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Summary 
Beside the standard calculation programs for civil engineering buildings mathematical programs 
have been lately established for the solution of differential equations for the analysis of 
mechanical and static systems. Programs like Maple, Matlab, MathCAD and Mathematica are 
popular in this field. To the knowledge of the authors, the widest application functionality offers 
the program Maple. Its advantages are, e.g. the alternatively symbolic or numerical solution of 
differential equation systems, the easy handling of parameter studies, the immediate 
visualization of results, the definition of macros for selected calculation steps and their export in 
other computer languages and, not least, the automatically generated, very clear documentation 
of the mathematical calculus. 
In this article a systematic approach with use of Maple is presented for the development of 
stiffness matrices for beam structures as well as the check of the solutions. Besides pure beam 
elements also beams with complicated loads and complex boundary conditions are considered. 
A single beam is characterized, e.g. by a differential equation of the fourth order ''''EI w q⋅ = . 
The solution of the differential equation becomes even more difficult if biaxial bending, elastic 
foundation or the second order analysis have to be taken into consideration. It is worth 
mentioning that the complexity of the solution with Maple does not increase as the complexity 
of differential equations increases.   
The contribution also shows, that the presented method can easily be integrated in netbased 
teaching and learning systems. 

1 Introduction 
In the last time the development of new programs and the computer technology have led to 
radical changes in the methods of the calculation of engineering constructions. In the first place, 
the matrix methods are to be stated for necessary calculations of the tasks which permit a 
compact and general form of the presentation of equations and are suitable for the treatment on 
computers. The personal computers were enabled with it not only to solve systems of linear-
algebraic equations with hundreds or thousands of unknowns, to take over the treatment from 
differential equations, as well as the formation of these equations also. With it the computers 
take over the majority of the process of the calculation and the project engineering of a 
construction. The questions about the use of these qualities have indubitable actuality for the 
tasks of the statics, mechanics, structural informatics and structural mechanics. 
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2 Systematic approach for the development of differential equations of 
beams with and without consideration of the transverse strain and the 
formulas for normal stress 

In the practise of the project engineering a ready use of beam structures takes place (Fig.1). 
Beam structures exist of beam which are tied together in nodes. In the practise of civil 
engineering you often find suitable constructions, e.g. bridge span, buildings, ceilings or in the 
mechanical engineering. Development of an element library for the calculation of similar 
constructions with the symbolic computer language Maple permits effective project 
engineering. 

Beam structures 

 
 
 
 
 
 
 
 
 
 
 

 

Differential equation for single beam 

4

4

d w q=
dx EI

 

with w- deflection, EI- bending stiffness (E- modulus of elasticity, I- moment of inertia), x- the 
coordinates of the cross section, q- line load. 

Bems with comlicated loads and  boundary conditions 

1. Beam on elastic foundation 
4

4
4

d w q+4 n w=
dx EI

⋅ ⋅ , mit  4
kbn
4EI

=  

2. Biaxial bending 
4 2

4 2

d w d w qN
dx dx EI

± ⋅ =  

3. Theory of second order 
3

3

2

2

d q
dx EI
dw EI d
dx GF dx

ϕ

ϕϕ


= 


= − ⋅ 

 

Fig.1: Short overview for the calculations of beam structures
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Table 1 

Systematic approach for the development of the differential equations for beams or and without consideration of the transverse strain                                          
and the formulas for normal stress 

 
 Matrix equations Equations from the strength of materials 

Type of the 
development 

Beam structure Tension-
compression 

Bending without consideration 
of the transverse strain 

Bending with consideration of 
the transverse strain 

 

Equation of 
equilibrium 
 

A S=F⋅  N= σdA
A
∫  

A

M= - σ ydA⋅∫  
A

M= - σ ydA⋅∫  
1 

Geometrical 
relations  
 

TA U=⋅ ∆  duε=
dx

 
2

2

du d wε= = - y
dx dx

 
du dε= = - y
dx dx

ϕ
, mit 

dw +γ
dx

ϕ =

 

2 

Material law 
 

-1B S⋅ ∆ =  σ=E ε⋅  σ=E ε⋅  σ=E ε⋅  3 

(2)→(3) -1 TB A U=S⋅ ⋅  duσ=E
dx

⋅  
2

2

d wσ= -E y
dx

⋅  
dσ= -E y
dx
ϕ

⋅ , mit 
dw +γ
dx

ϕ =  
4 

-1 TA B A U=F⋅ ⋅ ⋅  duN=EA
dx

⋅  
2

2

d wM=EI
dx

⋅  
dM=EI
dx
ϕ

⋅ , mit 
dw +γ
dx

ϕ =  
5 (4)→(1) 

-1 T(A B A ) F=U⋅ ⋅ ⋅  du N=
dx EA

 
2

2

d w M
dx EI

=  
M d=
EI dx

ϕ
, mit 

dw +γ
dx

ϕ =  
6 

(6) →(4) -1 T -1 T 1B A (A B A ) F S−⋅ ⋅ ⋅ ⋅ ⋅ =
 

Nσ=
A

 
Mσ= - y
I

 
Mσ= - y
I

⋅  
7 

 

The matrix were calculated with the computer programs, e.g. MAPLE. 
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Table 1 

Type of the deformation 
 
Beam structure Tension-compression Bending without 

consideration of the 
transverse strain 

Bending with consideration 
of the transverse strain 
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3 The Automation of the calculation of beam structures 
The elaboration of the stiffenss matrix directly in a global coordinate system is complicated. 
Besides for calculation of beam structures uses the method of the Finiten elements. In this way 
at beginning the stiffenss matrix would be development in the local coordinate system, where 
their elaboration is more easy. Afterwards the construction of the global stiffenss matrix will be 
done (fig.2). 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.2: Basic steps by the realization of finite element calculations 
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Fy 

Fx 

y 

x 

2 α 

Fy 

Fx 

y 

x 

(2) 

(1) 

Discretization 
1. Step 

1 

3 

Choice of the elements (beams), definition of 
the material properties, loads and boundary 
conditions  

2. Step 

Development of the Elements stiffenss matrix 
 
1 [  ] 
2 [  ] 
3 [  ] 

3. Step 

Assembling the the global stiffens matrix  
 

k K

4. Step 

Solution of the linear equation system 
K·U=F 
with  
K – stiffenss matrix  
U -  displacement 
F – external force  5. Step 

Calculation of 
strain,  
stress,  
beam design 
 
 6. Step 
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For the elaboration of the stiffenss matrix for beams the following approach will be suggest:  
1. In confirming of the differential equation of the beam the stiffens matrix would be developed 
in a local coordinate system;  
2. Consideration of the character of the connection in the nodes at the end of the beam (stiff 
oder hinge connection); 
3. Extension of the matrix by consideration of additional limbs of the tension and compression.  
4. Transforming of the local coordinate system into the global coordinate system.  
5. Theelement matrices are assembled in the global stiffnes matrix.  
This article will discuss in details only the first point. 

3.1. Algorithms for the elaboration of Stiffenss matrix for single beam and 
           beams on elastic foundation with the symbolic computer language   
           Maple 
The source parameters of the stiffenss matrix are a differential equation or a system of 
differential equations (if transverse strain are present), as well as the expressions for the moment 
(M) and the shear force (Q). In table 1 is shown the systematic approach to the preservation of 
the differential equation for beam with and without consideration of the transverse strain. In 
case of a single beam, this is characterized by a differential equation of the fourth order: 

     
4

4

d w q=
dx EI

      (1) 

The formulas of the moment (M) and the shear force (Q) are as follows:          

                                            
2

2

d wM EI
dx

=    
3

3

d wQ EI
dx

=                 (2) 

The differential equation (1) is dissolved in the following type: 

                                           
4

2 3
1 2 3 4

qxw c +c x+c x +c x +
24EI

=         (3) 

Further we write the differential equation to (3) and their derivatives in a matrix form: 

                      

4

2 3
3

1' 2

2''
2

3'''

4IV

x
24w 1 x x x

c x0 1 2xw 3x
c 6q0 0 2 6xw xc EI0 0 0 6w 2c0 0 0 0w x

1

 
 

     
      
      
      = ⋅ + ⋅
      
      
           

  

                         (4) 

The fifth row is used to check the correctness of differential equation solution. If we substitute 
in the first two rows of the expression (4) the coordinates for the nodes of the beam with x = 0 
and x = l, follows from it: 

                    

i

4i

2 3
j

33
j

0
w 1 0 0 0 0

0 1 0 0 q
w 1 EI 24

0 1 2 3
6

l
l l l

l ll

ϕ

ϕ

 
    
    
    = + ⋅     
    
     
  

     (5) 
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The system (5) in simplistic form: 

                                   i

j

z qz= L c L
z EI

 
= ⋅ + ⋅ 

 
                  (6) 

We express the constant of integration by the displacement of the beam nodes: 

                                           -1 -1qc=L z - L L
EI

⋅ ⋅ ⋅                                     (7) 

Putting in the formula (2) the derived expression (4) (the second two rows (4)) we get: 
2xM 0 0 2 6x

=EI c+q 2Q 0 0 0 6 x

 
     ⋅ ⋅           

                 (8) 

The shear force and moments at the ends of the beam are i i j jQ , M ,Q , M  and correspond with 

the reactions wi i wj jr , r , r , rϕ ϕ .   

                

wi i

i i

w j j 2

j j

0r Q 0 0 0 0
0r -M 0 0 2 0

EI c q
r -Q 0 0 0 6
r M 0 0 2 6

2

l
ll

ϕ

ϕ

               −     = = ⋅ + ⋅ −     −                     

               (9) 

or 1 1r = EI L c+q L⋅ ⋅ ⋅                                                 (10) 
By using of formula (7) in the expression (10) we receive: 

-1 -1 -1 -1
1 1 1 1 1

-1 -1
1 1 1

qr = EI L (L z- L L) q L EI L L z-q L L L q L
EI

EI L L z-q (L L L-L )

⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

At the end: qr = EI r z-q r⋅ ⋅ ⋅  

with  -1
1r = L L⋅ - the relative stiffenss matrix with EI = 1, -1

q 1 1r  = -L L L L⋅ ⋅ + - the relative 

load column with q = 1.  
The finally matrix for the single beam is: 













12 E J
l3 6 E J

l2 −12 E J
l3 6 E J

l2 −
1
2 q l

6 E J
l2 4 E J

l −6 E J
l2 2 E J

l −
1

12 q l2

−12 E J
l3 −6 E J

l2 12 E J
l3 −6 E J

l2 −
1
2 q l

6 E J
l2 2 E J

l −6 E J
l2 4 E J

l
1
12 q l2

 
In analogy would be developed the stiffenss matrix with more difficult differential equations - 
beam on elastic foundation: 

4
4

4

d w q+4 n w=
dx EI

⋅ ⋅ , mit  4
kbn
4EI

=  
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An example program for the elaboration of the stiffenss matrix for an single beam with the symbolic   
computer language MAPLE 

> restart; 
> with(linalg): with(LinearAlgebra): 

The differential equation of the fourch order: 
> diff(w(x),x$4)=q/(E*J); 

 = 
d
d4

x4 ( )w x
q

E J  

Die formuls for moment (M) and shear force (Q) 
> Q:=(EJ)(d^3*w/dx^3); M:=(EJ)(d^2*w/dx^2); 

 := Q 







EJ

d3 w
dx3

 
 := M 







EJ

d2 w
dx2  

Dissolving of the differential equation 
> vv:=dsolve(diff(w(x),x$4)=q/(E*J),w(x)); 

 := vv  = ( )w x  +  +  +  + 
q x4

24 E J
_C1 x3

6
_C2 x2

2 _C3 x _C4  

> prav_fun_vv:=rhs(vv): 
Derived from the deflection 

> v1:=diff(prav_fun_vv,x): 
> v2:=diff(v1,x): 
> v3:=diff(v2,x): 
> v4:=diff(v3,x): 

Dissolving in Matrix form and their derived  
> ur:=[prav_fun_vv,v1,v2,v3,v4]: 
> Dmatrix:=mulcol(genmatrix(ur,[_C1,_C2,_C3,_C4],flag),5,-1); 

 := Dmatrix













x3

6
x2

2 x 1
q x4

24 E J

x2

2 x 1 0
q x3

6 E J

x 1 0 0
q x2

2 E J

1 0 0 0
q x
E J

0 0 0 0
q

E J

 

Check of the correctness of the solved differential equation 
> simplify(diff(vv,x$4)=q/(E*J)); 

 = 







 = 

d
d4

x4 ( )w x
q

E J
q

E J  

Elaboration of the matrix L and the vector L 
> str_12:=convert(submatrix(Dmatrix,1..2,1..5),Matrix) : 
> 
matrvectL:=Matrix(4,5,[[subs(x=0,row(str_12,1))],[subs(x=0,row(str_12,2))],[subs(x=l,row(str_12,1))],[subs(x=l,row
(str_12,2))]]): 
> mat_L:=convert(submatrix(matrvectL,1..4,1..4),Matrix) : 
> mat_L_obrat:=MatrixInverse(mat_L): 
> vec_L:=convert(submatrix(matrvectL,1..4,5..5),Matrix) : 

Elaboration of the matrix L1and the vector L1 
> str_34:=convert(submatrix(Dmatrix,3..4,1..5),Matrix) : 
> 
matrvectL1:=scalarmul(mulrow(mulrow(Matrix(4,5,[[subs(x=0,row(str_34,2))],[subs(x=0,row(str_34,1))],[subs(x=l,r
ow(str_34,2))],[subs(x=l,row(str_34,1))]]),2,-1),3,-1),E*J): 
> mat_L1:=convert(submatrix(matrvectL1,1..4,1..4),Matrix) : 
> vec_L1:=convert(submatrix(matrvectL1,1..4,5..5),Matrix) : 

Elaboration of the relative stiffnes matrix with  EJ=1 

> matr_r:=multiply(mat_L1/E/J,mat_L_obrat): 
Elaboration the relative load column with q=1 

> matr_rq:=simplify(matadd(-multiply(matr_r,E*J*vec_L),vec_L1)): 
 
 
 
 



Page 9 of 12 

 

The finally stiffenss matrix and load column for the single Beam is: 
> resultmatr:=augment(E*J*matr_r,matr_rq); 

 := resultmatr













12 E J
l3

6 E J
l2 −

12 E J
l3

6 E J
l2 −

q l
2

6 E J
l2

4 E J
l −

6 E J
l2

2 E J
l −

q l2

12

−
12 E J

l3 −
6 E J

l2
12 E J

l3 −
6 E J

l2 −
q l
2

6 E J
l2

2 E J
l −

6 E J
l2

4 E J
l

q l2

12

 

Table 2 shows all models of differential equations. For these differential equations were 
developed the stiffness matrices with unfolding algorithm in the symbolic computer language  
Maple. 
The Stiffness matrices which were get by the use of MAPLE are heavy to estimate (a matrix 
about some typed pages sometimes applies). Therefore, the control of the matrices is a very 
important stage in the production process. There are two types of the control: either to count 
back by calculation of the limit value crossing to the differential equations or by duplication of 
the length of the elements. The algorithm to the control of the matrix was also written in the 
symbolic language MAPLE. 

Table 2 
Differential equations and formulas for M  and Q  

 Bending without consideration         
of the transverse strain 

Bending with consideration             
of the transverse strain 

 Differential 
equation 

Formula for        
M  and Q  Differential equation 

Formula for      
M  and Q  

Single 
beam 

4

4

d w q=
dx EI

 
2

2

3

2

d wM EI
dx

d wQ EI
dx

= ⋅

= ⋅

 
3

3

2

2

d q
dx EI
dw EI d
dx GF dx

ϕ

ϕϕ


= 


= − ⋅ 

 
2

2

dM EI
dx

dQ EI
dx

ϕ

ϕ

= ⋅

= ⋅

 

Biaxial 
bending 

4 2

4 2

d w d w qN
dx dx EI

± ⋅ =  

2

2

3

2

d wM EI
dx

d w dwQ EI N
dx dx

= ⋅

= ⋅ ±

 
 

3 2

3 2

2

2

d d wEI N q
dx dx
dw EI d 1 dw
dx GF dx GF dx

ϕ

ϕϕ


⋅ ± = 


= + ⋅ ± ⋅ 

 
2

2

dM EI
dx

d dwQ EI N
dx dx

ϕ

ϕ

= ⋅

= ⋅ ± ⋅

 

 
The use of the computer language MAPLE permits the precise calculation of the stiffness 
matrices of complicated sbeam structures in symbolic form. 
The elaboration of the Stiffness matrices  occurs automatically and directly after the differential 
equations of the task. The application of this symbolic language facilitates the development of 
big and difficult tasks and, in addition, simplifies the programming. Furthermore Maple permits 
the issue of the results in a code of another computer language (C ++, VB). 

4 Continuing use of provided algorithms 
The developed algorithms for beam structures should serve not only for the pure calculation, but 
also be available to the teaching company at the university in suitable form. The students should 
use not only ready algorithms, but recognize solution steps and to be enabled to work on 
different application cases. On the one hand, special solution libraries can be used in Maple. 
With it the solution way is better understandable for the students or usable as a gradually control 
for their own calculation. It is important in this connection, that it is possible to create a pleasing 
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optical-interactive presentation, by which the learners can fully concentrate upon the task, based 
on the GUI development. With it the service is substantially simplified and takes from many 
users the fear of possible "programming expenditure" (Fig.3). 
On the other hand exists the variant to create an complete tutors course or practise block. So 
theory and practical examples as well as practise tasks are tied together directly with each other. 
In this case pleasing formed working surroundings are compellingly necessary, i.e. Internet 
pages similar construction. 
However, this is possible with Maple. In addition, the examples must be fitted out with 
learning-supporting help functions and mistake analyses, e.g. hyperlinks to auxiliary texts, 
procedures for the examination of interresults or mistakes. 
These program blocks can be explained either locally or Intranet-basing or are put on a server 
with suitable Java servlet-interface also for availability of distant accesses. 
 

 
Fig.3: Example of  Graphical user Interface (GUI) 

 

 
Fig.4: Example result visualization with Maple 
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