semidefinite matrices, but Albert [2] showed that S is positive semidefinite if and only if A and $S_{/ A}$ are both positive semidefinite and $R(B) \subseteq R(A)$, where $R(X)$ stands for the range of a matrix X. Observe that the range inclusion $R(B) \subseteq R(A)$ is equivalent to the existence of a matrix $X \in \mathbb{C}^{n \times m}$ which factorizes B as $B=A X$.

In the present paper, given a positive definite $A \in \mathbb{C}{ }^{n \times n}$ with eigenvalues $0<\lambda_{n} \leq \cdots \leq \lambda_{1}$ and a Hermitian $D \in \mathbb{C}^{m \times m}$ with eigenvalues $\mu_{1} \leq \mu_{2} \leq$ $\ldots \leq \mu_{r} \leq 0<\mu_{r+1} \leq \ldots \leq \mu_{m}$, we investigate under which conditions there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that

$$
S=\left[\begin{array}{cc}
A & -A K \tag{1.3}\\
K^{*} A & D
\end{array}\right]
$$

has a positive definite Schur complement $S_{/ A}$ with respect to the minor A, that is, under which conditions there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that

$$
S_{/ A}=D+K^{*} A K
$$

is positive definite.
Interest in such non-Hermitian block-matrices arises, for instance, in the recently developed frame theory in Krein spaces, see [6, 8]. There, blockmatrices as in (1.3) with a positive definite A, a Hermitian D and a positive definite $S_{/ A}$ correspond to so-called J-frame operators, see Section 5 for more details.

In Theorem 3.3 below we show that this special structured matrix completion problem has a solution if and only if

$$
r \leq n \quad \text { and } \quad \lambda_{i}+\mu_{i}>0 \quad \text { for all } i=1, \ldots, r
$$

We stress that S is not diagonalizable in general, not even if $S_{/ A}$ is positive definite. Under the above conditions, we construct a particular strictly contractive matrix K, which depends on some parameters $\varepsilon_{1}, \ldots, \varepsilon_{r}$. In Theorem 4.2 we compute the eigenvalues of the corresponding block matrix S in terms of the eigenvalues of A and D and the parameters $\varepsilon_{1}, \ldots, \varepsilon_{r}$. A root locus analysis of the latter reveals that if each ε_{i} is small enough,
then S is diagonalizable and has only (positive) real eigenvalues, although S is non-Hermitian.

2. Preliminaries

Given Hermitian matrices $A, B \in \mathbb{C}^{n \times n}$, several relations between the eigenvalues of A, B and $A+B$ can be obtained. The following result was first proved by Weyl, see e.g. [4].

Theorem 2.1. Let $A, B \in \mathbb{C}^{n \times n}$ be Hermitian matrices. Then,

$$
\begin{array}{ll}
\lambda_{j}^{\downarrow}(A+B) \leq \lambda_{i}^{\downarrow}(A)+\lambda_{j-i+1}^{\downarrow}(B) \quad \text { for } i \leq j \\
\lambda_{j}^{\downarrow}(A+B) \geq \lambda_{i}^{\downarrow}(A)+\lambda_{j-i+n}^{\downarrow}(B) \quad \text { for } i \geq j
\end{array}
$$

where $\lambda_{j}^{\downarrow}(C)$ denotes the j-th eigenvalue of C (counted with multiplicities) if they are arranged in nonincreasing order.

Among the numerous consequences of Weyl's inequalities, it is worthwhile to mention that if $A, B \in \mathbb{C}^{n \times n}$ are Hermitian matrices such that $A \leq B$ according to Löwner's order, then

$$
\begin{equation*}
\lambda_{j}^{\downarrow}(A) \leq \lambda_{j}^{\downarrow}(B) \quad \text { for } j=1, \ldots, n \tag{2.1}
\end{equation*}
$$

Another well-known result says that if $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$, then the non-zero eigenvalues of $A B$ and $B A$ are the same (and they have the same multiplicities). Indeed, it is easy to see that

$$
\left[\begin{array}{cc}
I_{m} & -A \\
0 & I_{n}
\end{array}\right]\left[\begin{array}{cc}
A B & 0 \\
B & 0
\end{array}\right]\left[\begin{array}{cc}
I_{m} & A \\
0 & I_{n}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
B & B A
\end{array}\right]
$$

and hence the matrices $\left[\begin{array}{cc}A B & 0 \\ B & 0\end{array}\right]$ and $\left[\begin{array}{cc}0 & 0 \\ B & B A\end{array}\right]$ are similar. Therefore, they have the same characteristic polynomial

$$
\begin{equation*}
p(\lambda)=\lambda^{n} \operatorname{det}\left(\lambda I_{m}-A B\right)=\lambda^{m} \operatorname{det}\left(\lambda I_{n}-B A\right) \tag{2.2}
\end{equation*}
$$

and the assertion follows immediately.
We use the above result to prove the following proposition. For $K \in \mathbb{C}^{n \times m}$ we denote by $\|K\|$ the spectral norm of K, i.e., the operator norm induced by the Euclidean vector norm.

Proposition 2.2. Let $A \in \mathbb{C}^{n \times n}$ be positive definite and $K \in \mathbb{C}^{n \times m}$. Then,

$$
\lambda_{j}^{\downarrow}\left(K^{*} A K\right) \leq\|K\|^{2} \lambda_{j}^{\downarrow}(A) \quad \text { for } j=1, \ldots, \min \{n, m\}
$$

Proof. Since A is positive definite it has a well-defined square root $A^{1 / 2}$. Then, for all $j=1, \ldots, \min \{n, m\}$,

$$
\lambda_{j}^{\downarrow}\left(K^{*} A K\right)=\lambda_{j}^{\downarrow}\left(K^{*} A^{1 / 2} A^{1 / 2} K\right) \stackrel{(2.2)}{=} \lambda_{j}^{\downarrow}\left(A^{1 / 2} K K^{*} A^{1 / 2}\right) \leq\|K\|^{2} \lambda_{j}^{\downarrow}(A)
$$

where the inequality follows from (2.1) because $A^{1 / 2} K K^{*} A^{1 / 2} \leq\|K\|^{2} A$.

3. Positive definiteness of the Schur complement

In this section we derive a necessary and sufficient condition for the existence of a strictly contractive matrix K such that the block matrix S in (1.3) has a positive definite Schur complement. Throughout this section we consider the following hypotheses.

Assumption 3.1. Assume that $A \in \mathbb{C}^{n \times n}$ is positive definite and $D \in$ $\mathbb{C}^{m \times m}$ is a Hermitian matrix. Let $\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{r} \leq 0<\mu_{r+1} \leq \ldots \leq$ μ_{m} denote the eigenvalues of D (counted with multiplicities) arranged in nondecreasing order, and let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}>0$ denote the eigenvalues of A (counted with multiplicities) arranged in nonincreasing order.

First, we record the following important observation.

Lemma 3.2. Let Assumption 3.1 hold and assume that $r>n$. Then, there is no $K \in \mathbb{C}^{n \times m}$ such that $D+K^{*} A K$ is positive definite.

Proof. Let $K \in \mathbb{C}^{n \times m}$ and $\mathcal{S}_{1}:=\operatorname{ker}(K)$ be the nullspace of K. Consider the subspace \mathcal{S}_{2} of \mathbb{C}^{m} spanned by all eigenvectors of D corresponding to non-positive eigenvalues. By Assumption 3.1 we have that $\operatorname{dim} \mathcal{S}_{2}=r$ and

$$
\operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2} \geq(m-n)+r=m+(r-n)>m
$$

Thus, $\mathcal{S}_{1} \cap \mathcal{S}_{2} \neq\{0\}$ and for any non-trivial vector $v \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$ we have

$$
\left\langle\left(D+K^{*} A K\right) v, v\right\rangle=\langle D v, v\rangle \leq 0
$$

Therefore, $D+K^{*} A K$ cannot be positive definite.
In the following result we focus on a special class of matrices K. Recall that $K \in \mathbb{C}^{n \times m}$ is called strictly contractive, if its singular values are all smaller than 1. Equivalently, K is strictly contractive if and only if $\|K\|<1$.

Theorem 3.3. Let Assumption 3.1 hold. Then, there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that $D+K^{*} A K$ is positive definite if and only if

$$
\begin{equation*}
r \leq n \quad \text { and } \quad \lambda_{i}+\mu_{i}>0 \quad \text { for all } i=1, \ldots, r \tag{3.1}
\end{equation*}
$$

Proof. Assume that there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that $D+K^{*} A K>0$. By Lemma 3.2 , it is necessary that $r \leq n$. On the other hand, by Theorem 2.1,

$$
0<\lambda_{m}^{\downarrow}\left(D+K^{*} A K\right) \leq \lambda_{i}^{\downarrow}(D)+\lambda_{m-i+1}^{\downarrow}\left(K^{*} A K\right)
$$

for $i=1, \ldots, m$. In particular, for $i=m-r+1, \ldots, m$ we can combine the above inequalities with Proposition 2.2 and obtain

$$
0<\lambda_{i}^{\downarrow}(D)+\|K\|^{2} \lambda_{m-i+1}^{\downarrow}(A)<\mu_{m-i+1}+\lambda_{m-i+1}
$$

Equivalently, we have that $\mu_{j}+\lambda_{j}>0$ for $j=1, \ldots, r$.

Conversely, assume that $r \leq n$ and $\lambda_{i}+\mu_{i}>0$ for $i=1, \ldots, r$. Then, for each $i=1, \ldots, r$, let $0<\varepsilon_{i}<1$ be such that $\varepsilon_{i} \lambda_{i}+\mu_{i}>0$ and define $E \in \mathbb{C}^{n \times m}$ by

$$
E=\left[\begin{array}{cc}
\operatorname{diag}\left(\sqrt{\varepsilon_{1}}, \ldots, \sqrt{\varepsilon_{r}}\right) & 0_{r, m-r} \\
0_{n-r, r} & 0_{n-r, m-r}
\end{array}\right],
$$

where $0_{p, q}$ stands for the null matrix in $\mathbb{C}^{p \times q}$. Further, let $U \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{m \times m}$ be unitary matrices such that $A=U D_{\lambda} U^{*}$ and $D=V D_{\mu} V^{*}$, where

$$
D_{\lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \quad \text { and } \quad D_{\mu}=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{m}\right) .
$$

Then, for

$$
\begin{equation*}
K:=U E V^{*}, \tag{3.2}
\end{equation*}
$$

it is straightforward to observe that $\|K\|<1$ and

$$
\begin{aligned}
D+K^{*} A K & =V\left(D_{\mu}+E^{*} U^{*} A U E\right) V^{*}=V\left(D_{\mu}+E^{*} D_{\lambda} E\right) V^{*} \\
& =V\left[\begin{array}{cc}
\operatorname{diag}\left(\varepsilon_{1} \lambda_{1}+\mu_{1}, \ldots, \varepsilon_{r} \lambda_{r}+\mu_{r}\right) & 0_{r, m-r} \\
0_{m-r, r} & \operatorname{diag}\left(\mu_{r+1}, \ldots, \mu_{m}\right)
\end{array}\right] V^{*}
\end{aligned}
$$

is a positive definite matrix.
Remark 3.4. Let Assumption 3.1 hold. Observe that if $\mu_{i}=0$ for some $i=1, \ldots, r$, then the condition $\lambda_{i}+\mu_{i}>0$ is automatically fulfilled. Hence, if we assume that dim ker $D=p$, then D has only $r-p$ negative eigenvalues and, in this case, there exists a strictly contractive matrix $K \in \mathbb{C}^{n \times m}$ such that $D+K^{*} A K$ is positive definite if and only if

$$
r \leq n \quad \text { and } \quad \lambda_{i}+\mu_{i}>0 \quad \text { for all } i=1, \ldots, r-p
$$

4. Spectrum of the block matrix

Throughout this section, we consider the contraction K constructed in the proof of Theorem 3.3 and investigate the location of the eigenvalues of the block-matrix S in (1.3) for this particular K. The locations depend on the parameters $\varepsilon_{1}, \ldots, \varepsilon_{r}$ and hence their study resembles a root locus analysis. Before we state the corresponding result we start with a preliminary lemma.

Lemma 4.1. Let Assumption 3.1 and (3.1) hold and set

$$
\begin{equation*}
\alpha_{i}:=\frac{\left(\lambda_{i}-\mu_{i}\right)^{2}}{4 \lambda_{i}^{2}}, \quad i=1, \ldots, r . \tag{4.1}
\end{equation*}
$$

Then we have that

$$
0 \leq \frac{-\mu_{i}}{\lambda_{i}}<\alpha_{i}<1, \quad \text { for all } i=1, \ldots, r
$$

Proof. Given $i=1, \ldots, r$, by (3.1) we find that $\left(\lambda_{i}+\mu_{i}\right)^{2}>0$, which implies $\left(\lambda_{i}-\mu_{i}\right)^{2}>-4 \mu_{i} \lambda_{i}$ and hence

$$
\alpha_{i}>-\frac{\mu_{i}}{\lambda_{i}} \geq 0
$$

Furthermore,

$$
\lambda_{i}-\mu_{i}=-\left(\lambda_{i}+\mu_{i}\right)+2 \lambda_{i}<2 \lambda_{i},
$$

which implies that $\alpha_{i}<1$.
We are now in the position to state the main result of this section.
Theorem 4.2. Let Assumption 3.1 and (3.1) hold. For $i=1, \ldots, r$ choose $0<\varepsilon_{i}<1$ such that $\varepsilon_{i} \lambda_{i}+\mu_{i}>0$.

If $K \in \mathbb{C}^{n \times m}$ is the strictly contractive matrix defined in (3.2) then the spectrum of the block matrix $S \in \mathbb{C}^{(n+m) \times(n+m)}$ given in (1.3) consists of the real numbers $\lambda_{r+1}, \ldots, \lambda_{n}, \mu_{r+1}, \ldots, \mu_{m}$ and

$$
\begin{equation*}
\eta_{i}^{ \pm}=\frac{\lambda_{i}+\mu_{i}}{2} \pm \lambda_{i} \sqrt{\alpha_{i}-\varepsilon_{i}}, \quad i=1, \ldots, r, \tag{4.2}
\end{equation*}
$$

where α_{i} is given by (4.1). Moreover, the following conditions hold:
a) if $0 \leq \frac{-\mu_{i}}{\lambda_{i}}<\varepsilon_{i}<\alpha_{i}$, then $\eta_{i}^{+}>\eta_{i}^{-}>0$;
b) if $\alpha_{i}<\varepsilon_{i}<1$, then $\eta_{i}^{+}=\overline{\eta_{i}^{-}} \in \mathbb{C} \backslash \mathbb{R}$;
c) if $\varepsilon_{i}=\alpha_{i}$, then $\eta_{i}^{+}=\eta_{i}^{-}=\frac{1}{2}\left(\lambda_{i}+\mu_{i}\right)$ and there exists a Jordan chain of length 2 corresponding to this eigenvalue.
Additionally, if $\varepsilon_{i} \neq \alpha_{i}$ for all $i=1, \ldots, r$, then S is diagonalizable.
Proof. First note that by Lemma 4.1 the ranges for ε_{i} in the cases a) and b) are non-empty. Using the notation from the proof of Theorem 3.3 we obtain

$$
\begin{aligned}
S & =\left[\begin{array}{cc}
A & -A K \\
K^{*} A & D
\end{array}\right]=\left[\begin{array}{cc}
U D_{\lambda} U^{*} & -U D_{\lambda} E V^{*} \\
V E^{*} D_{\lambda} U^{*} & V D_{\mu} V^{*}
\end{array}\right]= \\
& =\left[\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right]\left[\begin{array}{cc}
D_{\lambda} & -B \\
B^{*} & D_{\mu}
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right]^{*}=W\left[\begin{array}{cc}
D_{\lambda} & -B \\
B^{*} & D_{\mu}
\end{array}\right] W^{*},
\end{aligned}
$$

where $B \in \mathbb{C}^{n \times m}$ is given by

$$
B:=D_{\lambda} E=\left[\begin{array}{cc}
\operatorname{diag}\left(\lambda_{1} \sqrt{\varepsilon_{1}}, \ldots, \lambda_{r} \sqrt{\varepsilon_{r}}\right) & 0_{r, m-r} \\
0_{n-r, r} & 0_{n-r, m-r}
\end{array}\right],
$$

and $W:=\left[\begin{array}{cc}U & 0 \\ 0 & V\end{array}\right] \in \mathbb{C}^{(n+m) \times(n+m)}$ is unitary. Then, if $\left\{e_{1}, \ldots, e_{n+m}\right\}$ denotes the standard basis of \mathbb{C}^{n+m}, it is easy to see that

$$
\begin{align*}
& S W e_{i} & =\lambda_{i} W e_{i} & \text { for } i=r+1, \ldots, n, \\
\text { and } & S W e_{j} & =\mu_{j-n} W e_{j} & \text { for } j=n+r+1, \ldots, n+m, \tag{4.3}
\end{align*}
$$

which yields that $\lambda_{r+1}, \ldots, \lambda_{n}$ and $\mu_{r+1}, \ldots, \mu_{m}$ are eigenvalues of S.

Now, define the following $r \times r$ diagonal matrices:

$$
\begin{array}{rlr}
F_{\lambda} & :=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right), & F_{\mu}:=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{r}\right), \\
G & :=\operatorname{diag}\left(\lambda_{1} \sqrt{\varepsilon_{1}}, \ldots, \lambda_{r} \sqrt{\varepsilon_{r}}\right), &
\end{array}
$$

and observe that the remaining $2 r$ eigenvalues of S coincide with the spectrum of the submatrix \tilde{S} of $W^{*} S W$ given by

$$
\tilde{S}:=\left[\begin{array}{cc}
F_{\lambda} & -G \\
G & F_{\mu}
\end{array}\right] .
$$

In order to calculate the eigenvalues of \tilde{S}, we make use of the Schur determinant formula (1.2), by which the characteristic polynomial of \tilde{S} is given by

$$
q(\eta)=\operatorname{det}\left(\tilde{S}-\eta I_{2 r}\right)=\operatorname{det}\left(F_{\mu}-\eta I_{r}\right) \operatorname{det}\left(\left(\tilde{S}-\eta I_{2 r}\right)_{/\left(F_{\mu}-\eta I_{r}\right)}\right) .
$$

Since the matrix $\left(\tilde{S}-\eta I_{2 r}\right)_{/\left(F_{\mu}-\eta I_{r}\right)}=\left(F_{\lambda}-\eta I_{r}\right)+G\left(F_{\mu}-\eta I_{r}\right)^{-1} G$ is diagonal and has the form

$$
\left[\begin{array}{cccc}
\lambda_{1}-\eta+\varepsilon_{1} \frac{\lambda_{1}^{2}}{\mu_{1}-\eta} & 0 & \ldots & 0 \\
0 & \lambda_{2}-\eta+\varepsilon_{2} \frac{\lambda_{2}^{2}}{\mu_{2}-\eta} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{r}-\eta+\varepsilon_{r} \frac{\lambda_{r}^{2}}{\mu_{r}-\eta}
\end{array}\right]
$$

we have that

$$
\begin{aligned}
q(\eta) & =\prod_{i=1}^{r}\left(\mu_{i}-\eta\right) \prod_{i=1}^{r}\left(\lambda_{i}-\eta+\frac{\varepsilon_{i} \lambda_{i}^{2}}{\mu_{i}-\eta}\right) \\
& =\prod_{i=1}^{r}\left(\left(\mu_{i}-\eta\right)\left(\lambda_{i}-\eta\right)+\varepsilon_{i} \lambda_{i}^{2}\right) .
\end{aligned}
$$

Thus, $\eta \in \mathbb{C}$ is a root of $q(\eta)$ if and only if

$$
\eta^{2}-\left(\lambda_{i}+\mu_{i}\right) \eta+\lambda_{i}\left(\mu_{i}+\varepsilon_{i} \lambda_{i}\right)=0
$$

for some $i \in\{1, \ldots, r\}$. This leads to the following eigenvalues of \tilde{S} :

$$
\begin{equation*}
\eta_{i}^{ \pm}=\frac{\lambda_{i}+\mu_{i}}{2} \pm \frac{1}{2} \sqrt{\left(\lambda_{i}-\mu_{i}\right)^{2}-4 \varepsilon_{i} \lambda_{i}^{2}} \tag{4.4}
\end{equation*}
$$

for $i=1, \ldots, r$. Hence, (4.2) follows and statement b) holds. For statement a) we additionally observe that if $\varepsilon_{i}>\frac{-\mu_{i}}{\lambda_{i}}$ then

$$
\eta_{i}^{-}>\frac{1}{2}\left(\lambda_{i}+\mu_{i}\right)-\frac{1}{2} \sqrt{\left(\lambda_{i}-\mu_{i}\right)^{2}+4 \lambda_{i} \mu_{i}}=0 .
$$

To prove c), assume that $\varepsilon_{i}=\alpha_{i}$ for some $i \in\{1, \ldots, r\}$. Since $\eta_{i}^{+}=\eta_{i}^{-}=$ $\frac{1}{2}\left(\lambda_{i}+\mu_{i}\right)$ and $\sqrt{\varepsilon_{i}}=\frac{\lambda_{i}-\mu_{i}}{2 \lambda_{i}}$, it is straightforward to compute that

$$
\begin{aligned}
&\left(\tilde{S}-\frac{1}{2}\left(\lambda_{i}+\mu_{i}\right) I_{2 r}\right)\binom{\left(1+\frac{2}{\lambda_{i}-\mu_{i}}\right.}{f_{i}} f_{i} \\
&)=\binom{f_{i}}{f_{i}}, \\
&\left(\tilde{S}-\frac{1}{2}\left(\lambda_{i}+\mu_{i}\right) I_{2 r}\right)\binom{f_{i}}{f_{i}}=0,
\end{aligned}
$$

using the standard basis $\left\{f_{1}, \ldots, f_{r}\right\}$ of \mathbb{C}^{r}. The vectors above form a Jordan chain of length 2 of \tilde{S} corresponding to the eigenvalue $\frac{1}{2}\left(\lambda_{i}+\mu_{i}\right)$. Hence, a Jordan chain of S can be constructed corresponding to the eigenvalue $\frac{1}{2}\left(\lambda_{i}+\mu_{i}\right)$.

Finally, assume that $\varepsilon_{i} \neq \alpha_{i}$ for all $i=1, \ldots, r$. In this case, the space \mathbb{C}^{n+m} has a basis consisting of eigenvectors of S. Indeed, this follows from (4.3) together with

$$
\left(\tilde{S}-\eta_{i}^{+} I_{2 r}\right)\binom{f_{i}}{-\frac{\lambda_{i} \sqrt{\varepsilon_{i}}}{\mu_{i}-\eta_{i}^{+}} f_{i}}=0, \quad\left(\tilde{S}-\eta_{i}^{-} I_{2 r}\right)\binom{f_{i}}{-\frac{\lambda_{i} \sqrt{\varepsilon_{i}}}{\mu_{i}-\eta_{i}^{-}} f_{i}}=0
$$

for $i=1, \ldots, r$.
We emphasize that if for all $i=1, \ldots, r$ the parameter ε_{i} in Theorem 4.2 is chosen such that a) holds, then the block matrix S in (1.3) is diagonalizable and has only positive eigenvalues. This is possible because of Lemma 4.1.

Example 4.3. We illustrate Theorem 4.2 with a simple example. Let $n=$ $m=1, D=[0]$ and $A=[a]$ with $a>0$. Then $r=1$ and choosing K as in (3.2) with $0<\varepsilon<1$ gives $K=[\sqrt{\varepsilon}]$. In this case $\alpha=\frac{1}{4}$.

By Theorem 4.2, for $\varepsilon=\frac{1}{4}$ there is a Jordan chain of length 2 corresponding to the only eigenvalue $\frac{a}{2}$, and indeed we find that

$$
\binom{\frac{1}{a}}{\frac{-1}{a}},\binom{1}{1}
$$

form a Jordan chain of S, hence S is not diagonalizable.
On the other hand, for $\varepsilon \neq \frac{1}{4}$ the block matrix S has eigenvalues $\eta^{+}=$ $\frac{a}{2}+a \sqrt{\frac{1}{4}-\varepsilon}$ and $\eta^{-}=\frac{a}{2}-a \sqrt{\frac{1}{4}-\varepsilon}$. They are positive if $\varepsilon<\frac{1}{4}$, and they are non-real if $\frac{1}{4}<\varepsilon<1$. In these last two cases S is diagonalizable.

5. Application to J-frame operators

In this section, we exploit Theorems 3.3 and 4.2 to investigate whether a block matrix S as in (1.3) represents a so-called J-frame operator and when it is similar to a Hermitian matrix. In the following we briefly recall the concept of J-frame operators, which arose in $[6,8]$ in the context of frame theory in Krein spaces.

In a finite-dimensional setting, every indefinite inner product space is a (finite-dimensional) Krein space, see [9]. A map $[\cdot, \cdot]: \mathbb{C}^{k} \times \mathbb{C}^{k} \rightarrow \mathbb{C}$ is called an indefinite inner product in \mathbb{C}^{k}, if it is a non-degenerate Hermitian sesquilinear form. The indefinite inner product allows a classification of vectors: $x \in \mathbb{C}^{k}$ is called positive if $[x, x]>0$, negative if $[x, x]<0$ and neutral if $[x, x]=0$. Also, a subspace \mathcal{L} of \mathbb{C}^{k} is positive if every $x \in \mathcal{L} \backslash\{0\}$ is a positive vector. Negative and neutral subspaces are defined analogously. A positive (negative) subspace of maximal dimension will be called maximal positive (maximal negative, respectively).

It is well-known that there exists a Gramian (or Gram matrix) $G \in \mathbb{C}^{k \times k}$, which is invertible and represents $[\cdot, \cdot]$ in terms of the usual inner product in \mathbb{C}^{k}, i.e., $[x, y]=\langle G x, y\rangle$ for all $x, y \in \mathbb{C}^{k}$. The positive (resp. negative) index of inertia of $[\cdot, \cdot]$ is the number of positive (resp. negative) eigenvalues of the Gramian G, and it equals the dimension of any maximal positive (resp. negative) subspace of \mathbb{C}^{k}. It is clear that the sum of the inertia indices equals the dimension of the space.

A finite family of vectors $\mathcal{F}=\left\{f_{i}\right\}_{i=1}^{q}$ in \mathbb{C}^{k} is a frame for \mathbb{C}^{k}, if

$$
\operatorname{span}\left(\left\{f_{i}\right\}_{i=1}^{q}\right)=\mathbb{C}^{k},
$$

see e.g. [5] and the references therein. Roughly speaking, a J-frame is a frame, which is compatible with the indefinite inner product $[\cdot, \cdot]$.

Definition 5.1. Let $\left(\mathbb{C}^{k},[\cdot, \cdot]\right)$ be an indefinite inner product space. Then, a frame $\mathcal{F}=\left\{f_{i}\right\}_{i=1}^{q}$ in \mathbb{C}^{k} is called a J-frame for \mathbb{C}^{k}, if

$$
\begin{aligned}
& \mathcal{M}_{+}:=\operatorname{span}\{f \in \mathcal{F} \mid[f, f] \geq 0\} \\
\text { and } \quad \mathcal{M}_{-}: & :=\operatorname{span}\{f \in \mathcal{F} \mid[f, f]<0\}
\end{aligned}
$$

are a maximal positive and a maximal negative subspace of \mathbb{C}^{k}, respectively.
If $[\cdot, \cdot]$ is an indefinite inner product with positive and negative index of inertia n and m, respectively, then the maximality of \mathcal{M}_{+}and \mathcal{M}_{-}is equivalent to

$$
\operatorname{dim} \mathcal{M}_{+}=n \quad \text { and } \quad \operatorname{dim} \mathcal{M}_{-}=m
$$

Note that if \mathcal{F} is a J-frame for \mathbb{C}^{k}, then there are no (non-trivial) $f \in \mathcal{F}$ with $[f, f]=0$.

Given a J-frame $\mathcal{F}=\left\{f_{i}\right\}_{i=1}^{q}$ for \mathbb{C}^{k}, its associated J-frame operator $S: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ is defined by

$$
S f=\sum_{i=1}^{q} \sigma_{i}\left[f, f_{i}\right] f_{i},
$$

where $\sigma_{i}=\operatorname{sgn}\left[f_{i}, f_{i}\right]$ is the signature of the vector f_{i}. S is an invertible symmetric operator with respect to $[\cdot, \cdot]$, i.e.,

$$
[S f, g]=[f, S g] \quad \text { for all } \quad f, g \in \mathbb{C}^{k}
$$

Its relevance follows from the indefinite sampling-reconstruction formula: given an arbitrary $f \in \mathbb{C}^{k}$,

$$
f=\sum_{i=1}^{q} \sigma_{i}\left[f, S^{-1} f_{i}\right] f_{i}=\sum_{i=1}^{q} \sigma_{i}\left[f, f_{i}\right] S^{-1} f_{i} .
$$

In the following, we aim to apply the results from Sections 3 and 4, hence we restrict ourselves to the following inner product on $\mathbb{C}^{k}=\mathbb{C}^{n+m}$,

$$
\left[\left(x_{1}, \ldots, x_{n+m}\right),\left(y_{1}, \ldots, y_{n+m}\right)\right]=\sum_{i=1}^{n} x_{i} \overline{y_{i}}-\sum_{j=1}^{m} x_{n+j} \overline{y_{n+j}} .
$$

In [6, Theorem 3.1] a criterion was provided to determine if an (invertible) symmetric operator is a J-frame operator. In our setting it says that an invertible operator S in $\left(\mathbb{C}^{k},[\cdot, \cdot]\right)$, which is symmetric with respect to $[\cdot, \cdot]$, is a J-frame operator if and only if there exists a basis of \mathbb{C}^{k} such that S can be represented as a block-matrix

$$
S=\left[\begin{array}{cc}
A & -A K \tag{5.1}\\
K^{*} A & D
\end{array}\right]
$$

where $A \in \mathbb{C}^{n \times n}$ is positive definite, $K \in \mathbb{C}^{n \times m}$ is strictly contractive, and $D \in \mathbb{C}^{m \times m}$ is a Hermitian matrix such that $D+K^{*} A K$ is also positive definite. Any block-matrix $S \in \mathbb{C}^{(n+m) \times(n+m)}$ of the form (5.1), which satisfies these conditions will be called J-frame matrix.

Therefore, Theorem 3.3 can be restated in the following way.
Theorem 5.2. Let $A \in \mathbb{C}^{n \times n}$ and $D \in \mathbb{C}^{m \times m}$ be matrices satisfying Assumption 3.1. Then there exists $K \in \mathbb{C}^{n \times m}$ with $\|K\|<1$ such that S as in (5.1) is a J-frame matrix if and only if

$$
r \leq n \quad \text { and } \quad \lambda_{i}+\mu_{i}>0 \quad \text { for } i=1, \ldots, r .
$$

We mention that the study of the spectral properties of a J-frame operator is quite recent, see $[6,7]$. In the case of J-frame matrices, for given A and D, we always find conditions such that a strictly contractive K exists which turns S into a matrix similar to a Hermitian one. The following result is a direct consequence of Theorem 4.2 and Lemma 4.1.

Theorem 5.3. Let Assumption 3.1 and (3.1) hold. Then, there exists a strictly contractive matrix K such that the matrix S given in (5.1) is a J-frame matrix which is similar to a Hermitian matrix. In this case, all eigenvalues of S are positive and there exists a basis of \mathbb{C}^{n+m} consisting of eigenvectors of S.

References

[1] A.C. Aitken, Studies in practical mathematics, I: The evaluation, with applications, of a certain triple product matrix, Proceedings of the Royal Society of Edinburgh 57 (1937), 269-304.
[2] A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math. 17 (1969) 434-440.
[3] T. Banachiewicz, Zur Berechnung der Determinanten, wie auch der Inversen, und zur darauf basierten Auflösung der Systeme linearer Gleichungen, Acta Astronomica Serie C, 3 (1937), 41-67.
[4] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[5] P. Casazza and G. Kutyniok, Finite Frames: Theory and Applications, Applied and Numerical Harmonic Analysis, Birkhäuser, Berlin, 2013.
[6] J.I. Giribet, M. Langer, L. Leben, A. Maestripieri, F. Martínez Pería, and C. Trunk, Spectrum of J-frame operators, Opuscula Math. 38 (2018), 623-649.
[7] J.I. Giribet, M. Langer, F. Martínez Pería, F. Philipp and C. Trunk, Spectral enclosures for a class of block operator matrices, submitted.
[8] J.I. Giribet, A. Maestripieri, F. Martínez Pería, and P.G. Massey, On frames for Krein spaces, J. Math. Anal. Appl. 393 (2012), 122-137.
[9] I. Gohberg, P. Lancaster, and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser Verlag, Basel, 2005.
[10] L. Guttman, Enlargement methods for computing the inverse matrix, Annals of Mathematical Statistics 17 (1946), 336-343.
[11] E.V. Haynsworth, On the Schur complement, Basel Mathematical Notes \#BMN 20, 1968.
[12] E.V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl. 1 (1968), 73-81.
[13] E.V. Haynsworth and A.M. Ostrowski, On the inertia of some classes of partitioned matrices, Linear Algebra Appl. 1 (1968), 299-316.
[14] I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind [I], Journal für die reine und angewandte Mathematik 147 (1917), 205-232.
[15] J.J. Sylvester, On the relation between the minor determinants of linearly equivalent quadratic functions, London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Fourth Series, 1 (1851), 295-305.
[16] F. Zhang, The Schur Complement and Its Applications, Numerical Methods and Algorithms 4, Springer, New York (2005).

Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany

E-mail address: thomas.berger@uni-hamburg.de
Departamento de Matemática - Fi-UBA and Instituto Argentino de Matemática "Alberto P. Calderón" (CONICET), Saavedra 15 (1083) Buenos Aires, Argentina

E-mail address: jgiribet@fi.uba.ar
Centro de Matemática de La Plata (CemalP) - FCE-UNLP, La Plata, Argentina, and Instituto Argentino de Matemática "Alberto P. Calderón" (CONICET), Saavedra 15 (1083) Buenos Aires, Argentina

E-mail address: francisco@mate.unlp.edu.ar
Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, and Instituto Argentino de Matemática "Alberto P. Calderón" (CONiCET), Saavedra 15 (1083) Buenos Aires, Argentina

E-mail address: carsten.trunk@tu-ilmenau.de

[^0]: 2010 Mathematics Subject Classification. Primary 15A83; Secondary 15A23, 15B48.

