
Interactive distributed knowledge support for
conceptual building design

B.Kraft, N.Wilhelms, RWTH Aachen University
{kraft|nilsw}@i3.informatik.rwth-aachen.de

Summary
In our project, we develop new tools for the conceptual design phase. During conceptual design,
the coarse functionality and organization of a building is more important than a detailed worked
out construction. We identify two roles, first the knowledge engineer who is responsible for
knowledge definition and maintenance; second the architect who elaborates the conceptual de-
sign. The tool for the knowledge engineer is based on graph technology, it is specified using
PROGRES and the UPGRADE framework. The tools for the architect are integrated to the in-
dustrial CAD tool ArchiCAD. Consistency between knowledge and conceptual design is en-
sured by the constraint checker, another extension to ArchiCAD.

1 Introduction
Designing buildings is a difficult task. On the one hand, the architect has to do a creative and ar-
tistic work, as the future building should be interesting and attractive. On the other hand, he has
to observe a lot of legal, economical, and design-technical restrictions. Moreover, the pure func-
tionality of a building, so the correct arrangement of rooms, their equipment, and meaningful re-
lations between them, have to be guaranteed.

Whereas industrial CAD tools assist the architect during constructive design, the creative and
imprecise early design phase, the conceptual design, is not supported. In consequence, the archi-
tect has to store all conceptual information in an informal way using simple text, hand-
drawings, or just his mind. All restrictions stored in different books, web pages, or just archi-
tect’s experiences from former building projects have to be regarded in the informal sketch of
the future building. Afterwards, the informal conceptual sketch has to be transferred into the
constructive design, therefore it has to be manually inserted into a CAD tool. Although CAD
tools are powerful and allow comfortable and detailed editing of a sketch, they do not have the
capability to store conceptual information, e.g. why rooms are neighbored, or why they are ad-
justed to the south. This valuable information gets lost, even though it is fundamental for the
later design phases.

In the early phase, the specific design of a future building is less important, than the complete
and precise information management. To understand the requirements and restrictions of a
building project, to discuss them with the investor, and finally to fix this information in an ade-
quate semi-formal notation are the main tasks of this phase. Based on this information, the func-
tionality and structural organization of a building can be elaborated. Functional areas are identi-
fied and related to each other, room types are defined and linked. The result is a draft of the
building in an abstract form. We call this first phase the conceptual design. As dimensions and
positions of rooms are less important for the conceptual design, this information is not repre-
sented. Actually there exists no adequate industrial tool support for this phase. The complete
and precise definition of requirements and restrictions are crucial for the correctness of the fu-
ture building. Misunderstandings and missing information lead to design errors that are propa-
gated to all following design phases. As errors made in early design phases are later difficult
and expensive to repair, the correctness of the conceptual design phase is essential for the suc-
cess of a building project.

Page 1 of 14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Using Graphs for Conceptual Design Support
Graphs are a powerful and flexible data structure to model problems from different application
domains. We develop graph based support for the domain of architectural engineering,
especially for the conceptual design (Kraft and Nagl 2003; Kraft, Meyer et al. 2002).
Developing a graph structure means identifying node types to represent important entities, and
to define edge types to express relations between them.

Currently, CAD tools just provide constructive design elements, e. g. walls that are not capable
to express relevant conceptual information. Therefore we introduce new design elements, which
are more intuitive to use and capable to store conceptual information. Such elements are rooms
and areas. Rooms are in our scenario the most important entities, as each building basically
consists of rooms. Areas describe an aggregation of several rooms. Both are represented by the
node class semantic object. To further describe properties of these entities, we provide a node
class attribute, which is assigned to semantic objects. The node class relation allows defining
interrelationships between semantic objects. In chapter 3 the graph schema is described in
detail.

We use the graph rewriting system PROGRES to specify and execute graph transformations.
PROGRES (PROgrammed Graph REwriting Systems) is a very high level, operational specifi-
cation programming language for rapid prototyping (Schürr 1991). In our architecture engineer-
ing project we use graph technology for two purposes. First, we provide methods to edit the
graph, to build and modify a visual data structure for knowledge definition. Furthermore, we use
graph transformations to check the sketch and to inform the architect in case of inconsistencies.
We search for inconsistent sub graphs and create error messages if such an inconsistency is
found. The error messages, of course, are also represented by a graph node.

Currently, CAD tools allow modeling sketches and give a broad support for the construction,
but the concept of a building cannot be modeled. Moreover, there exists no tool support to ana-
lyze the sketch and to check it against legal, economical, or technical restrictions.

In our idea, conceptual design support therefore consists of two main parts. First, the domain
specific knowledge has to be formalized for each class of buildings by a knowledge engineer.
We suppose that the knowledge engineer is usually an experienced architect, without any
programming capabilities. Therefore, we develop a visual language for knowledge definition,
and a graph based application implementing this language. Second, existing CAD tools are
extended to allow architects to design in a conceptual way. These extensions are easy to use and
promote the architect’s creativity. Both parts are integrated, so that the architect’s sketch can be
checked against the defined knowledge.

DomainModelGraph Editor
Conceptual Desing in ArchiCAD

Consitency
Analyses

Visual Knowledge Definition
Functional Organization
of the Building Sketch

Figure 1: Complete Scenario

Page 2 of 14

Figure 1 depicts the complete scenario of our project . The Domain Knowledge Graph Editor,
on the left side, provides functionality to define conceptual knowledge. The editor is developed
using graph technology. Based on a fixed graph schema, it allows to dynamically define seman-
tic objects in a knowledge model, and to formalize rules, specific for a class of buildings. Our
goal is to give the knowledge engineer a tool for visual knowledge definition, which he can use
without having any programming experience. The Domain Knowledge Graph Editor represents
knowledge in a formal, but human readable and easy to understand form.

To support the conceptual building design, in Figure 1 depicted on the right side, we extend the
CAD tool ArchiCAD with new functionality (Kraft 2003). Our main extensions to ArchiCAD
are roomobjects. These new design elements represent a room’s functionality. Using roomob-
jects, the architect can explicitly design the conceptual and functional organization of a build-
ing. Roomobjects support a more intuitive workflow; conceptual information, which usually
gets lost, is preserved in the sketch.

Based on the formalization of knowledge and design, the sketch can be checked. Currently we
export the knowledge elaborated with the Domain Knowledge Graph Editor into a textual file
using the Resource Description Framework (RDF) (Powers 2003). The RDF file is interpreted
by the constraint checker in ArchiCAD. It checks the architect’s sketch and informs him in case
of restriction violations. The correction is not done automatically. The architect is free to fix the
error or to keep in an inconsistent state. Thus the creativity and design freedom are not re-
stricted.

In the following two chapters, we will first describe the tool for knowledge definition and its
system design. Then, our ArchiCAD extensions and the consistency analysis are explained. At
the end of chapter 4 we present a way to reach control integration between both parts in a dis-
tributed scenario.

3 Visual Knowledge Definition for Conceptual Design
In our approach, we follow a visual, graph-based knowledge representation similar to the se-
mantic web. The main advantage of this approach is the clarity for humans and processibility
for computers. We use the PROGRES system to specify a graph schema and graph transforma-
tions that allow dynamically developing a knowledge model, representing the relevant entities
for a specific class of buildings. These entities constitute the basis for actual knowledge defini-
tion, e.g. legal, economical, or technical restrictions. Finally, we develop a graphical user inter-
face, optimized for a clear arrangement and intuitive definition of the knowledge.

The benefits of this formalization process are on the one hand the preservation of knowledge,
this is especially essential for experience values which are usually not explicitly stored. The
most important benefit comes on the other hand with graph-based consistency analyses that
check the architect’s sketch against the formalized knowledge. Thus, design errors are identified
as early as possible.

3.1 Graph Schema
The graph schema for conceptual knowledge representation is depicted in the upper part of
Figure 2. The schema is fixed in the PROGRES specification; it defines the syntax and expres-
siveness of the visual language for conceptual knowledge representation. As it is specified in
PROGRES, it cannot be changed at runtime. We distinguish between three basic concepts,
namely semantic object, relation, and attribute, each represented by a PROGRES node class.
These basic concepts and their associations restrict the general data structure graph to a subclass

Page 3 of 14

specialized for knowledge definition in the domain of conceptual design. This subclass, how-
ever, is still general enough to cover knowledge definition for any class of buildings.

The node class semantic object, depicted in the middle of the graph schema, stands for the basic
elements, a building is made of. As our goal is to model conceptual design information, these
elements represent functional elements like rooms or areas, in contrast to constructive elements
like walls or columns. Two subclasses complex and atom inherit from the node class semantic
object. An atom is indivisible and describes the smallest possible entity in the knowledge defini-
tion. Several atoms can be combined to a common unit, represented by the node class complex.
They can again be combined to bigger units and so on. E. g. in a building, each floor consists of
several rooms, the building itself consists of several floors. In the graph schema, the aggregation
is represented by a contains edge from the node class complex to atom, and the node class com-
plex to itself respectively. Whereas the concept of the node class complex is usually to aggre-
gate units heterogeneously, the concept of classification models homogeneous structures. Clas-
sification is realized by the inheritance relation, represented in the graph schema as an isA edge.

The node class attribute serves to describe properties of semantic objects. As the definition of
specific properties should be possible at runtime, the graph schema only provides general data
types for a property definition. Boolean attributes e. g. can define a certain equipment to be nec-
essary or forbidden. Range attributes prescribe certain values to be inside an interval, they are
again specialized to integer and real range restrictions. Enum attributes allow defining a set of
strings.

Two semantic objects can be interrelated using the node class relation. Again, this node class
does not express a specific relation like access between two entities, but only the general, un-
specific relation. Analogously to the attribute definition, the knowledge engineer is responsible
for defining each relation and its semantics in the knowledge model at runtime. The graph

contains
contains

SemanticObjectRelation
srcCard
trgCard

Attribute

value

Complex Atom

Symmetric

Antisymmetric Transitive
RangeBool

Traffic Work

Office

Chief’s Office Secretary’s office

LaboratoryLibraryCorridor

1 0..* 1 1..2

Area Room
s_access

vicinity

view

t_access

width

sizelength

sanitary

electricity orientation

Enum

 toRel 1 1

fromRel 1 1 toAttr 1 1

Floor

isA

Real Integer

network

1..2 1

Graph Schema

Knowledge Model
Figure 2: Graph Schema and Knowledge Model

Page 4 of 14

schema allows defining forbidden and obligatory relations through cardinality restrictions. If
e. g. the direct access between the corridor and chief’s office should be forbidden, the value of
the node attributes source and target cardinality is set to zero. Any value different from zero
expresses an obligatory relation. The cardinality attributes restrict the minimal and maximal
number of connected semantic objects. The node class relation is specialized to antisymmetric,
symmetric, and transitive relations. The access relations e. g. is usually symmetric, but can also
be restricted to one direction. Moreover, the transitive access relation expresses a general acces-
sibility between semantic objects.

3.2 Knowledge Model Definition
The graph schema described in the previous section constitutes the basis for the knowledge
model definition. In contrast to the fixed graph schema, the knowledge model is elaborated
dynamically by the knowledge engineer. So, he is able to flexibly create a knowledge model
which is optimized for the building type specific needs; especially the level of abstraction is not
fixed. This kind of flexibility is essential, because each knowledge model references a specific
class of buildings. Operations on the knowledge model and consistency analyses, especially the
graph transformations, are parameterized, too, to guarantee this kind of flexibility (Kraft and
Nagl 2004).

In the lower part of Figure 2, an example model for the class of office buildings is shown. For
readability reasons the same representation for inheritance and aggregation relations is used as
in the graph schema, though the semantics is slightly different. For the same reason, the graph
schema is not represented as a UML Meta model, but in a simplified form.

Looking at the knowledge model in Figure 2, the class room instantiates the node class atom.
Therefore, it represents the basic and smallest functional element of the knowledge definition
for an office building. The class room itself is specialized into the classes work, representing
working rooms, and traffic, representing a super class for all rooms where people usually don’t
stay. The specialization of room classes gives an overview of the functional decomposition of
the future building. E. g. the corridor is a special traffic room. Analogously, the chief’s office is
an extension to a general office. Again, the level of specialization and thus the level of detail are
not restricted; it can be elaborated dynamically at runtime. Knowledge can on the one hand be
defined using the leafs of the classification tree. These rules are valid for all instances of the cor-
responding semantic objects. On the other hand, knowledge defined for super classes, e. g. for
the room class work, is valid for all inheriting classes. We further distinguish between abstract
and concrete classes. Concrete classes form the basis for conceptual building design, each build-
ing is a composition of their instances. Abstract classes cannot be used for design. In the knowl-
edge definition, however, concrete and abstract classes can be instantiated as the knowledge is
inherited by the subclasses.

The node class complex is used to model the aggregation of several entities to a common unit.
Complex classes allow defining knowledge not only about a single entity, but knowledge con-
cerning several units in a certain context. Here, the class floor allows describing knowledge
valid for the whole floor considering its internal structure. Moreover, the number of rooms of
each class on a floor can be restricted to precise the structural information of this aggregation, in
Figure 2 indicated by cardinalities at the aggregation edges.

Classification and aggregation of semantic objects determine a functional decomposition of the
main entities. To specify further properties of semantic objects, the knowledge engineer defines
attribute classes. The attribute class size e. g. determines the minimal and maximal size of a se-
mantic object as an interval of valid floating-point numbers. In the knowledge model depicted in

Page 5 of 14

Figure 2, the attribute classes electricity and sanitary are defined as Boolean. They allow speci-
fying the obligation or prohibition of the installation of the corresponding equipment.

The definition of relation classes allows specifying knowledge about interrelationships between
semantic objects. Using e. g. the s_access relation one can describe the obligation or prohibition
to have a direct, symmetric access between two semantic objects in an actual building. A con-
nection of class t_access models the transitive, indirect accessibility. Again, the high flexibility
of our knowledge model enables the knowledge engineer to dynamically elaborate relation con-
cepts at runtime, also those like vicinity that are not as obvious as access.

3.3 Conceptual Knowledge Definition
Up to here, we have described the graph schema, which restricts the general data structure graph
to the needs for knowledge modeling in civil engineering. Based on the schema, the knowledge
model definition can dynamically be elaborated. Each knowledge model is specific for one class
of buildings. The knowledge model again constitutes the basis for the conceptual knowledge
definition. The resulting set of rules records knowledge valid for all buildings of the correspond-
ing class, but not only for one actual building. Because of the consequential reusability, the ef-
fort of defining the knowledge base pays off.

According to the graph schema, we distinguish between attribute rules and relation rules. At-
tribute rules describe the restriction of attribute values for a semantic object, relation rules pre-
scribe the characteristics of the relationship between two semantic objects. Furthermore, we pre-
sent a complex relation rule using generalization, a path expression, and derived cardinalities.

Figure 3 depicts attribute rule examples for instances of the office and the corridor class. The
first attribute rule concerning the office denotes a size restriction. That means that the dimension
of each office in an actual building of the corresponding building class has to be at least 10 and
at most 14 square meters. Analogously, the width of all corridors is restricted to be inside the
specified interval of 2.2-3.0 meters. Boolean attribute rules denote the obligation or prohibition
of certain equipment to be installed. E. g., each office should have electricity installation but
none should have sanitary installation. Rules on the knowledge level concern all occurrences of
the corresponding semantic object in an actual building. The rules describe knowledge on the
type level.

:Office :size

value= 10-14 [sqm]

:Corridor :width

value= 2.2-3.0 [m]

:Office :sanitary

value= false

:Office :electricity

value= true
Figure 3: Attribute Rules

Examples for relation rules are depicted in Figure 4. The top most relation rule demands each
secretary’s office to be near by a printer room. To refine this statement, cardinality attributes of
the relation restrict the number of the connected semantic objects. The source cardinality refers
to the left hand side of the relation, the target cardinality to the right one. In this case, the secre-
tary’s office has to be near by at least one printer room. Moreover, each printer room can only
be appropriate for at most three secretaries, to restrict the expected printing amount. Analo-
gously, one secretary can serve at most two chiefs, represented by the direct access. On the
other hand, each chief’s office has direct access to exactly one secretary’s office. Thus, each
chief’s office has an indirect access to the corridor, the direct access to the corridor is not re-
quired. In Figure 4 the direct access is actually forbidden to avoid disturbances. The prohibition

Page 6 of 14

of a relation is modeled by cardinality restrictions equal to zero at both relation ends. Again, the
knowledge is defined on the type level, all rooms in the future building must fulfill all rules.

:Secretary’s office

:Chief’s Office

:Secretary’s office

:Printerroom

:s_access
srcCard = 1
trgCard = 1..2

:Chief’s Office :Corridor:s_access
srcCard = 0
trgCard = 0

:vicinity
srcCard = 1..3
trgCard = 1..*

Figure 4: Relation Rules

Figure 5 shows a more expressive relation rule. Like above, it consists of two semantic objects
connected by a relation with cardinality restrictions. The expression power of this rule grows us-
ing the inheritance hierarchy, transitivity, and a derived cardinality. The source part of the rela-
tion rule represents a semantic object on a high level in the class hierarchy. Thus, the relation
rule is valid for all inheriting classes. As the class room is even a root class of the knowledge
model in Figure 2, the depicted rule concerns all atom classes in the knowledge definition. As
the relation t_access is an instance of the node class transitive relation, the rule demands the
transitive access between any room and the exit. To ensure, that absolutely each room is transi-
tively accessible from the exit, the source cardinality of the relation is equal to the actual num-
ber of rooms in future building. The expression card dynamically calculates the number of oc-
currences of certain semantic objects. The rule is parameterized depending on the actual build-
ing sketch.

Using attribute and relation rules, only restrictions to the future building, but no design propos-
als are defined. Therefore, everything not specified is optional. If e. g. no size restriction has
been defined for a semantic object, the corresponding entity’s size in the building sketch can be
arbitrarily set by the architect. Likewise, the architect can sketch e. g. an access between two
rooms, if no relation rule exists.

:Room :t_access

srcCard = card (Room)
trgCard = 1..*

:Exit

Figure 5: Generalized, transitive Relation Rule

3.4 Tool Support for Visual Knowledge Definition
Up to here, we presented a visual language for conceptual knowledge definition. To provide a
tool support for the knowledge engineer, we develop a graph based prototype, called the Do-
main Knowledge Graph Editor depicted in Figure 6. This application serves for elaborating,
modifying, and administrating knowledge for the domain of civil engineering. To provide a
compact and clearly arranged view on the knowledge definition, instances of semantic objects
are displayed in a UML class diagram (Fowler and Scott K. 1999) similar representation. Even
if the depicted graph is rather small, it already contains over 70 design rules.

In our department we develop graph based tools using the PROGRES language (Schürr 1991)
and the UPGRADE framework (Böhlen, Schleicher et al. 2002). The PROGRES system
(Winter 2000) provides comfortable visual programming; it incrementally checks the syntax and
static semantics of the specification. Furthermore, the PROGRES system allows generating effi-

Page 7 of 14

cient C-code, which is used to produce so called UPGRADE prototypes. UPGRADE is an acro-
nym for Universal Platform for GRAph-based Development, it is a framework to develop tools
for visual languages like PROGRES. UPGRADE automatically generates an appropriate proto-
type from the given C-code which offers the user an adequate graphical interface. The user can
then work on the host graph. He can execute all PROGRES transformations to create and mod-
ify the current graph. The tool developer can adapt the appearance of the prototype to the needs
of the application domain. The prototype additionally allows defining filters, to emphasize cer-
tain node types or to hide them. The PROGRES specification for the domain knowledge graph
is described in (Kraft and Nagl 2004). The Domain Knowledge Graph Editor, depicted in Figure
6, is a result of this tool construction process.

The Domain Knowledge Graph Editor is the tool for conceptual knowledge definition. The
knowledge engineer uses it, to define conceptual knowledge specific for a class of buildings. On
the left hand side of the Domain Knowledge Graph Editor, there are three tree views, containing
the classes of the knowledge model. In the topmost tree view the room classes are presented, e.
g. the room class office. Up to now only atom classes are supported. Next to each class, an icon
is displayed symbolizing the semantics of a room. The tree view beneath contains attribute
classes, the last tree view represents relation classes. Again, each class is associated with a de-
scriptive icon.

The main part of the Domain Knowledge Graph Editor is called the graph view containing the
domain knowledge graph. In Figure 6 a basic domain knowledge graph for office buildings is
already defined. In this view, all attribute rules of one semantic object are arranged in one box.
The icons of the corresponding classes are displayed, too. Next to the name of each attribute
rule, its value and unity are displayed. E. g. the length attribute of all conference rooms should
be within the interval 500 and 1200 cm. All seven further attribute rules for the conference room
are arranged in the same box, instead of displaying each rule separately. A layout algorithm
provides this clear and compact representation.

Edges between semantic objects represent instances of a relation class. The cardinality restric-
tions of each relation are displayed at the edge’s ends. E. g. an access relation is defined be-
tween the classes corridor and office. In an actual building, each corridor must have access to an
arbitrary number (0..*) of office rooms in this building. Each office, however, must be accessi-

Figure 6: Domain Knowledge Graph Editor

Page 8 of 14

ble from exactly one (1..1) corridor. Relationships can also be forbidden: There should be no
visibility between toilets and the corridor, in the example this rule is indicated by a view edge
with the cardinality restriction (0..0).

To ensure, that the domain knowledge graph does not contain internal inconsistencies and con-
tradictions, our knowledge definition tool provides a so called internal consistency analysis.
E. g. a coexistence of an obligatory and a forbidden relation of the same class between the same
two semantic objects would be recognized by the tool; the knowledge engineer would get a
message for this inconsistency.

The knowledge defined with the aid of the Domain Knowledge Graph Editor can be used to
analyze a given sketch. In order to do so, one can export the defined knowledge. There are two
different export formats provided. The first one is based on the Graph eXchange Language
(GXL) (Winter, Kullbach et al. 2002) format, which is a generic XML file format for graphs.
This export is used for backup and restore within the tool. An eXtensible Stylesheet Language
(XSL) transformation (w3.org 2004) automatically generates a HTML documentation of the de-
fined knowledge, containing further information about the exported graph. The second export
format is based on the Resource Description Framework (RDF) (Powers 2003). An exported
RDF file can be imported into ArchiCAD and processed to analyze the architect’s sketch.

4 Conceptual Design in ArchiCAD
The knowledge definition described in the previous chapter is integrated to support conceptual
design. We extend the CAD tool ArchiCAD with new functionality in two ways. First, we give
the architect the possibility to use ArchiCAD for the conceptual design phase. Second, we pro-
vide consistency analyses that check the sketch in ArchiCAD against the defined knowledge.

In the early design phases, size and arrangement of rooms in the future building are not yet
fixed, it is even the main task to elaborate. The main construction element in ArchiCAD is the
wall, which is not applicable for this design phase. To enable the architect to design conceptu-
ally using ArchiCAD, we extend the ArchiCAD product model with roomobjects. In the two-
dimensional representation of a roomobject, the room type and actual size information are dis-
played, the three dimensional representation serves for estimating the volume. In Figure 7, four
example roomobjects are depicted. They are based on the knowledge model, described in sec-
tion 3.2. For each concrete class of the knowledge model, we generate a roomobject and make it
available to the architect. Roomobjects are based on the Geometric Description Language
(GDL) (GRAPHISOFT 2004), which is provided by GRAPHISOFT to create additional design
elements. Thus, the architect can use roomobjects in ArchiCAD in the same way he uses all
other construction elements, e. g. walls or columns. He does not need to learn a new handling.

Figure 7: Roomobject – Conceptual Design Extensions to ArchiCAD

Page 9 of 14

Figure 8 depicts an example sketch elaborated in ArchiCAD using roomobjects and roomlinks.
Roomlinks allow modeling the concept of the relations described in chapter 3. They serve for
defining relationships between roomobjects. The sketch in Figure 8 models the conceptual de-
sign of an office floor. The cutout of the floor depicts the chief’s office, with access and view to
the secretary’s office, some standard offices accessible from the corridor and a printer room.
Sketching with roomobjects and roomlinks allow a creative and flexible elaborating of alterna-
tives without being restricted by a wall structure. In a final step, the conceptual design in Ar-
chiCAD can automatically be transferred into a traditional wall construction, using the so called
wall generator.

Figure 8: Conceptual Design in ArchiCAD

4.1 Consistency Analyses
Existing CAD tools do neither provide the definition and processing of knowledge, nor to
sketch conceptually. Thus, there exists no checking of the architect’s sketch, especially during
the early design phases. In our approach, we provide both, the definition of knowledge using
graph based tools and the conceptual design by extending ArchiCAD. The already described
benefits comprise the explicit storage of rules and experiences, and the preservation of the con-
ceptual information during the early design phase. The main advantage comes with the possibil-
ity of using the knowledge to check the sketch. The formal specification of knowledge and con-
ceptual design allows defining consistency analyses.

The constraint checker, another extension to ArchiCAD, can process defined knowledge and
analyze the sketch in order to find rule violations. The constraint checker is integrated in Archi-
CAD using a programming interface (C-API 5.1), provided by GRAPHISOFT. The constraint
checker can be run at any time during the conceptual design. Error messages are displayed next
to the corresponding roomobject; they contain a description of the violation and a reference. The
architect can concentrate on the creative work as he does not need to remember all valid restric-
tions.

Currently, we support two different ways to transfer the knowledge into ArchiCAD. On the one
hand, we provide import functionality based on the RDF export file, described in section 3.4.
The file is interpreted and processed by the constraint checker. In this case the main part of the
consistency analyses is done inside of ArchiCAD. Each roomlink and each roomobject is in-
spected, room positions and size restrictions are examined. On the other hand we plan to pro-
vide distributed consistency analyses using CORBA. In this case, the consistency analyses are
done by graph based tools, which allow more powerful analyses.

4.2 Distribution Scenario
Knowledge for civil engineering is not static. Many restrictions often change or become obso-
lete, new restrictions are added, especially legal restriction are affected. Therefore, a locally in-
stalled knowledge base, like it is described above, would need to be updated frequently. We

Page 10 of 14

suppose a central knowledge server providing the latest version of the knowledge. In this sce-
nario one knowledge engineer is responsible for the maintenance, many architects can access
the knowledge server to check their sketches.

Instead of the local constraint checker, described in section 4.1, a central, graph based constraint
checker would execute the analyses. A constraint checker based on graph technology using
PROGRES allows complex graph pattern matches that offer powerful analyses for conceptual
design. It would be difficult to fully implement graph technology support in ArchiCAD. More-
over the effort implementing a complete constraint checker would be necessary for each CAD
tool. Therefore we exemplarily integrate ArchiCAD with the central consistency analysis, run-
ning in a central UPGRADE prototype. The constraint checker in ArchiCAD is then replaced by
a simple communication interface which only serves for transmitting and receiving data. We
implement a CORBA (Puder and Römer 2000) interface for both applications to establish the
communication between them using the internet. Figure 9 depicts this distribution scenario.

Using the integration of knowledge and design, each operation performed by the architect, is
transmitted to the central graph based consistency checker. For each architect connected to the
graph tool, an own shadow graph is build up a as basis for the graph based analyses. The
shadow graph, we call it the design graph, stores the architect’s sketch in an abstract graph rep-
resentation. Inconsistencies are identified in the design graph using PROGRES graph
transformations and tests. Inconsistent sub graphs are matched, a corresponding error is
transmitted to ArchiCAD where an error message is visualized.

HTTP
CORBACORBA

Analyses

Knowledge
Engineer Architects

Figure 9: Control- Integration between Knowledge and Design

5 Summary and Related Work
In this paper we introduced a knowledge support for conceptual design in civil engineering.
Based on graph technology, we described a fixed graph schema, a dynamic knowledge model,
and a possibility to define knowledge on the type level, specific for a class of buildings. We fur-
ther presented an application for knowledge definition and evaluation. To enable the architect to
design conceptually in the CAD tool ArchiCAD, we introduced roomobjects and roomlinks.
These new design elements allow elaborating a sketch in the early design phase using Archi-
CAD. Consistency between the sketch in ArchiCAD and the defined knowledge can be checked
in two ways. First, the knowledge definition can be exported to a RDF file, second, we provide
a control integration of our graph-based tools with ArchiCAD.

There are several approaches to support architects in design. Christopher Alexander describes a
way to define architectural design patterns (Alexander 1995). Although design patterns are ex-
tensively used in computer sciences, in architectural design this approach has never been for-
malized, implemented, and used. Graph rewriting has been used by (Göttler, Günther et al.
1990), to build a CAD tool that supports the design process of a kitchen. In (Borkowski and
Grabska 1998; Borkowski, Schürr et al. 2002) graph grammars are used to find optimal posi-

Page 11 of 14

tions of rooms and to generate an initial floor plan as a suggestion for the architect. In (Szuba
and Schürr 2004) a graph based support for modeling process knowledge using the PROGRES
system is described. In contrast to our approach, the knowledge is hard wired in the specifica-
tion and cannot be elaborated at runtime. The SEED (Flemming 1994) system provides a sup-
port for the early phase in architectural building design. The different modules, SEED-Pro,
SEED-Layout and SEED-Config allow specifying requirements of the buildings, generating
floor plans and three dimensional models based on these requirements. However, it does not
provide an interactive, integrated tool support. The importance of knowledge processing for ar-
chitectural design is comprehensively discussed in (Coyne, Rosenman et al. 1990; Gero 1999).

(Steinmann 1997) and (Heck 1998) describe models and data structures for a new, intelligent
CAD tool. Analogously to our approach, Steinmann introduces classification and aggregation
relation. In contrast to our approach, the expression power is restricted to the classification and
to attribute evaluation. Moreover, the integration to an existing CAD tool is only used for trans-
ferring design. In our approach we integrate conceptual knowledge with conceptual design in-
side the CAD tool.

Knowledge representation based on semantic web is described in (Gomez-Perez, Fernandez-
Lopez Mariano et al. 2004). The Resource Description Framework defines a language for ontol-
ogy and knowledge definition (Powers 2003). Even if a lot of ontologies have already been de-
veloped, none of them is applicable for the conceptual design phase. On the insufficiency of on-
tologies report (Silva, Vasconcelos et al. 2002), they present alternative solutions, unfortunately
none in the field of graph grammars. Object oriented knowledge representation approaches
based on UML (Fowler and Scott K. 1999) and OCL (Clark and Warmer 2002) is described in
(Martin 2003).

Formal concept analysis (Stumme and Wille 2000) and conceptual graphs (Sowa 1984) also de-
scribe a way to store knowledge in a formally defined but human readable form. The
TOSCANA system, which is based on formal concept analysis, describes a tool to store legal
building rules. In contrast to our approach, it is restricted to store and classify texts of law, de-
pendencies between laws cannot be represented. Finally, the TOSCANA system is not inte-
grated with a CAD tool.

Acknowledgement
The authors gratefully acknowledge the support of this project by the German Science Founda-
tion (DFG) within the scope of the priority program “Network-based Co-operative Planning
Processes In Structural Engineering” (SPP 1103).

References

Alexander, C. (1995). A Pattern Language. Löcker.

Böhlen, B., Schleicher, A., Westfechtel, B., and Jäger, D. (2002). UPGRADE: Building
Interactive Tools for Visual Languages. In 6th World Multiconference on Systemics,
Cybernetics and Informatics (SCI2002). Information Systems Development I. pp 17-22.

Borkowski, A. and Grabska, E. (1998). Converting Function into Object. In Artificial
Intelligence in Strutural Engineering. LNAI 1454. ed. I. Smith. pp 434-439. Springer.

Borkowski, A., Schürr, A., and Szuba, J. (2002). GraCAD - Graph-Based Tool for Conceptual
Design. In Proc. of the 1st Int. Conference on Graph Transformation (ICGT2002). LNCS 2505.
pp 363-377. Springer.

Page 12 of 14

Clark, T., and Warmer, J. (2002). Object Modeling with the OCL - The Rationale behind the
Object Constraint Language. Springer.

Coyne, R. D., Rosenman, M. A., Radford, A. D. et. al. (1990). Knowledge Based Design
Systems. Addison-Wesley.

Flemming, U. (1994). Case-Based Design in the SEED System. In Knowledge Based Computer
Aided Architectural Design. pp 69-91. Elsevier.

Fowler, M., and Scott K. (1999). UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley.

Gero, J. S. (1999). Recent Design Science Research: Constructive Memory in Design Thinking.
In Architectural Science Review 42. pp 3-5.

Gomez-Perez, A., Fernandez-Lopez Mariano, and Corcho Oscar (2004). Ontological
Engineering. Spinger. London.

Göttler, H., Günther, J., and Nieskens, G. (1990). Use Graph Grammars to Design CAD-
Systems. In Graph Grammars and Their Application to Computer Science. LNCS 291. eds. G.
Rozenberg, M. Nagl, and A. Rozenfeld. pp 396-409. Springer.

GRAPHISOFT (2004). GDL Homepage. www.gdlcentral.com.

Heck, P. (1998). Ein objektorientiertes CAD-Modell für die raum- und bauteilorientierte
Bearbeitung von Gebäuden in der Vorplanung. Ph. D. Thesis. TU Kaiserslautern.

Kraft, B. and Nagl, M. (2003). Semantic Tool Support for Conceptual Design. In Proceedings of
the 4th Int. Symposium on Information Technology in Civil Engineering. ed. I. Flood. pp 1-12.
ASCE (CD-ROM).

Kraft, B. and Nagl, M. (2004). Parameterized Specification of Conceptual Design Tools in Civil
Engineering. In Proc. of the Int. Workshop on Applications of Graph Transformation with
Industrial Relevance (AGTIVE'03). LNCS 3072. eds. J. Pfalz, M. Nagl, and B. Böhlen. pp 85-
100. Springer.

Kraft, B. (2003). Conceptual Design mit ArchiCAD 8. In GRAPHISOFT.NEWS.
GRAPHISOFT Deutschland.

Kraft, B., Meyer, O., and Nagl, M. (2002). Graph Technology Support For Conceptual Design
In Civil Engineering. In Proc. of the 9th Int. Workshop of the Europ. Group for Intelligent
Computing in Engineering (EG-ICE2002). eds. M. Schnellenbach-Held and H. Denk. pp 1-35.
VDI Verlag.

Martin, P. (2003). Plans to extend UML for knowledge representation.
http://meganesia.int.gu.edu.au/~phmartin/WebKB/doc/model/comparisons.htm.

Powers, S. (2003). Practical RDF. O'Reilly.

Puder, A., and Römer, K. (2000). MICO: An Open Source CORBA Implementation. Morgan
Kaufmann.

Schürr, A. (1991). Operationales Spezifizieren mit programmierten Graphersetzungssystemen.
Ph. D. Thesis. RWTH Aachen. Wiesbaden.

Silva, F., Vasconcelos, V., and Robertson, D. (2002). On the Insufficiency of Ontologies:
Problems in Knowledge Sharing and Alternative Solutions. In Knowledge Based Systems. pp
147-167.

Page 13 of 14

http://www.gdlcentral.com/
http://meganesia.int.gu.edu.au/~phmartin/WebKB/doc/model/comparisons.htm

Sowa, J. (1984). Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley.

Steinmann, F. (1997). Modellbildung und computergestütztes Modellieren in frühen Phasen des
architektonischen Entwurfs. Ph. D. Thesis. Weimar.

Stumme, G., and Wille, R. (2000). Begriffliche Wissensverarbeitung. Springer. Heidelberg.

Szuba, J. and Schürr, A. (2004). On Graphs in Conceptual Engineering Design. In Proc. of the
Int. Workshop on Application of Graph Transformation with Industrial Relevance
(AGTIVE'03). LNCS 3062. eds. J. Pfaltz, M. Nagl, and B. Böhlen. pp 71-85. Springer.

w3.org (2004). XSL Transformations (XSLT). www.w3.org/TR/xslt.

Winter, A., Kullbach, B., and Riediger, V. (2002). An Overview of the GXL Graph Exchange
Language. In Software Visualization, State-of-the-Art Survey. LNCS 2269. ed. S. Diehl. pp
324-336. Springer.

Winter, A. J. (2000). Visuelles Programmieren mit Graphersetzungssystemen. Dissertation.
RWTH Aachen. Aachen, Germany.

Page 14 of 14

http://www.w3.org/TR/xslt

