
Octrees for Cooperative Work in a Network-Based Environment
R.-P. Mundani, H.-J. Bungartz, IPVS, Universität Stuttgart, 70569 Stuttgart, Germany

({mundanrf,bungartz}@informatik.uni-stuttgart.de)

Summary
Assuring global consistency in a cooperative working environment is the main focus of many
nowaday research projects in the field of civil engineering and others. In this paper, a new
approach based on octrees will be discussed. It will be shown that by the usage of octrees not
only the management and control of processes in a network-based working environment can be
optimised but also an efficient integration platform for processes from various disciplines – such
as architecture and civil engineering – can be provided. By means of an octree-based collision
detection resp. consistency assurance a client-server-architecture will be described as well as
sophisticated information services for a further support of cooperative work.

1 Introduction
Surface-oriented models, very popular with respect to their huge manipulation possibilities and,
thus, core part of all nowaday CAD applications, are only less suited for simulation and
controlling tasks, still the domain of their counterparts—volume-oriented models. Due to their
spatial decomposition of the underlying geometry, volume-oriented models provide easy access
to several simulation tasks such as structural analysis, computational fluid dynamics, or
managing and controlling entire design processes. Here, octrees – hierarchical recursive data
structures – are used to build up a client-server-architecture for both cooperative work and
process integration of different tasks from the field of civil engineering. The main target of this
approach focuses on efficient octree-based algorithms to assure global consistency between all
participating experts, to support cooperative work in a network-based environment, and to
bridge the gap between surface-oriented and volume-oriented applications such as CAD and
simulation.

2 Octree generation
Following the main principle of octrees, a cube containing the entire geometry is recursively
halved in every direction until the resulting cells – the voxels – are lying completely inside or
outside the geometry. In each refinement step one node is assigned eight new voxels, its sons.
Thus, a hierarchical tree structure evolves. Compared to an equidistant discretisation, the overall
amount of voxels reduces from Ο(n3) to Ο(n2) for the octree approach. One main drawback of
common octree generation algorithms is the large amount of floating point (FP) operations
when calculating the respective intersections with each of the octree’s voxels for refinement
decisions. Within our approach, octrees are generated as intersections of half-spaces. Hence, the
amount of necessary FP operations can be reduced to a minimum (see Mundani 2003 for more
details). This not only allows us to generate octrees in real time but also on-the-fly.

2.1 Convex decomposition
Before any octree can be generated as an intersection of half-spaces, the respective surface-
oriented model has to be decomposed into convex parts. Therefore, the object’s convex hull is
recursively calculated and a corresponding Boolean expression is formed. Starting with a
surface-oriented model, first of all, faces belonging to so-called inner loops – i.e. holes to the
main body such as windows – have to be determined to be processed separately. All resulting
faces belong to an outer loop—the main body (see Fig. 1 for a small example).

Page 1 of 6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thus, the
outmost
from the

Each par

i. Th
pr

ii. Al
in

iii. A

 is

Recursiv
substitut
of the res

Substitut
octree as
small exa
from Fig
expressio

c

2.2 C
For the f
appropri
2004) tha
operators
Figure 1: Sample decomposition of a model consisting of a main body and two inner loops.

 object has been decomposed into single parts according to its loops, forming the
frame for the resulting Boolean expression. A union of all inner parts is substracted
 main body (p0). Hence, the expression can be written as

 p0 \ (p1 ∪ p2 ∪ … ∪ pn-1 ∪ pn). (1)

t pl from expression (1) is now processed in the same way, subdivided into the steps:

e part’s convex hull is calculated and all faces lying on it are marked as being
ocessed.

l faces not marked yet are clustered to subsets Ck according to equation (2), where
idicates that faces fi and fj share one edge.

 Ck := { fi | fi fj, fj ∈ Ck } (2)

Boolean expression of the form

 Hi \ (C1
i ∪ C2

i … ∪ Cm
i
-1 ∪ Cm

i) (3)

generated, where Hi and Ck
i denote the convex hull and subset k from step i.

ely repeating steps i—iii for all subsets Ck
i in (3) until they become empty and always

ing set Ck
i by its corresponding Boolean expression results in a complete decomposition

pective part pl as follows

 H0 \ ((H1 \ (H2 \ (…))) ∪ … ∪ (Hn-j \ (Hn-j+1 \ (…)))). (4)

ing (4) for each part pl in (1) provides the final Boolean expression to generate an
 intersection of half-spaces. Figure 2 illustrates this for the main body (part p0) of the
mple from above. The resulting Boolean expression for the model on the left-hand side

. 1 reads as follows: (H0 \ H1) \ (H2 ∪ H3), where H2 and H3 denote the corresponding
ns for the inner loops shown on the right-hand side in Fig. 1.

on

ol
ur
at
t
 (
Figure 2: After calculating the convex hull for the part shown on the left-hand side one subset
taining three faces is left (steps i and ii). This subset itself is already convex, hence, the Boolean

expression according to (4) reads as H0 \ H1.

lision detection
ther usage of octrees, the corresponding trees have to be linearised. Applying an
e enconding followed by a depth-first search leads to binary streams (see Mundani
can easily be multiplexed, i.e. combining two or more streams with Boolean
intersection, union, or difference). An intersection of two streams, for instance, can

Page 2 of 6

be used to test the respective models for any kind of collision, in this context defined as either
an intersection or a gap. Collision detection is the primary module in our client-server-
architecture to assure global consistency.

The entire collision detection is controlled by two parameters—the maximum depth of recursion
dmax and the (minimum) depth of gap detection dmin. The maximum depth of recursion dmax
defines the depth of refinement for the octree and, thus, the resolution for a voxel on
the finest resolution level. Assuming a geometry with a footage of 10m a depth of 14 is
necessary for a resolution of 1mm on the finest resolution level. Hence, intersections up to a
width of 1mm can be found. The first appearance of a resulting voxel lying inside both
geometries indicates a collision, so the algorithm can stop and an intersection between both
parts was found.

max2/1 dh =

For the case the two parts are disjoint, the resulting binary stream will be empty. Here, the
maximum depth deff reached during the calculation – not to mix up with the maximum depth of
recursion dmax – has to be determined. It’s obvious that between two disjoint parts there always
exists a gap, but we are only interested in gaps of at least a certain width controlled by
parameter dmin. Thus, if the equation

 dmin ≤ deff < dmax (5)

is true, a collision of type gap has been found and further user interaction is necessary. Not all
gaps are in fact collisions due to round-off or modelling errors, some might intentionally be
made and, thus, only the corresponding experts has enough knowledge to solve this instance.
Figure 3 shows some graphical tool for collision detection developed by our group.

 Figure 3: A co

3 Cooperative
A client-server-archi
a collision detection
network-based enviro
edges, and faces – ca
assuring global consi
about any changes to
llision detection (dmin = 10, dmax = 14) reveals a gap of width 1mm between the two
highlighted parts of the model (footage 13m).

Work
tecture with octree-based modules such as assuring global conistency with
as described above has been developed to support cooperative work in a
nment. One global geometric model stored as a vef-graph – vertices,

n be accessed and manipulated by several experts at the same time, always
stency by the system. Furthermore, information services notify all experts
 their shared resources.

Page 3 of 6

3.1 Global geometric model
When initialised at start-up, an attributed model in Eurostep IFC format is read and internally
represented as a vef-graph. Attributes can comprise material definitions, element types (e.g.
wall, door, ceiling), and boundary conditions for numerical simulations. The corresponding data
– vertices, edges, faces, and attributes – are written to a Relational Database Management
System (RDBMS) for persistant storage. A so-called controll tree, an octree refined as long as
single parts of the model entirely fit into a single voxel, stores the primary keys to the
RDBMS’s tables, such that neighbouring parts can efficiently be found. For the primary keys
the parts’ UUIDs are used—unique identifiers from the IFC model. Direct access to the
RDBMS from the client-side is prohibited, an additional layer around the RDBMS providing
functions for data access manages and controls any communication to the global geometric
model. For further considerations, the RDBMS with its additional layer is called server.

As in classical Concurrent Versions Systems (CVS) clients can check out data from the server
to be processed in their local work spaces before the modified data is written back (check-in) to
the global geometric model. At this time, a collision detection for each modified part is initiated,
testing it pairwise with all its direct neighbours. In case an intersection is detected, the modified
part is rejected and the respective client is informed of it. In case of a gap the modified part is
written to the RDBMS, overwriting its older version, simultaneously raising a warning
notification to inform the client and asking him to check this incident again whether the
revealed gap was intentionally made or occurred due to an error. After a successful check-in all
clients sharing the corresponding parts at this time are automatically informed about the new
updates—releated to both the geometry and attributes.

3.2 Shared data access
Whenever parts of the global geometric model are checked in or out their respective states
change. Within our implementation a part can have either one of the following states: clean (c),
shared (s), or locked (l). The state clean indicates that a part isn’t shared by any client at the
moment, shared indicates at least one client with read-only or read/write access, and locked
indicates exclusive write access for exactly one client. Possible state transitions are as follows:

Starting from state clean, the
permissions changes the state
– one client trying to access e
the only one using this resour

To access data, the server pro
update(), all methods take at
different methods are as follo

• update() – returns all

• check-out() – returns

• check-in() – writes ba

• cancel() – clears all ch

• delete () – deletes all c
 first client accessing read-only, read/write or exclusive write
 to shared or locked, resp. From state shared a transition to locked
xclusive write permissions – is possible if and only if the client is
ce. Otherwise the client is rejected with a permission error.

vides several methods that can be invoked from the clients. Beside
 least a list of one or more parts’ UUIDs as argument. The
ws:

parts not yet shared by the client with read-only permissions,

all chosen parts with desired permissions—if possible,

ck given parts to the server to replace respective obsolete versions,

osen parts from user’s access,

hosen parts—if possible.

Page 4 of 6

If a client wants to delete one or more parts he at least needs read/write permissions and he must
be the only one with write access in case other clients share these resources, too. This prevents
that one client still holding a (writeable) local copy of some specific part is able to write back
his copy to the server in case the global version was deleted by some other client before—an
illegal undo of a previous operation, obviously violating the global consistency.

 Figure 4: One client deletes his local copy (C1) and the global version (G) of a specific part while a

second client still holds another (writeable) copy (C2). Afterwards, the second client writes back his copy
(C2) and “undos” the previous operation—an inconsistency occurred.

Due to the server’s internal data representation, both a surface-oriented and a volume-oriented
model can easily be derived from the vef-graph. Tasks like CAD or structural analysis, for
instance, retrieve parts of the global geometric model in ACIS SAT format, tasks like
computational fluid dynamics (CFD) retrieve parts of the global geometric model as binary
encoded octree. Further export formats are possible and, thus, many more processes from other
disciplines can be efficiently integrated into the discussed client-server-architecture. Figure 5
illustrates this architecture with some sample processes already integrated by our group.

 Figure 5: Client-server-architecture with integrated processes – structural analysis (SA), computational

fluid dynamics (CFD), and CAD – from disciplines such as simulation and architecture.

3.3 Information services
Whenever an update – related to the geometry and/or attributes – to any parts of the global
geomtric model is written back to the RDBMS, all clients sharing these specific elements are
automatically notified by an information service. This service is based on agent technology,
autonomous program parts as substitutes for the corresponding clients, periodically querying the
server for update informations. During start-up time each client creates his own agent,
configuring it with the user’s individual update notification preferences. On a coarse granularity
level preferences comprise turning on/off all geometry, material or simulation related attribute
changes, on a fine granularity level users can choose which material or simulation related
attributes they are interested in. Thus, a FEM agent, for instance, can be reduced to FEM related
simulation attributes only.

Agents then query a server agent for all update notifications related to parts shared by their
clients. In case of corresponding updates the client agent stores all relevant informations for
further processing and notifies his client. The client now has to initiate a poll on his agent for
retrieving the already queried and stored update informations. This prevents – in case update
notifications are issued very frequently – permanent interruptions of a steady workflow on
behalf of the client. According to the user’s preferences all update information is filtered by the

Page 5 of 6

agent and unwanted messages are discarded. The client shall be responsible for any check-out of
modified parts to update his local copies.

 F

versi
ag

Further u
After sel
about a p
as well a
state info
parts. Th
of proces

4 Co
Octrees a
facilitate
participa
efficientl
simulatio
applicati
nested di
step clos

5 Ref
A. Frank
numerisc

R.-P. Mu
for Octre
and Stru

R.-P. Mu
in Struct
and Info
igure 6: One client writes back his modified copy (C1) to the server and, thus, updates the global
on (G) of the specific part. A second client’s agent (A2) queries the server – the corresponding server
ent (AG) – and is informed about an update of a part his client also holds a local copy of (C2). The
second client now can decide to discard his copy and retrieve an actual version from the server.

sage of those agents allows clients to retrieve state informations for any chosen parts.
ecting all parts of interest in the local works space, a state query reveals information
art’s status (clean, shared, or locked), date, type and responsible person of last changes
s all clients with respective permissions sharing this part at the moment. Due to this
rmations every client knows at any time which other clients are processing which
is might help to prevent conflicts in advance and furthermore supports the organisation
ses in a cooperative working environment.

nclusions
s integral element in a cooperative working environment, as presented in this paper,
 both the organisation of processes with regard to global consistency among all
ting experts and the integration of processes from different application scenarios. They
y bridge the gap between several tasks from different disciplines – e.g. CAD and
n – and, due to their inherent hierarchy, provide a huge potential for further

ons not exploited so far. Next steps will comprise the integration of an octree-based
ssection solver for an optimised control of a finite element analysis, bringing us one
er to the long-term objective of completely embedded simulation processes.

erences
. 2000. Organisationsprinzipien zur Integration von geometrischer Modellierung,
her Simulation und Visualisierung. Herbert Utz Verlag. Germany.

ndani, H.-J. Bungartz, E. Rank, R. Romberg, and A. Niggl. 2003. Efficient Algorithms
e-Based Geometric Modelling. In proceedings of “9th International Conference on Civil

ctural Engineering Computing”. Civil-Comp Press. United Kingdom.

ndani and H.-J. Bungartz. 2004. An Octree-Based Framework for Process Integration
ural Engineering. Processed to “8th World Multi-Conference on Systemics, Cybernetics
rmatics”.

Page 6 of 6

