
Page 1 of 12

Distributed STEP-Compliant Platform for Multimodal Collaboration
in Architecture, Engineering, and Construction

V. Semenov, A. Bazhan, S. Morozov, Institute for System Programming of the Russian Academy of Sciences (ISP
RAS), Moscow, Russia, (step@ispras.ru)

Summary
This paper presents an innovative software platform OpenSTEP intended to build advanced
distributed integrated systems and to conduct multidisciplinary collaborative projects in both
academy and industry. The paper discusses an open system architecture, methodology,
component library and CASE toolkit enabling the developers to build a wide range of
interoperable applications and systems compliant with STEP and, particularly, with IFC
becoming the increasingly important standard for information integration in architecture,
engineering and construction.

The component-based organization of the OpenSTEP platform assumes flexible capabilities to
build systems with the client-server architecture, to configure and to deploy them in
heterogeneous infrastructures of enterprises as well as to support effective collaboration of
individuals and groups involved in joint projects. The achieved unification of the software
interfaces and components provides a relatively easy migration path from existing single-site
applications to advanced distributed collaborative environments and has potential making for
investment succession.

The work is supported by RFBR (grant 04-01-00527) and Russian Foundation for Science
Support (http://www.science-support.ru).

1 Introduction
The STEP is a family of international Standards for the Exchange of Product Model Data
developed by the ISO Technical Committee 184 “Industrial automation systems and
integration” since the middle of 80’s (ISO 1994). The objective of the STEP project is to
provide standardized mechanisms for specification of product models as well as for computer-
interpretable representation and exchange of product data in the ways neutral to potential
software implementation platforms and applications.

Recently the STEP has been widely acknowledged as an underlying methodology approach and
practical solutions valuable within Product Data Management (PDM) and Continious
Acquisition and Life Circle Support (CALS) technologies. Following the STEP, interoperability
between various CAD/CAM/CAE, ERP/MRP, CRM, and PDM applications can be achieved.
To significant degree the STEP follows the model-driven methodology approach successfully
exploited in different software engineering technologies, including the innovative Model-Driven
Architecture (MDA) initiative by the OMG group (OMG 2002).

The International Alliance for Interoperability (IAI) utilizes the STEP infrastructure to develop
and to promote own information schemas, namely, Industry Foundation Classes (IFC)
enveloping a lot of aspects and disciplines the architecture, engineering, construction, and
facility management industry (AEC/FM) is composed of. Since 1995 when IAI was born,
several IFC versions have been released covering such domains as architecure, electrical
appliance, heating, ventilation and air conditiong, construction management, facility
management, cost estimation (IAI 1999).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224743643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2 of 12

Nevertheless, there are still remaining serious obstacles that prevent introduction of the
STEP/IFC-based integration solutions into the industry practice. Mainly, they are connected
with restricted capabilities of existing legacy applications to support these emerging standards,
to form distributed integrated environments and to support effective collaboration between
project participators.

Indeed, the existing CAD/CAM/CAE applications support only IFC file exchange that is
dominating but not satisfactory way to achieve interoperability between the applications.
Integration of applications through project model servers (Adachi 2002, Anumba 2003, Froese
et al. 2000, Hannus et al. 2001, Zarli, Richaud 1999) may turn out superfluously expensive as
these solutions are usually developed and delivered as monolithic systems exploiting particular
software technologies and not allowing configurable deployment in heterogeneous
infrastructures of enterprises and simple adaption to concurrent engineering practices preferable
for particular user groups. These circumstances don’t make for investment succession and
prevent factual dissemination of STEP/IFC standards.

Another adjacent problem is that the STEP is not comprehensive itself. Strongly focusing on
interoperability, it omits many aspects vitally important for building, deploying and exploiting
STEP-compliant systems. In particular, the following aspects are beyond the standard scope:

• The kinds of persistent stores for project model data and possible internal organization
schemas to represent such information in general-purpose databases (relational, object-
oriented, XML-based) and document repositories. Since the most known persistent
realizations have application workloads at which they exhibit superiour performance, the
general mechanisms have to be defined to connect up and to employ the alternative
datastores especially when it may be crucial for effective collaboration;

• The methods for adaptation of the standard data access interfaces STEP SDAI to application
programming interfaces (API) of particular systems to be integrated and involved in the
distributed collaborative environments. The alternative SDAI binding versions and
EXPRESS-X language regulated by the STEP seem to be not effective practical solutions
for mapping the software interfaces;

• The methodology how to extend the early approved STEP information standards into
permanently arising distributed system technologies as well as methods for porting of the
legacy STEP-compliant applications into innovative middleware platforms like
CORBA/IDL, J2EE/Java, XML/SOAP, .NET/C#, WebServices/WSDL. The specification
of the SDAI at the EXPRESS data modeling language contains potential risk of
missmatching the interface bindings and bridging mechanisms for different implementation
platforms;

• The reference architectures for the distributed integrated systems incorporating the STEP-
imposed capabilities for data exchange and sharing, as well as cooperative business logics
for project model servers and alternative transaction models meaningful for today’s
concurrent engineering practices and industry needs. Note that the STEP defines the only
transaction model that is very restrictive for those cases in which the information schema
encompasses the whole project information like in IFC;

• The general context of the STEP usage and its relationships with elements of PDM and
CALS technologies like change, version, configuration, workflow, and document
management.

The OpenSTEP project conducted at ISP RAS aims at improving general implementation
infrastructure of the STEP (eliminating or compensating the disadvantages pointed above) as a
result of usage of model-driven software engineering approach and at developing a software

Page 3 of 12

platform suitable for building a wide range of distributed integrated systems in different
academy and industry branches, particularly, in AEC/FM domain. The OpenSTEP has a status
of open software project implying that separate components can be developed, tested and
delivered by the third-parties interested in validating and promoting the project into industry.

In the section 2 we first present an overview of the OpenSTEP platform principles and
architecture in general and possible system configurations. Then, in the section 3 we concentrate
on the platform organization, its kernel, and component libraries highlighting key engineering
decisions that were made in the platform design and implementation. This section is also
devoted to classification of transaction models allowed by the platform. The models are
classified by transaction isolation levels and concurrency degree they provide. The section 4
concerns the accompanied CASE toolkit to automate development of software applications. In
the Conclusions we shortly summarize advantages of the presented OpenSTEP platform and
give references on the available solutions.

2 OpenSTEP overview

2.1 General principles
The presented OpenSTEP platform is a software component library and a CASE toolkit that,
being applied together, have to enable the developers to build STEP-compliant applications and
to integrate them within distributed collaborative environments. As such declaration of the goals
is general enough to allow a lot of feasible solutions, the realization of the software project
strongly follows the defined underlying principles and concrete technical requirements:

• Consistency of the software engineering solutions in conformity to a wide range of
applications, including separate software components, stand-alone applications and
distributed integrated systems;

• Comprehesiveness and effectiveness of the offered solutions to develop applications in
highly automated and unified way using the same methodology approach, reference
architecture, reused component library and CASE toolkit;

• Compliance of the developed applications with the STEP standards, including standard
data exchange formats (Part21, Part28) and SDAI data access interfaces (Part22);

• Support of multimodal collaboration sessions implying that the particular users and
groups can communicate and interact with each other under specific transaction models
corresponding to particular concurrent engineering practices;

• Virtualization of data sources meaning that the alternative persistent stores of project
model data and access providing services can be exploited by already developed
applications without any rewriting and adapting their codes;

• Virtualization of communication environments meaning that the developed client and
server applications can communicate with each other using alternative distributed
middleware platforms and communication technologies;

• Allowing the alternative software interfaces to integrate particular third-party applications
in addition to the standard STEP SDAI bindings;

• Mobility, interoperability and scalability of the developed applications as well as flexible
capabilities to configure, to adjust, and to deploy them in heterogeneous environments,
including both Windows and Unix/Linux platforms;

Page 4 of 12

• Finally, the OpenSTEP platform must have an open system architecture enabling the
developers to functionally evolve in future both the offered solutions and the built
applications in the directions coincident to the emerging model-driven software
engineering technologies.

2.2 Reference architecture for distributed STEP-compliant systems
The main intent of applications based on the presented OpenSTEP platform consists in
providing the services to access project model data and utilizing them during collaborative
multi-modal sessions. Systems with the client-server architecture are considered as main targets
of the software platform. At the same time, building the other distributed systems, in particular,
peer-to-peer architecture systems is also allowed reusing the same platform solutions.

The project model data defined by such multidisciplinary schemas as IFC may be very large and
complicated. Often, they are composed of the huge number of highly granulated and closely
related data units that are requested very intensively by participating applications. These
peculiarities may be crusial issue affecting on feasibility of collaboration sessions. Therefore,
there are implementation challenges and performance trade-offs relating to the STEP-based
integration solutions. Nevertheless, the key decisions made about the OpenSTEP architecture,
its design and implementation seem to be well balanced to satisfy both general-purpose
integration needs and high-performance requirements assuming real time interactions.

Figure 1. The reference architecture for STEP-compliant distributed integrated systems

The taken decisions are addressed to building the distributed integrated systems based on the
multilayer client-server architecture presented at the figure 1. By functions the reference
architecture encompasses the logical layers of persistent storing and archieving project model
data (persistence layer), accessing to the datastores via software interfaces (data access layer),
supporting multimodal collaboration sessions (business logic layer), delivering the provided
collaboration services to participating applications (communication layer), and adapting these
services to application-specific data and operations (application layer).

Collaboration
Server

Project M odel
Data Cache

Data C hecking
Service

Data Access
Service

Version Manager
Service

“Thin” Client
Application2

Persistence layer Data Access
layer

Business logic
layer

Comm unication
layer

A pplication
layer

Client
Application1

Data Cache

Persistence
solutions

Data source
adaptors

Collaboration
server

Comm unication
adaptors

A pplication
adaptors

Client
Application3

Data Cache

DataStore1
(Relational DBMS)

Buffer poo l

DataStore2
(Doc Repository)

Buffer poo l

DataStore3
(OO DBMS)

Buffer poo l

Page 5 of 12

The persistence layer is represented by datastores allowing keeping the project model data in
long-time stable storages. They may be both general-purpose relational, object-oriented or
hybrid databases, document repositories, and specialized STEP-oriented solutions. It is
desirable, but not necessary, the stores be capable to resolve data requests within project
models.

The data access level assumes the facilities that provide access to the project model data via
software interfaces. The software interfaces are suggested to be structured to suit to the logical
organization of the model repository and to the underlying information schemas. An important
feature realized at this level is a virtualization of datastores meaning that the applications can
access project information via the same interfaces independently on internal logical and physical
organization of the exploited storages.

The business logic layer is implemented by a collaboration server. Its intent consists in
supporting the collaboration sessions and providing the appropriate services to participating
applications. The server maintains own local caches for model data and is capable to execute all
the data requests from clients. Sometimes it executes the request, in turn sending requests for
the particular data items to the persistent stores. The server is an actual owner of project model
data and ultimately responsible for preserving the integrity of data and enforcing the multimodal
transaction semantics. It also controls the stores on which the permanent version of the project
data resides. In addition to the underlying data access functionality, the collaboration server can
potentially offer the other attendant services to check consistency of the project data upon
constraints imposed by formally defined information schemas, to manage data changes and
model versions, to produce visual representations of the project data, etc.

The purpose of the communication layer is to make the collaboration services offered by the
remote server available to local applications by bringing them through some communication
environment. The communication environment can be based on popular distributed middleware
platforms like RPC, CORBA, J2EE, .NET, SOAP, WebServices. The realized virtualization
principle implies that the participating client applications can interact with the collaboration
server via the same software interfaces using alternative communication solutions.

And, finally, the application layer is formed from the participating client applications. To be
involved into the distributed collaborative environment, the applications have to be adjusted to
the offered collaboration services. The applications may maintain own local caches of project
model data allowing some request processing to be immediately performed at the clients. Thin
clients can interact with the collaboration server via corresponding facilities provided by the
middleware platform and internally incorporated by the collaboration environment.

The considered reference architecture for the STEP-compliant distributed integrated systems
employs query-shipping and data-shipping approaches that are of principal value for database
management systems. Although the data-shipping approach provides both performance and
scalability improvements, there is still much debate about the relative advantages of these
models with respect to current technology trends and particular applications. The presented
reference architecture permits combining and employing both models within particularly
configured systems.

The interactions of Client Application 1 with Collaboration Server, Collaboration Server with
DataStore 2 represented by a document repository as well as Client Application 3 with
DataStore 3 that is suggested to be an object-oriented database are acomplished according to
the undelying data-shipping model. In these interactions the client components determine which
data items are needed to satisfy a given application request and obtain those items from servers
if they cannot be found locally. Data caching enables clients to retain received copies of data

Page 6 of 12

items, to accelerate navigation through them and to offload much of the server functions to the
client applications.

The interactions of “thin” Client Application 2 with Collaboration Server as well as
Collaboration Server with DataStore 1 represented by a relational database correspond to the
typical query-shipping model. The client components form requests for servers and receive
those data items immediately needed for their subsequent processing.

2.3 System configurations
A lot of particular system configurations are allowed by this reference architecture that envelop
various practical cases the applications can exchange and share project model data. According
to the architecture the applications can interact with each other through the collaboration servers
as well as through the shared central datastores. Due to virtualization of data sources the
applications request heterogeneous datastores and various collaboration services via the same
software interfaces, which provides additional flexibility in system building, configuring and
deploying. At the same time, it is admitted that some applications can combine both client and
server functionalities, thus, allowing more advanced system configurations.

The covered configurations support a lot of use cases the project model data can be exchanged
and shared by the applications. These include file-based data exchange, application-to-
application data exchange, server-based applications and multiple data repositories. For
briefness, we omit detailed discussion, addressing to comprehensive descriptions and
motivations conducted for AEC/FM industry needs in (Froese et al. 2000).

3 OpenSTEP platform

3.1 General organization
The OpenSTEP platform provides software engineering solutions to build distributed integrated
systems based on the reference architecture considered above. Therefore, the platform
organization presented follows its multilayer structure to significant degree (see the figure 2).
The platform is organized into the following component groups: an unified kernel providing
general-purpose components reused by various applications, patterns specific for collaborating
client and server applications as well as three sorts of adaptor components. These are datastore
adaptors handling the persistence of project model data, communication adaptors bringing the
data and exposing the services to client applications as well as application adaptors adjusting
particular applications to the commonly shared project model data. All the adaptors are
implemented as plug-in components that can be added, removed or substituted within already
developed and deployed applications, thus, satisfying to the declared virtualization principles.

Reusing the OpenSTEP platform solutions, a wide range of software applications can be
developed and integrated. These are collaboration servers providing functionally rich services to
share and to manage project model data, client applications employing such services via SDAI
interfaces as well as standalone applications just supporting the export/import capabilities for
files in the STEP-defined formats. The platform allows building and exploiting the “thin” client
applications bypassing intermediate SDAI components and directly addressing to the offered
collaboration services.

Page 7 of 12

Figure 2. General organization of the OpenSTEP platform

3.2 Kernel
The kernel includes general-purpose components such as metadata dictionaries, object factories,
data caches, transaction managers, search engines, data consistency checkers, and access
managers. The components are generic in the sense that their implementation is independent on
particular information schemas and specific collaboration modes. Genericity of the components
with respect to various information schemas is achieved by means of reflection mechanisms and
intensive usage of metadata. Genericity of the components in conformity to different
collaboration modes is caused by a wide family of transaction models supported by the kernel.

To simplify development of the applications, the kernel provides patterns for typical client and
server applications. The server pattern is a ready-to-use application template providing data
management services and supporting multimodal collaboration sessions. The client pattern is a
software library which should be linked into the user’s application to involve it in the distributed
integrated system. The server application is necessary multi-threaded so that it can handle
requests from multiple clients and it uses separate processes to immediately resolve them or to
redirect them to the assigned persistent datastores. Each application being linked with the client
library requests to its local client component which executes the request, in turn sending
requests for transaction support and for specific data items to the server. Each application can
access to multiple servers from a single client process. The clients and server applications are
usually executed on separate machines, but it is possible to run any number of clients and/or
servers as separate processes on the same machine.

The OpenSTEP patterns provide with full support for both single- and multi-version
concurrency control and recovery mechanisms constituting underlying ACID (atomicity,
concurrency, isolation, durability) principles for distributed computing environments
(Ramamritham, Chrysanthis 1997). They are realized by the components responsible for data
caching and transaction managing that implies locking, handling history journals,
recovery/rollback, event subscription and notification. In order to ensure that the replicated data
caching in client applications does not result in violation of transaction semantics, the

COMMON
COMPONENTS

• Metadata Dictionaries
• Data Caches
• Object Factories
• History Journals
• Event Services
• Transaction Managers
• Search Engines
• Consistency Checkers
• Access Managers

STAND-ALONE
APPLICATIONS

COMMUNICATION
ADAPTORS

CLIENT

PATTERNS

SERVER

PATTERNS

THIRD-PARTY

APPLICATIONS

CLIENT

APPLICATIONS

SERVER

APPLICATIONS

DATASTORE
ADAPTORS

MIDDLEWARE PLATFORMS
RPC, CORBA, .NET, SOAP,

Web Services

RELATIONAL & OO & XML
DBMS

DOC REPOSITORIES
OpenSTEP platform

“THIN” CLIENT
APPLICATIONS

STEP-
compliant

APPLICATION
ADAPTORS

Page 8 of 12

components handle the work on communicating and coordinating the client’s caches with the
caches located on the collaboration server.

For such purposes the components employ a transactional cache consistency maintenance
algorithm. Plenty of such algorithms have been proposed in the literature (Franklin et al. 1997).
The avoidance-based callback locking algorithm has been implemented in view of its uniformly
high efficiency with respect to a wide range of workloads. Another important reason is the
capability to update cached data in the clients as soon as the modifications have been committed
by the other transactions which is essential for real time interactions.

3.3 Transaction models
In general, transactions in STEP-compliant applications tend to access many highly granulated
data units interrelated with each other, may involve lengthy computations, and may be
interactive pausing for input from users.

STEP SDAI defines the only transaction model. It permits the transactions to have shared access
to whole model in reads mode or exclusive access to the whole model in writes mode. Such
transactions degradate the potential concurrency due to increased data contention, in that way
failing to meet the performance requirements. Such transactions are not satisfactory for
engineering activities assuming simultaneous manipulation with the whole IFC project model
data by different AEC/FM stakeholder applications.

Therefore, there is a need to exploit concurrency at lower granularity levels than the model
level, to support more flexible transaction models with varied isolation levels and to take
alternative correctness criteria not necessary reducing to traditional serializability. Running the
concurrent transactions at different granularity and isolation levels allows applications to trade
off concurrency and throughput for correctness. Lower levels increase transaction concurrency
at the risk of allowing the transactions to observe fuzzy or incorrect data. If the latter is the case,
validation routines have to be used to rollback unfortunate transactions or to correct the acquired
data after the doubtful transactions have committed. In conformity to STEP-related data such
corrections have to be applied to those data items that disturb transaction semantics or violate
consistency constraints imposed by EXPRESS schemata.

In an effort to enhance concurrency in STEP-compliant applications, the OpenSTEP platform
supports several alternative transaction models both pessimistic and optimistic ones at different
granularity levels. The supported transaction models enable the users to hold sessions in the
ways suitable for today’s engineering practices. By choosing the appropriate model the users
can achieve reasonable compromise between permanent maintaining the project data in the
consistent state and effective concurrent engineering.

The figure 3 gives a set of transaction models allowed by the OpenSTEP platform. The models
are arranged by transaction isolation levels and weakness criteria so the lower located models
provide more concurrency but permit more anomalous phenomena in execution of transactions.
These are well-known Dirty Writes, Dirty Reads, Non-Repeatable Reads, Lost Update,
Phantoms phenomena as well as Skew Reads, Skew Writes phenomena relating to constraint
violation anomalies and peculiar for optimistic multiversion concurrency control (Berenson et
al. 1995).

The Standard model is a transaction model defined by the STEP SDAI. It is based on
pessimistic locking policy (marked as “P” opposite to optimistic models marked as “O”) at the
SDAI model level (denoted as “M” opposite to “I” corresponding to the SDAI entity instance
level). The model is placed at the top of the table as most restrictive and least concurrent one. At
the bottom of the table optimistic multiversion transactions Versioned are represented. They

Page 9 of 12

suggest the separate transactions are executed independently starting from the fixed model
versions. The commitment of transactions results in forming the new versions to be merged
further by the methods resolving arisen ambiguities and compensating possible inconsistencies.

Figure 3. OpenSTEP transaction models categorized by isolation levels and concurrency degrees

Finally, the middle part of the table is represented by the transaction models that proceed at the
SDAI entity instance granularity level. The pessimistic models, namely, Serializable,
Repeatable Read, Read Committed and Read Uncommitted correspond to the isolation levels
introduced by the ANSI/ISO SQL-92 specification (ANSI 1992). These models are closely
related with the behaviour of lock managers and differ in the ways how the acquired locks on
separate entity instances and predicate locks on instance populations are released: just after
completion of the operation or at the end of the transaction. The Serializable isolation level
correponds to the classical serializability definition and avoids any phenomena from the
considered collection. The other isolations admit some phenomena which are marked in the
figure.

The Snapshot and Read Consistency models are multiversion optimistic models often used in
the popular database systems. The first model follows so-called “first-committer-wins” policy
that requires the system to remember all the updates belonging to any transaction that commits
after the start-timestamp of each active transaction. It aborts the transaction if its updates
conflict with the remembered updates by others. In the cases where short update transactions
conflict minimally and long-running transactions are likely to be read-only, this model should
give good results. The Read Consistency isolation follows “first-writer-wins” policy giving each
request the most recent data value at the time the statement began and aborting the transactions
conflicting with the remembered updates by other transactions.

The transaction models supported by the current version of the OpenSTEP platform are
specially marked by the symbol “S” in the table. The other models are planned to be supported
in the next versions.

3.4 Communication adaptors
The OpenSTEP platform provides CORBA-based implementation of the described
communication environment called a communication adaptor. As it was pointed above the
communication adaptor plays role of an integration bus bringing the services and data of the
collaboration server to the local applications and emulating the work with remote STEP SDAI
objects residing at the server as with own local ones, i.e. with their proxies in the clients.

Page 10 of 12

The client part of the adaptor is implemented as CORBA stubs and the server part — as
CORBA skeleton realizations (OMG 2004). This approach is extended to all the high-level
semantics concepts like repository, schema instance, model. For objects corresponding to low-
level semantics concepts like entity instance and instance attribute, direct copying the data is
applied using CORBA valuetypes and custom marshalling. Such implementation feature is
motivated by the need to unload the general-purpose ORB facilities from the specific work on
handling the huge number of data units.

Seemingly, this approach is applicable to the implementations of communication adaptors using
the other distributed middleware technologies. The OpenSTEP project has a target to explore
alternative technologies like .NET and Web Services in order to validate the underlying
methodology approach and software solutions. If there is a need to connect client and server
applications running on heterogeneous middleware platforms, corresponding bridges between
the platforms have to be additionally established within the communication adaptors.

3.5 Datastore adaptors
Datastore adaptors are the components responsible for persistence of the project model data in
external storages. The current implementation of the OpenSTEP platform provides an advanced
library of adaptors satisfying to wider requirements to represent, to store, and to access the
project model data defined by EXPRESS schemas. These are the adaptors to document
repositories based on STEP Part 21 and Part 28 exchange file formats as well as the adaptors to
some relational databases Oracle, PostgreSQL, MySQL.

The repository adaptors realize access to project model data contained in the Part 21 and Part 28
documents as well as provide the incorporating applications with simple export/import
capabilities. The adaptors are not capable to execute requests, therefore such processing has to
be performed by applications. Although Part 28 format allows exploiting XML database
technologies, this capability requires more careful investigations and performance estimates for
STEP benchmarks.

The database adaptors support different database design strategies, namely, late binding, early
binding and BLOB strategies. All three strategies are static in the sense that the assumed
database schemas don’t depend on the state of really stored data.

The late binding approach results in a relational table system suitable for any project model data
driven by EXPRESS information schemas. The relational system includes tables semantically
associated with STEP SDAI concepts as well as auxiliary tables intended to execute requests by
retrieving both the stored data and attended metadata. The advantage of this strategy consists in
the limited number of the relational tables and the stored procedures applicable to arbitrary
information schemas.

The early binding strategy consists in mapping each particular information schema into a
database schema and representing the project model data by the relational tables specific for the
source schema. The advantage of this strategy is more efficient execution of typical requests for
the entity instances by persistent identifiers, subtyping relations, logical predicates, association
relations. The serious drawback is the huge number of tables making inconvenient the database
administration for such complicated EXPRESS schemas as IFC releases and potentially
degradating the total performance.

The BLOB strategy follows the late binding approach resulting in the database schema
independent on particular project models with the exeption of the entity instance
representations. All the entity-specific attributes are packed and represented by binary or textual
records similar to Part 21 strings or Part 28 tags. In such strategy the requests for entity

Page 11 of 12

instances by identifiers and subtyping relations are executed efficiently on condition that
packing and unpacking of the records are accomplished by the client applications. The other
requests have to be entirely resolved by the applications.

Thus, the implemented library supports a variety of datastores and database strategies which
allow choosing those solutions that are most suitable for specific collaboration purposes and
performance reqirements. Following the undelying virtualization principle, the datastore
adaptors can be employed by target applications in any combinations.

3.6 Application adaptors
The application adaptors are intended to involve applications into distributed collaborative
environments. A standard solution is the support of SDAI interfaces via which the separate
applications can access to the project model data. The implemented library of application
adaptors realizes C++ early, late and mixed binding versions assumed by the STEP standard.
The features of these versions are mainly related to signatures of the methods supplied for entity
classes. In the early binding version these methods correspond to entity definition in the source
information schema, in the late binding version they are completely unified with respect to
different schemas, and the mixed binding version combines the methods admitted by both the
previous approaches.

Since the integrated applications typically manipulate with own data, there is a need to map the
application-specific data into commonly shared project model representation and vice versa. For
these purposes the OpenSTEP offers implementation patterns that allow handling bi-directional
maps and maintaining both application-specific and common data representations consistently.
The patterns are regarded as alternative implementations of the application adaptors in addition
to the STEP SDAI-compliant components.

4 OpenSTEP toolkit
Besides the component libraries, the OpenSTEP platform provides a CASE toolkit intended to
improve software engineering activities connected with development of data management
facilities in the ways following the early binding approach. As information schemas like IFC are
very complicated and may contain hundreds of data types and constraints imposed upon them,
the CASE tools enable the developers to significantly simplify the implementation of
corresponding components. The OpenSTEP toolkit is a family of EXPRESS translators and
accompanied utilities that unify and automate typical software engineering processes.

Concerning the discussed issues, the toolkit provides translators for generating ready-to-use
STEP SDAI-compliant application adaptors at C++ language as well as datastore adaptors to
relational databases with all the necessary concomitant schemas, packages of queries and stored
procedures. Development of EXPRESS translators into Java and C# languages and
corresponding application adaptors is also within the project tasks.

5 Conclusions
Being assembled in different combinations, the OpenSTEP solutions presented above allow
building a lot of STEP-compliant applications. These are standalone applications with
export/import facilities for STEP files, applications integrated through central databases as well
as advanced distributed systems with the multilayer client-server architecture.

Due to the achieved virtualization of data sources the applications can be flexibly configured to
encompass a variety of the use cases meaningful for AEC/FM industry needs. Allowing

Page 12 of 12

alternative communication environments and running under both UNIX and Windows
platforms, the OpenSTEP applications can be easily deployed within and across heterogeneous
information infrastructures of enterprises. Supporting multimodal collaboration, the applications
can be adjusted to specific user requirements and concurrent engineering practices.

The conducted unification of the software interfaces and components provides a relatively easy
migration path from existing single-site applications to advanced distributed collaborative
environments and has potential making for investment succession. The platform has been
successfully used to implement the OpenSTEP collaboration server and the client applications
supporting the whole family of IFC schemas. Now these solutions are free available from the
project web site http://www.ispras.ru/~step for validating and promoting into industry practice.

6 References
Adachi, Y. (2002). Overview of IFC model server framework. In European Conference of
Product and Process Modelling (ECPPM’02), eWork and eBusiness in AEC, eds. Turk, Z. and
Scherer, R.

ANSI, (1992). ANSI X3.135-1992, American National Standard for Information Systems —
Database Language — SQL, November, 1992.

Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O'Neil, P. (1995). A Critique of
ANSI SQL Isolation Levels. In SIGMOD Record Conference, San Jose, CA USA, 1995, Vol.
24, No. 2, pp. 1-10.

Franklin, M., Carey, M., Livny, M. (1997). Transactional Client-Server Cache Consistency:
Alternatives and Performance. In ACM Transactions on Database Systems, Vol. 22, No. 3,
September 1997.

Froese, T., Yu, K., Liston, K., Fischer, M. (2000). System architectures for AEC
interoperability. In Proc. International Conference on Construction Information Technology,
Reykjavik, Iceland, 2000, Vol.1, pp. 362-373.

IAI, (1999). IFC Technical Guide, International Alliance for Interoperability,
<http://www.iai.org.uk/documentation/IFC_2x_Technical_Guide.pdf>

ISO, (1994). ISO 10303: 1994, Industrial automation systems and integration — Product data
representation and exchange.

Kazi, A., Hannus, M., Laitinen, J., Nummelin, O. (2001). Distributed engineering in
construction: findings from the IMS GLOBEMEN project. In ITcon, Vol. 6 (2001), pp. 129-
148.

OMG, (2002). OMG Model Driven Architecture: How systems will be built.
<http://www.omg.org/mda>

OMG, (2004). CORBA/IIOP Specification, v3.0.3 http://www.omg.org/cgi-
bin/apps/doc?formal/04-03-12.pdf

Owolabi, A., Anumba, C., El-Hamalawi, A. (2003). Architecture for implementing IFC-based
online construction product libraries. In ITcon, Vol. 8 (2003), pp. 201-218.

Ramamritham, K. and Chrysanthis, P. (1997). Executive Briefing: Advances in Concurrency
Control and Transaction Processing. IEEE Computer Society Press, 1997.

Zarli, A., Richaud, O. (1999). Requirements and technology integration for IT based business-
oriented frameworks in building and construction. In ITcon, Vol. 4 (1999), pp. 53-74.

