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Abstract 
The truss model for predicting shear resistance of reinforced concrete beams has usually been 
criticized because of its underestimation of the concrete shear strength especially for beams with 
low shear reinforcement. Two challenges are commonly encountered in any truss model and are 
responsible for its inaccurate shear strength prediction. First: the cracking angle is usually 
assumed empirically and second the shear contribution of the arching action is usually 
neglected. This research introduces a nouvelle approach, by using Artificial Neural Network 
(ANN) for accurately evaluating the shear cracking angle of reinforced and prestressed concrete 
beams. The model inputs include the beam geometry, concrete strength, the shear reinforcement 
ratio and the prestressing stress if any. The model is trained using an extensive shear-testing 
database. The ANN model is then tested using parts of the database that were not used for 
training. The model prediction is compared to the empirical approach used by the DIN 1045-1 
for predicting the shear cracking angle in addition to an own developed semi-empirical 
approach. It is concluded that a significant enhancement in the accuracy of predicting shear 
cracking angle of RC and PC beams can be achieved using the ANN model. 

1 Introduction 
The nonlinear behaviour of concrete is attributed to cracking. While the flexural behaviour of 
concrete elements have been well understood, the shear force transfer is far from being well 
explained. This is because of the fact that the presence of shear forces adds to the complexity of 
the problem in such a way, that until now no unified theory exists which is capable of fully 
describing the behavior of reinforced concrete elements subjected to shear. However, it is 
generally agreed that the shear capacity of a reinforced concrete beam may be divided into three 
components (Bhide et al. 1987, MacGregor 1997, Nawy 2002): a component resisted by the 
web Vweb, a component resisted by the uncracked concrete compression zone Vconcrete, and a 
component resisted by the dowel action of the tensile reinforcement Vdowel. For beams 
containing shear reinforcement (e.g. stirrups), Vweb usually dominates and the typical crack 
pattern lead to the idealized truss model shown below. The idealized truss model consists of 
inclined concrete compressive struts and vertical tensile members representing the shear 
reinforcement. The shear capacity of this model is governed by the capacity of the tension ties 
(shear reinforcement) Vs and the capacity of the concrete compressive strut Vc: 
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Idealized truss model for concrete 

V f b zs v y w= cρ θcot          (1) 

V f b zc c c w c= α θ θ' sin cos c         (2) 

In this equation ρv is the geometrical shear reinforcement ratio, fy is the yield strength of the 
reinforcement, bw is the width of the section (web thickness in case of a profiled section), z is 
the internal lever arm, αc is a reduction factor to account for the effect of transverse tensile trains 
on the compressive strength of the concrete which may be taken as 0.75 according to the 
German DIN 1045-1 Code (2001), fc

’is the concrete cylinder compressive strength, and θc is the 
angle of inclination of the concrete compressive strut and was originally assumed to be 45o 

(Mörsch 1908). Although a 45o truss model is easy to use in design, the model underestimates 
the shear capacity of reinforced concrete beams, especially for beams with a low shear 
reinforcement ratio, as shown below.  
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Experimental versus predicted shear capacity using a 45o truss model for concrete 

The shear capacity of the truss model may be increased either by adding an empirical 
component called the concrete contribution to the capacity of the 45o truss model (Hegger et al. 
2002), or by using a smaller angle θc for the compressive strut (e.g. Vecchio et al. (1986), 
Kuchma et al. (2000) and Reineck (2001)). The reduction of θc is explained in these models by 
shear friction and aggregate interlock across the cracks. However, the phenomenon of shear 
friction across the cracks was investigated and critizised by Hegger et al. (2004). 

Despite the importance of the shear cracking angle in determining the shear capacity, only a few 
expressions have been developed to determine the cracking angle, and most of them are 
empirical and based purely on uncracked conditions. An example is the expression used by the 
DIN 1045-1: 
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Where βcr is the cracking angle, fx is the average normal stress along the cross section and fc is 
the compressive strenght of concrete. The expression does not yield consistent prediction of the 
cracking angle as shown below and thereby overestimate the shear capacity of beams. 

 

Experimental versus predicted shear cracking angle according to DIN 1045-1 

Investigations by Hegger et al. (2004) show that the cracking angle is influenced by both, the 
cracked as well as the uncracked parts. Görtz (2004) proposed the following half-empirical 
equation for the cracking angle βcr  as in equation (4) in which ω is the mechanical shear 
reinforcement ratio computed as by equation (5): 
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fct is the tensile strength of the concrete as predicted using CEB-FIP model code 90 (1993): 
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Experimental versus predicted shear cracking angle according to Görtz (2004) 
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The predicted shear cracking angles by Görtz (2004) showed much better agreement with  
measured cracking angles compared with angles predicted by DIN 1045-1 as shown above. 

2 Artificial Neural Networks  
Artificial neural networks (ANN) are an artificial intelligence tool that were first proposed more 
than two decades ago for modeling systems that have complex nonlinear input/output 
relationships. Neuron computing, a technology of ANN, is a powerful tool for solving nonlinear 
problems that involve mapping input data to nonlinear output data without having any prior 
knowledge about the mathematical process involved. ANN have been succesfully used in many 
engineering applications including image processing, water quality predictions, satellite 
mapping problems (e.g. Kulakarni et al. 1994, Cheang et al. 2003) and most recently in 
predicting time-dependent deformations of structures (Reda Taha et al. 2003). 

2.1 Structure of ANN 
ANN are networks of many simple processors (neurons) operating in parallel, each possibly 
having a small amount of local memory. ANN consist of densly interconnected processing units 
that utilize parallel computation algorithms. The network consists of an input layer, an output 
layer and number of layers between the input and the output layers known as hidden layers. A 
representative sample of ANN architecture is shown below consisting of an input layer with 
three input parameters, an output layer with two output parameters and a single hidden layer 
with six neurons. The basic advantage of ANN is that they can learn from representative data 
examples (Haykin 1999). While ANN do not provide a closed form mathematical model, they 
do offer accurate models based on the learning procedure. 

 
Sample representation of artificial neural network (Reda Taha et al. 2003) 

The smallest network unit (the neuron) receives its input through a connection that multiplies 
the value of the input by a scalar weight “W” and adds a bias “b”. The sum of the weighted 
inputs and their weights and biases is the argument for a transfer function “f” that produces the 
neuron output. The pattern of connectivity in the network is represented by a weight vector W. 
The initial values for the weights and biases of the network can be arbitrary chosen. By 
adjusting the weights (W) and the biases (b) the network can exhibit any desired output. The 
process of adjusting the weights and the biases of the network is known as training. In other 
words, an ANN learns from examples (of known input/output sequences) and exhibits some 
capability for generalization beyond the training data (Haykin 1999). Transfer functions for the 
neurons are needed to introduce non-linearity into the network. Transfer functions commonly 
used in feedforward neural networks include linear, log-sigmoid and tan-sigmoid transfer 
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functions (Jang et al. 1997). These transfer functions have outputs ranging between 0 and 1 and 
are suitable for backpropagation networks because they are differentiable (Demuth et al. 2001). 

2.1.1 Backpropagation algorithm  
The learning rule (or training algorithm) is a procedure for modifying the weights and biases of 
the network. Learning rules fall into two broad categories: supervised learning and unsupervised 
learning. In supervised learning, the learning rule is provided with a known input/output set of 
data and an algorithm is then used to adjust the weights and biases of the network in order to 
move the network outputs closer to the targets. In unsupervised learning the weights and biases 
of the network are modified according to the inputs only.  

The basic learning rule in feedforward networks is the gradient descent method which is a 
classic technique for minimizing a given function defined on a multidimensional input space. 
The gradient descent method requires finding a gradient vector “g” in which each element is 
defined as the derivative of an error measure with respect to a network parameter. The 
procedure for finding this gradient vector “g” is known as “backpropagation” because the 
gradient vector is calculated in a direction opposite to the flow of data in the network (Jang et al. 
1997). The simplest and most common approach for implementing the backpropagation 
criterion to update the network weights and biases is described as: 

kkk1k gXX µ−=+           (7)   

where X is the vector of different weights and biases utilized inside the network, µk is a small 
positive constant that controls the step size of the iterative changes during the learning process 
and known as the learning coefficient and gk is the gradient of the mean square estimation error. 
The task of the backpropagation algorithm is to minimize the overall error measure of the 
network so that the network prediction matches the desired output. The sum of the squared 
errors (E) is the most commonly used error measure.  
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where yi is the ith element in the network output vector and di is the ith element in the desired 
output vector and N is the total number of outputs predicted by the network. The error measure 
E is minimized by altering the network weights (W) and biases (b) so that the desired output is 
achieved by the network. In depth discussions about the mathematical bases of the 
backpropagation algorithm is beyond the scope of this work but can be found in almost all 
neural network textbooks (Haykin et al. 1999, Ross 2004).  

3 Artificial Neural Network for predicting the shear cracking angle  

3.1 ANN models used 
Four feedforward artificial neural networks (ANN) for modelling shear cracking angle of 
reinforced and prestressed concrete beams are developed. The four networks consist of N layers 
each includes R neurons. Five input parameters for the first two networks (ANN_I and ANN_II) 
include the shear span ratio (a/d), the mean axial stress (fx), the shear reinforcement ratio (ρv), 
the yield stress of the steel (fy) and the tensile strength of concrete (fct) as per equation (4). 

The input parameters for the second two networks (ANN_III and ANN_IV) are reduced to four 
parameters only by excluding the (a/d) ratio which proved not to have any significant effect on 
the results. Thus, the input layer for the first two networks includs five neurons, while the input 
layer for the second two networks includs only four neurons. The efficiency of linear, tan-
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sigmoid and log-sigmoid transfer functions are also examined. The number of layers, the 
number of neurouns in each layer and the transfer function in each layer are listed in Table 1. 

Table 1: Structure of ANN used to predict shear cracking angle  

Network N R1 R2 R3 R4 F1 F2 F3 F4 
ANN_I 3 5 10 1 -- L L L -- 
ANN_II 4 5 10 2 1 L T L L 
ANN_III 4 4 6 6 1 L L L L 
ANN_IV 4 4 6 8 1 L T G L 

* N (Number of layers), Ri (Number of neurons in layer i) 
* L (Linear), T (Tan-sigmoid), G (Log-sigmoid) transfer functions 

 

The four networks utilize the backpropagation training algorithm as the learning rule for the 
network with the Levenberg-Marquardt weights update criterion (Haykin 1999). This criterion 
is based on the gradient descent method with a small modification that speeds up the training 
procedure minimizing the mean square estimation error (Werbos 1990, Ooyen et al. 1992). The 
training is implemented using the Neural Network Toolbox of MATLAB® (Demuth et al. 2003).  

3.2 Training ANN model for predicting cracking angles 
A learning matrix including 92 training samples drawn from the shear database is used in 
training each network. A target mean square error (MSE) of 1 * 10-4 was set to the network. The 
input parameters are normalized to allow fast convergence to the target MSE. The structure of 
the network and the choice of the transfer functions clearly affect the number of iterations 
needed during the training procedure for the network to converge. Convergence is assumed if 
the network achieves the target MSE or reaches the maximum number of iterations chosen equal 
to 1000. 

4 Results and Discussions 

4.1 Testing ANN models for predicting shear cracking angles 
Each of the four networks is tested using a matrix of 28 data points never obsered during 
training of the networks. The shear cracking angle predicted by the networks is compared to the 
experimentally measured cracking angle and the semi-empirical equation that was early 
proposed by Görtz (2004). The predicted versus the measured cracking angles for the four ANN 
and the empirical formula are shown below. 

  
Experimental vs. predicted shear cracking angle ANN_I Experimental vs. predicted shear cracking angle ANN_II 
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Experimental vs. predicted shear cracking angle 

ANN_III 
Experimental vs. predicted shear cracking angle 

ANN_IV 
 

The large number of parameters affecting ANN predictions and the large number of data points 
used for comparison between predicted and experimentally measured cracking angle, 
necessitate statistical analysis to provide means of cross validation. Statistical comparisons 
between predicted and measured cracking angle have been performed by estimating the 
prediction error (PE) which measures the average squared error between the predicted cracking 
angle obtained from the models and the experimentally measured cracking angle. The PE is 
described according to Martinez et al. (2002) as: 

∑
=

−=
m

1i

2
piti )yy(

m
1PE         (9)   

where ypi is the predicted value and yti is the experimentally measured value and m represents 
the number of samples in each testing group. Prediction errors for the four ANN models and the 
formulae by DIN 1045-1 and Görtz (2004) are presented in Table 2.  

Table 2: Prediction error for the four ANN models as well as for the emperical formulae 

Prediction Model PE 
DIN 1045-1 (2001) 47.9 

Görtz (2004) 22.6 
ANN_I 12.1 
ANN_II 16.5 
ANN_III 14.7 
ANN_IV 17.5 

 

It is obvious from Table 2 that the DIN 1045-1 has the highest prediction error. The expression 
developed by Görtz (2004) reduces the prediction error significantly. However, the cracking 
angle predictions using ANN have a smaller prediction error and consequently higher accuracy 
(e.g. ANN_I and ANN_III) than the emperical formulae. An interesting observation is that the 
accuracy of the ANN model does not necessarily increase with the complexity of the network. 
On the contrary, simple networks with one or two hidden layers that utilize linear transfer 
functions were capable of producing less prediction errors than networks with larger number of 
hidden layers and utilizing non-linear transfer functions. 

Another interesting observation is that neglecting the shear span ratio (a/d) in the model did not 
detract from the ANN model ability to predict shear cracking angle. An average prediction error 
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of ANN models ANN_III and ANN_IV of (16.1) is very close to the average prediction error of 
ANN models ANN_I and ANN_II (14.3) in which the (a/d) ratio was considered. 

5 Summary and Conclusions 
Four Artificial Neural Networks (ANN) models have been developed to investigate the potential 
use of feedforward neural networks in predicting shear cracking angle in reinforced and 
prestressed concrete beams. The ANN models require five input parameters which are the shear 
span ratio (a/d), the axial stress (fx), the shear reinforcement ratio (ρv), the yield stress of the 
steel (fy) and the tensile strength of concrete (fct). The four models were trained and tested using 
an experimental shear test database. The ANN models developed show a good ability to predict 
the shear cracking angle with a reasonable level of accuracy. The following are the main 
conclusions: 

1. The accuracy of the ANN model does not necessarily increase with the increase in 
complexity of the network. On the contrary, simple networks with one or two hidden layers that 
utilize linear transfer functions were capable of producing less prediction errors than networks 
with larger number of hidden layers and utilizing non-linear transfer functions.  

2. The prediction error of the ANN models developed was not greatly affected by the shear span 
ratio (a/d). This indicates that the shear cracking angle is not significantly influenced by the 
shear span ratio of the beam. 

3. By comparing the results of the ANN models with empirical and semi-empirical expressions 
for determining the shear cracking angle it is concluded that ANN models yield lower PE values 
than those attained by emperical formulae and thus can result in high accuracy in predicting 
shear capacity of reinforeced and prestressed concrete beams. 
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