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Summary 
Expert systems integrating fuzzy reasoning techniques represent a powerful tool to support 
practicing engineers during the early stages of structural design. In this context fuzzy models 
have proved themselves to be very suitable for the representation of complex design knowledge. 
However their definition is a laborious task. This paper introduces an approach for the design 
and the optimization of fuzzy systems based upon Genetic Programming. To keep the emerging 
fuzzy systems transparent a new framework for the definition of linguistic variables is also 
introduced.  

1 Introduction 
Within the last 5 years EnvIOS Design, an expert system integrating fuzzy reasoning techniques 
has been created with the goal to support practicing engineers during the early stages of 
structural design. During the application of EnvIOS Design fuzzy models have proved 
themselves to be very useful for the modeling of complex structural design knowledge and 
especially for the formalization of conceptual design knowledge (Schnellenbach-Held et. al. 
2002). However with respect to the acceptance of EnvIOS Design in practice the integrated 
fuzzy models have to be transparent and comprehensible. This fact dramatically complicates 
their automatic definition. Suitable methods for such an automatic definition are not yet 
available. In the research work described in this paper a new approach for the design and the 
optimization of fuzzy systems is introduced. This approach is based upon Genetic Programming 
(GP). To meet the requirement of transparency of the emerging fuzzy models special attention 
must be paid to the definition of the linguistic variables (i.e. to the definition of the fuzzy sets 
and the linguistic labels associated with these sets).  

In the second chapter of this paper a new framework for the definition of linguistic variables 
called the Individual Linguistic Label (ILL) model is introduced. This framework allows for 
high flexibility concerning the number of fuzzy sets in a linguistic variable and for certain 
variations concerning their shapes. Thus a very high accuracy of a certain fuzzy model can be 
reached. At the same time a particular linguistic variable can be used within several fuzzy 
models without changing the meaning of the single linguistic labels i. e. without changing the 
fuzzy sets associated with them. A good interpretability of the single linguistic labels is 
guaranteed even across different fuzzy models. The latter is particularly important for the 
formalization of conceptual design knowledge where one linguistic variable is often used within 
several fuzzy models. 

The third chapter introduces a new approach for the design and the optimization of fuzzy 
systems based on Genetic Programming making use of  the Individual Linguistic Label (ILL) 
model. 

 

Page 1 of 7 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:m.schnellenbach-held}@uni-essen.de


2 Transparent fuzzy models for knowledge representation 
For Representation of knowledge within an expert system, rule-based fuzzy systems (RBFS) 
have been proven as suitable solution. In this context Takagi / Sugeno / Kang (TSK) models 
(Takagi & Sugeno 1985) and also Mamdani / Assilian (MA) models (Mamdani 1975) have been 
used (Albert 2002). Without loss of generality, the MA-model will be considered in further 
descriptions. 

2.1 Descriptive vs. approximative modeling 
Rule-based fuzzy models can be spread into two different modeling approaches. A model 
contains rules in the form: 

   (1) iinnii BisythenAisxandAisxIfR ...: 11

In the descriptive model Aij (B) is one of the predefined fuzzy sets of the input variable xj 
(output variable y). In general linguistic labels are assigned to these fuzzy sets (figure 1a). In the 
approximative model Aij (B) are individual fuzzy sets of the input (output) variables. Figure 1b 
shows it is often impossible to assign linguistic labels to these fuzzy sets. 

 

Figure 1: Fuzzy sets of (a.) descriptive and (b.) approximative models 

Main advantage of the approximative model is the higher level of accuracy. Due to a limited 
transparency this model is not feasible for knowledge representation. In contrast to this the 
descriptive model has a very good interpretability. Otherwise the definition of fuzzy sets turns 
out to be very complex. To keep the interpretability the adjustments of these sets are limited.  

Within an expert system fuzzy variables are being used in different fuzzy systems. For instance 
the span length of a concrete slab influences the decision of a suitable slab system as well as the 
determination of suitable element dimensions (Albert 2002). This additionally aggravates the 
tuning of the fuzzy sets. To reach an appropriate accuracy it is mostly necessary to use a high 
number of fuzzy sets. This results in a high number of used rules, which finally leads to a loss of 
interpretability.  Thus in terms of transparency of the knowledge representation the usual 
descriptive model is only limited feasible. 

2.2 Individual linguistic label model 
For representation of complex engineering knowledge within EnvIOS Design the “individual 
linguistic label” (ILL) model has been developed. This model combines the advances of the 
descriptive and the approximate model. The Aij (B) are Gaussian fuzzy sets of the generic form: 

 <operator> <hedge1> <prototype1> (<hedge2> <prototype2>) (2) 

The Gaussian deviation parameter sigma and the possible prototypes are predefined for each 
variable. The membership function can be modified by the dilation hedges “about” or “roughly” 
(figure 2a). Possible operators are “between” (figure 2b), “at most” and “at least” (figure 2c). 
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Figure 2: Individual linguistic labels 

Furthermore another benefit of the ILL model for knowledge representation within an expert 
system is the very good interpretability of single rules. A major characteristic of expert systems 
is the description component. This component enables the user to trace the proceedings of the 
expert system and shows important explanations. A single rule of a common descriptive model 
can only be interpreted in the context of the whole rule base. Consequently the description 
component has to show the whole rule base. In the case of complex fuzzy systems this violates 
the demand for transparency. In case of the ILL model only rules which had a significant impact 
on the results have to be shown. 

3 Genetic programming based design of fuzzy systems  
The design of fuzzy systems is a very complex task. Suitable methods for an automatic 
definition are not available yet. In this chapter a new approach for the design and the 
optimization of fuzzy systems is introduced. This approach is based upon Genetic Programming 
and takes into account the requirement of transparency of the resulting fuzzy models. 

3.1 Evolutionary Algorithms 
Evolutionary Algorithms (EA) are universal optimization algorithms which emulate the 
principles of the natural evolution: selection, reproduction and mutation (Goldberg 1989). The 
attributes of an object that should be optimized are represented by the genome. First a 
population of Npop individuals with random genomes is initialized. In the selection process the 
fitness of each individual is evaluated using a predefined fitness function. The offspring 
population is generated by crossing and mutating individuals of the parent generation, whereas 
individuals with a higher fitness are used with a higher probability. This process is repeated for 
Ngen generations. 

The most common EA are genetic algorithms (GA), evolutionary strategies and genetic 
programming (GP). 

3.2 Genetic Programming 
There is a main difference between GP and an ordinary GA. Genetic Algorithms represent an 
individual through binary or numerical strings with mostly fixed length. Genetic Programming 
represents the individuals in form of complex structures, mostly trees. The Individuals do not 
have to follow a fixed size or a certain pattern. This leads to a greater diversity and variability of 
GP individuals (Koza 1992).  

A major advance of GP algorithms is their excellent performance at crossover operations. GA 
algorithms use random crossover points within their string representation, without respect to 
groups or substructures. It is hardly predictable if good substructures stay together or are 
randomly destroyed. GP algorithms use certain node elements within the tree for crossover, so 
the probability of keeping good substructures together is much higher.  
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3.3 DA-GPFS 
The Domain Knowledge Augmented Genetic Programming based Fuzzy System (DA-GPFS) is 
a genetic fuzzy system (Bodenhofer & Herrera 1997) for the data-driven generation of fuzzy 
rule based systems by means of genetic programming. Fuzzy systems are represented by a tree 
structure according to the Backus-Naur-Form (BNF) (Geyer-Schulz 1995). The fitness function 
takes into account the accuracy of the fuzzy system by means of the mean squared 
approximation error (MSE) as well as the interpretability by panelizing large size of the rule 
base and the length of the rules. The algorithm incorporates domain specific knowledge that is 
used by human knowledge engineers in the manual fuzzy system design process. 

3.3.1 Directed mating 
The combination of characteristics of two individuals (crossover) is most interesting if both 
individuals complement each other. In terms of fuzzy systems this means a potential crossover 
partner (parent B) has a lower approximation error in an area of the input space, where parent A 
has a higher error. The potential mean error of parent A and candidate mate m is evaluated by 

  (3) NdsEEPME mjAj
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where Nds is the number of input vectors and EAj (Emj) is the absolute approximation error of 
parent A (mate m) and the jth input vector. 

In a standard evolutionary algorithm crossover mates are selected randomly. Beside this 
standard method a method for directed mating is available in DA-GPFS: 

- Random selection of parent A 

- Random selection of NCM candidate mates 

- Evaluation of PMEAm for each candidate mate 

- Selection of the candidate mate with the minimal PME as  
parent B  

3.3.2 Goal-oriented evolutionary operators 
The combination of two fuzzy systems should combine “good” rules of both parents. In contrast 
to this the manipulation (mutation) should change the characteristics of “bad” rules. Rules are 
normally considered as “good”, if training data within their diffuse within the input space are 
approximated unusually well.  

The fitness of rule i is evaluated by 
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and ijrule,µ  is the degree of confidence of the ith rule and the jth input vector, Nr is the number 
of rules, SEj is the squared approximation error of the jth input vector. 

In a genetic programming algorithm with a tree structure representation each node with its 
attached sub tree represents a substructure. The crossover is carried out by replacing a randomly 
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selected substructure of parent A by a randomly selected substructure of parent B. An individual 
is mutated by replacing a randomly selected sub tree by a randomly generated tree according to 
the representation language, i.e. the Backus-Naur-Form. In the DA-GPFS algorithm the 
substructures for crossover and mutation, respectively, are determined by a roulette wheel 
selection in consideration of the substructure fitness. The rule fitness RF is directly assigned to 
the rule nodes and nodes with a lower hierarchy level, i.e. Conditions and Conclusions. Nodes 
with a higher level, the rule base nodes, get the mean rule fitness of the attached rules as 
substructure fitness (figure 3).  

 

Figure 3: Attribution of substructure fitness  

4 Applications 
The models presented in this paper were applied to practical problems in the frame of 
knowledge based systems in structural engineering using the expert system environment 
EnvIOS Design. This environment is based on the OFWM, a knowledge representation model 
for the formalization of conceptual and detailed design knowledge. 

4.1 The knowledge representation model 
The Object Oriented Fuzzy Knowledge Representation Model (Objekt-orientiertes Fuzzy-
Wissensrepräsentations-Modell, OFWM) (Albert 2002) consists of two models the Product 
Model (Produktmodell, PM) and the Model of Knowledge Base Elements (Modell der Elemente 
der Wissensbasis, MEW). The Product Model serves to organize the elements of a knowledge 
base. The Model of Knowledge Base Elements serves for the formalization of the design 
knowledge. 

The elements of a design calculation are the variables that either can be found in design 
standards or belong to the knowledge of an experienced structural engineer. In the context of the 
OFWM these elements are called “calculation elements”. They are separated into different 
classes according to the method that they use in order to determine their own values. Thus 
calculation elements can be of types like “formula”, “table”, etc. 

During the design of concrete structures several complex decisions have to be made. Besides the 
choice of suitable structural components the necessity of proofs for the components should be 
checked. There are not all proofs required for all components. In order to maintain the 
transparency only essential proofs should be brought forward. The MEW includes the fuzzy 
logic based knowledge elements MA- and TSK-model for the representation of preliminary 
design knowledge. Complex knowledge about the necessity of proofs can be represented by the 
TSK-premise knowledge element. 
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4.2 Software applications 
The applications “Environment for Intelligent Object oriented Structural Design” (EnvIOS 
Design) and “Knowledge Base Definition Tool” (KBDT) were developed for the 
implementation and use of OFWM based conceptual and structural design applications. EnvIOS 
Design consists of two modules. EnvIOS Design I, merged in the AutoCAD environment, is the 
user interface for defining, editing and displaying structure models, which are stored according 
to the product model scheme. EnvIOS Design II contains the inference machine, where OFWM 
knowledge bases are applied to structure models. The KBDT represents the knowledge 
acquisition component of EnvIOS Design. Using the KBDT OFWM-knowledge bases can be 
defined and edited. Based on the DA-GPFS algorithm the new KBDT module GPFuzzyStudio 
was implemented.  

4.3 First results 
In order to examine the suitability of the developed models DA-GPFS was applied to the data-
driven generation of fuzzy systems for the preliminary design of slab systems. In first 
experiments a fuzzy system for the determination of the beam height of a girder slab was 
generated. The generated fuzzy system, consisting of eight transparent rules according to the 
ILL model, delivered a mean approximation error of less than 2.5 % on the training data set and 
less than 4 % on the test data set. These experiments have shown that the convergence speed 
was seriously increased by the domain knowledge augmented genetic operators. 

5 Conclusions  
A new approach for transparent representation of engineering knowledge was presented. The 
Individual Linguistic Label Model combines the advantages of the approximative and the 
descriptive model. Because of the good interpretability of single rules the model is predestined 
for the application within a fuzzy expert system. In addition a genetic programming based 
approach for the data-driven generation of fuzzy systems was presented. The DA-GPFS 
includes sophisticated crossover and mutation methods that increase the convergence speed of 
the optimization process.  
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