

Software Development and
Correction Estimation

in the Automotive Domain

Dissertationsschrift zur Erlangung des
akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

vorgelegt der Fakultät Informatik und Automatisierung
der Technischen Universität Ilmenau

von M.Sc. Shahab Ahmed Nadir

Gutachter:
 Dr.-Ing. Detlef Streitferdt, TU Ilmenau
 Jun.-Prof. Patrick Mäder, TU Ilmenau
 Prof. Dr. Christian Siemers, TU Clausthal

Eingereicht am 26.10.2016
Verteidigt am 20.10.2017

urn:nbn:de:gbv:ilm1-2017000761

ii

ACKNOWLEDGEMENTS

Firstly, I would like to express my special appreciation and thanks to my advisor Professor
Detlef Streitferdt for providing me with the opportunity to complete my Ph.D. thesis at Tech-
nical University of Ilmenau as an external researcher. I especially want to thank my first advi-
sor Prof. Dr. Ilka Philippow, whose support and guidance made my research possible.

I want to thank the present and past colleagues who were all times available to support this
work. I especially want to thank my first group manager Michael Rölleke who motivated me
to start this research.

Last but not the least, I would like to thank my beloved wife, Carmen Wohlfrom and my chil-
dren Haron and Hannah for their patience and understanding.

iii

ZUSAMMENFASSUNG
Während der letzten Jahrzehnte hat sich Software in alle Lebensbereiche ausgebreitet. Die
kontinuierlich steigenden Kundenanforderungen ließen auch die Komplexität steigen, bei
gleichbleibender Produktqualität. Analysedaten und diverse Beispiele entstammen der Auto-
mobildomäne, die einen sicherheitskritischer Bereich darstellt, in dem Produkte mit speziellen
Qualitätsanforderungen entwickelt werden. Qualitätsanforderungen müssen von diversen Pro-
zessen und Standards bedient werden, bei gleichzeitiger Einhaltung enger Endtermine. Die
Komplexität der Software und der Safety-Aspekt beeinflussen die Fehlerquote der Produkte
stark. Viele Anforderungen werden während der Entwicklung hinzugefügt oder verändert und
führen zu permanenten Änderungen in der Software und einer weiteren Steigerung der Kom-
plexität. Änderungen müssen analysiert und getestet werden, um die Qualität des entstehen-
den Produktes zu gewährleisten. Die Vorhersage von Defekten und Änderungen in der Soft-
ware sind ein wichtiger Anteil des Software Engineering.

Die industrielle Software-Entwicklung muss ihr Ziel innerhalb diverser Grenzen erreichen, ganz
wichtige ist das Budget, wobei sich Änderungen an Projektparametern negativ auf das ge-
plante Budget auswirken können. Solche Änderungen werden in zwei Klassen eingeteilt, durch
Kunden verursachte neue oder veränderte Anforderungen, und die Korrekturen, die durch Sys-
temverbesserungen oder Fehlerbehebungen entstehen, beide Klassen für das Projekt-Budget
relevant. Die Aufwände für die neuen Kundenanforderungen können dem Budget einfach auf-
geschlagen werden. Die Korrekturen verursachen ebenfalls große Aufwände, die zu einem
negativen Budget führen können, was eine große Herausforderung für das Projektmanage-
ment wie auch die automatisierte Schätzung der Aufwände über die gesamte Projektlaufzeit
darstellt.

Diese Dissertation bietet dafür ein neues Modell an, um die Aufwandsschätzung mit unter-
schiedlichen Perspektiven zu verbessern. Dieses Modell integriert Folgeaufwände, die in spä-
teren Entwicklungsphasen entstehen. Somit ist der Fehler-Kosten-Fluss Teil des Modells und
ermöglicht die Verwaltung von Fehlern und Folgefehlern, die über alle Entwicklungsphasen
verteilt sein können. Das neue Modell wurde erfolgreich innerhalb der Automobildomäne eva-
luiert. Die Verbesserung der Genauigkeit der Aufwandsschätzungen beträgt 80%.

iv

ABSTRACT
Over the past decades, software has spread to most areas of our lives. The complexity in-
creased due to steadily increasing customer demands and, at the same time, the high quality
of the products had to be kept. The data for the analyses and many of the examples are taken
out of the automotive software development domain. The automotive domain is a safety-critical
area where products are developed with specific quality requirements. These quality require-
ments have to be met by many processes and by satisfying several standards within stipulated
deadlines during the development lifecycle. The complexity of the software and the safety as-
pect have a strong influence on the product defect ratio. Many requirements will be added and
adjusted during the development lifecycle leading to continuous changes in the software and
increased complexity. All these changes need to be analyzed and tested to ensure the quality
of the product. Predicting software defects and changes is a significant part of software engi-
neering.

Industrial software development has to achieve its target within several boundaries. One of the
important boundaries for an industrial project is the budget, where changes of any project pa-
rameters can easily lead to negative effects in the planned budget. Such changes are classified
into two types, the changes pushed by the customer as new requirements or changed require-
ments, and the correction changes in the project because of improvements of the system and
identified bugs with their fixes. This classification is important to control the project budget. The
effort for the realization of new customer changes can be estimated and added to the budget.
The correction changes also cause huge efforts, which can lead to a negative budget in the
project which is a big challenge for the project management, the automated calculation of effort
estimations for the complete development life-cycle.

This thesis offers a new model to improve the effort estimation from multiple perspectives. This
model also integrates follow-up-defects in later process phases. Thus, the defect cost flow is
part of the model and enables the management defects and follow-up defects which could
spread throughout the development phases. The newly developed model was successfully
evaluated in the automotive domain. The overall accuracy of the effort estimations was im-
proved by 80%.

v

A
APP Application layer
ASIL Automotive Software Process Improvement and Capability Determination, Automotive Safety Integrity Level
Autosar AUTomotive Open System ARchitecture

C
CBR Case Based Reasoning
CEFMod Flow mode of Correction Effort. Flow mode of Correction Effort
CMMI Capability Maturity Model Integration, Capability Maturity Model Integrated
COCOMO COnstructive COst MOdel, COnstructive COst MOdel
CONC Concentration
CQM Change Request Management
CRM Change Request Management
CRQ Change Request
CUS Customer phase

D
DCF Defect Cost Flow
DES Design phase
DevE Development Effort
DOF Degree of Focus
DOS Degree of Scattering
DRBFM Design Review Based on Failure Mode
DSM Design Structure Matrix

E
ECU Electronic Control Unit
EoDC Effort of development/ Defect correction

F
FEP Failure Effort Parameter
FMEA Failure Mode and Effects Analysis
FPA Function Point Analysis
FSM Functional Size Estimation

G
GQM Goal Question Metric

H
HCC HMI Control and Coordination
HMI Human Machine Interface

I
IEC International Electrotechnical Commission
IMP Implementation phase
ISO International Organization for Standardization, International Organization for Standardization

vi

K
KPI Key Performance Indicators
KPIs Key Performance Indicator

M
MCAL Microcontroller layer

O
OEM Original Equipment Manufacturer

P
PF Productivity Factor
PRM Process Reference Model

Q
QA Quality assurance

R
RCM Required Change Management
REQ Requirement phase
RM Requirement Management system
RTE Run Time Environment

S
SCE Software Correction Effort
SIG Automotive Special Interest Group
SLOC Size Lineof Code
SRV Service layer
SubDES Sub-Design phase
SWPM software process model

U
UML Unified Modeling Language

V
V&V Verification & Validation phase

vii

Table of contents

ZUSAMMENFASSUNG ... iii
ABSTRACT .. iv
1 Introduction ... 1

1.1 Motivation ... 1
1.1.1 Automotive Industry ... 1
1.1.2 Product Assessment .. 3
1.1.3 Process Improvement .. 3

1.2 Research Hypothesis ... 4
1.3 Outline .. 6

2 Background ... 7
2.1 Automotive Product Engineering .. 7
2.1.1 Standards and Norms .. 8
2.1.2 Quality Management .. 9
2.1.3 Development Workflow .. 10

2.2 Traceability & Crosscutting Concerns .. 12
2.2.1 Crosscutting Concerns Matrix Representation ... 15

2.3 Software Estimation Technique ... 21
2.3.1 Model Based Techniques ... 22
2.3.2 Expertise Based Techniques ... 25
2.3.3 Learning Oriented Techniques ... 25

2.4 Maintenance Cost Estimation Models .. 28
2.4.1 Phase-Level Models ... 28
2.4.2 Release Level Models .. 29
2.4.3 Task Level Models ... 30

2.5 State of the art .. 31
3 New Estimation Approach ... 37

3.1 Approach description ... 37
3.1.1 System model .. 37
3.1.2 Dependability matrix ... 38
3.1.3 Weight vector ... 39

3.2 Development approach in this thesis ... 40
3.2.1 Build and simulate the approach .. 41
3.2.2 Model validation ... 42
3.2.3 Refinement and generalization .. 43

4 Data Model Analysis of Real World Automotive Software Projects 44
4.1 Data Analysis Model .. 44
4.1.1 Change Effort Categories ... 48
4.1.2 Change Distribution .. 49

4.2 Feature Classification ... 51
4.3 Failure Effort Parameter (FEP) .. 52

5 Development and defect correction KPIs ... 55
5.1 Process model for software development .. 55
5.1.1 Problem Definition .. 56
5.1.2 KPIs and Relationships among them ... 57
5.1.3 Estimation Model .. 59
5.1.4 Model Usage .. 68

viii

5.2 Defect Cost Flow System ... 70
5.2.1 Problem Definition .. 71
5.2.2 Model definition .. 71
5.2.3 KPIs identification ... 74
5.2.4 Model Creation ... 75
5.2.5 Model Calibration ... 78
5.2.6 Quality assurance effort ... 80

6 Practical result .. 91
6.1 Prototype system ... 91
6.2 Developing Knowledge .. 92
6.2.1 Development area: ... 92
6.2.2 Process area .. 92

6.3 Model usage ... 93
6.4 Defect source analysis ... 93
6.5 Development effort analysis ... 96
6.5.1 Requirement phase .. 96
6.5.2 Design analysis .. 97
6.5.3 Implementation effort distribution ... 99
6.5.4 V&V phase ... 100

6.6 Practical results analysis .. 101
7 Summary ... 105

7.1 Software development and automotive domain ... 105
7.2 DSM and traceability .. 107
7.3 Correction process model .. 107
7.4 Cost flow model .. 107
7.5 Perspectives ... 107

8 References .. 108

ix

List of Tables:

Table 1.1 Prioritized Criteria as Interview Result .. 5
Table 2.1 Traceability Table Overview [21] ... 13
Table 2.2 “Depends-on” and “Dependents-off” Traceability Lists [21] .. 14
Table 2.3 Example Dependency Matrix and Crosscutting Matrix ... 16
Table 2.4 Analysis Matrix for Different Domains .. 17
Table 2.5 Matrix Representation of Software System .. 19
Table 2.6 Traceability Matrix with Change Effect ... 21
Table 2.7 Summary of Recent Models of Software Change Estimation.. 32
Table 2.8 Estimation Metrics in Automotive Domain ... 34
Table 2.9 State-of-the-Art Knowledge ... 35
Table 3.1 Traceability Matrix for System Described in Figure 6.2 ... 38
Table 4.1 Development and Correction Effort .. 49
Table 4.2 Type Distribution Error .. 51
Table 4.3 Defect Effort Parameter .. 53
Table 4.4 Effort Distribution over Different Features with Different Complexities 54
Table 4.5 Number of Defects over Deadline Pressure .. 54
Table 5.1 GQM for Software Change .. 59
Table 5.2 Features and FEP ... 64
Table 5.3 Effort Change Distribution ... 64
Table 5.4 Deadline Pressure .. 65
Table 5.5 Effort Spent on Testing .. 67
Table 5.6 Defect Detection Rates .. 68
Table 5.7 Prediction Accuracy ... 69
Table 5.8 Simulation Results ... 70
Table 5.9 QGM of Quality Assurance .. 75
Table 5.10 Prediction Accuracy ... 78
Table 5.11 Sufficiency of Quality Assurance Effort ... 79
Table 5.12 Effort Reduction Distribution Based on QA Effort Sufficiency .. 79
Table 5.13 Development Phase-Multipliers .. 80
Table 5.14 Cases Overview .. 80
Table 5.15 REQ Effort Distribution into Development Phases .. 86
Table 6.1 Requirement Defects Classified Based on IEEE 830 .. 94
Table 6.2 Defect Source Distribution against the IEEE 830 Classification ... 95

x

List of Figures:

Figure 1.1 Change Request Distribution during Project Lifecycle ... 2
Figure 1.2 Change Request Distribution .. 2
Figure 2.1 Software Development Process ... 8
Figure 2.2 Product Development using V-model .. 12
Figure 2.3 Traceability Basic Concepts [24] ... 15
Figure 2.4 Fine-grained Traceability Approach [59] .. 15
Figure 2.5 Mapping between Elements at Two Levels of Abstraction .. 16
Figure 2.6 Cascading of Traceability Pattern ... 16
Figure 2.7 Example of Change Impact [26] ... 18
Figure 2.8 DSM Illustration of Software Development Phases ... 18
Figure 2.9 Rayleigh Model [34] ... 23
Figure 2.10 Neural Network Estimation Model .. 26
Figure 2.11 Estimation of Software Projects with Different Sizes ... 33
Figure 2.12 Estimation Techniques Test in Automotive Domain .. 33
Figure 3.1 Own Approach .. 37
Figure 3.2 GSM Illustration of Software Development Phases ... 38
Figure 3.3 Model Development Procedure ... 41
Figure 4.1 Change Request Status ... 45
Figure 4.2 Defect Status .. 46
Figure 4.3 Priority Status ... 46
Figure 4.4 Defect CRM System Example ... 47
Figure 4.5 Measurement Concept ... 48
Figure 4.6 Defect Distribution over Effort and Number of Changes ... 49
Figure 4.7 Change Request Distribution Based on Number of Changes ... 50
Figure 4.8 Change Request Distribution Based on Effort needed for Change 50
Figure 4.9 Change Request Distribution Based on their Priorities .. 51
Figure 4.10 Change Request Effort Distribution over Features .. 53
Figure 5.1 SW Releases .. 55
Figure 5.2 Autosar Software Layers [24] ... 56
Figure 5.3 Effort Estimation Process ... 57
Figure 5.4 Example of FMEA.. 57
Figure 5.5 GQM Model Hierarchical Structure [90] .. 58
Figure 5.6 System Architecture ... 59
Figure 5.7 Software Process Model ... 61
Figure 5.8 Software Process Model Setup Overview .. 62
Figure 5.9 Change Parameters in Software Process Model .. 63
Figure 5.10 Process and Project Activities in Software Process Model ... 65
Figure 5.11 Priority Distribution during Development Lifecycle .. 66
Figure 5.12 Product Parameter in Software Process Model ... 66
Figure 5.13 Test Activities ... 67
Figure 5.14 Development Effort .. 69
Figure 5.15 Defect Correction Effort ... 70
Figure 5.16 Development Phases .. 73
Figure 5.17 Distribution of Defect Originating and Detected Phases ... 73
Figure 5.18 Software Correction Effort Distribution ... 74
Figure 5.19 Model Represents the Different Phases of Software Development 76
Figure 5.20 Model Represents the REQ Phase of Software Development ... 77

xi

Figure 5.21 Model Represents the DES Phase of Software Development .. 77
Figure 5.22 Model Represents the DES Phase of Software Development .. 77
Figure 5.23 Effort Distribution for Case 1 .. 82
Figure 5.24 Effort Distribution for Case 2 .. 83
Figure 5.25 Effort Distribution for Case 3 .. 83
Figure 5.26 Effort Distribution for Different Scenarios of REQ Phase ... 86
Figure 5.27 Overall Development Requirement Effort ... 87
Figure 5.28 DES Effort Distribution through Development Phases ... 88
Figure 5.29 Implementation Effort Distribution over the Development Phases 89
Figure 5.30 V&V Effort Distribution .. 89
Figure 6.1 Implemented Tool of the Estimation Model .. 91
Figure 6.2 Implemented Tool of the Estimation Model .. 92
Figure 6.3 Defect Data Sets used for the Analysis of Requirement Defects ... 94
Figure 6.4 Estimated Requirement Effort ... 97
Figure 6.5 Requirement Effort Ratio ... 97
Figure 6.6 Effort Distribution for Design Phase ... 98
Figure 6.7 Design Accuracy Estimated Effort Ratio ... 98
Figure 6.8 Implementation Effort Distribution .. 99
Figure 6.9 Effort Ratio Distribution ... 99
Figure 6.10 V&V Effort Distribution along the CRQs ... 100
Figure 6.11 V&V Effort Ratio based on Real Effort .. 101
Figure 6.12 Total Project Effort Distribution ... 102
Figure 6.13 Effort Ratio Distribution over CRQs .. 103
Figure 7.1 Architect and Design Developing ... 105
Figure 7.2 Software Quality Attributes ... 106
Figure 7.3 Design Procedure ... 106

1 Introduction
1.1 Motivation

1.1.1 Automotive Industry
For the next years, experts estimate the global registration rate of new cars to be over
70.000.000 per year [1]. At the same time, the European Commission requests a reduction of
traffic deaths by 50% in the same period. Up to 70% of future innovation in the automotive
industry will be based on software and thus, software projects will gain importance. A side
effect of the massive number of software modules in an automobile is, that in recent years
50% of all vehicle recalls were software related [2].

The increasing of software size and complexity does not only lead to improved new function-
ality but also to increase the defect rate. Defect rate is a measure of the relative number of
units that are defective per release. This affects the quality and has a strong influence in the
business. Especially for safety critical use cases, which is characteristic for the automotive
sector, reliability has to be guaranteed by systematic defect avoidance already during devel-
opment [1]. Managing and optimizing the quality assurance of large scale software product is
one of the major challenge in the automotive industry. This will strongly influence the product
costs for the development of a high quality product with low in-field defect rates and still low
costs and planed deadlines. Automotive products have a long lifecycle compared to the devel-
opment lifecycle, which explains the development efforts put into such failsafe products.

Applying changes may introduce defects into software products. There are several software
releases with hundreds of changes to be addressed in the development. Changes have their
unique characteristics based on process and product factors. Such metrics allow for an expert
estimation of the probability of the injection of defects into the product. The time, in relation to
the development phases, of the defect detection leads to a different impact on the product
cost. Furthermore, an early detection of a defect accounts for dramatically lower costs.

Figure 1.1 and Figure 1.2 show the software changes of an industrial software product. They
show that the development of the product has a long development lifecycle with a high number
of change requests because of customer requests and defect corrections. The left Y-axis pre-
sents the state of actual number of changes within the time span. The change starts with the
state “Submitted” as new change request, analysing the change is the second state “Analyz-
ing” where the project manager have to decide accept the change or not, by acceptance an
estimation and schedule of the change is necessary with the state “Decided”. After the decision
and accept the change the working tasks have to start in the state “Managing Act” to implement
the change and deliver it. The right Y-axis presents the total number of changes from the start
of the development.

1.1. Motivation

2

Figure 1.1 Change Request Distribution during Project Lifecycle

Figure 1.2 Change Request Distribution

1. Introduction

3

1.1.2 Product Assessment
The product assessment consists of development, cost, sales and production assessment.
Assessing the products defect rate is an important topic for developing safety critical products.
Consider for example the automotive domain: power-train functionalities such as the combus-
tion engine control and transmission management or electric motor control and battery man-
agement, comfort functions such as traffic sign recognition, lane keeping assistance, and col-
lision avoidance systems are becoming more and more sophisticated and complex. A safety-
critical system has to be dependable [3], i.e., it has “to avoid service failures that are more
frequent and more severe than is acceptable” [4]. Note that in contrast to the real-time system
definition, service failures here include incorrect results with a correct timing, i.e. produced
before the deadline. Aside from the automotive domain, examples of safety-critical systems
are nuclear reactors, medical devices, and vehicles.

One of the central topics when developing innovative safety critical products is the assessment
of a product’s defect rate before it is released. It is a big challenge and very difficult to estimate
the defect rate of a specific software release when hundreds of changes have been applied to
it. Major indicators are, e.g.

- What parts have to be changed in the software?

- “How large are” (What is the complexity of) the changes to the software?

- How complex and difficult are these changes?

- What is the current test coverage and the future test coverage?

The defect rate has a central influence on the overall costs of the software product. Therefore,
using defect rates improves the effort estimation. Especially the rework needed to fix defects
is one of the uncertain variables. Several factors can influence the defect rate in software
product, e.g. the pressure to meet a project’s deadline. These factors have to be considered
for estimating the project effort.

Due to the above described complexity it is difficult for project managers to keep track of these
variables, factors and their impact on the product’s defect rate. Thus, a deviation among the
estimations of different project managers was found.

1.1.3 Process Improvement
The demand to develop software with lower defect rates leads to continuous process improve-
ments with specific steps to identify weak areas where optimization is needed. Therefore, the
efficiency of defect detection and correction activities are maximized.

For example, in order to reduce the overall defect rate there is a need to change the effort
distribution of review and test activities. Before adapt these changes the development process
in all process phases need to be analyzed concerning their effectiveness. E.g. the influence of
every variable on the optimization criteria is of great interest. Based on this analysis, an eval-
uation of the improvement can be introduced. For project managers it is difficult to develop an
overview of the impact of changing process variables in relation to the overall engineering
process.

This thesis offers a model to support projects managers and decision-makers with their deci-
sions regarding change activities and estimating the effort needed to make these changes.
The complexity of the project management in the automotive domain together with the chal-
lenges have been briefly pointed out in the last paragraphs. A first analysis for this thesis was

1.2. Research Hypothesis

4

based on extensive questionnaires to identify the influencing factors for the effort estimation of
industrial software projects.

1.2 Research Hypothesis
The goal of this thesis is derived from the discussion of previous section. The project managers
and decision makers in industrial domain face a big challenge in their daily work to estimate
the effort of changes in software product. They are responsible for estimation and plan all
activities for further non-functional tasks. They have to take in account the development pro-
cess, quality assurance measures and effort reduction. These problems can be summarized
to the following statement:

• P1 Missing an overview of all Key Performance Indicators (KPIs) of product quality and
effort.

• P2 Inaccurate estimation of project effort because of different expert knowledge and
process data.

• P3 Need for experts in different phases.

The influencing variables discussed in this thesis (KPIs) are essential to identify the optimiza-
tion measures. The KPIs and the relationship among them influence the effort of development,
and have a crucial effect on the defect rate which itself is an important factor to reduce the
software development effort. Effort is used in this thesis to describe the cost of product.

Several extensive questionnaires were used systematically according to widely used estima-
tion methods to identify the Influencing factors on the effort estimation in industrial software
projects parallel to the expert’s knowledge. These Influencing factors discusses the key ques-
tions and lessons learned from several interviews and questionnaires. These interviews were
done with different groups of project managers in different software development domains.
The respective project manager received the requirements as well as possible approaches to
estimate the size and effort presented in detail. Finally, a free discussion took place at which
the project managers could contribute their own ideas and suggestions for improvement. This
information was shared with all project managers. Open questions were clarified after the in-
terview took place. Fifty project managers took part in these questionnaires and interviews,
and another twenty project managers and ten system architects took part in the subsequent
analysis phase.

Most of ECU (Electronic Control Units) in the car are based on AUTOSAR1, Bosch produces
72 different ECUs [2]. Bosch adapted AUTOSAR to an own CUBAS2 architecture. For the
requirements analysis of this thesis, 7 version update of CUBAS, including the initial AU-
TOSAR operating system for Linux v3.1, were analyzed. In addition, three variants of the en-
gine control software for different car manufacturers, and four variants of car multimedia soft-
ware were analyzed.

The degree of newly implemented functionality has been in the range of about 30% to 70%.
The projects used different development processes like the V-Model and agile processes for

1 AUTOSAR (Automotive Open Systems Architecture), https://www.autosar.org/, see section 5.1.1
2 CUBAS (Common UBK Basic) is the complete AUTOSAR conforming Basic Software including the software drivers for
controller peripherals, which are not specified in AUTOSAR, but excluding complex drivers and software drivers for ECU
peripherals (ASICs). https://www.elektroniknet.de/elektronik-automotive/software-tools/autosar-basis-software-cubas-
543.html

1. Introduction

5

short development cycles with globally distributed development teams. The programming lan-
guages in use were C, C++, Java and script languages like Perl and Python. The projects had
an average effort of 20 person years and an average duration of 6-9 months.

Priority
(1=high …8=low)

Criterion Requirement

1 Process The effort of development process management has to be
included in the total development effort calculations.

2 Maintainability The effort of defect correction and software maintenance
has to be included in the total development effort calcula-
tions.

3 Flexibility The estimation of efforts should be possible for different
types of changes (in different development phases, small
up to large changes).

4 Development The development effort needed during product develop-
ment lifecycle.

5 Quality
Assurance

The effort of QA during development has to be included in
the total development effort.

6 Test The test execution effort (unit ~, component ~, integration
~, system ~, and delivery test)

7 Used Tool The cost of tools used and the effort of using tools have to
be included in the total development effort.

8 Simplicity of Use Simplicity of using the method and the tool support this use

Table 1.1 Prioritized Criteria as Interview Result

The result of this initial analysis revealed the eight criteria summarized in Table 1.1 with de-
creasing priority. The requirements were identified as important and missing in the current
project management activities and they are addressed in the new approach of this thesis. The
main goals of this thesis can be formulated as follows:

- G1: The overall development effort shall be decreased by using a new model to identify
the relevant quality assurance measures.

- G2: A new method is needed to identify hot spots in a software product (e. g., compo-
nents or even single functions). These hot spots are most promising for a decrease of
the defect rate and/or the development effort.

- G3: A development process has to be created to derive the KPIs for the reduction of
the development effort as well as the effort of defect correction.

Based on these goals the following research hypotheses for this thesis are defined:

1.3. Outline

6

- H1: Current estimation models can be improved by the integration and feedback of
process data. The estimation accuracy will increase.

- H2: With a new estimation model (see H1) project managers can identify the hot spots
in a products architecture where the most effort reduction is possible.

- H3: A new development process with distributed efforts for quality assurance measures
will reduce the effort of failure correction as well as the overall development effort.

1.3 Outline
Chapter 1 presents the problem definition of this thesis. The problem is identified as a result
of analysing the development processes and the result obtained by several interviews and
questionnaires for project managers and product architects in different automotive industries.
Based on the result, the research hypotheses are constructed based on the defined problems
motivated this thesis.

Chapter 2 provides information about this thesis’ problem domain, describes software engi-
neering in the fields of automotive, i.e. described the engineering process model as well as
quality assurance topics. This is followed by an introduction of traceability and crosscutting
approach. It describes the motivation behind selecting a crosscutting approach and introduces
their main characteristics. The next section presents an overview on the estimation models
and approaches used currently in the domain of software estimation. This chapter is closed
with a state-of-the-art section, describing some activities tried to solve the problem statement
of the thesis.

Chapter 3 describes the development methodology used and the model supported in this the-
sis. The development steps are described from the problem definition to the validation of the
model in the procedure.

Chapter 4 describes the dataset used in this thesis. Three datasets were used to analyse the
problem statement and how the KPIs affect the effort. These datasets were extracted from an
internal project system, expert knowledge as well as different research and literature. The
analysis of these datasets led to the development of two models: one for software processes
(SWPM) and another for the flow of change effort (CEFMod).

Chapters 5 describes these two models and analyzes the KPIs needed for them. These models
were built, calibrated and validated, with their results compared with estimates based on expert
knowledge and the actual effort required to complete the change requests. Using the model
shows an improvement in effort prediction.

Chapter 6 presents the result of practical tests for the models presented in this thesis. The
thesis has been carried out in an industrial environment, more than one hundred change re-
quirements have been analyzed. The effort for each requirement and some other similar re-
quirements were estimated by using the approach presented in this thesis and estimated with
another approach that is available in the company for this goal. These results have been ana-
lyzed and compared as a validation phase for the approach suggested by this thesis.

Chapter 7 presents a summary and the outlook for the work in this thesis. The quality levels
for automotive product during the development lifecycle and the quality in use in customer side
are viewed. A perspective for the use of this approach described here too.

2. Background

7

2 Background
This chapter gives a background information about the main aspects of this thesis. Effort esti-
mation is a process or an approximation of the probable effort of a product, program, or a
project, computed on the basis of available information. It is very important to have an accurate
effort estimation for every kind of project. Project estimation in an improper way; lead to esti-
mate a high effort of the project, sometimes it will be reached 150-200% more than the real
effort needed [5]. Therefore, there is a need to have an improved estimation of the project. The
effort for a project is a function of many parameters. Software developers need a simple ap-
proach for effort estimation with improved accuracy, although in the early phases of software
development projects the estimation has a high variance [6].

Section 2.1 describes the domain of embedded software engineering along with the challenges
to be met. It describes the engineering process on which the hypothesis evaluation of this
thesis is based on. The following section on embedded software engineering introduces the
standards and norms used for the development of automotive software as well as other safety
critical embedded software. These sections motivate the need for fail-safe software products
and therefore methods describing how to reduce software defects. This section is followed by
the principles of Traceability analysing using crosscutting theory used to develop the models
for this thesis. The third section of this chapter presents an overview about different models
and approaches used for software estimation. Some were analyzed and tested to meet the
goal of this thesis. The final section of this chapter is a review of the state-of-the art in the field
of predictive software engineering showing this thesis relationship to current research.

2.1 Automotive Product Engineering
Failsafe products are a major motivation in Industrial software teams. This section describes
the field of automotive product engineering to illustrate the boundary conditions for the devel-
opment of fail-safe automotive products and describes the standards and norms defining the
requirements for the development of safety critical embedded systems. The following sections
describe general purpose process models fulfilling these standards and norms, i.e. quality
management, the Capability Maturity Model Integrated (CMMI) and the V-Model development
process, an international standard for developing software products.

The demand for software products in the automotive industry has been increasing exponen-
tially over recent decades, making software engineering one of its critical success factors [7].
The extensive use of Electronic Control Units (ECU) in vehicles today has already led to an
average of 20 ECUs in smaller and even more than 70 ECUs in upper class cars [1]. Develop
a Complex features within a short time to market and with minimal engineering costs at very
high quality are the challenges that have to be met. Besides functional complexity, some other
specific characteristics for the automotive field are needed, especially:

- Code efficiency for an improved performance due to limitations of processor and
memory resources.

- Code portability and traceability to ensure further development and variant handling.

- High availability and reliability to support safety-critical applications.

- Real-time operation.

- Network operation.

2.1. Automotive Product Engineering

8

An increased number of software products in the automobile, leads to complex customer re-
quirements, which make the automobile product a complex product.

Basically, these are marked by high requirements for reliability, availability and safety. “As
safety relevant vehicle functions increase, acting without the active interference of the driver,
the analyses of the function safety and the specification of suitable concepts have great im-
portance in the development. The requirements and the resulting cross-company collaboration
lead to an intensified tendency towards distributed systems” [2].

Project and process management are needed with a continuous development in respect to the
availability of the corresponding processes, which are increasingly being used as a basis for
order placement [8]. The development process has to describe all phases of the development
lifecycle and describe all interactions of different engineering disciplines in the system. The
process and the continuous improvement of the process are important parts of the software
development. Figure 2.1 illustrate most important phases of development process in an indus-
trial software project including the activities needed to manage and control the project.

Figure 2.1 Software Development Process

2.1.1 Standards and Norms
Standards and norms help in improving products and processes and they increase the general
quality. Especially in areas concerning safety relevant systems, it is most important to obey
the defined processes. At the same time, the customer’s requirements for product and process
certification have to be added. The following standards are already followed within the auto-
motive industry.

• IEC 61508

The standard “functional safety of safety relevant programmable electronic systems” of the
International Electrotechnical Commission (IEC) is relevant for the development of safety ori-
ented functions. It defines requirements for the development of safe systems without being
limited to one domain.

2. Background

9

• ISO/CD 26262

A standard of the International Organization for Standardization (ISO) is originating especially
for the vehicle development, being an adaption of the IEC 61508. The ISO 26262 “Road vehi-
cles - Functional safety" is passed in 2011 as a public standard. ISO 26262 is already adhered
to within the automotive industry to further increase the reliability of safety products [9].

The basic organisational requirements of this standard refer to the development process and
its support processes and also to the management of the functional safety. The technical re-
quirements for the software development include recommendations for the use of techniques
and methods, being realized dependent on the Automotive Safety Integrity Level (ASIL). ISO
26262 contains the definition of responsibilities and activities to guarantee the functional safety
during the development and also independent from the project. The third part is the definition
of the overall system and the corresponding requirements, e.g. the observance of certain
standards and the legal framework. Here, dangers and risks of potential errors are estimated
according to appropriate techniques and classified in ASIL [9].

The standard further describes the product development being divided into system, hard- and
software development. It contains specific requirements, e.g. how the methods are used, being
specified according to ASIL as optional, recommended or urgently recommended. As a refer-
ence process for the single phases of the product development the V-Model has been chosen.
ISO 26262 defines the introduction of corresponding production and process work flows to
guarantee the functional safety and also the observance of the requirements by all involved
manufacturers.

Furthermore, the standard refers to all requirements in the area of the support processes. In
the organisational area of the standard one can find agreements for the requirements of ma-
turity models as the CMMI. That is why the certification of at least level two is seen as a pre-
requisite for the conformity of the development process referring to ISO 26262 [9].

2.1.2 Quality Management
The quality is the degree to which a component, system or process meets specified require-
ments and customer needs and expectations. And software quality can be defined as: the
totality of functionality and features of a software product that bear on its ability to satisfy stated
or implied needs [10]. Different activities during the plan and development of the product help
to achieve the desired quality. The quality in automotive is an important aspect for the software,
whereby quality management is a support process for the software development and develop-
ment lifecycle. The cost of product have to include the cost of quality. Achieving the develop-
ment limited by time and budget is one of quality factor for industry. Standard and norms are
used in development lifecycle to manage the quality. The standard ISO-26262 contains the
guidelines and headlines for test procedures of the safety-critical application in the software,
while some other norms serves to ensure the quality in other software areas. These standards
and norms help to establish certain measures to fulfil the specific quality requirements. The
quality assurance is a part of automotive processes, which includes all of these measures and
leads to an increase in the quality of the software product [11]. The quality of the development
process defines the software quality, whereby this assumption is the basis of the quality man-
agement. The individual’s capabilities and experiences in software development lead to better
quality management. Different (e.g. FMEA, DRBFM) processes used in hardware quality man-
agement are specified as being used in the software sector to ensure the quality of the software
product [12]. The requirement management also has a major effect on the quality assurance
in the automotive sector. In order to ensure the high quality of software product, the definition

2.1. Automotive Product Engineering

10

of standards and norms and the requirement management should be available as a parallel
basis process.

The quality assurance deals with the quality of the project and product management. The pro-
ject quality management addresses the management of the project and the product. While the
project quality management is applied to all projects with no aspects specific to their product,
product quality measures and techniques are specific to the particular type of product produced
by the project. The project quality management takes care of the following issues [12]:

• Meeting customer requirements by overworking the project team may produce neg-
ative consequences in the form of increased employee attrition, unfounded errors,
or rework

• Meeting project schedule objectives by rushing planned quality inspections may
produce negative consequences when errors go undetected. Here a good tracea-
bility will aims to measures for tracing errors in the results which including the test
and reviews.

The quality assurance of the product refers to the examination of the software products ac-
cording to previously set quality features. Measures of quality assurance (QA) for software aim
to examine and distinguish the following three categories:

• Organizational measures: measures for planning and examining.

• Constructive measures: measures for avoiding errors in software development,
e.g. use of appropriate methods, training of employees to support the use of a
process model.

• Analytic measures: measures for tracing errors in the results, e.g. reviews and
software tests.

Software development in automotive domain is required to be of a high quality. Thus, there are
a lot of activities dealing with the quality attributes of safety-critical software. Defect in an au-
tomotive system could lead to a damaged system; therefore, developers aim towards a defect-
free software. Several test levels are needed to ensure the required software quality during the
different phases of the development lifecycle. The test levels are classified into three levels as
follows:

• Dynamic test: the product is tested at run-time with explicit test data, e.g. with a
threshold value analysis.

• Static: the artifacts describing the product are tested, e.g. with reviews.

• Formal: the software is tested according to formal means, e.g. with model check-
ing.

Dynamic test procedures are applicable for embedded systems, whereby the test cases should
be previously defined. In order to ensure reliability and safety, other procedures are needed.
It is similar to the situation of static and formal procedures.

2.1.3 Development Workflow
Nowadays, modern vehicles are known for their performance and quality, and they are valued
for the money and innovative technology features that they include. Most of these current and
future innovations are based on electronics and the use of software. The electronic control

2. Background

11

units (ECUs) are becoming more dependent on the use of software. According to a study, the
size of software in a modern automobile is between 40 to 90 Megabytes. Nonetheless, there
is this ever-increasing demand on the software to guarantee the efficiency and responsiveness
of the embedded functionality for the vehicle drivers, leading to the fact that 85% of the func-
tionality of modern-day vehicles is controlled by software [13].

This raises a number of concerns related to hardware and software interactions, safety issues
due to the systems malfunctioning and others. One of the major challenges is to manage the
quality of this increasingly complex software on which vehicle functions are dependent. One
approach to address these concerns is to use and reuse the standardized processes and best
practices. The motor vehicle manufacturers are now focusing on the software capability of their
suppliers and demand assessments of suppliers’ software capability both before and during
the projects.

Different OEMs (Original Equipment Manufacturers) have been using different approaches (as
listed below) to assess the capability or maturity of their software suppliers [14]:

• Audi: both ISO/IEC TR 15504 and CMM

• BMW: Internal questionnaire

• DAG: ISO/IEC TR 15504 (since 1999)

• Porsche: Internal questionnaire

• VW: SW-CMM 1.1 and internal questionnaire

This created the need for developing a “common framework for assessing the suppliers in
automotive industry” which resulted in the creation of Automotive SPICE (ASPICE).

“In a major initiative, the Automotive Special Interest Group (SIG), a joint special interest group
of The SPICE User Group and The Procurement Forum, launched the Automotive SPICE®
initiative together with the major motor vehicle manufacturers to develop a ‘common framework
for the assessment of suppliers in the Automotive Industry’. The result is the publication of the
Automotive SPICE® Process Assessment Model (PAM) together with the associated Process
Reference Model (PRM)” [15].

The goal was to create an international standard specific to automobile industry that could be
used by the automobile manufacturers to assess their suppliers’ software capability. Nothing
new was created; instead, the existing SPICE standard (ISO/IEC 15504) was used and
adapted to the automobile manufacturer requirements by tailoring it and selecting the most
relevant subset of the processes from SPICE. It has published its own process reference model
and process assessment model [8]. The members of the Automotive SIG include:

AUDI AG, BMW Group, Daimler AG, Fiat Auto S.p.A., Ford Werke GmbH, Jaguar, Land Rover,
Dr. Ing. h.c. F. Porsche AG, Volkswagen AG and Volvo Car Corporation.

2.1.3.1 CMMI (Capability Maturity Model Integration)
CMMI is a process improvement approach for organizations that want to improve their process
performance across a specific set of processes, a project, division or the entire organization
[100]. It provides an organization with the fundamental and necessary elements of efficient
processes that result in the improved performance of the organization’s processes, as well as
the improved performance of the organization eventually. These process improvement pro-
cesses help in putting together traditionally separate organizational functions, setting goals

2.2. Traceability & Crosscutting Concerns

12

and priorities for improving those functions, suggesting quality improvement practices and
providing a point of reference for appraising the current processes [16].

2.1.3.2 V-Model
V-model is a life cycle model influenced by Waterfall model in which processes follow a se-
quential path of execution. This means that each phase must be finished before the next phase
starts. However, there exists a major difference between these two models that testing is much
more focused throughout the development life cycle in V-model than in Waterfall model. The
reason this model is called V-model is that testing plans and procedures are made for all the
phases preceding and including implementation/coding phase. These testing plans and pro-
cedures are then executed after the coding is done to verify those phases which precede im-
plementation phase [17]. Figure 2.2 below shows how these phases form a V shaped model.

Figure 2.2 Product Development using V-model

2.2 Traceability & Crosscutting Concerns
With increased software complexity, software developers realized that the assessment of the
impact of change in one requirement introduces in the rest of the system is a critical task [18].
The changes in a requirement may introduce a conflict with other requirements of a system.
Undetected conflicts could lead to miss the project target, where the requirements of the soft-
ware system might not reach its target and could not be released [19]. Therefore, it is neces-
sary to detect the influence of requirements to each other and how they are implemented.
Davis classifies traceability information in four types in his book “Software Requirements: Ob-
jects, Functions and States” [20]:

• Backward-from traceability links requirements to their sources in other documents or
people.

• Forward-from traceability links requirements to the design and implementation compo-
nents.

• Backward-to traceability links design and implementation components back to require-
ments.

2. Background

13

• Forward-to traceability links other documents (which may have preceded the require-
ments document) to other relevant requirements.

The ability to define traceability between different requirements themselves has an important
aspect in a complex software system. Kotonya and Sommerville [21] state that by extending
the backward-from and forward-to traceability in order to have links between the same docu-
ments (the requirements document), it is possible to cover this concern.

To define traceability links, one of the most common methods used is by means of traceability
tables. Table 2.1 shows a traceability table example for a system with six requirements. Each
requirement is listed in the vertical and horizontal axes of the table, and the cells are used to
mark the relationships between them. These tables can also be used to mark any other kind
of traceability relationship. This would require adding the traceable artifact to both axes.

The proper way to read this table is by navigating its cells and interpreting the information
depending on whether we are reading a row or a column. A mark in the row of a requirement
indicates that this requirement is depending on the marked requirements. For instance, R3 in
Table 2.1 is dependent on R4 and R5. On the other hand, by navigating the column we can
find which requirements are depending on a specific requirement. We can also see that re-
quirement R2 has R4 as dependent. Using this approach, it is possible to perform change
impact analysis simply by navigating the column of the requirement that was changed. If a
change was introduced to R5, by going down the R5 column, we could find that R2 and R3 are
dependent requirements, and therefore the impact on R2 and R3 of the change introduced on
R5 can be assessed.

 R1 R2 R3 R4 R5 R6
R1 * *
R2 * *
R3 * *
R4 *
R5 *
R6
Table 2.1 Traceability Table Overview [21]

These tables however, are not scalable. For a small number of requirements, it is possible to
navigate the table with relative ease to perform the necessary analysis, but for a large number
of requirements (hundreds or thousands) the table becomes unmanageable. To address this
problem, an alternative to traceability tables can be used. Instead of using a table, it is possible
to use two traceability lists to provide the same information. One list traces the “depends-on”
traceability, while the other provides the “dependents-off” traceability. Table 2.2 shows an ex-
ample of these lists.

Traceability lists have the advantage of being more compact and easy to read than traceability
tables. If one wishes to find the requirements that are depending on a given requirement it is
a matter of searching the “dependents-off” list. For instance it is easy to see that R3 as R1 as
dependent. The inverse is also straightforward. By navigating the “depends-on” list, we can
see that R5 is dependent on R6. The only drawback of using traceability lists is that the infor-
mation is duplicated, leading to problems of maintaining the information in a coherent state in
both lists.

2.2. Traceability & Crosscutting Concerns

14

 Depends-on
R1 R3, R4
R2 R5, R6
R3 R4, R5
R4 R2
R5 R6

 Dependents-off
R2 R4
R3 R1
R4 R1, R3
R5 R2, R3
R6 R2, R5

Table 2.2 “Depends-on” and “Dependents-off” Traceability Lists [21]

Finally another important aspect of traceability is the ability to perform queries on traceability
information and viewing the results returned. The great majority of the authors do not provide
any implementation of the approaches proposed. This is usually left for the developer of the
system to either implement the traceability himself, or to be performed by traceability tools [22].
Many different solutions can be used to achieve the same goal. Traceability tables can be
implemented using a simple spreadsheet, or a relational database. Traceability lists can also
be implemented using a relational database, a spreadsheet, a simple text file, or implemented
in many programming languages (e.g., the standard Java Class Library [23] already contains
a Hash table implementation that could be used to implement this solution).

Depending on the solution, the desired information can either be extracted manually (e.g.,
going through a spreadsheet) or automatically using predefined or custom queries (e.g., using
SQL with a relational database). There are several kinds of traceability queries that can be
performed. Traceability queries can occur at two different levels:

• Inter-level Queries traceability between artifacts at different development levels (e.g.,
requirement with design artifact or design artifact with source-code).

• Intra-level Queries traceability between artifacts at the same level of development (e.g.,
requirements models with requirements documents).

The type of queries can also be divided between simple and complex types. Simple queries
usually involve choosing an artifact or set of artifacts and viewing the related artifacts. The type
of information returned should also be chosen (which kind of artifacts, etc.). The results can
also be viewed in a variety of formats. It is possible to see it represented in a simple textual
report, a graph or a table. Figure 2.3 and Figure 2.4 show an overview of the concepts that ad-
dress traceability.

2. Background

15

Figure 2.3 Traceability Basic Concepts [24]

More complex and sophisticated traceability queries can also be provided to the developers.
These might include requirements coverage analysis, which aims to ensure that architecture,
design and implementation artifacts cover specific requirements. This could be useful in satis-
fying the need of showing that the resulting system met the contractual agreements. Another
important query might be the change impact analysis, mentioned previously, which allows the
discovery of artifacts that are affected by a change introduced in a requirement.

Figure 2.4 Fine-grained Traceability Approach [59]

2.2.1 Crosscutting Concerns Matrix Representation
The crosscutting can be represented in matrices, using the concept of a Design Structure Ma-
trix (DSM) [23]. This matrix shows the relation between source and target. These relations can
have different types, such as usage and abstraction dependencies (e.g. realization, refinement
and tracing [21].

Different phases of development life cycle could be represent as a source and target system.
Each phase will be a source for the following phase which represents the target. The source
and target elements should be sort such that the sources are represented by the row of the
matrix, and the target will be represented by the columns. Each cell of this matrix will be de-
noted with 1 if the source element (in the row) has a relation to the target element (in the
column). It will be set to zero if there is no relation. Table 2.3 illustrates the dependency matrix
of the system shown in Figure 2.5.

2.2. Traceability & Crosscutting Concerns

16

Figure 2.5 Mapping between Elements at Two Levels of Abstraction

Dependency matrix

 t1 t2 t3 t4

S1 1 0 0 0

S2 0 1 1 1

S3 0 0 0 1

Crosscutting matrix

 S1 S2 S3

S1 0 0 0

S2 0 0 1

S3 0 0 0

Table 2.3 Example Dependency Matrix and Crosscutting Matrix

To represent the development phases, a cascading pattern system will be used. For a system
show in Figure 2.6 there are two patterns: between domains A and B, and between domains B
and C.

Figure 2.6 Cascading of Traceability Pattern

The target of the first pattern serves as source in the second pattern. Then, the transitivity
dependency relation rel for source A, intermediate level B and target C, and #B is the number
of elements in B is defined as follows [25]:

∃ k ε (1… #B) : (A[i] rel B[k]) ∧ (B[k] rel C[m]) ⇒ (A[i] rel C[m])

2. Background

17

The dependency between A and B is represented by the term of AxB, and between B and C
with BxC. The trace dependencies between level A and C based on the transitivity of depend-
encies can be obtained by means of the Boolean matrix multiplication of the matrices AxB and
BxC as shown in Table 2.4.

Do-
main

A B C

A AxA AxB

Forward trace
dependency

AxC

((AxB)(BxC))T

Forward trace
dependency

B BxA

Backward trace
dependency

BxB BxC

Forward trace
dependency

C CxA

((AxB)(BxC))T

Backward trace
dependency

CxB

Backward trace
dependency

CxC

Table 2.4 Analysis Matrix for Different Domains

The transposed matrix (AxB)T illustrates the transposed dependencies between level B and A
as a backward trace. In the coupling matrices with their relations lead to capture the depend-
encies of traceability of different elements in the same level. The transitive closure as example
(AxA)* should be determined at each level. The dependencies between two levels could be
found with the help of the transitive closure of the levels, as example between A and B levels:

(AxA)*(AxB)(BxB)*.

Change impact in the pattern of traceability operates in terms of the elements involved in the
change of a source element. The set of these elements is called the impact set. To illustrate
the different mapping between the components, Figure 2.7 illustrates a system with two levels
of impact components.

Injection: impact s1 => change (s1,t1) Scattering: impact s2 => change ((s2,t2), (s2,t3)) Tan-
gling: impact s3 => change (s3,t4) + preserve (s4,t4) Crosscutting: impact s5 => change ((s5,t5),
(s5,t6)) + preserve ((s6,t6), (s7,t6)) [25]

The change required in a source like s1 means there is a change needed in t1, or there could
be a change which would have to be analyzed. In the same way, a change in s2 means that
there is a change in t2 and in t3. These changes needed an analysis to set the effect of s2.
The change in s3 means that there is a change in t4 which need to be analyzed. The effect of
this change in t4 need to be analyzed if there is an effect leads to other change needed in s4,
because t4 dependent on s4 and this change need to be addressed as well. Changing in s5
for crosscutting leads to changes in t5 and t6, and there are preserving the dependencies of
s6 and s7 onto t6.

2.2. Traceability & Crosscutting Concerns

18

Figure 2.7 Example of Change Impact [26]

For a multiple levels dependencies, a change element v in the mapping (x,v) as shown below
is used.

impact(x,v) = change(x,v) + (preserve(u,v) | u ← preds(v); x ≠ v) + (impact(v,w) | w ← succs(v))

A software development life cycle is a multi layer model which represents the development life
cycle phases. A change in a component y in a system mapping (x,y), may change or preserve
other mappings. This can be represent by the function:

impact(x,y) = change(x,y) + (preserve(u,y) | u ← preds(y); x ≠ y) + (impact(y,z) | z ← succs(y))

Where preds(v) represents the predecessors of an element in backward trace, and the function
succs(v) represents the successors of an element in forward trace [27]. The result of this
function contains a list of mappings to be changed based on forward traceability, and a list of
mappings to be preserved based on backward traceability.

Figure 2.8 DSM Illustration of Software Development Phases

Figure 2.8 represents a part of a DSM for different levels of development life cycle. A defect in
element M2 in the mapping (F2,M2) could be represented as:

impact(F2,M2) = change((F2,M2), (M2,C2), (M2,C3)) + preserve ((F1,M1), (M1,C2), (M3,C3))

The six mappings represented in the equation could involve changes in higher layers. In our
example it goes up to R1. The analysis of impact (F1,M1), impact(M1,C2) and impact(M3,C3)
will involve the total change effect in the model.

A change in the requirement level will include more impact changes.

2. Background

19

impact(R1,R1) = change((R1,R1),(R1,F1),(F1,M1),(M1,C1),(M1,C2),(F1,M2),(M2,C2),

 (M2,C3), (R1,F2), (F2,M2),(M2,C2),(M2,C3),(F2,M3), (M3,C3),(M3,C4))

+ preserve ((R1,F2),(F1,M2))

This example illustrates the possibility of changes. Such changes could include several levels
up to the development level. Some changes will be difficult to analyze like (M1,C2) and (M2,C2)
and will be presented as a conflict. Such a conflict only occurs in case of a combination of
scattering at one level and tangling in a subsequent level, resulting in multiple paths from initial
source to final target elements.

The conflicts could be calculated in a way:

#conflicts = #changed + #preserved - #involved

Table 2.5 illustrates the dependency matrix for the example of Figure 2.8. There are 4 levels R,
F, M, and C, the cells value are shaded dependent on the relations among the system compo-
nents.

 R F1 F2 M1 M2 M3 C1 C2 C3 C4

R 1 1 1 1 2 1 1 4 4 1

F1 1 1 1 2 1 4 2

F2 1 1 2 1 4 2 1

M1 1 1 1 1 2

M2 2 2 2 1 2 2

M3 1 1 1 2 1

C1 1 1 1 1

C2 4 4 4 2 2 1

C3 4 2 2 2 2 1

C4 1 1 1 1

Table 2.5 Matrix Representation of Software System

The dependency matrix in Table 2.5 represents the dependency matrix of the system. This
matrix represents the dependency between pairs of elements in the system. To estimate the
effort need for the change, the size of a change should be estimated. The size of a change is
the effect of the dependency to the system. A concern model was established by [28] [29]. It
proposes a suite of aspect oriented metrics to complement the traditional metrics (coupling
and cohesion) and is used to estimate a dependency value among the system elements, which
helps to estimate the effort needed for each phase of development life cycle, and it also esti-
mates the effort to shift changes from one phase to another. Two main metrics are defined:

- Degree of Scattering (DOS)

- Degree of Focus (DOF)

2.2. Traceability & Crosscutting Concerns

20

Concentration (CONC) is defined as a measure of the number of statements related to a con-
cern within a specific component [29] [30]. Thus, CONC focuses on a particular source (s) and
target element (t) and illustrates how a target element contributes to the realization of the
source element:

CONC(s,t) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠

To have a measure of the variance of the concentration of a concern over all components of
the system. A second metric described the Degree of Scattering (DOS). A value of DOS close
to 1 indicates that this concern(s) has a high degree of distributing while a value close to 0
indicates that this concern is not distributed and could be defined as

DOS(s) = 1 -
|𝑇𝑇| ∑ �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠,𝑡𝑡)− 1

|𝑇𝑇|�
2𝑇𝑇

𝑡𝑡

|𝑇𝑇|−1

Where T is the number of components. A high DOS indicates the implementation of a concern
is highly distributed (crosscutting). That’s lead to have a risk of shifting some effort from one
to other phases of the lifecycle.

This metrics are focused on the relation from source to target elements. To provide some
metrics focused on the relation from target to source elements. A second definition of the Ded-
ication metric which assesses the number of statements of a component (t) related to a partic-
ular concern (s) are needed.

DEDI(t,s) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡

The metric of Degree of Constrain (DOF) and is a variance of the dedication of a component
to every concern with respect to the worse case is illustrated:

DOF(t) = 1 –
|𝑆𝑆| ∑ �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡,𝑠𝑠)− 1

|𝑆𝑆|�
2𝑆𝑆

𝑠𝑠

|𝑇𝑇|−1

Where S is the number of components.

With experts knowledge and the effect of KPIs discussed in this thesis, a dependency matrix
from Table 2.5 was developed and presented in Table 2.6. The element value presents the de-
pendency of the row on the column variable. Each cell represents the relationship between
two components of the system i.e. r1f2 represents the dependency between requirement (R1)
and feature (F1) and c3c4 represents the dependency between the artefact (c3) and artefact
(c4) in the system shown in Figure 2.8.

2. Background

21

 R F1 F2 M1 M2 M3 C1 C2 C3 C4

R r1r1 r1f1 r1f2 r1m1 r1m2 r1m3 r1c1 r1c2 r1c3 r1c4

F1 f1r1 f1f1 f1f2 f1m1 f1m2 f1m3 f1c1 f1c2 f1c3 f1c4

F2 f2r1 f2f1 f2f2 f2m1 f2m2 f2m3 f2c1 f2c2 f2c3 f2c4

M1 m1r1 m1f1 m1f2 m1m1 m1m2 m1m3 m1c1 m1c2 m1c3 m1c4

M2 m2r1 m2f1 m2f2 m2m1 m2m2 m2m3 m2c1 m2c2 m2c3 m2c4

M3 m3r1 m2f1 m2f2 m2m1 m2m2 m2m3 m2c1 m2c2 m2c3 m2c4

C1 c1r1 c1f1 c1f2 c1m1 c1m2 c1m3 c1c1 c1c2 c1c3 c1c4

C2 c2r1 c2f1 c2f2 c2m1 c2m2 c2m3 c2c1 c2c2 c2c3 c2c4

C3 c3r1 c3f1 c3f2 c3m1 c3m2 c3m3 c3c1 c3c2 c3c3 c3c4

C4 c4r1 c4f1 c4f2 c4m1 c4m2 c4m3 c4c1 c4c2 c4c3 c4c4

Table 2.6 Traceability Matrix with Change Effect

2.3 Software Estimation Technique
Complex software controlling is a very important part of software development. Project plan-
ning, control, risk analysis, and effort estimation all affect production costs and overall quality.

Much research has been put into software cost modelling. Since 1965, a number of studies
and research have focused on the attributes of software projects. This led to the development
of different models, starting in the late 1960s and early 1970s [31].

This section provides an overview of mainly used models and methods of software estimation.
Most were developed in the early 1980s and 1990s, and are still being used and updated in
response to software developments [5]. The widespread use of software has led to increase
the complexity and production risks. Improved estimation techniques make use of software
metrics to help project managers with their decisions. These estimation models help managers
in different phases of the development lifecycle, starting with requirement analysis, architec-
ture, implementation, testing, and maintenance.

Here, based on own experience, the commonly used estimation techniques. These techniques
are presented. These techniques can be classified into:

- Model-based techniques

- Expertise-based techniques

- Learning-oriented techniques

- Dynamic techniques

- Regression-based techniques

- Composite techniques

2.3. Software Estimation Technique

22

2.3.1 Model Based Techniques
Many models were developed for software estimation, most of them were developed for spe-
cific use cases, and so their structures cannot be analyzed, compared, or contrasted in differ-
ent developments domains. Other models are mostly used in software development manage-
ment. These models can be analyzed in terms of software cost estimation and product quality.
Some of these techniques do not cover early development activities and can only be used for
quality management at the end of the development process; therefore, they cannot really sup-
port process quality management. This disadvantage make their use in process development
within the automotive industry difficult. Some of the most commonly used model-based tech-
niques are [32]:

- The Putnam Software Lifecycle Model (SLIM)

- The Jensen Model

- The Bailey-Basili Model

- PRICE-S

- Checkpoint

- Software Reliability Growth Models

- SOFTCOST

- SEER-SEM

- ESTIMACS

- COCOMO II

The most commonly used and evaluated techniques are the COCOMO II, SLIM, and SEER-
SEM parametric models [31]. COCOMO II is a public domain model that has been imple-
mented in several commercial tools and is continually updated. SLIM and SEER-SEM have
been implemented in commercial tools and shared some features with COCOMO [31]. Other
industrial effort models such as Checkpoint and Estimacs have been implemented but are not
used for automotive software, instead focusing on business applications [33]. An earlier com-
parative survey of software cost models can be found in [11].

2.3.1.1 The Putnam Software Life-cycle Model (SLIM)
One of earliest software engineering techniques was developed in the late of 1970s by Larry
Putnam of Quantitative Software Measurement, the Software Lifecycle Model (SLIM) [34].

SLIM assumes that effort for software projects is distributed similar to a collection of Rayleih
curves. SLIM explained that staffing increased during the project and then decreased sharply
during acceptance testing [34]. The effort required for the project is estimated using Rayleigh
curves in terms of a manpower build up index (MBI) as described in Figure 2.9, productivity
factor (PF), schedule and defect rate and various other productivity parameters this model
used.

2. Background

23

Figure 2.9 Rayleigh Model [34]

SLIM contains a software maintenance phase following the main development phase. The
maintenance and development phases are very important and can be estimated independently
during the development lifecycle. SLIM uses effective lines of code, SLOC, as a unit of size for
software projects. The size of new and modified code can be found using SLIM, but not deleted
code. SLIM deals with new and modified code in the same way as maintenance effort.

Analyzing two projects used Slim model shows some weak points in use for different types of
project in automotive domain. Slim model works well on large project with no nodes to other
project. Slim model is sensitive to size of code and technology factors. Slim model works for
waterfall lifecycle, and need huge effort to adapt to agile or other life cycle process model.

2.3.1.2 COCOMO II
The COCOMO (COnstructive COst MOdel) cost and schedule estimation model was published
in [35]. The definition of COCOMO II is published in [36]. COCOMO II employs three sub-
models to deal with different software environments:

- Applications Composition,

- Early Design,

- Post Architecture.

These sub-models can be combined and used in different ways depending on the

• APPLICATION COMPOSITION MODEL: Used in the earliest development phases.

• EARLY DESIGN MODEL: Used in the next phases of the development lifecycle. It ad-
dresses the system architecture and operating concept. All information needs to be
available in this phase – any missing information will make estimation difficult. This
model is based on function points, lines of code, and some other factors and effort
parameters.

• POST ARCHITECTURE MODEL: Used once the system architecture and project con-
cept are available. The source code and function points are used in this model as sizing

2.3. Software Estimation Technique

24

parameters, with the ability to adjusting these parameters for future use. Different sets
of effort multipliers and scale factors can be used to estimate development effort.

Cost factors are evaluated and weighted within COCOMO II based on application complexity
and software reliability, execution, memory, and environmental constraints, development skill
levels, tools and technologies, and a variety of other considerations [11].

The estimated effort required to develop a project is the most fundamental calculation made
by COCOMO II. The effort (in person/months) is calculated using COCOMO II’s effort equation.
Most other COCOMO II results, including requirements and maintenance estimates, are de-
rived from this quantity [11] [36].

One important factor for making good management decisions is the cost estimation for the
project. This is connected to determining how much effort and time a software project requires
[37].

• COCOMO II Scale Drivers

Scale drivers in the COCOMO II model are the most important factors contributing to project's
duration and cost. Each scale driver need to be described and established in the project. These
scale drivers determine the exponent used in the effort equation [11] [36]. COCOMO II defines
each of the cost drivers, and the effort multiplier associated with each rating [38].

The scale drivers include:

- Precedents

- Development flexibility

- Architecture / Risk resolution

- Team cohesion

- Process maturity

• COCOMO II Effort Equation

The COCOMO II model makes its estimates of required effort based primarily on the esti-
mate of the software project's size [31]:

Effort = 2.94 * EAF * (KSLOC)E equ. 2.6

Where

EAF: Effort Adjustment Factor derived from the Cost Drivers.

E : exponent derived from the five Scale Drivers

2.3.1.3 Reuse Model
Devnani Chulani’s [11] broad research into software engineering reuse costs indicates that the
amount of modification required to reuse code to the resulting costs are nonlinear in three
ways:

- Reuse effort does not start at zero.

- Analyzing the software to be able to modify

2. Background

25

- The relative cost of analyzing module interfaces

Three modification factors can be derived from the nonlinearity of software cost estimation.
These factors relate to the different development phases, the percentage level of design and
implementation modification, and the percentage of integration effort required for software de-
velopment. Detailed ratings of the reuse model could be found in [11].

2.3.2 Expertise Based Techniques
Estimation models based on expert knowledge are useful for projects lacking quantified em-
pirical data [37]. An expert team will have the skills and understanding of project complexity to
estimate the effort needed. They can estimate the effort needed for development and quality
assurance activities needed for each development phase. Knowledge of previous projects and
the differences between them could prove useful for the new project and improve estimates.
The ongoing demand for expert knowledge is a major disadvantage of such techniques. Expert
knowledge would be needed for different development phases to allow an estimate for the
whole product. Some of most widely-used models using expertise-based techniques are the
Delphi Technique, Rule-based Systems and the Work Breakdown Structure.

2.3.2.1 The Delphi Approach
The Delphi Technique is named after the legend of the Oracle of Delphi [39]. The technique
draws on knowledge from senior expert developers to make predictions about software devel-
opment projects.

Only a few expert developers are needed for this. The precise number of experts needed de-
pends on their availability. A minimum of three experts is usually chosen to ensure a range of
values. Farquhar performed an experiment where he gave four groups the same software
specification and asked them to estimate the effort needed to develop the software product
[13] [22]. The estimates were performed in two ways: two groups used the Delphi technique,
while the other two had regular meetings. These meetings produced far better estimates than
the Delphi technique [99]. These different methods of project prediction led to improvements
in the Delphi technique. Boehm and Farquhar formulated an alternative method, the wideband
Delphi technique [36], which involves different steps:

1. The coordinator provides the experts with the requirements for review

2. The coordinator sets up a group meeting to discuss related issues

3. The participants complete the forms separately and return them to the coordinator.

4. The coordinator feeds back the results of participants’ responses.

5. The coordinator conducts another group meeting to discuss differences between the
participants’ responses to achieve a possible consensus

6. The coordinator asks the experts to refine their estimates, again separately, and steps
4-6 are repeated as many times as appropriate.

2.3.3 Learning Oriented Techniques
Learning-oriented techniques include both some of the “manual” as well as "automate" tech-
niques applied to estimation activities by building models that “learn” from previous experience.
The learning oriented techniques based on the knowledge from the prior and current software

2.3. Software Estimation Technique

26

development. There are several models which based on this technique, like neural networks
and Case Based Reasoning (CBR) [40].

2.3.3.1 Neural Network
According to Gray and MacDonell [41], neural networks is the most common software estima-
tion model-building technique used as an alternative to mean least squares regression. They
realized the disadvantages of multiple regression methods and start with neural networks [42].

The Neural Network is a network that is comprised of nodes or neurons that imitate the biolog-
ical neurons [14]. Neural networks map an input to an output using linear or non-linear func-
tions based on the nature of the problem and can be used as classifiers or regression. The
mainly used neural network models are used to solve a regression problem. Feed-forward
networks are very popular in neural network where the flow of information is always from input
to output. A neural network is usually composed of an input layer, hidden layers, and output
layer. When a neural network model is used to predict the effort of a software project, the input
layer is composed of nodes such as software size, programming language, programmer ex-
perience, etc. The middle layer contains a certain number of neurons, and each has a weight.
The output layer contains one node that is the predicted effort. The output of a node is defined
based on an activation function. This is represented mathematical algorithm. The model then
iterates on its training algorithm, automatically adjusting the parameters of its estimation func-
tions until the model estimate and the actual values are within some pre-specified delta. The
specification of a delta value is important to avoid an over-trained to the known historical data.
The model adjusting its estimation algorithms to get a good predicting results for the training
data set [42] [43].

Neural networks have been extensively used to model software reliability. Cheng [44] and
Mozolin [45] discuss the use of neural networks for reliability growth modelling and to identify
high defect modules in software products. Koshgoftaar demonstrated a classification of fault
fragile software modules [42].

Ch. Satyananda demonstrated a model designed to improve network performance based on
the COCOMO model. The model uses a multi-layer feed forward neural network to estimate
software development effort [42].

Figure 2.10 Neural Network Estimation Model

2. Background

27

Analysing the Neural network model provide a good solution for industrial estimation, but the
missing of information and tools that support the model make the use of this model not easy
and not possible in a real project. Figure 2.10 shows a simple view for Neural Network.

2.3.3.2 Dynamic Based Techniques
Dynamic models estimate project activities and distribution of effort and schedule based on
project characteristics. Price S [31] [32] and detailed COCOMO [6] estimate effort using phase-
sensitive effort multipliers. The detailed COCOMO model provides different phases multipliers
for every cost driver in the system to achieve this goal. This model is closer to the simpler
intermediate COCOMO in terms of estimation accuracy, with better estimation of phase distri-
bution effort. The most commonly used model based on this technique was created by Abdel-
Hamid and Stuart Madnick [46]. They developed a model that estimates the time distribution
of effort, schedule develop and defect rates as a function of staffing rates, experience mix,
training rates, personnel turnover, defect introduction rates and other factors [32]. Madachy
[15] developed a dynamic model of an inspection-based software lifecycle process to support
quantitative evaluation of the process.

Dynamic system simulation models are represented mathematically by differential equations
[15]:

x'(t) = f(x,p) equ. 2.7

Where x is vector describing the levels (states) in the model

p is set of model parameters f is a nonlinear vector function and t is the time.

2.3.3.3 Regression Based Techniques
Regression based techniques are popular technique of building models. These techniques
include the Standard or Ordinary Least Squares regression and the robust regression ap-
proaches, etc. [47].

2.3.3.4 Composite Techniques
Each of models discussed above have a point of view to predict the effort of software which
give some advantages for the model, but each of them still lack some data to have an accurate
estimation. Composite techniques offer a model by combining two or more techniques to for-
mulate the most appropriate functional form for estimation, in order to avoid missing data,
which could be important for the estimation. The Bayesian approach is a composite techniques
model combines two of important techniques: The expertise based and model based tech-
niques. Dealing with the most important project data, make this technique suitable to be used
in industrial field, and developing the safe critical software.

2.3.3.4.1 The Bayesian Approach
The Bayesian approach to calibrating the COCOMO II model was introduced by Chulani [40].
Chulani study produced a set of constants and cost drivers officially published in the COCOMO
II book [6]. Since this study, the Bayesian approach has been used in a number of calibrations
of the model using multiple COCOMO data sets [48]. An attractive estimating approach that
has been used for the development of the COCOMO II model is Bayesian analysis [49].

Bayesian analysis is a well-defined and rigorous process of inductive reasoning that has been
used in many scientific disciplines [48] [50]. The important advantage of using Bayesian ap-
proach in compare with other approach is that this model used the data set accumulated from

2.4. Maintenance Cost Estimation Models

28

different completed projects and the experts’ judgement from a developer team in order to
estimate the effort of the project. The model used Baye's theorem to represent the data and
the relationship among these data. This approach presents a formal process where a data
sample could combined with the experts judgement. Using Bayes’ theorem allowed to combine
the two information sources as follows:

(|) ()(|)
()

f Y ff Y
f Y
β ββ = equ. 2.9

Where ß is the vector of interested parameters, and Y is the vector of sample observations
from the joint density function.

In equ. 2.9 is the posterior density function for ß summarizing all the information about ß, f(Y|ß)
is the sample information and is algebraically equivalent to the likelihood function for ß, and
f(ß) is the prior information summarizing the expert judgement information about ß [27]. The
concept of the standard regression will be used here, and in addition the experts’ knowledge
will be included in the model. The different development phases will be deal with to reduce the
risks during the development life cycle. This approach offers an ability to deals with data which
missing in other estimations models. These data and the experts knowledge helps to get the
decision in the different phases of development life cycle. Most of statistical estimation model
describe the cost driver based on data. This data will be not enough in the complex system
because of missing the interfaces among these data. Bayesian approach described the data
and their relations, this information in the model leads to better estimation. The experts’
knowledge will be involved in the model from the developing team members and the project
managers. Information described the development process, the different parameters which
affected the effort and parameters affected the quality of the software are important parameters
to estimate a software. Bayesian techniques make best use of relevant prior information along
with collected sample data in the decision making process to develop a stronger model [27].

2.4 Maintenance Cost Estimation Models
Increased software use has led to increased software complexity. This, in turn, means an in-
creased probability of defects. The error ratio depends on the complexity of the product. There-
fore, software maintenance estimation has become a crucial part of the software development
lifecycle. Software domains which require a high quality product and low defect ratio need a
process to handle changes and defects during the development lifecycle. Several models have
been developed to estimate and handle software maintenance. The maintenance effort in-
cludes every software change necessitated by a change in requirements, defect or failure, or
to fix various bugs. These models can be divided into three categories depending on their
focus and estimation approach: phase level, release level, and task level maintenance estima-
tion models.

2.4.1 Phase-Level Models
Product development are divided into different phases during the development lifecycle to en-
sure that quality requirements are satisfied. Software maintenance can be included in each
phase to ensure software quality. Several estimation models have been developed to estimate
the effort required for maintenance activities, which covers all activities performed during the
operation of the software, including functional changes and improvements, defect correction
and all other changes needed to ensure that all technical requirements of the system are met.
The COCOMOM, SEER-SEM, PRICE-S, and SLIM models estimate this effort as a part of the
total development cost of the software. These models use the number of lines of code as the
main driver of estimated cost. Most of these models use additional cost drivers to estimate

2. Background

29

maintenance effort. For example, COCOMO uses two drivers, software understanding and
programmers’ degree of unfamiliarity; SEER-SEM uses parameters such as maintenance size
growth over time and maintenance rigor [51]. Any accurate estimation of system development
should include the maintenance effort. The large number of assumptions required about the
final system makes the accurately estimating maintenance effort one of major challenge for
most industrial software.

2.4.2 Release Level Models
Some estimation models handle maintenance effort in a more finely grained way. They in-
cluded the previous project data into estimates for the future releases.

Basili developed a regression model to estimate the effort needed for different types of mainte-
nance, such as error correction and enhancement [18] by using a single variable, SLOC. Indi-
cating the size of line code is a good predicator of the effort. Ramil [52] divide maintenance
effort into sequences of operational releases after the initial delivery of the system, and devel-
oped a linear regression model to estimate the effort required to evolve the system between
releases. They used size (measured as number of added or changed modules and subsys-
tems) and number of changes to modules and in addition to all changed modules as model
predictors. The model was not very accurate, indicating a model’s evaluation and ensuing in-
ferences are contingent upon the estimation accuracy indicators used [53]. The model was
evaluated and recalibrated to be more accurate.

Caivano [54] described a model using engineering and restoration and developed a tool to
dynamically calibrate the effort estimation model for renewal projects. The change information
was accumulated during project execution, allowing for dynamic calibration. The model used
number of lines of source code, complexity, and number of modules obtained after process
update as parameter. The model analysis showed that fine-grained estimation and model dy-
namic recalibration improve accuracy and that estimation models are process dependent. A
later empirical study verified these conclusions [55]. Other studies have also reported some
success in improving prediction accuracies by recalibrating estimation models in an iterative
development environment [56] [57].

Sneed developed a model called ManCost to estimate software maintenance effort by applying
different sub-models to different types of maintenance tasks. Sneed classified maintenance
into four different categories [58]:

- Error correction: effort of error correction for a release.

- Routine changes: maintenance costs of implementing routine change requests.

- Functional enhancement: effort of editing and improving software functionality. The
SLOC or function point and associated effort is estimated using adjusted size, com-
plexity, quality, and other influence factors considered here.

- Technical enhancement: effort of technical improvements, such as performance and
optimization.

Sneed illustrates different characteristics of these types of tasks, each requiring an appropriate
estimation sub-model. These sub-models must measure adjusted size and productivity indi-
ces, taking into account the effects of complexity and quality factors. Estimating maintenance
effort lacks the validation reported for evaluating the estimation performance of the sub-mod-
els. Sneed proposed several extensions to account for reengineering tasks and maintaining
web applications [59].

2.4. Maintenance Cost Estimation Models

30

Functional Size Estimation (FSM) methods have inspired a number of studies to develop
maintenance estimation models using FSM metrics. Most of these focus on the effort required
for adaptive maintenance tasks by adding, modifying, and deleting functions. Focusing on
function means FPA does not accurately reflect the size of small changes. To improve the
model, Abran and Maya suggested an extension to the FPA method by using several com-
plexity levels of the function to handle finer intervals [45].

Another study predicted the effort required to implement non-corrective change requests [60].
The FPA procedure to determine the FP count used in this model uses a multiplicative factor
called the maintenance impact ratio (MIR) to adjust the FP count to account for the relative
impact of a change. The result of the study shows that the size of the changed component has
a higher impact on the effort than the size of the change itself. This is because those respon-
sible for maintenance might have needed to spend investigating other functions tangentially
related to the change [61].

2.4.3 Task Level Models
Some estimation models define maintenance tasks as defect reports or change requests as
part of total maintenance. These models deal with small effort estimation in the range from a
few hours to a month.

Sneed developed a model with a seven step process and developed a tool called SoftCalc to
estimate the size and costs required to implement maintenance tasks [59]. The model used
size measurements based on SLOC, function points, object points, and data points. Sneed
determined the size of the affected domain and the affected software. These were then ad-
justed based on complexity, quality, and project influence factors. This adjusted size was used
in combination with a productivity index to compute maintenance effort.

Fioravanti developed a model to build classification models for change request effort. The
model supposed a procedure included four high level steps: identifying predictable metrics,
identifying significant predictable metrics, generating a classification function, and validating
the model [62].

The model represented the predictable variables and effort using a number of so-called diffi-
culty indices. The model defined the effort range according to five intervals (less than an hour,
between an hour and a day, between a day and a week, between a week and a month, and
longer than a month) and indexed these from 1 to 5 respectively. Briand and Basili used a
dataset of 163 change requests from different projects at the NASA Goddard Space Flight
Center to create a model that could dynamically construct models according to specific envi-
ronments [63].

Fioravanti presented and evaluated a model and metrics for estimating the adaptive mainte-
nance effort of object-oriented systems [62]. Lucia proposed a model to build effort estimation
models for corrective maintenance by using multiple linear regression [64]. Lucia showed that
using a linear rather than nonlinear model produces more accurate estimates with the same
variables. He also showed that using different types of corrective maintenance tasks can affect
model performance.

2. Background

31

2.5 State of the art
Several research projects relate to effort estimation for industrial software products. Moløkken
Østvold and Jørgensen [65] reviewed the most relevant software effort estimation surveys.
Expert judgment based estimation methods are the most used in the software industry. The
reason for that is that the project teams believe in the team knowledge and they claimed that
there is no evidence that formal estimation models lead to better estimates. The estimation
accuracy when using formal methods did not show improvements over expert estimations [33].
They also found that managers tend to think that the accuracy of their estimates is better than
it in fact is. Effort estimation accuracy in different development models has been analyzed. The
results from those studies indicated that projects that are developed with an incremental model
may be less likely to experience effort overruns than projects that implement sequential devel-
opment models.

Yang [66] conducted a survey on software cost estimation in the Chinese software industry.
The goal of the research was to investigate the state of software cost estimation in China,
identify areas of potential improvement, and try to provide suggestions on how to improve the
software cost estimation process and methods. Their study showed that large projects were
more likely to experience cost and schedule overruns. When asked about satisfaction with the
estimation techniques, most of the participants were neither satisfied nor dissatisfied. This
study also showed that few organizations, a mere 15%, were using algorithmic model-based
methods. The main causes for the low use of the previous techniques appeared to be the high
adoption cost and the non-significant benefit once these are applied.

Trendowicz [67] performed surveys into the software industry with the purpose of analyzing
industrial practices related to estimating software development effort. Multiple expert based
techniques seemed to be the most accepted practice in the software industry. Collaboration
with the customer generates better results in software projects, both in agile and traditional
development environments [68]. Furulund [69] analyzes and discusses the effect customer
collaboration has on estimation accuracy. It shows that the projects with daily contact between
contractors and customers have lesser effort overruns than other projects do. Table 2.7 gives
an overview on further related research activities in the software change estimation.

This thesis offers a model to support project managers in their decisions which are affected by
many criteria. Several meetings have been held and questionnaires based on [70], have been
used with project managers and estimation responsibles in Autosar groups in order to elabo-
rate on and define these criteria which are presented in table 3. The questionnaire results show
that several criteria affect the cost of software projects in automotive industry. In addition the
criteria have been prioritized.

The mainly used estimation approaches were analyzed based on these criteria, in order to
focus the strong and weak points in each approach depending on the industries requirement
and needs. Comparative methods are based on comparison with similar projects already im-
plemented in the same domain. The similarity is defined by previously determined equal influ-
encing factors of the comparison projects, and the current project has to be estimated. Influ-
encing factors can be both "results-related" and "processing-related". The most important re-
sult-related influencing factors are the quantity (scope of the project), the complexity (complex-
ity of the project) and the quality (reliability, maintainability of the project result) of the project.
The most significant development-related influencing factors include the knowledge and expe-
rience of project staff, the tools used, the modelling and programming languages used. [47]
Another major development-related influencing factor is the use of personnel, whose marginal
utility is falling, however. The coordination and communication effort increases disproportion-
ately with the number of people [20].

2.5. State of the art

32

Source Main problem investigated

S.G. MacDonell, M.J. Shepperd
(2003) [71]

Model based approaches in general needed too much inputs
parameters to get a good estimation.
The result is interpretable with some difficulty, Interpretability
requires the knowledge which productivity factors have a sig-
nificant impact and how they relate to effort.
High assumptions, an unrealistic assumptions could lead to
high risk.
Late availability of estimates, i.e. the applicability of an estima-
tion method during the various stages of software develop-
ment.

X. Huang, D. Ho, J. Ren, L.F.
Capretz (2007) [72]

E. Stensrud, I. Myrtveit (1998)
[73]

M. Jørgensen (2004) [74] Expertise approaches required experts in several domains.
Low Repeatability, the experts needed for each new request.
Low Transparency, i.e. experts for each domain needed. E.S. Jun, J.K. Lee (2001) [75]

S. Bibi, I. Stamelos (2006) [76] Learning oriented based has a weak explanatory ability
The capability of dealing with noisy data shows that its prone
to run into overfitting to the training data
Require plentiful data for training
Sensitive to network architecture and parameter setting

I.Tronto, J. Silva, N.S. Anna
(2008) [77]

A. Idri, A. Zahi, E. Mendes, A. Za-
krani (2007) [78]
S. Berlin, T. Raz, C. Glezer, M.
Zviran (2009) [79] Requires project magnitude/size, project application area, the

level of new design and code, experience and skill levels of
project members, hardware constraints, customer specifica-
tion, reliability requirements, development environment
usage in automation field is difficult

L.C. Briand, T. Langley, I.
Wieczorek (2000) [80]

M.O. Elish (2009) [81] The Regression tree requires building the tree only with infor-
mation that can be estimated at the beginning of a project.
Using different error thresholds to build the tree lead to provide
mixed results
Low Interpretability need for big knowledge about all factors
have a significant impact and how they relate to effort.
Low Automation of Method and missing tools with high usabil-
ity

A. Heiat (2002) [82]

Y.F. Li, M. Xie, T.N. Goh (2009)
[83]

E. Mendes, N. Mosley (2008) [84] Bayesian inference statistics need for good probability
knowledge
Difficult to handle categorical features
Probability estimation needed, that leads to complex tool and
use

I. Stamelos, L. Angelis (2008) [85]

Table 2.7 Summary of Recent Models of Software Change Estimation

Most estimation approaches deals with the size of software as an important criteria affecting
the effort of the project. SLOC is used as measure for the complexity of change and all process
needs. Figure 2.12 presents the estimation accuracy dependent on the SLOC for the model
developed in this thesis. The 100% accuracy is the real effort known after project completion.
The data was taken from the change request system. The expertise based estimation is a good
approach but it requires costly experts in different phases of development lifecycle. The other
approaches divert in their results depending on their use. This analysis lead to define the strong

2. Background

33

and weak points for each estimation approach, and help to classify and evaluate different char-
acteristics in the project reaching to describe the criteria of the project that have an effect on
project effort and cost.

Figure 2.11 Estimation of Software Projects with Different Sizes

Figure 2.13 shows the missing criteria, as defined in Table 1.1, for the industries development,
and the need for an approach that helps the project managers in their decision in one or more
sector of estimation criteria.

Figure 2.12 Estimation Techniques Test in Automotive Domain

2.5. State of the art

34

Table 2.8 presents this need of industry for an approach satisfies all these criteria. It shows
the main used approaches against the satisfaction criteria of industrial development demands.
The classification used in five steps, with (++) as full satisfaction down to (- -) as totally non-
satisfaction. This thesis offers an approach which satisfied all these criteria with (++).

Estimation
Technique

Pr
oc

es
s

D
ev

el
op

m
en

t

M
ai

nt
en

an
ce

Q
A

U
se

d
To

ol

Te
st

Fl
ix

ib
ili

ty

Si
m

pl
e

of
 u

se

Model based 0 ++ ++ + 0 ++ - -

Expertise based + + + + -- - + +

Learning oriented
based -- ++ + + - + 0 -

Dynamic based - + - 0 - + 0 -

Regrission based - + - + - + + 0

Composite
bayesian - + + 0 + + + -

Thesis approach ++ ++ ++ ++ ++ ++ ++ ++

Table 2.8 Estimation Metrics in Automotive Domain

Table 2.9 summarizes the state-of-the-art knowledge of section 2 and points out the gaps to
be closed by this thesis in relation to the research hypotheses and goals stated in section
Fehler! Verweisquelle konnte nicht gefunden werden..

2. Background

35

Hypothesis (H), Goals / Requirement (G) Refinement

G1: The overall development effort shall be
decreased by using a new model to identify
the relevant quality assurance measures.

Method/ approach have to enable the pro-
ject managers to estimate the overall devel-
opment effort and to identify the quality as-
surance measures where optimization leads
to optimize the product costs.
DSM, crosscutting and halstead ap-
proaches from the state-of-the-art are used,
crosscutting and halstead have refined and
adapted for this use. KPIs als factors for the
method have to be defined and described.

G2: A new method is needed to identify hot
spots in a software product (e. g., compo-
nents or even single functions). These hot
spots are most promising for a decrease of
the defect rate and/ or the development ef-
fort.

Provide a method and tool to represent all
product areas and identify the areas that
need optimization to have optimal effort
benefit ratio regarding to reduce the defect
rate.

G3: A development process has to be cre-
ated to derive the KPIs for the reduction of
the development effort as well as the effort
of defect correction.

Software development process model
(SWPM) have to be developed in order to
describe the KPIs needed for the effort of
the development and defect correction.

H1: Current estimation models can be im-
proved by the integration and feedback of
process data. The estimation accuracy will
increase.

The accuracy shall be improved by the new
model and shall contain all development
and process activities that affect the effort.

H2: With a new estimation model (see H1)
project managers can identify the hot spots
in a products architecture where the most ef-
fort reduction is possible.

The new model represents the product by
using DSM and dependability matrix includ-
ing all necessary artifacts in software pro-
cess and development. That helps to iden-
tify the component in product where an im-
provement needed to deduce the effort.

H3: A new development process with distrib-
uted efforts for quality assurance measures
will reduce the effort of defect correction as
well as the overall development effort.

The model have to represent all software
artifacts which affect the quality assurance
and helps to reduce the defect correction ef-
fort and total development effort.

Table 2.9 State-of-the-Art Knowledge

2.5. State of the art

36

3. New Estimation Approach

37

3 New Estimation Approach
This section presents an approach for project managers and the process owner to support in
their decisions of software effort estimation and project schedule. This approach is developed
from the first step by defining the problem until the last step where the model valuated and
tested. The developed approach as shown in Figure 3.1 offers a huge knowledge about the
project structure and software process and architecture. The system model presents all arti-
facts of the project in a graphical view. The relationships among these artifacts are presented
in a matrix which describes the dependency of each artifact on the anothers in the system. The
dependability matrix focuses on the affected effort in each artifact related to its relationship
with other artifacts in the system. The weighting vector is the effort of change in the own artifact.

Figure 3.1 Own Approach

3.1 Approach description
This approach has to support project managers with their decision from multiple domains;
therefore, a specification of multiple domain related and specification are needed. The ap-
proach has to trace all changes in the system throughout the project development lifecycle and
document the reason for all changes in terms of feasibility, impact on other components, risk,
effort, and schedule. The approach is classified into three knowledge sectors:

3.1.1 System model
The software has to be structured in a system model, where all artifacts in the software have
to be presented in one or more graphical views depending on the domains focused in the
system. All artifacts i.e. requirement, architecture, code, test and all non-functional artifacts
(e.g. risk management and legacy standards and norms) are included and represents as
nodes. The relationships among the nodes are presented as edges connected these nodes
to each other.

The traceability and crosscutting concern were defined in section 2.2. A DSM have to repre-
sent the system elements from requirements down to implementation activities as shown in
Figure 3.2. The DSM presents the relationships between these elements. Matrices can be
constructed either “across rows” or “down columns,” depending on which direction is identi-
fied as forward process flow [86]. This overview presents a total view for thy system. This
view helps the decision makers to have better understanding for the system and make their
decision to estimate the effort needed for changing any element in the system. The model is
built in a hierarchical design; therefore, changing a component in the system will affect other

3.1. Approach description

38

components which are directly related, and other components which are not directly linked to
the changed component may also be affected.

Figure 3.2 GSM Illustration of Software Development Phases

3.1.2 Dependability matrix
The crosscutting approach is used to describe the system model as a matrix. Each node has
a value described the relationship between this node and other nodes in the system. This
matrix described the dependability and how strong is the relationships among the system
nodes. High node value means that the component in the row of the matrix is depended
strongly on the component presented in the column of the matrix, where low value described
a weak dependability of the component.

Change request in an element of the matrix could lead to high effort on other elements in the
system. The node value is a description of the effeteness of a change effort in all affected el-
ements, e.g. the node C2R has a value four which presents a high node value and means
that C2 is strongly dependable on R, any change in R could lead to a change in C2. In other
side the value in node C2M3 is zero that means that C2 is not dependent on F3 change in F3
zero effort for C2.

The DSM will be constructed in an “across rows” fashion [67]. Non-zero entries indicate a
relationship between two elements that the row element depends on the column element. The
relationships among the different nodes in the system and the strength of this relation are
analyzed using crosscutting principles, as illustrated in Table 3.1.

 R F1 F2 M1 M2 M3 C1 C2 C3 C4

R 1 1 1 1 2 1 1 4 4 1

F1 1 1 0 1 2 0 1 4 2 0

F2 1 0 1 0 2 1 0 4 2 1

M1 1 1 0 1 0 0 1 2 0 0

M2 2 2 2 0 1 0 0 2 2 0

M3 1 0 1 0 0 1 0 0 2 1

C1 1 1 0 1 0 0 1 0 0 0

C2 4 4 4 2 2 0 0 1 0 0

C3 4 2 2 0 2 2 0 0 1 0

C4 1 0 1 0 0 1 0 0 0 1

Table 3.1 Traceability Matrix for System Described in Figure 6.2

3. New Estimation Approach

39

3.1.3 Weight vector
The weighting value is a measure for the effort needed for the change in an element of the
system as element own effort. This weighting value is depending on the complexity of the
element. To find this complexity, an adapted Halstead method is used. The software develop-
ment and defect correction models support the estimation approach by parameters that af-
fected directly the effort of change. This effort is depending on the process and quality assur-
ance used throughout the development lifecycle.

3.1.3.1 Complexity factor of change
Effort of changes dependent on the complexity of the system and the change needed. In order
to estimate the effort of change needed in a system, the complexity of change included in a
system have to be estimated. Halstead model [87] [88] is used in this thesis to estimate the
complexity. Halstead model is in use since years to estimate the complexity of software code
[88]. Halstead´s metrics is based on interpreting the source code as a sequence of tokens and
classifying each token to be an operator or an operand.

The effort to implement (E) or understand a program is proportional to the volume (V) and to
the difficulty (D) level of the program is presents in equ. 3.1

E = V * D equ. 3.1

Equ. 3.1 could be used to estimate the effort for development of system contains several mod-
els. The effort of change in a module is estimated as in equ. 3.2:

Effort = Complexity x Weight [hour] equ. 3.2

In order to use Halstead model in estimation of software effort in a project, the metrics could
be obtained as equ. 3.3

Complexity = (N1+N2) ∙ log2 (N3+N4) equ. 3.3

Where:

N1: Number of component

N2: Number of input for Module

N3: Number of different component types

N4: Number of output for Modules

Change request and defect in a software depending on the system complexity, the number of
modules in the system and the interfaces among the modules in system to be changed. There-
fore, a change in module leads to different changes in other module because of their depend-
ability on each other and the interfaces among the module. The DSM matrix present the com-
plexity and the connectivity among the different modules in system. The complexity of each
module have to be estimated with Halstead model as in equ. 3.3.

The effort of change in a module is estimated as:

Effort = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 x 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 [ℎ𝑜𝑜𝑜𝑜𝑜𝑜] equ. 3.4

3.1.3.2 Weighing of change
Industrial software development have to ensure the quality and more different metrics in soft-
ware before release the software and the product. Several processes have to be used to cover
all-important properties of the product. The development could be done in different phases by

3.2. Development approach in this thesis

40

different teams. Adapt new change request in a software system could have huge effort more
than the effort need for code implementation. Estimate the effort needed for adapt a change
or fix a defect in software system have to focus on all activities described in the process. Chap-
ter 5 presents and analyses the development process in automotive industrial domain, and
presents a model to estimate the weight of change considering all activities needed as stand-
ard process. This model supports the Project manager to estimate the effort of change in a
complex software. The effort of change in a module is estimated as in equ. 3.4.

This thesis used some standard methods e.g. crosscutting concern and halstead, to build the
estimation system, they were be adapted to this use. A new KPIs needed for the system were
be analyzed and described as a new technique in the thesis. Figure 3.3 described the steps to
estimate the effort of changes in software project, the own technique are bordered with a red
square.

3.2 Development approach in this thesis
Procedure model

The guidelines for designing expert systems [89] is followed in this thesis as a development
procedure. The goal of the thesis is to design an approach whose main application is to support
project managers and process owners in making decisions related to the effort and cost esti-
mation of software change. Figure 3.3 shows the procedure used in this thesis to build the
model.

The definition of the problem is the first step toward having the model. Analyzing the problem
helps to have the key performance indicators (KPIs) which need to define the problem. The
problem definition of the models described in this thesis are derived from the research goal
defined earlier in section 1.2. The Goal Question Metric (GQM) approach [90] and crosscutting
concern described in section 2.2 have been used to systematically identify relevant KPIs of the
model and their relations. According to that the problem definition includes its purpose, object
of interest, issue and user’s point of view. Based on the problem definition KPIs and their rela-
tions are used to build the structure of the model.

Internal sources within the specific automotive engineering environment has been used to ob-
tain the model data. The main data source used is the change and defect management system
which used to trace all changes and their specific information. A change request have to sum-
marize all developed artifacts needed to realize this request of a feature. Process documenta-
tion and expert knowledge have been used as a further internal sources. Because of confiden-
tiality of data used for build the model, the data has been made anonymous.

The Model is created and simulated with expertise in multiple fields, in order to establish a
deep understanding of the model’s domain, as first. Second, the discussed problem has ana-
lyzed and understood including its Key Performance Indicators (KPIs) and the relationships
among these KPIs. A deep automotive expertise is demanded here, to be able to map the
problem definition from theory to practice.

3. New Estimation Approach

41

Figure 3.3 Model Development Procedure

To generate the KPIs and the relationship among them, a huge dataset is needed. These data
are mostly gathered from:

• Internal sources: In the automotive industry, the data management system, including
the change and defect management system, stores all change-specific information.
Different change management system for three different automotive projects were an-
alyzed in order to get the specific KPIs used in real life project.

• Expert knowledge: project managers and developers are the best experts working on
the project. Expert knowledge is accumulated and collated via multiple discussions
and discussion matrices filled out by the experts to generate a dataset of expert
knowledge which can be used in the model.

• External sources: several studies and publications provide theoretical knowledge
about the system.

Finally, to understand the consequences of data combination and the effect of data on the
results, a statistical knowledge is required. Multiple iterations were required to design the mod-
els and fulfil all requirements from the fields mentioned above. And multiple scenarios were
defined and analyzed to reflect different aspects of the problem definition. A model validation
has been done as a last step.

3.2.1 Build and simulate the approach
Safety and quality are important requirements for software development in the automotive do-
main. To ensure these requirements are met, different norms and standards must be satisfied
during the development lifecycle. The goal of this thesis is to build a system to support and
help the project managers in their decisions. To achieve this, a large amount of data about the
software changes are needed, these were be obtained by analysing different database of soft-
ware changes systems and several experts in their specific areas. The system should be able
to support the decision from multiple domains; therefore, a specification of multiple domain-
related are needed. To exchange information among these domains, a domain specification is
needed. The system should be able to trace every change in the system throughout the project
development lifecycle and document the reason for every changes in terms of feasibility, im-
pact on other components, risk, effort, and schedule. The system should be testable. A verifi-
cation of the system was described and taken into account during its design. To test the sys-
tem, all KPIs and their relationships should be verifiable, meaningful, and measurable.

Automotive software engineering is complex. Any model requires the following features:

3.2. Development approach in this thesis

42

- The ability to combine different data to reach a single decision.

- The ability to describe the interfaces among the system components.

- The ability to estimate incomplete data.

These requirements are not typically supported by traditional modelling techniques.

3.2.2 Model validation
The evaluation criteria in the thesis are based on existing studies [91] [92] and the available
experience in the company with resource estimation methods. A general definitions has helped
to structure the team discussion and evaluation of existing resource estimation models and
methods. Table 3.2 gives an overview of three categories of evaluation criteria [70]:

- The first category is related to criteria for assessing models and their estimates
(Model and Estimate Criteria).

- The second category of criteria deals with the process to build the final estimate (Esti-
mation Method Criteria).

- The third group considers the applications of an estimation method (Application Crite-
ria) to obtain a final resource expenditure estimate.

Model and Estimate
Criteria

Estimation
Method Criteria

Application Criteria

Quality of model and estimate Assumptions Application Coverage
Inputs required Repeatability Generalizability
Completeness Complexity Comprehensiveness
Type of estimates Automation (Modeling) Availability of estimates
Calibration Transparency Automation (Method Usage)
Interpretability

Table 3.2 Evaluation Criteria for Cost Estimation Methods

• Model and Estimate Criteria: The category consists of criteria that are important when
trying to assess an estimation model or technique, and its estimates. The main related
questions are the following:

- How good is the model’s predictive accuracy?

- What are the required inputs?

- What kinds of resource expenditures are estimated?

- What kinds of estimates are produced?

- Can the model be calibrated?

- Is the model interpretable by software practitioners?

• Estimation Method Criteria: This category deals with the estimation method as a whole,
producing a final estimate, possibly based on a combination of estimation models and
techniques. The main questions covered by this category are the following.

3. New Estimation Approach

43

- What are the main underlying assumptions made by the underlying estimation
model(s) and how realistic are they?

- How repeatable is the process to derive an estimate?

- How complex is the method to apply?

- To which extent is the model development supported by a tool?

- How transparent is the estimation method?

• Application Criteria: This category focuses on the applicability of a model with the help
of a model application method. The main related questions are the following:

- For which purposes can an estimation model be applied?

- In which context can the estimation method be applied and was applied to date?

- For what purposes can the model be applied?

- How early in the lifecycle can a model be applied?
These validation techniques were considered to test the prototype to cover different aspects
of validity. Different finding which do not affect the system specification were fixed directly.
Other finding were covered as High Level Validity, Subsystem Validity and Input-Output Com-
parison described in the following subsections. With this validation we ensure that the structure
of the model allows to support the decisions which have been specified during Design of the
Expert System in order to ensure that the model supports an expert as he expects it to be. The
internal validity of the model focused in the next step. The Model is divided into sub-models.
Each sub-model is defined as a function of its input, which is the output of other sub-model. It
is defined how a specific group should respond as part of the system.

Finally, the model is tested as a system. Comparable to the subsystem validity, the overall
decision support system can be seen as an output based on a function of its input. For different
input and output data, the system's decision and the expert's response to the input data will be
compared. This validation will employ different technical knowledge [93]. A large amount of
input data will be used to ensure the goodness of fit of the system by comparing the output
with available expert data.

3.2.3 Refinement and generalization
After building the prototype, it was necessary to refine the data. Some features used in partic-
ular subsystems proved helpful in other parts of the system. Generalization and characteriza-
tion techniques were used here. In this phase we found it necessary to refine and calibrate
some parts of the system and fix various defects. After the refining phase, the model was
rebuilt. Some refining was conducted following expert and user feedback. Major corrections
and enhancements were integrated during this phase. Several iterations were run to build the
expert system.

4.1. Data Analysis Model

44

4 Data Model Analysis of Real World Automotive Software
Projects

The model for software cost estimation as presented in the last section needs to be qualified
and parameterized. The data base for the qualification of the model has been collected from
different resources. Therefore, the data presented here is focused on industrial projects with
their defect and failure rates. The analysis of this data is considered depending on the devel-
opment process and development phases. The analysis of data leads to the classification of
the features of the developed software and the failure effort factor. The following three para-
graphs briefly describe the data that was collected and analyzed.

• Internal data

One important parameter of automotive products is the quality. The automotive software is
developed with different processes to obtain the desired quality. To guarantee the required
quality level, there is a demand for a process of the development lifecycle dealing with change
requests.

Change requests are captured and managed with software change systems. Here, three da-
tabases of software change systems were analyzed with different projects. This database con-
tains all information data about the changes in the software and the phase of development
where these defects were generated. They describe the development chronology of each re-
quirement in different phases of the development lifecycle and contains information about
every change in this requirement depending on a defect or customer change request. This
database contains full information about each software part from start with the requirement
management to deliver/ realize this requirement including all test levels and all other formal
and non-formal documentation required in the development and release processes of the soft-
ware to customers. The above mentioned data has been anonymized for reasons of confiden-
tiality and will be referred to as “internal data”.

• Expert Knowledge Data

A lot of important data is knowledge experience of the software developers and the project
managers in each company. Such data could not be found as an internal database in a change
request. The difficulty of rework and how it is estimated is one kind of data that cannot be found
in a change request process. Therefore, this data has been accumulated from the project man-
agers and stakeholders as expert knowledge data. This information was collected and will be
analyzed in this section accordingly.

• Experiments and External Data

Different research studies and experiments were analyzed to identify the key performance
indicators (KPIs) concerning the effort of software development and their effect on the
changes. Some experiments were conducted to analyze and classify the KPIs used to build
the system. A lot of other data was collected by a literature analysis and some closed research
studies.

4.1 Data Analysis Model
Automotive software development projects use change request processes. As result of such
a process many data items are stored. This “internal data” describes the data types and the

4. Data Model Analysis of Real World Automotive Software Projects

45

relation among this data throughout the system. Collecting and analyzing this data leads to
illustrating different characteristics of the software process. The four most important data item
are as follows:

• Feature change rate

• Change category

• Change effort for each task

• Type and priority of defect and defect correction to be described as defect analysing

Figure 4.1 Change Request Status

4.1. Data Analysis Model

46

Figure 4.2 Defect Status

Figure 4.3 Priority Status

4. Data Model Analysis of Real World Automotive Software Projects

47

To ensure the quality of the product (e.g. automobile component), a large number of manage-
ment systems and tools are used. The projects analyzed here were developed with different
development process lifecycles. Agile development was used in some of these projects and
traditional waterfall in others. The requirement management system (RM) was used for re-
quirements representation and their status. The change request management system (CQM)
was used for change management in system. The CRM is a system to register every change
request (CRQ), bug fixing and defect change in the system. The CRM system contains all
information about the development and the changes of each feature in the software project.
CRM contains a lot of information about the defects in software, where the defect is originated
and where it was detected, the deadline for fixing it and the effort needed to correct the defect.

It is important to support full traceability in the forward and backward direction for the develop-
ment system from the requirement analysis phase to the validation phase, including all needed
documentation. The risk management and quality are very important metrics in the develop-
ment lifecycle and should be included in the traceability matrix of the data. CRM data can be
classified into three categories depending on their required change management (CRM):

• Change request status as shown in Figure 4.1: describes the development states of
change in requirement, as adding a new requirement, modifying or deleting an existing
requirement. This information is needed for getting the development effort of the
changes.

• Defect status as shown in Figure 4.2: describes the Failures or bugs in the Feature.
These data contains important information about the failure effort, the phase where the
failure detected, and the phase where the defect would be corrected (phase of correc-
tion).

• Change request priority as shown in Figure 4.3: describes the priority of each request
and set a measure for the project deadline.

• Defect correction: describes the change of software to correct the defect. This contains
the effort of correction.

Figure 4.4 Defect CRM System Example

Figure 4.4 illustrates a defect change management system in CRM. Different information have
to be fulfilled here. The effort for correction and test have to be estimated (2. and 3. in Figure
4.2). The defect injection (middle left in Figure 4.2) represents the phase where the defect is

4.1. Data Analysis Model

48

originated, and the defect detection represents the phase where the defect is detected. The
software component that includes this defect is declared as a component name and its de-
scription.

Figure 4.5 illustrates the data measurement concept in the model. Every node has a relation to
the feature it describes. A feature is related to one or more requirements, whereas every re-
quirement is related to exactly one feature. The nodes change, defect analysis and defect
fixing also relate to exactly one feature. There is at least one change related to a feature in the
sense that the measurement concept needs at least one data point to be applied to. Features
might have zero defects and therefore no defect fixing nodes related to it. But if a feature has
defects there is always a defect analysis node describing the defect and, in case it can be
fixed, a defect fixing node describing what needs to be fixed to remove the defect.

Figure 4.5 Measurement Concept

A change could be required because of development activities or defect correction activities
which is an important information to link the effort to different budgets of the project. The data
set includes all information about the effort as an estimation prior to executing the change
request, and the effort needed to develop or correct each change after the change request
was closed. This effort of development or correcting a change request is described in this
thesis as Effort of Development/ Defect Correction (EoDC) including the relation to the re-
leased feature and the change effort.

4.1.1 Change Effort Categories
Software change requests have different scopes and categories depending on the importance
and size of the changes. The CRM categorized according to the importance and size and
technically realized with attributes in the data set.

To ensure the quality of the software part in the RCM different activities have to be planned
depending on the category of the change. The categorization used in this model depends on
the purpose of the change and their relation to the development feature, either the change is
related to functionality or not, and the priority of this change which is the main input for the
dead line of it.

Changes are categorized by measurement categories as follows:

- small: effort less than to 8 hours.

- medium: effort between 8 - 32 hours.

- large: effort more than 32 hours.

- other: unclassified changes like architectural changes.

4. Data Model Analysis of Real World Automotive Software Projects

49

- bugfix: The change needed for correct a defect.

The priority of the changes are used to indicate safety critical aspects in the software as well
as their urgency. The priority levels are set to A, B, and C, where A represents the highest
priority and C the lowest as shown in Figure 4.1c.

4.1.2 Change Distribution
Different projects data sets were analyzed for failures in different phases of the software lifecy-
cle. Figure 4.6 illustrates different change requests in one of the projects with its development
and bug-fixing effort used. The project development change request effort was 2147 hours and
the correction change request effort during the project lifecycle was 1262 hours, the complete
change effort was 3409 hours. The number of changes request were 254 development
changes and 178 defect changes with cumulated number of change request of 432.

Figure 4.6 Defect Distribution over Effort and Number of Changes

The results of this project sample is an average overall change effort is 7.89 hours per change.
The average development effort of each change is 8.45 hours per change, and the average
correction request effort is 7.09 hours per change. Table 4.1 shows the calculated result
ranges. Figure 4.5 presents the distribution of CRQs from the full changes, and the effort for
the data-set respectively.

No. of total changes 3409
Total effort 432
Average effort/change 7.89

No. of Development changes 2147

Development effort 254
Average development effort/change 8.45

No. of defect changes 1262

Defect effort 178
Average defect effort/change 7.09

Table 4.1 Development and Correction Effort

The category of each change in the data set used were 172 small changes, 37 medium
changes, 9 large, 36 other and 178 defect changes. The change dispersal could be classified
to 40% ~small, 9% ~medium, 2% ~large, 8% ~other and 41% correction-changes.

0

500

1000

1500

2000

2500

Development Bugfix

E
ffo

rt

0

50

100

150

200

250

300

Development Bugfix

N
um

be
r o

f c
ha

ng
es

4.1. Data Analysis Model

50

Figure 4.7 Change Request Distribution Based on Number of Changes

The resulting efforts from the data-set analysis are ~805 hours for small, ~587 hours for me-
dium and ~377 hours for large changes. “Other changes” demanded 276 hours, and the cor-
rection effort demands 1202 hours.

Figure 4.8 Change Request Distribution Based on Effort needed for Change

Table 4.2 illustrates the size of change requests and the effort needed in order to complete
them with respect to their categories and to the average of each change category. The changes
of the class small represent 40% of the data-set entries and 27% of total effort result in the
deviation of 13%. The class medium shows 9% of total changes and 18% of effort obtained in
the deviation of 9%. The large changes shows 2% of total changes and 11% of total effort
obtained in the deviation of 9%. The other changes have 0% deviation, and the number of
change and their effort have the same percentages of 8%. The correction category in the data-
set has 41% of the entries, and shows 36% of total effort, 15% deviation.

The priority of the change request represents the deadline and pressure of this request to be
completed. Figure 4.8 illustrates the change requests distribution based on their priorities.

4. Data Model Analysis of Real World Automotive Software Projects

51

Type No. of changes Effort Deviation

Small 40% 27% 13%
Medium 9% 18% 9%
Large 2% 11% 9%
Other 8% 8% 0%
Correction 41% 36% 15%

Table 4.2 Type Distribution Error

Figure 4.9 Change Request Distribution Based on their Priorities

The effort will be used instead of the number of changes to describe the models in next sec-
tions.

4.2 Feature Classification
The features of software are represented by different functionalities. Each software change is
related to a specific functionality of the software and a feature. The functionalities of the soft-
ware are grouped in different features, each with its data. Automotive software is a multi-layer
structure software, with the architecture based on AUTOSAR architect [94]. The commonly
features (here laers and components) are:

- MCAL. Microcontroller layer, deals with the vehicle's busses and hardware.

- SRV: Service layer, present the Interface from MCAL and an upper layer of software
(RTE and HMI), this layer included the Bus configuration drivers.

- HMI. Human machine interface, Interface from MCAL/ SRV to upper software layer.

- RTE. Run Time Environment, Interface between Application components to HMI.

- APP: Application component.

4.3. Failure Effort Parameter (FEP)

52

Analyzing the data set shows that the different features of software have different rates of
failures and defects. These differences are due to different aspects of the features. One im-
portant aspect is the requirement complexity, as well as interfaces to other features, imple-
mented code complexity and the safety-criticality level of the feature. Due to these differences,
an overview on the whole project is needed. A good traceability matrix includes most parame-
ters, which has a major effect on the software that should be built and used in the project. To
optimize the change of software process and quality, an assessment of the effect of correction
of the defect and their effort is needed.

4.3 Failure Effort Parameter (FEP)
Automotive project is a long-life development product with a high safety-critical condition soft-
ware; therefore, a high-level quality is required. Due to the dynamic demand of automotive
domain, there is a continuous need to rework the requirement of the software owing to some
change in the requirement itself or a change in different feature, which has an interface to the
feature of a specific requirement, or alternatively due to fix a bug in the product that needs a
change in feature and requirement. In order to ensure the functionality of the system with a
high quality in a complex system like the automotive systems there is a need to deal with a
large number of CRQs. The effort needed to complete these CRQs will be included in the total
development effort of the system.

The effort needed for correction of the failure and defect in software could be derived from the
rework of the requirements and features in the software, whereby a defect and failure rate
could be analyzed and calculated from the total rework of the software project. Automotive
software is developed by using a develop process and a developed framework to satisfy their
requirements with specific quality needed. V-model and agile developing techniques are
mainly used with automotive software development. The system and software will be devel-
oped in several phases of the software lifecycle. A software defect deals with each failure in
each phase during the development of the software. Some failures could be detected in the
same phase of development where the failure is generated by having the quality assurance
activities in this phase, whereby the effort to fix such a failure will be small compared with other
failures detected in different phases of the development phase lifecycle to where they are gen-
erated. These failures will need more activities to be fixed, such as an analysis and rework of
other levels where the failure is detected. The effort of correction of software is increased when
they are detected later due to the analysing effort, tools handling, test and integration. In order
to avoid an extra effort of correction, different quality assurance activities are needed and a
good traceability system should be supported during the development. The effort needed for
software development can be classified into two types of effort, namely the effort needed to
develop the software (DevE) and the effort needed to correct the software defects and failures
(SCE). These parameters help to calculate the failure effort parameter (FEP) as in equ. 4.1.

FEP = SCE / DevE equ. 4.1

Where:

SCE is Software correction effort, is defined as correction.

DevE is effort needed for software development, applies to changes of categories (“small”,
“medium”, “large” and “other”).

The Size of software, the complexity of software components and the interface among the
different parts of software affect the effort needed to correct the defects and failure in software.
The automotive software project have high development efforts because of their safety critical
characteristics, and they have a high complexity of the features. This increases the effort of

4. Data Model Analysis of Real World Automotive Software Projects

53

software defects and failure corrections. FEP represents this relation. For data set used in this
chapter, according to equ. 4.1 the FEP results to:

FEP = 1262 / 2147 = 0,587 equ. 4.2

An FEP of 0.587 indicates less correction effort than development effort. With a FEP value of
greater than one, a company spent more effort for correction than for the development. Based
on the experiences with the industrial projects a FEP in between 0,2 and 0,6 is acceptable.
Values of greater than one are a string indicator for a re-structuring or re-development of a
software.

Category MCAL

HCC RTE[h] APP[h] SRV[h]

Development effort [h] 496 694 173 657 127
Defect correction effort [h] 436 707 67 44 8
DCF 0.88 1.01 0.38 0.07 0.06

Table 4.3 Defect Effort Parameter

Figure 4.10 Change Request Effort Distribution over Features

Figure 4.10 illustrates the distribution of SCE based on the different features in the software
projects analyzed. The different features represent different relations between the effort
needed for software correction and the effort needed for software development. Different fea-
tures show different values of SCE compared to the effort needed for their development. The
microcontroller layer (MCAL) with a development effort of 496 hours and an SCE of 436 hours
has, an FEP of 0.88. HCC presents the development effort of 694 hours and an SCE of 707
hours, leading to an FEP equal to 1.01. The complexity of HCC development is higher than its
maintenance effort. The service layer (SRV) presents a lower FEP of 0.06 obtained from the
development effort of 127 hours and the effort for correcting the defection of 8 hours. The SRV
features used a generator tools, the defects were injected because of a wrong understanding
of requirement or defect in the requirement analyzing phase.

4.3. Failure Effort Parameter (FEP)

54

Category MCAL HCC RTE APP SRV

Development effort 496 694 173 657 127
Correction effort 436 707 67 44 8
FEP 0.88 1.01 0.38 0.07 0.06

Table 4.4 Effort Distribution over Different Features with Different Complexities

In [95] a system has been developed and used to identify the KPIs needed for SCE prognosis.
The experiments were conducted with different 20 participants out of the development team.
The main point discussed in the experiment was to analyse the effect of time pressure on the
average rate of software defect, as well as studying the effect of the code generator tool on
the cost of software. The experiments were conducted in an automotive domain, using the
automotive tools for requirement and quality management.

 Deadline pressure

Measure High Medium LOW

Min. 1 0 1

25% 3 5 1

Medium 4 6 1

Mean 4 5 2

75% 5 7 4

Max. 6 7 5

Standard deviation 2 3 2

Variance 3 11 4

Table 4.5 Number of Defects over Deadline Pressure

5. Development and defect correction KPIs

55

5 Development and defect correction KPIs
As shown in the last section, the effort of software development in automotive domain in-
cludes the effort of software development itself and the effort of software defects correction.
This chapter describes the Key Performance Indicators (KPIs) needed to estimate the devel-
opment effort needed and the effort of defect correction during the development lifecycle. Af-
ter identifying the KPIs that affect the rate of defects in a software product, a software pro-
cess model (SWPM) and a flow of correct cost (DCF) model are presented to assist PMs in
their daily work. These models are be built and tested. The use of the models are described
and analyzed with the results presented in the results section.

5.1 Process model for software development
Automotive software release include several changes, as illustrated in Figure 5.1. Each of
these changes will affect product and process factors and has its own probability of causing
a new bug or defect. The effort needed to manage software defects and bugs during the de-
velopment lifecycle is an important parameter that affects the total software effort and cost.
The SWPM helps to optimize the estimation of effort needed to correct software defects in a
project, as well as helps project managers to finally make their decisions.

The model of this thesis is built with a dynamic structure, whereby this structure offers a pos-
sibility to deal with and analyze the effect of changes on the product and the process of de-
velopment over time and helps to improve them. This can help project managers to estimate
the effort needed for the current and future phases of the development lifecycle. Having an
overview of all changes to the system and the effects of each change made during the differ-
ent phases and releases of the software will give managers a better overview of the system's
complexity and help them to make better estimates [96].

Figure 5.1 SW Releases

5.1. Process model for software development

56

Figure 5.1shows the change request in a real software project during the development lifecycle. 512
changes were fixed and 147 changes were cancelled and rejected after analyzed during this time.
These activities affect the total cost of the product and need to be estimated carefully.

5.1.1 Problem Definition
The model of this thesis has been developed to estimate the effort of defect correction in re-
lation to the development effort for a specific feature of a software product, e.g. the Human
Machine Interface (HMI) based on Autosar [24]. SWPM is intended to be used in a number of
analyses to support the project managers to plan or asses their software project. The major
advantage of SWPM is its capability to take KPIs into account having a significant influence
on the estimation variables, i.e. effort of development and defect correction. It incorporates
product, project and process information in form of objective data (e.g. process metrics) and
subjective data (e.g. expert knowledge) in a causal relationship.

Figure 5.2 Autosar Software Layers [24]

The new estimation model introduces parameters and factors that affect the effort needed to
finish a project. The parameters and factors in the estimation model can be divided into five
categories:

1. Process effort: the effort needed for process activities, and the maturity level used.

2. Product effort: the effort needed for documenting quality and other different engineer-
ing artifacts.

3. Project effort: the effort needed for project.

4. Change effort: the effort needed for changes to be developed.

5. Test effort: the effort needed to integrate and test changes.

The analysis of the effort needed to correct the software defects (SCE) in last chapter
showed the effects of defects on the total software effort. Thus, the total engineering effort of
a product is a combination of development and change efforts, refined the above five catego-
ries. Figure 5.3 illustrates the process of release planning, including effort estimation, which
the SWPM structure is based on.

5. Development and defect correction KPIs

57

Figure 5.3 Effort Estimation Process

The overall product requirements are divided into number of features, where each feature
has a unique characteristic. The process begins by analyzing the requirements for each fea-
ture. The changes were be planned to define the release packages and trace it. To predict
the effort needed for each software change, we have to consider all KPIs for each change
and analyze the effort needed to address the change by adapting the software. Only then
can we estimate the total development cost with a high accuracy.

5.1.2 KPIs and Relationships among them
The software metrics approach using the goal question metric (GQM) has been studied by
Viktor Basili [90] [97]. The GQM approach was used to identify the traceability of the system
components and their relation. The GQM approach was used because a similar matrix al-
ready existed for the system from the failure mode and effects analysis (FMEA) [96], which is
a mandatory part of the development process for automotive software, as illustrated in Figure
5.4.

Figure 5.4 Example of FMEA

The Goal Question Metric (GQM) approach was used to identify relevant KPIs of the model
and the relations among these KPIs. These KPIs were derived from the problem definition

5.1. Process model for software development

58

which is broken down into its major components for further characterization. The questions
were used for the refinement including the questions of project managers to understand the
problem. There is a set of metrics used to characterize every question. Metrics represent a
model to measure properties of any engineering artifact, KPIs in SWPM respectively. The fol-
lowing enumeration holds a set of questions (Q) along with their metrics (M) characterizing
the goal of SWPM, as shown in Figure 5.5.

Figure 5.5 GQM Model Hierarchical Structure [90]

The most important Qs with their M and G are represented in Table 5.1:

Q M

Feature difficulty? M1 feature difficulty. Difficulty of feature needed different effort?

M2 feature volatility. The possibility of requirement change?

M3 feature complexity. Difficulty of requirements of feature?

Engineering effort? M1 engineering effort. The effort needed for developing a single
change including all test activities

M2 type of change. Change level describing its complexity.

Potential effort for
correction?

M1 effort of correction. What's the potential-effort needed to fix require-
ments aberration?

M2 development effort. What's the needed effort to complete a
change?

M3 defect cost parameter. What's the indicator of a feature-error?

M4 effort to correct a defect after testing. What's the residing defect
correction effort need after complete a change.

Potential failure
correction-effort?

M1 testing effectiveness. Defects found by test.

M2 effort of testing. Test effort needed after implementation.

M3 test ratio. Test-effort comparing with development-effort.

M4 test payoff. Defect detection potential. The quality of test activities?

M5 defects found. Reduce the correction effort of software defects.

5. Development and defect correction KPIs

59

Product factors? M1 product factor. Using the existing product as a base for new devel-
opment.

M2 documentation quality. Understandability of the product devel-
oped.

M3 code quality. Understanding, Changing, Enhancing the existing
code base.

Project activities? M1 deadline pressure. Different kind of pressure during the develop-
ment cycle, shouldn’t effect fixing change within a specific time frame.

Process activities?

M1 process activities. Measurement of less error-prone engineering.

M2 process organization. Maturity-level of the organizational process.

M3 process application. Implementation.

Table 5.1 GQM for Software Change

5.1.3 Estimation Model
Building a model to help project managers and decision-makers to make their decisions re-
quires wide knowledge of the development phases to be included in the system. Including this
huge amount of information in a system increases the complexity of the model. The require-
ment and design of the software are mandatory information for the model. The goal of the
model is to describe the system as a network. It should be represented as a cause-and-effect
chain, with all system components and their interrelationships. The crosscutting concerns net-
work illustrated in section 2.2 is used to model the system, and the continuous iteration of the
network allows different parameters to be calibrated. Representing the system as such a net-
work requires system design knowledge.

Figure 5.6 System Architecture

Knowledge about the development process must also be used to develop the network, due to
the effect of the development process on development effort. This knowledge of the develop-

5.1. Process model for software development

60

ment process can be supplied by the Project manager. The different phases in the develop-
ment lifecycle, the requirements, feature design, module design, implementation and validation
and verification phases should all be described in the system, with sufficient traceability to track
each change both forwards and backwards. A traceability matrix will be built to include this
knowledge and all other documentation for the tools, risk management and other documenta-
tion needed. Figure 5.6 provides an overview of the system architecture and the development
phases from the requirement level to the implementation and documentation level.

Figure 5.7 shows the main part of the estimation model. The necessary KPIs are represented
in the model as nodes, with the edges between the nodes representing the cause-and-effect
approach [98]. The model is divided into five categories to represent all KPIs in the change
model, namely change parameters, test activities, product parameters, process activities and
project parameters.

5. Development and defect correction KPIs

61

Figure 5.7 Software Process Model

5.1. Process model for software development

62

5.1.3.1 Model calibration
After gathering the information needed, the SWPM was built. To set the different values for the
model parameters, calibration nodes were added to the estimation model to ensure the ex-
pected result. Figure 5.8 shows the setup of the model process. Different KPIs needed to be
calibrated to achieve an accurate estimate of the software development effort.

Requirement analysis is the first phase of the development lifecycle, where software require-
ments are analyzed and classified as input for the next phase. The requirement analysis is
represented as an entry node in the model. The requirement classification leads to the features
analysis, where the features are categorized and classified. In this phase, the complexity of
the features is assessed, which requires expert knowledge. This information can be gathered
from old projects with similar development environments, and some other knowledge will need
expert knowledge in the first model setup step. The old project data and experiences help to
illustrate the change distribution of different system features. These experiences can be used
as a basis for estimating the degree of the crosscutting network. Other features could share
similarities with previously-developed features. The experience from these features could be
helpful here when considering the new characteristics of the project requirements.

Figure 5.8 Software Process Model Setup Overview

A lot of information about the system architecture is needed to build the model; therefore, the
system needs a traceability matrix to provide an overview of the software architecture and
helps to establish the nodes and their connections. To establish the change model, the change

sd Dynamic View

Requirement
analysis

Belief Net
calibration

Change
calibration

Belief Net
Submodel

Belief Net
calculation

Result analysis

Template change set
Project parameters
Process activities
Test activities

Calibrated
simulation

Calculated
simulation

Hesterical
data

defects effort
parameters

crosscutting change
model

calibrated model
change

add to continous
crosscutting matrix

5. Development and defect correction KPIs

63

distribution parameters, project parameters, process and test activities were used. The param-
eters were initially defined via template values defined by a change distribution list. This tem-
plate list was used for small, low complexity changes to features. The project parameters de-
scribe the effect of source code and documentation on the project as artifacts of engineering
quality. The environment of the project is represented as process activities and test activities.

After establishing a network for each model in the system, a continuous network was created
for the whole project. This network was improved by iterating several times over the defined
changes. After establishing the continuous network for the system, we started to run our cal-
culations. These calculations were performed for every model in the system and for system as
a whole. The result of this calculation was stored in the simulation environment for every model
network and every change for every KPI. This will allow managers to see how the estimated
values evolved over time.

5.1.3.2 Change parameters
The relationships between different changes to specific KPIs are known as change parame-
ters. One of the most important parameters is the complexity of the feature, which is influenced
by the feature characteristics. This complexity of the feature depends on the difficulty in meet-
ing the associated requirements; therefore, it is necessary to complete requirement analysis
carefully to obtain better features. Feature complexity must be classified into different levels of
complexity to secure a better estimation of change. This should be done via the requirement
management system. Feature complexity was classified into three levels, namely low, medium
and high.

Feature complexity is a very important parameter as it affects the software correction param-
eter. Low complexity features have low correction parameters, while features with high com-
plexity have high correction parameters. The process activities and project engineering envi-
ronment quality will both affect feature complexity. Figure 5.9 illustrates the change parameter
and its influencing parameters.

Figure 5.9 Change Parameters in Software Process Model

sd Dynamic View

Development
effort

Feature
volatility

Feature
difficulty

Testing effort Engineering
effort

Change type

defect cost
factor

Feature
complixity

Change parameters

Correction
effort

Process
Activities

Project
deadline

Test ratio

5.1. Process model for software development

64

The main affected change parameter is the feature complexity which depended on the feature
difficulty and volatility, these are used as calibrated nodes for this parameter. The second pa-
rameter is represented as engineering effort which included all activities because of the
change, i.e. change type, defect cost factor, test and correction effort. The model was cali-
brated using different datasets. Some of this data was based on statistical data derived from
project data from old projects, while others was based on expert knowledge and literature.
Feature volatility and complexity were calibrated using the expert knowledge available within
the organization. Table 5.2 illustrates a data analysis to describe the complexity of features
used. Defect and bugs parameters were found from internal data.

Table 5.2 illustrates that HCC development has the highest FEP due to its high volatility and
complexity. MCAL follows HCC with medium volatility and high complexity. RTE has a com-
plexity factor but low FEP, due to the use of a high quality code generator tool. APP and SRV
exhibit low FEP. The type of change can be derived from feature complexity. Low complexity
features affected low effort maintenance parameters. Higher complexity features caused more
development effort requiring greater change effort.

Table 5.2 Features and FEP

The type of change is an important parameter for deriving average engineering effort. This
involves all change activities, including requirement management, design, implementation,
and testing. Table 5.3 illustrates the effect of change type on engineering effort for different
components included in our dataset.

The change within a feature's FEP need for information about the ability to have the effort
needed to correct the software from the engineering effort. The estimation presents the effort
needed to correct the software by changing implementation. This is the basis for the potential
average number of defects found by the test activities.

 Feature complexity

Type of change Low Medium High Engineering effort

Small 63.27% 28.50% 19.00% 6.44
Medium 6.18% 17.85% 12.00% 21.50
Large 7.42% 1.00% 3.50% 56.00
Other 11.87% 6.24% 9.00% 9.72
Bugfix 11.26% 46.41% 56.50% 20.00

Table 5.3 Effort Change Distribution

5. Development and defect correction KPIs

65

5.1.3.3 Process Activities and Project Factors
Process organization and process application represent the maturity level of an organization
and its application [99]. It is a measure described the capability of the process activities to
ensure the continuous development of high quality products. Figure 5.10 illustrates the part of
the process model that describes the influence of process activities on the effort needed for
software correction.

Figure 5.10 Process and Project Activities in Software Process Model

The process deals with the organization norms and standards, which have an impact on soft-
ware effort. Due to the continuous demand for shorter development cycles, product deadlines
strongly influence software costs. This important effect is described in the process model in
Figure 5.10 as the “project activity”.

Various data from real projects with different parameters was analyzed to set the value of these
parameters. Table 5.4 shows the results of the analysis, highlighting that the high deadline
pressure to complete a CRQ leads to a reduced effort needed for process activities, whereby
the average engineering effort could be reduced by 50% to achieve a desired goal. The priority
parameter for the change request includes the deadline pressure of the project within the com-
pany system. Figure 6.11 present a data set of CRQs from a real project with the effect of
project pressure on the total effort needed for software development.

 Process activities and project deadline

Type of effort Low Medium High
Correction effort 100% 300% 400%
Engineering effort 100% 50% 35%

Table 5.4 Deadline Pressure

The results revealed up to 300% greater effort needed for software correction compared to
ideal engineering conditions. Deadline pressure in a project with low process activities could
reduce the average engineering effort by 35%, although correction costs increased up to
400%.

sd Dynamic View

defect cost
factor

Process
Organization

Process
Application

Process
Activities

Process activities

Project
deadline

Project activities

5.1. Process model for software development

66

Figure 5.11 Priority Distribution during Development Lifecycle

5.1.3.4 Product parameters
The product parameters reflect the testability of the software. These will have a main effect on
the error rate after the phase of testing. High documentation and code quality lead to good
product factors, which in turn lead to better error detection in the software.

Figure 5.12 illustrates this part of the model that describes the effect of these parameters on
the correction effort.

Figure 5.12 Product Parameter in Software Process Model

The risk management and review activities help to secure better product quality. The review
activities are included reviewing the requirements, design and code. Higher effort activities
lead to a higher product parameter, which in turn leads to a higher rate of detecting software
failures and bugs. The experts weighted the minimum effect of these factors in a node, taking
into account the phase of the development lifecycle. Three types of reviews were used to as-
sess the quality of the project. The review type depends on the volatility and complexity of the
change [100]:

sd Dynamic View

Test
effectiveness

Product parameters

Product
factor

Quality of
code

Documentation

5. Development and defect correction KPIs

67

- Inspection: used for high complexity changes.

- Pass around: used for low complexity and high volatility changes.

- Confirmation review: used for low volatility and low complexity changes.

This classification determines the effort needed for review activities. Inspection reviews involve
high effort and must be conducted by multiple reviewers. Pass-around reviews also require
multiple reviewers, but fewer. Finally, confirmation reviews are carried out by a single reviewer
for changes needing less than eight hours to be corrected.

5.1.3.5 Test Activities
Automotive process and work lifecycles devote significant effort to test activities to enhance
the quality of the delivered product and satisfy all requirements and requests. Figure 5.14 il-
lustrates the test part of the model. This part of the model describes the effort needed for
software correction and the factors that affect this effort even after testing the software. The
test phase in the development life cycle detects many failures and defects generated in the
earlier phases, as shown in Figure 5.13. It is necessary to estimate these to get to an overall
product estimate.

Some defects can be found as a part of the estimated software correction effort. These will be
represented in estimated test activity. The test ratio activity represents the engineering effort
needed for this phase. The estimated test and test ratio efforts influence the test effectiveness,
as shown in Table 5.5. The defect rate after test activities is a measure for test effectiveness
for these activities.

Figure 5.13 Test Activities

Test ratio Test/ Engineering effort
Low 10%
Medium 21%
High 39%

Table 5.5 Effort Spent on Testing

Table 5.6 illustrates different detection-rates for all test-ratios and estimated test levels. The
Detection-rates were analyzed using some external data [101] to indicate whether a test is
successful.

sd Dynamic View

Testing effort Correction
effort

Test activities

Estimated
test

Test
effectiveness

Test ratio

Defect fixing
effort after testdefect finding

5.1. Process model for software development

68

Information and expertise was complemented by expert knowledge. The effort needed to cor-
rect defects and failures differs depending on the test level. System test effort is represented
as an arithmetical node which includes the estimated effort for software correction from change
parameters with test activities.

Test effectivity
Test payoff Test ratio Detection rate
Low Low 3%
Low Medium 17%
Low High 28%

Medium Low 6%
Medium Medium 36%
Medium High 55%

High Low 14%
High Medium 62%
High High 84%

Table 5.6 Defect Detection Rates

5.1.4 Model Usage
After being built, the model was validated. Some workarounds were needed to fix parts of the
model to evaluate its performance. The model was evaluated to assess the accuracy of its
estimates and ensure that it would help Project managers with their decisions.

The model was verified via a simulation of different features in a system. The goal here was to
analyze the model's performance in terms of estimating software effort for different changes.
This validation considered the complexity and volatility of different features (MCAL, HCC, RTE,
APP, and SRV). The dataset used to calibrate and validate the model was generated from an
internal dataset.

The model was required to help the Project manager make decisions via accurate estimate.
Therefore, the model was tested in this regard.

This was tested using two test scenarios (S1 and S2) with different conditions. Different fea-
tures were developed with different change requests to reach the specific requirements and
quality desired. The important development features were two features – HCC and SRV – as
part of the service layer, with 30 iterations simulated to represent the change and development
effort. The two scenarios were simulated with different product requirements. To analyze the
effect of the deadline pressure in the project, the first test scenario was done with medium
deadline pressure whereby the developer could take care of all process activities. The second
test scenario was defined after the project deadline had closed, whereby the pressure to com-
plete the activities was high and the developing was done with low process activities and test
activities.

5.1.4.1 Results
Table 5.7 shows the validation output for the model test. Developing the features required
different effort in the process and engineering models. The MCAL feature needed and esti-
mated 237 hours of engineering effort for the process model and an estimated 231 hours of
effort for failure correction. Estimation accuracy was judged based on an internal reference
dataset. The process model achieved an accuracy value of 95% for engineering effort and
96% for correction effort. The estimates for other features also showed good results. For the
features HCC, RTE, and App, the estimation accuracy was over 80%. The estimates for the

5. Development and defect correction KPIs

69

SRV feature were less accurate, at 62% for engineering effort and 25% for correction effort.
The SRV feature is supplied with the project and configured using a configuration tool.

 Estimation Reference Accuracy
Feature Eng. Corr. Eng. Corr. Eng. Corr.

MCAL 237 231 250 223 95% 96%
HCC 281 331 292 352 96% 94%
RTE 123 46 142 34 86% 74%
APP 216 23 268 19 80% 82%
SRV 74 8 46 2 62% 25%

Table 5.7 Prediction Accuracy

Figure 5.14 illustrates the results of the validation of the scenarios S1 and S2. The model used
several estimates for different change requests. 1216 hours and 618 hours of development
effort were estimated for scenarios S1 and S2, respectively.

Figure 5.14 Development Effort

Development for S2 needed less effort because of the lack of quality and testing measurement
activities, as illustrated in Figure 5.15, although deadline pressure was very high. S1 had lower
deadline pressure, therefore all quality and test measurement activities were satisfied. The
software developed in S1 was high quality, resulting in minimal effort needed for correction (52
hours). In contrast, the software developed in S2 needed 1123 hours of correction effort.

5.2. Defect Cost Flow System

70

Figure 5.15 Defect Correction Effort

Table 5.8 illustrates the effort needed to get the product to the same quality level. In S1, the
model estimated 1216 hours of development effort and 52 hours of correction effort, a total of
1268 hours. S2 needed an estimated 610 hours of development effort and 1123 hours of effort
to correct failures and defects, a total of 1733 hours. S2 overran S1 by 447 hours or 25%.

Scenario Dev. Effort Corr. Effort Overall effort

S1 1216 52 1268
S2 610 1123 1733

Table 5.8 Simulation Results

5.2 Defect Cost Flow System
These processes also have to be continuously improved [100]. Quality assurance (QA) is the
most important activity in the process, which ensures the quality of the software. Improvement
activities of the process lead to identifying the optimal QA effort to detect most software defects
and failures. Software product development phases have to ensure the quality in each devel-
opment phase. Detecting the defects in the same phase where the defects are originated is a
goal of each QA. However, the correction of defects especially is more costly if these defects
are detected in a development phase later than the one they were detected in.

The initial problem analysis and definition illustrates different impacts of the defect on the effort
needed for defect correction depending on the phase where defects are originated and de-
tected. It has been recognized that the correction effort for defects that originated in older
development phases than they were detected is higher than the effort needed to correct a
defect detected in the same phase of the development lifecycle. Therefore, to reduce the effort
of software correction, the different development phases with their defects that originated in
the same phase or shifted from older phase were analyzed and assessed to meet all KPIs and

5. Development and defect correction KPIs

71

parameters that affected the cost of software over the development phases. The goal of defin-
ing these KPIs and parameters is to identify and improve the QA effort to improve the quality
of the product with lowest costs.

The DCF helps to have a better estimation with higher accuracy for the effort needed to correct
software. The DCF depends on KPIs that define the product, processes and project parame-
ters. DCF helps to analyze the effort spends on software correction compared with the effort
spent on software development throughout every phase of development lifecycle, which will
help to define the QA needed in each phase.

5.2.1 Problem Definition
Continuous improvement of the development process helps to reduce the effort of the devel-
opment needed to realize the requirement of the feature. Upon first glance, the QA seems to
involve additional effort in addition to the development effort. However, reducing the effort of
software correction leads to an increase in the defect rate in the software and it shifts this effort
to a later phase of development lifecycle, which means more effort to correct these defects.
The problem was having a system able to identify the important optimization of the develop-
ment process, which led to reducing the effort needed for software correction and thereby the
total development effort. The model should be able to identify the distribution effort of QA.
Identifying the QA needed for the system leads to reducing the defects in software and mini-
mizing the correction and rework activities needed to fix these defects. Reducing the correction
activities means reducing the time and cost needed for the project, as well as reducing the
total development effort. Data needed for the model was accumulated and analyzed to define
the metrics and their KPIs, as well as the relationships among these KPIs. KPIs and the rela-
tionships among them were identified by using a list of questions accumulated and analyzed
by using the QSM technique. The most important questions to explain were as follows:

- Development phases quality of development and improving the not necessary rework

- Effort needed for QA-measurements

- Effectivity of QA-measures

- The additional effort needed to correct a failure in later phases

The development effort needed include the effort needed for software correction too. The
model deals with the effort needed for software development including the effort of defect cor-
rection and the QA needed to ensure the quality of the software and satisfying all of require-
ments demand.

5.2.2 Model definition
The automotive domain development lifecycle includes several phases and activities as de-
scribed by using different framework and workflow techniques like waterfall and agile. Software
failures and defects are flowed as shown in Figure 5.17. There are five phases of workflow
used during the development lifecycle, which were built into the model of software failure effort
flow based on the V-Model development process defined in an earlier section: Requirements
Engineering (REQ), Design (DES), Sub-Design (SubDES), Implementation (IMP) and Verifi-
cation & Validation (V&V). The effort needed for failure and defect correction for each phase
is determined separately. Each phase of the development phases need to fix the failures gen-
erated during the same phase or the earlier phases. Therefore, several quality activities are
needed to detect all failures and defects in the software. The ability to detect all failures in the

5.2. Defect Cost Flow System

72

same phase will need a huge effort, whereby some defects are still hidden and shifted to the
next phase of development.

Figure 6.1 illustrates the concept of flowing defects in development lifecycle. There are five
development phases built into the model according to the V-Model development process def-
inition in section 2.1.3: Requirements Engineering (REQ), Design (DES), Sub-Design (Sub-
DES), Implementation (IMPL) and Validation and Verification (V&V) phases. For every phase,
the effort of defect correction is determined separately based on process specific KPIs.

In phase REQ, there is only one possibility to have defective requirements represented by the
node “SW Correction effort after QA”. The QA activities, e.g. requirement reviews, help to re-
duce this effort by detecting the defects and fixed them earlier. The remaining, undetected
defects in REQ phase are handed over to the next phase “DES”.

In phase DE, there are two defect possibilities: one is originating in the last REQ phase, e.g. a
defect requirement leads to a defect design artifacts. The second is the defect introduced in
the DES phase itself represented by the node “SW Correction effort after QA”. REQ defects
are adjusted by its phase multiplier. It represents the effort increasing to correct the defects in
other phase which they are injected. This for example is the case, if the design process has to
be followed twice due to a defective requirement. The phase multiplier varies from company
to company and depends on the development process. The more development phases are
involved, the higher the overall effort needed to fix these defects. There are different phase
multipliers for different phases. Possible QA measures in this phase are design reviews.

In phase SubDES there are three different defect types. The first are defects with their origin
in phase REQ, e.g. a defective requirement passed through the design process on which an
SubDES is based. Second, there are DES defects, e.g. if a defective design is used as basis
for a SubDES. Defects with their origin in phase REQ and DES phases are adjusted by their
specific phase multipliers. And finally, there are defects originating from a defective SubDES.
In this phase typical QA activities are design review reviews.

In phase IMPL there are four different defect types. The first are defects with their origin in
phase REQ, e.g. a defective requirement passed through the design process on which an
IMPL is based. Second, there are DES defects, e.g. if a defective design is used as basis for
an implementation. Third, there are SubDES defects, e.g. if a defective IMPL is used as basis
for an implementation. Defects with their origin in phase REQ, DES and SubDES are adjusted
by their specific phase multipliers. And finally, there are defects originating from a defective
implementation. In this phase typical QA activities are code reviews and several types of tests.

In phase V&V, there are defects from REQ, DES, SubDES, IMPL and V&V itself. This phase
represents final integration and test activities for development artifacts of all phases. This is
the point where the software product is delivered to the customer. The resulting effort of defect
correction after V&V phase represents rework for defects detected by the customer and
thereby the additional effort needed to finish the project.

5. Development and defect correction KPIs

73

Figure 5.16 Development Phases

Figure 5.17 represents the effort needed to correct these failures and defects in software. The
effort needed for correction is presented in the positive axis, whereas the negative axis illus-
trates the residual effort after the quality assurance measures that are shifted to the next
phase.

Figure 5.17 Distribution of Defect Originating and Detected Phases

Figure 5.18 shows 680 hours of potential correction effort still in the software. Through the
review activities and other quality assurance activities, some failures could be fixed, whereby

5.2. Defect Cost Flow System

74

with a high reduction rate of effort needed to correct the defects of 80%, the effort residing
could be reduced to 544 hours. The total effort for REQ phase will be 136 hours. Some failures
could not be detected, whereby the effort needed to correct this nun-detectable will be shifted
to the next phase in the lifecycle, i.e. the DES phase. The shifted defect from REq to the DES
phase will need more effort to be fixed, which means increasing the effort by a factor. The
phase multiplier of the DES phase for the failures shifted from REQ to DES were calculated by
calibrating the model and using experts’ knowledge management to a value of 4; therefore,
the effort needed to correct the shifted failure of 136 hours will raised to 455 hours. In the DES
phase, some of the defects originated in the last phase or the REQ phase are fixed and cor-
rected, whereby 80% of correction effort is needed and a correction effort of 413 hours still
remains in product for this phase and be shifted to the next phase of development lifecycle or
the SubDES phase, where the modules are built for the system. The activities generated in the
REQ phase and shifted to DES and then to the SubDES phase will be multiplied by 5 as a
calibrated factor for this phase. In the SubDES phase, 60% of these shifted efforts could be
fixed, while the rest of the effort is multiplied by the calibrated factor and shifted to the IMPL
phase. Some of these defects could be fixed, whereas the others will be shifted to the V&V
phase. The correction effort will be multiplied by the calibrated factor again before they are
shifted to TST phase. Any other defects found on the customer side will mean a significant
effort to be fixed.

Figure 5.18 Software Correction Effort Distribution

5.2.3 KPIs identification
Different phases of the lifecycle need differing amounts of effort to be spent on their quality
assurance measures, whereby each shift of effort from one phase to other later phases means
increasing the total development effort. An ideal project estimation need to include the effort
of QA and all failures and defects correction into the total development effort. Identifying the
ideal amount of effort estimation including all needed activity efforts needs a system with a
total understanding of the software and the traceability among their components, whereby such
a system could help the project managers to make decisions. Different KPIs are needed to
build an estimation system to deal with different possibilities of changes. The definition of the
measurement categories was used to identify the PKIs needed for the system. The measure-
ment category will be presented by a set of specific metrics. Obtaining these measurement

5. Development and defect correction KPIs

75

categories needs some clarification. Accordingly, a set of questions need to be answered to
understand the problem statement and help to derive these measurement categories.

To identify the KPIs and define a characterization for the model, the answers to some ques-
tions are needed. Table 5.9 shows some question sets that enable us to identify all major
components of the model.

Question Metrics
Effort to correct the
defect

M1: Defect effort-Factor for feature’s error-prone-
ness.
M2: Potential effort of correction needed to correct
the failures and defects.

effort of Quality assur-
ance (QA)

M1: QA effort needed.
M2: Effort needed for QA measures.
M3: decrease the effort needed to correct problem
based on the sufficiency of QA effort.
M4: Remaining effort of correction. The Difference
between effort needed to correct the defect before
and after QA.

Effort raising because
of defects shifting
over
phases

M1: development domain specific factor represent-
ing Additional rework if defects flow over develop-
ment phases.

the overall effort M1: Effort needed for artifact development in REQ,
DES, SubDES, IMP and V&V excluding QA and cor-
rection effort.
M2: total of development, QA, problem fixing

Table 5.9 QGM of Quality Assurance

5.2.4 Model Creation
A model offers help for project managers with their decision, although it requires including a
lot of data and information about the project. This data has to be available in the model to
ensure that it could help during different phases of the development lifecycle. Some necessary
information will be identified by a set of data accumulated from the old projects by using the
change request system, while some others will be identified by the expert knowledge and ex-
ternal data. This information and the answers to the aforementioned questions will help to build
a model representing the KPIs of the system. This information will be accumulated and put into
the matrix networks of the defect cost flow model. Depending on the problem definition, we will
describe the KPIs and put these as nodes into a model including 75 nodes to represent the
five phases of the development lifecycle: REQ, DES, SubDES, IMPL, and V&V.

Figure 5.19 illustrate the model structure analyzed and built, whereby some nodes were used
as calibration nodes to set up the model. The model describes the different development
phases of the software, with every phase including different nodes and their relations. The
model describes the shifted defects from earlier phases to later phases in addition to the de-
fects belonging to the same phase.

5.2. Defect Cost Flow System

76

Figure 5.19 Model Represents the Different Phases of Software Development

In phase REQ shown in Figure 5.20: The development and QA activities have the effective
effort in the phase. The QA goal reduce the defect possibility in the phase by the defect reduc-
tion rate. Other activities are needed to fix the defect detected by the QA activities which is an
additional effort for the total development effort. Defects that not detected in this phase will
shifted to the next phase (DES), the node “Shifted Defects Effort” represent the shifted effort
from REQ phase to DES phase.

In phase DES shown in Figure 5.21: the shifted effort from last phase (REQ) have to multiplied
by the phase multiplier to estimate the needed correction effort “REQ Effort for Defect Correc-
tion”. Additional effort are needed here to deduce the defect rate of the defects shifted from
REQ phase. In this phase a defect rate will produced and need effort to fix them as a part of
the development and QA effort in this phase.

sd Dynamic View

V&V phase

IMPL phase

SubDES phase

DES phase

REQ phase
Optimized
QA Effort

Effort for Defect
Correction

REQ Multiplier
Factor (REQ ->

DES)

Shifted Defects
Effort

Development
effort

QA effort

Development
effort

shifted effort to
SubDES

Optimized
QA Effort

optimizing
QA effort

development
effort

QA effort

REQ shifted defects
effort to IMPL

REQ Effort for
Defect Correction in

DES

Reduction Rate
Effort in DES

optimizing QA
effort

QA effort

effort for defect
correction

REQ defect
effort shifted

from DES

REQ open defects
after QA in

SubDES

shifted defects
effort

DES defect
effort shifted

from DES

multiplier factor for
REQ defect effort
(DES->SubDES)

optimizing
QA effort

DES open defects
after QA in SubDES

DES shifted defect
effort to IMPL

multiplier factor for
DES defect effort
(DES->SubDES)

optimizing
QA effort

shifted
defects effort

effort for defect
correction

multiplier factor for
REQ defect effort
(SubDES-->IMPL)

REQ defect effort
shifted from

SubDES

REQ defect
effort shifted

from IMPL

multiplier factor for
REQ defect effort

(IMPL-->V&V)

REQ open defects
after QA in IMPL

REQ open defects
after QA in V&V

REQ shifted defects
effort to V&V

optimizing
QA effort

optimizing
QA effort

DES defect effort
shifted from SubDES

DES defect
effort shifted

from IMPL

DES open defects
after QA in IMPL

DES open defects
after QA in V&V

DES shifted defect
effort to V&V

multiplier factor for
DES defect effort
(SubDES->IMPL)

multiplier factor for
SubDES defect effort

(SubDES->IMPL)

optimizing
QA effort

optimizing
QA effort

optimizing
QA effort

multiplier factor for
DES defect effort

(IMPL->V&V)

SubDES defect effort
shifted from SubDES

SubDES open defects
after QA in IMPL

SubDES open
defects after QA

in V&V

SubDES defect
effort shifted

from IMPL

multiplier factor for
SubDES defect effort

(IMPL->V&V)

SubDES shifted defect
effort to V&V

development
effort

optimizing
QA effort

QA effort

shifted
defects

effort

effort for
defect

correction

optimizing
QA effort

multiplier factor for
IMPL defect effort

(IMPL->V&V)

optimizing
QA effort

IMPL defect
effort shifted

from IMPL

IMPL open
defects after

QA in V&V

IMPL shifted defects effort
to CUST

optimizing
QA effort

development
effort

QA effort

shifted
defects

effort

effort for
defect

correction

Defect
Correction

Factor

Effort
Reduction

Rate

Defect
Correction

Effort

Effort
Reduction

Rate

Cause

Effect

Calibration
node

Defect
Correction

Effort

Effort
Reduction

Rate

Defect
Correction

Effort

Effort
Reduction

Rate

Defect
Correction

Effort
Effort

Reduction
Rate

5. Development and defect correction KPIs

77

In phases SubDES and IMPL: Additional effort needed because of shifted defects effort from
REQ and DES into SubDES phase and shifted defects effort from REQ, DES and SubDES
into IMPL phase.

The last phase V&V as shown in Figure 5.22: All shifted defects effort needed to accumulate
in this phase. Any shifting of effort means release a defective software to customer which
means a lot of effort and cost have to be lost. The shifted effort from REQ, DES, SubDES and
IMPL phases multiplied by the specific multiplier factor have to be presented here. The cali-
bration nodes in Figure 5.19 are used as input factors to improve the estimation accuracy.

Figure 5.20 Model Represents the REQ Phase of Software Development

Figure 5.21 Model Represents the DES Phase of Software Development

Figure 5.22 Model Represents the DES Phase of Software Development

sd Dynamic View

REQ phase
Optimized
QA Effort

Effort for Defect
Correction

Shifted Defects
Effort

Development
effort

QA effort

Defect
Correction

Factor

Effort
Reduction

Rate

Cause

Effect

Calibration
node

sd Dynamic View

DES phase

REQ Multiplier
Factor (REQ ->

DES)

Development
effort

shifted effort to
SubDES

Optimized
QA Effort

REQ Effort for
Defect Correction in

DES

Reduction Rate
Effort in DES

optimizing QA
effort

QA effort

effort for defect
correction

shifted defects
effort

Defect
Correction

Effort

Effort
Reduction

Rate

Cause

Effect

Calibration
node

sd Dynamic View

V&V phase

REQ defect
effort shifted

from IMPL

multiplier factor for
REQ defect effort

(IMPL-->V&V)

REQ open defects
after QA in V&V

optimizing
QA effort

DES defect
effort shifted

from IMPL

DES open defects
after QA in V&V

optimizing
QA effort

multiplier factor for
DES defect effort

(IMPL->V&V)

SubDES open
defects after QA

in V&V

SubDES defect
effort shifted

from IMPL

multiplier factor for
SubDES defect effort

(IMPL->V&V)

optimizing
QA effort

multiplier factor for
IMPL defect effort

(IMPL->V&V)

optimizing
QA effort

IMPL defect
effort shifted

from IMPL

IMPL open
defects after

QA in V&V

IMPL shifted defects effort
to CUST

optimizing
QA effort

development
effort

QA effort

shifted
defects

effort

effort for
defect

correction

Cause

Effect
Calibration

node

Defect
Correction

Effort
Effort

Reduction
Rate

5.2. Defect Cost Flow System

78

5.2.5 Model Calibration
This section describes the setting up of calibration nodes and the relation among the nodes of
the model.

5.2.5.1 Cost Factors of Defection
There are different phases in the development lifecycle. The correction effort needed for each
phase is affected by a specific development effort and defect cost factor for the phase. The
defect effort for the phase describes the possibility of the phase to insert a defect into the
system, i.e. the defect cost factor for the V&V phase is very low compared with the REQ phase.
A maximum sufficiency of quality assurance effort could help to get a phase with very low
defect cost factor, which affects the other project parameters. Defect cost factor reduction
leads to increasing the effort needed for QA activities. An initial defect rate in the model does
not need a high QA effort. This factor is needed to calibrate the model depending on its phase.

Analyzing the internal data set shows the average values of these factors over the develop-
ment phases. The defect cost factors for different features with different complexities are ana-
lyzed, showing that by increasing the complexity of the feature this will increase the defect cost
factors. Table 5.10 illustrates the calculated values of the defect cost factor from different in-
ternal data sets.

REQ DES SubDES IMPL V&V
1 0.8 0.7 0.6 0.01

Table 5.10 Prediction Accuracy

5.2.5.2 Quality Assurance Activities
Every phase has own defect cost factor and defect correction effort, whereby the correction
factor of the phase is presented in a node including the development effort node and defect
cost factor node. The effectivity of the QA activities in the different phases of the development
lifecycle could be measured by the nodes optimizing QA effort and the shifted effort from each
phase to another. Defining the correction effort is enabled by the shifted effort value from one
phase to the next, while the quality assurance activities lead to reduction rates resulting be-
tween 0% and 100%. In order to represent the cost factor of a defect, different internal data
sets of projects and project managers’ perspective were analyzed. The result of this analysis
shows four levels ranking the quality effort needed for software correction and the total devel-
opment effort depending on the all boundary conditions of the project. These four ranks are
defined as follows:

- Low: worst-case scenario.

- Medium: average scenario.

- High: ideal conditions scenario.

- Very high: an optimal case scenario.

The review effort Er for the different sufficiency of QA effort from low, medium, high to very
high is shown in Table 5.11 as an average of the development effort Ed needed, e.g. an Er(Ed)
of 10% of additional review effort needed for a planned development effort of 100 hours for a
feature, represented by 10 hours.

5. Development and defect correction KPIs

79

Rank Er(Ed)

Low 5%
Medium 10%

High 20%
Very High 40%

Table 5.11 Sufficiency of Quality Assurance Effort

5.2.5.3 Effort Reduction Rates
The QA activities in different phases of development lifecycle lead to detecting most failures
produced in the same phase and preventing shifting these defect efforts to next phases. The
undetected failure will be shifted to next phases. Shifting a defect from an earlier phase to later
phases causes higher effort to be corrected. Each phase of the development phases has dif-
ferent quality assurance activities to fix their failures and the failures shifted from earlier
phases. Depending on the project deadline and some other project parameters, a rank of QA
is set. There are different correction efforts in each phase of the software, whereby some could
be fixed in the phase while some are shifted to other phases. The distribution of correction rate
of the software was analyzed for different projects, with the percentage of this analysis illus-
trated in Figure 5.25. The DES row illustrates the effort reduction of defects shifted from the
REQ phase and generated in the DES phase by using different QA activities rank. The Sub-
DES row illustrates the effort reduction for the input nodes for this phase from the REQ and
DES phases, as well as the effort needed for defects generated in SubDES phase. Similar to
this row, other rows describe the reduction rate of effort needed for software correction by
using different quality assurance activities.

Rank of
QA effort

DES SubDES IMPL V&V

RE RE DES RE DES SubD IMPL RE DES SubD IMPL V&V

Low 10% 10% 5% 8% 5% 10% 10% 10% 5% 8% 8% 8%

Medium 55% 50% 25% 35% 35% 38% 55% 40% 38% 40% 50% 50%

High 70% 65% 35% 40% 40% 45% 70% 60% 50% 50% 70% 70%

Very High 90% 85% 50% 60% 50% 60% 80% 70% 65% 70% 80% 80%

Table 5.12 Effort Reduction Distribution Based on QA Effort Sufficiency

5.2.5.4 Development Phase Multipliers
The uncorrected defects in a phase are shifted to the next phases, as illustrated in Figure 5.19.
The shifted effort from earlier phases to other phases need to be adjusted by the phase multi-
plier. Fixing such defects need an additional rework effort over two phases, e.g. a shifted defect
from the REQ phase to DES phase needs to be corrected in REQ in addition to the effort
needed for software correction in the DES phase. Therefore, a multiplier factor is needed to
define this additional effort in the model, whereby these phase multipliers are calculated de-
pending on the analyzed data set and experts’ knowledge. Table 5.13 illustrates the phase
multiplier for different projects analyzed in the automotive domain. The effect of the tools used,
the process of development and other different boundary conditions for the project are taken
into account by calculating these factors.

5.2. Defect Cost Flow System

80

A phase multiplier of 4 is described to represent the effect of shifting effort needed to detect
and correct a software problem from REQ to the DES phase, e.g. residing effort of 64 hours in
the REQ phase and shifting it to the DES phase means rising effort of factor 4 to 256 hours
will be needed to detect and correct these defects. Similar multiplier factors for the different
phases are analyzed and could be used from the table.

RE → DES DES → SubDES SubDES →IMPL IMPL → V&V
4 4 3 5

Table 5.13 Development Phase-Multipliers

A phase-multiplier of 4 is taken to represent the effect of shifting effort of detect correction from
REQ to DES phase, e.g. residing effort of 64 hours in REQ phase and shift it to DES phase
means rising effort of factor 4 to 256 hours will be needed to detect and correct this defects.
Similar multiplier factors for the different phases are analyzed and could be used from the
table.

5.2.6 Quality assurance effort
The quality assurance activities in each phase of the development lifecycle lead to detecting
different defects and failures in the software that were generated in the same phase and pre-
vent shifting defects to other next phases. In order to identify the distribution of these activities
through the development lifecycle, a different project was analyzed with their different defects
in the system that need 1,000 hours of effort to fix the failures, and the same defects were
estimated as simulation for the model with different aspects of QA activities. The quality assur-
ance activities include the activities in the REQ, DES, SubDES, IMP and V&V phases. The
test cases analyzed had different complexity levels and different failure origin phases. Due to
the time pressure of the project, some activities are done with low effort, which influences the
quality of this phase. The cases analyzed have different efforts of these activities to present
this effort and their effect on the total project effort. Table 5.14 illustrate the cases analyzed.

QA in Phase Case1 Case2 Case3
REQ
DES
SubDES
IMP
V&V

Low
Low
Low
Low
Low

High
High
High
High
High

Very High
Very High
Very High
Very High
Very High

Table 5.14 Cases Overview

5.2.6.1 Simulation results
A high-quality software means that all required specifications have to be met with no defects
or bugs included. To obtain this quality level, the software has to be developed with a multi-
level process to manage all activities needed during the development lifecycle. Different tools
are needed to track the development lifecycle. Different norms and standards should be satis-
fied during developing a software in this domain, as explained in chapter 2. These huge activ-
ities and the tools needed to deal with these activities lead to increasing the cost of software
development.

One important point in the effort estimation is the cost flow of defects and the process to control
this effort during the development period. The model was tested to describe this aspect,
whereby some requirements of real projects were analyzed to classify the effort during different

5. Development and defect correction KPIs

81

phases of the development lifecycle, while some other requirements were set as test require-
ments and estimated by different software developers depending on the main phases of the
development lifecycle. A lot of data set were analyzed, whereas some data did not include
sufficient information needed for this verification. The data sets were filtered and only the
change request requirements with sufficient information were analyzed, while some data set
lacked some minor information to be completed and thus these were completed with experts’
knowledge and be used for these tests. Three scenarios were used to study the effect of quality
assurance activities on defect effort and the total development effort. The boundary condition
of the software was set with different values to have a total overview over this point. The three
test cases were set as explained in Table 5.14. The test cases deal with different requirements
in terms of the effort needed in the project, whereby due to different project deadlines the
developer analyzed the requirements in different efforts. This deadline pressure leads to in-
cluding defects in the requirement, which is shifted to other phases that have the same dead-
line pressure, leading to shifting the defect to the next phases. Due to shifting the defect from
one to another phase, some iterations were needed to fix these defects.

5.2.6.2 Test cases results
The not exact estimation of the effort leads to wrong plan of the project. A project deadline
pressure will be very high because of this wrong estimation of effort. The effort needed for the
development and the effort estimated for the software changes during development lifecycle
have to be estimated with the influence of the QA activities that needed to reach the quality
level required in the project. Some quality assurance activities couldn't be implemented and
validated with satisficed effort that lead to shift some effort from phase to other during the
software development lifecycle. The effort shifted from earlier phase to the next phase will be
multiplied by a phase multiplier factor. The effort shifted will have arising effort in the new phase
and leads to arise the total development cost.

• Test case 1

Case 1 described a worst case of development quality with high deadline pressure, whereby
most quality assurance activities are undertaken in rash way and a lot of effort is shifted from
one phase to another.

Figure 5.23 illustrates the result of analyzing case 1. The effort spent for the requirement of 30
hours rather than the estimated effort of 50 hours did not detect all defects. The remaining
necessary effort was shifted to the design phase. Shifted defects from the REQ to DES phase
lead to new defects in the DES phase. The effort spent in the DES phase was insufficient to
fix all defects in the DES phase and was unable to correct the shifted defects from the earlier
REQ phase. The total effort needed in the DES phase would be 80 hours for the shifted effort
from REQ phase, and 35 hours for the defects generated in DES phase itself. The effort spent
in the DES phase could not correct all defects and some of the effort needed to be shifted to
the next SubDES phase.

SubDES phase had two shifted kinds of effort, which were multiplied with phase multiplier
factor: 80 hours for the effort shifted from REQ phase and 32 hours as effort shifted from DES
phase. The SubDES phase generated by itself some additional effort for defects correction.
Some of the effort would be shifted to next implementation phase, whereby these shifted efforts
represent the effort shifted from the REQ, DES and SubDES phases. The IMPL phase devoted
more effort to the effort shifted from earlier phases and for its own effort. Some effort is be
worked around in the phase, while some is shifted to the next test phase. The V&V phase has
different input effort from earlier phases and some effort is needed for itself. Huge effort would
be needed in this phase due to shifted effort multiplied by the phase factors. A lot of effort is

5.2. Defect Cost Flow System

82

spent in this phase, whereby to correct defects shifted a lot of effort is needed for several
iterations. Some efforts would be shifted again with a release of software to be detected by the
customer phase, with these efforts reflecting a huge effort and being dependent on the release
type.

The small effort spent in the earlier phases means shifting effort to the next phases, which
leads to having a huge effort through every shift from an earlier phase to other later phases.

Figure 5.23 Effort Distribution for Case 1

• Test case 2

Case 2 described a widely used case of development and change request effort with medium
deadline pressure, whereby most of quality assurance activities be undertaken with high as-
pect, although some of this effort is shifted from one phase to another.

Figure 5.24 illustrates the result of analyzing case 2. The effort spent for the requirement of 37
hours rather than the estimated effort of 50 hours could not detect all defects. The rest of the
remaining effort was shifted to the design phase. Shifted effort from the REQ to DES phase
leads to new defects in the DES phase. Effort spent in the DES phase was insufficient to fix all
defects in the DES phase and was unable to correct the shifted defects from the earlier REQ
phase. The total effort needed in the DES phase would be 48 hours for the shifted effort from
the REQ phase, and 35 hours for the defects generated in the DES phase itself. The effort
spent in DES phase could not correct all defects and some of the effort needed would be
shifted to the next SubDES phase.

5. Development and defect correction KPIs

83

Figure 5.24 Effort Distribution for Case 2

• Test case 3

In this case, the optimum effort needed for quality assurance activities and other needed efforts
were satisfied. Most defects were detected locally in each phase of development. Although a
major effort was required in each phase, there is some effort shifted from one phase to others.
Some points need a lot of clarification to be fully understandable, where such small defects
could be shifted from one to other phase as a hidden effort. In the new phase and owing to the
sufficient time to satisfy most quality assurance, most effort is fixed in the second phase and
was not shifted to several phases that the effort increased in each new phase because of the
phase multiplier factors.

Figure 5.25 Effort Distribution for Case 3

5.2. Defect Cost Flow System

84

Figure 5.25 illustrates the effort spent in the REQ phase of 45 hours that helps to detect most
defect possibilities. Only 5 hours were shifted to the DES phase. In the DES phase, there was
sufficient time taken for the DES effort needed and to complete the missing effort in the REQ
phase. The shifted effort to the SubDES phase was very small compared with the other two
test cases. The same situation could be recognized in the other phases, and it is important to
recognize that the effort shifted to the customer phase was very small and could be fixed in
the next releases.

5.2.6.3 Conclusion
The test cases were undertaken using the development process clarified earlier and some
experts’ knowledge available in the project. The cases show the effect of the quality assurance
on the development effort. It illustrates that planning the optimum effort for QA activities in each
phase leads to reducing the total effort of the development.

Case 1 scenario was selected to describe the worst-case scenario in effort distribution overall
regarding the different phases of development of a specific feature. Case 1 describes the con-
sequences on saving QA activity efforts in each phase and focuses only on feature develop-
ment. The QA activities were reduced to the minimum, which led reducing the defect correction
rate and shifting the effort needed to detect the defects and failure in software to the next
phase. This shifting of effort from the earlier phase of the development leads to increasing the
overall development effort and causing a shift in a lot of effort to the customer phase, which
means a huge effort in the next releases.

Case 2 indicates the case scenario where more effort is required during each development
phase. These efforts lead to having a stable development and preventing a huge defects rate
in the phase. The effort spent in this case was sufficient to detect most defect possibilities on
the product, although many defect possibilities were still included in the software. This needed
effort was shifted from earlier phases to other phases. Shifting effort from an earlier phase to
another one leads to increasing the overall effort depending on the phase multiplier factor of
the phase. Case 2 illustrates that some of the effort is shifted to the customer phase, which
means a huge effort in the next release of the product.

Case 3 indicates the case with the best scenario. A lot of effort was spent in this case. This
effort leads to increasing the defect correction rate and reducing the effort shifting rate from
earlier phases to other phases. There were some hidden efforts that could not be satisfied in
the local phase and were shifted to other one. Developing software with a zero-defect rate
during the development phases needs a huge effort and despite having this effort there is a
possibility to get some hidden defect that were detected in the next phases by having sufficient
effort to ensure all phases during the development lifecycle. Case 3 illustrates that a high effort
of QA activities leads to reduce shifting effort to the customer phase. In this test, it was a point
that needed some clarification with the customer; therefore, this effort was shifted to the next
release of the software.

• REQ phase

Figure 5.26 represents the effort spent in the REQ phase during the development lifecycle.
The three requirements deal with different features, each of which needed similar effort com-
pared with the other two features. These efforts were set by the experts and the project man-
ager's estimation that they were developed in similar old projects. The project parameters were
changed and the deadline pressure and information flow and clarifications were undertaken
with different effort. This project pressures lead to shifting some effort from the REQ phase to
the DES phase. The phase multiplayer factor was used to define the new effort needed to

5. Development and defect correction KPIs

85

close the effort shifted from the REQ phase. The spent requirements efforts for the three cases
were 30, 38 and 45 hours for case 1, 2 and 3, respectively. The shifted requirement efforts
were 20, 12, 5 hours for cases 1, 2, and 3, respectively. In the DES phase, these efforts were
represented after being multiplied them by the DES multiplier factor as 80, 48, and 20 hours.
Due to the same project conditions, the effort spent in DES was unable to fix all shifted effort
from the REQ phase. The effort spent in the DES phase to complete the effort shifted from
REQ (80, 48, and 20 hours) was 53, 40, 18 hours in case 1, 2 and 3, respectively. The QA
activities in DES such as reviews and DRBFM were undertaken in different levels, whereby
these QA activities were not insufficient to fix all missing efforts and some of the already-shifted
effort from REQ phase to DES phase was shifted again to the next SubDES phase. The shifted
effort from the REQ phase to DES phase led to generating some defects in the DES phase,
and due to weak QA in this phase these defect efforts were also shifted to the next phases.
This shift of effort from the earlier to next phases also led to shifting a lot of effort to the CUS
phase. Table 5.15 represents the REQ effort shifted from REQ to other phases.

Figure 5.26 illustrates that shifting effort from an earlier phase due to deadline pressure leads
to a huge effort in the next effort. Shifting effort causes iteration of the development phases
and increases the defects rate, which means more effort to complete the product. Case 1
needs to spend 236 hours in the V&V phase to detect all defects shifted from earlier phases,
while case 3 needs only 2 hours of effort to detect the shifted effort from REQ phase.

The quality assurance effort depends on the complexity of the software features and the inter-
faces among them. These complexities are an important factor for the cost of development
and correction of the software product. The QA activities needed for different features depend
on these complexities. Thus, the sufficiency of QA effort for each development phase during
the development lifecycle depends on the process activities used.

Figure 5.27 describes the total effort needed to complete the REQ phase. The effort shifted
from the REQ to DES, SubDES, IMPL and V&V phases due to different engineering artifacts
in the project lead to an increasing effort required in each phase. The overall effort of the
development needed would increase in value depending on the QA activities in each phase.
The shifted effort of REQ leads to generating more defects in the different phases owing to the
requirements misunderstanding that includes defects in the design and implementation of the
software. A huge effort in the V&V phase was needed to correct all defects generated due to
the requirement shifting effort. Detected defects in the last phase of development need to have
a new iteration of most development phases to fix all hidden defects and ensure the quality of
the software. The effort devoted in the REQ phase leads to reducing the defect rate of the
software and the overall effort of the development. Case 1 devoted little effort to the require-
ment phase due to the project deadline pressure, whereby some QA activities were not ac-
crued or planned with very low quality. This leads to including different defects in the product
and shifting these defects from one phase to another. The overall requirement development
effort is very high for case 1 compared with case 3. Case 3 devoted some more effort in the
REQ phase and did not shift a lot of effort to the next phases.

5.2. Defect Cost Flow System

86

Figure 5.26 Effort Distribution for Different Scenarios of REQ Phase

 REQ DES Sub-
DES

IMPL V&V Cus Total effort

Case1 40 30 27 16 12 1 127
Case2 45 20 12 7 4 1 89
Case3 48 10 3 1 2 0 64

Table 5.15 REQ Effort Distribution into Development Phases

5. Development and defect correction KPIs

87

Figure 5.27 Overall Development Requirement Effort

• DES phase

The different QA in the REQ phase led to shifting effort from the REQ to DES phase of 20, 12,
5 hours for case 1, 2 and 3, respectively, whereby these efforts needed additional effort in the
DES phase to be completed. The different project pressure parameters also caused having a
weak QA in DES phase for case 1, a high QA for case 2 and a very high QA for case 3. Most
shifted effort could not be completed for case 1 and thus much of this effort was shifted to the
next SubDES phase. Case 2 could fix more shifted effort and case 3 could complete most of
this shifted effort.

In the DES phase, there were some new defects and efforts that could not be completed in
this phase itself. Case 1 spent only 24 hours and shifted some effort to the SubDES phase.
Case 2 could spend 28 hours with better quality assurance, and case 3 spent 32 hours to
complete the phase with the best quality and prevent shifting huge effort to the SubDES phase.

Figure 5.28 illustrates the distribution of the effort spent in the DES phase and the shifted effort
of generated defects in the DES phase, as well as the effort needed to detect and correct these
defects in the next phases of the development lifecycle. The effort needed to fix the shifted
effort from the DES phase increased through the phases due to the phase multiplier factors;
for instance, in the V&V phase, the effort needed to fix the DES shifted effort 52, 21, and 2
hours for case 1, 2 and 3, respectively. Shifting small effort from earlier effort through saving
some effort there leads to spending huge effort in later phases, which means increasing the
overall development effort.

5.2. Defect Cost Flow System

88

Figure 5.28 DES Effort Distribution through Development Phases

 Figure 5.24

• IMPL phase

Quality assurance of the implementation phase of development is an important activity. The
minor effort spent in QA activities in the IMPL phase leads to shifting some effort to the next
V&V phase, which means increasing the effort by a phase multiplier factor. This weak QA level
leads to increasing the defect rate in the software and the overall cost of the development and
change request of the software. Figure 5.29 illustrates the effect of shifting effort from the IMPL
phase to the V&V phase and the CUS phase.

5. Development and defect correction KPIs

89

Figure 5.29 Implementation Effort Distribution over the Development Phases

• V&V phase

The last phase of the lifecycle before releasing the software is to validate and verify the prod-
uct. Most shifted effects from earlier phases should be detected in this phase. This phase takes
place in software projects with a high priority to ensure the quality of the product. The effort
needed for this phase depends on the project engineering condition. The quality level of the
product leads to planning a specific effort for this phase.

Figure 5.30 illustrates the effort planned for case 1, 2 and 3 as 330, 208 and 105 hours, re-
spectively. Due to the different deadline pressure of the project, different effort is devoted dur-
ing the last development phases. Case 1 had weak QA activities, which led to shifting a lot of
effort from earlier phases, leading to some defects in the next phases of the development
lifecycle. The V&V effort needed for case 1 was 482 hours, 46% more effort than planned.
Case 2 needed 228 hours to complete the V&V phase, which represents ~10% more effort
than planned. Case 3 shows a best estimation effort whereby the phase needed 4% effort less
than planned.

Figure 5.30 V&V Effort Distribution

5.2. Defect Cost Flow System

90

The earlier QA effort saves the effort in the last phase of development. A defect correction for
late detection leads to increasing the effort to a high level.

The software product under development phases will have complex KPIs with different rela-
tionships and many QA activities, which increase the difficulty of describing the effect of all of
these parameters in the product effort. This increases the challenge for the project managers
to take their decision. The effort flow of the defects model helps the project managers to have
a sufficient overview and monitor the status of a project to estimate the project state under the
different situations. Moreover, the model could support a deep knowledge for the system and
the process. This knowledge and overview of the whole system help to improve the process
maturity level. The model offers good help for Project manager to plan a better software project
in terms of time, quality and cost.

6. Practical result

91

6 Practical result
This chapter describes the use of the suggested models in this thesis in a real-life environment.
A Prototype for the models were developed and tested. The evaluation criteria are based on
existing studies [91] [92] and the available experience in the company with resource estimation
methods as described in 3.4. Three categories of evaluation criteria were used [70]:

- Model and Estimate Criteria.

- Estimation Method Criteria.

- Application Criteria.

6.1 Prototype system
To evaluate and validate the models and based on the domain specification a first prototype
model has been created. Several changes in software have been estimated based on these
models. The prototype model be tested and iteratively improved as in Figures 6.1 and 6.2.

Figure 6.1 Implemented Tool of the Estimation Model

6.2. Developing Knowledge

92

Figure 6.2 Implemented Tool of the Estimation Model

6.2 Developing Knowledge
Software development needs specific knowledge in different domains. A model or system with
the ability to offer help for project manages in software effort prediction is a major challenging
and needs a lot of experts’ knowledge. The process of development and effort distribution
through the multi-level of development needs to be identified and analyzed to identify the im-
portant KPIs of software and the development process. These KPIs and their effect of the
system and how could they generate a defect are necessary for the model. This information
needs to be classified and described using a modeling technique to present an overview of the
system and the interfaces among the system components.

The previous chapters described a model for the software process, in which the main KPIs of
the software process and their interfaces were identified. A model describing the software cost
flow was build, whereby mainly the KPIs and QA activities of the development lifecycle were
described. This knowledge and some other experts’ knowledge about software development
was accumulated and presented as graphic matrix for a development system. Several change
requests were set and analyzed in different ways to present the advantage of these models.
The knowledge needed to build the model should be sufficient to identify three development
areas:

6.2.1 Development area:
Software engineering knowledge is needed to describe the domain of the model in general. A
deeply understanding for the system complexity and the defects possibilities and their KPIs to
define the software successful or failure. Software correction and defect preventing by using
different QA activities knowledge are to be available in order to have such a model.

6.2.2 Process area
Software development need for a process and in automotive domain there are different pro-
cess need to be understandable in order to develop a safety critical product. A knowledge
about several standards and norms should be available.

6. Practical result

93

6.3 Model usage
The models used in different projects to describe the usability and the advantage of their use.
Most experiments and tests were conducted in five different projects for hundreds of change
request. Two of the projects were already developed, whereby the model was used to docu-
ment the development result and plan the further change requests. Two other projects were
started with the model based on the knowledge of the last projects. One project was conducted
from start of the project, which has some similarities with other project, in which the project
was developed and managed by different company and different project managers. The
knowledge of the model was transferred by some trainings and meetings. The results of these
different projects are similar and do not include a major challenging in use. Therefore, there
was no need to classify the result into projects teams.

The traceability matrix is the important attribute of the model. A traceability matrix for each
project was set. The interface among the system components was described in the specific
matrix. The traceability was conducted with the help of UML [102] and enterprise architect [11]
as a design tool. Some of the projects developed some Excel macros to present the traceability
for their use. The traceability matrix described the most commonly-used KPIs of the compo-
nents and represented the effect of the interfaces belonging to these KPIs. This matrix was
updated in different iterations depending on the change of the KPIs. The traceability among
the system components are very important to describe the effective change on each compo-
nent and accumulate the total effort needed for each change request.

The change requests were classified as change requests and defect requests. Change re-
quests deals with the change needed in the system due to new customer requirements,
whereas defects deals with software failures and bugs that need to be fixed in the product. The
effort needed for these requests were described in earlier chapters; therefore, this chapter did
not classified the request as a customer change or defect. The effort for each change was set
and analyzed with no dependency on the reason of the request. A change request system was
used to track the request. An estimation for each request was undertaken by the experts on
the specific team. Parallel to the request system, an effort estimation for each change request
was conducted by the project managers using the model described. Some experts’ knowledge
were needed although by using the model due to some change complexity. The change re-
quest system was set in a way that the developer should estimate each level of development
separately, i.e. requirement, design, implementation and test estimations were needed. That
leads to have the estimation and the real developing effort of each development level. The
experts were able to estimate the requirement and then started to describe the features of the
requirement with all necessary QA activities, before starting with the design level. The design
should be estimated and designed with all necessary QA activities, before the implementation
level is started. Estimating and implementing the code with all QA activities should be closed
before starting with the test level. These requests were very important to describe the exact
effort needed for each development phase and each quality assurance activity.

6.4 Defect source analysis
The defects overall the development lifecycle for different projects were analyzed. It was able
to classify the defects into two defect data sets based on the defect detection phase. The
defects generated in the requirement phase could be fixed locally in the phase by using the
review activities as a possible QA activity, while some others were shifted to next phases and
could be detected there.

6.4. Defect source analysis

94

Figure 6.3 Defect Data Sets used for the Analysis of Requirement Defects

Figure 6.3 illustrates the defect data sets for defects generated in the requirement phase. Data
set A includes the requirements describing the defects detected in the requirements review
phase, while data set B includes the requirements describing the defects that shifted from this
phase and could not be detected and detected in later development phases. For a sum of 500
defects occurring during the lifecycle, there were 439 defects in data set A and 61 defects in
data set B. The distribution of these defects based on IEEE 830 standard [103] is analyzed
and represented in Table 6.1.

The main costly defects in a system were caused due to shifting the effort from an earlier phase
to another phase. To have a strategy to detect the failure and prevent its occurrence, the de-
fects be analyzed and classified based on the attributes of requirements in the IEEE 830 stand-
ard. The defect is classified into two classes depending on their occurrence ratio and the cor-
rection cost.

Table 6.1 Requirement Defects Classified Based on IEEE 830

Four defects lists were be established that each list included the defects with specific occurs
class and classified into:

1. List for most occur defects

2. List for least occur defects

3. List for most costly defects to be corrected

4. List for least costly defects to be corrected.

6. Practical result

95

In order to identify and predict the defect class as above, there is a need to identify the defect
sources. An analysis of different data sets and the experts’ knowledge was conducted. The
most important defect source with the most costly correction effort was classified in the re-
quirement phase. The source of defects generated in the requirement phase could be classi-
fied into several possible defect sources.

One of the defect sources is the parameter in name, value and unit. The variant could cause
a defect by indicating a wrong specification. The wording is another defect source, whereby
the requirement could be written in wrong compliant to formulations, template phrases or the
desired precision of requirements agreed upon in the project. The specified timing parameter,
state machine which is modeling the system behavior, calculation or comparison, figure or
related to a figure, missing or wrong requirement link, or a functionality understanding in the
requirement need to be analyzed and documented. The intern data set was analyzed to detect
the source of requirement defect. Table 6.2 illustrates the result of the distribution of defect
source against the IEEE 830 classification.

Table 6.2 Defect Source Distribution against the IEEE 830 Classification

The defect source analysis leads to identify the defects sources in each phase of development
lifecycle and help to prevent such defects. The result of this analysis added some new aspects
in the defects prevention. To improve the effect detection, some points could be set in project
overview like:

1. Involve the V&V engineers in the project from the beginning.

2. Parameters need to be used Separate from their concrete values.

3. Refinement process along the functional structure during development of requirement
specification.

4. Inconsistency detection by using some automated tools. An automated tools with the
ability of model checking techniques to detect even elaborate forms of inconsisten-
cies between requirements need to be used [104] [105].

5. A report of defect need the type of the defect.

6.5. Development effort analysis

96

6. Analyze defects in order to screen the requirements engineering process.

6.5 Development effort analysis
Automotive software development needs several processes and is undertaken based on dif-
ferent standards and norms to satisfy their quality level. Development lifecycle take its time
and several versions of system are released and tested during the total lifecycle until the start
of production. The development phases include their quality assurance activities needed
planned in specific mile stones. The defect effort will be included into the development effort
during the lifecycle. Many change requests are developed and defects are fixed through these
phases. These requests are estimated by the developer before developing the request starts.
Many of these requests were estimated with the help of the models built in this thesis and a
traceability matrix for the system was established. This section presents the results of these
requests. A huge number of change requests (CRQ) were developed throughout this analysis.
The analysis deals with a project developed for a real electric unit control (ECU), whereby the
data needed for this analysis was accumulated from the change request system. Some of
change request data does not include all information needed for the analysis. The result of this
analysis in this section deals with 50 change request requirements throughout the total devel-
opment phases. The requirement analysis, design and code implementation is undertaken by
a thirteen-developer team, whereas the integration and the system test was completed by a
different team of five developers.

6.5.1 Requirement phase
The 32 CRQs were estimated by the project manager by the help of the models and the KPIs
described in the last chapters. The same CRQs were estimated by the developer in a separate
system to have independent estimations. Eighteen CRQs included some defects data whereby
the developers’ estimation of the effort were conducted in the wrong way and the needed in-
formation in the system was not completed in the right way. Figure 6.4 illustrates the estimation
effort from both systems and the real effort needed for these requirements. The total effort
estimated by Project manager with help of the model was 530 hours, while the development
estimation needed to complete these requests was 544 hours. The accuracy of the estimation
is close to 97%. It is difficult to set this accuracy rate in general, because the effort needed for
some change requests has lower accuracy. The defect resource leads to this lower estimated
accuracy. Analyzing of the developer estimation describes a higher deviation of the real
needed effort, because the developers give their estimation for the total CRQ including the
design and implementation, and not only the requirement phase. Figure 6.5 shows the estima-
tion accuracy as a percent ratio of the real effort needed.

6. Practical result

97

Figure 6.4 Estimated Requirement Effort

Figure 6.5 Requirement Effort Ratio

6.5.2 Design analysis
Most of these change requests deal with a defect or some changes required by the customer
and do not deal with a feature development. Therefore, the design estimation includes the
feature and module design phases which were not estimated as two phases of development.
There were some changes included the change in features, while others included changes in
module but the effort was estimated as a design estimation effort. The total effort needed for
design phase was 426 hours as they accumulated from the change system after completing
the development of all change requests. The effort needed for completing these changes was

6.5. Development effort analysis

98

estimated by the developer and the project managers with the help of the model and KPIs
described in this thesis. The estimated effort was 396 hours and 440 hours, respectively.

Figure 6.6 Effort Distribution for Design Phase

The design distribution in hours illustrates the necessary estimation effort undertaken by the
Project manager with the help of thesis model, as well as the effort estimation by the team
where the developer set the necessary effort that they predict for the specific change. The third
line illustrates the real effort needed to complete the specific change. The effort values were
taken from the change request system. The developer estimated the total changes of the CRQ
and some developers estimated the total effort needed for the CRQ and divided the total effort
among the different development phases. Figure 6.6 describes the effort needed for each
CRQ. To illustrate the deviation of the estimation from the real effort spent in this phase, the
estimation accuracy was calculated as a ratio of the effort divided by real effort of the same
CRQ.

Estimation accuracy = estimated effort / real effort *100

Figure 6.7 illustrates the accuracy ratio of the total effort needed in the design phase.

Figure 6.7 Design Accuracy Estimated Effort Ratio

6. Practical result

99

6.5.3 Implementation effort distribution
The implementation phase presents the phase of code implementing in different ways. Some
of the code was written manually, some others using a code generator tool and some by con-
figuring the parameters with the help of some lists tools. The quality assurance in this phase
includes a module test. The module test was conducted as open box test for the code using
the MISRA rules for C coding and similar rules for Java and other programming languages.
Some other unit tests using RTRT or similar method will be done to ensure the quality of the
implementation phase. Code review is even an activity to be undertaken in this phase.

Figure 6.8 Implementation Effort Distribution

The total effort needed for the implementation phase was 560 hours, whereas the estimation
effort with help of the supporting model was 512 hours. Accordingly, the phase estimation ratio
is ~ 91%.

Figure 6.8 illustrates the effort estimated for each CRQ separately, whereby some of the esti-
mation was done with very high accuracy to the real needed effort. Some of the CRQs had a
deviation in effort from the real effort needed. Figure 6.9 illustrates the ratio of deviation from
the real effort needed for total CRQs in this phase.

Figure 6.9 Effort Ratio Distribution

6.5. Development effort analysis

100

6.5.4 V&V phase
The implementation phase included the module test activities. The V&V phase starts with the
integration of the software modules with the specific quality assurance and the system test
activities. The system test was conducted with a different team to the software developer team.
Test case implementation started parallel to the developing phases. The test specification re-
quirement is the input node for the system test phase. The test cases were developed in the
same development process used for the software with similar process with respect of the
phase of the test. Several hardware and software supported this phase to prove the satisfac-
tion of the system with the requirements. Most test cases were running automatically, while
some needed to be run manually depending on the test case. The running effort was a major
challenge to get the best estimated effort. Several test cases were developed and executed in
Germany and some others were undertaken outside of Germany, which added a new chal-
lenge to the estimation due to personal factors. The estimation effort distribution among the
CRQs is presented in Figure 6.10.

Figure 6.10 V&V Effort Distribution along the CRQs

Figure 6.10 illustrates the effort needed to complete each CRQ, and the estimated effort done
by the project managers with the help of the model presented in this thesis, and the estimation
done by test developer for the same CRQ. The total test effort needed was 1122 hours, and
the estimated effort was 1164 hours.

6. Practical result

101

Figure 6.11 V&V Effort Ratio based on Real Effort

Figure 6.11 illustrated the effort ratio for the estimated effort to the real effort. The complexity
of some CRQs and the different tools used in this phase led to a deviation in some CRQs. The
deviation of the estimated effort from the real effort is close to 80%, with a few exceptions that
the effort has a worse ratio, although analyzing these CRQs shows that these high deviations
were caused due to the low effort needed for the CRQ; therefore, every small deviation in effort
could lead to a high deviation ratio.

6.6 Practical results analysis
A safety-critical software development was completed based on different processes, standards
and norms to satisfy their quality level. The quality assurance activities are important attributes
affected in the quality of the software. The effort needed for this quality depends on the quality
levels needed in the product. The CRQs analyzed in this chapter deal with ASIL C level of
software according to ISO-26262 [9]. The quality assurance was planned with high effort to
ensure the level of the software quality. The effort of different development phases was de-
scribed in last section. An effort of 2,652 hours was needed to complete these CRQs with their
specific quality activities. This thesis offers a model to support the Project manager in their
decisions by estimation different change requests during the development lifecycle. Figure
6.12 illustrates the effort distribution over these CRQs as an estimation with the support of the
model, as well as a developer estimation. The last effort values represent the real effort needed
to complete each CRQ.

6.6. Practical results analysis

102

Figure 6.12 Total Project Effort Distribution

The range of needed effort for each CRQ varied from 44 hours to 144 hours. The complexity
of the change has an effect on this effort in addition to other project parameters discussed in
earlier chapters. This chapter described the effort estimated by the managers and the real
effort needed. The change and project parameters were implicitly included in the model and
will not be discussed here.

The ratio of each change was calculated as

Effort ratio = Estimated effort
Real effort

∗ 100%

The effort ratio helps to compare the estimated effort by the model against the real effort
needed. Figure 6.13 illustrates the effort ratio of the CRQs for the estimated effort by the model
and the developer team, including the estimation of the test team.

Figure 6.13 shows the advantage of the support model for the Project manager, whereby most
estimation values of the CRQs are close to the real development effort. The support model
describes the system and supports the managers with a good overview of the project, as well
as supporting the Project manager with all KPIs that affected the effort for each CRQ. This
system information with all interfaces supports managers with all needed information to have
a good estimation. Figure 6.15 shows that the accuracy of the CRQ was between 83 and 120
% based on the real effort needed, which means that the model provides help for Project man-
ager in effort estimation with 83% accuracy.

6. Practical result

103

Figure 6.13 Effort Ratio Distribution over CRQs

The Requirements in this chapter were done with real projects. The result and users opinions
after developing the pilot project using the method suggested in this thesis shows:

Hypothesis (H), Goals / Requirement (G) Refinement
G1: The overall development effort shall be
decreased by using a new model to identify
the relevant quality assurance measures.

Better description for the system helps to
plan right quality assurance and lead to ef-
fort reduction.

G2: A new method is needed to identify hot
spots in a software product (e. g., compo-
nents or even single functions). These hot
spots are most promising for a decrease of
the defect rate and/or the development ef-
fort.

DSM and crosscutting approach represent a
total overview on developed system. That
led to detect most of defects in earlier
phases of development lifecycle and reduce
the defect rate and the development effort.

G3: A development process has to be cre-
ated to derive the KPIs for the reduction of
the development effort as well as the effort
of defect correction.

The process developed and used with posi-
tive results.

H1: Current estimation models can be im-
proved by the integration and feedback of
process data. The estimation accuracy will
increase.

Results show an improvement in estimation
accuracy compared with the real effort
needed.

H2: With a new estimation model (see H1)
project managers can identify the hot spots
in a products architecture where the most ef-
fort reduction is possible.

The second iteration of using the model in
the project illustrates a defect rate reduction
because of the improvement activities in the
first iteration.

H3: A new development process with distrib-
uted efforts for quality assurance measures
will reduce the effort of failure correction as
well as the overall development effort.

The model shows a reduction in quality as-
surance effort and lead to reduce the total
development effort

6.6. Practical results analysis

104

7. Summary

105

7 Summary
The essential physical characteristics and the majority of the lifecycle costs of a new vehicle
are determined during the initial and conceptual design phases. The features determined in
these early development phases are important for the whole vehicle design process. The in-
crease in product complexity, functional requirements, and number of derivatives has brought
about a need for new technical solutions and tools to support decision makers in their projects.
This thesis presents a model to help project managers and the decision makers make their
decisions. A DSM was created to describe the system and all interfaces among system com-
ponents and provide a good overview of the system. Defining the KPIs which most affect costs,
leads to good cost predictions during the development lifecycle.

7.1 Software development and automotive domain
Automotive software is a safety-critical product. Product quality is crucial. High quality require-
ments increase development effort. Figure 7.2 shows a software system with the desired qual-
ity attributes.

Figure 7.1 Architect and Design Developing

7.1. Software development and automotive domain

106

Figure 7.2 Software Quality Attributes

Developing high quality software requires a qualitative process to ensure product quality. Sys-
tem development starts by analyzing the functionality of the product and walking through all
the necessary product details. Figure 7.3 shows a product design walkthrough. The complexity
of the software and the huge amount of interfaces between components all but guarantees
defects will be generated during the development lifecycle. The cost control of the project
needs to control the cost of these defects, too. Therefore, defect effort is included as part of
development effort.

Figure 7.3 Design Procedure

Managing this huge number of parameters with deadline pressure is a major challenge for
project managers. A model to support the managers in their decision making will be a major
boon in facing this challenge.

7. Summary

107

7.2 DSM and traceability
Complex system development needs good traceability between the different system compo-
nents. The last few chapters illustrated traceability from requirements to design to implemen-
tation, including test activities in the V&V phase. DSM an provide a clear overview of tracea-
bility. The interfaces between the different models of the system have different effects on each
other. The interface effects were described and calculated using the crosscutting concern
method. These effects require vast knowledge about the system. The most influential KPIs in
the system were described and illustrated to help estimate the effect of each system compo-
nent.

7.3 Correction process model
Software development which takes a long period of time must define of a large number of
metrics to manage this development. Development processes are very important to meet func-
tional and nonfunctional requirements at a good quality level. Many parameters affect software
cost and quality. The process model describes the KPIs needed for cost illustration and con-
trolling. The model describes the ratio between software defects and their correction effort,
allowing the process to be improved while also improving the defect rate during the develop-
ment lifecycle. The model's status as a graphical representation makes the identification of
each problem easier to be estimated even for high complex system, challenges of changes in
a system with high complexity will be available and identifying the weaknesses in each com-
ponent or even by added a new features in complex systems will be possible with lower effort.

7.4 Cost flow model
Dataset from closed and ongoing projects were analyzed in conjunction with different expert
knowledge and literature. A model describing the cost flow in a software project was presented.
The KPIs which most influence cost flow during the different phases of the lifecycle were de-
rived and included in the model. Including all KPIs which affect development effort helps
achieve a better cost estimate for system defects. The cost flow model highlights the areas
which generate the most defects. It highlights the need for quality assurance activities in these
phases and avoids a major defect rate.

7.5 Perspectives
Estimating the effort required for development and software changes is essential for controlling
a project and achieving the desired quality. Better effort estimation leads to better scheduling
of the project milestones, higher product quality, and reduced costs. The processes presented
in this thesis in depth experience and knowledge of software development in the automotive
industry. The continuous improvement of these processes is an important step in improving
the estimation performance of future projects. A user-friendly framework that provides this in-
formation should be established. A database will be needed to store the decision arguments
that lead to improvements in the estimation process. To generalize this framework for use
outside of the automotive industry, further processes and KPIs must be collected and ana-
lyzed.

7.5. Perspectives

108

8 References

[1] K. Hauser and W. Zimmermann, “The growing importance of embedded software: Managing
hybrid hardware-software business,” Technical report, The Boston Consulting Group, Inc.,
2004.

[2] Robert Bosch GmbH Central (intern), “Central directive quality (CDQ),” 2010.

[3] P. Marwedel, “Embedded System Design,” Springer, 2nd edition, 2011. doi:10.1007/978-94-
007-0257-8, pages 1, 9, 15, and 33.

[4] A. Avizienis, J.-C. Laprie and B. Rand, “Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and Secure Computing, 1(1):11–33, 2004.
doi:10.1109/TDSC.2004.2, pp. pages 1, 15, 16, 17, 18, 19, and 32, 2004.

[5] S. Litoriya, N. Sharma and Ratnesh, “Incorporating Data Mining Techniques on Software Cost
Estimation: Validation and Improvement,” International Journal of Emerging Technology and
Advanced Engineering, vol.-2, 2012.

[6] S. McConnell, Software Estimation, Microsoft Press, ISBN: 978-0-7356-0535-0, 2006.

[7] L. Insup Lee, J. Y. Leung and S. H. Son, Handbook of Real-Time and Embedded Systems,
Chapman & Hall/CRC, ISBN 1584886781, 2007.

[8] R. J. Madachy, “A Software project dynamics model for process cost, schedule and risk
assessment,”
http://sunset.usc.edu/TECHRPTS/PhD_Dissertations/files/Madachy_Dissertation.pdf.

[9] ISO Org, “Road vehicles Functional safety,” http://www.iso.org.

[10] IEEE, “Software & Systems Engineering Standards Committee of the IEEE Computer
Society”.IEEE Standard for Software Quality Assurance Processes,
https://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=6835311.

[11] B. Boehm, S. Chulani and Horowitz, Software Cost Estimation with Cocomo II, Prentice Hall,
2000.

[12] Software Engineering Institut, “Key Practices of the Capability Maturity Model,”
http://www.sei.cmu.edu/reports/.

[13] J. A. Farquhar, S. C. RAND and M. CALIF, “A Preliminary Inquiry Into the Software Estimation
Process,” DEFENSE TECHNICAL INFORMATION CENTER, 2006.

[14] N. Karunanithi, D. Whitley and Y. K. Malaiya, “Using Neural Networks in Reliability Prediction,”
IEEE Software, vol. 9, no. 4,, pp. pp. 53-59..

[15] M. Schofield and C. Shepperd, “Estimating Software Project Effort Using Analogies,” IEEE
Transactions on Software Engineering,, no. Vol. 23, No. 11, 1997.

8. References

109

[16] L. C. Briand,, K. El Emam, D. Surmann and I. Wieczorek, A Comparison of the Jensen and
COCOMO Schedule and Cost Estimation Models, Proceedings of the International Society of
Parametric, ISBN:1-58113-074-0.

[17] CMMI, “http://www.trinity-cmmi.co.uk/CMMI_Representations.htm,” 2011.

[18] V. Basili, L. Briand and S. Condon, “Understanding and predicting the process of software
maintenance releases,” in Proceedings of International Conference on Software Engineering,
Berlin, Germany, 1996.

[19] CIO Bund, “V-Modell-XT,” http://www.cio.bund.de/Web/DE/Architekturen-und-Standards/V-
Modell-XT/ vmodell_xt_node.html, .

[20] G. G. Judge, W. E. Griffiths and C. R. Hill, The Theory and Practice of Econometrics, John Wiley
and Sons, 1985.

[21] A. Garcia and C. Lucena, “Taming heterogeneous agent architectures,” COMMUNICATIONS OF
THE ACM, no. Vol. 51, No. 5, p. pp 75–81, 2008.

[22] D. Sundar, Software engineering, Published by Laxmi Publications Pvt. Ltd., ISBN 13:
9789380386195, 2010.

[23] T. R. Browning, “Applying the design structure matrix to system decomposition and
integration problems: a review and new directions,” Engineering Management, IEEE
Transactions, pp. pp. 292-306, 2001.

[24] Autosar.org, “Autosar.org,” Overview and Revision History, V1.2.0 Release 4.1 Rev 3, [Online].
Available: http://www.autosar.org/.

[25] A. V. Aho, Modeling, Measuring, and Modularizing Crosscutting Concerns, Doctor of
Philosophy in Computer Science at Columbia University, 2006.

[26] ISO, “Software Engineering Product quality – Part 1: Quality Model,” International
Organization of Standardization, pp. ISO/IEC 9126-1, 2001.

[27] R. Filman, T. Elrad and S. Clarke, Aspect-oriented software development, Addison-Wesley
Professional, ISBN:0321219767, 2006.

[28] N. Nagappan, T. Ball and A. Zeller, “Mining Metrics to Predict Component Failures,” ICSE '06
Proceedings of the 28th international conference on Software engineering, China, pp. pp. 452-
461, 2006.

[29] W. E. Wong, S. S. Gokhale and J. R. Horgan, “Quantifying the closeness between program
components and features,” Journal of Systems and Software, 54, pp. pp 87-98, 2000.

[30] M. Revelle, T. Broadbent and D. Coppit, “Understanding Concerns in Software: Insights Gained
from Two Case Studies,” in Workshop. on Program Comprehension, 2005.

[31] V. Nguyen and B. Boehm, “A Controlled Experiment in Assessing and Estimating Software
Maintenance Tasks,” in Conference: 16th Asia Pacific Software Engineering Conference, 2009.

7.5. Perspectives

110

[32] D. Freiman and R. Park, “PRICE Software Model. Version 3. An Overview,” Proceedings of IEEE-
PINY Workshop on Quantitative Software Models for Reliability, 1979.

[33] P. Suri and P. Ranjan, “Comparative Analysis of Software Effort Estimation Techniques,”
International Journal of Computer Applications, no. 21, p. pp. 975 – 8887, 2012.

[34] L. H. Putnam and M. Ware , Measures For Excellence: Reliable Software On Time, Within
Budget, Yourdon Press Computing Series, ISBN-10: 0135676940, 1992.

[35] B. Boehm, Software Engineering Economics (Prentice-Hall Advances in Computing Science &
Technology Series), New Jersey: Prentice-Hall PTR, ISBN 0-13-822122-7, 1981, pp. pp. 4-21.

[36] B. Boehm, B. Clark, E. Horowitz and C. Westland, “Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0,” Annals of Software Engineering Special Volume on Software Process
and Product Measurement, vol. Vol. 1, pp. pp. 45 - 60, 1995.

[37] D. J. Reifer, “Industry software cost, quality and productivity benchmarks,” DACS Newsletter,
p. software. Tech News 7, 2004.

[38] S. Vicinanza, T. Mukhopadhyay and M. Prietula, “Software Effort Estimation: An exploratory
study of expert performance,” Information Systems 2, pp. pp. 243-262, 1991.

[39] Chemuturi and Murali, “Delphi Technique for software estimation,” www.chemuturi.com.

[40] B. Boehm, C. Abts and S. Chulani, “Software development cost estimation approaches – A
survey,” Annals of Software Engineering 10, p. P. 177–205, 2000.

[41] A. Gray and S. MacDonell, “Alternatives to regression models for estimating software
projects,” Information Science Discussion Papers Series, no. No. 96/17, 1996.

[42] S. Anthony, E. Kazmierczak and L. Sterling, “Software Engineering Methods for Neural
Networks,” IEEE Proceedings of the Tenth Asia Pacific Software Engineering Conference, pp. pp
468-477, 2003.

[43] R. C. Satyananda and K. Raju, “A Concise Neural Network Model for Estimating Software
Effort,” International Journal of Recent Trends in Engineering, no. Vol.1, 2009.

[44] J. Cheng, “Virtual vehicle sensors based on neural networks trained using data generated by
simulation models,” Ford Global Technologies, Inc. (Dearborn, MI), United States Patent,
2001.

[45] M. Mozolin, J. Thill and L. E. Usery, “Trip distribution forecasting with multilayer perceptron
neural networks: A critical evaluation,” Transportation Research Part B 34, pp. pp 53-73, 2000.

[46] T. Abdel-Hamid and S. E. Madnick, Software project dynamics : an integrated approach,
Prentice Hall, ISBN-13: 978-0138220402 .

[47] V. Nguyen, B. Steece and B. Boehm, “A constrained regression technique for COCOMO
calibration,” Proceedings of the 2nd ACM-IEEE international symposium on Empirical software
engineering and measurement (ESEM), pp. pp. 213-222, 2008.

8. References

111

[48] B. Yang and Y. Clark, “COCOMO II. 2003 Calibration Status,” CSE Annual Research Review, , no.
http://sunset.usc.edu/events/2003/March_2003/COCOMO_II_2003_ Recalib_ration.Pdf,
2003.

[49] T. Schulz, Ł. Radliński and T. Gorges, “A Bayesian Network for Predicting Defect Correction
Effort,” in Proceedings of the 6th International Conference on Predictive Models in Software
Engineering Article No. 16, ACM, New York, NY, USA , ISBN: 978-1-4503-0404-7, 2010.

[50] A. Gelman, J. Garlin, H. Stern and D. Rubi, Bayesian Data Analysis, Chapman Hall, ISBN:
9781439898208, 2013.

[51] D. D. Galorath, “Software total ownership costs: development is only job one,” in Software
Tech News 11, 2008.

[52] J. Ramil, Continual Resource Estimation for Evolving Software,", University of London, Imperial
College of Science, 2003.

[53] I. Myrtweit, E. Stensrud and M. Shepperd, “Reliability and Validity in Comparative. Studies of
Software Prediction Models,” vol. IEEE Transactions on Software Engineering, no. Vol. 31, No.
5, 2005.

[54] D. Caivano, F. Lanubile and G. Visaggio, “Software renewal process comprehension using
dynamic effort estimation,” Proceedings of International Conference on Software
Maintenance, Florence, Italy,, p. pp. 209–218, 2001.

[55] M. Baldassarre and N. Boffoli, “Improving Dynamic Calibration through Statistical Process
Control,” in IEEE International Conference on Software Maintenance (ICSM’05), 2005.

[56] A. Trendowicz, J. Heidrich, J. Münch and Y. Ishigai, “Development of a hybrid cost estimation
model in an iterative manner,” Proceedings of the 28th International Conference on Software
Engineering, China, 2006.

[57] P. Abrahamsson, R. Moser, W. Pedrycz and A. Sillitti, “Effort Prediction in Iterative Software
Development Processes Incremental Versus Global Prediction Models,” in Proceed-ings of the
First International Symposium on Empirical Software Engineering and Measurement (ESEM),
2007.

[58] H. Sneed and S. Huang, “Sizing Maintenance Tasks for Web Applications,” in 11th European
Conference on Software Maintenance and Reengineering, CSMR '07, 2007.

[59] H. M. Sneed, “Estimating the Costs of a Reengineering Project,” in Proceedings of the 12th
Working Conference on Reverse Engineering (WCRE’05), 2005.

[60] F. Niessink and H. Van Vliet, “Two case study in measuring maintenance effort,” Proceedings
of International Conference on Software Maintenance, Bethesda, MD, USA, p. pp. 76–85,
1998.

[61] A. Abran, I. Silva and L. Primera, “Field studies using functional size measurement in building
estimation models for software maintenance,” Journal of Software Maintenance and
Evolution, pp. pp. 31-64, 2002.

7.5. Perspectives

112

[62] F. Fioravanti and P. Nesi, “Estimation and prediction metrics for adaptative maintenance
effort of object-oriented systems,” IEEE Transactions on Software Engineering 27, p. pp. 1062–
1084, 2001.

[63] V. Basili, S. Condon, K. Emam and R. Hendrick, “Characterizing and Modeling the Cost of
Rework in a Library of Reusable Software Components,” Proceedings of the 19th International
Conference on Software Engineering, pp. pp.282-291, 1997.

[64] A. De Lucia, E. Pompella and S. Stefanucci, “Assessing effort estimation models for corrective
maintenance through empirical studies,” Information and Software Technology 47, p. pp. 3–
15, 2005.

[65] M. K. Østvold and J. Magne, “A review of software surveys on software effort estimation,”
Empirical Software Engineering, ISESE 2003. IEEE, p. pp. 223–230, 2003.

[66] D. Yang, W. Qing Wang, L. Mingshu Li, Y. Ye and K. Ye, “A survey on software cost estimation
in the chinese software industry,” in Proceedings of the Second ACM IEEE international
symposium on Empirical software engineering and measurement.

[67] A. Trendowicz, J. Münch and R. Jeffery, “State of the practice in software effort estimation: a
survey and literature review,” Software Engineering Techniques , p. pp. 232–245, 2011.

[68] T. Chow and C. Dac-Buu, “A survey study of critical success factors in agile software projects,”
Journal of Systems and Software, p. pp. 961–971, 2008.

[69] K. M. Furulund, “Empirical research on software effort estimation accuracy,” PhD thesis,
Department of Informatics, University of Oslo, 2007.

[70] L. C. Briand and I. Wieczorek, “Resource Estimation in Software Engineering,” International
Software Engineering Research Network, Technical Report (ISERN 00-05), 2005.

[71] S. MacDonell and M. Shepperd, “Combining techniques to optimize effort predictions in
software project management,” Journal of Systems and Software, no. 66, p. pp. 91–98, 2003.

[72] X. Huang, D. Ho, J. Ren and L. F. Capretz, “Improving the COCOMO model using a neuro-fuzzy
approach,” Applied Soft Computing, no. 7, p. pp. 29–40, 2007.

[73] E. Stensrud and I. Myrtveit, “Human performance estimating with analogy and regression
models: an empirical validation,” in The 5th International Software Metrics Symposium, 1998.

[74] M. Jørgensen, “A review of studies on expert estimation of software development effort,”
Journal of Systems and Software, no. 70, p. pp. 37–60, 2004.

[75] E. S. Jun and J. K. Lee,, “Quasi-optimal case-selective neural network model for software effort
estimation,” Expert Systems with Applications, no. 21, pp. pp. 1-14, 2001.

[76] S. Bibi and I. Stamelos, “Selecting the appropriate machine learning techniques for the
prediction of software development costs,” Artificial Intelligence Applications and Innovations,
vol. 204, Springer, Boston, p. pp. 533–540, 2006.

8. References

113

[77] I. Tronto, J. Silva and N. S. Anna, “An investigation of artificial neural networks based
prediction systems in software project management,” Journal of Systems and Software, no.
81, p. pp. 356–367, 2008.

[78] A. Idri, A. Zahi, E. Mendes and A. Zakrani, “Software cost estimation models using radial basis
function neural networks,” International Workshop on Software Measurement, p. pp.21–3,
2007.

[79] S. Berlin, T. Raz, C. Glezer and M. Zviran, “Comparison of estimation methods of cost and
duration in IT projects,” Information and Software Technology, no. 51, p. pp. 738–748, 2009.

[80] L. C. Briand, T. Langley and I. Wieczorek, “A replicated assessment and comparison of
common software cost modeling techniques,” in Proceedings of the 22nd International
Conference on Software Engineering, Limerick, Ireland, 2000.

[81] M. O. Elish, “Improved estimation of software project effort using multiple additive regression
trees,” Expert Systems with Applications, no. 36, 2009.

[82] A. Heiat, “Comparison of artificial neural network and regression models for estimating
software development effort,” Information and Software Technology, no. 44, p. pp. 911–922,
2002.

[83] Y. Li, M. Xie and T. Goh, “A study of mutual information based feature selection for case based
reasoning in software cost estimation, Expert Systems with,” no. 31, p. pp. 5921–5931, 2009.

[84] E. Mendes and N. Mosley, “Bayesian network models for web effort prediction: a comparative
study,” IEEE Transactions on Software Engineering, no. 34, 2008.

[85] S. Bibi, I. Stamelos and L. Angelis, “Combining probabilistic models forexplanatory productivity
estimation,” Inf. Softw. Technol. , http://dx.doi.org/10.1016/j.infsof.2007.06.004., no. 50, p.
pp. 656–669, 2008.

[86] Y. Fu, M. Li and F. Chen, “Impact propagation and risk assessment of requirement changes for
software development projects based on design structure matrix,” International Journal of
Project Management, pp. pp 363–373, 2012, 2012.

[87] B. W. Boehm, “Software Engineering Economics,” IEEE transactions on software engineering,
VOL. SE-10, NO. 1, pp. pp. 4-21, 1984.

[88] J. E. Gaffney, “A comparison of a complexity-Based and Halstead program size estimates,” in
presented at the 1979 ACM Comput. Sci. Conf., Dayton, OH, 1979.

[89] S. M. Weiss, A Practical Guide to Designing Expert Systems, Rowman & Littlefield Publishers,
Inc., ISBN 9780865981089., 1984.

[90] V. Basili, G. Caldiera and D. Rombach, The Goal Question Metric Approach, Encylopedia of
Software Engineering-2, ISBN #1-54004-8, 1994.

[91] B. Kitchenham, “Software Development Cost Models,” in Software Reliability Handbook,
Elsevier Applied Science, NY, 1990, pp. pp. 487-517.

7.5. Perspectives

114

[92] M. Andolfi, M. Costamanga, E. Paschetta and G. Roseng, “A multicriteria-based methodology
for site prioritisation in sediment management,” Environment international, 2009.

[93] R. G. Sargent, “Verification and validation of simulation models,” WSC 05: Proceedings of the
37th conference on Winter simulation , p. pp 130–143, 2005.

[94] Autosar, “Release 4.1 Overview and Revision History, V1.2.0 Release 4.1 Rev 3,”
http://www.autosar.org/.

[95] S. Nadir, D. Streitferdt and C. Burggraf, “Software code generator in Automotive field,” in
International Conference on Computational Science and Computational Intelligence, 2015.

[96] NCHRP, “Incorporating ITS Into the Transportation Planning Process: An Integrated Planning
Framework (ITS, M&O, Infrastructure),” Practitioner's Guidebook,
https://www.nap.edu/read/22017, 2002.

[97] D. Ernst and F. Houdek, “GQM Method Application,” http://www-ivs.cs.uni-magdeburg.de/
sw-eng /us/java/GQM/link3.shtml, 2013.

[98] R. Pulfer, “Comparision of models of complex system,” in United States Patent Application
Publication, Pub No. US 2010.0036874A1, 2010.

[99] SIG, Automotive, “Automotive SPICE Process Reference Model,” http://www.automotive,
2012.

[100] D. A. Wheeler , B. Brykczynki and R. N. Messon, Software Inspection: An Industry Best Practice
for Defect Detection and Removal, CA, USA: IEEE Computer Society Press Los Alamitos,
ISBN:0818673400 , 1996.

[101] C. Jones, Software Quality: Analysis and Guidelines for Success, International Thomson
Computer Press, ISBN 9781850328674, 2000.

[102] J. Rumbaugh, I. Jacobson and G. Booch, Unified Modeling Language Reference Manual,
Pearson Higher Education, ISBN:0321245628, 2004.

[103] IEEE Standards Association, “IEEE Standards Association,” https://standards.ieee.org.

[104] A. Post and J. Hoenicke, “A New Property for Real Time Requirements,” International
Conference, European Conferences on Theory and Practice of Software, p. pp 34–49, 2011.

[105] A. Post, J. Hoenicke and A. Podelski, “Vacuous real-time requirements,” IEEE International
Requirements Engineering Conferencen 19th, Trento, Italy, p. pp 153–162, 2011.

[106] S. Højsgaard and S. Lauritzen, “Graphical Gaussian models with edge and vertex symmetries,”
Journal of the Royal Statistical, pp. pp. 1005-1027, 2008.

8. References

115

Selbstständigkeitserklärung
Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen
direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle ge-
kennzeichnet.

Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs- bzw. Beratungs-
diensten (Promotionsberater oder anderer Personen) in Anspruch genommen. Niemand hat
von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusam-
menhang mit dem Inhalte der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer
Prüfungsbehörde vorgelegt. Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der
vorstehenden Erklärung als Täuschungsversuch angesehen wird und gemäß § 7 Abs. 10 der
Promotionsordnung den Abbruch des Promotionsverfahrens zu Folge hat.

	ZUSAMMENFASSUNG
	ABSTRACT
	1 Introduction
	1.1 Motivation
	1.1.1 Automotive Industry
	1.1.2 Product Assessment
	1.1.3 Process Improvement

	1.2 Research Hypothesis
	1.3 Outline

	2 Background
	2.1 Automotive Product Engineering
	2.1.1 Standards and Norms
	2.1.2 Quality Management
	2.1.3 Development Workflow
	2.1.3.1 CMMI (Capability Maturity Model Integration)
	2.1.3.2 V-Model

	2.2 Traceability & Crosscutting Concerns
	2.2.1 Crosscutting Concerns Matrix Representation

	2.3 Software Estimation Technique
	2.3.1 Model Based Techniques
	2.3.1.1 The Putnam Software Life-cycle Model (SLIM)
	2.3.1.2 COCOMO II
	2.3.1.3 Reuse Model

	2.3.2 Expertise Based Techniques
	2.3.2.1 The Delphi Approach

	2.3.3 Learning Oriented Techniques
	2.3.3.1 Neural Network
	2.3.3.2 Dynamic Based Techniques
	2.3.3.3 Regression Based Techniques
	2.3.3.4 Composite Techniques
	2.3.3.4.1 The Bayesian Approach

	2.4 Maintenance Cost Estimation Models
	2.4.1 Phase-Level Models
	2.4.2 Release Level Models
	2.4.3 Task Level Models

	2.5 State of the art

	3 New Estimation Approach
	3.1 Approach description
	3.1.1 System model
	3.1.2 Dependability matrix
	3.1.3 Weight vector
	3.1.3.1 Complexity factor of change
	3.1.3.2 Weighing of change

	3.2 Development approach in this thesis
	3.2.1 Build and simulate the approach
	3.2.2 Model validation
	3.2.3 Refinement and generalization

	4 Data Model Analysis of Real World Automotive Software Projects
	4.1 Data Analysis Model
	4.1.1 Change Effort Categories
	4.1.2 Change Distribution

	4.2 Feature Classification
	4.3 Failure Effort Parameter (FEP)

	5 Development and defect correction KPIs
	5.1 Process model for software development
	5.1.1 Problem Definition
	5.1.2 KPIs and Relationships among them
	5.1.3 Estimation Model
	5.1.3.1 Model calibration
	5.1.3.2 Change parameters
	5.1.3.3 Process Activities and Project Factors
	5.1.3.4 Product parameters
	5.1.3.5 Test Activities

	5.1.4 Model Usage
	5.1.4.1 Results

	5.2 Defect Cost Flow System
	5.2.1 Problem Definition
	5.2.2 Model definition
	5.2.3 KPIs identification
	5.2.4 Model Creation
	5.2.5 Model Calibration
	5.2.5.1 Cost Factors of Defection
	5.2.5.2 Quality Assurance Activities
	5.2.5.3 Effort Reduction Rates
	5.2.5.4 Development Phase Multipliers

	5.2.6 Quality assurance effort
	5.2.6.1 Simulation results
	5.2.6.2 Test cases results
	5.2.6.3 Conclusion

	6 Practical result
	6.1 Prototype system
	6.2 Developing Knowledge
	6.2.1 Development area:
	6.2.2 Process area

	6.3 Model usage
	6.4 Defect source analysis
	6.5 Development effort analysis
	6.5.1 Requirement phase
	6.5.2 Design analysis
	6.5.3 Implementation effort distribution
	6.5.4 V&V phase

	6.6 Practical results analysis

	7 Summary
	7.1 Software development and automotive domain
	7.2 DSM and traceability
	7.3 Correction process model
	7.4 Cost flow model
	7.5 Perspectives

	8 References

