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THE EXACT SOLUTION OF THE FREE PRE-STRESSED BAR OSCILLATIONS.

1. INTRODUCTION.

   In this paper the results of the investigations of the free oscillations of the pre-stressed
flexible structure elements are presented . Two cases of the central preliminary stress are
investigated : without  intermediate fastening of the tie to the flexible element and with  the
intermediate fastening  in the middle of the element length. The given physical model can be
applied to the flexible sloping shells and arches, membranes, large space antenna fields
(besides flexible elements).
   The peculiarity of these systems is the possibility of the non-adjacent equilibrium form
existence at the definite relations of  the physical parameters . The transition from one stable
equilibrium form to another, non-adjacent form, may be treated as jump. In this case they are
called systems with buckling  or the systems with two potential «gaps». These systems
commenced the new section of the mathematical physics - the theory of chaos and strange
attractors.

2. THE DIFFERENTIAL EQUATIONS  OF THE FREE OSCILLATIONS.

   Suppose the rectangular bar  of the length l  has the constant cross-section and the ties are
fastened  in the center of gravity of the end section. The bar  is hinged-rested. The  free
oscillations  of such  bars are described  [1-3] by the non-linear  differential  equation of
Duffing type
                       &&y y y− ⋅ + ⋅ =α β 3 0  .                                                                                    (1)
   Here  y - is the generalized coordinate of the cross displacement  of the midpoint  of the bar
length. The coefficient  values of this equation α and β are shown in Table 1
.
The values of the parameters α and β.
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   The following  indications are  introduced into Table 1: N * - the tie tension ; Nn
E  - the

critical force of n - mode of the bar axis stability loss,  equal to ( )N EI n ln
E = ⋅ ⋅π

2
; EI and

EF - the bar rigidities for the bending and compression, correspondingly; m - the mass of the
bar linear meter.
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   Regarding the sign rule at α≤ 0 adopted in equation (1) the system  possesses one stable
equilibrium condition  y=0. At α > 0  the system possess three non-adjacent  equilibrium
conditions, one of them y1=0 is instable,  and two others  y2,3≠0 are stable.
  As it is shown in Table 1, the critical value of the force in the tie depends on the conditions
of its fastening to the bar. Thus, without the intermediate fastening point we see N Ncr n

E* >  ,
and with the intermediate fastening point N Ncr n

E* > ⋅4  . Therefore , the introduction of the
intermediate tie fastening  point  increases  the value of the critical force 4 times more.

3. THE FREE OSCILLATION ANALYSIS.

The non-linear  flexible force R y y y( ) = − ⋅ + ⋅α β 3 has the symmetry axis in point a and two
zero values in points b and c (Fig .1,a). Solving  the equation ( )R y = 0  , we find out  the
conditions of these points :

               ya = 0    ; yb =
α
β

;     yc = −
α
β

  .                                                                  (2)

   The investigation of these  condition stability according to Lagrange - Dirichlet  theorem
shows:
- point ya=0 corresponds to the instable equilibrium condition - a particular point of the
«saddle»   type;
- points yb = α β  and yc = − α β  corresponds to the stable equilibrium  conditions -
particular points of the «center»  type.
   As it is known, the potential energy of  U(y) system is equal

                    ( )U y y y U= − ⋅ + ⋅ +
α β
2 4

2 4
0    .                                                                        (3)

The diagram of the U(y) dependence is shown in Fig.1,b. It points to the existence  of two
potential  gaps in the points c and b. Suppose the initial level of potential energy is U0=0. In
this case two other roots of U(y)=0 equation are

                     yd =
⋅2 α
β

     ;       ye = −
⋅2 α
β

   .                                                                (4)

If the initial level of potential energy U1 < U0 (Fig.1,b) the trajectories 1-2-3-4 around  the
particular point  b or around the particular point c (Fig.1.c) correspond   to the free
oscillations on the phase plane ( , &)y y . This type of the oscillations was called «small» in [2]
for the first time. Their amplitude is in the interval 0 22< < ⋅As α β . The initial level of
potential energy U 0 0= conditions the trajectory  around the particular points b and c
crossing in particular point a  (Fig.1,c). In the theory of non-linear oscillations it is called
separatrix. If  the initial  level of potential energy U2 > U0 (Fig.1,b), the trajectory enveloping
all three equilibrium conditions  of  system  a  , b and c (Fig.1,c) corresponds to the free
oscillations on the phase plane ( , &)y y  . This type of oscillations was called  «large» for  the
first  time  also in [2]. Their  amplitude is Al > ⋅2 α β .
   The whole energy storage of system     H  is

                  ( )H U A A A= = − ⋅ + ⋅
α β
2 4

2 4   .                                                                      (5)

   Therefore, integrating the input equation (1) we find out



             
( )][

dt
dy

H U y
=

⋅ −2
 .                                                                                        (6)

3.1. «SMALL»   OSCILLATIONS.

   The trajectory 1-2-3-4  corresponds to the «small» oscillations on the phase plane ( , &)y y ,
i.e. this  trajectory  is the motion  with two equal half-periods T1-3 and  T3-1 , consisting of  two
unequal quarters of the periods T1-2≠ T2-3   and  T3-4  ≠ T4-1  . That’s  why, unlike [3], where
T=4T1-3    , we determine two quarters of the periods T1-2   and  T2-3 . For that purpose we use
the relation (6). Thus,

) )(
T dy

y A y A
A

yb

1 2
2

1
2 4

1
4

1
2

2 4

1
− = ⋅

−
− + ⋅ −


∫ α β

;            0 < <y α
β

 ,                        (7)

where A1- is the oscillation  semispan amplitude on the branch  ab (Fig.1). The given integral
(7) can be easily reduced to the canonical Legendre  form
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where τ1 - is characteristic of the non-linear system equal  toτ β α1 1
2= ⋅ A ; F(k1,ϕ) - is

incomplete elliptic integral of the first kind ; k1 - is the elliptic integral module , equal to
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   The elliptic integral amplitude is ϕ = arccos ( )τ1 2
  The time of the motion along the branch  2-3, i.e. the second  quarter of the period  of
«small» oscillations T2-3       is determined  analogically
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   The attention should be drawn to the parametersτ 1  and  τ 2  change intervals :
                 0 11< <τ          ;           1 22< <τ  .                                                                (12)



  It should be also mentioned that quite definite value τ 2  corresponds to any value τ 1  as a

result of the equality [2]
 τ τ1 2 2+ =  .                                                                                                   (13)

   Therefore, the full period of  «small» oscillations is
( )T T Ts = ⋅ +− −2 1 2 2 3  .                                                                                       (14)

3.2 «LARGE»  OSCILLATIONS.

   The period  of  «large»  oscillations  in symmetric non-linear system (1) consists of four
equal quarters of the period. It is determined by analogy with the above-mentioned method
for the quarter of the period of «small» oscillations. In particular ,

               
( ) ( )

1
4

1
2

2 4
2 2 4 40

⋅ = ⋅
− ⋅ − + ⋅ −

∫T
dy

A y A y
l

l l

Al

α β
 ,                                             (15)

   where Al- is the amplitude of «large» oscillations.
   After the reducing of this elliptic integral
to the canonical Legendre form for the
period of «large» oscillations we receive
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where τ - is the parameters of  non-linear
system equal to τ β α= ⋅ Al

2 ;  K(k) - is the
complete elliptic integral of the first kind
with module k equal to
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  The received here exact solutions
(8),(10),(14) and (16) for the free
oscillation periods of the system (1) are
graphically shown in Fig 1,d as the
amplitude-frequency dependence A( )ω ,
whereω  - is the circular natural frequency
of the system (1).

Fig.1. The   graphics    of     the    system (1)
parameter   dependence  on  the   oscillation
amplitude: a-elastic force R(y); b- potential
energy  of  the  system  U(y);  c - oscillation
velocities  &y ;  d - oscillations  frequencyω .



3.CONCLUSION.

(i) The analysis of the solutions (8),(10) and (16) confirms the received for the first time by
the author and given in [1],[2] effect of the oscillation  period doubling of the system (1)
during the transition from the  «small» oscillations relatively center  b (or c ) to the «large»
relatively all three equilibrium conditions  a ,b and c .
(ii) The character  of the frequency (period) dependence on the free oscillation amplitudes of
the non-linear system (1) (Fig.1,d) also confirms the received earlier [1],[2] result of the
duality of the system (1) behaviour :
-«small» oscillations possess the qualities of soft system;
-«large» oscillations possess the qualities  of rigid system.
(iii) The «small» oscillation natural frequency changing, depending on the oscillation
amplitudes, is in the internal  0 2≤ ≤ ⋅ω αs  . Here the frequency takes zero value at the
amplitude values Aa and Ad (or Aa   and Ae ); the frequency takes maximum value ωs = 2 ⋅α
at the amplitude value A → 0  near point b .The «large»  oscillation natural frequency
changes  in the interval 0 < ≤ ∞ωl . Here Al > ⋅2 α β    is also observed .
(iiii) The influence of the tie intermediate fastening doesn’t  introduce qualitative changes in
the behaviour of the investigated system (1). It only increases ( four times ) the critical value
of the preliminary tension force.
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