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Summary 
This paper presents an application of dynamic decision making under uncertainty in planning 
and estimating underground construction.  The application of the proposed methodology is 
illustrated by its application to an actual tunneling project—The Hanging Lake Tunnel Project 
in Colorado, USA.  To encompass the typical risks in underground construction, tunneling 
decisions are structured as a risk-sensitive Markov decision process that reflects the decision 
process faced by a contractor in each tunneling round.  This decision process consists of five 
basic components: (1) decision stages (locations), (2) system states (ground classes and 
tunneling methods), (3) alternatives (tunneling methods), (4) ground class transition 
probabilities, and (5) tunneling cost structure.  The paper also presents concepts related to risk 
preference that are necessary to model the contractor’s risk attitude, including the lottery 
concept, utility theory, and the delta property.  The optimality equation is formulated, the model 
components are defined, and the model is solved by stochastic dynamic programming.  The 
main results are the optimal construction plans and risk-adjusted project costs, both of which 
reflect the dynamics of subsurface construction, the uncertainty about geologic variability as a 
function of available information, and the contractor’s risk preference. 

1 Introduction 
Planning and estimating underground projects during the bidding phase are especially important 
and challenging tasks for all contractors because of geologic uncertainty.  Comprehensive and 
realistic construction plans strive for optimal decisions that minimize time and cost while 
addressing all important project risks.  This paper presents the application of a risk-sensitive 
Markov decision process to underground construction planning and estimating.  It illustrates the 
modeling power to quantify and incorporate risk and its effectiveness for choosing optimal 
plans as functions of the contractor’s degree of risk sensitivity. 

2 Construction planning and estimating 
The primary tasks for contractors during the bidding phase are developing appropriate 
construction plans and estimating their costs.  These are extremely important and challenging 
tasks because they directly influence the contractor’s competitiveness and profit.  To establish 
an appropriate construction plan, contractors need to make several decisions based on available 
information and personal experience.  These decisions include major construction methods and 
equipment, sequence of construction operations, and construction resource management. 

For a particular construction project, there are often many feasible construction plans.  To be 
competitive, the contractor must be able to evaluate and compare their performance.  The 
important attributes for appraising the performance of construction options are cost and time.  
Construction estimating is a systematic process for forecasting construction project cost and 
time before the physical performance of the work actually begins to allow for prudent decision 
making.  A complete estimate should take into consideration all necessary resources to create 
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the facility and their impact on cost and time.  However, it should be represented only at a level 
of detail that is useful for the contractor’s decisions (Carr 1989).  All estimates can be 
determined by one of the two main approaches: direct encoding or modeling (detailed 
estimating). 

The direct encoding approach, such as unit price estimating, is typically adopted to prepare the 
pre-design and conceptual estimates for various purposes, including setting up the project’s 
budgeted cost, comparing different design alternatives during the design phase, and verifying 
bid prices.  In contrast, contractors need to produce more accurate estimates closer to the final 
project cost.  Detailed cost estimating is therefore their preferred estimating approach.  In 
detailed estimating, all work items in the project are initially categorized into divisions by using 
some forms of work breakdown structure (WBS).  Costs associated with different divisions are 
estimated by using different levels of work breakdown such as the operation level, the activity 
level, and the process level.  This decision primarily depends on available information, and the 
complexity and uncertainty associated with the work in a particular division.  Finally, the 
construction plans and costs for all divisions are integrated to attain the construction plan and 
the total cost for the entire project. 

3 Underground construction 
Underground construction is a complex form of construction project.  Underground structures, 
such as tunnels, can solve problems of difficult terrains, limited surface space, and increased 
demand for transportation.  At the same time, however, they are expensive options where a 
variety of risks are encountered in every phase of the project delivery process. 

Similar to other types of construction, efficient underground construction planning requires that 
contractors establish the optimal construction plan based on available information.  It however 
presents a great challenge to all contractors because of the complexity and uncertainty 
associated with underground projects.  The primary factors that significantly influence 
underground construction planning are geologic uncertainty, geologic variability, uncertainty in 
construction productivity, and the contractor’s risk sensitivity (Likhitruangsilp 2003). 

3.1 Geologic uncertainty 
The selection of construction methods depends primarily on the anticipated geologic conditions.  
Regardless of the number and extent of subsurface explorations undertaken, the geology cannot 
be perfectly known prior to construction.  Even though several practices have been adopted to 
mitigate geologic uncertainty, including the observational method, they cannot entirely 
eliminate this uncertainty from underground construction planning. 

3.2 Geologic variability 
Several underground projects (e.g., tunnels) traverse a variety of geologic conditions, the 
locations and extents of which are impossible to define with certainty.  For the projects with 
significant geologic variability, the selected construction methods must be adaptable to all 
anticipated geologic conditions without significantly interrupting construction progress.  Thus, 
underground construction is dynamic in nature. 

3.3 Uncertainty in construction productivity 
Another important factor results from uncertainty in the productivity of construction processes.  
This uncertainty stems from the variation of construction machine performance, the variation of 
worker outputs, and unexpected events such as accidents.  Since this uncertainty exists even if 
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geologic conditions are known, its impact on construction planning must be addressed 
separately. 

3.4 Risk sensitivity 
Individual valuation of benefits and costs for decisions involving risk (e.g., underground project 
planning) is often nonlinear because these decisions are not based on the maximization of the 
expected monetary value (EMV).  In other words, when making decisions under uncertainty, a 
decision maker is typically sensitive to risk, either risk averse or risk preferring.  An 
individual’s risk sensitivity (risk preference) is influenced by such factor as the person’s current 
net asset position.  Typically, as a person’s net asset position increases, the less risk-averse his 
behavior toward the same risk. 

A contractor’s risk aversion and his degree of risk exposure can have a major influence on 
construction plans and the necessary amount of risk premium or contingency embedded in a 
contractor’s price in order to undertake the work.  A more risk-averse contractor adopts a more 
conservative plan and includes a higher allowance as contingencies in his bid than a less risk-
averse contractor does (Ioannou 1988). Thus, it is necessary to incorporate risk sensitivity into 
underground construction planning. 

By considering all these factors, underground project planning and estimating can be considered 
a risk-sensitive dynamic probabilistic decision process. 

4 Dynamic probabilistic decision process 
A dynamic decision under uncertainty problem can be structured as a probabilistic sequential 
decision model, which can be symbolically represented by: 

 

Symbolic Representation of Probabilistic Sequential Decision Problems 

At a particular decision epoch, a decision maker observes the current state of the system.  Based 
on this state, the decision maker chooses an action from the set of available actions for that 
state.  An action leads to two consequences: (1) the system evolves to a possibly different state 
at a new epoch based on the transition probabilities of the system (here the system evolves from 
state i to j), and (2) the decision maker receives a reward (or a cost is incurred).  Both the 
transition probabilities and reward may depend on the decision epoch, the choice of action, the 
current and next system states (i.e., the transition).  At the subsequent epoch, the decision maker 
encounters a similar problem, but now the system may be in a different state, and there may be a 
different set of actions to choose from.  As this process evolves through time, the decision 
maker receives a sequence of rewards (Puterman 1994). 

An individual is often faced with decision problems in which the state evolves through time (or 
space).  The decision maker’s goal is to choose a sequence of actions that optimizes the output 
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of the system as expressed by a predetermined performance criterion.  For a system whose state 
in the future depends on the decision made at the current epoch, decisions should not be made 
myopically, but rather the decision maker should take into account the rewards associated with 
future system states as well. A Markov decision process is a powerful stochastic model that is 
particularly applicable to this type of problems. 

5 Risk-sensitive Markov decision process 

5.1 Model components 
A Markov decision process consists of five basic elements: (1) decision epochs, (2) system 
states, (3) actions, (4) transition structure, and (5) reward structure. 

Decision epochs are points of time (or locations where) decisions are made.  The set of decision 
epochs T can be classified as either a discrete state set or a continuum, or as a finite or an 
infinite set.  In a discrete-time problem, time is divided into stages or periods, and a decision is 
made at the beginning of every stage. 

Decis ion
Epoch

1

Decis ion
Epoch

2

Decis ion
Epoch

3

Decis ion
Epoch
N - 2

Decis ion
Epoch
N  - 1

Decis ion
Epoch

N

Stage 1 Stage N - 2 Stage  N  - 1Stage 2

...

...
 

Decision Epochs and Stages 

At each decision epoch, the system occupies a state out of a set S of possible system states.  
Once the decision maker has observed the system state s S∈  at that epoch, he chooses action a 
from the set of allowable actions in state s, As. 

Choosing action sa A∈  at decision epoch n leads to two consequences: the system changes to 
some state at the next epoch determined by a transition probability distribution and the decision 
maker receives a reward.  The transition of the system state is defined by the transition 
probability function,  which denotes the probability that the system will be in state j at 
decision epoch  given that the decision maker chooses an action a as the system occupies 
state i at decision epoch n. 

( ),a
ijP n

1n +

The real-valued reward function ( )a
ijR n  defined for ,i j S∈  and sa A∈  denotes the value of the 

reward received if the decision maker chooses an action a and the system makes a transition 
from state i at the current epoch n to state j at the next epoch 1.n +   A positive ( )a

ijR n  is 
regarded as an income, and a negative ( )a

ijR n  is regarded as a cost. 

Once all elements of the Markov decision process have been defined, a decision rule for the 
system can be determined based on a predetermined optimality criterion.  A decision rule 
provides procedures for choosing the optimal action for each state at a specified epoch.  A 
sequence of decision rules to be used at all epochs is called a policy π :  
where i  is the decision rule at epoch i as a function of state s.  Thus, a policy provides the 
decision maker with a prescription for selecting the best action for any possible system states at 
any decision epochs. 

( )1 2 1, ,..., ,Nd d dπ −=
d
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5.2 Model formulation and solution 
Consider a Markov decision process with a finite set of decision epochs (1,2,..., ).T N=   Let S 
denote the finite set of system states, and the finite set of actions is defined by A.  The state and 
the action at decision epoch n are represented by ns  and , respectively. na

For , if the system occupies state i at decision epoch n and action k is chosen, a transition 
to some state at decision epoch  can be determined by the transition probability 

n N<
1n +

 1( ) ( | , )k
ij n n nP n P s j s i a k+= = = =  (1) 

Resulting from this transition, the decision maker earns the reward at decision epoch n, ( ).k
ijR n   

A policy π  is a decision procedure that specifies a decision for each state at a given epoch.  Let 
( , )n iπ  denote any decision made according to policy π  given that the system occupies state i 

at decision epoch n.  Assume that the decision maker has a linear utility function; that is, he is 
risk neutral and wants to maximize the total expected reward.  Thus, the optimal decision policy 
can be obtained by determining a policy that maximizes the total expected reward among the 
finite set of all possible policies. 

Given that ( , )k n iπ=  and let ( )if n  be the maximum expected reward earned from stages n 
through the end given that the system occupies state i at decision epoch n.  According to the 
principle of optimality, ( )if n  uniquely exists for all i and n and can be computed by the 
following optimality equation (Denardo 1982): 

 ( ) max ( ) ( ) ( 1)k k
i ij ij jk j

f n P n R n f n⎡ ⎤= + +⎣ ⎦∑  (2) 

The calculation begins with the boundary condition, ( ),if N  for all states i.  Equation (2) is 
applied recursively to determine the maximum expected rewards from epoch  through the 
end, from epoch  through the end, and so on.  Finally, the maximum expected reward 

 for any beginning state i can be determined.  This computational procedure is called 
backward recursive fixing or stochastic dynamic programming.  Solving this equation also 
provides the optimal policy 

1N −
2N −

( )1if

*π  for the system: 

  (3) * ( , ) arg max ( ) ( ) ( 1) ; ,k k
ij ij jk j

n i P n R n f n i nπ ⎡∈ +⎣∑ ⎤+ ∀⎦

5.3 Modeling risk sensitivity 
The risk sensitivity of a decision maker can be encoded by a unique utility function (Howard 
1977).  A utility function  assigns a real number u in an ordinal scale to each of the 
possible outcomes v of an uncertain proposition (termed lottery).  According to the properties of 
the utility function, the decision maker’s preference in ranking alternative lotteries with 
uncertain outcomes can be quantified by the expected utility value (EUV), 

( )u v

[ ( )],E u v  of each 
lottery (Luce and Raiffa 1957).  If the larger value of v is preferred, then  is a 
monotonically increasing function of v.  When the decision maker has to choose between 
several lotteries, the one with the greatest EUV is the most desirable choice. 

( )u v

The certain equivalent (CE) of a lottery v  is defined as the value of the outcome that has the 
same utility as the EUV of the lottery. 

 ( ) [ ( )]u v E u v=  (4) 

The decision maker is indifferent between facing the uncertain outcomes of a lottery and 
receiving the CE with certainty.  The CE of a lottery must be interpreted algebraically.  For 
example, the CE (selling price) of a lottery involving monetary loss (e.g., construction costs) is 
negative, which represents the amount of money the decision maker is willing to pay (e.g., 
subcontract) in order to sell the risk of that lottery to other parties (e.g., subcontractors) 
(Ioannou 1989). 
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5.4 Integrating risk sensitivity into Markov decision process 
A risk-sensitive Markov decision process can be formulated by integrating utility theory with 
the general Markov decision process presented above.  It requires an additional assumption 
known as the delta property (Howard 1977).  A significant implication of this assumption is that 
a multistage (sequential) decision problem can be broken down into single-stage problems that 
are easier to solve. 

Since the utility function of a decision maker who accepts the delta property is restricted to 
either linear or exponential, the exponential utility function, which is the general case, is used in 
this paper to construct the cost structure. 

 ( ) (sign ) vu v e γγ −= −  (5) 

where the parameter γ  is the risk aversion coefficient and (sign γ ) is the sign of γ .  A positive 
γ  means the decision maker is risk averse, whereas a negative γ  means the decision maker 
prefers risk. 

By integrating utility theory and the assumption concerning risk preference presented above, the 
optimality equation for a risk-sensitive Markov decision process, parallel to equation (2), can be 
written as: 

  (6) * ( ( )) max ( ) [ ( ) ( 1)]k k
i ij ij jk j

u v n P n u R n v n= × +∑ +

The term  represents the maximum expected utility of the reward earned from decision 
epochs n through the end given that the system occupies state i at epoch n.  The transition from 
state i at epoch n to state j at epoch 

* ( ( ))iu v n

1n +  and action k is chosen leads to reward ( )k
ijR n  and the 

remaining transitions whose the certain equivalent is ( 1)jv n + . 

Similar to equation (2), equation (6) can be solved by stochastic dynamic programming.  The 
problem is solved backward, starting at the end of the problem (i.e., epoch N) and solving the 
problem at epochs 1N − , , and so on.  Given that the optimal decision rules for epochs 

, , ..., and  are known, the action that maximizes the expected utility for each 
state i at epoch n, , can be determined.  Once the maximum expected utility of the 
system for the beginning state i,  has been determined, its certain equivalent,  can 
be calculated using the inverse function of equation (5).  Parallel to equation (3), the optimal 
policy for the system, 

2N −
1n + 2n + 1N −

* ( ( ))iu v n
*( (1)),iu v (1),iv

*,π  can be determined by the following relationship: 

  (7) * ( , ) arg max ( ) [ ( ) ( 1)]; ,k k
ij ij jk j

n i P n u R n v n n iπ ∈ × + +∑ ∀

6 Application to Tunneling—The Hanging Lake Tunnel Project 
In this section, we apply the proposed risk-sensitive Markov decision process to determine the 
optimal construction plan and risk-adjusted cost for the Hanging Lake Tunnel Project, a twin-
bore highway tunnel in the state of Colorado, USA.  Here, we focus on the part of this rock 
tunneling project excavated by multiple-drift drill and blast methods, consisting of two major 
segments: the west segment with the total length of 753 m (2,470 ft) and the east segment with 
the total length of 347 m (1,139 ft). 

The geologic conditions were classified by using rock mass classification systems into three 
ground classes: GC1 (best), GC2 (medium), and GC3 (worst).  Three excavation methods 
(EM1, EM2, EM3) and three primary support systems (SS1, SS2, SS3) were designed 
corresponding to the three ground classes.  For example, taken together, EM3 and SS3 comprise 
the most economical and structurally adequate tunneling method for GC3.  This project required 
sequential excavation of six drifts and rock reinforcement systems consisting of rock dowels, 
spiles, and shotcrete, as shown below: 
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Detailed descriptions of the ground class classification and the specifications of excavation and 
support methods can be found in Leeds, Hills, and Jewett (1981); Scotese and Ackerman 
(1992); and Essex et al. (1993). 

The risk-sensitive Markov decision process for this project is formulated by analyzing the 
tunneling decision process performed by the contractor in each round.  The following figure 
shows a decision tree illustrating the tunneling decision process. 

 

 

Decision Tree Illustrating Tunneling Decision Process 

As can be seen, the excavation method for the next stage n is selected based on the current 
ground class and the excavation method being used.  After applying the selected excavation 
method, the actual ground class is revealed.  The contractor then chooses the primary support 
system corresponding to the revealed ground class.  The distributions of tunneling costs 
incurred in stage n, shown as end-node values, represent randomness due to uncertainty in 
construction productivity, not geologic uncertainty. 
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The basic elements of the Markov decision process for this problem are summarized below.  It 
is very important to notice that the system states are not just the three possible current ground 
classes, but rather all nine combinations of possible current ground classes and excavation 
methods. 

Components of the Markov Decision Process for the Presented Tunneling Problem 

Model Components Tunneling Decision Process 

(1) Decision epochs Beginnings of tunneling stages (e.g., round) 

(2) States Current ground class and excavation method 

(3) Actions Excavation methods and primary support systems 

(4) Transition structure Ground class transition probabilities 

(5) Cost structure Probability distribution of tunneling costs 

 

The optimality equation for this example can then be written as: 

 * ( ( , , )) max ( ) [ ( , ) ( , ) ( 1, , )]GC
ijk K j J

u v n i k P n u CM k k C k j v n j k
′∈ ∈

′ ′= × + + +∑ ′  (8) 

The term  represents the maximum expected utility of tunneling costs incurred from 
the current epoch n through the end of tunnel given that the current state is defined as the 
combination of currently being in ground class i and using excavation method k. 

* ( ( , , ))u v n i k

( )GC
ijP n  is the probability that the ground class makes a transition from state i at the current 

epoch n to state j at the subsequent epoch 1n + .  It should be noted that this ground class 
transition probability is a function of the tunnel location, not the selected tunneling method. 

( , )CM k k ′  is the total cost resulting from adapting the excavation method at epoch n.  These 
costs are functions of the excavation method currently used (k) and the method selected for this 
stage ( k ).  Thus,  when ′ ( , ) 0CM k k ′ = k k ′=  (i.e., keep using the same excavation method). 

( , )C k j′  is tunneling cost incurred if excavation method k ′  is chosen and the actual ground 
class after blasting is j.  This term also includes costs resulting from choosing a wrong 
excavation method (e.g., underbreak or excessive overbreak cases). 

( 1, ,v n j k ′+ )  is the certain equivalent of tunneling costs incurred from epochs  through the 
end of tunnel given that the ground class at the next epoch is j, and the excavation method 
selected for the current stage n is . 

1n +

k ′

J is the set of possible ground classes in this project; ,i j J∈ .   is the set of excavation 
methods used in the project; .  N is the set of tunnel locations where the decision is 
made (i.e., the beginning of each round); n

K
,k k K′∈

N∈ . 

A detailed discussion about the calculation of ground class transition probabilities and these cost 
components can found in Likhitruangsilp (2003). 

Solving equation (8) by applying stochastic dynamic programming provides the risk-adjusted 
tunneling costs (certain equivalents) and the optimal tunneling sequence for different degrees of 
risk sensitivity (i.e., different values of γ ): 
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Optimal Tunneling Sequence for 5γ =  (Risk-Averse Contractors) 

As can be seen, the expected tunneling cost for this project ( 0)γ =  is approximately $30.3M.  
As the risk aversion coefficient increases (i.e., a contractor is more risk averse), the risk-
adjusted tunneling cost increases almost linearly.  In contrast, as the risk aversion coefficient 
decreases (i.e., a contractor is more risk preferring), the risk-adjusted tunneling cost decreases 
almost linearly. 

The figure above shows the optimal tunneling sequence given that the contractor is risk averse 
with 5γ = .  Nine bars in the figure correspond to the nine possible combinations of ground 
classes and excavation methods during construction.  For example, given that the geologic 
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conditions encountered at location 40.2 m (132 ft) is GC1, and EM1 was used in the previous 
round, the optimal decision for this contractor is to use the same method (i.e., read from the first 
bar).  However, if the current tunnel geology is GC2, and EM1 is being used, the contractor 
should switch to use EM2 for the subsequent round (i.e., read from the fourth bar). 

7 Conclusions 
The proposed risk-sensitive Markov decision process illustrates the methodology for applying a 
dynamic probabilistic decision model for planning and estimating underground projects.  The 
model can address all important factors associated with underground construction and can 
provide comprehensive construction plans and realistic construction costs, both of which reflect 
important characteristics of subsurface projects.  This model can also be applied to other 
construction problems involving sequential decision makings such as multiple-phase 
construction projects. 
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