
Scenarios for the deployment of distributed engineering applications

K. Lehner, Institute of Computational Engineering, Ruhr-University Bochum
(Karlheinz.Lehner@rub.de)

D. Hartmann, Institute of Computational Engineering, Ruhr-University Bochum
(hartus@inf.bi.rub.de)

Summary
Although there are some good reasons to design engineering software as a stand-alone
application for a single computer, there are also numerous possibilities for creating distributed
engineering applications, in particular using the Internet. This paper presents some typical
scenarios how engineering applications can benefit from including network capabilities. Also,
some examples of Internet-based engineering applications are discussed to show how the
concepts presented can be implemented.

1 Introduction
The widespread availability of today's Internet ranges from the high-speed connections of
academic institutions and research sites to power users and small firms with broadband access
and flat rates down to an increasing number of mobile devices such as PDA's with WLAN and
cellular phones. With this background of universal network accessibility, the value, necessity
and potential of developing engineering software as distributed applications and the resulting
impact of these developments needs to be reconsidered.

Of course, there are many situations where engineering software need not be designed as a
distributed application at all. For example, standard software such as an office program or an
application for a CAD or structural analysis problem can usually be run with complete
satisfaction on an up-to-date PC with adequate hardware resources to do the job. Therefore,
once the necessary software has been procured, installed and configured, it remains readily
available for everyday use until a substantial patch or an useful update is needed.

There are, however, many cases where there is a distinct advantage of designing software as a
distributed application or even situations where the software must be modeled as a distributed
application to function at all. Some typical scenarios are given in the following sections.

2 Scenarios of Distributed Engineering Applications

2.1 Providing engineering know-how
Software often contains the know-how and expertise of a firm in executable form. Thus, a
company would like its customers to use the company's know-how for a price, but of course it is
reluctant to divulge any information, especially to competitors. So, rather than relying on more
or less fool-proof techniques or devices to protect software at the customer site, an Internet-
based application can let the server component (containing the company know-how) remain at
the owner's site and under the owner's complete control. The server can then be accessed by
client components over the Internet designed to provide the server with input data and to present
results to the user.

Page 1 of 8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.2 Open source development
At the other extreme, creating open source software thrives on the network-wide interaction of
many participants to develop, extend and service applications. The general idea of open source
is that programmers can read, modify and redistribute code to enable software projects to evolve
and improve. Thus, apart from having no direct licensing costs or restrictive licensing
restrictions, open source should be (at least in theory) relatively up-to-date and fairly stable,
because of the numerous opportunities for many people to directly view program sources.

Successful open source projects include such applications as Linux, OpenBSD and other
operating systems, the Apache web server, and the Eclipse software development environment.
There are also some open source projects related to engineering problems such as the FElt (FElt
2000) and Felyx (Felyx 2001) to do finite element analysis or OpenSees (OpenSees 2004) to
simulate the performance of structural and geotechnical systems subjected to earthquakes.

Although the point of developing open source software precludes an individual or company
from gaining revenues by directly selling, leasing or licensing software, it can still be a
profitable business to provide support and consulting for an open source project including
distribution and packaging services. Because software, in contrast to manpower and knowledge,
can be easily duplicated, this explains how firms can, for example, continue to offer offer Linux
software on a commercial scale, while the operating system itself is freely available. It remains
to be seen how engineering applications can also be developed on a commercially successful
scale as other open source projects have shown.

2.3 Distributed project management
In large projects involving a multitude of often highly mobile specialists, an efficient project
management can play an important role in keeping the communication between partners at a
satisfactory level. Managing data of all sorts, including engineering specific data such as
construction plans and computational results, requires a network-based solution with general
access. In this scenario, the emerging agent technology already used in computer science which
relies on mobile code to be carried out on foreign participating computers must, by definition,
be implemented within an architecture containing distributed components.

2.4 On-demand computing
Although the hardware capabilities of typical personal computers of today are largely adequate
to handle many everyday engineering problems, there may arise situations which require a great
deal more computer resources than is readily available and maybe for only a short period. If a
company, for example, would like to carry out a large scale simulation or solve a complex
structural optimization problem, then it could possibly make sense to outsource the needed
hardware and software requirements to a provider with the necessary resources. For example,
assuming the required scalability is given, a problem that might require 24 hours of CPU time
on a typical PC could be done in a 15 min. coffee break on a computer system with 128
processors. Extending this concept of “computing power at your fingertips” further leads to the
introduction of the grid concept, which proposes the availability of computing power from a
standard source which is always readily available, just as electricity from the power grid is
always at one's disposal.

2.5 Flexible software components
Because client and server components in a distributed system communicate via well-defined
interfaces, there is a greater amount of flexibility in the choice of hardware and operating
system platforms for implementation. Thus, for example, we can implement the server

Page 2 of 8

component of a structural analysis application using programming languages such as Fortran or
C to do the number crunching work and, on the other hand, implement the client components in
programming languages that readily support interactive graphical user interfaces. The use of
low-end devices such as PDA's or even mobile telephones with Internet access and built-in Java
virtual machines imply the complete separation of number crunching and displaying techniques.

2.6 Enhanced user access
Providing a server with an engineering application over the Internet to potential customers can
reduce the amount of effort needed to actually use the software. For example, using a web
browser familiar to many users allows a software to be used “on the fly”. Especially for testing
or marketing purposes, one can allow the use of a simplified or restricted version of a software
to be used directly on-line, which can hopefully entice a potential user. Also, because the
software is available from the provider on-line, updates (including bug fixes) can be carried out
quickly and often transparently. As an example, the Java Web Start Technology can be
mentioned here.

2.7 Peer-to-peer architecture
The concept of a peer-to-peer architecture for cooperating systems is usually associated with
computers sharing files of various (and often dubious) nature across the Internet. However, as a
paradigm, peer-to-peer basically represents an extreme form of client-server computing where
the server component in the architecture is greatly reduced or even completely eliminated. As
the name suggests, in a peer-to-peer network, all the nodes in the network function as client and
server components with equal standings. Any node is able to initiate or complete a transaction.
There is not central command (server) to delegate or coordinate the individual peers (although
there may be an auxiliary server for boot-strapping purposes).

The management of peer-to-peer networks includes additional software techniques such as
distributed hash tables not found in typical client-server applications because of the independent
nature of peer nodes. This also implies that security measures for reliable and secure
information processing must be included in the design of peer-to-peer networks. For example,
with the increased use of mobile devices (such as mobile phones, PDA's or wireless notebooks),
the ad-hoc creation of spontaneous networks becomes an important issue. Engineers meeting at
a construction site will expect to be able to share current information in a simple and
straightforward fashion. Also, the agent technology mentioned above is another example which
relies on the highly decentralized network platform of peer-to-peer systems. Software
programming environments such as JXTA and JNGI allow the creation of decentralized
components to create peer-to-peer engineering applications.

3 Examples
In this section, some typical engineering applications developed at the Institute of
Computational Engineering will be presented that demonstrate some of the concepts discussed
in the previous section.

3.1 A Distributed FE-Application with Technical Documentation
For the analysis of structural systems using standard finite element methods, the distributed
engineering application caFE (Althoff 1998) has been developed at the Institute of
Computational Engineering using the CORBA (Common Object Request Broker Architecture)
technology (see Fig. 1).

Page 3 of 8

In the basic client/server architecture, the client component of the distributed application has an
interactive, graphical user interface. Its purpose is to allow the user to input all the data needed
to model a structural system, to initiate the analysis in the server component and to present the
results of the calculations as an interactive 3D model. Here, the 3D visualization in the client is
implemented using the VTK toolkit software. On the server side, a structural analysis using the
FElt FE-library allows the calculation of geometrical properties, such as translations and
rotations, as well as the internal forces of the structural elements defined in the FElt package.

Because the structural analysis algorithms (in this case, the FElt library) are completely
contained in the server component, this is a typical example of providing engineering know how
to an end user and also an example of possible on-demand computing, given the proper
hardware platform for the server component. Further, this prototype has been augmented with
specific web services to include technical documentation output. This is because that, although
the 3D representation of a structural model can easily let the user spot apparent input errors or
let him get an intuitive feel of the structural response, the needs of accompanying
documentation must not be neglected. In particular, there must be support to create printed
technical documentation or documentation suitable for viewing in a browser. To this end, the
client component needs to be extended to provide such technical documentation. However, in
order not to increase the complexity of the client component, the generation of project
documentation was identified as a separate process and implemented as an external web service
(Lehner, Baitsch and Hartmann, 2003).

Page 4 of 8

Figure 1. The distributed caFE software

CORBA
caFE client

with graphical user
interface

caFE server with
structural analysis
software

Figure 2. A distributed engineering application using Cocoon as a
XSL transformer to create PDF documentation. For details on the
data flow, see(Lehner, Baitsch and Hartmann, 2003).

The process of creating technical documentation can be generally defined as transforming a set
of structured input data according to specific rules to generate the desired output data. The input
data needed to create the documentation can described using a suitable XML representation
containing all the information of the structural model as input by the user as well as the results
of a structural analysis. The transformation of the generated XML data can be implemented
using XSLT (eXtensible Stylesheet Language) Transformations. XSLT is basically a functional
programing language designed for the efficient transformation of XML structures. The output
data, i.e. the desired technical documents, must be suitably presented to the user. In order to
keep the client component simple, the output data can be displayed using standard HTML
browsers, containing not only HTML code, but possibly also vector graphics such as SVG
(Scalable Vector Graphics) and PDF (Portable Document Files), suitable for printed
documentation.

The transformation of XML input data with XSL transformation files can be implemented using
the Cocoon web service from the Apache project. In particular, Cocoon can be set up as a
publishing framework servlet, i.e. the XSL transformations are carried out on the web server
that accepts URL's encoding the type of transformation requested along with the necessary
XML data. By clearly identifying and separating data, logic and layout aspects, it is possible to
generate different types of documents serving different needs from one XML source. In Fig. 2,
the general architecture of the distributed application using Cocoon is shown. For details on the
data flow, see (Lehner, Baitsch and Hartmann, 2003).

3.2 Distributed engineering applications using J2EE
The J2EE (Java 2 Platform, Enterprise Edition) technology is a programming environment for
the development of client-server applications using the Java programming language. Although
basically developed for the creation of e-commerce and other business applications, concepts
such as multi-tiered applications and ready deployment of client components lend themselves to
engineering software as well. In (Wang 2002) and (Lehner 2002) there is description of a
prototype engineering software for the structural analysis using the J2EE platform. It contains a
Java implement ion of a FE package and provides various web services to access the FE server.

In the simplest case, a distributed application consists of a client and a server component, often
called a 2-tier architecture. The client is the component of the application which directly
communicated with the user. The server component contains the so-called business logic or, in
engineering parlance, the computational logic which does the actual numerical calculation. But
apart from purely doing computations or data processing, it has been recognized that the
efficient storage of data on the server side is also becoming an important issue. For example, the
management of project data in persistent storage is important for long-term engineering
applications. Therefore, the inclusion of standard interfaces and data base components in the
server has extended the server side to include an additional tier called EIS (Enterprise
Information Service) in J2EE. Thus, a distributed application in J2EE consists of a client, a
middle and an EIS tier.

Page 5 of 8

Web services are realized in the middle tier by providing so-call Enterprise JavaBean
Containers (EJB). Each EJB is associated with an interface which describes which services the
component provides to a client (or other server) components. The container itself must, of
course, implement the corresponding services. Also, components of the middle tier can include
additional software such as libraries (Java JAR files), such as the FE package mentioned in the
application above. Finally, the middle tier can include so-called web containers which can
provide dynamically generated HTML pages or include Servlets or JSP/XSP (Java Server
Pages, XML Server Pages) components. This allows clients components to access the server
using standard web-based mechanisms known to most users.

3.3 Multi-Agent Systems
Agent systems, in particular Multi-Agent Systems (MAS) can be used to model the holistic
nature of concurrent processes found in many structural engineering projects. In (Bilek, Mittrup,
Smarsly and Hartmann. 2003) two examples are given that show how MAS can be used to
incorporate the distributed and interactive nature of structural design and monitoring of
engineering structures. In the first example, a reference system, a steel bridge constructed over
the river Mulde in the city of Dessau, Germany, was analyzed according to structural and work
flow aspects. For example, the documents on the work flow reported that the project started
with a simplified digital model of the bridge, then advanced to a detailed structural analysis,
where a qualitative examination showed that the dynamic behavior of the bridge was
unacceptable and had to be redesigned. In this iterative process, all the members in the project
(including consulting engineers, a steel and concrete company, structural designers and city
authorities) has to be informed on the changes. To facilitate this interdependence of participants,
a MAS system has been set up where so-call personal cooperative agents represent individual
project participants. While in the real world the project is coordinated and governed by human
managers, additional non-personal project agents have been created in accordance with the other
task agents. The project agent allows for the collaboration by providing specified interfaces to
the personal agents.

Also, to model the bridge itself within the MAS, product model agents (PMA) have been
include which can communicate technical details of the structural system to the corresponding
personal agents. In particular, in this project the product model agents include a PMA for the
overall architecture, a PMA for the bridge deck, two PMA for the abutments and a supervisory
PMA that has knowledge about the dependencies between the other structural components.

Page 6 of 8

Figure 3. A typical J2EE 3­tier application

Browser

Stand-alone
Client

Client Tier

WEB Container

(JSP/XSP/Servlet)

EJB
Container

EJB
Container

LIB- / Jar-
File

Middle Tier

Daten-
bank

EIS Tier

(Enterprise Information
Service)

Daten-
bank

3.4 Web-based monitoring of dams
Dams are large engineering structures exposed to various environmental factors and have to be
continually monitored to assure standards of operational safety and reliability. Because of the
large distances involved, the frequent access of data at a site can be time consuming and at
times difficult. Having remote data access over network connections is therefore desirable. In
(Smarsly, Mittrup, Hartmann and Bettzieche 2003) an implementation of a web based
monitoring system for dams is presented. In this scenario, data loggers regularly collect data
from numerous sensors (to measure temperature, water leachate, displacement or pore water)
positioned across the dam and store the raw input locally. The remote administration of the
system, including the logger and sensor components, is possible by interfacing the control
computer to an available network. This allows an administrator with the proper credentials to
remotely check and configure the system on a routine basis and requires an on-site inspection
much less often.

The data that is routinely collected is evaluated by a variety of specialist, each needing a
different view on the data according to their expertise. For this purpose, and also to reduce the
amount of data traffic, the systems has a web-based visualization and reporting component that
selectively processes data according to predetermined configurations.

3.5 Optimization and reliability analysis server
As another example of distributed engineering applications, a CORBA-based system for
structural optimization is presented. The system consists of individual components (structural
analysis component, optimization components, clients with graphical user interfaces) that use
CORBA as the middle ware. The structural analysis component can be a FE program (FElt)
wrapped as a component or a Java library (Mini-FE) bound to the client component. The
optimization component (Baitsch, Lehner and Hartmann, 1999) provides a variety of
optimization methods, ranging from gradient-free search methods such as evolution strategies to
gradient-based methods such as sequential quadratic programming. As experience shows, there
is no single numerical optimization method that works well for all optimization problems, so it
important to have a variety of methods available that can be used interchangeably. To this end,
the optimization server therefore contains a collection of optimization methods, each of which
can be accessed with the same (CORBA-based) programming interface.

Finally, an example of a distributed engineering application specifically designed to perform
reliability analysis is given in (Spitzlei 2003) and (Ballnus 2003). Normally, a designer uses a
deterministic method to analyze a design. In many cases this method is satisfactory. However,
in some cases this design method is not adequate, because it results in a system design that is to
expensive or not reliable enough. In these cases a probabilistic approach or risk analysis may be
helpful. Risk analysis experts support the designers to guarantee the costs and safety of complex
systems. They analyze whether the system can perform its major functions, such as carrying
load and executing motion, using a probabilistic model. Both the load carrying capacity of a
system as well as the external loads can show a stochastic behavior. Thus, this system contains a
server component with numerical methods for probabilistic analysis and a client component to
help model stochastic FE-structures.

3 Conclusion
With the rise in programming environments where network access is considered a standard
feature, the potential to create new and innovative engineering applications must be explored.
Standard engineering software can be augmented with additional services and functionality
which allows developers to create applications that were not even considered some years ago.

Page 7 of 8

Of course, users must also accept the new paradigms and the value-related benefits. This paper
explores some aspects specifically related to the purpose of designing and creating distributed
engineering applications. Some representative example developments are presented which are to
show how typical engineering applications can be implemented using Internet-enabled
engineering.

4 References
Althoff. C. (1998). Entwicklung eines objektorientierten Strukturanalyse-Servers auf der Basis
der CORBA-Technologie unter Verwendung der Finite Element Bibliothek FElt, diploma thesis,
Ruhr-University Bochum, Dec. 1998

Baitsch, M., Lehner, K. and Hartmann, D. (1999). Ein CORBA-basierter universeller
Optimierungsservice, in: 1st ASMO UK/ISSMO Conf. on Engineering Design Optimization, pp.
233-240, Ilkley, GB, 1999

Ballnus, D. (2003). Entwicklung eines CORBA-Servers für die Zuverlässigkeitsanalyse, diploma
thesis, Ruhr-University Bochum, Sept. 2003

Bilek, J., Mittrup, I., Smarsly, K. and Hartmann, D. (2003). Agent-based concepts for the
holistic modeling of concurrent processes in structural engineering, in: 10th ISPE International
Conference On Concurrent Engineering Research and Applications, Madeira, July 26-30, 2003

FElt (2000). The FElt Demo Document, http://felt.sourceforge.net/, Feb. 22, 2000

Felyx (2001). Koenig, O, Wintermantel, M., Zehnder, N.; FELyX - The Finite Element Library
Experiment, http://felyx.sourceforge.net/, Nov. 11, 2001

Lehner, K. (2002). Entwicklung einer verteilten Ingenieurapplikation unter Verwendung der
J2EE-Technologie, Forum Bauinformatik 2002, Bilek, J. (ed.), University of Bochum, Sept. 16-
18, 2002

Lehner K., Baitsch M. and Hartmann D.; (2003). Using XSL Web Services for Project
Documentation in an Engineering Application, in: Intelligent Computing in Engineering
(Ciftcioglu, Ö., Dada, D., eds.), Proceedings of the 10th European Group for Intelligent
Computing in Engineering Workshop, Delft, July 3-4, 2003

OpenSees (2004); Pacific Earthquake Engineering Research Center, Open System for
Earthquake Engineering Simulation - Home Page, http://opensees.berkeley.edu/index.html,
2004

Smarsly, K., Mittrup, I., Hartmann, D. and Bettzieche, V. (2003). Implementierung eines
webbasierten Talsperren-Monitoring-Systems, in: Internationales Kolloquium über
Anwendungen der Informatik und Mathematik in Architektur und Bauwesen 2003, IKM 2003,
Weimar, June 16, 2003

Spitzlei, K. (2003). Entwicklung eines CORBA-Servers für stochastische Finite-Elemente
Berechnungen in Zuverlässigkeitsanalysen, diploma thesis, Ruhr-University Bochum, Sept.
2003

Wang, H. (2002). Development of a distributed engineering application using J2EE technology,
master thesis, Institute of Computational Engineering, University of Bochum. 2002

Page 8 of 8

