
Page 1 of 11

A Simulation Access Language and Framework For Project
Management Applications

Jinxing Cheng, Stanford University, Stanford, CA 94305, USA (cjx@stanford.edu)

 Gloria T. Lau, Stanford University, Stanford, CA 94305, USA (glau@stanford.edu)

Kincho H. Law, Stanford University, Stanford, CA 94305, USA (law@stanford.edu)

Summary
As computer programs become ever more complex, software development has shifted from
focusing on programming towards focusing on integration. This paper describes a simulation
access language (SimAL) that can be used to access and compose software applications over the
Internet. Specifically, the framework is developed for the integration of tools for project
management applications. The infrastructure allows users to specify and to use existing
heterogeneous tools (e.g., Microsoft Project, Microsoft Excel, Primavera Project Planner, and
AutoCAD) for simulation of project scenarios. This paper describes the components of the
SimAL language and the implementation efforts required in the development of the SimAL
framework. An illustration example bringing on-line weather forecasting service for project
scheduling and management applications is provided to demonstrate the use of the simulation
language and the infrastructure framework.

1 Introduction
As computer programs become ever more complex, software development has shifted from
focusing on programming towards focusing on integration, as illustrated in Figure 1 (Beringer et
al. 1998). In parallel to this trend, there is a shift from standalone applications toward
distributed, Web-based or Web-enabled services. As a result, future software development will
be based more and more on the composition and integration of existing application components.

To facilitate software integration, Wiederhold et al. (1998) discussed the need of a simulation
language that can define a simulation scenario utilizing multiple application tools and has the
potential to improve the reusability of simulation tools. The simulation language mirrors the
Structured Query Language (SQL) for databases in that SQL enables access of database
information through a database-independent language, while the simulation language would
allow access of simulation results through an application-independent language. A simulation
language has potential applications in many domains. One example is to coordinate workflow
processes in project management. Many application tools are now available to perform project
management tasks. To manage the information flow among the tools beomes an essential part of
workflow management. A simulation language that can support the workflow processes and
coordinate the information flows among the tools will greatly facilitate on-line project
management applications.

Many languages have been proposed to facilitate the reuse of Web services or software
components. Examples include Web Services Flow Language (WSFL) (Leymann 2001),
Business Process Execution Language for Web Services (BPEL4WS) (Andrews et al. 2003),
and DAML-based Web Service Ontology (DAML-S) (Ankolekar et al. 2001). However, few of
these languages are designed for managing and reusing information to support engineering
applications. In construction, many standalone applications (e.g., Microsoft Project, Microsoft
Excel, Primavera Project Planner, and AutoCAD) are widely used to assist in project
management. These tools are designed for specific application and generate large volumes of
information that are not easily shared among the applications, partially due to their proprietary
data formats.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2 of 11

Coding

Integration

1970 1990 2010
Figure 1: The Trend of Software Development

To illustrate, weather forecasting services are now available on-line and can provide important
weather information for planning construction operations. However, this on-line information
need to be translated and input to management tools, such as Primavera Project Planner or
Microsoft Project, to schedule projects. When unexpected weather conditions occur, it could be
difficult and take some efforts to quickly evaluate their impact and to dynamically adjust the
project schedule using the tools. Furthermore, not only the data resided in these tools are not
well structured and often represented in proprietary formats, these tools may reside at different
locations and run on different platforms.

In this paper we propose a simulation access language (SimAL) which, with the necessary
infrastructure, would allow users to simulate scenarios utilizing existing project management
applications. Speicifically, the simulation access language (SimAL) can be used to access and
compose software applications resided in different remote sites. This paper describes the
components of the SimAL language and the implementation efforts required in the development
of the SimAL framework. An illustration example bringing on-line weather forecasting service
for project scheduling and management applications is provided to demonstrate the use of the
simulation language and the infrastructure framework.

2 The SimAL Language

2.1 The SimAL Language Specification
The purpose of SimAL is to provide a simple, easy-to-use language to coordinate application
tools and to simulate scenarios in assisting decision making. In general, three key factors are
involved in decision-making: alternatives, information, and preferences. Alternatives imply that
more than one option should be available. Information refers to the knowledge available to users
about different options. Preferences specify the aspects that users want to optimize. To support
these functions, SimAL includes operational statements for Invocation, Operation, Control, and
Decision-Support. The SimAL statements and their syntax are given as shown in Table 1.

Detailed description of the SimAL statements are discussed by Cheng (2004). We use the
statements for QUERY and UPDATE to briefly illustrate the features of SimAL. The QUERY
and UPDATE statements allow users to query specific project information and to manipulate
project models. The first parameter in the statements, param1, is a string used to specify the
query or update operation. For example, the statement QUERY("select startTime where
activityID = ID100", arho, %%) can be used to query the start date of the activity ID100 from
the simulated results. To update project data and re-simulate, an UPDATE statement can be
used. For instance, the statement UPDATE("set duration = 4 where activityID = ID110",arho,
%%) re-sets the duration of the activity ID110. It can be noted that the syntax of the parameter
strings within the QUERY and UPDATE statements is similar to SQL. The operations that are

Page 3 of 11

currently supported are tabulated as shown in Table 2. The SELECT operation applies only to
the QUERY statement, while the other operations are valid only for the UPDATE statement.

Table 1: SimAL Statements and Syntax

Statements Descriptions

SETUP ServiceHandle = SETUP(“ServiceName”)

The SETUP statement is used to establish a communication with a
simulation tool through its service name.

Invocation
Statements

INVOKE Variable = ServiceHandle.INVOKE(param1, param2, …)

The INVOKE statement invokes a simulation service through the
handle returned from the SETUP statement.

QUERY QueryHandle = ServiceHandle.QUERY(param1, param2, …)

The QUERY statement allows users to query specific information
from simulation results.

Operation
Statements

UPDATE UpdateHandle = ServiceHandle.UPDATE(param1, param2, …)

The UPDATE statement enables users to modify project models.

IF-THEN-ELSE IF (expression) THEN {Statement_List} [ELSE {Statement_List}]

The branching statement is used for making dynamic branching
decisions based on the value of a Boolean expression following the
keyword IF.

Control
Statements

WHILE WHILE (expression) { Statement_List}

The while loop statement is used to provide looping operations. The
Statement_List will be executed continuously as long as the
expression is evaluated to be true.

SCENARIO
CREATION

ScenarioHandle = SCENARIO(“Scenario Description”) {
Statement_List }

The SCENARIO statement is used to create a scenario. Here, a
scenario refers to a set of actions to accomplish a specific task.

SCENARIO
INSTANTIATION

ScenarioHandle.SETOBJECTIVES(variable1, variable2,…)

The SETOBJECTIVES statement sets the objectives of a scenario.

SCENARIO
COMPARISION

CompareHandle = COMPARE(ScenarioHandle1, ScenarioHandle2,
…)

The COMPARE statement compares different scenarios. It is
assumed that the objectives of different scenarios on the list are the
same, whether they are cost, productivity, duration, or a combination
of those attributes.

Decision-
Support
Statements

RESULT
DISPLAY

Variable = DISPLAY(Variable | CompareHandle, “Description”)

The DISPLAY statement is used to display the results of a variable
or a comparison.

Page 4 of 11

Table 2: Operations Supported in QUERY and UPDATE Statements

Operation Syntax and Description

Syntax SELECT select-list

[WHERE expression]

SELECT

Description The SELECT operation is used to query information from the
simulation results. Users can specify search conditions in the
expression.

Syntax SET [variable = expression]+

[WHERE expression]

SET

Description The SET operation allows users to update project models. For
example, users can assign new values to selected attributes.

Syntax DELETE object-name

[WHERE expression]

DELETE

Description The DELETE operation enables users to delete elements (e.g.,
ACTIVITY and ACTOR) in project models.

Syntax INSERT object-name

SET [variable=expression]+

INSERT

Description The INSERT operation allows users to insert new elements (e.g.,
ACTIVITY and ACTOR) into project models, while the attributes of
the elements are set by the expressions.

2.2 The SimAL Language Compiler
The SimAL compiler has been implemented using Java Compiler Compiler (JavaCC) (SUN
2004), a parser generator which reads a grammar specification and converts it to a Java
program. The parsing and compiling process follows three basic steps:

• Lexical analysis: The token manager reads in a sequence of characters and produces
corresponding objects called "tokens." The sequence of characters is broken into tokens
according to the SimAL lexicon conventions.

• Syntax analysis: JavaCC uses the production rules in the SimAL specification (Cheng
2004) to generate a parser in Java.

• Building XML trees: The parser then generates an XML tree based on the events
defined in the SimAL specification (Cheng 2004). The XML tree is used by the SimAL
system to invoke and coordinate distributed tools at run-time.

Page 5 of 11

User Inputs
(SimAL Program, etc.)

SimAL Preprocess

FICAS

SimAL Update and Query
Engines

Project Management Tools

Wrappers

SimAL Post-Process

Final Results
MS Excel

or Web Browser
Interface

Figure 2: The SimAL Framework

3 The SimAL Framework and Implementation

3.1 The SimAL Framwork
Figure 2 shows the overall framework of the SimAL prototype system. The SimAL system
includes a software composition infrastructure based on data and control flows (Liu et al. 2003)
and software wrappers. The Flow-based Infrastructure for Composing Autonomous Services
(FICAS) (Liu et al. 2003) is utilized to invoke distributed services and to direct data flow among
different services. While there are other solutions available for distributed service invocation,
include Remote Procedure Call (RPC), Common Object Request Broker (CORBA), and Simple
Object Access Protocol (SOAP), FICAS is designed to handle applications that involve high
volume of data typically found in engineering applications. Specifically, FICAS takes advantage
of distributed data flows to efficiently route the data to designated applications (Liu et al. 2003).
Wrappers for the project management application tools are developed based on the Process
Specification Language (PSL) which is a standard interchange language for process data
developed at NIST (ISO 2003, Cheng et al. 2003).

A SimAL program is first processed by the preprocessing engine. The preprocessor parses the
SimAL program, produces instructions for FICAS to invoke relevant services, and generates
necessary information to display the simulation results. FICAS then establishes connections to
appropriate services and instructs them to simulate various project tasks. The update and query
engine is employed to filter the results generated by the tools and to update project models.
Once the simulation is completed by the different tools, the simulation results are processed by
the post-processing engine and are displayed to the users in appropriate formats.

3.2 Implementation Efforts
Wrappers act as a bridge between FICAS and the project management tools in that FICAS
invokes these tools and retrieves their simulation results through the wrappers. Depending on
the invocation methods, project management tools can be categorized into two types: standalone
services and embedded services. A standalone service is an application that can run
independently and can be invoked directly through its wrapper. An embedded service is an
application that has to run inside another tool and cannot be invoked directly by FICAS.
Example of a standalone service is an independent application tool such as the Primavera

Page 6 of 11

Project Planner, which can be accessed directly through its wrapper. An example of an
embedded service is a tool built within a specific software such as a cost-estimating tool which
is built and run inside Microsoft Excel.

A service directory is employed for the registration, discovery, and invocation of the application
tools. The directory maps the name of the service to the information, such as the network
location and the TCP/IP port number of the application, needed by the SimAL system to invoke
the tool. The service directory is structured in XML formats, as shown in Figure 3. Each
individual application is represented by an XML element, SERVICE, whose child elements
specify the parameters of the application. Within the SERVICE elment, the NAME element
specifies the name of the application, the SERVER element contains the IP address of the
machine the application is running on, and the PORT element indicates the TCP/IP port to
which the application listens.
<?xml version="1.0"?>

<SERVICEDIRECTORY>
<SERVICE>

<NAME>ServicePsl</NAME>
<SERVER>psl.stanford.edu</SERVER>
<PORT>2409</PORT>

</SERVICE>
<SERVICE>

<NAME>ServiceP3</NAME>
<SERVER>psl.stanford.edu</SERVER>
<PORT>2410</PORT>

</SERVICE>
<SERVICE>

<NAME>ServiceNotification</NAME>
<SERVER>psl.stanford.edu</SERVER>
<PORT>2412</PORT>

</SERVICE>
<SERVICE>

<NAME>ServiceWeatherForecast</NAME>
<SERVER>psl.stanford.edu</SERVER>
<PORT>2413</PORT>

</SERVICE>
……

</SERVICEDIRECTORY>

Figure 3: Service Directory

Event Server

GeneralCost Estimator
in Microsoft Excel

Wrapper

Communication Agent

Primavera P3

Wrapper

Invoke GeneralCost Estimator
1.GeneralCost Estimator connects to the Server
2. FICAS sends INVOKE message to the Server
3. Server calls Estimator to re-estimate the cost

Invoke Primavera P3
4. FICAS invokes P3 to reschedule the project

1 3

2

FICAS

4

Figure 4: The Invocation of Embedded and Standalone Services

Page 7 of 11

For standalone services, SimAL looks up the service directory, invokes the services through the
wrappers, and accesses the generated results. For embedded services, which cannot be invoked
directly by the SimAL program, an event server and a communication agent for each service is
developed by dynamically opening the software before invoking the embedded service. Figure 4
illustrates the difference between invoking embedded and standalone services using SimAL.

4 Application Demonstration
To demonstrate the potential application of the prototype SimAL system and framework, we use
the data from the Arnold’s House project example as described in the tutorial of Vite’s
SimVision Software manual (EPM 2003). In particular, we demonstrate how the system
framework can incorporate online weather information, coordinate various computer application
tools, and allow users to review the impact on the project due to weather conditions.

We develop a wrapper/parser to extract the information from an online weather forecasting
service (in HTML formats) and to convert the weather information into XML formats. Figure 5
shows the original weather information as shown from the Yahoo’s forecasting service site
(http://weather.yahoo.com) and the generated information in XML.

<?xml version="1.0"?>
<WeatherReport>
<weather date="2003-9-23">
<location>
<zipcode value="33410" />
</location>
<conditions value=" Isolated thunderstorms
early, mainly cloudy overnight with a few
showers" />
<temperature>
<templow c="23.3" f="74.0" />
<temphigh c="32.2" f="90.0" />
</temperature>
……
</weather>
……

Figure 5: Translating Weather Information from an Online Service into XML Format

Page 8 of 11

<?xml version = "1.0"?>
<weatherScheduling>
<actImpact actid = "ALL" suspendOnRain
= "yes" suspendOnWind= "no" />
<actImpact actid = "ID190"
suspendOnRain = "No" suspendOnWind =
"Yes" />
<actImpact actid = "ID220"
suspendOnRain = "No" />
<actImpact actid = "ID230"
suspendOnWind = "No" />
</weatherScheduling>

Figure 6: Encoding Domain Knowledge in XML via a Excel Spreadsheet

Weather can have significant impacts on scheduling activities in construction projects. Heavy
rain as well as strong winds may cause many construction activities to be suspended. The exact
influence of weather conditions varies from activity to activity. For example, exterior concrete
works may need to be suspended due to rain conditions, while interior works can be performed
as usual. In this demonstration, the domain knowledge relating weather conditions to activities
can be specified by the users in a tabulated format using Microsoft’s Excel. Figure 6 shows the
table recording the domain knowledge and the corresponding expressions in an XML file.

Let’s consider a hypothetical scenario and assume that the project encounters prolonged rainy
season. Within the Excel spreadsheet, the user can specify the instructions in SimAL statements
as shown in Figure 7. As shown in the figure, a SimAL program starts with the keyword SimAL
followed by the program name, WeatherDemo. The keyword SimAL indicates that the program
follows the syntax of the SimAL language.

SimAL WeatherDemo
{
 p3_svc = SETUP("ServiceP3")
 psl_svc = SETUP("ServicePsl")
 vite_svc = SETUP("ServiceVite")
 notification_svc = SETUP("ServiceNotification")
 wforecast_svc = SETUP("ServiceWeatherForecast")
 wprocess_svc = SETUP("ServiceWeatherProcess")

 psl = psl_svc.INVOKE("to-psl", %%)
 wf = wforecast_svc.INVOKE("RetrieveForecast", %%)
 wp = wprocess_svc.INVOKE("ProcessForecast", wf_arho, arho, %%)
 p3 = p3_svc.INVOKE("reschedule", wp_arho, %%)
 vite = vite_svc.INVOKE("simulate", arho1, %%)

 notif = notification_svc.INVOKE("psl.stanford.edu", 8250, status)

 }
Figure 7: An Example SimAL Program to Simulate the Impact of Weather Conditions

Page 9 of 11

Original Schedule in Primavera P3

Review Updated Schedule Online

Figure 8: Review the Impact of Weather Conditions on Project Schedule using a Web Browser

Original Backlogs in Chart Updated Backlogs in Chart
Figure 9: Review the Impact of Weather Conditions in MS Excel Charts

As shown in Figure 7, the program WeatherDemo first includes the statements for setting up the
services needed for the simulation. The program then invokes a weather forecast service,
extracts the results, and encodes them in XML format. A scheduling software, Primavera
Project Planner, is then invoked to adjust the schedule. The updated schedule is stored in PSL
format and transferred to Vite’s SimVision for further analysis (for example, to determine task
backlogs). Figures 8 and 9 show the impact of the weather on the project schedule and on the
task backlogs, respectively. As shown in Figure 8, the activity “Lay Foundation” has been
prolonged from 25 (as displayed in Primavera P3) to 30 days (as displayed in a web browser).
Although not shown here, the delay will, in turn, cause delays in the other activities. Figure 9
shows the pattern of task backlogs as analysed using Vite’s SimVision and displayed in
Micrsoft Excel; it can be seen that the peak values of task backlogs and the associated dates
have been altered.

5 Summary
In this paper, we have presented a simulation access language (SimAL) and a prototype
framework to enable simulation using heterogeneous application tools. SimAL is a simple and
high-level language that can be used to specify the tasks and the tools involved in a simulation.

Page 10 of 11

The SimAL framework allows the user to take advantage of the features and the strengths of
individual application tools and to coordinate and integrate them to perform the simulation.
Specifically, we have demonstrated the potential use of SimAL for project scheduleing and
management applications.

We have illustrated the use of SimAL in bringing online weather information to project
management. It should be noted that, in the demonstration scenario, the entire simulation of
weather impact on the project schedule is automated. The simulation involves a number of very
sophisticated application tools such as Primavera P3 and Vite’s SimVision. The results can be
displayed using software packages commonly available at a typical office such as Microsoft
Excel, Microsoft Project, and a web browser. A project manager in an office can quickly review
the impact and make decisions to adjust project activities and schedule accordingly whenever
there is a concern on weather conditions. It should also be noted that the project management
services can reside at different locations and run on different platforms. We have also conducted
a number of demonstrations between Glasgow Caledonian University in Scotland and Stanford
University. In the demonstrations, the Oracle database server and the Vite’s SimVison are
located at Stanford University, the scheduling services reside at Glasgow Caledonian
University, and the Yahoo’s weather forecasting service is an outside service available online.
In summary, the potential value of a simulation access language and framework has been
illustrated from the example scenario described in this paper and the demonstrations of the
prototype system to run distributed project management application tools at multiple sites.

6 Acknowledgement
This work is partially sponsored by a Stanford Graduate Fellowship and the Product
Engineering Program headed by Dr. Ram D. Sriram at NIST. The Product Engineering
Program gets its support from the NIST’s SIMA (Systems Integration for manufacturing
Applications) program and the DARPA’s Radeo Program. The authors would like to
acknowledge the contributions by Dr. David Liu to the system framework described in the
paper. The authors would like to thank Prof. Bimal Kumar of Glasgow Caledonian University
for his help in demonstrating the framework for supporting distributed applications.

7 References
Andrews, T., Curbera, F., et al. (2003). “BPEL4WS Specification: Business Process Execution

Language for Web Services Version 1.1.” BEA, IBM, Microsoft, SAP AG, and Siebel
Systems, http://ifr.sap.com/bpel4ws/ (30 March 2004).

Ankolekar, A., Burstein, M., et al. (2001). “DAML-S: Semantic Markup for Web Services.” The
International Semantic Web Working Symposium, Stanford, CA.

Beringer, D., Tornabene, C., et al. (1998). “A Language and System for Composing
Autonomous, Heterogeneous and Distributed Megamodules.” DEXA International
Workshop on Large-Scale Software Composition, Vienna, Austria.

Cheng, J. (2004). “A Simulation Access Language and Framework with Applications to Project
Management.” Ph.D. Dissertation, Under Preparation, Stanford University, Stanford, CA.

Cheng, J., Gruninger, M., Sriram, R. D., and Law, K. H. (2003). "Process Specification
Language For Project Scheduling Information Exchange." International Journal of IT in
Architecture, Engineering and Construction, vol. 1(4), pp. 307-328.

EPM (2003). "SimVision Tutorial: Building Basic Models." EPM, Revision 5.
ISO (2003). “Industrial Automation System and Integration -- Process Specification Language.”

No. 18629-11, International Organization for Standardization.
Leymann, F. (2001). “Web Services Flow Language (WSFL 1.0).” IBM Corporation,

http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf (30 March 2004).

Page 11 of 11

Liu, D., Peng, J., Law, K.H., Wiederhold, G., and Sriram, R.D. (2003). “Composition of
Autonomous Services with Distributed Data Flows and Computations.” ACM Transactions
on Internet Technology, Submitted for Publication.

SUN (2004). “ Java Compiler Compiler(JavaCC) - The Java Parser Generator.” Sun
Microsystems, https://javacc.dev.java.net/ (30 March 2004).

Wiederhold, G., Jiang, R., and Garcia-Molina, H. (1998). “An Interface for Projecting CoAs in
Support of C2.” Proceeding of the Command & Control Research & Technology
Symposium, Naval Postgraduate School, Monterey CA, pp. 549-558.

