
Page 1 of 9

XML-based Vector Graphics: Application for Web-based Design
Automation

Julian H. Kang, Texas A&M University, U.S.A. (juliankang@tamu.edu)

Byeong-Cheol Lho, Sangji University, Korea (bclho@sangji.ac.kr)

Jeong-Hoon Kim, Kumoh University, Korea (jhk@kkk)

Young-No Kim, Texas A&M University, U.S.A. (young@tamu.edu)

Summary
Most retaining walls and box culverts built for arterial road construction are simple, and the
design process of these structures is often repetitive and labor-intensive because they are so
similar in structural configuration. Although some integrated design automation systems
developed for retaining walls and box culverts have expedited the design process of these
structures, the process of collecting and distributing the resultant engineering documents has not
been fully integrated with the computer applications. We have been developing a Web-based
design automation system to manage the resultant documents as well as to speed up the
repetitive design process.

Manipulation of engineering drawings in the Web page is one of the critical functions needed
for Web-based design automation. eXtensible Markup Language (XML) and XML-based vector
graphics are expected to facilitate the representation of engineering drawings in the Web page.
In this paper, we present how we used XML and Scalable Vector Graphics (SVG) to compose
engineering drawings and represent them in the Web page. XML Data Island we designed to
define drawing components turned out effective in manipulating the engineering drawings in the
Web page.

1 Introduction
Every year, many simple structures such as retaining walls and box culverts are designed for
infrastructure development. The design process for these structures is often repetitive because
their shape and function are similar regardless of their location. Professionals in the
Architecture, Engineering, and Construction (AEC) industry have tried to speed up repetitive
design processes by using integrated computer applications with which engineers can
implement all design tasks seamlessly, from the analysis of structural stability to the generation
of CAD drawings. Usually these computer applications take design parameters such as the
geometry of a structure and implement all the engineering calculations needed to generate
engineering reports and drawings automatically.

Application of Information Technology (IT) has helped construction professionals realize that
effective document management, especially in a central repository, is an essential step for
sustaining infrastructure. The public sector in the construction industry is especially interested
in creating project legacy data to use in making decisions about how to maintain structures.
Korean government has started requesting design firms to submit electronic design documents
for managing infrastructure in the future. However, electronic design documents collected may
not be effectively stored in the central repository and distributed because of the following
reasons. Firstly, the format of electronic documents keeps changing as software advances.
Application of an electronic document management system to future infrastructure management
may not be easy because advancement in software development often exceeds what the
electronic document management system can handle. Secondly, most integrated design
automation systems are developed for stand-alone computer systems. Information loss or

Page 2 of 9

duplication of resultant engineering documents may hardly be avoided unless they are
transported from individual design firms to a central repository of the electronic document
management system automatically. Indeed, in many fields it has been notoriously difficult to
create, access, and adapt project legacy data effectively. Unless the entire process from
engineering design to document management is integrated with electronic document
management system, creating project legacy data may remain problematic.

Web-based design automation and management has attracted professionals in the construction
industry because it would facilitate the structural design and resultant document management
over the Internet. One obstacle in integrating design automation systems with Web-based
project management to create project legacy data is to generate CAD drawings and manipulate
them in the Web page. Representation of vector graphics in the Web page, which is one of the
critical requirements for manipulating engineering CAD drawings over the Internet, was not
convenient until the recent emergence of Internet technologies such as Extensible Markup
Language (XML), Vector Markup Language (VML), and Scaleable Vector Graphics (SVG).
XML is a text format designed to manipulate large-scale electronic publishing and data
exchange over the Internet. VML and SVG are applications of XML which define tags for
illustrating vector graphics in the Web page.

The growth of compatible Internet design technologies has inspired us to develop a Web
application to integrate the entire design process of simple structures from structure analysis to
document management. This Web application is expected to provide such functions as: 1)
Collection of design parameters, 2) Analysis of the structural stability, 3) Selection of optimum
structural members, 4) Generation of engineering reports and CAD drawings, 5) Representation
and manipulation of the vector drawings in the Web page, 6) Generation and representation of
the bill of materials, and 7) Management of structure maintenance records. The engineering
drawing employed in our development is composed of several drawing components, such as
plans and sections. The scale and location of drawing components in the drawing can be
modified by the users over the Internet. In this paper, we present how we used XML and SVG
to compose engineering drawings and manipulate them in the Web page.

2 XML-based Vector Graphics
Bitmap graphics, such as raster images and photos, successfully represent graphical information
on the Web page. Bitmap graphics are described by millions of pixels in a binary format such as
GIF and JPEG, which require a special package for modification. As opposed to bitmap
graphics, vector graphics are described by a series of points to be connected. Vector graphics
are resizable to any proportion without sacrificing graphical resolution. They are flexible
because they can simply be re-rendered at any point. In order to facilitate the representation of
vector graphics on the Web, the World Wide Web Consortium recently released both Vector
Markup Language (VML) and Scaleable Vector Graphics (SVG), which are XML-based
formats for vector graphics.

2.1 Extensible Markup Language (XML)
XML is a simple and flexible text format derived from the ISO 8879 Standard Generalized
Markup Language (SGML). It is called extensible because it is not a fixed format like Hyper
Text Markup Language (HTML). Originally designed to meet the challenges of large-scale
electronic publishing, XML is also playing an important role in the exchange of a wide variety
of data on the Web. Teague et al. (2003) defined XML as “a set of formatting rules that define
structured information in a software-neutral text file.” Since XML defines the structured
information in a simple text file, it can be recognized by virtually any computer system. Thus
XML is very appropriate for building software-neutral project legacy data. By utilizing XML

Page 3 of 9

Stylesheet Language Transformations (XSLT), information defined in XML can then be
transformed into a common HTML document represented on the Web page.

In 1999, the International Alliance for Interoperability (IAI) proposed aecXML, an XML-based
language designed for exchanging information in the AEC industry. Harrod (2003) noted that
“the main idea with aecXML is to not only establish some standard ways of structuring building
data but also to do it so as to enable automated processing of that data as much as practicable.”
Zhua and Issab (2003) suggested that a well-developed XML schema to classify construction
data is a critical key issue for successful information exchange. Using the XML-based
information standard, Tserng and Lin (2003) developed an electronic data acquisition model for
project scheduling. They pointed out two major obstacles in gaining efficient access to
information about multi-contract projects: 1) the variety of data structures that project
participants use, and 2) the lack of an automatic mechanism for data acquisition.

2.2 Vector Markup Language (VML) and Scalable Vector Graphics (SVG)
VML is an application of XML which defines a format for encoding vector information together
with additional tags for editing and displaying the information. VML is written using the syntax
of XML, such as <v:shape/> and <v:path/>, and is compatible with HTML. A Web page
encoded in VML can be displayed on the Microsoft Internet Explorer without installing any
plug-in software.

SVG is another application of XML, designed for describing two-dimensional graphics in the
Web page. It allows for three types of graphic objects: vector graphic shapes, images, and text.
SVG graphics are scalable, so the same SVG graphic object can be displayed at different sizes
on the Web page without sacrificing graphic resolution. In recent years, several researchers have
built on this new way of representing vector graphics. Baravalle et al. (2003) demonstrated the
use of SVG to produce a pictogram representation of numerical data obtained from scientific
computer programs. Gonzalez and Dalal (2003) presented a web service that allows end users to
specify a database query and visualize the extracted data as charts or graphs using SVG.

3 Development of Web-based Design Automation System

3.1 System Configuration
Our group has been developing a prototype Web application to facilitate the design automation
of box culverts and retaining walls using ASP.NET and XML-based vector graphics
technology. Design parameters are collected via a series of Web pages and saved in the database
located in the Web server. An input text file for the structure analysis is created from these
design parameters. The server application then calls the commercial package and initiates the
analysis of the structure. After the structure analysis is finished, the server application reads the
output text file of the commercial package to extract the maximum bending moment and
maximum shear force. The bending moment diagram (BMD) and shear force diagram (SFD) are
then displayed graphically on the Web page using VML. Once the user provides additional
design parameters, the server application selects the amount and type of reinforcing steel bars
needed to ensure structural stability. The server application then generates engineering drawings
and save them in the database using XML tags. Engineering drawings are converted into SVG
and displayed on the Web page. Drawings displayed on the Web page can be printed on the
plotter. Figure 1 illustrates this process.

Page 4 of 9

Database

Solver
User input for
structural configuration

Result of structural analysis &
User input for member design

Web Server

Solver for Structural
Analysis and Member
Design

Database containing
Design Information and
Engineering Documents

Drawings displayed
in
the Web page

Drawings printed on the
Plotter directly from the
Web browser

Information Flow
(Client Side)

Work Flow

Information Flow
(Server Side)

Figure 1: Process of Web-based design automation

3.2 Drawing Composition
An engineering drawing is composed of several components such as floor plans, sections, and
detail views. One obstacle, in the process of generating the drawing automatically, is that some
of these components may not be depicted properly in the drawing. A floor plan, for example,
may be constructed too small or located at the awkward place in the drawing. Modification of
the drawing generated by the server application may be an essential function to ensure the
quality of the drawing. We decided to add a drawing modification function in a way that users
can change the scale or location of the drawing component in the full drawing over the Internet.
For this goal, we defined the full drawing as an object that is composed of multiple drawing
components. The drawing component is also an object that is created independently with its
own origin point. Similarly, the structure object can be defined as a composition of full drawing
objects. The project object is composed of multiple structure objects. Figure 2 illustrates how
we composed drawing objects.

Drawing 1

Drawing
Component 3
(Plan View)

Drawing
Component 1

(Elevation View)

Drawing
Component 2
(Detail View)

Structure 1

Project 1

Structure 2 Structure 3

Drawing 2 Drawing 3

Figure 2: Structure of drawing objects

The local coordinate of the drawing component is converted into a global coordinate when the
full drawing is composed. The location and size of the drawing object in the full drawing is first
determined by the server application automatically and then adjusted by users. Users adjust the
location of the drawing object by assigning an X and Y coordinate in the full drawing, to which
the origin of the drawing component will move. The scale of the drawing object in the full

Page 5 of 9

drawing can also be adjusted by the scale factor that users will identify. The diagram in Figure 3
illustrates how the full drawing is composed.

The origin of the drawing (0,0)

Location of the origin of
drawing components
in the drawing

Individual
Drawing
Components

(0,0) (0,0)

(10,50) (80,50)

Drawing title

The origin of the
drawing component

Drawing components
Included in the drawing

Figure 3: Composition of drawing

3.3 XML Data Island
We decided to use an XML Data Island, which defines the lines and texts using XML tags, to
describe individual drawing components. This decision was made because we expected that
drawing components defined in the XML Data Island would be easily converted into XML-
based vector graphics such as SVG or VML. Figure 4 shows the XML Data Island we designed
to define lines by the color, thickness, starting point, and end point. The first block in the XML
Data Island in Figure 4, for example, defines a 3 point-thick blue line that connects (123,15) and
(650,0). The drawing object is composed of a series of these lines.

<line>
 <s>blue</s>
 <sw>3</sw>
 <x1>123</x1><y1>15</y1>
 <x2>650</x2><y2>0</y2>
</line>

{Repeat for the number of lines… }

<line>
 <s>blue</s>
 <sw>3</sw>
 <x1>650</x1><y1>0</y1>
 <x2>240</x2><y2>150</y2>
</line>

Figure 4: XML Data Island that defines lines for drawing component

The full drawing is also defined in XML. In the process of composing the full drawing, multiple
drawing components generated by the server application are combined and plugged in the
designated space in the XML data shown in Figure 5.

<?xml version='1.0' encoding='ISO-8859-1'?>
<drawing>

{The collection of XML data island to be plugged…}

</drawing>

Figure 5: XML data that defines a full drawing

Page 6 of 9

3.4 Generation of SVG Drawings
Once an XML data for the full drawing is composed, it is temporarily saved in a text file. The
sever application then convert this text file into an XML-based vector graphics using XML
Stylesheet Language (XSLT). We decided to use SVG to display the full drawing in the Web
page. Accordingly, the XSLT was developed to convert XML tags to SVG tags. Figure 6 shows
a fraction of XSLT we designed. Figure 7 shows the SVG tags created by the XSLT.

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <xsl:for-each select="drawing/drawingObject/line">
 <g style="stroke: {s}; fill: {f}; stroke-width: {sw}"
 transform="translate({moveX} {moveY})
 translate({originX} {600 - originY})
 scale({scale})
 translate({-originX} {originY - 600})">
 <a xlink:href="step6_input.asp?doID={doID}">
 <line x1="{x1}" y1="{600-y1}" x2="{x2}" y2="{600-y2}" />

 </g>
 </xsl:for-each>
</svg>

Figure 6: XSLT to convert XML line to SVG line

<?xml version="1.0" encoding="utf-8" ?>
<svg width="15in"
 height="15in"
 xmlns=http://www.w3.org/2000/svg
 xmlns:xlink="http://www.w3.org/1999/xlink">
<g style="stroke: blue;
 fill: none;
 stroke-width: 3"
 transform="translate(0 0)
 translate(0 460)
 scale(1)
 translate(0 -460)">
<a xlink:href="step6_input.asp?doID=317">
 <line x1="0" y1="460" x2="800" y2="460" />

</g>
</svg>

Figure 7: Sample SVG tag

3.5 Database Design
Normally, the XML data is stored in a software neutral text file. However, we decided to store
the XML Data Island of the drawing component in the database. This decision was made
because the XML data for the full drawing is composed of multiple XML Data Islands of
drawing components, which can be dynamically changed based on how the user wants to locate
in the full drawing. Accordingly, we designed tables in the database in such a way that the
location information and scale factor of the drawing components are stored separately and
utilized in the process of composing the XML data of the full drawing. We expect, by saving the
drawing components in the database, that we should be able to allow the users to modify the full
drawing after it is composed by the sever application automatically. Table 1 shows some of the
fields we designed in the database.

The tblDrawingObject table contains the XML Data Island of the drawing component. This
table stores 1) drawing component identification number, 2) drawing identification number to
which this drawing component belongs, 3) the X and Y coordinates in the full drawing where
this component will be located, and 4) the scale factor that will be used to determine the size of
drawing component depicted in the full drawing. The tblDrawing table contains general
information of drawings. It stores 1) drawing identification number, 2) structure identification
number to which this drawing belongs, and 3) other general information of the full drawings.
The tblStructure table contains design information of the structure to be designed. It also stores

Page 7 of 9

1) structure identification number, and 2) project identification number to which this structure
belongs. The tblProject table contains general project information. It may contain the project
identification number and the name of project. Figure 8 shows the relationship between these
tables. These relationships between tables make it possible to manipulate the drawing
component as an object that belongs to the full drawing.

Table Information to be managed
tblProject - Project ID

- General information of the project
tblStructure - Structure ID

- Project ID that the structure belongs to
- Structure type
- Design parameters
- General information of the structure

tblDrawing - Full drawing ID
- Sturcture ID that the full drawing belongs to
- General information of the full drawing

tblDrawingObject - Drawing component ID
- Full drawing ID that the drawing component belongs to
- XML Data Island of the drawing component
- Location of the drawing component in the full drawing
- Sclae factor of the drawing component

Table 1: Database structure

Figure 8: Relationships between tables in the database

4 Sample Test
In the process of composing the full drawing, the server application extracts the XML Data
Island of drawing components from the database and positions them at a proper location in the
drawing based upon the size and role of the drawing components. The server application then
marks their location in the database and generates the XML data for the full drawing. As a
specific component in the full drawing is selected, an editable Web page where the user can
update the scale and location information of the component is delivered. If the user provides
new location information or scale factor to the database in the server via the Web page as shown
in Figure 9, the server application updates the full drawing accordingly. Figure 10 shows how a
certain drawing object is updated. The front view, for example, is too small compare to the
adjacent plan view and isometric view when the full drawing was created automatically.
Although the user increases the size of the front view, it is not still located at the proper position
yet. The user then adjusts the location of the front view to finish composing the full drawing.

Page 8 of 9

Figure 9: Web page for updating the drawing component

Figure 10: Update process of the full drawing

5 Conclusion
This paper demonstrates how XML and XML-based vector graphics can be utilized for
representing or updating the drawings in the Web-based design automation system. The use of
XML Data Island for defining the drawing component facilitates the composition and
modification of the full drawing. Although it is not a usual approach to save the XML data in a
relational database, the XML Data Island stored in the relational database works effectively in
creating the full drawing and updating it over the Internet. Especially, the associated location
information and scale factor stored separately in the database facilitates the process of updating
the full drawing. Every time the user updates the location or scale of the drawing component,
the server application composes a new full drawing by combining the XML Data Islands and
their location information.

Manipulation of the drawing component in the sample full drawing demonstrates the potential
of a Web-based CAD system in design automation and infrastructure management. Web-based
CAD is expected to contribute significantly to the creation of the project legacy database in
which resultant engineering documents are stored and used for the next project or future
maintenance. The drawings stored in the central repository should be a great asset in cultivating
collaboration among project participants. The use of Web-based project management has
already demonstrated the usefulness of manipulating the project information in the central
repository. Accordingly, the Web-based design automation system, which automates the
repetitive process of designing the simple structure and save resultant engineering documents in
the central repository, should speed up the design process and help the public sector in the
construction industry sustain the built-in infrastructure. Indeed, our test to design a simple box
culvert and generate the associated drawings took only about 15 minutes. This test indicates that
the engineers, who specially design simple structures repetitively, will be benefited by the Web-
based design automation system. Simple and repetitive structures can be designed in the Web
page without running any structural analysis packages or CAD packages in the user’s computer.
The only application required to implement the design process is a Web browser. The public
sector, such as the department of transportation, is also expected to improve the manipulation of
engineering information for infrastructure management by easy access to the right data.

Page 9 of 9

6 References
Baravalle A., Gribaudo M., Lanfranchi V. and Sandri T. (2003). Using SVG and XSLT for
graphic representation. Proc., 2nd Annual Conference on Scalable Vector Graphics,
Vancouver, Canada.

González G. and Dalal G. (2003). Generating SVG Graphs and Charts from Database Queries.
Proc., 2nd Annual Conference on Scalable Vector Graphics, Vancouver, Canada.

Harrod G. (2003). aecXML & IFC. CADInfo.NET [WWW document] URL http://
www.cadinfo.net.

Teague T., Palmer M., and Jackson R. (2003). XML for Capital Facilities. Journal of Leadership
and Management in Engineering, ASCE, 3 (2), 82-85.

Tserng H. and Lin W. (2003). Developing an electronic acquisition model for project
scheduling using XML-based information standard. Automation in Construction, Elsevier B.V.,
12 (1), 67-95.

Zhua Y. and Issab R. (2003). Viewer controllable visualization for construction document
processing. Automation in Construction, Elsevier B.V., 12 (3), 255– 269.

