
Page 1 of 12 

Generic Services for the Support of Evolving Building Model Data 

Matthias Weise, Peter Katranuschkov, Raimar J. Scherer 

Institute for Construction Informatics, University of Technology Dresden, Germany  

{Matthias.Weise}, {Peter.Katranuschkov}, {Raimar.Scherer}@cib.bau.tu-dresden.de 

Summary 
Many problems related to data integration in AEC can be better tackled by an approach that 

takes into account the heterogeneity of tasks, models and applications but does not require 

continuous consistency of the evolving design data, at each data management operation. Such 

an approach must incorporate adequate services that can facilitate reintegration of concurrently 

modified data at reasonably selected coordination points. 

In this paper we present a set of methods which, used in combination, can achieve that goal. 

After a description of the principal envisaged cooperative work scenario each of these methods 

is discussed in detail and current observations drawn from their software realisation are given. 

Whilst the suggested approach is valid for any EXPRESS-based data model, the practical focus 

of work has been on facilitating IFC-driven integration. 

1 Current State and Problems of Data Integration in AEC 
Model-based data exchange and sharing are commonly accepted as vital prerequisites for 

collaborative design work to date. A lot of efforts in the areas of conceptual modelling, software 

architectures and interoperability have been made in the last decades and valuable results have 

been achieved which are now approaching a degree of fruition with the development of the IFC 

project model of the IAI (Wix and Liebich 2001). However, seamless data sharing is still not 

available for wide practical use. There are various technical, economical, legal and even social 

reasons for that. In this paper we outline a suggested pragmatic and scalable approach to tackle 

critical technical problems related to model-based data integration in cooperative work. These 

problems are shortly outlined below. Throughout the discussions we use the terms data model 

(i.e. the schema according to which individual models can be created and described) and model 

(i.e. the data abstraction representing an actual facility, such as ‘the house of John Doe’) as 

defined in (Björk 1995). 

1.1 The Heterogeneity Problem in Collaborative Work 
The design of a building is a complex process that inevitably results in job specialisation and a 

certain simplification of real world problems. With regard to collaborative work this means to 

deal with heterogeneity in many areas involving different company profiles, different actors and 

roles, kinds of tasks, applications used etc. In view of data sharing, heavy abstractions of the 

planned ‘one-off’ facility are needed to allow efficient design (Turk 2001). Typically, each 

design tool uses a specific data model that is often different even for applications of the same 

domain. In fact, in design all domain and application models are conceptually interlinked by a 

continuously changing virtual (i.e. not yet existing) building, whereas one complete model 

which merges all needed views on the data does not exist. Moreover, the used models are not 

disjoint but contain partially the same pieces of technical information, represented redundantly 

and in different ways. 

We have to accept that design professionals need different models and that applications will 

continue to define and maintain their own views on the building data. Consequently, achieve-

ment of data integration requires sophisticated model mappings, which in turn may produce 

additional data conflicts or even data loss. 
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1.2 The Problem of How to Achieve Consistent Data Sharing 
The concept of data sharing is usually associated with the vision of consistent, up-to-date and 

complete design data. According to that, all design professionals should have access to a shared 

data repository to integrate their (partial) design solutions. Added or updated building data should 

be checked for consistency by using a set of design rules to resolve possible design conflicts. 

Clearly, this level of integration is a desirable goal. It has been achieved by a number of 

software architectures based on a closed, dedicated modelling world or on sophisticated data 

integration services used upon a limited set of design tools (Eastman 1999). Typically such 

architectures require well harmonised applications capable to process agreed data models. Users 

have to accept the agreed environment and to adjust their work to it. Inclusion of ‘foreign’ 

legacy applications is hardly possible if this was not planned in advance. In short they work 

only for a limited, clearly defined scope. Scaling up to the full set of practical use cases in 

computer-integrated construction (CIC) is unlikely to be achieved due to the extreme increase of 

complexity with regard to modelling representations, model mappings and consistency (Amor 

and Faraj 2001). There is a need of open, scalable solutions agreed in consensus but this is not 

easy to achieve in the highly fragmented landscape of the construction industry. 

We have to recognise that the road towards comprehensive life cycle data sharing will include a 

number of incremental steps seeking to find the optimal balance between fully automated 

consistent solutions for limited subsets of the design data and adequate interactive functions to 

fill in the gaps. Consequently, a concept allowing to mitigate hard demands associated with the 

problems of data sharing is required. 

1.3 Problems Related to Standardisation 
Standardisation is commonly accepted as a basis for improving cooperation. It is necessary in 

various areas related to data integration, such as data modelling, communication protocols, data 

exchange formats, data access APIs and so on. Major results are already available in all these 

areas but there does not yet exist a stable set of well-defined standards for CIC. Instead, there 

are many competing standards available and most are still under development, with constant 

updates happening in short periods of time. All this impedes their broad use in practice. 

Specifically for data modelling there exists a rich family of standards known as ISO STEP, but 

due to its complexity STEP is used to a very limited extent in AEC. However, it provides a 

baseline for agreements of many industry-specific data models such as the internationally 

coordinated Industry Foundation Classes (IFC) and various domain-related developments as e.g. 

CIS/2 and the German PSS (for steel construction), OKSTRA (for road works) etc. All these 

models use the EXPRESS modelling language and are therefore based on the same modelling 

paradigm and data exchange technologies. Their scope ranges from domain-specific data 

exchange to full life cycle management of AEC projects. The latter is specifically addressed by 

the IFC project model which applies a layered architecture to enable integration of different 

design domains. However, in order to fulfil its designated scope IFC defines only the most 

important data needed for inter-discipline cooperation. It is a light-weight, incomplete data 

model whose primary purpose is in providing reusable concepts for various domain extensions 

to help harmonise the data structures and reduce redundancies and overlaps. 

Currently, the IFC project model is supported by a large number of applications but they are all 

limited to file based data exchange and cannot be used very efficiently for collaborative work. 

The existing shortcomings are mainly due to the broad scope and the large amount of alternative 

options in IFC, the limitations of file-based data exchange and incomplete IFC conformance. 

We have to recognise that standards enabling collaborative work have not yet fully penetrated 

design and construction practice. File-based data exchange of (partially) standardised model 

data is the current, quite insufficient common denominator with regard to data sharing. IFC pro-

vides a good basis for true database transactions but respective services are yet to be developed. 
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1.4 Database Problems 
Already in the mid 1980s it was recognised that many of the problems experienced by CAD, 

CIM and CIC are in fact database problems (Robinson 1988). However, whilst research in 

database theory and artificial intelligence has brought about various new powerful methods to 

ensure data consistency, achieve multi-database integration and map data from one schema into 

another, progress in engineering data bases has not been so strong. Basically, this is due to the 

difficulties related to the support of long transactions. There exist many partial methods to 

support consistency, tackle various kinds of data conflicts, optimise check-out/check-in 

sequences etc., but a complete solution to this problem is not available yet (cf. Conrad 1997). 

However, we need to accept that engineering work requires long transactions and, even worse, 

such transactions can (and should) happen concurrently. Consequently, the goal is to provide 

pragmatic methods which may not guarantee full consistency but should support the users to 

regain consistent model states. 

In the following sections we describe a suggested new approach to tackle the above and other 

related problems. It is based on the conviction that full integration and consistency of the 

evolving design data are not needed continuously but only at specific coordination points, 

reasonably selected by the design team. We do not try to create a closed ideal world but provide 

an open solution which would allow to reduce data loss, improve data sharing quality and reach 

a ‘reasonable’ degree of consistency. 

2 A Suggested Scalable Approach for Improving Data Integration 
We propose an approach based on a set of inter-related services to support integrated data 

sharing in cooperative work environments. It does not promise a perfect environment providing 

faultless data integrity. The strategy is to mitigate the requirements to the involved engineering 

applications, reduce data loss caused by data mapping and other data conflicts, and at the same 

time take into account practical deficiencies in current data models and their software imple-

mentations. The suggested process is based on long transactions allowing off-line modifications 

and, in order to support parallel work, involving versioning and merging of concurrently 

changed data. Specifically considered are problems related to the use of a (potentially unlimited) 

number of legacy applications which are typically constrained by file based data exchange and 

their internally used data structures. Using legacy applications often results in unknown data 

changes and data loss, which are both very critical for collaborative work. 

The suggested services comprise: (1) extraction of model subsets that are of interest for a 

specific design task, (2) mapping of the model data to tackle different modelling rep-

resentations, (3) matching of two successive model versions to help recognise properly the latest 

modified data and (4) merging of concurrently made data changes. We assume a common 

modelling paradigm and a commonly agreed (standardised) data model to represent the data to 

be shared. Taking into account current practices and trends, the developed services are based on 

the broadly acknowledged EXPRESS modelling language and can thus be verified and used 

with the IFC project model and the legacy applications supporting IFC-based data exchange. 

For all developed methods version management plays an important role. However, due to the 

size limitations of the paper it will not be separately discussed. 

2.1 Principal Application Scenario 
Whilst there are many different use cases where the developed services can be applied, it can be 

shown that they can all be derived from the principal scenario shown on Figure 1 below. It starts 

at time point ti with the consistent shared model version Mi based on the product data model M 

defining the data that have to be shared and proceeds until the next coordination point ti+c is 

reached. 
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The data processing sequence for a single designer is comprised of the following six steps: 

1) model subset definition and subsequent extraction of the needed model data from Mi to a 

model subset Msi , which can be expressed as  Msi = createSubset (Mi , subsetDef (Mi)) 

2) mapping of the model subset Msi to the domain model Si which represents an instantiation 

of the domain data model S, i.e.  Si = map (Msi , mappingDef (M, S)) 

3) modification of Si to Si+1 by the user via some legacy application that can be expressed 

abstractly as  Si+1 = userModify (Si , useApplication (A , Si) 

4) backward mapping of Si+1 to Msi+1 , i.e. Msi+1 = map (Si+1, mappingDef (S , M)) 

5) model matching of Msi and Msi+1 including object identification, comparison and evaluation 

resulting in the found differences ∆Ms i+1,i , i.e. ∆Ms i+1,i = match (Msi , Msi+1) 

6) reintegration of ∆Ms i+1,i in Mi resulting in Mi+1 , i.e. Mi+1 = reintegrate (Mi , ∆Ms i+1,i). 

The final consistent model Mi+1 can then be merged with the divergent design data of the other 

designers (modified in parallel using the same procedure) at the coordination time point ti+c to 

obtain a new stable model state Mi+c, i.e. Mi+c = merge (Mi+1 , Mi+2 , … , Mi+k), assuming that  

k = the number of concurrently changed checked out models. 
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Figure 1:  Principal application scenario for using the suggested generic services 

In addition, the former state of the domain data model S at time ti-1 is used to fill in data that 

cannot be represented in M and hence will get lost by the mapping from Si-1 to Msi-1 and hence 

in Si too. By applying model matching and reintegration for Si and Si-1 this data loss can be 

strongly reduced or even fully eliminated, avoiding time consuming and error-prone rework.  

If a standardised data model that can be processed by the involved engineering applications is 

used, as e.g. IFC, then the model mapping shown in Figure 1 will not be necessary. Similarly, if 

all common data from Mi can be processed by the used application(s), subset creation can be 

skipped. Matching, reintegration and merging will always be needed to provide for concurrent 

work. Problems arising from the used applications may vary from misinterpreted object struc-

tures to data loss. Such problems can be tackled to a certain extent by additional correction of 

the data achieved by applying a dedicated model subset extraction reducing the resultant data set 

to semantically changed data and a subsequent adjusting model mapping. 

Legacy applications supporting file-based data exchange can be integrated in the shown 

scenario without any re-engineering via an additional client application providing the suggested 

model management services, adapted to the shared data model used. 

2.2 Tackling the Evolution of Building Model Data 
Modelling objects are not static but evolve continuously during the design process, absorbing 

newly defined properties but also changing existing ones. Reasons for that are: 

� Technical changes (selection of another design alternative), 

� Changes through further detailing causing modifications in the data structures, and 

� Changes through mappings. 
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Whilst the first two of these are fairly obvious, the last needs some more explanation. Indeed, 

model mapping is necessary to deal with different model representations but, like translating a 

sentence into another language where a backward translation most often results in a different 

sentence, it may cause changes of the data structure without semantic reasons. Such changes can 

be very subtle and therefore extremely difficult to detect. 

Attempting to tackle the problems related to model data evolution by providing unique object 

identifiers and a version history for each object only helps in simpler situations where deeper 

referencing among the objects is not involved. Besides, in all practical data models identifiers 

are provided only for primary (design) objects whereas resource objects such as point, line, date, 

time, unit etc. are not assigned identifiers in order to reduce as much as possible the overall 

huge data volume and to simplify processing of the model data by the applications.  

Therefore, more sophisticated methods are needed to deal with all changes that may occur by 

model data evolution. The suggested model matching method discussed further below provides 

an incomplete solution but it yields results that are much closer to the ideal case than currently 

used practical approaches. 

3 Generic Services for the Support of the Evolving Model Data in 

Cooperative Work 

3.1 Model Subset Extraction 
The advantages of using model subsets are manifold. They can provide support to domain 

applications that are not capable to ‘understand’ the full shared global model, but they can also 

considerably reduce the quantity of the exchanged data, provide well-defined or even 

standardised domain views and simplify the data consistency and coordination problems. To be 

used in the envisaged scenario, a model subset should be (1) easily definable with as few as 

possible statements, (2) completely described within a single service request and (3) usable for 

reintegration of changed data by allowing elimination of mismanaged data sets. To meet these 

requirements a Generalised Model Subset Definition schema (GMSD) has been developed. It is 

a neutral definition format for EXPRESS-based models comprised of two subparts which are 

almost independent of each other with regard to data but are strongly inter-related in the overall 

process. These two parts are: (1) object selection, and (2) view definition. As the name suggests, 

the first part is purely focused on the selection of object instances using set theory as baseline. 

The second part is intended for post-processing of the selected data in accordance with a 

specific partial model view. Such views can be completely predefined to support standard 

domain/discipline perspectives. Figure 2 below presents the top level entities of the GMSD 

schema and illustrates the envisaged method of its use in run-time model server environments. 

More details on GMSD are provided in (Weise et al. 2003). 
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Figure 2:  Top level structure of the GMSD schema and the related instance level operations 
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Figure 3 shows some possible uses of the GMSD schema. The first createSubset(
 
) operation 

generates the model subset Msi which is then modified by some legacy application to Msi+1 . 

However, in the case of using a STEP physical file mandatory attributes have to be written to 

Msi even if not defined by the model subset request. This results in superfluous and often 

mismanaged information. Removing such attributes can be achieved by applying the same 

createSubset(
 
) operation to Msi+1 too. The model subset can be further advantageously reduced 

by removing untouched data. For that purpose, a new subset extraction has to be specified and 

applied to both Msi and Msi+1* so that the resulting model subsets Msi' and Msi+1' are processible 

by the following model matching service. 

Mi
createSubset (1)

Msi Msi+1

Msi' Msi+1'

Msi+1*

userModify

createSubset (1)

createSubset (2)

createSubset (2)

match
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createSubset (1)

Msi Msi+1

Msi' Msi+1'

Msi+1*

userModify

createSubset (1)

createSubset (2)

createSubset (2)

match

 

Figure 3:  Applying model subset extraction to remove unchanged data before matching 

3.2 Model Mapping 
In principle, model mapping involves a procedure that is very similar to mutlidatabase inte-

gration known from the area of database research (Spaccapietra and Parent 1994). It consists of 

the following steps: (1) Detection of schema overlaps, (2) Detection of inter-schema conflicts,  

(3) Definition of the inter-schema correspondences with the help of formal mapping speci-

fications, and (4) Use of appropriate mapping methods for the actual transformations on entity 

instance level at run-time. 

The identification of typical mapping patterns allows to understand better the mapping task and 

to formalise what and how has to be mapped in each particular case. Specifically, by examining 

the theoretical background of object-oriented modelling as well as a number of practical cases, 

the following set of mapping patterns can be identified: 

� Unconditional class level mapping patterns:  These patterns depict the most general high-level 

mappings that affect all instances of the involved source and target classes. 

� Conditional instance level mapping patterns:  In contrast to the general definition of mappings 

on class level, instance level mappings may include certain conditions to select the set of ins-

tances to be mapped from the full set of available instances in the source model, or – in the 

case of multiple cardinality – from the cross product of all referenced sets of instances. 

� Attribute level mapping patterns:  These patterns depict how an attribute with a given data 

type should be mapped. However, in object-oriented models the data type of an attribute can 

be quite complex. Consequently, there are many different patterns that have to be considered, 

in many cases they can even govern the actual resulting cardinality of the mapping on entity 

level. 

Attribute mapping patterns are further subdivided into: (1) basic attribute mapping patterns,  

(2) complex attribute mapping patterns, and (3) generative attribute mapping patterns. For each 

of these categories, several sub-cases have been identified, such as "simple equivalence", "set 

equivalence", "functional equivalence" for the first category; "grouping", "ungrouping", 

"homomorphic mapping", "transitive mapping", "inverse transitive mapping" for the second 

category; "simple generative", "functional generative"  for the third category, and so on. 

Figure 4 provides the formalism used to present these patterns graphically, along with 

respective typical examples. 
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�  Class level mappings  
S and T (eventually with a subscript) are used to denote the 
source and the target class respectively. The ovals show the 
domains of the classes, the grey arrow shows the direction of 
the mapping. The given example depicts a 1:1 mapping S → T. 

�  Conditional entity instance level mappings  
In addition to the above symbols, here the black dots represent 
the instances being mapped, and the white dots represent the 
instances that are discarded from the mapping as a result of an 
applied condition. The particular mapping equivalences are 
shown with black arrows. The given example refines the above 
1:1 class mapping. 

�  Attribute level mapping patterns  
For these patterns, a few more graphical symbols are intro-
duced. To save space, the class mapping (S → T) is indicated 
merely with an  arrow. The domains of the attributes (Da) are 
shown as free-form areas, and the attribute values are shown 
either with dots (for single values), or with a darker area 
contained in the domain (for lists or sets). As above, the 
addressed mapping equivalences are indicated with black 
arrows. The thick white arrows denote the attribute’s desig-
nation to a given class (S, T); pointer references to other 
objects within a model are shown with dotted arrows. The first 
given example depicts a 1:1 set equivalence. The second ex-
ample shows a homomorphic mapping, This is a complex equi-
valence, involving two pairs of mappings due to the references 
from aS and aT to the resp. object instances [R1,...,RN] and U. 

Figure 4:  Graphical symbols used for the presentation of mapping patterns with illustrative pattern examples 

As a whole 29 different mapping patterns have been defined in (Katranuschkov 2001). Some of 

these are relatively simple to implement but there are also several patterns that require quite 

sophisticated implementation methods. However, for the specific mapping cases regarding the 

IFC model only some of these patterns are really needed. IFC defines several pragmatic 

requirements restricting the use of EXPRESS modelling concepts which simplifies considerably 

the mapping task. More details on the specification of mappings and the respective mapping 

operations are provided in (Katranuschkov 2001) and in (Wagner and Scherer 2002). 

3.3 Model Matching 
Model matching has to deal with the identification of data changes and reintegration of the used 

model subsets into the shareable set of design data. In our approach it exploits the object 

structure without considering its semantic meaning and hence can be applied to different data 

models. However, the efficiency of this generic realisation of the mapping operation is 

dependent on the (structural) model definitions. In general we have to consider that (1) not all 

objects can be uniquely identified by a kind of a key value, (2) a structural difference in the data 

does not always imply a change in their semantic meaning, (3) eventual data loss caused by 

model mapping may emerge on object and attribute level and (4) errors from the used app-

lication may result in replacement of valid data (such as wrongly replaced IDs, replacements by 

default values etc.). As indicated in the previous sections, the problems (2), (3) and (4) are to be 

tackled by the model subset definition and adjusting model mappings. Thus, the suggested 

model matching method has to deal basically with the problems of object identification and 

reintegration of the changed data. 

3.3.1 Comparison of model data 

Comparison of the model data begins with the identification of pairs of potentially matching 

objects, established by using their unique identifiers or some other key value. Unfortunately, as 

mentioned before, such identifier are not available for all objects. Several approaches dealing 

with this problem are known. In object-oriented databases the so called deep compare method is 

used to compare two objects and all of their references. The latter can be quite useful for model 



Page 8 of 12 

matching because comparisons can first be done for uniquely identifiable objects, leading – 

iteratively – to the remaining, non identifiable objects. However, in the case where referenced 

objects can not be uniquely identified a costly value-based evaluation of possible object pairs is 

necessary. Normally, an object tree created by tracking all references of an object will be 

countable but tends to become huge by more sophisticated product data models. Additionally, 

we have to be aware that unidentifiable objects may be shared, i.e. referenced by different 

identifiable objects. The general complexity of the problem is shown in (Spinner 1989) where a 

fully generic tree-matching algorithm is classified as NP-complete. Hanff et al. (1997) have ana-

lysed a variation of the deep compare method adapted to EXPRESS-based model data and 

applied to STEP AP 201. They have also outlined the problem of missing identifiers and 

conclude that unique identifiers are needed for all data objects to guarantee faultless matching. 

In the theory of tree to tree correction the minimal modification costs are used as criteria to 

decide the question of matching trees. For this purpose polynomial scaling algorithms are 

suggested (Schroeder 1994). Closely related to model matching is also the problem of detecting 

objects with the same meaning, contained in different data bases using (slightly) different 

representations (Neiling 2004). However, all these methods are only of limited use here because 

they are too ineffective or even not manageable in reasonable time for the given complexity of 

the matching problem we have to deal with. 

Therefore we suggest an algorithm that provides a simpler scalable way for finding cor-

responding data objects. Its essence is in the iterative generation of object pairs by evaluation of 

equivalent references of already validated object pairs. The first set of valid object pairs is built 

by unambiguously definable object pairs. Any newly found object pair will then be validated in 

one of the following cycles depending on its weighting factor derived from the type of the 

reference responsible for its creation. Attribute values will only be used if ambiguities of 

aggregated references do not allow the generation of new object pairs. In order to avoid a costly 

evaluation of attribute values a hashcode is used, indicating identical references. In this way, the 

pairwise comparison of objects can be significantly reduced in respect to all other approaches. 

Figure 5 illustrates the outlined procedure. Before starting any comparison of objects the set VP 

of validated object pairs and the set UO of unidentifiable objects will be initially created using 

available unique identifiers. After creation of VP and UO the object pairs of VP will be 

compared as  shown on the right side of Figure 5 for {A1, A2}. Using their equivalent references 

‘has_material’ a new object pair can be assumed for the objects E1 and G2 of UO. Additionally, 

a weighting factor indicating the validity of this assumption will be derived from the reference 

type of ‘has_material’ and added to the newly created object pair, which is then placed in the set 

AP containing all such assumed object pairs. 

 

Figure 5:  Iterative establishment of object pairs 

Within this approach reference types are differentiated in (1) simple references, (2) ordered 

aggregated references and (3) unordered aggregated references. After comparison of all object 
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pairs of VP the highest weighted object pairs of AP will be moved from AP (and UO) to VP and 

a new iteration cycle will be started. However, now the weighting factors of newly created 

object pairs will be combined with the weighting factors of the validated object pairs. 

It can be shown that the cycle will always terminate at most after n-1 steps, where n is the total 

number of objects and the process starts with only one valid pair. However, a terminated pro-

cess may results in a non empty set UO. In that case a strategy similar to the assignment of 

unordered aggregated references can be applied to find further pairs of objects. 

The described algorithm is heavily dependent on the evaluation of object references 

differentiated in the three mentioned reference types, as shown in Figure 6 below. The simple 

reference allows a well-defined creation of object pairs and hence is assigned the highest 

weighting factor. More interesting is the handling of ordered and unordered aggregated 

references as they include multiple combinations of object pairs. The order of references allows 

an assignment by position, if both aggregations are of the same size, or by the best matching 

sequence identified by using the hashcodes of the referenced objects. Such hashcodes are used 

also for the assignment of unordered aggregated references. However, as there are also some 

other criteria helping to create object pairs, such as multiple occurrence (of objects) and single 

non matching objects in both aggregations, the procedure is mainly limited to relate unchanged 

objects. 

Type of reference Object A1 Object A2 Object pairs 

Simple reference  

„has_material“ 

{hc342} {hc923} {hc342, hc923}  

Ordered aggregated  

reference  „vertex“ 

{{1, hc23}, {2, hc12}, 

 {3, hc56}} 

{{1, hc09}, {2, hc23},  

 {3, hc10}, {4, hc56}} 

{hc23, hc23}, 

{hc12, hc10}, 

{hc56, hc56} 

 

Unordered aggregated  

reference 

„neighbour_of“ 

{hc71, hc45, hc89} {hc45, hc74, hc91,  

  hc71} 

{hc71, hc71} 

{hc45, hc45} 

 

 

Figure 6:  Reference types and their relevance for the derivation of object pairs  (hc = hashcode) 

As shown, hashcodes are used for the decision of matching / non-matching objects if a well-

defined assignment is not possible. The hashcode of an object is represented by an integer value 

and is calculated from the object state. Equal hashcodes are a strong indication for equal objects. 

The major benefit compared to other approaches is the avoidance of a costly pairwise attribute 

evaluation. However, when dealing with all references of an object, the calculation of hashcodes 

can also be quite time consuming. Therefore, a differentiation is made between a qualified hash-

code, including the complete set of information, and a simple hashcode, constructed by ignoring 

the hashcodes of referenced objects. 

3.3.2 Re-integration of changed model subsets 

If model subsets are used, as shown in the discussed general scenario in section 2.1, the re-

integration of changed data becomes necessary. As discussed in section 3.1 model subset 

extraction creates a model subset by removing data objects, cutting or reducing references, 

filtering attributes etc. Reintegration means to invert the process of model subset extraction, i.e. 

to add removed data objects, restore cut or reduced references and re-create filtered out 

attributes. It is heavily based on the model subset definition achieved via GMSD and on the 

results of the model comparison. Most critical for the reintegration process are wrongly 

established object pairs and rearrangements of the object structure without changes of the 

semantic meaning, such as changed units or coordinate systems. 

Figure 7 below illustrates the process of using model subsets. By applying a GMSD-based 

createSubset(
 
) operation to a given model version some objects and attributes will be removed. 
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For object O1 this results in a new version OS1 in which the simple reference ‘a’ is removed and 

the aggregated reference ‘b’ is downsized by one element. This object is then modified 

externally by some application to OS2 which differs from OS1 in the aggregated reference ‘b’ , 

downsized by another element, and the simple references ‘c’ and ‘d’. The reintegration (which 

is the second part of the shown match(
 
) operation) adds all objects and attributes from O1 that 

have been removed according to the model subset definition. In this particular case, this will 

recreate the cut/downsized references ‘a’ and ‘b’. However, it will take care not to add 

objects/attributes that have been modified by the used application. 
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Figure 7:  Reintegration of model subsets 

The described reintegration scenario is limited to object pairs in 1:1 relationships. Other cases, 

such as n:m relationships or change of object types lead to more complex situations and may 

require some additional user interactions. Here it must also be noted that even in the restricted 

reintegration scenario shown above full consistency of the data cannot be guaranteed. For that 

purpose additional constraint definitions that can help to detect semantic conflicts are needed. 

However, in current practical data model specifications such definitions are mostly limited to 

simple rules providing restrictions of cardinality, uniqueness of values and so on. Therefore the 

degree of data consistency must finally be evaluated by the designers during the coordinating 

merging process discussed in the next section. 

3.4 Merging of Divergent Model Data 
Merging has to deal with the consistency of concurrently changed design data that exist in two 

or more divergent versions. It should be performed at a coordination point defined by the design 

team and has to be performed in cooperation of all involved designers. The aim is to provide a 

procedure by which modifications can be reconciled and appropriately adjusted to a consistent 

new model state marking the begin of a new stage of the concurrent design process. Figure 8 

below illustrates the suggested concept of using available prior knowledge to enable efficient 

management of the iterative agreement process. 

M i M (i+1).A

Actor T 

Actor A 

Actor S 

M (i+1).S

M i+2

Reconciliation 
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b/n A , S and T

Modify data by
executing design task

M i M (i+1).A

Actor T 

Actor A 

Actor S 

M (i+1).S

M i+2

Reconciliation 
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b/n A , S and T

Modify data by
executing design task

 

Figure 8:  Principal schema for merging of concurrently changed design data 
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In the shown schema, the history of already finished transactions involving discipline-specific 

model subsets and respective data modifications plays a role of utmost importance. Specifically, 

in the example of Figure 8, both directly involved designers, named A and S, will have to agree 

to a conjointly accepted new model version M i+2 . However, these changes may often affect data 

used by other designers. For instance, a new object created by designer A can be also in the 

domain of designer T who must therefore be involved in the agreement process as well. 

In principle, the merging operation is highly interactive as it requires active negotiations and 

approvals. However, the results of preceding matchings, identifying made modifications, and the 

change history of the model data can enable automated suggestions and consistent integration of 

approved changes. Here storing of model deltas and logging of the data used in each planning step 

can be helpful. This is on-going work which does not yet allow to draw detailed conclusions. 

4 Discussion 
In the preceding sections we outlined a novel approach enabling the tackling of evolving, con-

currently changed design data in AEC. The developed schemas and methods constituting the 

suggested approach provide an overall framework allowing to solve many existing data inte-

gration problems in distributed cooperative work environments. However, there are also many 

open issues yet to be considered. The current implementation of the approach and performed 

test studies provided a basis to draw first observations and to identify further development steps. 

The prototype software environment was realised in Java, using TCP/IP-based client/server 

interactions. The integration of a set of legacy applications with the developed model server 

implementing the described data integration services was done with the help of a model-

independent client enabling the check-in/check-out of model data. Additionally, for the exe-

cution of practice relevant queries, a light-weight editor for view and mapping definitions and 

for model browsing was developed. 

Specific tests of the developed services have been carried out for the IFC project model (ver-

sions 1.5.1, 2x and 2x2) and for the German PSS model. Creation, modification, reading and 

writing of IFC data was tested for the CAD applications Allplan (Nemetschek), ADT (Auto-

desk) with the IFC plug-in of Inopso, ArchiCAD (Graphisoft) and DDS. The goal of these tests 

was (1) to examine the degree to which changed/unchanged objects are correctly identified, and 

(2) to measure the performance of the developed algorithms. 

The tests showed that: (1) at most 5% of the objects in an IFC 2x model are directly identifiable, 

(2) in most cases matching object pairs can be correctly established, and (3) the performance is 

approximately linearly dependent on the model size and seems adequate for practical needs. 

However, complete identification of all object pairs could only be reached by analysing all types 

of references described in section 3.3.1 above, whereby the performance of the algorithm 

appeared to be strongly related to the number of qualified hashcodes that need to be computed. 

Deliberately made changes could be recognised with varying success. The decisive factor here 

was the (re)integration of the changed objects in the existing object structure. Objects that could 

not be properly recognised as ‘changed’ were classified as ‘new’ thereby leading, cascadingly, 

to the same decision for objects referentially dependent on them. However, for the IFC data 

structure propagation of this effect seems to remain always on a limited scale. 

Results for the PSS data model were better, due to its narrower scope and less complex struc-

ture. For example, in the studied test cases nearly 30% of all objects were directly identifiable. 

Overall, the performed studies showed that the developed approach can be successfully applied 

to IFC. Whilst due to the different quality of processing of the IFC data by the examined appli-

cations, a satisfactorily stable procedure cannot yet be warranted for practical purposes, it is 

hoped that the ongoing harmonisation within IFC coupled with the suggested data integration 
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services can provide a level of automation enabling a better cooperative work process even 

without (the expected) further improvement of the engineering applications supporting IFC. 

Further refinement of the methodology will identify the degree to which this can be achieved. 
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