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The usual assumption that the processing times of the operations are known in 

advance is the strictest one in classical scheduling theory, which essentially restricts its 

practical aspects. Indeed, this assumption is not valid for the most processes arising in civil 

engineering. The paper is devoted to a stability analysis of an optimal schedule, which may 

help to extend the significance of scheduling theory for the real-world applications. The term 

stability is generally used for the phase of an algorithm at which an optimal solution of an 

optimization problem has already been found, and additional calculations are performed in 

order to study how solution optimality depends on the problem data. 

The problem under consideration is to minimize the given objective function of 

completion times of n jobs J = {1, 2, …, n} processed on m machines M = {1, 2, …, m}. All 

n jobs have the same technological route through m machines, namely, (1, 2, …, m). 

Processing time tj,k of job j ∈ J on machine k ∈ M (i.e., processing time of operation Oj,k) is 

known before scheduling. Operation preemptions are not allowed. This problem is denoted as 

F||Φ where Φ defines objective function. Let Ci,k denote the completion time of the job in 

position i on machine k ∈ M. We assume that objective function Φ(C1,m, C2,m, …¸ Cn,m) is 

non-decreasing function of job completion times. Such a criterion is called regular.  

For the job-shop problem J|n=2|Cmax with two jobs and makespan objective function 

Cmax = max{C1,m, C2,m, …, Cn,m}, the geometric algorithm was proposed by Akers and 

Friedman [1] and developed by Brucker [2], Szwarc [7], Hardgrave and Nemhauser [4]. 

Sotskov [5, 6] generalized the geometric algorithm for the problem J|n=2|Φ with any regular 

criterion. Next, we describe this algorithm for the case of a flow-shop problem F|n=2|Φ.  

Let TMj,k denote the sum of the processing times of job j ∈ J = {1, 2} on a subset of k 

machines {1, 2, ..., k} ⊆ M: TMj,k = , 1 ≤ k ≤ m. It is assumed that TM∑
=

k

i
ijt

1
, 1,0 = TM2,0 = 0. 

We introduce a coordinate system xy on the plane, and draw the rectangle H with corners (0, 

0), (TM1,m, 0), (0, TM2,m) and (TM1,m, TM2,m). In the rectangle H, we draw m rectangles Hk, k 

ε {1, 2, …, m}, with corners (TM1,k-1, TM2,k-1), (TM1,k, TM2,k-1), (TM1,k-1, TM2,k), (TM1,k, 

TM2,k). We denote south-west corner (TM1,k-1, TM2,k-1) of the rectangle Hk as SWk, north-
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west corner (TM1,k-1, TM2,k) as NWk, south-east corner (TM1,k, TM2,k-1) as SEk, and north-

east corner (TM1,k, TM2,k) as NEk. Obviously, point (0, 0) is SW1 and point (TM1,m, TM2,m) is 

NEm. We will use Chebyshev’s metric, i.e., the length d[(x, y), (x’, y’)] of a segment [(x, y), 

(x’, y’)] connecting points (x, y) and (x’, y’) in the rectangle H is calculated as follows:  

d[(x, y), (x’, y’)] = max{|x – x’|, |y – y’|}. 

The length d[(x1, y1), (x2, y2), …, (xr, yr)] of a continuous polygonal line [(x1, y1), (x2, y2), …, 

(xr,yr)] is equal to the sum of the lengths of its segments. 

Since Φ(C1,m, C2,m) is a non-decreasing function, the search for the optimal schedule 

can be restricted to a class S of schedules in which at any time of the interval [0, max{C1,m, 

C2,m}] at least one job is processed. A schedule from set S can be suitably represented within 

the rectangle H on the plane xy as a trajectory (continuous polygonal line) τ = [SW1, (x1, y1), 

(x2, y2), …, (xr, yr), NEm] where either xr = TM1,m or yr = TM2,m. Let a point (x, y) belong to 

the trajectory τ and let d be the length of the part of trajectory τ from the point SW1 to the 

point (x, y). The coordinate x (coordinate y) of point (x, y) defines the state of processing job 

1 (job 2) as follows. If SWu ≤ x ≤ SEu and SWv ≤ y ≤ NWv, u ∈ M, v ∈ M, then job 1 (job 2) 

is completed on the machines 1, 2,…, u-1 (on the machines 1, 2,…, v-1) at time d. Moreover 

at time d, job 1 (job 2) has been processed on machine u (machine v) during x - SWu (during 

y - SWv) time units.  

Since a machine cannot process more than one job at a time and operation preemptions 

are not allowed, each straight segment [(x, y), (x’, y’)] of a trajectory τ may be either  

• horizontal (when only job 1 is processed) or  

• vertical (when only job 2 is processed) or  

• diagonal with slope of 450 (when both jobs are processed simultaneously).  

It is clear that a horizontal segment (vertical segment) can only pass along south 

boundary (west boundary) of the rectangle Hk, k ∈ M, or along north (east) boundary of the 

rectangle H. The diagonal segment of trajectory τ can only pass either outside rectangle Hk or 

through point NWk or point SEk.  

Sotskov [5] proven that problem F|n=2|Φ of finding the optimal schedule or, in other 

words, of finding the optimal trajectory, can be reduced to the shortest path problem in the 

digraph (V, A) constructed by the following Algorithm 1. Vertex set V of the digraph (V, A) 

is a subset of set V0 = {SW1, NEm}∪{NWk, SEk : k∈M}∪{(xk, TM2,m), (TM1,m, yk) : k∈M}.  

 2



Algorithm 1 

1. Set V = {SW1, SE1, NW1, NEm} and A = {(SW1, SE1), (SW1, NW1)}.  

2. Take vertex (x, y) ∈ V \ {NEm} with zero outdegree. If (x, y) = SEk, go to step 3. If (x, y) = 

NWk, go to step 4. If set V \ {NEm} has no vertex with zero outdegree, STOP.  

3. Draw a diagonal line with slop 450 starting from vertex SEk until either east boundary 

[(TM1,m, 0), NEm] of the rectangle H is reached in some vertex (TM1,m, yk) or open south 

boundary (SWh, SEh) of the rectangle Hh, k+1 ≤ h ≤ m, is reached. In the former case, set 

V: =V ∪ {(TM1,m, yk)} and A: =A ∪ {(SEk, (TM1,m, yk)), ((TM1,m, yk), NEm)}. In the latter 

case, set V: =V ∪ {SEh, NWh} and A : =A ∪ {(SEk, SEh), (SEk, NWh)}. Go to step 2.  

4. Draw a diagonal line with slope 450 starting from vertex NWk until either north boundary 

[(0, TM2,m), NEm] of the rectangle H is reached in some vertex (xk, TM2,m) or open west 

boundary (SWh, NWh) of the rectangle Hh, k+1 ≤ h ≤ m, is reached. In the former case, set 

V: = V∪{(xk, TM2,m)} and A: = A∪{(NWk, (xk, TM2,m)), ((xk, TM2,m), NEm)}. In the latter 

case, set V: = V∪{SEh, NWh} and A: = A∪{(NWk, SEh), (NWk, NWh)}. Go to step 2. 

In order to find the optimal path (optimal schedule) for the problem F|n=2|Φ we can use 

the following Algorithm 2, where the length of arc ((x, y), (x’, y’)) ∈ A is assumed to be 

equal to the length of the polygonal line constructed by Algorithm 1 with origin in the point 

(x, y) and with end in the point (x’, y’). 

Algorithm 2 

1. Construct the digraph (V, A) using Algorithm 1 and find all border vertices in the digraph 

(V, A), i.e., the vertices (x, y) either of the form (xk, TM2,m) or of the form (TM1,m, yk).  

2. Construct the set of trajectories corresponding to the shortest paths in the digraph (V, A) 

from the vertex SW1 to each of the border vertices.  

3. Find an optimal trajectory (optimal path in (V, A)) in the set constructed at step 2 that 

represents a schedule with minimal value of the objective function Φ.  
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Sotskov [6] proven that both problems F|n=3|Cmax and F|n=3|  are binary NP-

hard. It was also proven that Algorithm 2 takes O(m log m) time (see Sotskov [5, 6]). In what 

follows, we consider stability of an optimal schedule with respect to possible variations of the 

given vector t = (t

∑
=

n

i
miC

1
,

1,1, t1,2, … , t1,m, t2,1, t2,2, …, t2,m) of operation processing times.  

Let (Vt, At) denote the digraph (V, A) constructed by Algorithm 1 for the problem 

F|n=2|Φ with vector t of operation processing times. Let Ρt be set of all shortest paths from 

vertex SW1 to the border vertices in the digraph (Vt, At). As follows from Algorithm 1, the 

same path may belong to sets Ρt constructed for different vectors t of operation processing 

times (since for any vector t we have Vt ⊆ V0). Notation su(t) will be used for a schedule 

defined by path τu ∈ Ρt. The objective function value calculated for schedule su(t) will be 

denoted as Φ(su(t)).  

A schedule is called active if none of the operations can start earlier than in this 

schedule, provided that the remaining operations will start no later. It is known (see Giffler 

and Thompson [3]) that a set of active schedules is dominant (i.e., it contains at least one 

optimal schedule) for any regular criterion. The following claim may be proven by induction 

with respect to number of machines m.  

Theorem 1: If Ρt is set of all shortest paths from vertex SW1 to the border vertices in the 

digraph (Vt, At), then set Ρt defines all active schedules for the problem F|n=2|Φ with 

operation processing times defined by vector t. 

 

Let R2m be space of non-negative 2m-dimensional real vectors t = (t1,1, t1,2, … , t1,m, 

t2,1, t2,2, …, t2,m) with Chebyshev’s metric  

d(t, t0) = max{|ti,j – t | : i ∈ {1, 2}, j ∈ {1, 2, …, m}}  0
, ji

where t0 = ( t  ∈ R,0
1,1 ),...,,,,..., 0

,2
0

2,2
0

1,2
0
,1

0
2,1 mm ttttt 2m. Let path τu ∈ Ρt be optimal for the problem 

F|n=2|Φ with operation processing times defined by vector t. If for any small positive real 

number ε > 0 there exists vector t0 ∈ R2m such that d(t, t0) = ε and path τu is not optimal for 

the problem F|n=2|Φ with operation processing times defined by vector t0, then optimality of 

path τu is not stable. Otherwise, optimality of path τu is stable.  

Let δ(τu) denote the set of all operations Oj,k, j ∈ {1, 2}, which are processed by 

machine k ∈ M in such a way that at the same time job i = 3 – j waits since operation Oi,k 
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(which is ready to be processed) needs the same machine k. Obviously, if O1,k ∈ δ(τu) 

(respectively, O2,k ∈ δ(τu)), then trajectory defined by path τu includes a horizontal segment 

[(x, y), SEk] (vertical segment [(x, y), NWk]).  

 

Theorem 2: Let path τu ∈ Ρt be optimal for the problem F|n=2|Φ where Φ is continuous 

increasing function of job completion times. Optimality of path τu is stable if and only if set Ρt 

does not contain another optimal path for the problem F|n=2|Φ with operation processing 

times defined by vector t. 

Proof: Sufficiency. Since set of active schedules is dominant for any regular criterion, 

it is sufficient to compare schedule su(t) with other active schedules. So due to Theorem 1, we 

have to compare path τu with other paths τv ∈ Ρt, τv ≠ τu. Since path τu is unique optimal path, 

we get inequality Φ(sv(t)) - Φ(su(t)) > 0. Since Φ is increasing function, in order to overcome 

the difference Φ(sv(t)) - Φ(su(t)) for the new vector t0 of operation processing times, we have 

to increase the processing times for operations from the set δ(τu) or (and) to decrease the 

processing times for operations from the set δ(τv). Since Φ is continuous function, we can 

reach equality Φ(sv(t0)) - Φ(su(t0)) = 0 only if d(t, t0) > 0. Thus, optimality of path τu is stable.  

Necessity. Let equality Φ(sw(t)) = Φ(su(t)) hold. Since optimal paths τw and τu are 

different, either set δ(τw) \ δ(τu) or set δ(τu) \ δ(τw) is not empty. In the former case (we call it 

as case (a)), there exists at least one operation Oj,k ∈ δ(τw) \ δ(τu) such that trajectory defined 

by path τw includes some segment of a boundary of rectangle Hk while trajectory defined by 

path τu does not include a segment of this boundary. In the latter case (we call it as case (b)), 

there exists at least one operation Oi,r ∈ δ(τu) \ δ(τw) such that trajectory defined by path τu 

includes some segment of a boundary of rectangle Hr while trajectory defined by path τw does 

not include a segment of this boundary. Note that Φ is increasing function of job completion 

times. Therefore, if in the case (a) we subtract any small positive value ε > 0 from the value 

tj,k with remaining the same all other components of the vector t, then we get such a vector t0 

of operation processing times that inequality Φ(τw(t0)) < Φ(τv(t0)) holds. On the other hand, if 

in the case (b) we add any small positive value ε > 0 to the value ti,r with remaining the same 

all other components of the vector t, then we get such a vector t* of operation processing 

times that inequality Φ(τw(t*)) < Φ(τv(t*)) holds. Since value ε can be as small as desired, we 

conclude that optimality of path τu is not stable in both cases (a) and (b). 

g 
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It is easy to convince that for the above sufficiency proof we can replace increasing 

function Φ by non-decreasing function Φ. Note that the most objective functions considered 

in scheduling theory are continuous non-decreasing functions of job completion times, e.g., 

makespan Cmax, total completion time , maximal lateness L∑
=

n

i
miC

1
,

−miC ,,0

(max{sign

max = max{Ci,m – Di : i ∈ 

J} and total tardiness  where D∑∑
==

∈=
n

i
i

n

i
mi JiDT

11
, }:max{

,0
1

,

n

i
miC −∑

=

i denotes the given due date 

for a job i. However, function Φ =  equaled to the number of late 

jobs is not continuous, and so sufficiency of Theorem 2 may be violated in the break points of 

such a function Φ.  

})iD

To test whether optimality of the path τu ∈ Ρt is stable takes O(m log m) time. Indeed, 

we can use Algorithm 2 for the vector t of the operation processing times and construct 

optimal paths with different border vertices. Number of the optimal paths which have to be 

tested due to Theorem 2 is restricted by the number of border vertices asymptotically 

restricted by O(m).  
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