
Page 1 of 9

Integration of Constraints into Digital Building Models
for Cooperative Planning Processes

A. Borrmann2, Th. Hauschild1, R. Hübler1
1) Bauhaus University Weimar, 99421 Weimar, Germany

2) now: Technical University of Munich, 80290 Munich, Germany.
 borrmann@bv.tum.de, {thomas.hauschild|reinhard.huebler}@informatik.uni-weimar.de

Summary
The uniqueness and the long life cycle of buildings imply a dynamically modifiable building
model. The technological foundation for the management of digital building models, a dynamic
model management system (MMS), developed by our research group, allows to explicitly
access and to modify the object model of the stored planning data. In this paper, the integration
of constraints in digital building models will be shown. Constraints are conditions, which apply
to the instances of domain model classes, and are defined by the user at runtime of the
information system. For the expression of constraints, the Constraint Modelling Language
(CML) has been developed and will be described in this paper. CML is a powerful, intuitively
usable object-oriented language, which allows the expression of constraints at a high semantic
level. A constrained-enabled MMS can verify, whether an instance fulfils the applying
constraints. To ensure flexibility, the evaluation of constraints is not implicitly performed by the
systems, but explicitly initiated by the user. A classification of constraint types and example
usage scenarios are given.

1 Introduction
The planning of building is a process, which is characterised by complex tasks and a high
degree of synchronous and asynchronous, local and geographical distributed collaboration of
professionals from a number of special subjects. Digital building models, i.e. computer internal
building representations, are a necessary precondition for computer support of these complex
building planning and erection processes. These models form a base for the integration of
building information and for the adequate supply of necessary and relevant information for the
current design task and represent all available structural information at building planning
projects (Figure 1). The high complexity of the building models and the request for models,
which are able to accompany most phases of the building life cycle, imply exceptionally
demands for their management.

In contrast to other engineering disciplines, the product is unique and not part of a series
production. It is impossible to make a test specimen; most usability simulations have to be
carried out based on the digital building model. In comparison to other engineering disciplines,
there are few standardised and many singular building components. These circumstances result
in further high demands to the flexibility of the building model and its management component,
too.

Many planning projects are carried out in Virtual Enterprises, which exist for the period of the
planning and construction processes. Some characteristics of Virtual Enterprises are temporary
relationships between participants, dynamic involvement and retiring of members and limited
chances to promote a common information infrastructure. A design environment for building
planning processes has to meet the requirements for a support of planning activities in Virtual
Enterprises.

The investigation of these modelling methods for building data and model management
techniques are the subject of the research project “Digital Building Model for Inventory

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2 of 9

Information”, which is part of the Collaborative Research Centre 524 “Materials and
Constructions for Building Revivification” at the Bauhaus – Universitity Weimar, Germany.

 Process level

Integration level

Management level

Process
model

Building
model

Figure 1: Process integration in building planning processes

2 Management of Dynamic Desciptive Building Models
For the reflection of the structural information the application of the object-oriented paradigm
has proven to be an adequate foundation. The domain knowledge of the planning professionals
can be represented in class taxonomies through abstraction processes. For descriptive models,
these taxonomies mainly consist of classes with attributes and structures of inheritance,
aggregation and association. The concerning building is represented in a specific project model
by instances of taxonomy classes.

This way it is possible to manage generalized knowledge about building objects and to use it as
a base for planning activities for present building projects. There is a necessity of dynamic in
domain taxonomies regarding their structure and content (Steinmann 1997). Reasons are the
very long building and model life cycles, changes in regulations and rules and the demand for
systems, which are adjustable to special needs, specific structures or private know-how, for
example.

2.1 Model management systems
Model management systems are the technological base for storage and retrieval of digital
building models. The logical structure and the kind of managing the real model architecture
have been specified before. This included above all the handling of domain knowledge
taxonomies as well as concrete project data. The model management system has also to pay
attention to the collaborative and distributed character of the planning processes and has to
ensure the physical access to the planning releases of other co-workers without collisions. Other
requirements are the support of information versioning, the guarantee of the physical model
consistency and the provision for tools for the generation of digital model signatures, for
example. In addition to the information handled by means of object-orientation, there is data
like texts, digitised drawings, CAD files, photographs of damage areas, etc., which can hardly
be formalised. This data is stored on the design support system and referenced by special
attributes of classes and instances. An efficient retrieval and context dependend provision of the
information is possible that way (Figure 2).

There are several approaches for the realisation of runtime dynamic model management kernels.
On the one hand, it is possible to new-implement all necessary features of the kernel thoroughly
by particular program modules of the system, on the other hand, the implementation can exploit
relevant properties of several object-oriented languages. Besides, the realisation could be
founded on suitable tools or libraries (Hauschild and Hübler 2002).

Page 3 of 9

Database Management System Interface

Model Management System Interface

Domain
Model

Project
Data

Multimedia
Information Repository

Version
Manager

Class NameClass Name

Class Name

Class Name Class Name

Class Name
Class XYZ
Version 1.1

attribute1

operation1

Class XYZ
Version 1.2

attribute1

operation1

Class XYZ
Version 2.0

attribute1

operation1

Class XYZ
Version 2.1

attribute1

operation1

Figure 2: Model Management System kernel structure

The second realisation way was chosen due to experiences of very high implementation
expenses and very complex optimisation tasks in preceding research efforts, which utilised the
first way. All information in the model management kernel can be locally and remote accessed
by means of a static CORBA interface. This interface encapsulates the meta level modelling
functionality and is a further developed version of the AKO–interface (Ranglack et al. 1997)
(Figure 3), which defines all necessary functionalities for the management of taxonomies and
instance sets.

ClassModel Instance

Relation

Slot

RelationInstance

SlotInstance

1

*

1 *

1 1

*
1

1 1

*

*
1

Facet FacetInstance
**

1

n

*

domain model planning data

Figure 3: The AKO meta-model

2.1 System architecture
The synchronous and asynchronous collaboration of revivification planning processes has to be
carried out on the technical foundation of wide area networks. This implies high robustness
demands on the system components regarding communication delays and communication media
failures. The usability of the design support system must not be adversely affected by this kind
of problems. However, the system architecture is based on the assumption, that all persons with
the same model view perform their planning activities non-distributed. Our approach to the
system architecture of the design support environment consists of the base components central
project server, domain model server and domain client The development of a dedicated system
architecture is motivated by the failure of conventional multi- tier architectures to provide an
proper support of planning activities in Virtual Enterprises (Hauschild 2003).

Page 4 of 9

Figure 4: Distributed planning support system configuration

In this system architecture, the central object server is responsible for the management of the
global project information, i.e. necessary parameters of the technical project infrastructure as
well as authentication and access authorization data.

The domain model servers perform the management of the taxonomies and instances of a partial
model. Therefore, its most essential component is the model management kernel, which
performs this task. Furthermore, this component is responsible for measures to ensure the
physical model consistency for precautions against problems caused by synchronous model
access and for a local access control (Hauschild and Hübler 2000).

The domain clients, who reside on the workstations of all persons involved in the planning
process and communicate with the proper domain model server, perform the Computer
Supported Co-operative Work (CSCW)-based presentation and interaction tasks. Its main task
however, is to act as an interface between model management and domain specific applications
in order to allow the user to communicate with the shared building information by means of her
or his usual applications.

In order to associate sets of building model objects to planning stages and activities objects it is
feasible to assign model objects tuples of hierarchic structured description strings. These
description strings can be used in modelinformation queries, which supply object sets following
given search criteria. For that purpose, references to parts of the hierarchy trees are linked by
Boolean expressions. That way, a connection of the model management kernels to process
management support tools becomes viable.

In order to implement building model based applications for synchronous co-operation support
with a responsive user interface, it is necessary to provide a mechanism for the propagation of
changes of the model information. To accomplish this demand, an architecture for the
announcement of building model changes based on the Observer Pattern was developed and on
the technological foundation of the CORBA Typed Notification Service (The Object
Management Group 2000) implemented.

3 Constraints in dynamic building models

3.1 Overview
During the planning process, many design decisions are made on the base of constraints. They
arise from the numerous boundary conditions the planned building has to satisfy. In order to

Page 5 of 9

support the decision making process, it is desirable to let the information system handle and
evaluate these constraints.

In the scope of this paper, the term Constraint is used for rules, which apply to instances of
classes of the domain model. They enhance the digital building model with additional
semantics, and their use can help to satisfy the high requirements on information systems used
in cooperative planning processes. Constraints are described by using identifiers from the
domain model, like names of classes, attributes, and association roles, and are defined by the
user at runtime of the information system. (Borrmann 2003)

The use of constraints in the proposed way, allows the user to successively complete the domain
knowledge managed by the computer. A dynamic MMS with support for the definition and
evaluation of constraints can therefore be seen as a highly customisable system, fitting perfectly
to the needs of building planning processes, which are typically characterised by a high degree
of uniqueness due to the individuality of buildings. Furthermore, constraints can also be used to
describe fuzzy or uncertain data.

One of the main advantages of integrating constraints in digital building models is that the
design rules (and therefore the domain knowledge) are not exclusively available in some
specific design or engineering application, but managed by the central model management
system and may thereby easily be adapted to the specific needs of a particular project and, what
might even more important, exchanged between different project partners.

Basically, we distinguish two classes of constraints: To the first class belong constraints, which
are used to describe domain knowledge that applies to all or almost all projects. Such
constraints might be derived from legal norms, reflect state-of-the-art knowledge in this domain
or discipline, or the individual expertise of a certain engineer. On the other hand, constraints can
be used to describe design rules that apply to the current project only. These might be wishes of
the client or domain specific requirements. Used in this way, constraints can describe the
nominal condition of the planning. An evaluation of such constraints then shows the difference
between nominal and actual condition. Project-specific constraints are subject to much higher
dynamics than those that form part of the comparatively static domain knowledge.

Wall
length
width

length < 500 and
width > 12

Figure 5: A constraint restricting the possible values of two attributes

In the simplest case, a constraint just restricts the range of value of an attribute, as shown in
Figure 5. But constraints can as well describe dependencies between different attributes of one
(Figure 6) or of different classes (Figure 7). That permits the existence of redundant data in the
information base: Such constraints allow domain models to be well suited to the needs of the
planers and their applications, because the information system is able to manage the logical
consistency and, to a certain degree, the coherence of the data. Furthermore, the constraint-
based modelling of dependencies between attributes forms a suitable base for the
implementation of generic algorithms for the versioning of planning data. The most notable
advantage over conventional approaches is to have the user define those dependencies
dynamically, and that the dependencies are not one- but multidirectional.

Page 6 of 9

Room

length
width
area

area = length width*

Figure 6: A constraint modelling dependencies between different attributes of one class

In order to provide the necessary flexibility during planning, the information system has to
tolerate temporary inconsistencies between the planning data and the formulated constraints.
But it allows the user to detect these inconsistencies, keep track of them, and eliminate them at
the most appropriate time. By using a constraint-enabled model management system in this
way, severe planning errors can be prevented, and the usually high costs associated with them
can be avoided.

Wall

height

Storey

height

Room

height

height = theStorey.height height = theRoom.height

theRoom wallstheStorey rooms

Figure 7: Constraints modelling dependencies between attributes of different classes

3.2 The constraint language CML
In order to allow the user to express constraints, an intuitively usable formal language, called
CML (Constraint Modelling Language) was developed. CML is a dialect of the OCL (Object
Constraint Language) which forms part of the widely used industry standard UML (Unified
Modelling Language). While OCL is used for the formal specification of software systems,
CML was tailored to the specific needs of defining consistency and design conditions in
dynamic building models. (The Object Management Group 2003, Warmer and Kleppe 1999)

The syntax of CML is identically to that of OCL, but the language extent has been reduced. The
language constructs of OCL that are used to define pre- or post-conditions could be neglected,
because descriptive building models do not provide the capability to model object behaviour,
like operations or methods. So, in terms of the OCL specification, all OCL constraints are
invariants.

The CML allows read access to attributes and their facets, navigation along associations, the use
of arithmetic, logic and comparison operators and if-then-else branching. The navigation along
an association with a cardinality bigger than one results in a collection of objects. There is a set
of predefined operations on collections, which iterate over all members of the collection. For
instance, the operation forAll() tests, whether a specified condition is satisfied by all elements
(Figure 8).

Page 7 of 9

Wall

height

Room

height

walls->forAll (hoehe = self.hoehe)

theRoom walls

1 *

Figure 8: The use of collection operators in CML

For CML a checker and an interpreter were developed. Whereas the checker validates a certain
CML expression when it is assigned, i.e. if the used names of roles and attributes exist in the
domain model and if the types are compatible, the interpreter evaluates it for the present data of
an instance.

3.3 Management of constraints by the MMS
In order to integrate the constraint concept in building models the AKO meta-model (Figure 3)
was extended by the class Constraint (Figure 9). An object of type Constraint has an unique
name and encapsulates a CML expression. It may be either associated with a single instance, or
with a class; where in the latter case it applies to all instances of that class. In analogy to the
distinction between the two types of constraints given above, it can be stated that project-
independent constraints will usually be associated with classes, whereas constraints that
represent project-specific design knowledge will mostly be associated with single instances.

Constraint

Class

name: Str ing
expression: Str ing

Instance

1 1

1 *

* *

Figure 9: The use of collection operators in CML

Constraint objects are managed by the MMS together with the domain model and its instances.
The CML checker and the CML interpreter are also located in the address space of the model
management server. Thereby, the overhead of remote procedure calls can be avoided and a high
performance is achieved, as needed for the fast evaluation of big instance populations.

When assigning a CML expression to a constraint object it will be syntactically and
semantically checked. If the check is successfully passed, the syntax tree built up by parsing the
expression will be stored together with the constraint object. So, for interpreting the expression
at later times no second parsing is necessary, which again ensures a high performance for the
evaluation of constraints for a high number of instances.

Page 8 of 9

CML Checker CML Interpreter

Model Data

CML Expression

Model Management System

validation evaluation

Figure 10: Work of checker and interpreter

3.4 Evaluation process
The evaluation of CML expression for a certain instance is done by the CML interpreter. It
substitutes the identifiers of attributes in the expression with the corresponding data of that
instance. The evaluation of constraints is performed at user-defined times and will be invoked
from a MMS client. It can be performed for single instances, or along aggregations for complete
instance populations.

Constraint evaluations possess particular significance when merging partitioned data sets after
their separated editing by different users in offline mode, and when creating a revision of the
planning data. The result of a constraint evaluation is always a Boolean value, which indicates
whether the constraint is fulfilled or broken. If the system determines a broken constraint, it
gives detailed information about the affected instances. This information provides a base to
identify the cause and manually resolve the inconsistencies by the user.

4 Future Work
Recently, inconsistencies can be detected by the information system, but have to be resolved
manually. Mainly, if the evolved constraints span a complex net of dependencies, this might be
difficult task. In that case, the design application should assist the user. In order to provide such
a functionality, techniques from Artificial Intelligence like “Constrained-based Reasoning” and
its specialisation “Spatial Reasoning ” can be applied. (Güsgen 1992, O'Sullivan 2002)

By doing so, the system can also detect conflicts between certain constraints, i.e. it can find out
if there is a solution to the constraint problem at all. The syntax trees already managed by the
system provide a suitable base for the application of propagation algorithms.

5 Conclusion
In this paper, the integration of constraints in digital building models was shown. The approach
described here uses a formal language for expressing constraint conditions. The developed
interpreter can be used to evaluate constraint expressions for instances of domain model classes.
This functionality can be used as a powerful tool to insure the consistency of planning data.

Page 9 of 9

6 Acknowledgements
This work is supported by the ‚Deutsche Forschungsgemeinschaft‘ (German Research
Foundation) within the scope of the DFG Collaborative Research Centre 524 “Materials and
Constructions for Building Revivification”.

7 References
Borrmann, A. (2003); Constraint-basierte Konsistenzprüfungen in dynamischen Bauwerks-
modellierumgebungen. Diploma thesis. Bauhaus-University. Weimar.

Hauschild, T. and Hübler, R. (2000); Aspekte der verteilten Bauwerksmodellierung in
kooperativen Entwurfsumgebungen auf Basis dynamischer Objektstrukturen. Proceedings of the
Internationale Konferenz für Anwendungen der Informatik und Mathematik in den
Ingenieurwissenschaften IKM 2000. Weimar.

Hauschild, T. and Hübler, R. (2002); Distributed, Collaborative Management of Building
Models for Revivication Projects. IX. International Conference on Computing in Civil and
Building Engineering (ICCCBE). Taipeh.

Hauschild, T. (2003); Computer Supported Cooperative Work- Applikationen in der Bauwerks-
planung auf Basis einer integrierten Bauwerksmodellverwaltung. PhD-thesis. Bauhaus-
University. Weimar.

Güsgen, H. W. (1992); A perspective of constraint-based reasoning. Springer Verlag. Berlin.

The Object Management Group (2000); Notification Service Specification, Version 1.0, OMG
Document 00-06-20, Framingham MA.

The Object Management Group (2003); The Unified Modeling Language Specification, Version
1.5. Chapter 6: The Object Constraint Language Specification. OMG Document 03-03-13.
Framingham, MA.

O'Sullivan, B. (2002); Constraint aided conceptual design. Professional Engineering
Publications. London.

Ranglack, D., Kolbe, P. and Steinmann, F.(1997); Eine Schnittstelle für dynamische
Objektstrukturen für Entwurfsanwendungen. Proceedings of the Internationale Konferenz für
Anwendungen der Informatik und Mathematik in den Ingenieurwissenschaften IKM 1997.
Weimar.

Steinmann, F. (1997); Modellbildung und computergestütztes Modellieren in frühen Phasen des
architektonischen Entwurfes. PhD-thesis. Bauhaus-University. Weimar.

Warmer, J. B. and Kleppe, A. G. (1999); The object constraint language: precise modelling with
UML. Addison Wesley Longman. Reading, MA.

