
Distributed computing of failure probabilities for structures in civil
engineering

Andrés Wellmann Jelic, University of Bochum (andres.wellmann@rub.de)
Matthias Baitsch, University of Bochum (matthias.baitsch@rub.de)
Dietrich Hartmann, University of Bochum (hartus@inf.bi.rub.de)

Karsten Spitzlei (spitzlei@inf.bi.rub.de)
Daniel Ballnus (ballnus@inf.bi.rub.de)

Abstract
In this contribution the software design and implementation of an analysis server for the
computation of failure probabilities in structural engineering is presented. The structures
considered are described in terms of an equivalent Finite Element model, the stochastic
properties, like e.g. the scatter of the material behavior or the incoming load, are represented
using suitable random variables. Within the software framework, a Client-Server-Architecture
has been implemented, employing the middleware CORBA for the communication between the
distributed modules. The analysis server offers the possibility to compute failure probabilities for
stochastically defined structures. Therefore, several different approximation (FORM, SORM)
and simulation methods (Monte Carlo Simulation and Importance Sampling) have been
implemented. This paper closes in showing several examples computed on the analysis server.

1 Introduction
All structures in civil engineering contain various uncertain properties. Modern standards
customarily represent uncertainties in terms of semi-probabilistic checking concepts. By
contrast, a full probabilistic reliability analysis can be performed, which determines the failure
probability of the system based on the stochastic properties for specified limit states. These limit
states are described and analyzed independently from the scatter of the parameters x used in the
correspondent limit state function g : x → g(x), x ∈ <n. Standard methods in a reliability
analysis compute results of this function g(x) in order to estimate the failure probability,
independent on the type of problem definition. This independency permits a separate
implementation of the reliability analysis. Therefore, the correspondent software module would
be applicable for different fields of interest, like e.g. dynamical reliability problems or design in
foundation engineering. In the framework of this contribution, the server module has been
developed and adapted to solve reliability problems of structural systems.

The developed software has to fulfill several important requirements. The first main requirement
is the modularity of the implementation in order to facilitate the exchange or addition of further
methods and problem definitions. Emphasis is also placed on the reusability of this module to
make it easily adaptable in subsequent analyses. As the execution of reliability analyses is very
time consuming, a distributed software design is favorable. The calculations can be executed on
high-performance servers and controlled via a client on any standard computer. The first two
requirements can be satisfied using the object oriented programming language JAVA (SUN
2003). The distributed implementation is achieved by passing the communication between the
separated modules in terms of the middleware CORBA. The technical implementation of
CORBA is applying the Object Request Broker (ORB) from Object Oriented Concepts,
Inc.(IONA-Techologies 2001).

It is possible to integrate several methods for the estimation of failure probabilities, leaving the
choice of approach to the user. An overview of the implemented calculations methods is given in
chapter 2. The software design and the implementation in JAVA of the analysis server and
additional components will be explained in chapter 3. In chapter 4, the usage of the server
modules is explained with several examples in the field of structural engineering. This
contribution finishes with a short conclusion.

Page 1 of 11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Probabilistic Analyses
The main goal of a probabilistic analysis is the estimation of the probability of failure for a
structural system by evaluating the multidimensional function

Pf =
∫

g(x)≤0

f(x)dx (1)

In Eq.(1) a joint probability density function of the vector x of random variables has to be
integrated in the failure domain. This domain is defined by the so-called limit state function
g(x), indicating failure with negative values and survive with positive values. In some cases, the
limit state function is not defined in terms of the random variables x explicitly. In particular, it
may depend only on response quantities computed in a Finite Element analysis.

A straightforward numerical solution of the integral function is only feasible in some special
cases. Instead simulation and approximation methods are used in order to estimate a solution.

2.1 Approximation methods
Well developed methods for approximating the failure probability are FORM and SORM
(First-Order and Second-Order Reliability Methods). These are analytical solutions converting
the integration into an optimization problem. In order to simplify the calculation the distribution
functions of the random variables and the limit state function are transformed into a standardized
Gaussian space. This transformation is defined via the Cumulative Distribution Function

FXi
(xi) = Φ(yi) (2)

where yi are the transformed and standardized Gaussian variables, leading to

yi = Φ−1(FXi
(yi)). (3)

This transformation leads to a nonlinear limit state function

h(y) = g
(
F−1

X1
(Φ(x1)) , . . . , F−1

Xm
(Φ(xm))

)
(4)

in almost all cases. The FORM and SORM now simplify these functions calculating linear and
quadratic tangential surfaces respectively. These surfaces are adapted in the so-called design
point y∗. This point of the limit state function h(y) is defined via the shortest distance (e.g. in
FORM)

δ =
h(y)−

m∑
j=1

yj
∂h
∂yj

(
m∑

j=1

(
∂h
∂yj

)2
)1/2

(5)

between h(y) and the coordinate origin of the standardized Gaussian space. From this distance
measure the safety index

β =
{

+δ, h(0) > 0
−δ, h(0) < 0 (6)

is derived. This leads to a simplified formulation of the failure probability

Pf ≈ Φ(−β) (7)

in FORM and to

Pf = Φ(−β)
m−1∏

i=1

(1− βκi)−1/2 (8)

in SORM. The most time-consuming part in these methods is finding the design point. Several
iterations have to be calculated until the distance measure δ shows good convergence.

Page 2 of 11

2.2 Simulation methods
In contrast to the approximation methods named above the class of Monte Carlo Simulations has
to be mentioned. These methods use the given density functions to create multiple sets of
realizations of all random variables. For each set of realizations, a deterministic analysis of the
researched limit state function g(x) is performed, in our case, a structural analysis using the
Finite Element Method. Afterwards, the results are evaluated concerning failure or survival. In
order to simplify the description of the analysis results an Indicator function

I(g(x)) =
{

1, für g(x) < 0
0, für g(x) ≥ 0,

(9)

is used. This leads to an alternative formulation of the failure probability in Eq.(1)

Pf =
∞∫

−∞
I(g(x)) · fX(x)dx. (10)

In a discrete simulation this can be reduced to the finite sum

Pf =
1
n

n∑

i=1

I[g(xi) < 0] (11)

with n is describing the number of simulations and xi is the i-th set of generated realizations. The
big disadvantage of the classical Monte Carlo Simulation is that the accuracy of the estimated
results are proportional to 1/

√
n. Therefore , an increase of accuracy by one order of magnitude

demands an increased execution of discrete simulations by around two orders of magnitude. The
main reason is the clustered generation of realizations of the random variables near their mean
values. As the demanded failure probabilities in structural engineering are very small, an
uneconomic number of simulations have to be performed intending to get good estimations.

Consequently, the class of variance reducing methods have been developed based on the classic
Monte Carlo Simulations. Some variations are e.g Importance Sampling, Stratified Sampling or
Adaptive Sampling, more details can be found in (Bucher 1988; Schuëller 1998). So far, only
Importance Sampling has been implemented in the given software package. Therefore, the main
principles will be explained shortly. The Importance Sampling method moves the main
generation point for realizations near the design point y∗, shown in Eq.(5), and then defines a
new simulation density function h(v) in y∗. This expands the integral in Eq.(10) to

Pf =
∫
· · ·

∫
I(v)

fx(v)
hV (v)

hV (v) dv. (12)

Hence, the failure probability can be estimated with

Pf =
1
m

m∑

n=1

I(vn)
fx(vn)
hV (vn)

(13)

using m simulation runs and the sample vn defined by h. In order to calculate approximate
estimates for the failure probability a good choice of the sampling density h(v) is essential. The
variance of Eq.(13) is

Var[Pf] =
1

m− 1

[
1
m

m∑

n=1

I(vn)
(

fx(vn)
hV (vn)

)2

− P 2
f

]
, (14)

leading to a coefficient of variance

υPf
=

(Var[Pf])1/2

Pf
. (15)

Page 3 of 11

The exact solution for Pf is obtained for a proportional definition of hV (v) to the real density
function fX(v), which, however, implies the knowledge of the searched probability. Instead,
(Spaethe 1992) proposes, therefore, the use of the original density function of fV (v), a normal or
a uniform distribution. In the developed software only the use of the normal or uniform
distribution is offered. Subsequently, the design point is determined from a pre-executed FORM
calculation.

3 Software design
For the estimation of failure probabilities of a system the approach can be subdivided into the
problem definition and the reliability analysis.

Figure 1: Overview of software design

This differentiation is represented in the software design by the separate implementation of
problem and analysis (see Fig.1). Main controlling structures in this software are the two server
modules ProblemServer and AnalysisServer. These objects create and manage the correspondent
parts of the reliability analysis, a ReliabilityProblem and the ReliabilityAnalyzer, which are
defined as interfaces in the IDL language for CORBA definitions and implemented in JAVA. The
clients access these objects via the IDL-defined interfaces.

3.1 Server module for problem definition
The first part of the approach includes all stochastic properties of the system. Furthermore, the
considered system itself has to be included in a proper mathematical way. In civil engineering
e.g. the scatter of material properties and the stochastic behavior of loads can be collected and
described in a set of structural random variables X. The structural system could be represented
using the Finite Element Method. These parameters form the input of the limit state function
(Eq.(4)) which describes the failure mechanism of the system in a mathematical way. These
relations are displayed in Fig.2.

Figure 2: Parameters of a structural reliability problem

Page 4 of 11

The parameters and functions mentioned above are necessary in order to define a Reliability
Problem which is created by the server module for problem definition. This definition can be
used later in the subsequent reliability analysis. Fig.3 shows a general reliability problem.

Figure 3: Structure of a general reliability problem

As already alluded previously, the problem definition has been adapted in this work to describe
structural reliability problems in civil engineering. But, the communication of the server
modules via the general module Reliability Problem allows the definition of different problems
where failure probabilities have to be computed. The problem definition would only differ at the
information of random variables and the limit state function g(x).

3.2 Server module for analyses
The second part contains the necessary information in order to control and start the mathematical
analysis of the reliability problem. This can be stored in a module named Reliability Analyzer.
This module gets the stochastic input for the analysis via the above described module Reliability
Problem. It also includes the calculation methods like e.g. FORM or Importance Sampling.

Furthermore, the module has to define one stochastic distribution function for each random
variable in the the Reliability Problem. This functions will be used in the execution of the
computation methods. The actual software version only offers the possibility to create the
following types of continuous distributions: Normal, Lognormal, Exponential, Uniform,
Gumbel, Frêchet and Weibull. Because of the demanded modularity of the software it will be
possible to add further types of distribution functions without the necessity of changing the
Reliability Analyzer structure itself. A typical design of such a distribution function, derived
from a general interface ContinousDistribution, is shown in Fig.4.

Figure 4: Design of a continuous distribution

Finally, the Reliability Analyzer stores the results of the analysis in one real-valued number. The
above explained relations are displayed in Fig. 5.

The described separation between analysis and problem definition allows to use the
mathematical methods of reliability analysis without knowing what is represented by the
problem definition. The server module for the analysis just needs access to the correspondent
limit state function and the stochastic properties of each random variable (e.g. type of
distribution f(x), mean value mx, standard deviation σx).

Page 5 of 11

Figure 5: Definition of a reliability analyzer

3.3 Client modules
In order to control the computations each server module needs a correspondent client. In the first
instance, the client for the problem definition has to be started. The main task is to collect all
necessary information for the definition and to save this in a Reliability Problem object (see
Fig.6). Furthermore, a client connected to the analysis server module has to be implemented. At
initialization, this client creates an instance of a Reliability Analyzer object and connects this to a

Figure 6: Problem client Figure 7: Analysis client

given reliability problem (see Fig.7). Subsequently, it manages the selection and execution of
calculation methods by the user via a graphical interface. When the calculation stops, it should
show the correspondent results in a separate output area. The graphical interfaces for the clients,
implemented in JAVA, are shown in Fig.8.

Figure 8: GUI for client modules

4 Examples
In this section three different examples of a reliability analysis in structural engineering are
demonstrated. The results have been computed using the above presented software framework.
Within each example the results from all implemented analysis methods will be compared. Also,
the quality of the estimated results will be shown within the first example.

Page 6 of 11

4.1 Example 1: Cantilever beam
This example is taken from (Spaethe 1992, p.78). A cantilever beam with a length of 2,0m is
loaded with a singe vertical force P at the overhanging end (see Fig.9).

Figure 9: Cantilever beam

Height Iy A Wy E
(cm) (cm2) (cm4) (cm3) (kN/cm2)

20 2140 33,4 214 26500

Figure 10: Parameters of the cantilever beam

Fig.10 lists the data of the cross section and the material. The limit state function g(x) is
computed as the Ultimate Limit State, defined by the initiation of yielding in the outer fiber. The
probability of failure is to be estimated for this limit state. The stress analysis is defined via

g(x) = σF · 214− | M |≤ 0. (16)

Stochastically defined values are the yield point of the steel material (random variable X1) and
the single load P (random variable X2). The stochastic informations are given in Fig.11.

i mxi
σxi

x0i Type of distribution
1 26, 5kN/cm2 2, 5kN/cm2 16kN/cm2 log. Normal
2 −18kN 2kN - Gumbel, Smallest values

Figure 11: Statistical parameters

Based on these definitions all implemented calculation methods have been used to estimate the
failure probabilities. The correspondent failure probabilities Pf and the absolute runtime of each
method are summarized in Fig.12. The exact solution of this reliability problem, computed in
(Spaethe 1992) via numerical integration of the multidimensional integral in Eq.(1), is equal to
2, 131 · 10−3.

Method Pf Duration
[ms]1

MCS (100.000 samples) 0,00246 500.700
MCS (5.000.000 samples) 0,00209 21.175.509
FORM 0,00224 521
SORM 0,00214 2.654
IS (normal distr.; 10.000) 0,00206 78.122
IS (equally distr.; 10.000) 0,00172 70.181

Figure 12: Calculation results

Comparing the results obtained from the Monte Carlo Simulation to the exact result, a good
agreement can be stated only for a sample size of n = 5.000.000. A simulation run with only
100.000 samples, however, shows a variation of 10%. The quality of the estimations can be
measured with the variance of the estimator, shown in Fig.13. At the left side, the change of the
variance for 100.000 simulations depending on the number of passes is shown. Each pass
consisted of 1.000 discrete samples. The figure on the right displays the variance for 5.000.000
simulations, each pass containing 10.000 discrete samples. A better convergence of the values is
evidently achieved with an increasing number of simulations.

FORM and SORM lead to a good agreement with respect to the real value. The results from
FORM having a variation of 5% are improved by means of a subsequent SORM run, to a

Page 7 of 11

Figure 13: Decrease of the variance for 100.000 and 5.000.000 samples

variation of only 1%. Finally, the Importance Sampling method delivers appropriate results with
a variation of 3% (using a normal distribution), most importantly, within an acceptable runtime
(see Fig.12). This method was performed twice using a equally distributed function and a normal
distribution function in the design point. In Fig.14 the quality of the results is shown.

Figure 14: Coefficient of variation and variance for Importance Sampling using a normal distribution (—) and an uni-
form distribution (- - -)

The design point was searched with a FORM analysis. Afterwards, the Importance Sampling
method is executed with 10.000 samples. This results in a decreasing coefficient of variation
using a normal and an uniform distribution. Though the variance increases, it is still smaller than
the variance in a Monte Carlo Simulation after 100.000 runs. Both calculations in Fig.14 show a
good convergence, although the estimation of the failure probability is more exact using the
normal distribution for the sampling density.

4.2 Example 2: Framed steel structure
A two-hinged frame from steel constructions is analyzed with respect to the Ultimate Limit State,
proving the maximum yield stresses in the upper left haunch (see Fig.15). The values of the
cross sections are given in Fig.16.

Figure 15: geometry and load definition of steel
frame

El. h Iy A Wy E
- (cm) (cm2) (cm4) (cm3) (kN/cm2)

Col. 40 23128 84, 5 1156, 4 21.000
Bar 33 11767 62, 6 713, 2 21.000

Figure 16: Parameters of the framed structure

Again, the stochastically defined parameters are the yield point of the material (X1) and the
uniform load on the bar (X2), both defined with a Log-Normal distribution. The load is the

Page 8 of 11

combination of the self weight of the structure and additional snow load qs = 0, 0375 kN/cm.
The parameters of the distribution are summarized in the Fig.17.

i mxi
σxi

x0i Type of distribution
1 24kN/cm2 2, 4kN/cm2 14kN/cm2 log. Normal
2 0, 07001kN/cm 0, 00375kN/cm 0, 03251kN/cm log. Normal

Figure 17: Statistical parameters

The results of this example are only listed shortly in Fig.18. Comparing these results with the
demanded reliability in the standard codes, defined in a range between 10−3 for SLS and 10−6

for ULS, it is obvious that the reliability of the given structure is too small. One possible
improvement could be the usage of a cross section with higher bearing capacity, like e.g. an IPE
450 from the German code. The change of the cross section and subsequently also the self
weight of the structure leads to the results displayed in Fig.19.

Method Failure probability Pf

MCS 1, 101 · 10−2

FORM 1, 09 · 10−2

SORM 0, 997 · 10−2

IS 1, 108 · 10−2

Figure 18: Results from reliability analysis

Method Failure probability Pf

MCS 6, 2 · 10−6

FORM 4, 666 · 10−6

SORM 5, 544 · 10−6

IS 5, 612 · 10−6

Figure 19: Results for improved structure

4.3 Example 3: Multi-story frame
In the last example, a different limit state is analyzed. The structure is a multi-story frame from
steel constructions (see Fig.20) with several horizontal loads.

Figure 20: Framed structure and cross sections

The limit state function

g(x) =
h

320
− u24 ≤ 0 (17)

describes the maximum horizontal displacement of the upper right corner. Stochastically defined
entities are the load Pi and the modulus of elasticity E (E1 for the horizontal, E2 for the vertical
trusses), shown in Fig.21.

A reliability analysis of this structure returns the result listed in Fig.22.

Page 9 of 11

Variable distribution type Unit mx σx a u
P1 Gumbel, small kN −220, 0 80, 0 0, 016032 −183, 99673
P2 Gumbel, small kN −170, 0 75, 0 0, 0171007 −136, 2469
P3 Gumbel, small kN −133, 0 70, 0 0, 0183221 −101, 49714
E1 Normal m4 2, 17375E7 1, 9152E6 - -
E2 Normal m4 2, 37963E7 1, 9152E6 - -

Figure 21: Statistical parameters of example 3

Method Failure probability Pf

MCS 1, 0 · 10−6

FORM 3, 27517 · 10−6

SORM 1, 05869 · 10−6

IS 2, 7804 · 10−6

Figure 22: Results for example 3

5 Conclusions
In this paper, a distributed software framework for carrying out reliability analyses is proposed.
The main module within this framework is the implementation of a Reliability Analyzer, a tool
for the initiation and management of a reliability analysis. In order to compute the failure
probability, the indicator value for the reliability, several approximation and simulation methods
have been presented and implemented. Furthermore, continuous distribution functions for the
representation of stochastic properties have been included.

The analysis module has been used in association with a server module for the problem definition
where the information about the reliability problem is stored. Furthermore, the server module for
problem definition has been adapted in this work to solve structural reliability problems. It could
be demonstrated that the software framework is useful to solve different representative examples
in which the computations of time-independent failure probabilities is essential.

The main advantage of the presented concept is the strict separation between the problem
definition and its analysis. By that, it is possible to apply the Reliability Analyzer in different
reliability scenarios. Additionally, the modularity allows the supplementary inclusion of
improved computational methods and distribution functions, if desired or available.

6 Endnotes
1) All calculations were performed on a PC System: Win XP, AMD Duron 800MHz

7 References
Bucher, C. (1988). Adaptive sampling - an iterative fast monte carlo procedure. Structural
Safety 5(3), 119–126.
IONA-Techologies (2001). ORBacus for C++ and JAVA. v4.1.0 API Specification.
http://www.iona.com/products/orbacus_home.htm.
Schuëller, G. (1998). Structural reliability - recent advances - freudenthal lecture. Proceedings of
the 7th International Conference on Structural Safety and Reliability (ICOSSAR’97) 1, 3–35.
A.A. Balkema Publications, Rotterdam, The Netherlands.

Page 10 of 11

Spaethe, G. (1992). Die Sicherheit tragender Baukonstruktionen. Springer, Vienna.
SUN (2003). JAVATM 2 Platform, Standard Edition, V.1.4.1 API Specification.
http://java.sun.com/j2se/1.4.1/.

Acknowledgements
This research is supported by the German Research Foundation (DFG) within the scope of the
Collaborative Research Center 398 which is gratefully acknowledged by the authors.

Page 11 of 11

