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1. Introduction 

The development of the qualitative methods of investigation of dynamic systems, 
suggested by the authors, is the effective means for identification of dynamic systems. The 
results of the extensive investigations of the behaviour of linear dynamic systems and 
symmetrical system with double well potential under polyharmonic excitation are given in the 
paper. The bases of the method of qualitative investigation of oscillations were developed by 
Poincare. Application of these methods is most effective for the investigation of oscillations 
of systems with one degree of freedom. The classical approach to qualitative investigation of 
oscillations consists in finding out special points on a phase plane ( )yy &,  and definition of 
their type (node, saddle, centre or focus). Studying of special points of system explains the 
picture of trajectories of points on a phase plane (displacement, velocity) in their 
neighbourhood, however does not allow to study oscillatory processes finally.  

Phase space of dynamic systems is multi-dimensional. Each point of this space is 
characterized by not less than four co-ordinates. In particular: displacement, velocity, 
acceleration and time. Real space has three dimensions. It is more convenient for the analysis. 
We consider the phase space as limited to three dimensions, namely displacement, velocity 
and acceleration. Another choice of parameters of phase planes is also possible [1, 2]. Phase 
trajectory on a plane  is of the greatest interest. It is known that accelerations of points 
are more sensitive to deviations of oscillations from harmonic ones. 

( yy &&, )

It is connected with the fact that power criteria on it are interpreted most evidently. 
Besides, dependence  is back symmetric relative to axis  of the diagram of elastic 
characteristic. For example, in Figure 1 diagrams of change of the elastic characteristic and 
acceleration for the system with “backlash” are shown. Only the phase trajectories 

( )yy&& y

( )yy&&  
allow establishing a type and a level of non-linearity of a system.  

 

 
Figure 1. Diagrams of change of elastic properties and acceleration for 

system with “backlash”. 
 
The results of the extensive investigations of the dynamic systems behaviour under 

polyharmonic excitation are given in the paper.  
 

2. Differential equation of polyharmonic forced oscillations 
 
Let’s remark that outer excitation can contain some harmonics for wide range of 

mechanical dynamic systems. Their amplitudes might be various. The forced oscillations of 
such systems described by the non-linear differential equation of the type 
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where  is the generalized coordinate; y ε  is the damping coefficient of the system; )(yR  is 
the elastic characteristic of the system; and iji FFF ω,0 ,,  are parameters of the outer 
polyharmonic excitation. 

Let’s restrict our investigation to symmetrical biharmonic oscillations, then outer 
polyharmonic excitation has the form: 

( ) ( ) ,,,m,tcosFtcosF)t(F mm K32111 =ω+ω=    (2) 
 

 
The excitation is monoharmonic in a case if 1=m . The results of investigation for 

 are presented in the paper. We compare linear system to nonlinear symmetric 
system with double well potential (buckling). 

3,2=m

 
3. The methods of modelling 
 

The hybrid computing complexes (HCC) present the synthesis of analogue and numeri-
cal computers. They possess the fastness of the analogue and the precision of the numerical 
computers with large memory size. The HCC gives the possibility to observe visually the 
computing process during the investigations by means of oscillographs, self-recorders etc. 
Besides, it is possible to change the parameters of the investigated system in the process of 
computing. 

The investigation of the forced oscillation systems with buckling was carried out on the 
HCC produced on the base of IBM PC and analogue computer ACC-31 with the signal gen-
erator of special shape. The maximum output signal constitutes 10 V within the frequency 
range 0.001-10 kHz. The double-trace oscillograph C1-99 was used for visual observation of 
the computing process - electric signals from the major amplifier outputs. The results of the 
non-linear differential equation system integration were transmitted by means of the interface 
devices to IBM PC. 

The standard mathematical securing is used for the analogue-to-digital converter func-
tioning.  The information input into IBM PC is stored on the hard disk in the text file form. 
The spectral characteristics of the oscillating processes are obtained by means of the standard 
programme of the fast Fourier transformation. The standard graphic software package is used 
for the graphic presentation of the dynamic processes.  

 
4. Analysis of biharmonic oscillations of the linear systems 

 
The system with a linear elastic characteristic has been adopted as a reference. The 

elastic characteristic in this case has the following form: 
 

y)y(R α= ,       (3) 



The values of system parameters have been taken as follows: ;8.40 2−= sα  

;1;5.0;1.0 1−= sε 2
1 5.1;1;5.0 −= msF  , 2

3,2 5.405.0 −= msF K .  
The general forms of amplitude-frequency characteristics of system (1) are given in 

Figure 2. 
 

 
 

Figure 2. Amplitude-frequency characteristics of the linear system: 
;ε3=m ;s. 150 −= ;s. 2840 −=α 2

1 50 −= ms.F . 
 

As it is shown in Figure 2, the linear dynamic system with one degree of freedom can have 
an infinite number of resonance zones on harmonics with multiple frequencies according to 
conditions 01 ω=ωµ=ω µ ,  . K,,,, 3210=µ

The stable branches of amplitude-frequency characteristics form two frequency ranges 
with considerably different behaviour. As it is seen from the results presented in Figure 2, 
range I  is the area of appearance of combinative oscillations, range II is the area of resonance 
oscillations of the fundamental tone. 

The time processes, phase trajectories and spectral densities of the forced oscillation en-
ergy distribution at different amplitudes of the outer excitation are shown in Figure 3. 

Within the first frequency range beat-like oscillations arise. The amplitudes of fundamental 
harmonic and sub-harmonic are commensurable. The position of oscillations centre is not 
constant. That is why additional closed loops appear on the Poincare map. The additional 
closed loops occur as well on phase trajectories on a plane ( )yy &&, . It is necessary to note that 

all of them are parallel. The angle of lean of these pathways to an axis  is . y 2ω−
The amplitude of sub-harmonic oscillations is too small in a second resonance zone. The 

time processes , ( )ty ( )ty&
)y&&,

 and  look like monoharmonic. Meanwhile, the phase trajec-
tories  and (  have some peculiarities. The phase trajectories on a plane ( )  
have two additional loops on their ends. They are symmetrical to a “skeleton” curve. The 
phase trajectories on a plane  are ellipses.  Their main axes are inclined. The angle of 
lean of axes depends on a ratio of phases of the outer excitation. 

( )ty&&
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Figure 3. Time characteristics and phase trajectories:  
;ε3=m ;s. 110 −= 2

1 50 −= ms.F 2
3 250 −= ms.F : а)  resonance oscillation at the 

frequency srad.192=ω .; b) resonance oscillation at the frequency srad.396=ω . 
 

5. Analysis of biharmonic oscillations of the systems with double well potential 
 
The dynamic behaviour of such systems is described by the non-linear differential 

Duffing-type equation. The elastic characteristic has the following form: 
 

3yy)y(R β+α−= ,       (4) 
 

The values of system parameters have been taken as follows: 
;32;m = ;s;.;. 115010 −=ε ;s. 2840 −=α 227660000 −−=β sm ;

251501 150 −= .F ms.;.; ; 231 0150 −= . K msF . 
The existence of one from three stable oscillation regimes is possible depending on the 

potential energy value in the system: 
- “large” oscillations relative to all three equilibrium point;  
- “small” oscillations  relative to the upper equilibrium point;  
- “small” oscillations relative to the lower equilibrium point. 
The “large” oscillations possess the peculiarities of the rigid system behaviour, and “small” 
oscillations possess the qualities of soft systems. The character of the oscillation amplitude 
changing with the increase or decrease of the excitation frequencies is presented in Figure 4. 
The stable branches of the amplitude-frequency characteristic form five frequency ranges, for 



which the graphic of the time process, phase trajectories on planes and spectral characteristics 
are obtained. The stalls of the forced oscillation regimes from one branch to another are 
accompanied not only by the transition from “large” oscillations to “small”, or vice versa, but 
also by the appearance of the combination tones. 

 

 
 
Figure 4. Amplitude-frequency characteristics of the system with double well potential: 

;ε3=m ;s. 150 −= ;s. 2840 −=α 227660000 −−=β sm ; 2
1 150 −= ms.F ; 

. 2075 −ms.1 0=F
 

Range I ( srad30 ÷=ω
5,4,3,2( K=nn
) is the area of the laying-on of ultra-harmonic “small” 

oscillations of )ω order on the “large” oscillations of the fundamental tone 
both at increasing and decreasing of the excitation frequencies. 

Range II (  is the area of the “large” ultra-harmonic oscillations of )srad73 ÷=ω ω3  
order at the excitation frequency. 

Range III ( srad267 )÷=ω

ωω 3,

 is the area of the “large” oscillations of fundamental 
tone at the increase of excitation frequencies and the combination with the “small” ultra- and 
subharmonic oscillations of 2  and 2ω order at the excitation frequency decrease. It 
should be noted that oscillations on even harmonics are not stable because the system is sym-
metrical. The appearance of chaotic oscillations is also observed within this range.  

Range IV is the area of “large” sub-harmonic oscillations of 3ω  order both at increas-
ing and decreasing the excitation frequencies. 

Range V is the super-resonance area where only “small” oscillations exist. In this area 
the forced oscillations are possible relative to one equilibrium condition as well as to another 
non-adjacent to it. 

 
 



a) b) 

  
c) d) 

  
 

 
Figure 5. Time characteristics and phase trajectories of the system with double well 

potential ( ;3=m ;s. 150 −=ε ;s. 2840 −=α 227660000 −−=β sm ; 2
1 150 −= ms.F ; 

): а) combinative oscillations; b) chaotic oscillations; c) “large” sub-
harmonic oscillations; d) “small” oscillations. 

2−
1 0750= ms.F



The possibility of occurrence of the non-adjacent stable oscillations at the fixed 
frequency of excitation is the peculiarity of the investigated systems. The realization of one of 
the stable regimes of oscillations depends on the initial conditions in a complicated manner. 

The frequencies of “large” oscillations stall for the cases of monoharmonic and biharm-
noic excitation are different. It is important that “skeleton” curves for oscillations on funda-
mental tone, ultra- and sub-harmonic oscillations have different angles. The amplitude of os-
cillations within the frequency range III is larger then if it was a monoharmonic excitation. 

As shown in Figure 5 a-c, for all the types of “large” oscillations the phase trajectories 
are back symmetrical relative to axis  of the diagram of elastic characteristic. It allows to 
recognise the type of dynamic system.  

y

The development of qualitative methods of investigation of dynamic systems suggested 
by the authors is effective means of analysis and identification of dynamic systems. 
Simultaneous use of all three types of signals registered in time, namely displacement, 
velocity and acceleration allows to expand considerably the opportunities of traditional 
methods of investigation. The use of the given phase trajectories enables us to determine with 
a high degree of reliability the following peculiarities: 
- presence or absence of non-linear character of behaviour of a dynamic system; 
- type of non-linearity; 
- type of dynamic process (oscillations of the basic tone, combinative oscillations, chaotic 

oscillations.). 
Unlike existing asymptotic and stochastic methods of identification of dynamic systems, 

the use of the suggested technique is not connected with the use of a significant amount of 
computing procedures, and also it has a number of advantages at the investigation of compli-
cated oscillations. 
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