
Page 1 of 11

Internet-Enabled Software Model for Nonlinear Structural
Analysis and Simulations

Jun Peng, Stanford University, Stanford, CA 94305, USA (junpeng@stanford.edu)
Gloria Lau, Stanford University, Stanford, CA 94305, USA (glau@stanford.edu)

Kincho H. Law, Stanford University, Stanford, CA 94305, USA (law@stanford.edu)

Summary
This paper describes an Internet-enabled software model that could facilitate the development
and utilization of nonlinear structural analysis programs. The software model allows users easy
access to the analysis core program and the analysis results by using a web-browser or other
application programs. In addition, new and legacy codes can be incorporated as distributed
services and be integrated with the software framework from disparate sites. A distributed
project management system, taking advantages of Internet and database technologies, is
implemented to store and manage model information and simulation results. Nonlinear
dynamic analysis and simulations of a bridge structure is performed to illustrate the facilities of
the Internet-enabled software model.

1 Introduction
Current structural finite element analysis (FEA) programs are “monolithic” in that they are
typically implemented and run on a dedicated computer. As technologies and structural theories
continue to advance, FEA programs need to be able to accommodate new developments such as
element formulation, material relations, analysis algorithms, and solution strategies. The need
to develop and maintain large complex software systems in a dynamic environment has driven
interest in new approaches to FEA software design and development. Object-oriented design
principles and programming have been employed in FEA software development to support
better data encapsulation and to facilitate code reuse. However, most existing object-oriented
FEA programs are still rigidly structured. Extending and upgrading these programs to
incorporate new developments and legacy codes remain to be a difficult task. Furthermore, there
is no easy way to access computing resources and structural analysis services distributively
located at different remote sites.

With the maturation of information and communication technologies, the concept of building
collaborative systems where software services are distributed over the Internet is becoming a
reality (Han et al. 1999). Simply defined, web services are a combination of application and
data that can be accessed from any Internet-enabled device (Roy and Ramanujan 2001). Using
a set of standardized communication protocol, web services can be universally accessed and
deployed, independent of the underlying operation environment. The basic idea behind web
services is to adopt the loosely coupled web-programming model to facilitate software
component integration. The goal is to provide a platform for building distributed applications
that utilize software components running on different operating systems and devices. Web
services, acting as the adapter for complicated process components and legacy applications,
allow disparate systems to work together.

Following the web services model, we have designed and prototyped an Internet-enabled
framework to facilitate the usage and development of a nonlinear dynamic structural analysis
program (Peng 2002; Peng and Law 2002). In the prototype implementation of the Internet-
enabled framework, OpenSees (McKenna 1997) is utilized as the finite element analysis core.
OpenSees (Open System for Earthquake Engineering Simulation) is an object-oriented program
for seismic simulation of structural and geotechnical systems. The Internet-enabled framework

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2 of 11

adopts distributed service model to enhance and improve the capability and performance of a
FEA program by seamlessly integrating legacy code and new developments. A software
component can be incorporated by directly integrating with the core as a local module and/or by
implementing as a web service. Using the Internet as a communication channel, the framework
provides users the ability to pick and choose the most appropriate methods and software
services for solving a problem. The framework also includes project management capabilities.
Project management functions allow users to access information about previous analyses of
related models stored distributively on different sites. While the prototype implementation is
using OpenSees as the FEA core, the framework is sufficiently general to be incorporated by
other FEA programs. The framework described herein intends to extend FEA programs, such
as OpenSees, to better utilize the Internet as a communication vehicle.

2 Internet-Enabled Services Framework
The distributed engineering service framework is designed to provide developers and users with
easy access to an analysis platform and to incorporate new element technologies, new
algorithms, and solution strategies with the analysis core. By adopting the services model, FEA
program development can shift the focus from coding to the integration of engineering services.

2.1 Architecture of the Services Framework
When integrating multiple computer applications or systems, a suitable architecture is needed to
define how the components (applications or systems) are connected within the constraints
(Smith and Scherer 1999). In the Internet-enabled software framework, the structural analysis
core program is running on a central server as a compute engine. At the heart of the compute
engine is a protocol that enables jobs to be submitted to the compute engine, the compute engine
to run those jobs, and the results of the job to be returned to the client. This protocol is
expressed in interfaces that are supported by both the core server and the distributed services.

To utilize the software platform, users play the role of clients to the central finite element
compute engine. The users can have direct or remote access to the core program through a web-
based user interface or other application programs, such as MATLAB. The users can specify
desirable features and methods (element types, efficient solution methods, and analysis
strategies) that have been implemented and registered with the core platform.

For element developers, a standard interface/wrapper is defined for communicating the
element(s) with the analysis core. The element code can be written in languages such as
Fortran, C, C++ and/or Java as long as it conforms to the standard interface, which is a set of
pre-defined protocols to bridge the element code with the analysis core. If the developer and the
system administrator agree, the new element can be merged into the analysis core and become
part of the static element library. On the other hand, the element developer can simply register
the element code and its location to the analysis core and the element service can then be
accessed remotely over the Internet.

2.2 Mechanics of the Services Framework
The mechanics of the Internet-enabled model is illustrated in Figure 1, which shows the basic
procedures to access the finite element compute engine and to perform nonlinear dynamic
analysis over the Internet. First, a user of the system builds a structural model on the client site
and then submits the model to the analysis core via a web-browser or an application program,
using the Internet as a communication channel. Upon receiving the model and other related
information, the core server authenticates the user’s identity and starts performing structural
analysis based on the received model. Depending on the underlying hardware and system of the

Page 3 of 11

server core, the analysis may be performed in a distributed and collaborative manner. During
the analysis, elements that are available in the core can be accessed locally from the static
element library (which is the case for most prevailing finite element packages), whereas other
elements are obtained from online element services. In order to find the required elements not
existing in the local element library, the registry is queried to find the location of the online
element services. Once the online element services have been identified and bound, the analysis
core can access these element services as if they were static local elements. After the analysis is
completed, part of the results are returned to the user by generating a dynamic web page
displayed in the user’s web browser.

ANALYSIS
CORE

ANALYSIS
CORE

ON-LINE
ELEMENT
SERVICE

REGISTRY

Query
4

Perform
Analysis

3
SERVER

INTERFACE

Submit
Analysis
Model

2

Reg
ist

er
to

 C
or

e

1

Collaborative
Computation 6 5

WEB-BASED
CLIENT

Results

8

7

ANALYSIS
CORE

ANALYSIS
CORE

ON-LINE
ELEMENT
SERVICE

REGISTRY

Query
4

Query
4

Perform
Analysis

3

Perform
Analysis

3
SERVER

INTERFACE

Submit
Analysis
Model

2

Submit
Analysis
Model

2

Reg
ist

er
to

 C
or

e

1

Reg
ist

er
to

 C
or

e

1

Collaborative
Computation 6 5
Collaborative
Computation 6 5

WEB-BASED
CLIENT

Results

8

7

Results

8

7

Figure 1. Mechanics of the Internet-Enabled Software Model

3 User Interfaces
As indicated in Figure 1, the services framework can offer users access to the analysis core, as
well as the associated supporting services via the Internet. One benefit of this model is the
transparency of software services. From a user’s perspective, the user deals with a single
service from a single point-of-contact – even though the actual structural analysis may be
performed in a distributive manner. To facilitate user interaction with the core server, two types
of interfaces are provided, namely web-based interface and MATLAB-based interface.

Client browser programs such as the Internet Explorer and Netscape Navigator allow users to
navigate and access data across machine boundaries. In the Internet-enabled framework, a
standard web browser is utilized to interact with the FEA core, as shown in Figure 2. Users of
the framework can build a structural analysis model on the client site, and then save it as an
input file. The structural analysis model can then be submitted to the server through the
provided web interface. Whenever the server receives a request, it starts a new process to run
the FEA core. The server monitors the progress of the simulation and informs the user
periodically. After the analysis is complete, some pre-requested analysis results are returned
from the FEA core to the user’s browser as a generated web page. One feature of this model is
that the server supports multithreading, so that the server is able to support simultaneously
requests from multiple users without severe performance degradation.

Page 4 of 11

Web Browser ServletServer

FEA Core

Interface

Internet

Virtual Link

HTTP Protocol

ODBC JDBC

Java Native
Interface

Database

Figure 2. Interaction Diagram for the Web-based User Interface

For web-based services, all too often analysis result is downloaded from the server as a file, and
then put manually (cut and paste plus maybe some cumbersome conversions) into another
program, e.g. a spreadsheet, to perform postprocessing. For example, if we want to plot a time
history response after a dynamic analysis, we might download the response in a data file and
then use MATLAB, Excel, or other software packages to generate the graphical representation.
It would be more convenient to directly utilize some popular application software packages to
enhance the user interaction with the FEA core. In our prototype system, a MATLAB-based
user interface is implemented to take advantage of the flexibility and graphical processing
power of MATLAB. Various functions have been added to the standard MATLAB to handle
the network communication and data processing tasks. These add-on functions can be directly
invoked from a MATLAB-based graphical user interface.

4 Internet-Enabled Services Integration
One of the salient features of the software framework is to facilitate analysts to integrate new
developments remotely so that the functionalities of the analysis core can be enhanced. A
diverse group of users and developers can easily access the FEA program and contribute their
own developments (such as elements, materials, analysis algorithms, and solution strategies,
etc.) to the central core. For illustration purpose, this paper describes the service integration of
elements to the analysis core. There are two types of online element services: namely
distributed element service and dynamic shared library element service.

4.1 Software Integration with Services
Software integration takes place in many forms. The early attempts are based on code reuse.
The simplest method is to copy the source code to wherever the desired functionality is needed.
There are significant drawbacks to this approach, ranging from compiler incompatibility to
difficulty in maintaining duplicate copies of code.

The development of network computing, especially the emergence of the Internet, allows
software components to be distributed to multiple machines. Each software component runs as
a separate process, communicating with each other by exchanging messages. This software
integration model is called the distributed component model (Emmerich and Kaveh 2002).
Assorted tools and standards for assembling distributed computing applications have been
developed over the years. They started as low-level data transmission APIs and protocols, such
as TCP/IP and RPC (Birrell and Nelson 1984) and have evolved into object-oriented

Page 5 of 11

distribution schemes, such as Object Management Group’s (OMG) Common Object Request
Broker Architecture (CORBA) (Pope 1998), Microsoft’s Distributed Component Object Model
(DCOM) (Eddon and Eddon 1998) and Sun Microsystems’ Java Remote Method Invocation
(RMI) (Pitt and McNiff 2001). These programming tools essentially provide a protocol for
transmitting structured data (and, in some case, actual running code) over a network connection.

There are also web services technologies for facilitating distributed service composition, for
example, Microsoft .NET (Kirtland 2000) and SOAP (Box et al. 2000). The functionalities
provided by the web services are composed together to form an integrated service. Although
the web services are distributed and heterogeneous, they are utilized as if they were locally
available to the users. Communication messages are exchanged among the web services to
coordinate the execution of the web services and to exchange data among the web services.

4.2 Distributed Element Services
A key feature of the distributed services framework is the interchangeability of components and
the ability to integrate existing libraries and new components into the analysis core without the
need to dramatically change the existing code. In an object-oriented FEA program, introducing
a new type of element generally consists of creating a new subclass for a specific element
(McKenna and Fenves 2000). This local object-computing paradigm can be extended to
support distributed services. The essential requirements in a distributed object system are the
ability to create and invoke objects on a remote host or process, and interact with them as if they
were objects within the same local process.

In the prototype implementation, Java’s Remote Method Invocation (RMI) (Pitt and McNiff
2001) is chosen to handle communication for the distributed element services over the Internet.
Java RMI enables a program in one Java Virtual Machine (VM) to make method calls on an
object located on a remote server machine (Farley 1998). The design goal for the RMI
architecture is to create a Java distributed object model that integrates naturally into the local
object model. The easy-to-use interface and the language features in Java can facilitate the
development of client/server components. Java RMI also provides a high level of security and
reliability in developing a distributed environment. However, compared with distributed
computing environment with a design goal of supporting heterogeneous systems (such as
CORBA and Microsoft .NET), there is one challenge for building distributed element service by
using Java RMI: incorporating legacy systems in the Java infrastructure. A communication
support between Java and other languages needs to be provided by using Java Native Interface
(JNI) (Liang 1999). By programming through the JNI, we can use Java objects to access native
methods and libraries.

Figure 3 shows the mechanics of the distributed element service. Within the infrastructure, an
element service can be written in any popular programming languages: Java, C, C++, or
Fortran. As long as the element service conforms to the defined protocol, the service can
participate in the framework. The actual element code of a distributed element service resides
in the service provider’s site. The developed element service communicates with the analysis
core through a communication layer. A remote method call initiated by the analysis core
invokes certain method on the element service via the communication layer. For instance, the
analysis core may issue a remote method invocation to send the input data of an element (e.g.
geometry, nodal coordinates, Young’s modulus, and Poisson ratio, etc.) to the element service.
Later on, when the core needs certain element data, for example a stiffness matrix, it requests
the data from the element service through another remote method invocation. The computation
(e.g. the forming of the stiffness matrix of an element) is performed at the element service
provider’s site.

Page 6 of 11

USERS

ElementClient
(STUB)

ElementServer
(SKELETON)

RMI communication

Distributed
Element Service

(written in Java, C,
C++ or Fortran)

JNI

JNI

Requests Data

Returns Data

Analysis Core
(OpenSees)

RMI: Remote Method Invocation

JNI: Java Native InterfaceHTTP

TCL / TK

Method calls on ElementClient (stub)
tunnel over to ElementServer (skeleton)

Figure 3. Mechanics of the Distributed Element Service

4.3 Dynamic Shared Library Element Services
The distributed element service model has performance overhead on remote method invocation,
which is generally more expensive than a local procedure call. The system performance
decreases because a remote method has to be invoked for accessing every distributed element.
A dynamic shared library (or simply a shared library) element service is designed to improve
the system performance without losing the flexibility and other benefits of the distributed
services. Instead of being compiled to a static library and merged to the core server, an element
service is built as a dynamic shared library and located on the element service provider’s site.
During the system runtime, the installed shared library can be automatically downloaded to the
core server and linked with the FEA core.

There are many advantages for the shared library element services. One advantage is that the
shared library can be loaded at runtime, so that different services can be replaced at runtime
without re-compilation and re-linking with the application. Another benefit of using dynamic
shared library is that the used binary format guarantees that the source code of the element will
not be exposed to the core server, making the building of proprietary software components
easier. This also implies that the element developer controls the maintenance, quality, and
upgrade of the source code, facilitating bug-fixing and version control of the element service.
However, the dynamic shared library element service is platform dependent. In order to support
dynamic loading and binding, in most cases the shared library must be built using the same
platform as the core server. Other disadvantages include potential security problem and minor
performance overhead due to network downloading and dynamic binding.

5 Distributed Project Management
In nonlinear dynamic analysis, extensive study of a structure involves numerous simulations to
be performed. Typically, model calibration requires several analysis models to be constructed
with different model characteristics. To conduct a probability analysis, earthquake records with
different magnitudes are applied to the same analysis model. Since there are numerous
simulations for the same structure, a project management mechanism is needed to store and
manage model information and simulation results (Peng and Law 2004).

Page 7 of 11

The Internet-enabled framework provides users with a project management service that enables
collaborative work on a specific structure model. In this work, we refer to project as a
particular analysis model, case as a specific simulation, and owner as the user who performs
simulation on a case and manages the simulation results. Following this convention, a structure
could potentially result in several projects, with each representing the analysis of one model.
Each project could incorporate many cases by applying different earthquake records or using
different analysis strategies on the same model.

Due to the large amount of model data and simulation results as well as multiple users
performing the analyses, it is not desirable to store all analysis results and related data in a
single computer. Therefore, a centralized control-distributed data storage scheme is adopted in
the project management service. Specifically, a central server stores all of the project
background information (such as size of the model, the types of finite elements, specific
boundary conditions, etc.) and the locations of projects and cases. The actual analysis data
(such as finite element models, documents, simulation results, etc.) of each case resides on
disparate sites and managed by different owner. The distributed nature of data storage allows
the owner to perform simulation and manage the results locally.

There are several other capabilities of the project management service in the framework. One
important feature is network transparency, which results in a unified front-end representation to
users, regardless of where the data is stored. The complexity of the distributed data storage is
hidden from the users. Besides network transparency, other features of the project management
service are access control and version control capabilities. Access control is incorporated to
differentiate users and to allow them access projects based on their privileges. For instance,
owner of a project has full control on all the project data, while some users are only allowed to
access the data without the ability to modify. Version control is implemented with the project
management service to keep track of the modifications to the analysis models and to present the
difference between projects.

6 Application Example
This section illustrates the usage of the Internet-enabled framework by carrying out seismic
performance analyses of the Humboldt Bay Middle Channel Bridge located at Eureka,
California. The bridge is a 330 meters long, 9-span composite structure with precast and
prestressed concrete I-girders and cast-in-place concrete slabs to provide continuity. It is
supported on eight pile groups, each of which consists of 5 to 16 prestressed concrete piles. The
foundation soil is mainly composed of dense fine-to-medium sand (SP/SM), organic silt (OL),
and stiff clay layers. In addition, thin layers of loose and soft clay (OL/SM) are located near the
ground surface. A two-dimensional FEA model of the bridge, including the superstructure,
piers, and supporting piles, was developed as shown in Figure 4 (Conte et al. 2002). The bridge
piers are modeled using 2-D fiber beam-column elements and the abutment joints are modeled
using zero-length elasto-plastic gap-hook elements. A four-node quadrilateral element is used
to discretize the soil domain.

Nonlinear dynamic analysis is conducted on the analysis model by using the Internet-enabled
framework. As an example, the quadrilateral soil element in the model is built as a distributed
element service. Figure 5 illustrates the interaction among the distributed services during a
simulation of the model. The analysis core is running on a central server computer called
opensees.stanford.edu. The developed quadrilateral element services are running on a computer
named galerkin.stanford.edu. Figure 5 also shows a postprocessing service running on
epic21.Stanford.edu. This postprocessing service is used to generate graphical representations
of time history responses. The web-based user interaction interface is shown in Figure 5.

Page 8 of 11

Figure 4. Finite Element Model for Humboldt Bay Bridge (from Conte et al. 2002)

opensees.stanford.edu epic21.stanford.edugalerkin.stanford.edu
Element Service

Quadrilateral
Postprocessing Service

(Matlab Software)
Core Server
(OpenSees)

Client
1 3

2 4

5

Figure 5. Interaction of Distributed Services

The users can also communicate with the server directly via a MATLAB-based interface. The
MATLAB-based interface can be used to invoke structural analysis. After the simulation, the
command listResults can be issued to retrieve the list of response time history files, as
shown in Figure 6(a). We can also directly generate graphical representation of a particular
response time history. For instance, Figure 6(b) shows the result of using command
res2Dplot(‘press1315_2.out’) to plot the pore pressure time history.

To conduct probability analysis, approximately sixty ground motion records are applied to the
bridge model for damage simulation. The ground motion records are divided into three
hazardous levels based on their probability of occurrence, which are 2%, 10%, and 50% in fifty
years respectively. Figure 7 shows a partial list of the Humboldt Bay Bridge projects. When
using the project management service developed in this work, a web interface is a single point-
of-entry for all the project related background information, documents, messages, and
simulation results. Adding a new simulation to the system is simple. After performing a
simulation on the analysis model with the new earthquake record, the owner can register the
simulation to the central server. Once the registration process is completed, the central web
page will be updated to reflect the modification. Detailed information of a particular simulation
can be retrieved by clicking on the project name, which is a hyperlink to the project website
located in the owner’s computer. As highlighted in Figure 7, the case Rinaldi of project X1 is
added and can be accessed.

Page 9 of 11

(a) listResults

(b) res2Dplot(‘press1315_2.out’)

Figure 6. Sample MATLAB-Based User Interface

Figure 7. The List of Updated Humboldt Bay Bridge Cases

7 Conclusions
This paper presents an Internet-enabled framework that can facilitate the development of
structural analysis services and the access to simulation results. The main design principle of
this framework is to keep the software kernel flexible and extendible, so that a diverse group of
users and developers can easily access the platform and attach their own developments to the
core server. The web service architecture allows new services to be remotely incorporated into
the modular FEA platform. Users can select appropriate services and can easily replace one
service by another without having to recompile or reinitialize the existing services. The Internet
is utilized in the software framework as a communication channel to link distributed software
services and to access simulation results. One important feature of the Internet-enabled
framework is network transparency, which makes it indifferent to users whether code is running
locally or remotely. The end users do not need to be aware of the complexity of the core server
in terms of both its hardware and software configurations.

Page 10 of 11

A data and project management service is provided to manage simulation results and other
pertinent information. This research has presented the potentials of using a project management
system to archive project-related data and to perform access and revision control. The project
management system allows the usage of a database system to manage the information related to
projects. The actual project data is stored in distributed machines. The project management
service can also facilitate users to collaboratively working together on a specific structural
model.

Performance of the collaborative framework remains to be a key challenge for the wide
adoption of the collaborative system for engineering practice. The performance penalties
imposed by distributed services can potentially be high. The scalability of the system should
also be further improved. The current implementation relies on Java’s multithreading feature to
handle simultaneous requests from uses. The performance might be substantially degraded
when there are a large number of services that are geographically dispersed or where there are
numerous clients access the server simultaneously. This scalability problem could be tackled by
improving both hardware and software. Multiple core servers and more powerful computers
can be deployed, for example, the locally distributed web-server systems are shown to improve
the performance and scalability (Cardellini et al. 2002). Another possibility to enhance the
framework is to utilize parallel and distributed computing environment (De Santiago and Law
2000) and better fault-tolerance and fault-recovery techniques for distributed applications.

8 Acknowledgements
This work has been supported in part by the Pacific Earthquake Engineering Research Center
through the Earthquake Engineering Research Centers Program of the National Science
Foundation under Award number EEC-9701568, and in part by NSF Grant Number CMS-
0084530. The authors would like to thank Dr. Frank Mckenna and Prof. Gregory Fenves of
UC, Berkeley for their collaboration and support of this research. The authors are grateful to Dr.
Zhaohui Yang, Mr. Yuyi Zhang, Prof. Ahmed Elgamal, and Prof. Joel Conte of UCSD for
providing the Humboldt Bay Bridge model. The authors would also like to acknowledge an
equipment grant from Intel Corporation for the support of this research.

9 References
Birrell, A. D., and Nelson, B. J. (1984). “Implementing Remote Procedure Calls.” ACM
Transactions on Computer Systems, 2(1), 39-59.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H., Thatte, S.,
and Winer, D. (2000). “Simple Object Access Protocol (SOAP).” W3C Note,
http://www.w3.org/TR/SOAP.

Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. S. (2002). “The State of the Art in
Locally Distributed Web-Server Systems.” ACM Computing Surveys, 34(2), 263-311.

Conte, J. P., Elgamal, A., Yang, Z., Zhang, Y., Acero, G., and Seible, F. (2002). “Nonlinear
Seismic Analysis of a Bridge Ground System.” Proceedings of the 15th ASCE Engineering
Mechanics Conference, New York, NY.

De Santiago, E., and Law, K. H. (2000). “A Distributed Implementation of an Adaptive Finite
Element Method for Fluid Problems.” Computers and Structures, 74(1), 97-119.

Eddon, G., and Eddon, H. (1998). Inside Distributed COM, Microsoft Press, Redmond, WA.

Page 11 of 11

Emmerich, W., and Kaveh, N. (2002). “Component technologies: Java beans, COM, CORBA,
RMI, EJB and the CORBA component model.” Proceedings of 24th International Conference
on Software Engineering, Orlando, FL, 691-692.

Farley, J. (1998). Java Distributed Computing, O'Reilly & Associates, Sebastopol, CA.

Han, C. S., Kunz, J. C., and Law, K. H. (1999). “Building Design Services in A Distributed
Architecture.” Journal of Computing in Civil Engineering, 13(1), 12-22.

Kirtland, M. (2000). “The Programmable Web: Web Services Provides Building Blocks for the
Microsoft .NET Framework.” MSDN Magazine,
http://msdn.microsoft.com/msdnmag/issues/0900/WebPlatform/default.aspx.

Liang, S. (1999). Java Native Interface: Programmer's Guide and Specification, Addison-
Wesley, Boston, MA.

McKenna, F. (1997). “Object-Oriented Finite Element Programming: Frameworks for Analysis,
Algorithm and Parallel Computing,” Ph.D. Thesis, University of California at Berkeley,
Berkeley, CA.

McKenna, F., and Fenves, G. L. (2000). “Introducing a New Element into OpenSees.”
http://opensees.berkeley.edu/OpenSees/NewElement.pdf.

Peng, J. (2002). “An Internet-Enabled Software Framework for the Collaborative Development
of a Structural Analysis Program,” Ph.D. Thesis, Stanford University, Stanford, CA.

Peng, J., and Law, K. H. (2002). “A Prototype Software Framework for Internet-Enabled
Collaborative Development of a Structural Analysis Program.” Engineering with Computers,
18(1), 38-49.

Peng, J., and Law, K. H. (2004). “Building Finite Element Analysis Programs in Distributed
Services Environment.” Computers & Structures, accepted for publication.

Pitt, E., and McNiff, K. (2001). java™.RMI: The Remote Method Invocation Guide, Addison-
Wesley, Boston, MA.

Pope, A. (1998). The CORBA Reference Guide: Understanding the Common Object-Request
Broker Architecture, Addison-Wesley, Boston, MA.

Roy, J., and Ramanujan, A. (2001). “Understanding Web Services.” IT Professional, 3(6), 69-
73.

Smith, B. L., and Scherer, W. T. (1999). “Developing Complex Integrated Computer
Applications and Systems.” Journal of Computing in Civil Engineering, 13(4), 238-245.

