
Page 1 of 1

Structural and Functional Dependence of Objects in Data Bases
Dipl.-Ing. J. Perevalova, Technical University of Berlin, 13355 Berlin, Germany

(julia@mail.bv.tu-berlin.de)
Prof.Dr.Dr.h.c.mult P. J. Pahl, Technical University of Berlin, 13355 Berlin, Germany

(pahl@ifb.bv.tu-berlin.de)

Summary
Let the information of a civil engineering application be decomposed into objects of a given set
of classes. Then the set of objects forms the data base of the application. The objects contain
attributes and methods. Properties of the objects are stored in the attributes. Algorithms which
the objects perform are implemented in the methods of the objects.

If objects are modified by a user, the consistency of data in the base is destroyed. The data base
must be modified in an update to restore its consistency. The sequence of the update operations
is not arbitrary, but is governed by dependence between the objects. The situation can be
described mathematically with graph theory. The available algorithms for the determination of
the update sequence are not suitable when the data base is large. A new update algorithm for
large data bases has been developed and is presented in this paper.

1 Introduction
A relation on a set of objects in a data base can be visualized as a directed graph. Graph theory
can therefore be used for the description of the data base.

The data base of the application often consists of a large number of objects. It is therefore not
advisable to update the entire data base after every modification. Delayed updates are used for
parts of the data base which are called the update domains.

The aim of our research is to develop efficient algorithms to determine the domain of the update
and the sequence of the update operations which restore consistency in a specified part of the
data base. The algorithm has to be developed, accounting for dependence of the objects in the
data base.

2 Concept of delayed updates
The information of a civil engineering application often changes several times before the final
solution is found. It is therefore not advisible to update the objects in the data base of a civil-
engineering application after every modification. Modifications are accumulated over a period
of time and the objects are then updated with delay.

Three subsets of the data base are considered for updates: the modification set, the goal set and
the update domain.

2.1 Level of the modification
In order to determine the modification set, modifications have to be registered. There are three
levels for the registration of modifications: attribute level, object level and set level. At a
specific level, a modification is registered if an element of that level is modified. Due to the
large number of objects of a civil engineering application whose number of attributes may also
be large, it is not advisible to consider every single attribute of an object. For civil engineering
applications, the attribute level is too “micro” so that the object level has been chosen for the
development of the concept. In some instances, it is advisable to use the set level (functional
dependence).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2 of 2

2.2 Modification and goal sets
If any attribute of an object is changed, the object is considered to be modified. The modified
objects form the modification set. An object can be modified by a user, by its own methods or
by the methods of another object. The modified object is registered. Let a data base be
considered in time. Let the object set M of a data base be consistent at time t0. The set of objects
whose attributes have been changed since the point in time t0 is called the modification set of
the data base and denoted by A(ti).

A(ti) := { x∈M | An attribute of x has been changed in the period (t0, ti) }

The set of objects whose properties are to be updated, accounting for the current modification in
the data base, is called the goal set of an update. The goal set can be specified by the user of an
application (an engineer, an architect, etc.) or by a method of an object. Consider an object set
M in a data base which was consistent at time t0. Let the modification of the object set be A(ti).
Let a set of objects Z(ti) be defined whose properties are to be determined at time ti>t0
accounting for the modification A(ti). The set Z(ti) is called the goal set of the update.

Z(ti) := { x∈M | The attributes of x are computed in the update at ti}

2.3 Update domain and sequence of updating
The set of objects whose properties must be updated to restore concistency for given
modification and goal sets is called the update domain. Consider an update of an object set M
after modification A(ti) with a goal set Z(ti). The subset D⊆M containing the objects which
influence the update is called the domain of the update at point in time ti and denoted by D(ti).

The objects in the update domain D(ti) are updated at time ti in a specified sequence. An object
xi∈D(ti) must be updated before an object xk∈D(ti) if the object xk is dependent on the object xi.

A relation on a set of objects in a data base is visualized as a directed graph. Objects are
represented by nodes of the graph. An object xk is dependent on an object xi if at least one path
exists from the node xk to the node xi. An object xk is dependent on a set X if the object xk is
dependent on at least one object of the set X.

There are different types of dependence graphs which can be constructed to visualize a relation
on a set of objects. The type of the graph is determined according to the type of dependence of
the objects.

3 Dependence of objects
There are two types of dependence of objects : structural and functional.

3.1 Structural dependence
If the reference of an object B is an attribute of an object A, then the object A is structurally
dependent on the object B. The object Triangle t is structurally dependent on the objects Node
n1, n2 and n3 (Fig.1).

Fig.1 Example of structurally dependent objects

n2 n1

n3

n3n1 n2

bodies of the nodes

a1

body of triangle tt

data n1 n2 n3

x3 y3 x2 y2x1 y1

Page 3 of 3

The relation on a set of structurally dependent objects is represented by a directed graph (Fig.2).

Fig.2 Graph of structurally dependent objects

3.2 Functional dependence
If the object A is an input value and the object B is an output value of an algorithm Z, then the
object B is functionally dependent on the object A (Fig.3).

Fig.3 Example of functionally dependent objects

Relations on a set of functionally dependent objects are represented by directed bipartite graphs
(Fig.4).

Fig.4 Graph of functionally dependent objects

Structural dependence is static and known at compile - time. Functional dependence is dynamic
and determined at run - time. The differences between structural and functional dependence of
objects in data bases lead to different update algorithms.

4 Update algorithm for structural dependence

4.1 Subsets used for updates
Three subsets of the data base are considered for an update at point in time ti : the modification
set A(ti), the goal set Z(ti) and the update domain D(ti).

Modifications which have been made by a user (external modifications) over a period of time
(ti-1, ti) are called the increment of the modification set A(ti) and denoted by dA(ti) :

dA(ti) := { x∈A(ti) | An attribute of x has been changed externally in the period (ti-1, ti) }

In addition to these three subsets, the subset for accumulation of the updated objects is
considered. It contains all objects which have been modified by updating methods (internal
modifications) during the time period (t0, ti) and are independent of dA(ti). The internal
modification subset is denoted by R(ti). Internal modifications are accumulated in the subset
R(ti) after every update.

R(ti) := { x∈(D(t0) ∪ D(t1) ∪…∪ D(ti-1) | x is independent of dA(ti) }

n1 n2 n3

t

BZA

Object A Object B

Algorithm Z

Local variables

Instructions

Page 4 of 4

4.2 Reduced subsets
The time and the complexity of updates can be decreased by reducing the subsets used for
updates.

Zr (ti) : reduced goal set containing the objects of Z (ti) which are dependent on A(ti).

Dr(ti) : reduced update domain containing the objects of D(ti) which are not contained in R(ti).

All objects in Dr(ti) are updated at ti. This set is therefore modified internally. After updating,
the objects in the sets are added to the set A(ti) and R(ti) to form the following extended sets:

A*(ti) : extended modification set A(ti) after update.

R*(ti) : extended set R(ti) after update.

Ar(ti) : reduced modification set containing the objects of A*(ti) that have at least one successor
 which is not contained in R*(ti).

The reduced modification set Ar(ti) is added to the modification set at the next update at ti+1 :

Ar(ti) ⊆ A(ti+1) A(ti+1) = dA(ti+1) ∪ Ar(ti)

4.3 Time sequence of determination of the subsets
The order of determination of the sets and the update at point in time ti is presented in the
following table (Fig.5).

Fig.5 Time sequence of determination of the subsets

4.4 Example of an update
Let the directed graph represent a relation between objects in a data base. Every node of the
graph has three attributes: a name, a number N and a value V. The name of a node is unique.
The number is an integer value. It is set by a user. The value is an integer value. It is calculated
by an internal method as the sum of the object’s number N and the values Vp of the predecessors
of the object. Node A is a predecessor of node B if there is a directed arc with start node A and
end node B. The symbols which are used in the graphs are explained in Fig.6.

Page 5 of 5

Fig.6 Symbols in the example graphs

Let the graph be consistent at point in time t0. During every period of time (ti, ti+1) the user can
change the attribute “number” of an object and select an object as a goal for an update. At every
point in time ti the graph must be updated for a selected goal. Consider the object graph in four
points of time: t0 < t1 < t2 < t3. The update domain is to be determined. The objects in the update
domain are to be updated according to a selected goal at every point in time ti. The update
process is shown graphically in Fig.7 - 10.

A N V

A – name of the node
N – number of the node N = 1, 2, 3, …
V – value of the node V = N + ΣVp,
 where Vp is a value of a predecessor

VNA an object of the modification set A(ti)

VNA an object of the goal set Z(ti)

A N V an object of the update domain D(ti)

a 1 1

b 2 3 c 3 4

e 5 8 f 6 10 d 4 7

g 7 15 h 8 16 n 1323j 10 29

i 9 52 m 12 12

k 1198

a 1 1

k 1198

c 3 431b

1211m 529i

f 6 10 73d e 5 8

j 1029 23 13 n h 8 16g 7 15

Fig.7 Update at time t0 Fig.8 Update at time t1

a) at point in time t0 b) at point in time t1
A(t0) = {∅} – the modification set dA(t1) = {b, d, m} A (t1) = {b, d, m}
 R(t1) = {∅}
Z(t0) = {∅} – the goal set Z(t1) = {i, n} Zr (t1)= {i}
D(t0) = {∅} – the update domain D(t1) = {b, e, g, h, m, i} Dr(t1) = D(t1)
R(t0) = {∅} – accumulated R*(t1) = {b, e, g, h, m, i}
 interior modifications A*(t1) = {b, d, e, g, h, m, i} Ar = {b, d, m, i}

Page 6 of 6

4.5 Determination of dependent objects
The task of determination of dependent objects is equivalent to the determination of a path
between these objects. The graph algorithm of depth - first search (DFS) is used for the
determination of a path between objects (Cormen et al. 2001). Let the resulting set of depth -
first search with source set Y be denoted DFS(Y). Then the objects contained in DFS(Y) are
dependent on a subset Y of the graph. The intersection of DFS(Y) with a set X contains the
objects of a set X which are dependent on a set Y :

DFS(Y) ∩ X = {x∈X | x is dependent on Y}

4.6 Determination of the update domain and the sequence of updating
The update domain and the sequence of updating can be determined by two DFSes with
topological sorting. If the modification set A and the goal set Z are known, then the update
domain and the sequence of update are determined as follows:

1. Run the depth - first search from every node of the modification set A.

2. Get the topologically sorted sequence D1 of DFS.

3. Reduce the goal set Z by intersection with D1 : Zr = Z∩D1

4. Inverse the arcs of the graph.

5. Run the DFS from every node of the reduced goal set Zr.

6. Get the topologically sorted sequence D2 of DFS.

7. Get the update domain D as the intersection of D1 and D2 : D = D1∩D2.

c) at point in time t2 d) at point in time t3
dA(t2) = {∅} A(t2) = {b, d, m, i} A(t3) = {∅}
R(t2) = {b, e, g, h, m, i} R(t3) = {b, e, g, h, m, i, d, j, k }
Z(t2) = {j, k} Zr(t2) = {j, k} Z(t3) = {∅}
D(t2) = {b, d, m, j, e, g, h, i, k} Dr = {d, j, k} D(t3) = {∅}
R*(t2) = {b, e, g, h, m, i, d, j, k }
A*(t2) = {b, m, i, d, j, k} Ar(t2) = {∅}

Fig.10 Update at time t3 Fig.9 Update at time t2

a 1 1

b 1 2 c 3 4

e 5 7 f 6 10 d 3 5

g 7 14 h 8 15 n 13 23 j 1026

i 9 49m 1111

k 1194

a 1 1

c 3 4 2 1 b

98 11 k

1111 m 49 9 i

f 6 10 7 3 d e 5 7

29 10 j n 1323h 8 15 g 7 14

Page 7 of 7

4.6.1 Example : Update domain and sequence
The algorithm for determination of the update domaine and sequence is explained with the
directed graph in Fig.11.

Fig.11 Update domain in the graph

Input data:
A = {5} - modification set
Z = {3, 9} - goal set

1. DFS of the modification set with topological sorting :
5
5 7
5 7 9 {9}
5 7 {9, 7}
5
5 8 {9, 7, 8}
5
set D1 = {9, 7, 8, 5}

2. Reduction of the goal set by intersection with set D1 :
 Zr = Z ∩ D1 = {9}

3. DFS of the reduced goal set in the inverse direction of the arcs with topological sorting :
9
9 7
9 7 5
9 7 5 2
9 7 5 2 1 {1}
9 7 5 2 {1, 2}
9 7 5
9 7 5 3 {1, 2, 3}
9 7 5 {1, 2, 3, 5}
9 7
9 7 4 {1, 2, 3, 5, 4}
9 7 {1, 2, 3, 5, 4, 7}
9
9 8
9 8 6 {1, 2, 3, 5, 4, 7, 6}
9 8 {1, 2, 3, 5, 4, 7, 6, 8}
9
set D2 = {1, 2, 3, 5, 4, 7, 6, 8, 9}

Update domain : D = D1 ∩ D2 = {5, 7, 8, 9}
Sequence of the update : 5 7 8 9

87

9

2 3

1

54 6

Page 8 of 8

4.7 Steps of the update algorithm
Let the data base be consistent at point in time t0. Then A(t0), Z(t0), D(t0) and R(t0) are empty. At
every point in time ti the update is executed in the following steps :

1. The user modifies objects, starting after the last update at time ti-1. These objects form
the increment of modification dA(ti).

2. The user selects the goal set Z(ti) for the update.

3. Determine R(ti) by removing every object from R*(ti-1) which is dependent on dA(ti) :
R(ti) = R*(ti-1) - (R*(ti-1) ∩ DFS(dA(ti))

4. Determine A(ti) as union of dA(ti) and Ar(ti-1) :
A(ti) = dA(ti) ∪ Ar(ti-1)

5. Reduce the goal set Z(ti) by removing every object which is not dependent on A(ti):
Zr (ti) = Z(ti) ∩ DFS(A(ti))

6. Determine the update domain :
D(ti) = DFST(Zr(ti)) ∩ DFS(A(ti))

7. Reduce the update domain by removing from D(ti) every object which is contained in
R(ti) :
Dr(ti) = D(ti) – (D(ti) ∩ R(ti))

8. Update every object in Dr(ti) by recalculating its attributes for the modifications.

9. Extend R(ti) by adding the updated objects:
R*(ti) = R(ti) ∪ Dr(ti)

10. Extend A(ti) by adding the updated objects:
A*(ti) = A(ti) ∪ Dr(ti)

11. Reduce the modification set: traverse A*(ti) to check every successor of its objects. If all
successors of an object are contained in R*(ti) then the object must be removed from
A*(ti).

4.8 Complexity of the algorithm
In order to make the update algorithm efficient, each type of operation which it contains must be
efficient. The update algorithm is based on two types of operation : set operations (∩, ∪,
“difference”) and search operations (depth - first search DFS). The algorithms for set and search
operations are linear in time (Cormen et al. 2001), (Aho et al. 2001).

The algorithm for depth - first search runs in O(n+a) time, where n is a number of the nodes and
a is a number of the arcs of the graph. The algorithm for set operations runs in O(n) time if the
sets are represented as sorted lists. The complexity of the update algorithm is therefore :
 max(O(n+a), O(n)) = O(n+a).

The graph, the increment of the modification set and the goal set are input data for the update
algorithm. Test graphs with n nodes and 2n to 10n arcs were generated with the following
properties (Fig.12) :
 - The graph is acyclic.
 - There are no separated nodes (nodes without arcs) in the graph.
 - The graph is randomly generated as a network with a start node and a target node.

The number of nodes in the modification set and in the goal set is fixed, but the nodes in these
sets are selected randomly.

Page 9 of 9

Fig.12 Structure of a test graph

The update domain and the sequence of updating are the output data of the algorithm. The
update domain is determined for the input test data: its size is not fixed.

The test has been carried out for a single point in time for steps 1 to 8 of the update algorithm.
The number of required simple operations is measured. The simple operation for depth - first
search (DFS) is the method add in the methods getAdjacencyListForNode(nodeName) and
getPredecessorsListForNode(nodeName). The simple operation for INTERSECTION is method
compareTo(object).

Figures 13 – 17 show the number of operations for the depth - first search in step 3 and the
intersection in step 6 of the update algorithm.

Fig.13 Average number of simple operations

modif. set size = goal set size = 100, number of arcs / number of nodes = 2

The dependence is linear. Every simple operation add or compareTo(object) runs in constant
time O(1). The time depends on properties of the computer. The base operations DFS and
INTERSECTION therefore run in linear time (Fig.13).

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

number of nodes

nu
m

be
r o

f o
pe

ra
tio

ns

 depth-first search from dA intersection DFS(Zr) with DFS(A)

Page 10 of 10

For different sizes of the modification set and the goal set, the algorithms DFS and
INTERSECTION require an equal number of simple operations (Fig.14, 15). This can be
explained by the selected sizes of the modification set and the goal set which are much smaller
than the number of nodes in the graph.

Fig.14 Average number of simple operations for DFS(dA)

Fig.15 Average number of simple operations for INTERSECT(DFS(Zr),DFS(A))

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000

 number of nodes

nu
m

be
r o

f o
pe

ra
tio

ns

0

5000

10000

15000

20000

25000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000

number of nodes

nu
m

be
r o

f o
pe

ra
tio

ns

 modset size = 100 modset size = 50 modset size = 10

 modset size = 100 modset size = 50 modset size = 10
 goalset size = 100 goalset size = 50 goalset size = 10

Page 11 of 11

The number of simple operations in the DFS algorithm depends on the ratio arcs / nodes,
because the number of simple operations add in the metod getAdjacencyListForNode
(nodeName) depends on the number of leaving arcs (Fig.16).

Fig.16 Average number of simple operations for DFS (dA) in a graph with 1500 nodes

The number of simple operations in the INTERSECTION algorithm does not depend on the
ratio arcs / nodes, because the number of simple operations compareTo(object) depends only on
the number of nodes in the intersected sets (Fig.17).

Fig.17 Average number of simple operations for INTERSECTION(DFS(Zr), DFS(A))
 in a graph with 1500 nodes

The required number of simple operations is independent of the ratio arcs / nodes. This is due to
the network structure of the tested graph. The location of the modified nodes and the goal set is
selected randomly. Due to the structure of the graph, if a node of the set is located at the
begining of the network, then every successive node of the network will be included in the
result of the DFS.

0

5000

10000

15000

20000

25000

10 20 40 60 80 100

number of nodes in goal set

nu
m

be
r o

f o
pe

ra
tio

ns

0

20000

40000

60000

80000

100000

120000

140000

160000

10 20 40 60 80 100

number of nodes in modification set

nu
m

be
r o

f o
pe

ra
tio

ns

 a/n = 2 a/n = 4 a/n = 6 a/n = 8 a/n = 10

 a/n = 2 a/n = 4 a/n = 6 a/n = 8 a/n = 10

Page 12 of 12

5 Update algorithm for functional dependence
The complete dependence graph for functional dependence cannot be set up at the start of the
update procedure, since the dependence of objects is only known when the algorithm is
executed for specific input values. The algorithm must create the dependence graph as the
update procedure progresses. Therefore it is not possible to implement for functional
dependence the type of update algorithm which has been presented for structural dependence.
The development of update algorithms for functional dependence is in progress.

6 Conclusions
An update algorithm for the case of structural dependence in a data base has been implemented
in Java. Its complexity has been tested for large graphs. The algorithm is efficient for the size of
data bases which are encounted in engineering praxis. It must be comlemented by the
development of an update algorithm for functional dependence, which is more frequently than
structural dependence.

7 Acknowledgement
The reported research was conducted in the research project DFG- Gz. PA 162/9-1
“Investigation of Structures in Information Sets of Civil Engineering” of the Deutsche
Forschungsgemeinschaft (German Research Foundation DFG). We wish to thank the foundation
for its support.

8 References
Pahl, Peter Jan and Beucke, Karl. Neuere Konzepte des CAD im Bauwesen : Stand und
Entwicklung. Bauhaus-Universität Weimar, Germany : in digital proceedings of „Internationales
Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen
(IKM)“, 2000.

Pahl, Peter Jan. 2002. Systemtheorie, Grundlagen und Verfahren. Berlin: Technische
Universität Berlin.

Pahl, Peter Jan and Damrath, Rudolph. Mathematical Foundations of Computational
Engineering. Berlin: Springer Verlag, 2001.

Pahl, Peter Jan. 2001. Engineering in distributed computer enviroments. Berlin: Technische
Universität Berlin.

Cormen,, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Cliffort Stein. Introduction to
Algorithms. Second Edition. Massachusetts: MIT Press.,Cambridge, 2001.

Hanff, Jochen. 2003. Abhängigkeiten zwischen Objecten in ingenieurwissenschaftlichen
Anwendungen. Berlin : Dissertation, Technische Universität Berlin.

Aho, A. V., J. E.Hopcroft and J. D. Ullman. Data structure and algorithms. Massachusetts:
Addison-Wesley, 1983 (in rus.transcript. 2001).

