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Abstract

From a macroscopic point of view, failure within concrete structures is characterized by
the initiation and propagation of cracks. In the first part of the thesis, a methodology for
macroscopic crack growth simulations for concrete structures using a cohesive discrete crack
approach based on the extended finite element method is introduced. Particular attention is
turned to the investigation of criteria for crack initiation and crack growth.

A drawback of the macroscopic simulation is that the real physical phenomena leading to the
nonlinear behavior are only modeled phenomenologically. For concrete, the nonlinear behavior
is characterized by the initiation of microcracks which coalesce into macroscopic cracks. In
order to obtain a higher resolution of this failure zones, a mesoscale model for concrete is
developed that models particles, mortar matrix and the interfacial transition zone (ITZ)
explicitly. The essential features are a representation of particles using a prescribed grading
curve, a material formulation based on a cohesive approach for the I'TZ and a combined model
with damage and plasticity for the mortar matrix.

Compared to numerical simulations, the response of real structures exhibits a stochastic
scatter. This is e.g. due to the intrinsic heterogeneities of the structure. For mesoscale models,
these intrinsic heterogeneities are simulated by using a random distribution of particles and
by a simulation of spatially variable material parameters using random fields.

There are two major problems related to numerical simulations on the mesoscale. First of all,
the material parameters for the constitutive description of the materials are often difficult to
measure directly. In order to estimate material parameters from macroscopic experiments,
a parameter identification procedure based on Bayesian neural networks is developed which
is universally applicable to any parameter identification problem in numerical simulations
based on experimental results. This approach offers information about the most probable set
of material parameters based on experimental data and information about the accuracy of the
estimate. Consequently, this approach can be used a priori to determine a set of experiments
to be carried out in order to fit the parameters of a numerical model to experimental data.
The second problem is the computational effort required for mesoscale simulations of a full
macroscopic structure. For this purpose, a coupling between mesoscale and macroscale model
is developed. Representative mesoscale simulations are used to train a metamodel that is
finally used as a constitutive model in a macroscopic simulation. Special focus is placed on
the ability of appropriately simulating unloading.
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Kurzfassung

Makroskopisch betrachtet kann das Versagen von Beton durch die Entstehung und das Wachs-
tum von Rissen beschrieben werden. Im ersten Teil der Arbeit wird eine Methode zur Si-
mulation der makroskopischen Rissentwicklung von Beton unter Verwendung von kohésiven
diskreten Rissen basierend auf der erweiterten Finiten Elemente Methode vorgestellt. Beson-
dere Bedeutung liegt dabei auf der Untersuchung von Kriterien zur Rissentstehung und zum
Risswachstum.

Ein Nachteil von makroskopischen Simulationen liegt in der nur phdnomenologischen Beriick-
sichtigung der tatsédchlichen Vorgénge. Nichtlineares Verhalten von Beton ist durch die Entste-
hung von Mikrorissen gekennzeichnet, die bei weiterer Belastung zu makroskopischen Rissen
zusammenwachsen. Um die Versagenszone realitdtsnah abbilden zu konnen, wurde ein Meso-
skalenmodell von Beton entwickelt, welches Zuschlige, Matrix und Ubergangszone zwischen
beiden Materialien (ITZ) direkt abbildet. Hauptmerkmal sind die Simulation der Zuschlége
nach einer Sieblinie, eine kohésive Materialformulierung der I'TZ und ein kombiniertes Model
aus Schiadigung und Plastizitéit fiir das Matrixmaterial.

Im Gegensatz zu numerischen Simulationen ist die Systemantwort reeller Strukturen eine un-
scharfe Grofle. Dies liegt u.a. an Heterogenitdaten innerhalb der Struktur, die im Rahmen der
Arbeit durch eine zufillige Verteilung der Zuschldge und {iber rdumlich variierende Material-
parameter unter Verwendung von Zufallsfeldern simuliert werden.

Zwei Hauptprobleme sind bei den Mesoskalensimulationen aufgetreten. Einerseits sind Ma-
terialparameter auf der Mesoskala oft schwer zu bestimmen. Deswegen wurde eine Methode
basierend auf Bayes neuronalen Netzen entwickelt, die eine Parameteridentifikation unter
Verwendung von makroskopischen Versuchen erlaubt. Diese Methode ist aber universell an-
wendbar auf alle Parameteridentifikationsprobleme in numerischen Simulationen basierend
auf experimentellen Daten. Der Ansatz liefert sowohl Informationen iiber den wahrscheinlich-
sten Parametersatz des Models zur numerischen Simulation eines Experiments als auch eine
Einschétzung der Genauigkeit dieses Schétzers. Die Methode kann auch verwendet werden,
um a priori einen Satz von Experimenten auszuwihlen der notwendig ist, um die Parameter
eines numerischen Modells zu bestimmen.

Ein zweites Problem ist der numerische Aufwand von Mesoskalensimulationen fiir makrosko-
pische Strukturen. Aus diesem Grund wurde eine Kopplungsstrategie zwischen Meso- und
Makromodell entwickelt, bei dem repréasentative Simulationen auf der Mesoebene verwendet
werden, um ein Metamodell zu generieren, welches dann die Materialformulierung in einer
makroskopischen Simulation darstellt. Ein Fokus liegt dabei auf der korrekten Abbildung von
Entlastungen.
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Chapter 1

Introduction

1.1 Motivation

The design of engineering structures is influenced by two conflictive principals - on the one
hand, it should be safe, and, on the other hand, economical. As a consequence, a realistic
and often nonlinear simulation of the structure is required for an optimization with respect
to the production costs while still guaranteeing its safety.

In order to perform realistic nonlinear simulations, appropriate constitutive formulations for
the applied materials have to be developed. The general approach is phenomenologically
motivated. The idea is to derive a constitutive framework and then fit the free parameters
to experimental data. Examples for this approach are e.g. Mises plasticity for metals or a
damage formulation for concrete. These models often accurately describe the response of a
macroscopic structure.

A drawback of these models is that material failure is only described phenomenologically
without consideration of the real physical phenomena leading to failure. On a macroscopic
level, the material is often assumed to be homogeneous. An example - extensively discussed
in this thesis - is the simulation of concrete. In practical applications, concrete is modeled as
a homogeneous material. Complex constitutive formulations have been derived in order to
characterize its nonlinear behavior. In reality, the nonlinear behavior of concrete is charac-
terized by the formation of microcracks which coalesce and form a macroscopic crack. The
initiation of these microcrack is often triggered by the heterogenous structure of concrete on
the mesoscale, where particles and matrix material can be distinguished. Furthermore, the
weak zone in concrete is the interfacial transition zone as the boundary layer between matrix
material and particles, which significantly influences the macroscopic response. Simulating
concrete on the mesoscale allows a realistic representation of these phenomena in the numer-
ical model. It naturally enables the explanation of certain experiments with a numerical
model, e.g. a uniaxial tensile test that localizes without a prescribed weak point.

In contrast to experimental data, the observed response of a numerical model is, in general,
deterministic. As a consequence, the stochastic scatter present in experimental data as well
as in reality cannot be explained by the model. Engineers have tried to consider these effects
by the introduction of safety factors that, on the one hand, reduce the material properties
and, on the other hand, increase the loading. However, it is not always straightforward to
decide which is the worst case scenario, i.e. which parameters have to be increased to obtain
the highest failure probability. Furthermore, material parameters in real structures do not
only vary between two similar structures of the same material, but there is also a spatial
variability. Considering these effects in a numerical model enables the engineer to better
approximate the reality by a numerical model.
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Numerical simulations always require a model with a certain number of free parameters. In
general, these parameters are determined from simple experimental tests, and afterwards,
the same set of parameters is applied to the complex structural problem. An example is the
determination of the compressive strength of concrete using a small cylinder or cube. In many
cases, these free parameters have a real physical meaning and can directly be related to the
experimental data. However, there are many problems, where the direct relation between free
parameters and experimental results is not obvious. This problem is even more prominent,
if several parameters interact to give the response, e.g. a test that is not uniaxial or in
multiscale simulations, where often the parameters on the lower scale cannot be measured
directly and only macroscopic experiments are available to determine the parameters. In this
context, an automatic parameter identification procedure is required.

Another problem related to mesoscale simulations is the high computational effort. Increasing
the resolution of the numerical model to lower scales, the degree of detail in the model
increases and, at the same time, the complexity of the numerical model. A discretization of
realistic macroscopic structures with finite elements on the mesoscale will certainly exceed
the capabilities of the hardware currently available. As a consequence, methods have to be
developed that couple the scales, thus allowing for the representation of lower scale effects
while still keeping the computational effort manageable.

1.2 Outline and aims of the present work

The principal goal of this work is to increase the computational accuracy of numerical sim-
ulations of concrete. During the course of the work it was realized that many substantially
different problems have to be solved in order to approach the global goal.

Starting from a macroscopic perspective, a discrete crack approach is applied for the simu-
lation of crack growth in concrete structures. In this context, the extended finite element
method (XFEM) is used, which allows the representation of material discontinuities and
cracks independent of the underlying finite element mesh. As a consequence, remeshing
in an adaptive crack growth simulation is avoided. The primary problem in discrete crack
simulations is the correct determination of criteria that describe crack initiation and crack
propagation, which, on the one hand, includes criteria to decide whether an existing crack
grows and, on the other hand, in which direction a crack propagates. A crack growth criteria
based on the minimum potential energy is developed and compared to other criteria on the
basis of several examples.

In a second step, the macroscale model is refined and a mesoscale model is developed, which
explicitly considers particles and mortar matrix as separate constituents according to a pre-
scribed grading curve. Initially, the discrete crack concept of the macroscale was supposed to
be applied on the mesoscale. It was realized that, due to the heterogeneities in the mesoscale,
the number of discrete cracks was large and, especially, that the criteria for an adaptive cal-
culation of evolving cracks are not suitable for heterogenous materials. As a consequence, a
formulation based on a combined damage-plasticity approach is developed to simulate the
nonlinear behavior of the matrix material, whereas a cohesive crack concept is used for the
interfacial transition zone.
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An additional aim of the work is to represent the stochastic scatter of experiments within the
numerical model. This can be simulated by the intrinsic random character of the mesoscale
model with a varying particle distribution. Additionally, spatially variable material parame-
ters are introduced and modeled using correlated random fields. For this purpose, a discretiza-
tion of random fields using the Fast Fourier Transform has been adapted to mesoscale models,
and the influence of individual parameters such as correlation length or particle distribution
on the response are investigated.

Another problem of the mesoscale models became apparent when the numerical models were
to be verified with experimental results. Several mesoscale parameters have a similar influence
on the macroscopic response. As a consequence, an automatic procedure for the parameter
identification is required. For that purpose, Bayesian neural networks are used. An extension
to multiple outputs and a full covariance matrix to describe the interaction between the errors
in the approximation of multiple outputs is developed. This approach allows not only the
determination of a set of parameters that fits best the experimental results, but it naturally
includes predictions on the accuracy of the estimate. Furthermore, the methodology enables
the design of a set of experiments to be performed in order to accurately determine the set
of parameters in a numerical model.

Finally, a coupling procedure between mesoscale and macroscale model is introduced to re-
duce the computational effort of a full mesoscale simulation. A set of metamodels built up
from neural networks and support vector machines is trained, based on a set of mesoscale
simulations, to predict the response of the mesoscale model. This homogenized response is
used as a constitutive formulation in a macroscale model.
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Chapter 2

Discrete crack models

2.1 Introduction and state of the art

In a standard finite element formulation, discrete cracks are incorporated in the geometry
formulation. The cracks are considered as external or internal boundaries and are aligned with
the element edges after the meshing. This requires, for an adaptive crack growth simulation,
a remeshing procedure each time a crack progresses. For large models, this procedure is
computationally expensive. Furthermore, it might be impossible to fulfill certain conditions
as e.g. a minimum element size or a maximum distortion of the elements in situations, where
a crack passes close to the boundary or when two cracks cross each other.

The simplest way of incorporating the cohesive discrete crack approach into a finite ele-
ment formulation is to use zero-thickness interface elements [1]. In general, this requires the
remeshing of the finite element mesh, although for situations where the crack path is known
in advance this can be avoided. An alternative is to insert interface elements between all ele-
ment edges [2], but this causes mesh dependence of the results. The extended finite element
method (XFEM) offers an elegant tool to model cracks within a finite element without the
requirement of remeshing [3]. The inclusion of cohesive forces transmitted through the cracks
is straightforward and does not require the addition of interface elements [4, 5.

An important point in discrete crack growth simulations is the criteria for determining the
direction, in which an existing crack progresses. One widely used criterion is the maximum
circumferential tensile strength criterion proposed by Erdogan [6]. Other common criteria are
the maximum energy release rate [7] or the minimum strain energy density criteria [8]. These
criteria are based on the local solution close to the crack tip. Based on the assumptions of
linear elastic fracture mechanics, these criteria can be related to the local stress field at the
crack tip. In order to decrease the influence of the near tip solution, which is less accurate
than the far field solution, integral methods [9, 10] have been developed or nonlocal stresses
at the crack tip are used [4].

In this chapter, the general features of the XFEM approach are presented. Afterwards, an
automatic adaptive procedure for crack growth simulations is introduced. Several criteria for
the direction of a crack extension are discussed and compared for several examples.
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Chapter 2 Discrete crack models 5

2.2 Representation of cracks and material interfaces using the XFEM
approach

2.2.1 Introduction

The application of the extended finite element Method (XFEM), proposed by [3, 11], allows
to describe cracks and material interfaces independently of the underlying mesh. This offers
the possibility to perform crack growth simulations without the requirement for remeshing
within each adaptation step. Furthermore, additional information concerning the functional
approximation of the solution can be incorporated, e.g. close to a crack tip an ansatz based
on linear elastic fracture mechanics (LEFM) describing the singularity at the crack tip can be
used. In the case of a heterogeneous model with different material formulations, this approach
simplifies the meshing procedure, since a regular mesh - as long as the outer boundary is
regular - can be used, and the material interfaces are represented using the XFEM approach.
However, the approach has the disadvantage that additional degrees of freedom are introduced.
Consequently, the numerical effort for the solution procedure increases. An additional area
of application are problems with a complex geometrical structure, e.g. materials where the
heterogeneous microstructure is explicitly modeled, and, consequently, the meshing procedure
is difficult. The XFEM approach in connection with the level set approximation offers a
possibility to circumvent this mesh generation problem.

2.2.2 Displacement interpolation

In the XFEM approach, the standard displacement interpolation at a point @ is enriched
with an additional set of basis functions Wy:

Ntot Nenr N
ux) =Y Mxu+ Y > Wi(x)¢s (x (2.1)
=1 7=1 k=1

where ¢5'¢(x) and ¢$""(x) are polynomial shape functions with a local support which satisfy
the partition of unity:

Zcb“d( ) = Zcbw( )- (2.2)

It is important to mention that the shape functions ¢"" are not necessarily a subset of the
shape functions ¢, which is discussed later in section 2.2.4. Furthermore, N is the total
number of nodes, N is the number of enriched nodes, N7 is the number of special purpose

functions ¥y and u,, ﬁ? are nodal variables.

Within the framework of the extended finite element method, the incorporation of cohesive
cracks is straightforward [4, 12]. If a cohesive crack is present, the total potential of the body
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6 2.2 Representation of cracks and material interfaces using the XFEM approach

has to be modified to account for the additional cohesive forces transferred through the crack.
Neglecting body forces, the total potential is given by:

/ / €)déE dS) — FTu dr, (2.3)

/ / t " (a)du dl .y, — / / t_T(a)da dl ., (2.4)
rt. -

where t; = —t_ are the forces per area transferred through the crack, w the displacements,
[.,n the crack surface and I'" the boundary with prescribed tractions F'. Introducing the
relative crack opening w = u~ — u™" on I'..y,, the equation can be simplified to

/ / €)dé dS) + / / t7 (@) dw dl o, — / FTu dT, (2.5)
coh

using ¢ = t. The crack opening w is a function of the nodal displacements d and of the
difference between the corresponding shape functions for the displacement interpolation on
the negative and positive side of the crack, arranged in the matrix B:

w = B(x)d. (2.6)
Furthermore, the forces transferred through the crack are a function of the crack opening:
t=C(w)w, (2.7)

with C the interface material matrix. Variation of the potential in Eq. (2.5) yields the
following equation system to be solved:

U B'CB dQ+/ B'CB dr Coh} d :/ N'TF dr,, (2.8)
Q 1—‘coh rt

where B is the matrix relating strains and nodal displacements, C' the material tensor for
the bulk material and IN the vector containing the shape functions for the displacement
interpolation.

2.2.3 Enrichment function for cracks

Cracks are characterized by a discontinuous displacement field, and the modified Heaviside
function

oo ={ e 29

X€Q+

can be used as a special purpose function Wy, where €2_, €2, are the two opposite sides of the
crack faces. This approach restricts the crack to end on element edges. A more elegant way
is to additionally use functions to model the crack tip. Based on the asymptotic behavior of
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Figure 2.1 Crack tip coordinate system and transformation for curved cracks.

the displacement field close to the crack tip in linear elastic fracture mechanics, the following
special purpose functions can be used:

b o (£ con (2) s (2 oo (2)] 10

which accurately describe the singularity at the crack tip. However, if a cohesive model for
the tractions across the crack is applied, the stress field in the vicinity of the crack tip does
not possess a singularity. According to [12], the following special purpose functions for the
crack tip enrichment are applied for cohesive cracks:

b= [ (2) o (2 o (2) mren (2] am

where 6 and r are the angle and radius of a point P in the local crack tip coordinate system, as
illustrated in Fig. 2.1(a). In a general adaptive crack growth simulation with a considerable
influence of mode II loading, the crack is typically curved. In order to ensure that the
discontinuity in the displacement field remains on the crack trajectory, a modification such
as the one proposed in [3, 13] has to be applied. In this work, a transformation is used that
results in a continuous displacement field in the bulk material. The angle # and the radius r
are modified as illustrated in Fig. 2.1 with

r

0 = arcsin (C—l> ) (2.12)

where d is the shortest distance to the crack and r the distance to the crack tip. For a straight
crack, this approach reproduces the original functions.

For cracks which are exactly on the interface between two materials, [14] proposes the follow-
ing crack tip functions:

Do(x) = {\/F cos(elogr)e’ sin (g) /1 cos(elogr)e ™ cos (g) : (2.13)

0 0
V7 cos(elog r)e! sin (§> /1 cos(elogr)e cos (—) : (2.14)

2
V7 cos(elogr)e? sin (g) sin(6),v/r cos(e logr)e cos (g) sin(h), (2.15)
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8 2.2 Representation of cracks and material interfaces using the XFEM approach

Vrsin(elogr)e <’ sin (g) A/rsin(elogr)e™ cos (g) : (2.16)

2
. el 0 : €0 0
Vrsin(elogr)e sin 2 /1 sin(elogr)e® cos 3) (2.17)
V7 sin(elogr)e sin <g) sin(f),v/r sin(e log 7)e® cos (g) cos(&)}. (2.18)
with
1 1-8
=—1 e 2.1
: 27r0g<1+ﬁ> (2.19)
5= pa (ke — 1) — pa(kr — 1) (2.20)
p(ke + 1) + po(kr + 1)
E;
e 2.21
W=, (2.21)
33—y
;= 2.22
i 1+ V; ( )

where p;, v;, k; and E; are the shear modulus, Poisson’s ratio, Kolosov constant and Young’s
modulus. If both materials are identical, the span of Eqs. (2.13)-(2.18) is identical to the
enrichment functions for an isotropic material given in Eq. (2.10).

2.2.4 Enrichment function for material discontinuities

The displacement field for a linear bimaterial interface is continuous across the interface and
has a discontinuous first derivative. Furthermore, it is preferable that the enrichment function
¥ is symmetric with respect to the interface and has a constant derivative on either side of
the interface so that the enrichment causes only constant strains on both sides. A reasonable
choice is 1p = |d(x)|, where d(x) is the signed distance function to the interface. Different
approaches to calculate the signed distance function |d(x)| for the special type of ellipsoidal
inclusions are discussed in the following, but the results are extendible to general shapes.

2.2.4.1 Polygonal decomposition

A straightforward way to represent an interface is a decomposition into polygonal segments
in 2D or polygonally bounded surfaces in 3D. This approach has the drawback that for any
integration point the distance to all segments/surfaces has to be calculated (the minimum of
all these distances is the signed distance function), which is - for complex geometries with a
large number of segments/surfaces - computationally expensive. For an iterative procedure
(e.g. to simulate discrete crack growth or a nonlinear material response) it is therefore
recommendable to calculate the signed distance and its derivatives at each integration point
a priori after each modification of the crack geometry and store these values, which requires
additional memory. A second drawback is the fact that the approximated signed distance
function does not necessarily have continuous derivatives within one element. This is due
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Figure 2.2 Integration point within an element on the bisecting line of two segments describ-
ing the interface.

to the fact that the distance between an integration point on the bisecting line between two
segments of the polyline is identical to both segments, whereas its derivative is different,
which is illustrated in Figure 2.2. This results in a discontinuous integrand in the integration
of the stiffness matrix. Consequently, the integration can only be performed with a high
integration order or by splitting the element into subregions, whose edges correspond to
the discontinuities, which requires additional coupling between the geometry and the FE-
model. Both approaches result in a high number of integration points. Furthermore, the
strains and stresses are not necessarily continuous within an element even with the same
material for all integration points. A third problem results from the fact that the enrichment
function is not a polynomial (although the total domain can be decomposed into subsets
with piecewise polynomials). This leads to problems in partially enriched elements, which
are further discussed in section 2.8.1.

2.2.4.2 Approximation of the interface by level sets

A second approach is the usage of level sets for the description of the enrichment function.
In [15] level sets are used to approximate the signed distance function. [5] uses two level
sets to describe the geometry of a crack in 3D - one level set for the description of the crack
surface and another level set orthogonal to the previous level set to describe the crack front.
[16] applied the level set approach to handle complex microstructures. The advantage of the
level set representation is that no background geometry model is required. Additionally, the
adaptation of the mesh due to a moving interface (fluids, cracks) especially in 3D can be
performed much more efficiently. [17] simulated interface material failure using the XFEM
approach. In general, the idea is to define a function f(x) within the domain Q of the body
in such a way that the subset I' = {x : f(x) = 0,x¢} coincides with the interface. This
choice is not unique for a given interface (e.g. a scaling of the function f(x) does not change
the subset I'). Since for an arbitrary interface this function is rather difficult to determine,
the function f(x) is approximated by a level set function f(x):

N

FO) m f(x) =D i (x) f(xi), (2.23)

i=1
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10 2.2 Representation of cracks and material interfaces using the XFEM approach

where N is the number of shape functions ¢/*’, which are standard finite element shape
functions. Often the same mesh is used for the interpolation of the level set function as
well as for the displacements, but this is not required. For an elliptical inclusion in 2D, [15]
proposed a level set function

o) (&(x))Q ) (@(x))z L 1)

1 ()

where € = (&,&) are the coordinates of the point x in the local coordinate system of the
ellipse with the origin at the center and the axes aligned with the principal axes of the
ellipse. Furthermore, ;1 and ry are the radii in the directions of the local, principal axes.
Obviously, this function is not a signed distance function. By applying the fast marching
method according to [18, 19], the nodal values can be modified in an iterative procedure to
obtain a signed distance function. This is equivalent to the condition that the gradient of the
level set function V f(x) at each node ¢ with coordinates x; is equal to unity:

V() =1 (2.25)

The gradient in each node is determined as the average gradient of the adjacent elements. In
an iterative procedure, the stationary solution of
a¢lev<wi)

g = sien (¢ (=) (1= Vo' ()] (2.26)

is determined, where the values are initialized with the level set function. The time ¢ is
only an auxiliary variable. For numerical reasons, it is advantageous to approximate the
sign-function by a smooth function as proposed by [20]:

¢lev(mi>

where ¢ is a small value. In the current implementation, ¢ was set to the minimal element
size in the mesh. It is to be noted that the approximated signed distance function is almost
zero for points on the isoline with f(x) = 0. Consequently, only level set values of the nodes
with a certain distance from the zero isoline of the level set are updated and the position of
the zero isoline remains almost unchanged in the update procedure. This method has been
applied to regular meshes with bilinear, quadrilateral elements. For relatively fine meshes,
a good approximation of the ellipse (the interface) could be obtained. For coarse meshes
(less than 4 elements in one direction in the interior of the ellipse), this method required
many iteration steps, did not converge at all and/or the approximation of the interface (the
ellipse) deviated considerably from the real ellipse. This is due to the fact that the gradient
at each node is determined as the average of the gradient in the four adjacent elements. Since
the derivatives of finite element shape functions are in general discontinuous across element
boundaries and the number of elements is not sufficient to accurately approximate the level
set function, strong variations of the gradients occur at the nodes.

sign (gzﬁle”(mi)) ~

(2.27)

A second possibility is to calculate the function d(x;) exactly at the nodes. For an elliptical
inclusion, this can only be done in an iterative way and in our case a Newton method has
been applied. The details of this algorithm are given in section A.1.
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Figure 2.3 Fracture process in concrete.

The obtained representation of the interface using a direct calculation of the signed distance
function is a good approximation and the method that has been finally applied. For general
shapes of interfaces, it is possible to decompose the interface into polygons, if this is not
the definition of the curve anyway, and calculate the distance to each segment separately. A
high accuracy can be obtained, if the size of the linear subsegments is small compared to the
element size used for the approximation of the level set function. It is important to mention
that even by using a polygonal decomposition of the curve representing the interface, the
corresponding approximated level set function f(x) is, within one element, as often contin-
uously differentiable as the shape functions itself, and the derivatives can be calculated by
differentiation of Eq. (2.23).

2.3 Cohesive cracks

2.3.1 Introduction

The assumption of a stress free crack with a stress singularity at the tip based on linear elastic
fracture mechanics (LEFM) was first applied to concrete by Kaplan [21]. Kesler concluded
that LEFM is not valid for concrete as a quasibrittle material [22], for which the fracture
process is characterized by a fracture zone including an initial formation of microcracks,
which coalesce during the loading process and, finally, form a macroscopic stress free crack,
which is illustrated in Fig. 2.3. The size of this fracture process zone is not small compared to
the specimen dimensions and, consequently, LEFM does not accurately represent the reality.
In order to describe cracking phenomena in quasibrittle materials, Hillerborg developed the
fictitious crack model [23]. The model is an extension of the Dugdale/Barenblatt plastic
crack-tip model [24, 25], which relates normal stress and normal crack opening. It is based
on the idea that, close to the crack tip, stresses between opposite faces of the crack can be
transferred by mechanisms such as aggregate interlocking, friction and material bonding. The
essential parameters of this model are the tensile strength of the material, which describes the
maximum stress transferred through the crack at a vanishing crack opening and the fracture
energy, which characterizes the amount of energy dissipated within the cohesive zone up to
the point of a stress free crack. In these first approaches, only normal stresses related to the
normal crack opening are considered. Different types of softening functions have been used,
e.g. linear, bilinear [26] and formulations based on the exponential softening type [23].
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12 2.3 Cohesive cracks

Figure 2.4 Cohesive traction-separation material law.

A number of coupled normal/shear interface laws have been subsequently developed; Vonk
models the aggregate/mortar interface in concrete [27], Cervenka uses a coupled interface law
for the fracture simulation of a concrete gravity damn [28] and Carol has developed a model
based on a plasticity formulation [29].

2.3.2 Mixed cohesive zone model

In the current work, a model based on [30, 31] is used, which describes normal as well as
tangential tractions along an interface. A total crack opening A is introduced:

A=/ (u2) + (auy)?, (2.28)

where u,, and wu; are the normal opening and tangential sliding of the interface surfaces, and
« is a material constant which controls the weighting between the normal and tangential
opening. Note that by using the McCauley brackets, only a positive normal crack opening
contributes to the total crack opening. Furthermore, a cohesive traction-separation law is
used for loading conditions:

K, A< Ao
o(A) = —fet (A=) (2.29)
fae €1 otherwise

where \g = f.:/ K, is the crack opening at which the linear elastic peak load is reached, K, is
the penalty stiffness, f.; the tensile strength of the interface layer and Gy its fracture energy
as illustrated in Fig. 2.4. The penalty part is important to allow a crack to remain closed for
compressive stresses and small tensile stresses.

Assuming that a potential ¢

A(un,ut)
D (U, up) = / a(N)dN (2.30)
0
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exists, the normal and tangential tractions are obtained respectively by:

_ 0P(up,up) Up,
T, = =5 = o) (2.31)
~ 0D(up,up) oy

Describing the total potential as a function of the mixed displacement A leads to the assump-
tion that the fracture energies for mode I and mode II are equivalent, although this differs
from the general assumption that the mode II fracture energy for concrete is higher than the
mode I fracture energy. However, an advantage for the numerical implementation is that the
obtained stiffness matrix is symmetric. The penalty stiffness K, must be chosen carefully. On
the one hand, the penetration of the two adjacent crack faces of the interface in compression
has to be reduced by making K, as large as possible. On the other hand, a high penalty
stiffness results in an ill-conditioned global stiffness matrix. In the implementation of the
model, the penalty stiffness was determined using an empirical approach.

A history variable \,,.,, which corresponds to the maximum total crack opening A reached
during loading, is required to decide, whether the material point is under loading (A > A4z)
or unloading(A < Aj4.) conditions. A damage model is applied for the unloading path, and
a linear function back to the origin is assumed:

T = 0(Amaz) Au” (2.33)
2
T, — U(Amax)j e (2.34)

If the interface is in compression, the contact condition is approximated by the penalty
stiffness

T, = Kyuy, (2.35)
and the parameter A is only a function of the tangential displacement

A = |awy. (2.36)

2.4 Crack initiation criteria

In this work, the initiation of cracks is modeled by the principal stress criterion. If the
principal stress after each equilibrium step exceeds the tensile strength of the material at
any integration point, an additional crack is introduced, orthogonally to the corresponding
eigenvector. The introduced additional crack is centered at the integration point and has a
prescribed length, which is chosen in the order of two to three times the element length to
avoid the existence of two crack tips of the same crack within a single element. Additionally,
the intersection with the external boundary of the model is verified and, if necessary, the
crack tip is moved to the intersection. In the latter case, the enrichment with the Heaviside
function is used instead of the crack tip functions.
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14 2.6 Direction of crack extension

2.5 Crack growth criteria

The decision, whether an existing cohesive crack grows, can be determined by various methods
published in literature. In [32], a Virtual Crack Extension(VCE) method is introduced, which
extends the total potential from Linear Elastic Fracture Mechanics to cohesive forces. In [33]
an extension for plastic material properties is proposed. However, this virtual crack extension
approach has not been followed due to numerical problems. In general, the energy release
rate with respect to a small crack extension Aa is calculated using finite differences. In the
XFEM approach, a small extension of the crack is difficult, since either a short segment of
length Aa has to be introduced at the crack tip, which requires remeshing of the integration
cells with small element edges, or the segment with the crack tip has to be prolongated, which
requires a mapping of the history variables for the integration points on that segment and
modifies the full displacement field, since the enrichment function depends on the geometric
representation of the crack.

In this work, a criterion based on the stress state of the cohesive crack tip is used. A crack
is assumed to progress, if the stress within the cohesive interface at a certain distance from
the crack tip exceeds the elastic limit. In the implementation, the reference point is chosen
as the closest integration point within the cohesive crack with a distance of a quarter of the
last crack increment to the crack tip. Note that, due to the intersection with the element
edges, the actual location of the reference point slightly depends on the underlying mesh.
If this reference point is within the inelastic domain corresponding to A > f. /K, for the
applied material model, the crack is extended with a prescribed extension length. This choice
is motivated by the fact that the reference point should be close to the crack tip in order to
ensure that the last crack segment is almost entirely in the elastic domain. In order to avoid
locking effects when the intersection of the last crack segment and the element containing the
crack tip is very short, a certain minimum distance to the crack tip is required. The choice
of a quarter of the last crack increment to the crack tip is obtained empirically. Due to the
penalty approach for the interface law, it is still possible that a newly inserted crack segment
remains closed. As a result, it is not critical that a crack might be extended slightly too early.

The prescribed length of the new segments depends on the curvature of the expected crack
trajectory. A curved crack is approximated by a polygon, with the length of each segment of
the polygon being the prescribed extension length. For larger curvatures of the cracks more
and shorter segments are required to accurately approximate the crack.

2.6 Direction of crack extension

The direction of the crack extension plays an important role in the numerical simulation. This
is due to the fact that oscillations around the correct crack path caused by an inaccurate de-
termination of the direction of the crack extension lead to a larger crack surface, which may
result in locking phenomena. Furthermore, incorrect extension directions lead to significant
changes in the global load-displacement curve. Various criteria for the direction of a crack
extension have been proposed in literature; these include maximum circumferential tensile
stress [6], maximum energy release rate [7] and minimum strain energy density criteria [8].
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In the context of the XFEM, Wells has proposed a criterion based on the nonlocal maxi-
mum principal stress [4]. A discussion on the drawbacks related to this criterion is given in
section 2.9.2. Another popular criterion is the global tracking algorithm [34]; here the local
vector field of the extension criterion at certain points (e.g. maximum principal stress and
corresponding eigenvector) is used to obtain a global vector field, which can be used for the
interpolation of the direction criterion at the crack tip.

2.6.1 Maximum circumferential stress

Erdogan has proposed a crack extension criterion, in which the crack extends in the direction
of maximum circumferential tensile stress [6]. Assuming a stress-free crack, the near tip
displacements around the tip in a polar crack tip coordinate system can be described by the
stress intensity factors K; and Kj; by

1 0 0
uy = KIZ % coS (5) |:/€ — 1+ 2sin? (5)} (2.37)
1 0 0
+Knﬂ %sin (5) |:/<J+1—|—2C082 (5)]
1 0 0
uygp = Klﬂ % sin (5) {/{ +1 —2cos? (5)} (2.38)
1 0 0
— K p— Lcos — ) |k—=1-2sin’| = ,
2u '\ 27 2 2
where k = f;—’; for plane stress, Kk = 3 — 4v for plane strain and u = ﬁ By substitution of

the crack opening displacements near the tip from the numerical model into Egs. (2.37) and
(2.38), virtual - there being no singularity for a cohesive crack - stress intensity factors can be
calculated. The maximum circumferential tensile stress criterion finally gives the direction of
the crack extension:

0\ 1K 1 [(K:,

By using this criterion, it is implicitly assumed that the cohesive forces do not alter the
direction of the crack extension, similar to [5, 35].

This method requires an additional elastic computation, which does not consider the effect
of cohesive forces. Compared to the number of iterations performed to obtain equilibrium
(with cohesive effects), these additional solution steps are not time-consuming. In order to
reduce the influence of local errors in the solution, the stress intensity factors in Eq. (2.37)
are calculated as an average from different points close to the crack tip. Using this approach,
four points on the last crack segment (at 1/8, 3/8, 5/8, 7/8 from the crack tip in local crack
segment coordinates, with 0 being the tip and 1 the opposite end) have been examined and
the average of these values is used. Although the displacement correlation technique does
not yield accurate stress intensity factors, it is only the ratio between K; and Kj; that is
important for the calculation of the crack extension, which seemed to be more accurate in
the numerical examples.
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16 2.6 Direction of crack extension

C2

Figure 2.5 Calculation of path-independent J-integral.

2.6.2 Maximum energy release rate

Another way of describing the stress state at the crack tip is the utilization of domain integrals
such as J; and J,. The J-integrals are defined as:

ou;
J, —/ [wn —ai-—ln} dr’, 2.40
k . k J@xk J ( )

with I' an arbitrary closed path around the crack tip singularity and w the strain energy
density. The evaluation of the boundary integral in Eq. (2.40) is somewhat cumbersome since,
for a numerical implementation, the strains/stresses are not continuous along element edges.
For this reason, a transformation into an area integral is recommended [9].

By using the following weighting function g:

1 on I'
q= 0 on Cy : (2.41)
arbitrarily elsewhere

Equation (2.40) can be written as the integral around the closed contour I'*, with I'* =
'+ Cy+ Ty +T_. Note that m = —n on I', which is illustrated in Fig. 2.5. For stress free
cracks, this gives:

Ou;
Jp = / {aij—uqmj — wqu} dr*. (2.42)
* aajk
By applying the divergence theorem, the contour integral can be rewritten as the surface
integral [9]:

ou;| dq . .
* J

where A* is the surface enclosed by I'*. In the implementation of the method, all elements
within a user-defined radius of the crack tip are selected. Furthermore, the weighting function
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q for all the nodes on the boundary of that region are set at zero, whilst a value of ¢ = 1 is
assigned to all the inner nodes. The function ¢ is interpolated by using bilinear shape functions
within the quadrilateral elements. As a result, only the elements on the outer boundary of

the selected elements contribute to the integral, since in all other elements % = 0. The
J

user-defined radius is chosen as 2 to 3 times the length of the diagonal within the crack tip
element. As with the displacement correlation approach, the domain integrals are evaluated
in a second calculation, in which cohesive forces are ignored.

Using the formula by [36], the energy release rate can be expressed as a function of J; and

JQI

G = Jy cos(0) + Josin(6), (2.44)
Maximization of Eq. (2.44) yields
§ = arctan <£> : (2.45)
Ji

from which the angle of the crack extension is determined.

2.6.3 Minimization of total potential

Both the displacement correlation technique and the J-integral method have the disadvantage
that the cohesive crack progresses in the same direction as a stress-free crack. In order
to investigate the influence of the cohesive forces on the direction of a crack extension, an
algorithm based on the maximum energy released from the system has been developed, which
is based on an idea from [37] to model crack growth in concrete with the XFEM approach.
In general, the first law of thermodynamics assuming an adiabatic system (no heat exchange)
and quasi-static conditions (no kinetic energy), can be written as:

ow  oU+UP) O+ ')

ot ot LT
This equation represents the energy balance during crack growth, where W is the work of the
external forces, U¢/UP the elastic/plastic strain energy, I'® the elastic energy stored in the
crack and I'? the energy dissipated within the cohesive crack. It implies that the energy rate
introduced into the system by the external loads is equal to the sum of the internal strain
energy rate and the energy rate dissipated during crack growth. It is assumed that the crack
progresses in the direction, in which the potential energy of the system (W — U®¢ —1T) has a
minimum, or likewise that the dissipated energy (UP + I'?) has a maximum.

. (2.46)

Starting from the initial state in equilibrium, the crack is extended in a certain direction,
whilst the applied loads and displacements are kept constant. The equilibrium state of the
system is determined (using a Newton-Raphson iteration) and the work of the external forces
and the internal elastic energy is calculated. For Dirichlet boundary conditions, the work of
the external forces vanishes, whereas for Neumann boundary conditions, the external work
AW, is obtained by

AWepy = Y Fi(Auy), (2.47)

i=1
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18 2.6 Direction of crack extension

cohesive crack

Figure 2.6 Extension of a crack in various directions as part of the search for the maximum
energy release rate

where F; is the applied nodal force and Aw; the variation of the displacements due to an
extension of the crack in a certain direction. The internal elastic energy can be determined
in a similar way:

e __ 1 .

Ue = 5/90(:—:,51,) D (e —egp) A (2.48)
e __ 1 .

re = §/F0'('w) Lw dl, (2.49)

where € — g, is the elastic strain, o the corresponding stress in the bulk material and w the
relative crack opening with the cohesive stress o (w) transferred through the crack surface
I'. In the presented examples, the bulk material is linear elastic, which implies that plastic
strains and, consequently, the plastic strain energy vanish.

Using this procedure, the dissipated energy can be determined for a discrete number of
directions. In order to determine the direction with the maximum dissipated energy, an
approximated function using these discrete directions as support points is calculated, from
which the maximum is determined. A straightforward option is a polynomial regression.
One disadvantage is that the approximation does not have a local character, which means
that not only support points close to the point itself determine its approximated value. A
better option is a MLS (moving least squares) approximation. Detailed information about
the applied implementation are given in [38]. For the presented examples, a linear base
polynomial with Gaussian weighting functions has been used.

A problem arises for crack extensions, which are still partially closed. Particularly, when
using irregular triangular meshes, the energy dissipated within cracks depends on the length
of the crack extension which actually opens. A crack within an element is in general either in
the elastic or in the inelastic domain. The problem is illustrated in Fig. 2.6. Crack extension
a) passes through two elements. This means that if the applied loading is sufficiently great,
the integration points on the crack within the first element (with the current crack tip) exceed
the tensile strength of the interface, and the crack opens within this element. If the loading is
even higher, the crack opens/exceeds the elastic limit in all segments up to the new crack tip.
Otherwise, some of the segments remain closed (within the elastic region). That means that
for a partially closed crack extension the energy that can be dissipated strongly depends on
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the position and the number of elements cut by a crack extension. Crack extension b) has a
much shorter segment in the shaded element, and as a result a lower global load is required to
exceed the tensile strength of the interface. Finally this implies that for this global load, the
energy dissipated for extension b) is higher compared to a). This mesh bias can be avoided
if the load is increased up to a point, at which, for almost all possible directions of crack
extensions, the cracks are fully open. From a computational point of view, it is too time-
consuming to increase the load until all extensions are fully open, and, furthermore, it is not
clear whether all extensions open at all. In a simplified approach, only the straight extension
(no kink of the crack) is verified in order to determine the load level of the external loads to
be used for the calculation of the direction. The load is increased until the elastic limit is
exceeded for a certain reference point (in this case 3/4 of the straight crack extension, similar
to the crack extension criteria). For this load level, the minimum of the total potential for all
directions with a constant prescribed length of the extension is calculated, which corresponds
to the length of the crack extension.

Since the (nonlinear) system of equations has to be solved for each possible direction of a
crack extension, the computational effort is much higher compared to the previous methods,
but it can be effectively parallelized. The total number of additional (nonlinear) solution
steps is given as the product of the number of crack extensions (which correlates with the
prescribed length of a crack extension) and the number of different directions verified for each
single crack direction to determine the minimum of the total potential. Additionally, for each
crack extension, the load level has to be determined, which usually requires 2 to 3 solution
steps for each single crack extension. The computational effort can further be reduced if, by
using one of the previously presented methods, an estimate of the direction of crack extension
is calculated, and the direction search is only performed close to that estimate; consequently
the number of search directions can be substantially reduced.

2.7 Mesh refinement using the Quadtree data structure

As described in the previous section, the X-XFEM offers an efficient tool for modeling cracks
without the requirement for the element edges to coincide with the discontinuity. Starting
with an initial coarse mesh, an efficient refinement strategy is required which increases the
node density close to the crack tip as illustrated in Fig. 2.7. This can be achieved by using the
Quadtree data structure (and for 3D applications the Octree data structure). A comprehen-
sive overview can be found in [39]. Starting with an initial mesh, the elements are iteratively
decomposed into 4 subelements until the required accuracy is achieved. The shape of the
initial elements determines the shape of their subelements; thus a square is decomposed into
4 squares and a rectangle into 4 rectangles. Using this approach, any polygonally bounded
domain can be refined, if an initial mesh can be created. The required accuracy of the re-
finement is correlated with the prescribed extension length of the crack. Although a curved
crack can be represented within a single enriched element, the angle of the crack kink within
an element should be restricted. This is due to the fact that, within an enriched element,
there is only a constant number of additional degrees of freedom to describe the displacement
field, and the more complex the crack geometry is, the less accurate the solution will be. A
good choice is to use the same size for the prescribed extension length and the maximum
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A hanging node
e node enriched with crack tip functions
O node enriched with modified Heaviside function

Figure 2.7 Mesh adaptation for a crack extension.

element dimension of the elements on the lowest leaf of the quadtree refinement. All elements
that are cut by the crack extension are iteratively decomposed into 4 subelements, so that all
elements cut by the crack finally have the same refinement level. The general procedure for
the automatic crack growth algorithm is summarized in Algorithm 2.1.

Furthermore, all the nodes in the element containing the crack tip are enriched with crack
tip functions, whilst all other nodes in fully cracked elements are enriched with the modified
Heaviside function. This is illustrated in Fig. 2.7.

In the general case of nonlinear material behavior, the mesh adaptation requires a mapping
procedure for the history variables for the transfer from the original to the adapted mesh.
In [40], various approaches for the mapping are compared. It has been found that a closest-
point transfer (data from the closest point of the old mesh is assigned to the new point) and
a least-squares interpolation using the integration points of the old mesh are suitable. On the
other hand, a shape-function projection, mapping the data from the old mesh to the nodes
of the new mesh and from there to the new integration points, leads to an artificial damage
diffusion.

If two neighboring elements are not on the same refinement level, additional effort is required.
Sukumar proposes a mapping of regular elements with 5 to 7 nodes positioned equally spaced
on the unit circle [41]. Within these elements, the natural neighbor interpolation is used,
which is linear between nodes on the boundary, and, as a result, the coupling with linear
finite elements is compatible. This procedure gives accurate results, even when using a
Gauss quadrature for the integration of the stiffness matrix, although the interpolant is not
a polynomial. However as explained in the next section, higher order elements are required;
this would lead to an incompatible displacement interpolation (quadratic elements with linear
natural neighbor interpolation). A second option, applied in this work, is to set up additional
constrained equations, which couple the "hanging nodes” with the nodes of the adjacent
coarser element. It is further recommended to limit the difference in the refinement level
between two neighboring elements to one in order to obtain a smooth variation of the node
density within the domain. By applying this quadtree refinement procedure, the number of
degrees of freedom of the structure can be considerably reduced without loss of accuracy.
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Algorithm 2.1 Automatic crack growth algorithm
Create initial mesh with quadrilateral elements.
Initialize quadtree structure with existing elements as root elements.
for (load=0 to final loadstep) do
Compute equilibrium state of current loadstep.
while (any existing crack meets the criteria for crack extension) do
Determine the direction of crack extension.
Adapt the mesh using the quadtree decomposition.
Extend the crack.
Compute equilibrium state of current loadstep.
while any integration point meets the criteria for crack initiation do
Determine the crack tips of the new crack.
Adapt the mesh using the quadtree decomposition.
Add the crack.
Compute equilibrium state of current loadstep.
Update history variables.

2.8 Numerical implementation

2.8.1 Choice of the shape functions for standard and enriched interpolation

In general, the shape functions ¢3%(x) and ¢$""(x) can have a different polynomial order, but
often linear functions are used. Stazi proposed to use higher order polynomials [42] in order
to increase the convergence rate. Chessa demonstrated that if the enrichment function ¥ is a
piecewise continuous polynomial of order n (as e.g. the signed distance function for a straight
interface), the orders p**® and p°™ of the shape functions ¢3¢ and ¢;"" have to fulfill the
condition ps¢ > p" + n [43]. This is due to the fact that only fully enriched elements fulfill
the partition of unity for the enriched shape functions ¢$""(x) and the enrichment function W
can exactly be represented. However, in partially enriched elements, where only certain nodes
are enriched, the summand W(x)¢$" is at least quadratic (since the shape functions are at
least linear and the signed distance function for an interface in partially enriched elements
is also almost linear). Due to the fact that the enriched shape functions do not fulfill the
partition of unity, a linear interpolation corresponding to a constant strain field can only be
obtained if the standard shape functions are at least quadratic.

Using level sets for the interpolation of the signed distance function as the enrichment function
W, the order of the required interpolation psy can be calculated exactly, if pe,. is given and
the same mesh for the interpolation of level sets and displacements is used.

In this work, quadrilateral elements with 9 nodes for the standard interpolation (¢gq4) are
used. For the interpolation of the enriched degrees of freedom and the level set functions only
the 4 corner nodes with bilinear interpolation are used, which is illustrated in Fig. 2.8.

span(¢™?) = {1,z,y, 2%, zy, v, 2%y, 2y’ 2*y* } (2.50)
span (") = span(gble”) ={1,x,y,xy} (2.51)
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material enriched fully enriched partially enriched
interface node element element

O O O O

O

Figure 2.8 Enrichment of nodes with additional DOF’s for a material interface.

Obviously, span(¢®™) @ span(¢'®’) = span(¢sy), and, as a result, linear displacement fields
can be represented also within partially enriched elements.

An analog approach is used for triangular elements with a quadratic interpolation for the
standard interpolation, where all 6 nodes are used, whereas the shape functions for the
enriched DOF’s are restricted to the linear shape functions of the triangle using only the
corner nodes.

2.8.2 Restraining additional DOF’s

A numerical problem arises, if an additional shape function is linear dependent on the standard
shape functions. This happens e.g., if the enrichment function is a linear combination of
standard shape functions. The problem is illustrated in Fig. 2.9. According to [44], an
enrichment function has to be removed from a node, if either the area of support above the

Figure 2.9 Additional shape function of a node enriched with the Heaviside function.
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Figure 2.10 a)minimal polygonal approximation of the level set b) approximation using 4
segments and ¢) mapping of the unit triangle to a triangle with a curved edge.

crack A(€) or the area of support below the crack A(€_) is small compared to the total
area of support:
A(Q)

A©) < tolerance or < tolerance. (2.52)
A(Q4) + A() AS2y) + A(Q2)

In order to calculate the area of support, the integration cells of each element used for the
numerical integration of the stiffness matrix have been used. In this work, a tolerance of 1074
has been used.

2.8.3 Integration of the system matrices

The integration of the stiffness matrix in Eq. (2.8) is performed numerically. If nonpolynomial
enrichment functions ¥ as e.g. crack tip functions are used, a Gauss quadrature is only an
approximation. As proposed by many authors, e.g. [11], a decomposition into triangular
integration zones is performed. This can be done exactly, if the crack/interface is a polygon.
When using level sets in combination with higher order elements (higher than linear triangular
elements), the interface is represented by the zero isoline of a nonlinear level set function.
Sometimes, many segments have to be introduced to approximate this nonlinear function
by polygonal segments. Furthermore, it has to be assured that all integration points are
on the "right” side, otherwise considerable errors in the numerical integration are obtained.
This situation is illustrated in Fig. 2.10 with a 4-point Gauss quadrature per triangle. The
approximation of the crack/interface in triangle a is not sufficient and integration points are
on both sides of the interface.

In order to circumvent this problem, a new transformation is proposed that maps a triangular
integration zone in the element coordinate system to a triangle with a curved interface in the
global coordinate system that corresponds to the zero isoline of the level set. A transformation
for a bilinear quadrilateral element is described in the following. The level set function f is
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interpolated according to Eq. (2.23). For a bilinear interpolation, the zero isoline of the level
set function can be described by

0=a+bx+ cy+ dzy, (2.53)

where the constants a,b,c,d depend of the level set values v; of the nodes.

= (v4a +vp +ve+uvp)/4 (2.54)
= (v4 —vp — v +vp)/4 (2.55)
= (va +vp —ve —vp)/4 (2.56)
d = (vqy —vp+ve —vp)/4 (2.57)

Without loss of generality, it is assumed that point 1 of the triangle with the coordinates in
the unit system (0,0) is mapped to the point that is not located on the zero isoline. The
transformation should be linear between points 1-2 and 1-3 and the following ansatz is made
for the transformation:

z(&,m) = 21 + (22 — 21)€ + (23 — 21)n + ENge(§) (2.58)
y(&,n) =y + (g2 — )& + (y3 — y1)n + Engy (§). (2.59)

g:(&,m) and g¢,(&, n) are functions that are to be determined later, x;,y; are the coordinates
of the vertices of the triangle in the element coordinate system and &, 7 are the coordinates
in the unit triangle. The dependence g; on ¢ is chosen randomly and, in an analog way, g;(7)
would be possible. Obviously, the transformation is linear between points 1-2 and 1-3, since
the term g¢;(£) is canceled out by the factor £n. The edge & + n = 1 between the points
2-3 should be mapped so that all points fulfill the condition in Eq. (2.53). Substitution of
Egs. (2.58) and (2.59) in Eq. (2.53) gives

O:Pl+P2.ga:(§a1_§)+P3gy(§vl_§) (260)
+P4g:r(£7 1 - f)g;;(g, 1- 5)7 (261>
where the variables P; are functions of &, x;, ;.
Pi(§) =a+blz1+ (x5 — 1) (1 - &) + (962 — 1) ¢ (2.62)
telyn+ (s —y) L=+ (2 —y1) €

]
—l—d[wl+(x3—x1)(1—£)+(x2—a:1)§]
(s =) (1= &) + (Y2 — 1) €

Py() =6(1 =& {yr + (1 =) (ys —y1) + &2 — 1)} d + ] (2.63)

Py(€) =6(1 = &) [{zr + (1 = (w5 — 1) + &(w2 — 1) })d + ] (2.64)

Py(€) =d&*(1 - §)*. (2.65)
If Py(§) # 0VEe[0,1], a possible choice for g;(§) is

€)=~ (2.66)

9y(§) =0 (2.67)
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and analog for P3(§) # 0 V€0, 1]

92(&m) =0 (2.68)

w(E) =~

Substituting Eqgs. (2.54)-(2.57) into Eq. (2.63), and using the condition that z;,y; € [—1,1],
the condition for P, = 0, which means that the transformation in Eq. (2.66) is not valid, is

. (2.69)

V4 > v
>0 = UA>UB’
d=vs4—vg+vc—vp UC<UD (270)
<0 = A°B
Vo < Up

Otherwise the transformation in Eq. (2.66) can be used. Similarly, a condition for the second
transformation in Eq. (2.68) can be derived:

VA > U
>0 = UA>UD’
d:UA—UB+UC—UD UC<UB (271)
<0 = A0
Vo < UB

The case, where both conditions in Eqs. (2.70) and (2.71) are fulfilled which means that none
of the two transformations are valid, is, from a practical point of view, irrelevant, since the
underlaying level set function then does not correspond to a signed distance function of a
polygon. That would e.g. for d > 0 mean that vq > vg,v4 > vp,vc > vp,ve > vg, which
corresponds to a roof like function.

The triangulation within the natural coordinate system is based on a Delaunay triangulation,
where the software package ’triangle’ [45] has been used.

The influence of the mapping is demonstrated for a specimen with a hard inclusion in a soft
matrix in Fig. 2.11. For the standard mapping without the transformation, spurious stress
concentrations are obtained in the elements, which are cut by the crack, especially in the
inclusion with the higher Young’s modulus. However, the overall stress distribution coincides
well for both methods. The mapping procedure has the disadvantage that only an element can
be cut by single crack. In the general case with the distance between inclusions smaller than
the element size, it is recommended to combine the two methods - a mapping is performed
for the majority of the cracked elements which have only a single crack, whereas the standard
integration is performed for the few elements with more than one crack.

An important aspect of the numerical application is the integration of the system matrices
along I, of the cohesive cracks in Eq.(2.8). In many cases, a Gauss quadrature results in an
overestimation of the stiffness, since the extreme values at the end of a crack segment might
have passed the peak point in the interface law (small stiffness), whereas the Gauss point can
still be within the penalty part of the interface law (high stiffness). In order to circumvent
this problem, a Newton-Cotes integration with 3 integration points per segment has been
applied, and a better convergence behavior of the numerical solution could be observed [46].
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Figure 2.11 Influence of the mapping procedure on the first principal stress for a hard
inclusion in a soft matrix.

2.8.4 Solution of nonlinear system of equations

Most of the presented examples are calculated using a displacement control solution scheme,
since a pure load-control is not able to simulate a response in the post-peak region. The stan-
dard displacement control approach fails, if within the simulation snap back phenomena occur.
In this case, coupled schemes such as arc-length methods or indirect displacement control ap-
proaches have to be used. Within the solution procedure, the displacements corresponding
to an equilibrium between the internal and external forces are to be determined.

From the principle of virtual displacements, it follows for a body in equilibrium:

SWERD — gy len), (2.72)

where the variation of the internal energy (W[/m;L Y and the variation of the external energy
s g given by

ext

SWHD — / ol (d)seD) v (2.73)
14
T
- / (a(d(t))—ier' (d(t)+Ad(t+1))) etV qv (2.74)
1%
T
s :( t-l—AFe’;”:l)) 5d+Y, (2.75)

Linearization of the system of equations gives

T
/ (6o(ad(t))A€(t+1)> 5t g —
v e

(AF(t+1))T5d(t+l) - / (U(t))Tde(t“) dV + (Fggt)Téd(t+l)7 (2.76)
1%

ext

where the last two summands on the right hand side vanish, if the previous step is in equilib-
rium. In the general formulation, the vector d includes all the nodal displacements. However,
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if kinematic boundary conditions have to be applied, the variations of the displacement state
have to be kinematically compatible. In general, the linear constraint equations can be written
as

T§t+1)d§t+1) n TgtH)dgH) — p* (2.77)

where the nodal displacements are separated into a vector of independent, unknown DOF’s
d, and a vector of dependent DOF’s d,. For a simulation using the displacement control
approach without additional coupling equations, the matrix TgtH) vanishes and the matrix

T(2t+1) is equal to the identity matrix with pl Y being the prescribed displacements. In
the case of periodic boundary conditions (e.g. dj + d; = 0) or in the case of coupling a
‘hanging node’ via displacement constraints (e.g. d; = 0.5d; + 0.5d;), both transformation
matrices do not vanish. These matrices depend on the load step indicated by ¢, since these
conditions might change between successive load steps (e.g. b is modified in each increment
of a displacement controlled analysis). The assignment of a degree of freedom to either the
dependent or the independent DOF’s is sometimes arbitrary. For example in the case of the
periodic boundary conditions, either dj or d; are independent, whereas the other is then the
dependent DOF'. Using a Gauss elimination procedure, which is equivalent to an inversion of
the matrix Tgtﬂ), the vector of total displacements d can be expressed as a function of the
independent DOF’s d; only:

g+ 7 e 0
d§t+1) - [—Ccmj di” + |:b(t+1):| ; (2.78)

t+1)

d(t+1) _

where it is assumed that the vector d' is reordered so that the independent parameters are
at the top. Note the difference between the vector 5" in Eq.(2.77) and 6" in Eq. (2.78).
The matrix C.,, relates the dependent DOF’s with the independent DOF’s. In the further
derivation it is assumed that the matrix C' does not depend on the load step, since the increase
of the loading is only obtained by modification of the right hand side b.

Consequently, the variation of the nodal displacement vector is given by
6d(t+1) — |:_(-;1[ :| 5d§t+1) (279)

Using the element shape functions, the relation between nodal displacements d and strains &
can be expressed as

Aglttl) — gt+1) _ () 250
=B (|:—Ccon:| <d§t+1) _ dgt)) + [b(t+1):| - [b(t)}) (2.81)
=B ([—CI‘] Mgtﬂ)) 7 (2.82)

where the relation from Eq. (2.78) has been applied. Setting

Adgt+1) _ (dgtﬂ) B dgt)) (2.83)
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and substituting Eqgs. (2.79), (2.81) and (2.82) into Eq. (2.76) gives

T
1 0 0 1
(L] 2 ] ol ) 2 (L. )

T
<AF (SN ORI Fg;?t) {_én} 5dY. (2.84)

ext

The integrated stiffness matrix and the internal and external force vectors are split into
submatrices similar to d; and ds:

do(d¥) K, K
7@ ) gy _ g [En K 2.85
/ Oe [K 21 Koo (2:85)
0 _ | FY)
/ B'o" v = F}), = | Lt (2.86)
F2,int
Canceling out 6d transposmg and splitting the external and internal forces into two parts
yields:

K K I (t+1) 0 0
[I Cz;n] |:K21 K22:| (|:_Ccon:| Ad, + pit+l| — |p®

t+1 t t
AFE e:pt) + Fg,)ext - Fg,znt

= [I -C? (t+1 t t
AF?,ext) + Fé,)ext - Fg,znt

con]

] . (2.87)
Expanding Eq. (2.87) finally gives:

1,ext

K”wdAdﬁt“) = (K12 — CZ;nK22) (b(t) — by ) + AFlt:xlt) + FY)

- Fl ant Cz;n (AF(H_I) + F2 ext Féfint) (288)
with the modified stiffness matrix
KmOd =K — CZ:ngl - K12Ccon + CZ;nKZQCcon- (289)

Within the iteration procedure of a displacement controlled analysis, two special cases of
Eq.(2.88) are important. The first case describes the modification of the boundary conditions,
where it is assumed that the previous load step is in equilibrium. Consequently, Eq. (2.88)
reduces to

KA = Kz - CL,K2) (0 = 6™V) 4+ AF(E) - CLAF™. (2.00)
In the second special case, the boundary conditions and loads are not modified and the
iteration is performed to obtain equilibrium. In this case, Eq. (2.88) simplifies to

KmOdAd (e thzaxt Fl ant CT (F2 )e:ct thZnt) . (291>

con
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The solution of the system of equations in a single iteration step is performed using the direct
solver MUMPS [47].

The performance of the solution procedure can further be increased by an application of a

line search procedure, which determines the length of a step given a search direction AdHY,

d' = d" + pAdTY (2.92)

The requirement for a line search algorithm is that a sufficient decrease in the objective
function has to be assured in order to guarantee convergence of the global solution. In this
work, a line search based on the out-of-balance forces F',,, has been implemented, where the
objective function is defined as

f(d?) = HFoob(d(t))H (2.93)

t t t t
= HFg,)emt - Fg,znt - CZZm <Fg,)ext - Fé,int)

’ . (2.94)

The line search is only performed within the iteration for an equilibrium state. It is based on
the Goldstein-Armijo condition [48, 49, 50]:

T
H Fo(d® + nAd(””)H _ ‘ Foob(d(t))‘ < anv HFoob(d(”)H A, (2.95)

with ace (0,1). For a small value of a, the condition only requires a decrease in the objective
function. For an optimization procedure with quadratic convergence (as the standard FEM
without softening), a stronger requirement for the line search is preferable. Non-fulfillment
of the criteria in Eq. (2.95) implies that the quadratic approximation of f (d(t) is not valid at
d® + AdW, and, consequently, the load step was too large. Following [51], a value of a« = 0.5
has been used. From

T K"Fop(d)\
(t) (t+1) — _ - —oob\®) (t+1)
anV HFOOb(d )H Ad om< Fo(d) ) Ad (2.96)
=an|F.x(d)|, (2.97)

the criteria in Eq. (2.95) can be rewritten as

HFoob<d(t))H - HFoob(d(t) + nAd(tJrl))H 2 arn HFoob<d(t))

‘ . (2.98)

At a time step t in the solution procedure, an increment Ad?“) is calculated from Eq. (2.90).

Starting with n = 1, the scaled increment nAdgtH) is added to the displacements of the

previous iteration dgt) and the out-of-balance forces Fg?,;l) are determined. If the criteria in
Eq. (2.98) is fulfilled, the lines search stops and the next iteration step using Eq. (2.91) is
performed. Otherwise, the scale factor 7 is multiplied by 0.5 and the procedure is repeated.
In the implementation, a minimum scale factor of 107 has been used. If the lower bound
is reached, the linesearch stops and the displacement increment added to the previous step
is scaled by 1073, Convergence in the overall Newton iteration of a load step is obtained,
if the norm of the out-of-balance loads is smaller than a certain threshold. In the exam-
ples, a threshold between 10~* and 107% has been used. The general solution procedure is

summarized in Algorithm 2.2.
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Algorithm 2.2 Nonlinear solution procedure
Initialize the structure and load increment
while (load < final load) do
Increase load by load increment.
Compute d = d + Ad using Eq. (2.90).
Calculate out-of-balance loads F ', (d).
Initialize Numlterations = 0.
while (Numlterations < 15) and (F,q (d) > tol) do
Compute Ad using Eq. (2.91).
Initialize line search with n =1

F — |F A 1
| oob(d>| | oob(d+77 d)|§( )ndo

while > 1072 and

’Foob (d) ‘ 2
n = 0.57.
Numlterations = Numlterations + 1.
d =d+ nAd.

if Numlterations < 15 then
Update history variables.
else
Decrease load by load increment and multiply load increment by 0.5.

2.8.5 Parallelization

Simulations often require a fine resolution, which results in a large number of elements. In
order to decrease the computation time, a parallelization of the algorithm is required. In this
thesis, the focus of the parallelization techniques is placed on shared memory systems. The
computational important tasks in the numerical procedure are the calculation of the residual
force vector and the stiffness matrix and the solution of the system of equations. The latter
is performed with solvers such as MUMPS [47], which directly include parallel versions. The
parallel calculation of the system matrices can be performed in a straightforward way using
OpenMP. The only interaction between the processors is required when assembling the local
stiffness matrices into the global matrix.

In order to avoid that more than one processor modifies the same entry in the global stiffness
matrix at the same time, an approach by [52] has been applied. This method decomposes
the total set of elements into maximal independent sets. All elements in one set do not have
a common entry in the global stiffness matrix. Consequently, the parallelization of the loop
over all elements in one set can be efficiently implemented.

2.9 Examples

2.9.1 Wedge-splitting

In the first example, a wedge splitting test is investigated [53]. The geometry of the test
specimen is illustrated in Fig. 2.12(a) with a specimen thickness of 400mm. Young’s mod-
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Figure 2.12 Wedge-splitting test.

ulus, Poisson’s ratio, uniaxial tensile strength and specific fracture energy are given as
E = 28300N/mm?, v = 0.18, f,; = 2.11N/mm? and G¢ = 0.482Nmm/mm?*. In addition, the
material parameters of the interface material law have been chosen as K, = 25 10*N/mm?
and a = 1. In this mode I-dominated example, the choice of o has only a marginal influence
on the result. The model consists of triangular elements with 6 nodes, but only the corner
nodes are enriched with special purpose functions. Various criteria for the direction of a crack
extension are compared.

It can be verified from Fig. 2.12(b) that the load-displacement curves obtained show a good
correspondence with the experimental data without any parameter fitting applied. Although
a slight variation of the crack path depending on the considered criteria for the direction
of crack extension is obtained, their load-displacement curves are almost identical. The
deviation from the theoretically straight vertical crack path is due to the non-symmetric
mesh with triangular elements. A second source of error for the maximum energy dissipation
criteria is the problem of partially closed crack extensions, which is discussed in detail in
section 2.6.3.

2.9.2 L-shaped panel

In a second example, a mixed mode problem with a curved crack is investigated. The three
presented approaches (maximum circumferential stress, maximum energy release rate and
maximum of the dissipated energy) are compared in the numerical simulation with respect
to the load-displacement curve and the crack path. The experiments for the L-shaped panel
have been carried out by [53]. Figure 2.13 illustrates the geometry of the test specimen. The
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Figure 2.13 Experimental setup for the L-panel test.

thickness of the specimen is t = 100mm. A vertical displacement d is applied on the lower
horizontal surface of the horizontal leg at a distance of 30mm from the vertical end face
and the resulting vertical force at the same position is measured. Young’s modulus, Poisson’s
ratio, uniaxial tensile strength and the specific fracture energy are given as E = 25850N /mm?,
v =0.18, f; = 2.70N/mm? and G¢ = 0.09Nmm/mm?. The material parameters have been
adapted to match the initial elastic part, the peak load and the softening part of the load-
displacement curve. The Young’s modulus was modified to E = 20000N/mm?, the tensile
strength fo, = 2.50N/mm? and the specific fracture energy Gy = 0.13Nmm/mm?. For the
interface law, a penalty stiffness K, = 25 10*'N/mm? and a weighting factor o = 1 has been
used. A constant extension length 1 = 30mm of an evolving crack has been chosen.

The meshes applied are given in Fig. 2.14 using the quadtree refinement procedure. Quadri-
lateral elements with 9 nodes have been used, but only the corner nodes are enriched with
additional special purpose functions. An example of the discretization obtained is illustrated
in Fig. 2.14. Five different meshes are tested, a coarse and fine mesh with a constant ele-
ment size in the domain and three meshes using the quadtree refinement procedure. Starting
with an initially coarse mesh, the adaptation is performed at each crack extension. The
mesh sensitivity of the model is tested by using different refinement levels of the quadtree
structure, which means that an original element of the coarse mesh is refined into four subele-
ments(adaptl), and these subelements are again refined into four subelements (adapt2) so
that the width of an element is reduced by a factor of 0.5 at each adaptation step. As a result,
the number of degrees of freedom (DOF’s) increases from 322 DOF’s for the initial (coarse)
mesh to 1078 DOF'’s for the fully cracked model at the end of the simulation. In this example,
the number of DOF’s could be reduced by a factor of 10 compared to the fine mesh, which
has the same element length as the adapted mesh in the vicinity of the crack.

The maximum tensile stress in the elastic part of the loading is obtained at an integration
point close to the theoretical location. As a result, the initial crack does not start exactly at
the corner. For the interpretation of the experimental results, the origins of the numerically
obtained crack paths were moved to the inner corner of the L-panel.

For the criterion using the minimum potential energy, a total number of 15 directions within
the range [-30°,30°] was tested. The internal energy for different extension angles for the
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Figure 2.14 Regular quadrilateral element mesh obtained by using an adaptive quadtree
refinement algorithm compared to the initial coarse mesh and the fine mesh.

first crack increment and the approximation using a moving least squares approximation is
plotted in Fig. 2.15. The minimum of the internal energy is clearly visible at 5, which leads
to a kinking of the second crack segment with respect to the initial crack.

The numerically-obtained crack paths and the corresponding load-displacement curves for
different meshes are presented in Fig. 2.16. The maximum circumferential stress criterion
already yields for the coarse mesh an accurate crack path, which is well in the experimental
range. For the coarse mesh, a staircase trend is clearly visible in the load-displacement curve.
This is due to the fact that the crack opens in an element-by-element way. Since the coarse
mesh consist of only 3 elements cut by the crack, the opening of each element is recognizeable
in the load-displacement curve. For finer meshes, this effect is reduced and, with an element
length of 12.5mm (adapt2), there is almost no difference compared to the fine reference mesh.

Figure 2.16(b) shows the results for the criterion using the maximum energy release rate. A
solution for the initial coarse mesh without any refinement could not be obtained; for the
J-integral calculation, a certain number of elements around the crack tip are required to
calculate the integral in Eq. (2.43). For this example, it can be observed that, compared to
the maximum circumferential stress criterion, a finer mesh is required to converge to the final
crack path. Furthermore, the obtained crack path shows a slightly higher curvature.

The results using the minimum potential energy criterion are illustrated in Fig. 2.16(c). The
scatter of the obtained crack path is due to the constant extension length 1 = 30mm and to
the problems of partially closed elements discussed in section 2.6.3. For the coarse mesh, the
element length was 83mm. Even for the first adaptation with an element length of 42mm, the
extension length was too short compared to the element length. In general, it is recommended
that the extension length is at least 2 to 3 times longer than the elements, which is confirmed
in this numerical example. In addition to the effect of partially closed elements, a second
reason for the small discrepancies between the fine mesh and the mesh with 3 quadtree
adaptation steps is the biased adaptation strategy; this means that, for each crack direction,
an individual adaptation of the mesh has been performed, resulting in different meshes for
different directions. However, the crack path obtained with the finest mesh almost coincides
with results obtained with the maximum circumferential stress criterion and the maximum
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Figure 2.15 Internal energy of system for various angles of crack extension.

energy release rate; this indicates that the cohesive forces transferred through the crack
(influencing the direction of crack extension only in the minimum potential energy criterion)
have only a marginal influence in this case.

For this example, the popular nonlocal stress criterion [4] has been investigated in a prelimi-
nary investigation, in which the direction of the crack extension is assumed to be orthogonal
to the eigenvector corresponding to the maximum principal nonlocal stress at the crack tip.
Nonlocal stresses are used to improve the accuracy of the method, since the local stress state
at the crack tip strongly depends on the discretization and, in the case of stress-free cracks,
becomes infinite. The main problem is represented by the substantially different stress states
parallel to the crack in the bulk material on both sides of the crack. In this example, the bulk
material close to the upper crack face has much greater stresses in the horizontal direction
than the bulk material in the lower part. Averaging these stresses does not yield an accurate
prediction of the stress state at the crack tip, and a deviation from the correct crack path is
obtained. In order to circumvent this problem, only points in front of the crack tip have been
used to compute the nonlocal stresses, but the results could not be significantly improved.

2.9.3 Mixed mode fracture test

The final example is a mixed-mode fracture test performed by [54]. In this work, only the
fracture tests 4a and 4b are considered (specimen 48-03 and 46-05). The dimensions are
200x200x50mm with a notch depth of 25mm and a notch width of 5mm, as illustrated
in Fig. 2.17. The compressive strength from cubes with a dimension of 150mm and the
splitting tensile strength are given as f, = 46.24N/mm?, f; = 3.67N/mm? for specimen 4a
and f, = 49.66N/mm?, f, = 3.76N/mm? for specimen 4b. The Young’s modulus, Poisson’s
ratio and fracture energy were not measured and, as with [55], they were estimated as
E = 30000N/mm?, v = 0.2 and G¢ = 0.110Nmm/mm?.  The uniaxial tensile strength was
estimated from the splitting tensile strength as f,; = 3.0N/mm?, and, by choosing the param-
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Figure 2.16 Crack path and load-displacement curve for the L-shaped panel with constant
crack extension 1=30mm for various adaptation levels using the quadtree refinement.
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Figure 2.17 Geometry of specimen for the mixed mode fracture test.

eter a=0, the tangential cohesive forces were neglected. In a further study, the influence of
the parameter o was investigated.

A shear force Py was applied under displacement control up to 5kN for series 4a and 10kN for
series 4b. The shear load was subsequently kept constant, and the specimen was loaded in
normal direction P,, under displacement control. A constant mesh using triangular elements
with an element length of 8mm was used.

For a shear load of 10kN the influence of the criterion for the direction of a crack extension
and the influence of the material parameter o describing the influence of the shear stresses is
investigated. The results are illustrated in Fig. 2.18.

For the longest extension length 1 = 32mm and using the maximum circumferential stress
criterion, the crack path in Fig. 2.18(a) showed oscillations around the exact crack path
compared to results with a shorter extension length. This is due to an overestimation of the
kink angle in the first crack extension step. However, almost no difference could be observed
between the results for ] = 8mm and 1 = 16mm.

A similar effect was found for the criterion using the maximum energy release rate in
Fig. 2.18(b). It can also be noted that a long crack extension cannot capture regions of
high curvature. As a result, the curvature of the crack path increases slightly with a shorter
extension length.

For the criterion using the minimum potential in Fig. 2.18(c), almost no influence of the
extension length on the crack path is obtained. This is in contrast to the L-shaped panel.
The reason is that, even for the shortest investigated extension length, the element length
within the considered mesh is still small enough for more than one element to be influenced
by a crack extension, and the mesh sensitivity is consequently reduced. Furthermore, the
crack path obtained is almost straight, apart from two kinks in the upper and lower crack,
which are present even in the coarse mesh. It can be concluded that, for mixed mode prob-
lems, the cohesive forces transferred through a crack have an influence on the crack direction
(considered only in the minimum potential energy criterion) and can be neglected only for

Jorg F. Unger PhD-thesis



Chapter 2 Discrete crack models 37

experiment front - ---- experiment front - - - --
experiment back —— experiment back ——
(a) Maximum circumferential stress (b) Maximum energy release rate

experiment front - - - experiment front -----
experiment back —— experiment back ——
(¢) Minimum potential energy (d) Influence of « using the minimum potential
energy criterion and a crack extension of
1=8mm

Figure 2.18 Influence of the crack extension length and the material parameter o on the
obtained crack path using different direction criteria in the mixed mode facture test for a
shear load of 10kN.
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mode [-dominated problems. Additionally, the sensitivity of the crack length to crack paths
with high curvatures is reduced. This is due to the fact that the criteria using the maxi-
mum energy release rate and the maximum circumferential stress are based on an explicit
procedure calculating the angle of a crack extension using the last crack segment, whereas
the criterion based on the minimum potential energy minimizes the potential energy of the
system by adding a new segment in the corresponding direction.

Comparing the results for the various extension criteria as illustrated in Fig. 2.19(a), it can
be observed that the maximum circumferential stress criterion yields the lowest curvature
compared to the criterion using the maximum energy release rate; this is even lower than
the curvature obtained with the algorithm that uses the minimum potential energy criterion.
The differences in the crack paths have an influence on the load-displacement curves, as illus-
trated in Fig. 2.19(b). The energy dissipated in the crack is much higher for the maximum
circumferential stress criterion due to the increased crack length. The initial stiffness and the
maximum load from the numerical solution coincides with other results using the same mate-
rial parameters with different methods [55]. Consequently, the difference between numerical
solution and experimental results can probably be ascribed to the experimental setup or to
the estimated material data. Compared to the experimental crack path, the calculated crack
path for all three direction criteria investigated falls within the range of the experimental
scatter.

An interesting point is the determination of the parameter o, which determines the influence
of the shear forces. For a = 0, no tangential forces are considered, whereas for o = 1, normal
and tangential crack openings have an equal weight. From Fig. 2.18(d) it can be concluded
that the sliding of the crack faces does not have a great deal of influence on the crack path
as long as the latter remains almost straight. Only at the final stage, when the crack starts
to curve, an influence of the cohesive shear forces can be observed. This can be attributed
to the fact that the applied shear forces influence the stresses in front of the crack tip, and,
consequently, the stress direction, whereas the tangential cohesive forces transferred through
the cohesive interface are negligible as long as the tangential sliding of the crack faces remains
minimal.

Similar results are obtained for a shear load of Py = 5 kN given in Fig. 2.20(a). The highest
curvature is obtained using the potential energy criterion, whereas the maximum circumfer-
ential stress criterion yields the lowest curvature. Due to the smaller shear force, a higher
peak load in normal direction can be transmitted as illustrated in Fig. 2.20(b).
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Figure 2.19 Load-displacement curve for mixed mode fracture test with P, = 10 kN and an
extension length of I=8mm.
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Figure 2.20 Influence of the direction criteria for the crack extension in the mixed mode
facture test for a shear load of 5kN and an extension length of 16mm.
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Chapter 3

Continuum models for concrete

3.1 Introduction and state of the art

Fracture of concrete is characterized by the formation of microcracks in the fracture process
zone, which coalesce into a macroscopic crack. The size of the fracture process zone is related
to the microstructure of the material. At the formation of a macroscopic crack, localization
takes place, which is often accompanied by a softening in the response. By using a continuum
approach, this macroscopic crack is not considered as a discontinuity, but smeared across a
certain width. In general, several approaches to model the nonlinear behavior of concrete can
be distinguished.

A first approach is based on the plasticity formulation, where the total strain is decomposed
into an elastic and a plastic part. The development of the plastic strain is governed by the
yield function (e.g. for concrete [56, 57, 58|), the hardening rule, which describes the evolution
of the yield surface, and the flow rule, which is related to a plastic potential that describes the
incremental stress-strain relation. A comprehensive overview for plasticity models for concrete
can be found in [59]. It is common practice to define the plasticity model in the stress space,
although it can similarly be defined in the strain space [60]. The drawback of plasticity
models is that the unloading stiffness remains elastic whereas in reality a degradation of the
material with a reduction of the stiffness is observed.

This deficiency is overcome by models based on an approach introduced by Kachanov [61, 62],
which was later termed continuum damage mechanics [63]. Damage in concrete is accom-
panied by the formation of microcracks. This phenomenon can be modeled by a fracture
mechanics approach, which allows to describe the decohesion of existing crack faces. On the
contrary, the continuum damage mechanics approach describes the effects of the microcracks
such as stiffness degradation in a smeared sense. The simplest damage model is an isotropic
damage model with a scalar variable w that describes the damage state of the material - w = 0
corresponds to the virgin material, whereas for w = 1 the material is fully damaged and no
stresses can be transfered. In [64], a comparison of the two approaches is given. A popular
damage model for concrete was developed by [65], which defines different damage functions
for compression and tension. Extending these ideas, anisotropic damage models [66, 67, 68|
have been developed, which consider the direction of damage and are able to model dilatancy
effects.

A third approach are the smeared crack models, which were introduced by Rashid [69]. The
stress transfered through an element is directly related to the inelastic strain. Upon the de-
velopment of inelastic strains, the initially isotropic material becomes orthotropic. Originally,
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the direction of a crack in an element was assumed to remain constant, which lead to the
so called fixed crack models [70]. Later, the multi-directional fixed smeared crack concept
was introduced by Litton [71], where several cracks with a fixed orientation may interact.
The problem of misalignment between principal axes of stress, strain and crack direction
lead to the rotating crack concept [72, 73, 74]. A comparison of the different smeared crack
approaches can be found in [75, 76].

In contrast to the models presented so far, which define a direct relation between strains
and stresses, the microplane models based on [77], enhanced by [78] for metals and applied
to concrete by [79, 80, 81, 82|, define a stress-strain relation on various planes with different
orientations. By integrating over all planes, the macroscopic constitutive relation is obtained.

In the following, an isotropic damage model is shortly reviewed and a model which couples
damage and plasticity is presented.

3.2 Isotropic damage model

3.2.1 Local formulation

The isotropic damage model is based on the assumption that the stiffness degradation is
isotropic and Poisson’s ratio is not affected by the damage evolution. Consequently, a single
scalar damage parameter w is sufficient to describe the influence of damage on the stress-strain
relationship by

o= (1-w)Ce, (3.1)

with o, the stress and strain tensor and C' the linear elastic material matrix. For the
undamaged material w = 0. As the material is deformed, microcracks are initiated and prop-
agate, and an overall decrease of stiffness is obtained. Consequently, the damage evolution
can be described as a function of the total strain. In order to distinguish between loading
and unloading, an equivalent strain  is introduced that corresponds in 1D to the maximum
strain ever reached in the loading history.

The scalar damage variable w is a function of the equivalent strain k. An exponential softening
law is used [83]:

0 K < gg
w(k) = g-r : (3.2)
1.0—%6”*0 K > &g

where €9 and ¢ are material constants.

The evolution of the parameter k is described by a loading function f together with the
Karush-Kuhn-Tucker conditions. The loading function is given by

fle,r) =% (e) — K, (3.3)
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where the equivalent strain £°7 (€) is expressed as

(3.4)

with (o) the positive part of the principal stress and E the Young’s modulus. Using this
definition of the equivalent strain together with ¢y = %, the elastic domain is bounded by a
rounded Rankine type failure surface.

The Karush-Kuhn-Tucker conditions

ensure that the current equivalent strain is never larger than the equivalent strain «, that the
equivalent strain s can only increase and that an increase of the equivalent strain x can only
be obtained for k = £° ().

The specific fracture energy density gy, which is the area under the uniaxial stress-strain
curve, is given by

oo €0 oo eg—K
g5 = / ode = / Ee de —i—/ goe 0 F de (3.6)

=0 =0 =€0
E 2
= =L teo(es— ) E (3.7)
£
= fu (»sf - 50) . (3.8)

Consequently, the material parameter €; can be expressed as a function of the specific fracture
energy density g

gr f ct
€f =7+ —. 3.9
=5 E (3.9)
In general, the specific fracture energy G's is defined as the energy dissipated per crack surface,
which can be obtained in an experimental setup as the quotient of the total dissipated energy

and the crack surface.

In a finite element implementation with continuum elements, energy is not dissipated by
separating the crack surfaces, but in a volume. Consider a one-dimensional beam with cross
sectional area A under a tensile test. After failure, the total energy dissipated is given by
GsA, where Gy is an energy per area. Assuming that localization takes place in a single
element with a constant energy dissipation density g; (energy per volume), the total energy
obtained by integration over the volume is g;Al.,, where [, is the length of the element. In
order to avoid a strong influence of the mesh size on the results, the total dissipated energy
for both approaches should be identical. As a result, the fracture energy density gy used in
the numerical implementation is given by:

_ G

leq

gr (3.10)
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In a three-dimensional element, the equivalent length [., depends on the orientation of the
damage zone related to the element, which is difficult to follow in an iterative procedure. In
the numerical implementation, the equivalent length is obtained by

;o {\/Z plane stress
eq —

3.11
YV full three dimensional, ( )

where A and V are the area and the volume of the element. This assumption is exact for
square and cubic elements with a constant edge length and a loading direction perpendicular
to an edge.

3.2.2 Nonlocal formulation

The scaling procedure of the fracture energy using the equivalent length has several drawbacks.
First of all, the zone of localization reduces to zero if the mesh is refined [84], thus the
numerical solution is unobjective with respect to the mesh size. Furthermore, the scaling with
a constant equivalent length is not correct - especially for triangular or distorted elements or
in the case of an arbitrary loading direction.

In order to overcome these problems, a regularization technique based on the nonlocal formu-
lation has been applied, where the stress state of a material point is not only a function of the
variables at that specific point. This idea has been motivated by the fact that any material
has a characteristic length at least on the atomistic level. If the resolution is smaller than
this characteristic length, the assumptions of a continuum model no longer hold. Nonlocal
models can be interpreted as homogenizing the material response within a certain region
whose radius is related to the characteristic length of the material.

Nonlocal continuum models were first developed for elasticity [85, 86], for plasticity [87] ,
for strain softening materials [88, 89] and for concrete by [90]. An extensive overview about
nonlocal models can be found in [91]. These nonlocal formulations serve as localization limiter,
and the zone of energy dissipation remains finite. Another class of localization limiters, which
is closely related to nonlocal models, are gradient models [92, 93, 94].

In a nonlocal formulation, different quantities can be averaged. First of all, it is required
that the elastic response remains identical in the local and the nonlocal model. Consequently,
the strain itself in Eq. (3.1) should not be averaged. Jirdsek investigated different approaches
[95] and showed that, for a pure tensile test, certain nonlocal formulations show locking
phenomena. Promising results were obtained when averaging the energy release rate or the
strain, from which the damage parameter is calculated.

In the implemented nonlocal formulation, a regularized form of Eq. (3.4) is obtained, where
the equivalent strain is computed from the nonlocal strain by weighted spatial averaging:

(3.12)
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Figure 3.1 Nonlocal bell-shaped weight function.

where the nonlocal strain is calculated from
&(z) = / w(x, €)e(x) dE. (3.13)
1%

A bell-shaped weighting function illustrated in Fig. 3.1 has been used, which is rescaled in
order to ensure that a constant local field induces a constant nonlocal field:

oz —gl)
@) = T e ) dn (3.14)
a(r):{gl_%> :ig} (3.15)

In contrast to other weighting functions, the bell shaped weighting function has only a local
support. This has the advantage that in the numerical implementation the bandwidth of the
consistent stiffness matrix remains small compared to the matrix dimension. The influence
radius R corresponds to the aforementioned length scale parameter. It should be chosen in
the range of the intrinsic length of the material.

3.3 Plasticity model combined with nonlocal isotropic damage

3.3.1 Introduction

Pure plastic models are not capable of simulating the stiffness degradation, which is observed
in experiments. By contrast, pure damage models are not able to represent irreversible defor-
mations. A combination of both approaches can overcome these deficiencies. The combination
of plasticity with damage is usually based on an isotropic plasticity model combined either
with an anisotropic damage model as e.g. in [96, 97], or an isotropic damage model.

The plasticity model can either be formulated in the effective stress space (i.e. the undamaged
stress space) as e.g. in [98, 99]. Another choice is a formulation in the nominal stress
space (i.e. the damage stress space) as in [100, 101]. Grassl investigated the two different
approaches with respect to the local uniqueness conditions [102], which means, whether for
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a prescribed strain history a unique response in terms of stresses and history variables is
obtained. The formulation in the effective stress space fulfills these conditions without any
further restrictions, whereas for the formulation in the nominal stress space certain restrictions
for the plasticity model (e.g. a plasticity model with hardening) have been found.

In the current work, a plasticity formulation in the effective stress space combined with an
isotropic damage model similar to [103] has been used. An advantage from a numerical point
of view is that the formulation in the effective stress space further allows a decoupling of the
return mapping algorithm for the plasticity solution from the damage evolution.

The stress-strain relation is given by
c=(1-w)C:(e—¢€") (3.16)
=(1-w)a, (3.17)

where o is the stress tensor, C' the elastic material matrix, € the total strain, P the plastic
strain, o the effective stress and

oc=C:(e—¢€"). (3.18)

For w = 0, the model corresponds to a plasticity model, whereas for e? = 0 a pure damage
model is obtained.

First, the plasticity model is presented, afterwards the local damage formulation is added,
and, finally, the extension to the nonlocal damage model is made.

3.3.2 Plasticity formulation

An associated plasticity model defined in the effective stress space & is used. For multisurface
plasticity, the evolution of the plastic strain is governed by Koiter’s rule [104, 105]:

8 P
&P = Z% af , (3.19)

where fF are the yield functions of the plasticity model and ~; the corresponding plastic
multipliers. The Karush-Kuhn-Tucker conditions are given by

<0 3 >0 fP; =0 Vi, (3.20)

In this work, hardening is not considered in the model. Three different yield surfaces have
been investigated - Rankine, Drucker-Prager and a combination of both within a multisurface
plasticity approach. For the Rankine model, the yield surface is defined by

or = fet o <0
frx =194 Voitoh—fa o <0 (3.21)

T 2 P
Voi+oi+0ol = fa onmr >0

Jorg F. Unger PhD-thesis



46 3.3 Plasticity model combined with nonlocal isotropic damage

O’[A UIA
fct fct f:0
— T .- o X
f:O// ! OM |- ==—===~ \ = ’
.7 : /<J_/I
2 I s | I
L | 4 !
I s | |
| | |
Jor=o ! ‘or = !
, I —O0I1 | oy =0jgr1 1 |
|
s I e | I
1 o 1 o
fet  OII oM fee OII

(b) rounded Rankine with radius r <

fct

(a) rounded Rankine with radius r = fg
Figure 3.2 Rounded Rankine criterion for plane stress.

with the principal stresses o; > o7 > o777 and the uniaxial tensile strength f.;. The rounding
of the yield surface is essential due to numerical reasons, since singularities occur in the
standard Rankine approach for the derivative of the yield function at stress states with
or = orr. In the present approach, the rounding was performed with the full radius o, but
smaller radii can be used as illustrated in Fig. 3.2 to obtain in the limit with o); — f. the
standard Rankine yield surface. This rounding corresponds to the assumption that the yield
function is influenced by the interaction between positive principal stresses. The rounding
with the third principal stress was only performed for the full 3-D simulation, whereas for
the axisymmetric calculation, the rounding was only applied to the two principal stresses in
the plane, since the hoop stress ggy can directly be calculated (shear stresses o,.9 = 0,9 = 0).
The yield surface (in combination with the Drucker-Prager yield surface) is illustrated in
Fig. 3.4. For details on the calculation of the principal stresses in 3-D and its derivatives, see
section B.1.

The Drucker-Prager yield surface is defined by

for = gfl + v J2 — H) (3:22)
Il = Oz + Oyy 02 <323)
Iy = (0'$z O'yy) + (O':c;c O'zz) (Uyy Jzz) + 092:y + O-;?:z + U§z7 (324)

6

where [; is the first invariant of the stress tensor and Jy the second invariant of its deviator.
The material parameters 3 and H, can be determined from the uniaxial compressive strength
fo and the biaxial compressive strength f.o:

\/g(fc2 - fc)
2fc2 - fc

chfc
H = J¢“/¢ 3.26
P \/§(2f02 - fc) ( )

8= (3.25)
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Figure 3.3 Return mapping of trial stresses using the Drucker-Prager yield surface in com-
bination with the auxiliary yield function.

The Drucker-Prager yield surface corresponds to a cone in the principal stress space and has
a singularity at the apex. In order to increase the stability and the convergence speed of the
numerical solution close to this singularity, an auxiliary yield function has been added:

P ﬁ I — ol

auxr — 3 1 — Qldp, (327)
with a = 0.9999. This is illustrated in Fig. 3.3. Trial stress 1 is directly mapped to the
Drucker-Prager yield surface. For trial stress 2, the auxiliary yield function is activated for
the first iteration step of the return mapping, but finally deactivated. Without the auxiliary
function, numerical problems occur for trial stresses 3 and 4, but with the auxiliary yield
function activated, they are both mapped back to the apex.

The Drucker-Prager yield surface gives a good approximation of the material behavior of
concrete in compression. Other material laws for concrete in compression additionally include
the Lode angle (or equivalently, the third invariant of the stress tensor), which has not been
considered in this work. One of the main purposes of mesoscale simulations is the assumption
that simple material formulations for each component lead to a complex response due to the
geometrical distribution and the interaction of the components.

The Rankine criterion is a good approximation in tension. Consequently, a combination
of both yield criteria to model tension as well as compression has been implemented, as
illustrated in Figure 3.4. By using the rounded Rankine criterion no auxiliary yield function
is required.

3.3.2.1 Numerical implementation

Due to the decoupling of plasticity and damage, a return mapping algorithm for the plastic
part of the model with multisurface plasticity according to [106] can be used. Application
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Figure 3.4 Yield criteria for axisymmetric calculation.

of an implicit backward Euler difference scheme to Egs. (3.19), (3.20) and (3.18) gives the
following coupled system of equations:

i1 =C (e,41 —€0,)) (3.28)

- 8f£(0‘n+1)
e, =€+ ; A, o (3.29)
fo(onia) <0 (3.30)
Ay, >0 (3.31)
AvofP(Ons1) =0, (3.32)

where o is the stress tensor. In the current model with combined damage and plasticity,
this variable corresponds to the effective stress tensor &, but for comparability with classical
plasticity formulations, the notation has been modified within this section.

If the trial stress with €}, | = €? is in the elastic part of a single yield surface with f2(on41) <
0 (541 is initialized with o44), it follows directly that A~y, = 0. Consequently, only the
active yield surfaces J with fP(e,41) > 0 are considered in the following, for which Ay, # 0
and, at the end of the return mapping, f2(o,41) = 0.

Solving Eq. (3.28) for €?,; and substituting the result into Eq. (3.29) gives:

ofP(o,
0= C_lo'nH —€pt1 + €8+ Z A%M
a:faedJ aa-

0= fP(ont1) Vo (3.34)

(3.33)

The only unknown variables within this system of equations are the stresses o,; and the
plastic multipliers A~, of the active yield functions. In general, the trial state does not
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fulfill the system of equations and residuals R® and fét) are present. Within a local Newton
iteration, a Taylor series expansion with respect to the unknowns o1 and 7, is performed:

9% fr(e,, ofP(o,
R(t+1) — R(t) + C—l + ZA'VQ faa(‘;TZ +1) AO’,H_:[ + ZAAFYOC fa(‘z- +1>
a:faed a:foed
(3.35)
FF+1) =79 4 0, (0 ni1) Aopi, (3.36)

where the equations that enforce the stress state to lie on the yield surface are combined into
a single equation using the vector/matrix notation:

Aoy = [Aos, Aoy, Ao.. Agy, Aoy Ao.,]’ (3.37)
ft (ons1) o f1(ont1)
00 4z 00 .4
ofron)=| i (3.38)
Ofp(ont1) Ofh (oni1)
00 1y 00,

Solving Eq. (3.35) for Ao, 41 and requiring the residuals at (¢t + 1) to vanish gives:

AlAy
Aopi=-3 | RY +[0,f (o) | : (3.39)
AAY,
where the abbreviation
1
0? n
cl+ Y Ay, f 7 “)] (3.40)
a:fa€dJ

has been used. Substitution of Eq.(3.39) into Eq.(3.36) finally gives a coupled set of equations
for the unknown plastic multipliers AA~Y,:

AlAm

| ={areo e} {00 -0 (e SR
AAvyp,
(3.41)

Starting from the plastic multipliers, back substitution gives from Eq.(3.29) the plastic strains
and from Eq. (3.28) the stress at iteration (¢ + 1). The Newton iteration is repeated until, i.e.
the Karush-Kuhn-Tucker conditions are fulfilled up to a certain accuracy. The algorithm in
combination with the damage formulation is summarized in Algorithm 3.1 at the end of the
section on page 55.

Note that the choice of the active yield functions does not remain constant during the iteration.
For each intermediate state in the Newton iteration, the Karush-Kuhn-Tucker conditions are
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verified. If the plastic multiplier for a formerly active yield function is negative, the yield
function is removed from the set of active functions. Similarly, if the value of a yield function
that is not part of the active set is positive, the function is added to the active set. In
general, this procedure converges. However for certain situations, an oscillating behavior
was experienced, where a yield function was added in one step and removed in the next one.
In such a situation, where convergence after a certain number of iterations is not achieved,
all possible sets of active yield functions are checked. Within each of these iterations, the
set of active functions remains constant. After convergence of the procedure (all active
yield functions are equal to zero), consistency of the solution is verified, i.e. if all other
yield functions/plastic multiplier fulfill the Karush-Kuhn-Tucker conditions. In the rare case,
where even this procedure did not result in a converged solution, the total strain increment
was applied in steps. This approach has the drawback that the consistent tangent stiffness
matrix is not exact, since the step length has an influence as shown in the next section.
However, the line search procedure in combination with a step length control in the global
Newton iteration detects an inexact stiffness matrix, and automatically reduces the global
load step. In reality, the subdivision of the strain increment on the integration point level
was only rarely required.

The nonlinear iteration on the system level is solved using a full Newton-Raphson iteration,
which requires the determination of an algorithmic elasto-plastic tangent modulus. Differen-
tiation of Egs. (3.28) and (3.29) gives:

d0n+1 =C (d€n+l — dé‘ﬁ_,_l) (342)
O’ fr(oy,
= Y (20T o) 4 0, ) d (3.3
a:faed

Solving Eq. (3.42) for del | and substituting the result into Eq. (3.43) gives
doyiy = 5 [denﬂ — [0 fP (i) dm} (3.44)

where X is given by Eq. (3.40). Differentiation of the Karush-Kuhn-Tucker condition for the
active yield functions and substitution into Eq. (3.42) gives an expression for dA~:

0= 8Ufp(0'n+1) d0n+1 (345)
= 0o (i) T [denss — 0o f (0 0)]" dAY] (3.46)
dAy = {a?fp(o'nH)E [aofp(o'nJrl)]T}_l {0 F (ons1)Edep i} (3.47)

Note that the matrix {&, fP(on1)X [0, fp(anﬂ)]T} has already been determined in

Eq. (3.41). Substituting the expression from Eq. (3.47) and into Eq. (3.44) and rearranging,
finally gives the expression for the algorithmic elasto-plastic tangent

dan+1

den =X-X [adfp<0'n+1)]T {aafp<o'n+1)2 [aafp(O'nJrl)]T}_l O fP(oni1)X.  (3.48)
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It is further to be noted that X is symmetric, which simplifies the computational effort. In
combination with the damage formulation, the algorithmic tangent of the plastic strains with
respect to the total strains is required. This can be derived from differentiation of Eq. (3.28):

do, de?
GOnt1 _ o o%Ent1 (3.49)
d€nt1 d€ny1
Rearranging Eq. (3.49) gives the required expression:
de? do,
PEnt1 _ o1 (C _ ﬂ) , (3.50)
d€n11 den i1
do, : :
where : *1 can be calculated from Eq. (3.48). Note again that for a combined dam-
n+1

age/plasticity formulation o has to be replaced by the effective stress &.

3.3.3 Local damage formulation

The proposed material law should be used within a mesoscale approach to model the soft
matrix, which encloses the hard aggregates. For this scale, it is sufficient to simulate damage
with an isotropic damage model, since the anisotropy of the global response is implicitly
comprised in the mesoscale model. Several choices for the description of damage are possible,
i.e. as a function of the stresses, the total strains or the plastic strains. In the presented
model, the definition of a damage model as a function of the equivalent plastic strains has
been used. Plasticity and damage start at the same time, and the elastic region is fully
described by the yield function of the plasticity model. This corresponds to the assumption
that relocations in the microstructure at the elastic limit are described by the plasticity
model, but simultaneously lead to damage within the microstructure. With this approach,
hardening in the pre-peak region of the load-displacement curve cannot be captured. However,
this phenomena is included in the mesomodel due to the successive creation of microcracks,
which coalesce only in the post-peak region into macroscopic cracks. The damage model is
described by the evolution law, the loading function and the loading/unloading conditions.
The loading function is given by

Fi(e”) = lle?] - &, (3.51)
with the loading/unloading conditions
fi<o k>0 fii =0, (3.52)

and the definition of the equivalent plastic strain

le?|| = \/gigﬁ +eb el ?+2(h b2+ b ). (3.53)

The damage evolution is given by

K
w=1-e %7, (3.54)
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The parameter € is a parameter that is related to the fracture energy G of the material and
the equivalent length [.,, which is a parameter of the finite element model and describes the
influence radius of the corresponding material point, i.e. the dimension of the element that
includes this material point. Similar to section 3.2.1, the parameter can be determined from
the area under the stress-strain curve. Assume a one-dimensional tensile test simulated with
the combined plasticity-damage model, where the yield surface is defined by the Rankine crite-
rion. The equivalent plastic strain is identical to the scalar plastic strain in 1D. Consequently,
the stress-strain relation is given by

e
o=c STE(s—¢€"). (3.55)
The specific fracture energy density g; is then given by

00 fet/E oo
gf:/ adez/ ads—i—/ o de (3.56)
e=0 e=0 e=fct/E

P
fet/E S T
:/ Ee d5+/ e ST E= de (3.57)
e=0 ezfct/E E
i
=5 T fa€y, (3.58)
where the relation (e — e?) = g = % for the plastic region has been used. Similar to

section 3.2.1, the specific fracture energy density gs can be expressed as a function of the

specific fracture energy G by Gy = gsle,. Consequently, the parameter €; can be expressed
as

Gf f ct

19 = — .

leqf ct 2E

It is to be noted that for the investigated examples the influence of the elastic part f../(2F)
is small. The equivalent length has been chosen similar to Eq. (3.11). Additionally, an
axisymmetric formulation has been implemented. In this situation, the equivalent length
depends on the direction of failure - in the plane direction it can be chosen similar to the
plane stress assumption, whereas in the hoop direction it is given by ly = 27y, where y is the
distance of the integration point to the axis of symmetry.

(3.59)

For mixed loading situations in an axisymmetric calculation (hoop stresses as well as stresses
in the plane), an interpolation of the equivalent length has been performed, following a
procedure similar to [107].

An ellipse is defined with the principal radii given as the equivalent length in the plane [, and
in the hoop direction ly. The interpolation angle is defined by the ratio between the plastic
strain in hoop direction and the principal plastic strain in plane direction.

b
tan 3 = = (3.60)
€1
51;:1: + 6p 51;$ - gp 2
ey = S T o \/ e (3.61)
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Figure 3.5 Interpolation of the equivalent length for axisymmetric calculations.

The equivalent length is calculated as the length from the origin to the ellipse in the direction
of 3, which is illustrated in Fig. 3.1. Solving the system of equations

ANNIAS
() () 5
ys = tan (3 x4 (3.63)

gives the parameter x; and ys and finally the equivalent length [.,:

1
1 tan?p
278

leg = /22 + 2. (3.65)

(3.64)

3.3.4 Nonlocal damage formulation

Similar to the isotropic damage model, the mesh sensitivity of the local formulation is reduced
by introducing the factor l., that accounts for the thickness of the local zones of damage.
However, the zone of damage decreases with the meshsize and, in general, damage localizes
only in one row of elements. Furthermore, the calculation of the equivalent length is not
straightforward, since for different orientations of the element with respect to the loading
direction a modification of the equivalent length would be required. In order to circumvent
these drawbacks, a nonlocal formulation is used. In nonlocal formulations, certain variables

are replaced by their nonlocal average. If ¢ is a local field, its nonlocal counterpart is given
by

() = /V w(z,€) H(€) d, (3.66)

where w(x, £) is a given weight function. For an isotropic weight function, the weight depends
only on the distance r between source and target point. Furthermore, the weight function is
scaled, so that a uniform field ¢ is identical to its nonlocal counterpart ¢. Similar to Eq.(3.14)
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for the isotropic damage model, the rescaled bell-shaped weighting function is used. [95]
investigated nonlocal models with respect to their capability to describe the material until
final failure. For certain nonlocal formulations, locking phenomena occurred and the material
response could only be correctly approximated close to the peak of the load-displacement
curve. For nonlocal models of the form

o= (1—w(er))Ce (3.67)

no locking phenomena were found. In this context, a second variant was investigated where
not the strain is averaged, but the equivalent strain. No substantial difference in the re-
sults has been realized and due to numerical reasons, the second variant has been finally
applied, since for the nonlocal averaging only a scalar variable has to be computed, whereas
in Eq. (3.67) a field of up to six variables (depending on the number of plastic strain compo-
nents) has to be averaged. In the nonlocal formulation, the evolution law is replaced by

A
w=1—e °f (3.68)
R=mk+ (1 —m)k (3.69)

where k is the local equivalent plastic strain and & is calculated using Eq. (3.66) with the
bell-shaped weighting function. For m = 1, this nonlocal formulation corresponds to the
standard nonlocal averaging of the integral type. For m > 1 an overnonlocal formulation is
obtained. In the nonlocal formulation, energy is not only dissipated in a single element, but
the crack stretches over a width of approximately 2R.

The general procedure for the calculation of the stresses at an integration point given the
previous history variables and the current strain state is summarized in Algorithm 3.1.

3.3.4.1 Determination of the material parameters for the nonlocal formulation

In order to determine the influence of the parameter €, a uniaxial tensile test is performed,
whose geometric setup is illustrated in Fig. 3.6. A plane strain formulation is used, where
the Poisson’s ratio is set to zero to obtain a uniaxial test. The specimen length is 17mm,
which is meshed with quadratic plane elements (9 nodes). The thickness t., the length I,
and the height h. of each element are constant with t, = [. = h, = 1Imm. Only the lower
and upper nodes in the plane of symmetry are shifted towards the center of the element in
order to obtain a weakened section, where damage starts to localize. A shift of 0.025mm
was required in order to obtain a localized solution for all investigated scenarios. In Fig. 3.7,
the distribution of damage, the plastic strains and the dissipated inelastic energy density is
shown.

In the upper part, the solution for m = 1, which is the standard nonlocal formulation, is
plotted. It is observed that the plastic strains in Fig. 3.7(b) are constant within the center
element and almost zero elsewhere. In a similar way, inelastic energy is primarily dissipated
in the center element, which is due to the large plastic strains within the element. It is further
observed that the distribution of plastic strains and dissipated energy is almost independent
of the influence radius R in the nonlocal formulation. The damage distribution in Fig. 3.7(a),
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Algorithm 3.1 Closest point projection for multisurface plasticity with damage

1. Compute elastic trial state
o'l = C(enr — )
o = fe(at)

2. Determine set of active yield functions J

T = {2 flriet, > —tol,}

if 7 =0 then
Set (*)p11 = (*)er_all and Return
else
€1 = €

Ay, = 0 Va: fPeJ

3.  Evaluate flow rule and determine stress

—(t+1) py(t)
0,41 = Clen—e,4

ofe(o,

= Efl - 52’4(3 + Zafj A’ya fa(ao_- +_1)

4. Check for convergence and add influence of damage formulation
if fP(o TL+1> < tol,VfPeJ and||[R"Y| < tol, then

if local formulation then

N (k1
Rnt+l = Bnt1 = Hefw(r;r )H

else {nonlocal formulation}
J(k+1
Fur = Jo (@, €)[1en (€] dé
Rpp1 = MEpy1 + (1 — m)kp
Calculate damage variable and final stress

R(t+1)

w = 1—exp(—(fns1),/sd)
Ont1 = (1_00)5'53511)
Return

5. Calculate tangent modulus and increment to plastic multiplier

O f8(Eni)]
—1 m @ n+1
Y = |:C +Za:1A’Ya 80'2

Ay = {0,£(@0)8 0, £ @)} {FO00) — 0, F(6,) SRO)

6. Compute plastic multiplier and check consistency condition

for all a: fPeJ do

if Av® + AA~ >0 then

A"/(t+1) — A’y(t) 4 AA'Y
else
remove fP from set of active yield functions J

if set of active yield functions J is modified then

Goto 3

7. Update plastic strain and consistency parameter
i) = el + OIS R + Loy AA0, f2(5451)
Goto 3
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- weakened section

. 1 .

Figure 3.6 Uniaxial tensile test with a weakened section in the center element.

where the horizontal axis is scaled with 1/R, is almost identical for all radii. By contrast, the
overnonlocal formulation with m = 2 gives a broad zone, where energy is dissipated. The
size of the zone has almost twice the size of the influence radius R. In a similar way, plastic
strains do not localize in a single element layer. A phenomenon, physically not interpretable,
is the damage distribution in the weakened section. Due to the overnonlocal formulation, the
parameter &~ might become negative in this section, since the nonlocal & is smaller than the
local k. In this case, & is set to zero, which leads to zero damage in the weakened section.
Only when the neighboring sections start to dissipate energy, the nonlocal equivalent plastic
strain within the weakened section increases and, consequently, damage is obtained.

The determination of the nonlocal radius is a severe problem. Many researchers claim that
this nonlocal radius R is a material property. This seems to be reasonable, since the size
of the fracture process zone is related to the intrinsic material length of the material. [108]
tried to estimate the characteristic length by comparing tensile tests of concrete casted into
steel pipes, which prevents localization, with unrestrained tests. For their damage model, they
found a characteristic length of 2.7 multiplied with the aggregate diameter. [109] investigated
the size of the fracture process zone from mesoscale simulations using lattice models in order
to determine an appropriate nonlocal radius for different weighting functions. For concrete,
it was found that the size of the fracture process zone relates to the size of the largest
particles in the model. Fixing the nonlocal radius as a material property, the parameter €/ is
directly related to the specific fracture energy of the material. As a consequence, two of the
three parameters €4, R and Gy can be defined by the user, whereas the third parameter can
directly be calculated. In order to avoid a material parameter such as the physically difficult
to interpret parameter ¢, it was described as a function of the nonlocal radius R and the
specific fracture energy Gy. The nonlocal radius was chosen in the range of the size of the
smallest particle explicitly considered in the simulation, thus approximately in the range of
the largest particle homogenized in the matrix material, which corresponds well to the results
in [109].

Using a uniaxial tensile test as described in Fig. 3.6, the parameter €; can be expressed as a
function of the nonlocal radius. For m=1, the weighting function is given by

afr) = {1 - (%)T. (3.70)

In order to rescale the weighting function, the integral over the domain of influence is per-
formed:

R 16
Opor = 2/ a(r)dr = 1—5R. (3.71)
r=0
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Figure 3.7 Influence of nonlocal averaging (m=1 and m=2) on the distribution of damage,
inelastic energy and local plastic strain for different load levels (d=0.003mm, d=0.01mm,
d=0.03mm and d=0.1mm) and a mesh size of 0.33mm.

The plastic strains localize within the center element with element length [. The averaged
nonlocal plastic strain in the center element is then given by

1/2
R= 2/ o A gy (3.72)

—0 Qo

where k,, is the local plastic strain in the center element which is assumed to be constant.
This can be simplified to

3 kKl 5 Kkl 15Kl

R=— - — —. 3.73
"T%6 R 32 R 16 R (3.73)
For a nonlocal radius larger than the element size, this reduces to
15 Kl
R=——. 3.74
"T16 R (3.74)
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The energy dissipated within the center element is given by

W = F(u) du (3.75)
u=0
o0 €0 o0
= / o(e)Afly, de = / o(e)Agly, de + / o(e)Aglyy de (3.76)
e=0 e=0 £=¢€g
K
€0 o0 _
= / EcAfly, de + / e &f E(e —eP)Aflay dbim, (3.77)
e=0 Km=0

where Ay is the fracture surface and l,, = [ (element length) for plane stress and l,, = 27y
for failure in the ring direction. The fracture energy is defined as

%4
G = yy (3.78)
lof2  16R
= 15 + 1_57€flavE€07 (379)

where for perfect plasticity the elastic strain is given by ¢y = ¢ — &P for ¢? > 0 and Fey = f.
It follows, that

lav for
15 ( G — e
Gty

gf B 16Rlav fct

(3.80)

For the investigated examples, the influence of the elastic part energy is negligible (with
Gr 010 ) ~ 4#, E =~ 300002, and [ < 5mm, which finally gives:

mm? mm2
15G leg = R for plane stress and full 3D simulations 581
o 16fcleg | leg = i %Ty for hoop stresses. (3.81)

Similar to the axisymmetric local formulation, the equivalent length is a function of the
distribution of plastic strains within the material. The interpolation is performed similar to
Eq. (3.60), where the local plastic strain is replaced by its nonlocal counterpart.

In a similar way, the parameter ¢ can be calculated for the overnonlocal formulation with
m = 2. The distribution of the inelastic energy and the plastic strains can be approximated
in a first approximation by a hat function. The peak values are given by F,, and x,,, reducing
to zero at +R. As a result, the average equivalent plastic strain at the peak point £ can be
expressed as

R = Q/TR Ko (1 - %) w(r) dr (3.82)

=0

with the weighting function

2
)

r2\2°
2fr]i0 (1 - R_22)

w(r) = (3.83)
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Substitution of Eq. (3.71) gives

_ 2-1bK, R r r2\?
R= /ro (1 - }—2) (1 - ﬁ) dr (3.84)
11
= k. (3.85)

The nonlocal value & is used in the softening relation.
R=mk+ (1—m)k (3.86)
3
= —Km 3.87
& (3.87)

The maximum energy dissipated in the weakened element at the center can be expressed as:

W = F(u) du (3.88)
u=0
o) €0 o)
= / o(e)Afly, de = / o(e)Aflyy de + / o(e)Afla, de = (3.89)
e=0 e=0 e=¢eo
Aflaf | [* &
= Tt + /Hm_o e °f Eé?eAflm, dlim (390)
Afl(w Qt 8€f
— Ll Al — 91
2F + fct flav 3 (3 9 )

where [,, = [ (element length) for plane stress and [,, = 2y for failure in the ring direction
and Ay is the fracture surface. Using the assumption of the hat distribution for the energy it
follows for the total energy

W 2R
Wiot = ¢p——-, (3.92)
[ 2
with ¢y = 0.8 a correction factor to take into account the nonlinear distribution of the energy
along the nonlocal interaction radius determined from numerical simulations. The fracture

energy is defined as

tot
G = 1, (3.93)
R lav 02t 8€f
= CfT ( o + fcthw?) (394)

where for perfect plasticity e, = ¢ — € and Fe, = f.; for e? > 0. Solving Eq. (3.94) for ¢/,
it follows that

Gl luf?

CfR 2F
=3— . 3.95
gf 8fctl(w ( )
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Figure 3.8 Load-displacement curve for cyclic loading test using the plasticity formulation
in combination with nonlocal damage for different nonlocal influence radii R and m = 1.

Assuming that the term from the pre-peak elastic part can be neglected, the parameter ¢ is
given by

(3.96)

3G { leg=R for plane stress state

£ e —
! 8crfetleq | leg = 27rlyR for hoop stresses

Similar to the axisymmetric local formulation, the equivalent length is a function of the
distribution of plastic strains within the material. The interpolation is performed similar to
Eq. (3.60), where the local plastic strain is replaced by its nonlocal counterpart.

In most of the numerical examples, the nonlocal formulation with m = 1 has been used. This
is on the one hand due to the physically not interpretable damage distribution in the center
element (lower damage in the weakened section than in the neighboring elements) and, on the
other hand, due to the calculation of the material parameter ¢, which can be, for m =1, in a
straightforward way related to the fracture energy, often given in experimental tests, whereas
for m = 2 additional assumptions (hat-like distribution, correction factor) have to be used.

3.3.4.2 Load-displacement curve in tension under cyclic loading

The uniaxial test, described in Fig. 3.6, was used to investigate the behavior of the mate-
rial formulation in a cyclic loading test with the standard nonlocal formulation (m=1). The
corresponding load-displacement curves are given in Fig. 3.8. For comparison, different influ-
ence radii R have been used. It is to be noted that in the early region, large plastic strains
occur in the center element, whereas the stiffness reduction is still moderate. Close to failure,
where the transmitted stresses are negligible, a considerable stiffness reduction is obtained,
accompanied by large plastic strains. This is due to the fact that the plasticity formulation
is defined in the effective stress space, which means that especially close to failure, where
a considerable difference between the effective and the nominal stresses is observed, large
effective stresses are obtained. This further implies that the plasticity formulation has to be
numerically stable also for large plastic strains. At this point, a further remark concerning the
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assumption of small strains in the element formulation is required. The large plastic strains
are accompanied by the isotropic damage formulation. The larger the plastic strains are, the
closer the damage variable tends to one, and the element is not able to transmit any forces.
Consequently, the higher the error in the small strain formulation is, the less significant it
becomes.

Comparing the load-displacement curves for the different nonlocal influence radii R, it is
observered that there is almost no difference. This is especially important for the relatively
small influence radius R = 1.5l,, since in the numerical simulation a large influence radius
leads to a large bandwith and many nonzero elements in the stiffness matrix and, consequently,
a large memory costs, which is tried to be avoided.

3.3.5 Nonlocal stiffness matrix

The material law is used in complex mesoscale simulations. Without the correct tangential
stiffness matrix, no convergence of the numerical solution could be obtained. The algorithmic
tangent modulus can be determined from

o= (1-w)C (e —e") (3.97)
dD o dDw die  q® ep>

- _ _gP @) -2 =
10 ~ “qmeC eI WC (dme de

(3.98)

where ) represents the variables at integration point i. Substituting Egs. (3.68) and (3.69)
gives

dDw 0D 0Dk dDE  9DE 9Dk
el [t (3.99)
die  0Wi \9OgdPe Ok dUe
i (%) (@)
1 T e dYEi dVk
= | —— f — -
- exp (md(j)e + (1 m)d(j)s) (3.100)
i ( ( () )
= -= f @y o — ————
; exp (m Wi S er d0e + (1 —m)dy; er die > : (3.101)

where (i)wj is the weighting function of integration point (j) at integration point 4, which is not
symmetric any more ((i)wj £0) w;). Furthermore, d;; is the Kronecker symbol with §;; = 1 for
i = j and 0 otherwise. All of the derivatives given in Eq.(3.101) can be computed, where %
can be derived from Eq. (3.53). The elasto-plastic tangent modulus Z—Z is given in Eq. (3.48).
It is to be noted that the stresses in one element are a function of the strains/displacements in
the neighboring elements. Consequently, the stiffness matrix of a single element is no longer
quadratic, but has a rectangular shape and a nonsymmetric solver has to be used. In the
numerical application, two successive calls of the material law are performed. In the first

run, the local elasto-plastic tangent is calculated for all integration points and stored in a
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temporary field. Within the second run, the full tangential stiffness matrix is computed. The
nonlocal weights (i)wj of the integration points are calculated in advance and stored at the
integration point.
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Chapter 4

Simulation of concrete on the mesoscale

4.1 Introduction

A simulation of concrete on the macroscale allows a characterization of the homogenized
response on lower scales, but the true physical phenomena can only be represented in a
phenomenological approach. This often requires complex material formulations with many
parameters, which are often difficult to determine. The modeling of concrete on the mesoscale
allows for the direct representation of the heterogenous structure [110], including e.g. the mass
fraction and the grading curve of particles, the shape of the particles [111], the interfacial
transition zone (ITZ) at the interface between particles and matrix material and a separate
constitutive formulation for each of the individual constituents (particles, mortar matrix,
ITZ).

For numerical simulations, two approaches to describe the mesostructure can be distinguished.
On the one hand, real specimens can be analyzed and, by using digital image analysis, equiv-
alent numerical models can be built [112]. On the other hand, the structure of real concrete
samples on the mesoscale can be investigated using X-ray tomography and procedures for
the numerical simulation are derived [113, 114]. A functional description of the grading
curve and the particle shape allows the generation of random samples of the heterogenous
microstructure of concrete [115].

The first mesoscale models of concrete are based on the lattice approach [116, 117, 118, 119].
According to the position in the model, a material (particle, matrix, I'TZ) is assigned to any
lattice. The properties of the beam elements, which might include a stochastic component,
are derived from macroscopic properties such as Young’s modulus or Poisson’s ratio. Different
approaches to model the failure of a single lattice have been investigated. One possibility is the
so called tension cut-off, where the lattice is removed from the model, if the prescribed tensile
strength is exceeded. However, this leads to spurious steps in the load-displacement curve
each time a lattice is removed. In another approach, a linear model for the prepeak region
combined with a softening function is used [120]. The primary problem of these approaches is
the determination of the material parameters, since no direct relation between the properties
of the lattice and the obtained macroscopic properties can be derived.

A second group are particle methods, which can be used for the simulation of cohesive gran-
ular materials [121]. Particles are simulated as discontinuous spheres, where the interaction
between neighboring particles is solely determined by their relative spatial position. A similar
difficult problem is here the determination of material parameters for the description of the
cohesion between the particles.
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A third group are continuum models [122, 123], where the mesostructure is explicitly repre-
sented. In this context, it is assumed that simple material models can be used, since the
complexity of the response is additionally included in the complex heterogenous geometric
description of the material. Furthermore, the nonlinear behavior of the ITZ at the interface
between mortar matrix and particle can directly be simulated, e.g. with a cohesive model.
Generally, a discretization with an aligned mesh is used for this purpose. In [15, 124], a
procedure using the XFEM approach in combination with level sets is used to model the I'TZ,
which allows the application of a regular quadrilateral mesh. In [2] it is assumed that the
nonlinear behavior can solely be described by a nonlinear model for the interface. For that
purpose, a mesoscale model with linear elastic particles is meshed with triangular elements,
and interface elements are placed between each finite element. The disadvantage of this ap-
proach is that the crack path is limited to the element edges and a strong mesh dependency
is obtained.

Advantageous of all mesoscale models is the fact that the complex macroscopic material be-
havior can be described by simple material formulations of each constituent on the mesoscale.
An example is the nonlinear prepeak region in a tensile test, which can be described on the
mesoscale without any hardening variables. Furthermore, the artificial insertion of a weak
point to initiate localization as e.g. in a uniaxial tensile test can be avoided, since, due to
the heterogenous structure on the mesoscale, stress concentrations and, consequently, zones
of local damage naturally occur.

4.2 Experimental results

Concrete is a heterogenous material whose material behavior is strongly related to its mi-
crostructure. The nonlinear behavior of concrete is caused by the development of micro
cracks, which finally coalesce into a macroscopic crack. An important influence on the de-
velopment of microcracks has the underlying microstructure. For normal strength concrete
where the strength of the aggregates is much higher compared to the mortar matrix, fail-
ure generally is initiated at the interface between mortar matrix and aggregates, which has
substantially lower material properties than the bulk material [125], e.g. a higher porosity.
Consequently, three principal components can be used to characterize the mesoscale model -
aggregates, mortar matrix and the interfacial transition zone.

4.2.1 Aggregates

In normal strength concrete, the mass fraction of aggregates is approximately 60-70%. The
size distribution of aggregates is characterized by the grading curve, which describes the mass
of aggregates that passes through sieves of different sizes. Different materials can be used as
aggregates. In Table 4.1, experimental properties of aggregates from different experimental
tests are illustrated.

Obviously, there is a large scatter in the data, which is, on the one hand, due to the scatter in
the material itself, i.e. stones from different locations have different chemical composition and
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Table 4.1 Experimental results for material parameters of aggregates : compressive strength
fe, tensile strength f., Young’s modulus FE and Possion ration v.

author property  basalt limestone granite sandstone
[126] fein MPa 158 52
fein MPa  10.2 8.4
FE in GPa 54 67
[127] fe in MPa 57.5 140.1
v 0.18 0.16
FE in GPa 34.5 55.3
[128] fe in MPa 147.3 179.1 102.8
(£32.77%)  (£43.45%)  (£3.39%)
FE in GPa 65.6 67.8 26.7
(+2.84%) (£3.37%) (£5.67%)
v 0.27 0.24 0.18

(£10.48%) (£11.79%) (+31.43%)

different material properties, and, on the other hand, due to the stochastic influence in the
experiments, i.e. repeating the same experiment with the same setup will still give different
results. Another influencing factor is the setup of the experimental tests, e.g. the size of the
specimen has a considerable influence on the measured strength values.

For a numerical simulation of concrete, where the exact parameters of the aggregates are not
given, a rough estimate of the material properties of aggregates can be made according to
Table 4.1. The influence of the strength values is, for normal strength concrete, relatively
small, since the aggregates can be assumed to be linear elastic.

Another classification of aggregates is made, according to its manufacturing process, in frac-
tured (split, crushed stone fines) and unfractured (gravel, sand), but in the numerical simu-
lation only round, unfractured particles are simulated.

4.2.2 Mortar matrix

In this context, the mortar matrix comprises all components with a diameter less than 2mm.
Obviously, the mortar matrix is a heterogenous material, which consists of pores, small aggre-
gates and hardened cement paste, which itself is also heterogenous. For high compaction, the
volume ratio of pores is about 1.5%, but for special concrete mixtures with a high freeze-thaw
resistance up to 6 % of pores are possible, but from a mesoscale point of view, the mortar
matrix is assumed to be homogeneous.

The properties of the matrix are essentially determined by the cement used for the concrete,
the compaction and, consequently, the amount of pores, the water-cement ratio and the
environmental conditions (e.g. temperature, humidity) during the solidification process. It
is to be noted that the properties of the matrix evolve during the hardening procedure.
In order to obtain comparable results, properties of concrete/cement paste are, in general,
experimentally investigated under standardized conditions after a fixed period of time (e.g.
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Figure 4.1 Bond strength between matrix and aggregate in mode I

28 days). However, the real properties in situ might be fundamentally different. For concrete,
[129, 130] observed e.g. that within 30 to 50 years the compressive strength in general doubles
and, in rare cases, an increase of up to 400% compared to the value after 28 days occurred.

4.2.3 Interfacial transition zone

The interfacial transition zone (ITZ) has an essential influence on the macroscopic properties
of concrete. This region with a thickness of 20 — 100 pm is initially characterized by a high
water-cement ratio due to the reduced amount of cement grains, which results in a higher
porosity. The I'TZ is rather inhomogeneous and a description of the average I'TZ is difficult.
Examining back scattered electron images, [125] observed an air void content of approximately
30%(Vol.) at a distance of 1.2 um from the aggregates, which reduces to 10%(Vol.) at
a distance of 50 um. [131] investigated the temporal distribution of pores using scanning
electron microscopy, and found in the final state (56 days) only in the vicinity of the aggregates
(0—15 wm) a considerable increase of the porosity, whereas in the range 15— 100 pum from the
aggregates the initially increased porosity is reduced due to the hydration products. On the
contrary, [132] examined concrete with aggregates made from quartzite and dolomite after 3
and 100 days and pointed out that the porosity of up to 30% close to the aggregates reported
by other authors is highly overestimated and no significant increase of the porosity in the
vicinity of the aggregates is observed.

Experiments which quantitatively measure the mechanical properties, e.g. the bond strength,
are important to develop a mechanical model of the ITZ. The results of [126, 133] are illus-
trated in Fig. 4.1. Accordingly, the tensile bond strength increases during the first 12 weeks.
For basalt, it drops afterwards which is explained by the decomposition of feldspar due to
their interaction with the hydrating cement, which produces clay minerals that swell on ab-
sorbing water. A similar phenomenon was observed for limestone, which is, according to the
authors, due to the chemical reaction of limestone and cement paste. This reaction produces
carbon dioxide which results in a higher porosity of the interface.
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Figure 4.2 Shear bond strength (regression curve 7 = Ad~'/") between aggregate and matrix
with and without additional silica fume [135].

[134] determined the strength of the interface between aggregates made of rough granite and
different types of mortar. The measured tensile bond strength was between 0.12 and 0.56
MPa, whereas the shear strength of the interface was between 1.47 and 2.79 MPa.

In [135], the shear bond strength was determined using pullout tests of cylindrical aggregates
with a diameter between 10 and 30mm. The experimental results can be approximated by
7 = Ad~Y", which is illustrated in Fig. 4.2. The shear strength 7 in M Pa is a function of
the diameter d of the inclusion in [mm| and material constants A and n. As can be deduced
from the results, the size effect is clearly recognizable - i.e. the smaller the specimen diameter,
the higher the strength - although the number of specimens tested is too small to allow any
statistical interpretation. Similar experiments have been performed by [136] for pullout tests
with cylindrical specimens with a diameter of 12mm and a height of 13mm. A shear strength
between 1.6N/mm? for coarse aggregates, 2.26N/mm? without aggregates and 4.71N/mm?
with the addition of silica fume were measured. Additionally, the specific fracture energy was
determined (0.007Nmm/mm? using coarse aggregates, 0.014Nmm/mm? without aggregates
and 0.0659Nmm/mm? with silica fume), The (unrealistic) small values might be due to the
fact that the specific fracture energy was not determined using the full load-displacement
curve, but approximated from the peak load and the corresponding slip.

The influence of the I'TZ on the macroscopic properties of concrete has been determined
by [137]. Aggregates (crushed and rounded, diameter 5-7mm) were coated with bitumen
emulsion, paraffin and an epoxy raisin in order to modify the surface of the aggregates and,
consequently, the structure of the ITZ. Afterwards, tensile and compressive strength, Young’s
modulus and specific fracture energy of the concrete were determined. Some of the results are
illustrated in Table 4.2. Obviously, the shape of the aggregates has a fundamental influence on
the macroscopic fracture energy. For round inclusions, the fracture energy seems to be in the
same range compared to the pure matrix, whereas crushed aggregates strongly increase the
fracture energy. This is probably due to the fact that the width of the facture zone is larger
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Table 4.2 Influence of the aggregate surface and the aggregate shape on the macroscopic
properties of concrete with mean and standard deviation [137].

aggregate coating fein MPa FEin MPa f; in MPa Gp in J/m?
only matrix 71.1+0.2  34.3+0.1  4.00£0.10 67.242.0

crushed  bitumen emulsion  21.0+0.3 19.740.7  2.1940.03  125.846.3
crushed paraffin 36.1+£1.3  25.6+0.6 2.9940.10  141.149.0
crushed none 73.2+2.0 33.1+£0.8  4.1540.05 136.0+4.8
round bitumen emulsion  21.9+0.5 22.5+0.5  2.4640.07 67.8+2.5
round paraffin 41.54+0.8 33.7£0.6  3.1140.04 77.0£6.7
round none 63.8+2.6  39.8+1.0  3.93+0.05 94.745.7

for fractured aggregates. The tensile strength and the compressive strength of concrete with
round aggregates is reduced compared to the plain matrix, whereas for crushed aggregates
an increase is observed.

The most important result is the strong influence of the coating, i.e. the properties of the I'TZ,
on the macroscopic behavior. For a weakened interface between matrix and aggregate, all
macroscopic material parameters are substantially reduced - especially for round aggregates.
Under the assumption that the surface treatment mainly affects the tensile strength in the
interface layer it becomes evident that the failure of the interface in tension has a fundamental
influence in the macroscopic compressive strength.

In summary, it can be concluded that the material parameters for the interface and the mor-
tar matrix show strong variations. This is due to the fact that many parameters (specimen
geometry, load application, cement type, aggregate type, water-cement ratio, time between
casting and testing etc.) influence the results. The influence of a single parameter, while try-
ing to keep all other influencing factors constant, can be qualitatively estimated. Predictions
of unknown material parameters for a new concrete composition with interacting influencing
factors from existing experimental data are rather imprecise. Furthermore, the sample size
in most of the experiments is rather small, which adds additional inaccuracies. However,
the representation of the ITZ in a mechanical model seems to be essential, since cracks are
initiated in and often propagate along the I'TZ.

4.3 Modeling of the geometry

An important aspect of the mesoscale simulation of concrete is the exact representation of
the aggregate shapes, their size distribution according to a prescribed grading curve and the
spatial position and orientation of the aggregates within the specimen. Two main concepts
to build a numerical mesoscale model of concrete can be distinguished. The first possibility
is based on image processing techniques. Based on a X-ray computer tomography [138] or by
sequential sectioning and 2-D image processing [139], a 3-dimensional voxel representation of
the microstructure is obtained, which can be used in a voxel based finite element representa-
tion [140, 112, 141]. A second approach, followed in this thesis, is the artificial generation of
the microstructure. [142] used polygonal and spherical inclusions to simulate concrete on the
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mesoscale. For 3-dimensional models, either spheres [143, 144] or ellipsoids [145, 119, 146] are
common shapes to describe the aggregates. [113] used voxel representations of real concretes
to describe the size and shape of aggregates in concrete by spherical harmonics, which allows
the simulation of random shapes.

In order to obtain realistic models, certain statistical characteristics of the real model, e.g.
the size distribution of aggregates has to be represented in the numerical model. The size
distribution of aggregates is commonly characterized by a grading curve. Grading curves for
standardized concrete are defined in the design codes. A grading curve is defined by aperture
sizes of a set of sieves and the corresponding mass fraction that passes through these sieves.
An alternative approach is the description of the size distribution using an explicit function
such as e.g. Fuller’s curve. Using many different sieves, the second approach (Fuller) can
almost exactly be reproduced by the first approach.

In the current implementation, an algorithm based on [147] is used. It can be divided into the
generation of the correct set of aggregates and, afterwards, the placing of these aggregates
into the specimen, which is commonly referred to as the set and place method.

4.3.1 Sampling of aggregates according to a size distribution

Aggregates are simplified by ellipsoids and the generation of the geometry is fully performed
in 3-D. A 2-dimensional model can be obtained by cutting a slice out of the 3-dimensional
model. In the local coordinate system aligned with the principal axis, the surface of an
ellipsoid is defined by

3. /22
=) =1 4.1
> (5) - )
=1

where r; are the principal radii. Without loss of generality, it is assumed that r; > ry > r3.

It is further assumed that an aggregate passes through a sieve, if its medium diameter 2r; is
smaller than the aperture of the sieve.

The radii r; and r3 are determined from r, according to

—1
= (1 ™ ) (4.2)

m+1

Trs = (1—U3m_1) T, (43)

m—+1

where u; and us are realizations of random variables Uy, Us which are uniformly distributed
in the interval [0,1] and m is a constant that characterizes the flatness of the ellipsoids. For
m=1, all radii are identical and the ellipsoids reduce to spheres, whereas for higher values
the flatness increases. The assumptions of a linear distribution of r; and r3 in the intervals

2m ] [ 2

and |79
m+1 m 4+
be used. The expected volume E(V) of an aggregate is then given by

o0 oo 4
E(V) = / / §7T37’1(U1,7’2)7”27“3(U3,7“2) dusdu . (4.4)
u1=—00 J uz3=—00

[7’2, Ty T 7“2} has been made for simplicity, but any other distribution can
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Since the variables U; and Uj are independent and uniformly distributed in the interval [0,1],
Eq. (4.4) can be simplified to

1 1
4 m—1 m—1
i L10L303Wr2< ulm—i-l)( u3m+1) Hadth (4.5)
4

. [1 _ (;’Lm_;ll))] | (4.6

In the grading curve, different mineral size classes i can be distinguished, each having a
minimum diameter d’ . and a maximum diameter d’ From the total mass of aggregates

min max*

myr and the grading curve, the mass of each mineral size class can be determined.

My = Mot [Fm(d;nar) - Fm(d;‘mn)} ) (47)
where F,,,(d) is the ratio of mass passing through a sieve of aperture size d and the total
mass. Consequently, each class can be simulated separately and the index ¢ is omitted. The
function F,(d) can be interpreted as the cumulated probability density function of the mass
distribution as a function of the diameter do = 2ry. Assuming a linear function in the
logarithmic scale between F,(dyin) = 0 and F,(dpas) = 1, it follows:

In(ds) — In(dynin)

Fm(dZ) ln(dmax) _ ln(dmm) with dmzn = d2 = dmax (4 8)

This can be interpreted as the accumulated probability density function of the mass as a
function of the diameter dy. The corresponding probability density function is obtained by
differentiation of Eq. (4.8):

OF,(dy) 1

Om(da) = ddy  dy [In(dmaz) — hl(dmm)]‘

(4.9)

Equation (4.9) describes the mass distribution within the mineral size class. From the mass
distribution, the distribution for the number of particles is derived. The mass of particles M
of size d is given by

M (dy) = n(da) pE(V (o)), (4.10)

where n(dz) is the number of particles with diameter ds, p is the density of the aggregates
assumed to be identical for all mineral size classes and E(V (ds)) is the expected value of the
volume of an aggregate with diameter dy given in Eq. (4.6) with 2ry = dy. Consequently, the
distribution of the number of particles as a function of the radius ds is given by

, (4.11)
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Figure 4.3 Sampling of particles according to a prescribed grading curve.

where the denominator corresponds to the total number of aggregates in the interval
[dmin, dmaz]- Substitution of Eq. (4.6) and simplification finally gives:

3d3 d3 .
n d — max " min 4.12
¢ ( 2) d% (d3 —d3 ( )

)
max mzn)

which describes the density function for the number of ellipsoids. Integration of the density
function gives the cumulated density function of the ellipsoids

@ dfnamdgnm 1 1
Fuldh) :/d )= (d?» N d_é)' (419)

In order to simulate particles according to the prescribed cumulative distribution function, the
inversion method in section 5.2.2.1 is used, which means sampling a uniform random variable
Us in the range [0,1] and then using the inverse function of the cumulated distribution function
to obtain the corresponding diameter ds:

dy = oo i . (4.14)
Vuadsy + (1= uz)db,
The procedure is illustrated for the mineral size class [2,8] in Fig. 4.3(a). Note that F), is
a linear function in the logarithmic scale, whereas F;, is nonlinear. In a similar way, it is
observed that the density function ¢,, is much smaller than ¢, for small diameters ds. This
is due to the fact that, for a smaller diameter ds, in order to have the same mass proportion
a much higher number of samples is required.

The take process is summarized in Algorithm 4.1. Starting with the largest mineral size class,
particles are generated by sampling random numbers wu;, uy and ug in the interval [0,1]. From
these samples, the principal diameters/radii of the particle using Eqgs. (4.14), (4.2) and (4.3)
are calculated. The procedure is repeated until the mass m; is exceeded. The difference
between the simulated mass m; and the target mass m; is subtracted from the next mineral
size class in order to ensure that the total simulated mass is almost identical to its target
value.
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Algorithm 4.1 Sampling of particles according to a prescribed grading curve
for each mineral size class ¢ starting with the largest particles do
calculate mass fraction; for ¢ > 1, substract difference from previous class

m; = Muot [Fon(die) — Frn(dhyin)] — (M1 — miy)

repeat
Sample random numbers u;, us and uz in the interval [0,1]
Calculate principal diameters of particle

d o dmamdmin
i \3/u2d§m'n + (1 - u2)d§nam

m— 1
=11 d
1 (+U1m+1> 2

m— 1
d3 = (1— d
3 ( U3m+1> 2

Calculate volume and mass of particle

1 .
m; = m; + péﬁddldeg

until m; > m;

4.3.2 Placing the aggregates

After having created the particles for a prescribed volume, the particles are placed into
the specimen at a random position and with random orientation, which are assumed to
be uniformly distributed in their domain. For a 3-dimensional simulation, this corresponds
to three coordinates and three orientation angles. In order to avoid overlapping between
aggregates and the boundary of the domain and overlapping between neighboring particles,
separation checks have to be performed. From the computational point of view, the most
expensive procedure is the separation between particles, which is due to the large number of
particles considered. At first, the bounding boxes of the ellipsoids are checked and in the case
of their intersection, an efficient separation check for ellipsoids developed by [148] is applied.
The representation of two ellipsoids A and B from Eq. (4.1) is rewritten as

3 73 x3

A:0=2"Aeg =", +- 2 4+ 51 (4.15)
()" ()" (rg)

B:0=x"Bx = (v; — 25)* + (20 — 25)* + (z3 — 25)? — r? (4.16)

with @ = (21, 9, x3, 1) being homogeneous coordinates,

A =diag(1/(r1)?% 1/(r3)%, 1/ (r3)?, 1) (4.17)
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1 -9
1 -5
B = 1 g (4.18)
—x{ —x§5 —x5 — (7"8)2 + x] + x5 + 7§

in a coordinate system centered at the origin of A and scaled in such a way that B is repre-
sented by a sphere centered at (z§, x5, z5) with radius 7%. The characteristic polynomial is
defined as

F(\) = det(\A + B), (4.19)

and f(A) is called the characteristic equation. [148] showed that two ellipsoids A and B can
be separated by a plane if and only if the characteristic equation has two distinct positive
roots. It is not required to exactly determine the roots, but the existence (e.g. using Sturm-
sequences [149]) of two positive roots is sufficient to conclude that the ellipsoids are separated.

An important aspect is the enlargement of all radii of an ellipsoid by Ar = ery, where €
being a user-defined constant. This approach is physically motivated by [150], who showed
that aggregates are surrounded by a thin film of mortar. From the numerical point of view,
this procedure is essential to define a minimum distance between ellipsoids and, consequently,
obtain non-distorted elements in the meshing procedure.

A further considerable improvement of the speed of the separation checks can be obtained by
placing the particles in boxes with a constant edge length [151]. If an ellipsoid is to be placed
into a certain box, only the ellipsoids already being placed in this box have to be considered.
Especially for a large number of particles, this approach significantly reduces the number of
separation checks and, consequently, the calculation time.

The randomness in the spatial location and the orientation of the particles reflects the stochas-
tic character of the arrangement of particles in a real model. Different realizations of the
particle arrangement can be obtained by modifying the seed of the random number generator
used for the generation of the random locations and orientations, thus the variability of the
response with respect to varying particle arrangement can be investigated.

In order to generate a 2-dimensional model, a slice of the 3-dimensional model is used, where
ellipses with a radius smaller than a prescribed threshold related to the mesh size are removed.

4.4 Meshing

Once the geometrical description of the particle distribution is calculated, a meshing of the
geometry is required in order to obtain a numerical FE model. Different approaches have
been investigated.

In the first approach, the boundary of the ellipses/ellipsoids coincides with the element edges
(aligned mesh) and an unstructured mesh with triangular/tetrahedral elements is created
using the software packages Triangle [152] or Gmsh [153]. This approach has the disadvantage
that for a large number of particles, the mesh generation procedure is time consuming and/or
does not work at all.
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For this reason, a simplified version has been implemented that combines regular and unstruc-
tured mesh generation. In a first step, a regular mesh with quadrilateral elements is created
which does not consider the mesostructure of the model. For many geometries, this regular
mesh can be created, even though in the current examples only rectangular domains are con-
sidered. In a second step, all elements which have a neighboring element that is intersected by
an ellipse/ellipsoid are deleted. For each particle, a region composed of elements to be deleted
is obtained, whereas the regions for different particles may overlap. By unification of all re-
gions sharing an element, a disjoint set of regions is obtained. Each of these regions can be
meshed similarly to the first approach with triangular/tetrahedral elements. The advantage
of this approach is the small number of different domains or holes to be considered. Actually,
the meshing problem with many inclusions is decomposed into several meshing problems each
having a small number of inclusions.

A third approach, already presented in the first chapter of the thesis, is the XFEM, where
the element edges do not coincide with the material edges. Apart from the calculation of the
integration zones, no mesh generation procedure is required. From the mesh generation point
of view, this approach is faster compared to the previously discussed methods. However, due
to the introduction of enrichment functions with additional degrees of freedom (DOF), the
total number of DOF’s and, consequently, the computational effort is increased. An example
for the different discretization schemes is given in section 4.5.1.

4.5 Numerical results

4.5.1 Aggregates in matrix with different discretization schemes

In a first simple example, a tensile test with only three particles under plane strain conditions
is performed in order to compare the different discretization techniques. Particles are assumed
to be linear elastic with Young’s modulus and Poisson’s ratio given by £ = 54 - 103 mllg and
v = 0.2. The matrix is simulated using the combined damage-plasticity model presented in
detail in section 3.3 with Young’s modulus, Poisson’s ration, fracture energy, tensile strength,
uniaxial and biaxial compressive strength given by E = 20 - 103 mlfng, v=018, fu = 3.2%7
fer = 43% and fopo = 44.9%. The standard nonlocal formulation with m =1 and a
nonlocal interaction radius of R = Imm has been used. The edge length of the model concrete
specimen is 10mm with an element length of approximately 0.3mm. The left boundary is
fixed in horizontal direction. A single node is fixed in vertical direction to prevent rigid body

motions. At the right boundary, displacements d are applied in horizontal direction.

It is to be noted that in almost all examples quadratic elements have been used. This is
due to the fact that linear triangular/tetrahedral elements can only approximate a constant
strain state in a single element. In order to obtain the same accuracy in the solution, a much
finer mesh and, consequently, much more DOF’s compared to the quadratic approach were
required.

First of all, it is observed that the computing time for the discretization with the XFEM
approach is much longer compared to the aligned discretization. This is due to the fact that
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Figure 4.4 Damage distribution at the peak load

the elements cut by the interface are decomposed into triangular integration cells, which
results in much more integration points per element. The reason is due to the nonlocal
formulation, where the stiffness at a given point depends on all other integration points
within the nonlocal radius (assuming the point is in the inelastic regime). A second influencing
factor is the number of DOF’s. In the unstructured FE mesh, only 6167 DOF’s were required,
whereas in the regular FE mesh 10210 DOF’s and in the XFEM approach 10258 DOF’s have
been used. Obviously, only a small number of additional enriched degrees freedom is added
(compared to the regular FE mesh). The advantage of the unstructured mesh is the ability
to model a varying node density, i.e. a high density close to the aggregates and a lower value
in between. However it is to be noted that the variation of the element size within the same
model should only be moderate in order to avoid having only a single element within the
nonlocal interaction radius or too many elements, which is only a numerical problem due to
the increased bandwidth of the stiffness matrix.

The obtained load-displacement curves for all three discretization techniques are almost iden-
tical, for which reason a plot of the curve has been omitted. The damage distribution at
the peak load with d = 0.0018mm is illustrated in Fig. 4.4 and at the final displacement
d = 0.1mm in Fig. 4.5. It is observed that all methods yield approximately the same damage
distribution. Differences can be contributed to the different number and position of integra-
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Figure 4.5 Damage distribution at ultimate failure

Jorg F. Unger PhD-thesis
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tion points. It is to be noted that no interpolation of the integration point data (damage) is
performed - each integration cell is filled with the color corresponding to the damage value
of its integration point. For certain setups it might happen that modifications of the dis-
cretization (different discretization method or slightly varying mesh size) lead to completely
different crack patterns. This is due to the fact that, in a mesoscale simulation, the crack
path is strongly related to the particle distribution, and often bifurcation points occur with
different crack paths being energetically almost equivalent. However, this is only a minor
problem, since for large specimens, where the maximum size of the particles is small com-
pared to the specimen dimensions, no significant difference is expected. For small specimens,
only a stochastic information can be obtained, where the same specimen has to be computed
several times with different particle distributions. Similarly, the influence of the meshing is
removed by the averaging procedure.

An aspect strongly related to the existence of many bifurcation points are the problems in
the numerical solution procedure. At a bifurcation point, at least one eigenvalue is zero.
Numerically, this eigenvalue will, in general, be small, but nonzero which still allows the
application of the Newton-Raphson scheme. However, the convergence speed will decrease.
At these points, the application of the line search procedure is fundamental to obtain a
solution, but sometimes no convergence can be obtained at all.

4.5.2 Compression test 3D

In a second example, a compression test of a concrete cube is performed in 3D and compared
to experimental data from [154]. The experimentally tested concrete cube has a side length
of 100mm. In the numerical simulation, a concrete cube with a side length of 25mm has been
used and the results were scaled for comparison. The full cube could not be simulated numer-
ically due to the large number of DOF’s and the mesh creation in 3D. The upper and lower
boundary conditions correspond to high friction between the cube and the loading platens.
According to a prescribed grading curve, 39 ellipsoids in the class 4-8mm were placed into the
specimen, and 230 ellipsoids in the class 2-4mm, which is illustrated in Fig. 4.6. The matrix
is assumed to include all the particles smaller than 2mm. The material parameters used in
the simulation are summarized in Table 4.3. It is important to mention that no parameter
fitting has been performed. The fracture energy of the matrix was set to the experimental
fracture energy of the macroscopic concrete specimen, which is only an approximation. Due
to the increased fracture surface in a mesoscale tensile test, the fracture energy of the matrix
is slightly smaller compared to the macroscopic model. Due to lack of additional information,
the fracture energy and the tensile strength of the interface were chosen to be a multiple of the
corresponding parameters of the matrix. The factor was chosen to be 90%, which assures that
the cracks around the particles propagate along the interface elements. If cracks around the
particle develop in the matrix with the crack being almost parallel to the interface between
matrix and particle, boundary effects due to the renormalization of the nonlocal weighting
function occur, and the assumption of energy dissipation in the full range of the nonlocal
radius is not valid any more. The Young’s modulus of the matrix F,, was determined using
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Figure 4.6 Particles simulated in the concrete cube with edge length 25mm

the Reuss formula [155]. By assuming the Young’s modulus of the particles to be twice the
Young’s modulus of the matrix, the following relation is obtained:

1 :P_m+1_Pm

E. E, 2E,, ’

(4.20)

where p,, is the volume fraction of the matrix and E. the macroscopic Young’s modulus of
concrete. An alternative possibility is to fix the Young’s modulus of the particles and compute
the Young’s modulus of the matrix.

Additionally, the influence of different yield functions used in the plasticity model has been in-
vestigated (Rankine, Drucker-Prager and combination of both) and compared to the isotropic
damage model. In Fig. 4.7, the damage distribution at the end of the calculation is illustrated.
One of the main motivations for using mesoscale models was the idea to represent the complex
macroscopic response by discretizing the heterogenous mesostructure in the numerical model
and applying simple material formulations to each of the constituents. For that matter it
was assumed that the compressive failure of concrete could be modeled by using a mesoscale
model with matrix failure defined by a criterion in tension as e.g. the Rankine yield surface in
the combined damage/plasticity model or the isotropic damage model. The damage pattern
in Fig. 4.7(b) does not coincide with the experimental results obtained for a compression
test of concrete with high friction between the platens and the cube. Furthermore, no global
softening behavior could be observed as illustrated in Fig. 4.8. At the ultimate applied dis-
placement, columns of intact material transmit high compressive forces. They are separated
by vertical cracks, which developed due to the lateral strain in the matrix. In a similar way,
the isotropic damage model failed to represent a realistic failure pattern, although the dam-
age distribution is quite different, as illustrated in Fig. 4.7(c). Almost the full inner zone of
the cube fails, and the peak load is highly underestimated. Both formulations are based on
the Rankine-criterion, but the principal difference is that, in the combined plasticity-damage
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78 4.5 Numerical results

Table 4.3 Material parameters for the 3-dimensional compression test

parameter matrix interface aggregate
Young’s modulus E N 5 26738 - 53476.1
Lmm= ]
Poisson’s ratio v -] 0.18 - 0.18
tensile strength fet N 5 3.4 fi-3.4 -
Lmm~ ]
uniaxial compressive strength  f, N 5 50 - -
biaxial compressive strength feo N 5 58 - -
Lmm~ ]
fracture energy G ngl} 0.12 G;-0.12 -
L mm
nonlocal radius r [mm] 1 - -
interaction value @ -] - 1 -

model due to the development of plastic strains, an anisotropic nonlinear behavior is modeled,
whereas in the isotropic damage model the exceedance of the Rankine criterion in one direc-
tion automatically induces a reduction of the stiffness in all other directions. It is furthermore
observed that both formulations fail to simulate the dilatancy effect as shown in Fig. 4.8(b).

An alternative formulation was based on a pure Drucker-Prager criterion, where the cone of
the failure surface was determined from the uniaxial and biaxial compressive strengths. In
most numerical simulations, the latter was estimated from the uniaxial compressive strength.
The Drucker-Prager yield surface is often used to describe failure of concrete in compression.
The failure pattern corresponds to the experimental results similar to the combined approach,
where curved shear zones develop, which finally lead to spalling of the vertical edges. Addi-
tionally, softening of the global response can be simulated. The onset of failure is accurately
captured by the model, as well as the lateral strain (which is calculated from the lateral
displacements at the midsection). The fracture energy in compression is overestimated by
the numerical model, which is probably due to the fact that the parameter ¢, is calibrated
from a tensile test. Furthermore, a combination of the Rankine criterion for tension and
the Drucker-Prager criterion in compression in the framework of a multiplasticity approach
was investigated. The onset of material degradation was slightly earlier compared to the
Drucker-Prager model. The simulated axial stress-strain diagram is close to the experimental
data, although the compressive strength is slightly smaller in the numerical model, which is
probably due to the parameter set (no fitting). In a similar way, the difference in the lateral
strain can be explained. The volumetric expansion (dilatation) is best approximated with the
combined model. The interface parameters, i.e. the factor relating the fracture energy and
the tensile strength of the interface to the corresponding parameters of the matrix, have only
a minor influence. This might be attributed to the small number of particles considered in
the simulation. A second reason is probably the fact that in a compression test the primary
failure domain is the matrix. Interface cracks seem to have only a minor influence.

4.5.3 Axisymmetric tensile test of notched specimen

The third example is a uniaxial tensile test of a prenotched cylinder experimentally investi-
gated in [156]. The geometry of the test setup is illustrated in Fig. 4.9(a). Three LVDT’s
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Figure 4.7 Damage distribution after the final load step of a uniaxial compression test for
different yield functions of the matrix material using the combined damage-plasticity model
and the isotropic damage model.

(linear variable differential transformer) with a gauge length of 25mm are used to measure the
crack-mouth opening displacement across the weakened section, which is obtained by cutting
a 10mm deep notch at the midsection using a diamond-impregnated disc. In the numerical
simulation, only the central part with a length of 100mm is simulated. Due to the notch, the
location of failure is prescribed, and, since the crack-mouth opening displacement is measured
over a gauge length of 25mm, the influence of this reduction is considered to be negligible.
An important point in this simulation is the application of an axisymmetric formulation. The
geometry of the specimen as well as the loading is axisymmetric. The only problem is the
mesoscale model. The assumption of an axisymmetric formulation with particles implies that
each particle in the 2D model corresponds to a torus in 3D, which allows the transfer of
hoop stresses. Consequently, due to the larger Young’s modulus, the particles prevent the
lateral contraction of the mortar matrix, which is not realistic. In order to prevent the trans-
fer of these stresses within the particles, a linear elastic material formulation using a plane
stress assumption within an axisymmetric formulation has been implemented. This allows
the particles to deform in the hoop direction with vanishing stresses. Although the model
still includes several unrealistic simplifications (particles are a torus, no particle placement
at the axis of symmetry, elongation of particles in hoop direction), it allows for a realistic
axisymmetric formulation and thus considerably reduces the computational effort compared
to a full 3D model. The material parameters used in the numerical simulation are illustrated
in Table 4.4. The geometry was meshed with an average element length of 0.75mm.

Aggregates are simulated using a grading curve given in [156], where two classes of grain
sizes have been simulated numerically (2-5mm with a mass fraction of 15.4% and 5-15mm
with a mass fraction of 40.8%). The compressive strength of the matrix was assumed to
be identical to the global compressive strength measured experimentally, from which the
uniaxial tensile strength and the biaxial compressive strength were estimated. The fracture
energy has been approximated from the total area under the curve in the stress-crack-mouth
opening displacement diagram. The parameters of the interface were obtained from the matrix
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Figure 4.8 Uniaxial compression test in 3D of a cube with edge length 25mm for different
yield surfaces and G; and f; varied between 45% and 90% - (DP: combined Drucker-Prager,
RK: combined Rankine, ID: Isotropic damage model).

properties with a reduction factor of 0.75 taking into account the weaker characteristics of
the ITZ. By fixing the Young’s modulus of the aggregates and using the rule of mixture
in Eq. (4.20) with the simulated aggregate content, the Young’s modulus of the matrix is

obtained.

In Fig. 4.9(b), the obtained stress-crack-mouth opening displacement are plotted. The mean
and the standard deviation are obtained from 100 simulations with different distributions
of the particles. It is to be noted that, similar to the experiments, the stress is calculated
as the total force divided by the area of the full cross-section (not the weakened one). It is
observed that a discrepancy between the numerical and the experimental results already in the
linear elastic response exists. For that purpose, several numerical tests including a constant
Young’s modulus for the full specimen, variation of the thickness and width of the cut and the
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Figure 4.9 Tensile test according to [156].
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Table 4.4 Material parameters for the axisymmetric tensile test

parameter matrix interface aggregate

Young’s modulus E N 5 ~21100 - 54000
Lrmm* ]

Poisson’s ratio v -] 0.18 - 0.2

tensile strength fet N 5 4.02 3.0 -
Lmm~

uniaxial compressive strength  f. N 5 40.2 - -
Lmm*

biaxial compressive strength fe2 N 5 46.6 - -
Lmm* ]

fracture energy G N s 0.1 0.075 -
L mm

nonlocal radius r [mm] 1.125 - -

interaction value ! -] - 1 -

measurement of the displacement difference at the axis of symmetry were performed. It was
found that the displacement difference at the outer surface of the cylinder is approximately
twice as large compared to the displacement difference at the axis of symmetry, which can
be explained by the bending effects of the notch. Using a model without a notch, the linear
part of the stress-crack-mouth opening displacement diagram corresponds to the measured
global Young’s modulus of 30 - 103N /mm?. However, calculating the displacement difference
in the numerical model at the axis of symmetry is not physical, since in the experiment
the measurements were also performed on the outer surface. A parameter fitting procedure
would be possible to match numerical and experimental curve, but since the main purpose of
numerical simulations is to predict tests, where no experiments have been performed, such a
fitting was not applied.

The softer response in the linear elastic part results in an overestimation of the stress in the
post-peak region, since the overall fracture energy should be almost identical. However, it
is to be noted that the peak load and the general shape of the stress-crack-mouth opening
displacement curve can be reproduced in the numerical simulation.

In Fig. 4.10, the damage distribution at the final loading state is illustrated. It is clearly
observed that the cracks tend to pass through the weak ITZ around the particles. Since a
notch has been cut into the specimen, the location of the final localization zone is prescribed
and the influence of the particle distribution reduces to slight variations of the crack path.
Consequently, the effective crack length together with the global dissipated energy changes,
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Figure 4.10 Damage distribution at the final state for two samples with a different particle
distribution.
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Figure 4.11 Influence of particle distribution.

which explains the increasing standard deviation in the post-peak branch of the stress-crack-
mouth opening displacement diagram. For sample 1, it is furthermore observed that two
competing cracks developed, but finally the damage localizes only in a single crack. With
the reduced properties of the I'TZ compared to the matrix material, the microcracks in the
pre-peak region primarily develop in the nonlinear I'TZ represented by interface elements and,
consequently, almost no damage is observed outside the influencing region of the final crack.

4.5.4 Comparison 2D-3D

Most of the numerical simulations were performed under uniaxial tensile loading. This is
due to the fact that the influence of the mesostructure is more pronounced under uniaxial
conditions, since localization is triggered by the stochastic distribution of aggregates in the
mesostructure. Furthermore, it has been realized that a compression test simulated in 2D
cannot fully capture the failure mode. As a consequence, compression tests were simulated
in 3D. One major disadvantage of the 3D simulations is the higher discretization effort and,
especially, the higher computational cost. This is, on the one hand, due to the large number
of DOF’s in 3D, and, on the other hand, due to the increased band width of the stiffness
matrix for the nonlocal formulation in 3D.

As a consequence, there are often two choices when modeling a tensile test. On the one hand,
the tensile test could be simulated in 2D, which allows a fine discretization, the inclusion of
many aggregates of different sizes (ratio between smallest and largest diameter of aggregates
can be higher than 10) and straightforward visualization techniques. On the other hand, it
is not clear, if the response with the 2D model can be compared to the 3D model with the
same material parameters. In order to validate the results of a 2D simulation, it was tried
to compare 2D and 3D simulations using a similar model with respect to the grading curve,
dimension of the specimen and material parameters. Unfortunately, it was realized that with
the available hardware the problem could not be solved. The numerical example is based on
the Kessler-Kramer test with the details given in section 5.4. The first problem is the size
of the specimen and the mesh size. A grading curve with diameters between 2mm and 8mm
was used. This requires a mesh size of at least 1mm in order to be able to mesh the smallest
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aggregates. A second condition gives a limit for the smallest size of the specimen: in the elastic
region, the model should be an RVE and the wall effect should be reduced. Consequently,
the dimension of the specimen should be at least 40x40x40mm. The 3D-model illustrated in
Fig. 4.11, with a mesh size of 4mm and only aggregates in the class 4-8mm included, had
already 115.000 DOF’s. At first glance, this does not seem to be exceptionally large. But as
already discussed before, the bandwidth of the stiffness matrix increases in 3D dramatically,
especially if the nonlocal radius is larger than the mesh size. Furthermore, if the mesh size is
reduced by a factor of 2, the number of DOF’s increases approximately by a factor of 8. In
order to be able to compare the 2D and the 3D simulation, it is further required to perform
several simulations with the same material parameters in order to characterize the stochastic
scatter of the response. However, using a 2D model of dimension 40x40mm with aggregates
in the range 4-8mm, the number of aggregates in this model is rather small, especially if the
same mesh size of 4mm is used. It might even happen, that there is no aggregate at all in
the numerical model. This is due to the fact that the aggregates are simulated in 3D and a
slice out of the 3D model is used, which tends to decrease the maximum size of ellipses in 2D
compared to the maximum size of the ellipsoids in 3D.

As a result, it has to be concluded that mesoscale simulations with the prescribed material
models in 2D and 3D are, with the current hardware, not comparable. From the 2D examples
illustrated in the previous sections, it is observed that the principal failure mode corresponds
to the experimentally observed pattern and it is assumed that the simplification of tensile
dominated problems to 2D is not a severe restriction, whereas compressive failure is strictly
to be modeled in 3D.
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Chapter 5

Stochastic character of concrete on the mesoscale

5.1 Introduction

In reality, most of the processes have an uncertain character, which implies that performing
an experiment or constructing a building with the same parameters twice, the response might
be nonetheless different. This is due to the fact that there are certain influences that cannot
be kept constant. A simple example is a compression test of similar concrete cylinders. For
each specimen, a different compressive strength will be obtained, which might be due to
the heterogeneity of concrete, slightly different drying conditions or compaction procedure or
even different loading situations/eccentricities due to the manual insertion of the specimen
into the testing machine.

In current design codes, the influence of these uncertainties is considered by the addition
of safety factors for the material parameters on the one hand and the external load on the
other hand, although this is only a rough approximation. Encouraged by the growing com-
putational power and the ability to numerically simulate realistic problems, a direct consid-
eration/simulation of these effects offers a more accurate representation of the scatter in the
response.

In general, different levels of uncertainty can be distinguished. According to [157], uncer-
tainty can be classified into stochastic, informal and lexical uncertainty. Lexical uncertainty
describes the uncertainty only in a verbal way, e.g. the potential risk of failure is high, or
outside it is cold, which further requires a transformation to numerical values for the repre-
sentation in a numerical model. Stochastic uncertainty can be described by random variables
with a prescribed density function. Sometimes it is difficult to determine the density function
of a stochastic variable, e.g. if the number of samples is too small, or the stochastic influence
cannot appropriately be described by a density function, which leads to the definition of in-
formal uncertainty. An example is the determination of the compressive strength of concrete
cubes in different laboratories with unknown varying boundary conditions e.g. different sizes
of the test specimen, varying loading rates or temperatures.

Depending on the type of uncertainty, different models to consider these effects in a numeri-
cal model have been developed. Lexical and informal uncertainty can be simulated using the
fuzzy set theory [158, 159]. In general, the uncertain variables are characterized by a mem-
bership function, which is discretized using the a-level concept [160]. In order to describe the
variability of the outputs, the concept of a-level optimization can be used [161].

In the case of stochastic uncertainty, it is important to identify the sources of uncertain
behavior and appropriately represent the identified phenomena in the corresponding model.
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This requires, in a first step, the extraction of the relevant stochastic parameters and an
experimental determination of their scatter. From these data, the stochastic model can be
derived, e.g. by describing the uncertainty with random variables and their distribution and
correlations or by using a random field. In a final step, the influence of these random variables
on the system can be evaluated in the numerical simulation.

A generalization of the stochastic uncertainty and the fuzzy approach is the concept of fuzzy
randomness [162]. In this context, the uncertain variables are characterized by an uncertain
stochastic distribution, which is described by fuzzy parameters. As a consequence, the uncer-
tainty with respect to the parameters of the probability distribution can be investigated. A
disadvantage of this approach is the additional computational effort, because in combination
with the a-level optimization concept for each a-level two optimization problems (min and
max) have to be solved, where the objective function is calculated from a stochastic simula-
tion, which itself is often already numerically expensive. An alternative approach describes
the uncertain stochastic parameters by stochastic variables [163].

This work focuses on the investigation of the influence of stochastic random material param-
eters in the mesoscale model on the system response. It is further assumed that the external
conditions (loading, geometry) remain constant, although in reality, they have a stochastic
character.

5.2 Random variables

5.2.1 Definition

A continuous random variable X describes the stochastic behavior of a certain parameter and
is characterized by the cumulative distribution function (cdf) Fly:

Fx(z) = P(X < x), (5.1)

F
where P(X < x) is the probability for X < x. The function f(x) = OFx(x)

x

density function (pdf) of a random variable. In Fig. 5.1, different distribution types of
random variables are illustrated. The probability density function of a random variable can
be described by a limited number of parameters - generalized moments of a random variable:

is the probability

mean value 1= E(z) = /_ Z o f ()dz (5.2)
variance - o? = B ((z — p)?) = /_ Z(m W2 f(x)da (5.3)
skewness : =Bl =) = o [ @0 (54)
Kurtoss - o = %E (@ — p)") = % /_ Z(x W) f(x)da. (5.5)
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Figure 5.1 Different distribution types of random variables.

The mean or expected value of a distribution characterizes the average value of the random
variable. For a large number of samples, the mean value can be approximated by the arith-
metic average of the samples. The variance of a distribution describes the scatter of the
random variable, i.e. the expected value of the deviation from the mean value. The mean
value and the standard deviation are sufficient to unambiguously describe the free parameters
of a normal distribution. The skewness of a random variable characterizes its asymmetry and
the kurtosis describes the flatness of a distribution.

5.2.2 Sampling of univariate random variables

In the following it is assumed that uniformly distributed random numbers in the interval [0, 1]
can be simulated. In the current implementation, the software Mersenne Twister by [164] is
used for this purpose, which generates, starting from a set of initial values, a quasi-random
sequence (period of 21997 — 1 =~ 4,3 - 10°%1) of a uniformly distributed random variable.
This approach has the advantage that, although the simulation is random, it can exactly be
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Table 5.1 Probability density function (pdf), mean value and standard deviation for common
distribution types

distribution pdf mean standard interval with
W deviation o nonzero pdf
1 a+b b—a

Unif — b

niform . 5 iv: [a, b]

N a0
Normal e 207° W o [—00, 0]
ovV2r
. - (Inz — )2 .
Lognormal a:fx/ﬂe 26 e p? (652 - 1) [A, o0
. n 1l —(2)" 1 ) 2 ) 1
Weibull 22" e B AT (14 - A T(1+ E) -T2 (1+ - [0, oc]
x
p—1 e A 2

Gamma x (o) PA PA [0, 0]

reproduced when using the same initial seeds. Different approaches to simulate are random
variable can be found in the literature, see e.g. [165] for a short review.

5.2.2.1 Inversion method

The first method is the inversion method or the method of transformation of variables. The
basic idea is illustrated in Fig. 5.2. For a cumulated probability density function F' with
inverse F'~! defined by

F~Yu) =sup{z: F(r) <u,with0 <u < 1}, (5.6)

and U a uniform random variable in the interval [0, 1], the variable X = F~'(U) has the
cumulated probability density function F'. If the inverse of the distribution function cannot
be derived analytically, a numerical procedure as e.g. a Newton iteration can be applied.
For the standard normal distribution, the representation of the normal cdf using the error
function erf(z) can be used to determine the inverse cumulated distribution function:

2

P = [T we e (2)] 5
erf(r) = — [ e gy (5.8)

= —= e
ﬁ u=0

where the inverse of the error function can be approximated e.g. by [166].
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Figure 5.2 Inversion method for sampling a random variable from a uniform distribution.

5.2.2.2 Rejection sampling

A second possibility is rejection sampling. Assuming that a simple probability density func-
tion (pdf) @ is given, from which samples can be generated. It is further assumed that a
constant ¢ exists, with

cQ(x) > P(x), (5.9)

where P is the pdf from which samples should be generated. Two random numbers are
generated as illustrated in Fig. 5.3. The first one, x, from the pdf () and a second random
variable u uniformly distributed in the interval [0, cQ(z)]. If u < P(x), the sample is accepted,
otherwise it is rejected. The procedure is repeated until all samples x are generated. The
method works good, if P and @) are similar, otherwise the constant c is large and the rejection
rate is high.

xT

Figure 5.3 Rejection method for sampling a random variable from a uniform distribution.
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5.2.2.3 Special cases

For certain distribution types, special algorithms to simulate random numbers have been
developed, primarily with the aim of speeding up the calculation of many random numbers.
A fast algorithm for the normal and the exponential distribution are the Ziggurat method
[167], which is a fast rejection method that uses precalculated values in order to replace
the number of expensive calculations of the density function by simple comparisons of real
numbers, and a fast random number generator by [168], which determines random variables
by a transformation using already generated random variables. For the normal distribution, a
sample can be obtained using the Box-Muller transform [169] or an extension using the polar
form. An extensive overview is given in [170] and a comparison of the speed and accuracy of
different methods for gaussian random variables is given in [171].

5.2.3 Sampling of multivariate random variables

In the previous section, different methods to sample single variates according to a prescribed
distribution have been discussed. A practical problem is often described by many random
variables. If they are uncorrelated, they can be sampled one at a time. However, often these
variables are correlated, e.g. the Young’s modulus and the tensile strength of concrete. The
correlation between variables can be described by their covariance

COV(X,, X;) = E [(X; — Xi)(X; — X;)], (5.10)

where X; is the mean value. Variables which have a covariance of zero are called uncorrelated.
A dimensionless measure of the linear correlation is defined by the coefficient of correlation
(Pearson’s correlation):

o E[(X: - X)(X; - X)) _ COV(X;, X;) (5.11)

0,05 0;0;

It is to be noted that the coefficient of correlation and the covariance are zero for independent
variables. The inverse is not necessarily true, e.g. consider samples uniformly distributed on a
circle. Their correlation is zero, whereas they are far from independent. Under the assumption
of normal distributed variables, uncorrelated implies also independence. The coefficient of
correlation, which is in the range between -1 and 1 is furthermore only valid for distributions
that are close to the normal distribution. Consider e.g. two random variables which have a
correlation coefficient of almost one. This implies that their pdf is identical, apart from the
scaling with the standard deviation and the translation by the mean value.

Other nonparametric measures of correlation are e.g. Spearman’s p [172] or Kendall’s 7
[173], which are based on rank correlation. The principal idea is that the correlation is not
determined between values x; and x5 of two random variables, but between their rank in a set
of samples. These rank based measures have the advantage that no underlying assumption
with respect to the distribution are required, but a unique description of the actual dependence
is only obtained under certain restrictions, e.g. a multivariate normal distribution.
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In order to simulate correlated random variables, different procedures have been investigated.
The first strategy is based on the Nataf model, which assumes a jointly normal pdf. For
normally distributed variables, this procedure is exact and accurate approximations within
certain limits for the correlation coefficient can be obtained for non-gaussian variates. The
second model is based on the Metropolis-Hastings algorithm, which yields for any joint prob-
ability density function a corresponding set of samples. However, the correlation between
these samples requires more samples to be generated than are actually required.

5.2.3.1 Monte-Carlo simulation using the Nataf model

The Nataf model was developed by [174] based on [175] to simulate correlated random vari-
ables. Given random variables X = (Xi,..,X,), a transformation to standard gaussian
random variables Y = (Y7, ..,Y;) can be performed by

Y= [Fy, (X)), (5.12)

where ® is the standard cumulative normal probability. The probability density function of
the original variables can be expressed as a function of the transformed variables by

dy
5.13
fxa) = () |2 (5.13)
where | | describes the determinant of a matrix. Using the assumption of [175] that Y is

jointly normal with covariance X* (f,(y) = N (0, X)), the transformation in Eq. (5.12) gives

Fele) = N3 [ 2 - Ay z) [ L52) (5.14)
’ i1 0 7 o )
where ¢ is the pdf of a standard gaussian variable and
dyi _ _ 1 dFXz(xl) _ in(xi>7 (515)
Qo @ o (P ()] dn o)
Yi

where the quotient and the chain rules are used with ®’ being the derivative of the cumulative
standard normal distribution function. Furthermore, the derivative of the inverse function is
identical to the inverse of the derivative of the original function:

(@' (2)) = ﬁ. (5.16)

The elements of the correlation matrix C* are related to the correlation matrix C of the
original distribution with coefficients p;; by

/ / <x MZ) (IJ M”)fx( i)fx, (@ )Z((y“)gy;(’?jl)]) dz;dz, (5.17)

Ty — Wy Zj *
—oc0 J —o0 0 0
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Table 5.2 Correlation coefficients C* = (pj;) as a function of C' = (p;;) for the Nataf
model and maximum error in % according to [174] with §;; coefficient of variation, N(normal

distribution), U(uniform distribution), LN(lognormal distribution)
Xi

X; N U LN
N pij(exact)
U 1.023p,;(0%)  1.047 — 0.047p2(0.0%)
i In(1 + pi;8iid;
LN ——S 1.019 + 0.0145,;+ n{l + piiidy;)
In(1+062%)  0.010p% + 0.2496%, pij\ /(1 + %) In(1 + 52)
(exact) (0.7%) (exact)

where Eq. (5.15) has been used and ¢9 is the density function of two standard normal dis-
tributed variables. The preceding transformation is valid as long as C”* is positive definite
and the cumulated probability density functions F, are strictly increasing. The first condi-
tion is, for most practical problems, fulfilled since C' is by definition positive definite and the
differences between C and C* are small. For each pair of marginal distributions, Eq. (5.18)
can be solved iteratively for pj;. In order to avoid the recalculation of the integrals, [174]
provided regression formulas for certain pdf’s and their limits. An extract of the derived rela-
tions is given in Table 5.2. Once the correlation in the correlated Gaussian space is obtained,
the transformation into the uncorrelated Gaussian space is required, which is performed by a

lower triangular matrix L obtained from the Cholesky decomposition of the covariance matrix
hINS

> =LL" (5.19)
Y =LZ. (5.20)
The pdf of the transformed variables Z can be expressed as
1 T *\—1
dy |L| -y (X)) y
_ bt Ll=—"T ¢ 2 5.21
) = 5| 2] = ) 1Bl = e (521
1 - 1
|L| ——'L” (LLT) 'Lz 1 ——2T2
= e 2 = N2 € 2 (5.22)
(2m)2y/|LIIL) 20
v L,
=11 Nz 2 (5.23)
i=1

where the relation (AB)™' = B 'A™! has been used. The standard normal distributed
random variables Z are uncorrelated and can be expressed as a product of single variate
density functions.

In summary, the generation of samples @ using the Nataf model is performed by generation of
a sample z in the uncorrelated Gaussian space with A/(0, 1), transformation in the correlated
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(a) Monte Carlo simulation (b) Latin hypercube simulation
Figure 5.4 Comparison of crude Monte Carlo simulation and Latin Hypercube sampling for
two random variables uniformly distributed in the interval [0,1] with 10 samples.

Gaussian space according to y = Lz and a transformation to the prescribed distribution
according to z; = F );Z_l [® (y)]. The calculation of the Cholesky decomposition LL" can be
performed in advance for all samples.

5.2.3.2 Latin-Hypercube sampling

Latin-Hypercube sampling, originally proposed by [176], is a sampling strategy that often
requires less samples compared to standard Monte-Carlo simulations to achieve the same
accuracy. The basic idea is to divide the domain of each variable into disjunct equiprobable
intervals. A representative point in each of the intervals is chosen, which might be sampled
using crude Monte-Carlo in each interval as in the original version, taking the center point of
the interval [177, 178], which is restricted to finite intervals, or using the mean of each interval
[179]. In a second step, these representative points for each variable are ordered randomly
in a matrix Ryys, where IV is the number of samples and M the dimension of the problem.
The columns of R represent a random permutation of the rank numbers between 1 and N.
Consequently, the i*" sample is obtained by using for each variable the i*! representative
point, which is related to the i® row of R. The results of a sampling are illustrated in
Fig. 5.4. Tt is observed that due to the stratification of the random variables the probability
density function of a single variable is better represented using a limited number of samples.
Using this procedure, this might introduce significant correlations between the variables in
the samples.

In order to avoid these artificial correlations, an updated Latin Hypercube sampling has been
used [180, 181]. The idea is to describe the correlation by the Spearman correlation coefficient,
which defines correlations between the rank numbers of samples. These rank numbers are
given by the corresponding rows of R. The Spearman correlation coefficient for a sample set
can be calculated from

63 (Rii— Rkj)Q'

T, =1
7 N(N? - 1)

(5.24)
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Figure 5.5 Autocorrelation for the Markov chain and acceptance rate in the sampling of two
normal distributed random variables with p = (4,4), ¢ = (3,3) and a correlation of 0.9.

A Cholesky decomposition of the matrix T = QQ can be performed, since the matrix
is symmetric and positive definite as long as all variables have a different ordering scheme.
Afterwards, an auxiliary ordering matrix R is defined by

R=RQ! (5.25)

and each column of the permutation matrix R is reordered according to the ranks of the
corresponding column in the auxiliary matrix R. This process can be repeated several times
(in the current implementation it is repeated 10 times) to sample uncorrelated variables.
Standard normal distributed samples are obtained from the ranks by

PI a (W) , (5.26)

where @1 is the inverse cumulative distribution function of the normal distribution and N is
the number of samples. In order to obtain correlated random variables, the Nataf-model as
illustrated in the previous section is used, with the difference that the uncorrelated Gaussian
random variables are samples with a latin hypercube sampling.

5.2.3.3 Metropolis-Hastings algorithm

A method developed by [182] and generalized in [183] is the Metropolis-Hastings algorithm,
which shares some features with the rejection method. Again, a simple pdf @) is given, from
which samples can be generated. In contrast to the rejection method, the pdf may depend on
the position x, in which case it is called random walk Metropolis-Hastings algorithm. Starting
from a point *) in the Markov chain (which is a stochastic process, where the future states
depend only on the current state, and not on the past states), a next point & is generated
from (Q, which can be e.g. a multivariate normal distribution N'(z*), ,,,,) centered at .
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Figure 5.6 Iterative generation of samples using the Metropolis-Hastings algorithm with
different standard deviations of the sampling density o,,qp.

The sample is accepted (x**1) = &), if a second random variable a drawn from the uniform
distribution in [0, 1] fulfills & < a with

a= :
x®  otherwise P(z®) Q(z|z®)

w(kJrl) — {:E a<a with P(i) Q(w(k”i’) (527>
The pdf Q(x|y) is the probability function at = of a proposal density @) depending on y, e.g.
N(y,oly). If the point is rejected, the previous point of the Markov chain is copied, which
is in contrast to rejection sampling, where rejected points have no influence on the list of
samples. The difficulty of the method is the determination of the covariance X,,,,, or, under
the assumption of an uncorrelated sampling density function with identical variance for all
variables, the variance oy, of the pdf Q. If 0,,,, is chosen too small, successive samples in
the Markov chain are highly correlated and only small steps are performed, which results in a
large number of iterations required to obtain an ergodic process. An example of two normal
distributed variables with g = (4,4), o = (3,3) and a correlation of 0.9 demonstrates the
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influence of the standard deviation of the sampling density function o,,,,. The autocorrelation
in the Markov chain, illustrated in Fig. 5.5(a) for the first variable X7, is calculated from

n—k

R(k) = m Z (azgl) - ,ul) (a:&”k) - ul) , (5.28)

where the exact values for the parameters y and ¢ have been used to obtain an unbiased
estimate of the autocorrelation. For a limited number of samples, this approach might give
correlations larger than one. The correlation length has a minimum at about o, = 8.
For higher values, an increase of the correlation length, which corresponds to the value k at
which the autocorrelation is almost zero, is obtained. This is due to the fact that for large
Oprop the acceptance rate is small which is illustrated in Fig. 5.5(b). Consequently, successive
samples are often identical. For smaller o,,,,, the step length between successive samples is
too small which similarly generates an artificial correlation. Usually, the parameter o, is
determined from the acceptance rate, which should be between 0.2 and 0.5. In order to obtain
independent samples, the correlation length can be determined and only every k" sample of
the chain is used.

Another important point is the influence of the starting point. After a certain period, which

is related to the correlation length, the point at ® is independent from the starting point
(0)
x\”).

In Fig. 5.6, the generation process of samples for a chain with 5000 elements, where the first
3000 have been omitted, is illustrated. It is demonstrated that for small 0,,,, the samples
are concentrated in certain parts of the domain, which is due to the small step size between
consecutive samples and the high correlation. For large 0,,.,, the number of identical samples
is high, e.g. for o,.,, = 8.0 an acceptance rate of 0.09 is obtained, which implies that, on
average, every sample is ten times in the set.

5.3 Random fields

Correlations between different material parameters at the same material point can be de-
scribed by using correlated random variables. In order to describe the spatial correlation
between neighboring material points, random fields can be used. A random field is a multi-
dimensional stochastic process H(x), where x € Q@ C R", where n is the dimension of the
random field.

In a first part, the algorithm is develop for a univariate random field and, afterwards, extended
to multiple variates.

5.3.1 Univariate random fields

A univariate random field is characterized by its distribution (e.g. normal distributed with
given mean value and standard deviation). If the distribution is independent of the location
x, the random field is called homogeneous.
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An important characteristic of a random field is its spatial correlation. This can be described
by the covariance function ¥, which is given for a homogeneous random field u by:

Suu(€) = Blu(@)u(z + €)] — Blu(z)]*. (5.29)
The corresponding non-dimensional quantity is the correlation function

Cuu(€) = E““Q(@ (5.30)

Oy

with o2 being the variance of the random field. In a similar way, the spatial correlation can
be described by the auto-correlation function given by

Ruu(§) = Elu(@)u(z + €)] = Suu(€) + Elu(z)]*, (5.31)

where & is the distance between a point  and another point « + .

A common auto-correlation function is described by an exponential decay

R (&) = 02 exp (—|§—2|2> , (5.32)
h

where [, is the correlation length. It is to be noted that Eq.(5.32) corresponds to an isotropic
random field, i.e. where only the distance between two points - and not the direction -
influences their correlation. If the correlation length tends to zero, no spatial correlation
between neighboring points is obtained, whereas for [;, — oo all values of the random field
within €2 are identical, which allows the description of the stochastic random field by a single
random variable.

5.3.2 Multivariate random fields

The spatial variability of material properties within a structure is assumed to be influenced
by the same phenomena (e.g. different mixture, pore density). This leads to the assumption
that the shape of the auto-correlation function is identical for all properties, i.e. same auto-
correlation function and the same correlation length, which gives, similar to Eq. (5.32), the
cross-correlation function between material properties 7 and j as e.g. the Young’s modulus
E and the tensile strength f.

_@>
Rz‘j(ﬁ):/h’jffﬂjexp( W), (5.33)

where p;; is the correlation coefficient between material properties ¢ and j. For ¢ = j, this
reduces to the autocorrelation function in Eq. (5.32).
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5.3.3 Overview of discretization techniques

In order to consider the influence of the spatial variability of material parameters in a nu-
merical simulation, the random field has to be discretized at certain points. In the context
of the finite element method, different approaches have been developed. Material properties
are evaluated on the integration point level. As a consequence, it seems to be natural to
discretize the random field on the integration point level, which results in one random vari-
able per integration point [184]. This requires the element size to be small compared to the
correlation length. The covariance between these random variables and the correlation can
be derived from the autocorrelation function by

(U U)) = Rulll@: — z;]) — Elu(e)) (5.34)

u

where @; are the integration point coordinates, U; is the random variable at «; and Efu(x)] is
the mean value of the random field. A sampling of these correlated random variables can then
be performed with the method described for correlated random variables in section 5.2.3.1.
It is to be emphasized that, for a large finite element model, the Cholesky decomposition
of the covariance matrix in Eq. (5.19) is the limiting factor. Depending on the correlation
length, the covariance matrix C, is, in general, not sparse and, consequently, the Cholesky
decomposition of a full matrix with the dimension corresponding to the number of integration
points has to be calculated.

An alternative, especially suited for a large correlation length, is an eigenvalue decomposition
of the covariance matrix instead of a Cholesky decomposition:

C.. = ®Ldiag(\, Ao, .., A @y, (5.36)
~ @1 diag(A;, Ag, .., Ak, 0, .., 0) Py, (5.37)

where ®;, contains the first £ eigenvectors of the correlation matrix C',, corresponding to the
eigenvalues A1, .., A\ and n is the number of discretization points of the random field, i.e. the
dimension of the correlation matrix. As a consequence, the transformation

k
" — Z B,z (5.38)
i=1

allows to simulate uncorrelated Gaussian variables z; and transform them back to the cor-
related Gaussian space using Eq. (5.38). Finally, these variables are transformed to their
original distribution similar to the procedure in section 5.2.3.1. The advantage of this spec-
tral decomposition is that it is often sufficient to calculate only the largest k eigenvalues of
the covariance matrix (', to accurately approximate the full covariance matrix. The number
of required eigenvalues depends on the correlation length and the discretization. In general,
it can be stated that the smaller the ratio between correlation length and mesh size, the more
eigenvectors have to be included.
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98 5.3 Random fields

A simplified approach is the midpoint method [174], where the random field within a single
element is assumed to be constant and represented by a random variable at the center of the
element.

Another approach is based on a local averaging procedure following [185], where the random
field in a certain region €2; (e.g. an element) is represented by its average value

1
Ui- & /Q ) do (5.39)

For homogeneous random fields with rectangular non-overlapping domains €2;, [186] developed
formulas for the autocorrelation function between the random variables U;. One problem of
the method is that the pdf of the random variables U; can only be derived for gaussian random
fields [187].

A discretization of a random field can also be performed with the shape function method
[188], where the discretization of a random field is done on a separate grid and a mapping to
the finite element mesh is performed. In combination with finite elements, the random field
is often discretized at the nodes and the FE-shape functions are used for the interpolation.

A final class of methods are series expansion methods, where the random field is represented by
a series expansion of functions with random coefficients, e.g. the Karhunen-Loéve transform.

5.3.4 Discretization using a series expansion approach
In the current implementation, an approach developed by [189, 190] has been applied, which
allows the fast sampling of a random field using the Fast Fourier Transform.

Starting from the cross-correlation function, the corresponding cross-spectral density matrix
is obtained by using the n-dimensional Whiener-Khintchine relations [191]

Sin(k) = #/ﬁo /_OO Rin(€)e &g, (5.40)

with k - & being the dot-product between the n-dimensional wave number vector k and the
space lag vector €. From the auto-correlation function in Eq. (5.33), the cross-correlation
function is calculated for a 2D random field (n=2):

1 ) (5% + 53)
o0 oo 2 .
Siulk) = (2m)? /_oo /_oo PjkOjOKe b ) ek &g e, (5.41)

Using the formula of Euler e*™% = e” [cos(y) + isin(y)], the symmetry of the cosine and

52
the antisymmetry of the sine function and the relation [ e """ cos(fz) = \2/—567172, the
following expression is obtained:

l2
coopl2 (K2 k2
Sj(k) = PSR ¢4 i+ h), (5.42)
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Figure 5.7 Spectral density function for two variables with o = 10, 0o = 1, [ = 1 and
P12 = —0.5.

Note that the integration of & and & can be performed independently, which is the reason
for choosing the special form of the cross-correlation function in Eq. (5.33). An exemplary
plot of the spectral density function is given in Fig. 5.7.

The cross-spectral density matrix can be decomposed using a Cholesky decomposition
S(k)=H(k)H" (k) (5.43)

where H (k) is a lower triangular matrix.

The " component of a 2D-mV Gaussian field f(x) at location & with zero mean can be

simulated by
m Ni Ny

L=233"50 S H (" k") /AR Ak cos ([1k1331 + Lkoxs + @i{;’;) , (5.44)

s=lh=1lk=1 _,

Io=+1

where Ak; = N with k;, being the upper cut-off frequency beyond which the cross-spectral
density matrix is assumed to be zero and N; being the number of subdivisions in direction .
\Ill;”ll; are m-2"~Y sets of N1 N, - - - N,, independent random phase angles uniformly distributed
in the interval [0, 27]. The scalars H, (k%" k3'?) are elements from Eq. (5.43) evaluated at

kol = (1, — 1)Ak; + %Aki. (5.45)

For each s, there is a frequency shift of %, which is required for the process to be ergodic
[189]. The scalar fields f, are periodic with the period given by

2m
L i —
0= AR,
and asymptotically Gaussian due to the central limit theorem for N; — oo [192]. It can

further be proven that every sample function is ergodic in the mean and the correlation as
long as the spatial discretization is a multiple of the period Ly ;.

(5.46)
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100 5.3 Random fields

5.3.4.1 Use of the Fast Fourier Transform

The application of the Fast Fourier Transform allows to increase the efficiency of the numerical
implementation. For that purpose, the function f, is not sampled at random positions &, but
on a regular grid with length Lo, and spacing Az;. The spacing Ax; is calculated from

2T
M Az, = — A4
i = 1 (547

with the condition M; > 2N; to avoid aliasing [193].

Equation (5.44) can be rewritten as

- “ . SAk’k
fr(P1AT1, poAny) = Z Re {grs (1Ary, g2 Azs) exp (Z ipR ATy -~ ) } . (5.48)

s=1 k=1

The auxiliary functions g5 (¢1Axq, g2Axs) are evaluated in a reduced domain with
Q. = pr mod My, (5.49)

i.e. g is the remainder when dividing p, by M} and

Mi;—1 Ma—1

Grs (@ADL, 2AZz) = Y Y Y "B exp (Z z’qkAxklkAkkh) (5.50)
k=1

11=0 [2=0 I>*1 =

Bl — 9H, (k2" k5")\/ Ak ARy exp (wg{;;) . (5.51)

The elements H, ., are calculated at the same locations as in Eq. (5.44), but in order to account
for the fact that the summation starts at zero, the wave numbers are calculated by

kPl = LAk + = Ak, (5.52)
m

When rearranging Eq. (5.50) using Eq. (5.47), the summation can be efficiently performed by
using the Fast Fourier Transform (FFT):

Mot 2miqol 2miqql
Grs (AT, A>) = > > > BB exp< M2“11> exp( Ml 111). (5.53)

Io=+1 11=0 15=0 1

J/

—~
1-dimensional FFT

(&

TV
2-dimensional FFT

As illustrated in Eq.(5.53), the 2-dimensional FFT is calculated using the row-column method,
which consists of solving a sequence of 1-dimensional FFT’s. In the implementation, the
software package [194] was used to calculate the 1-dimensional FFT’s.
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Determination of upper cut-off wave number
In order to determine the upper cut-off wave number to be included, a procedure based on
[193] has been used. A parameter ¢ < 1 is defined such that by cutting the wave number

after k,, the corresponding volume under the power spectral density function in Fig. 5.7 is
only a fraction 1 — € of the total volume.

ku 00 00 00
/ / S(k’l, k’g) dk’ldk‘g = (1 — E)/ / S(k‘l, ]{2) dkldkg (554)
0 0 0 0

Using the cross correlation function given in Eq. (5.41), the following equation is obtained:
2 Lk 2
%erf ( h2“> - (1—6)%, (5.55)

where erf(k,) is the error function

2[R
erf(k:u):ﬁ /0 e " dk. (5.56)

In order to determine the cut-off wave number, an asymptotic expansion is used in combina-
tion with a bisection algorithm

—k%

erf(k,) ~ 1 — ]:u—ﬁ (1 + 2(—1)“%) . (5.57)

In the numerical implementation, a value of € = 10~% has been used.

5.3.4.2 Numerical implementation

The power spectral density matrix from Eq. (5.42) can be decomposed into

l2
_ Pirool} e_Zh (K +k2) 20

Sin(k) = HES = 5%, s(k) (5.58)
with
0 PikOiokl;
=" 4; (5.59)
I
(k] + kS
s(k)y=e 4 (ki + F2) (5.60)

It is to be noted that s(k) is only a scalar value. Consequently, the calculation of the
Cholesky-decomposition of S;;(k) for different k can be simplified to

Siu(k) = /s(k) H'H*" (5.61)
S = H'H"". (5.62)
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The Cholesky-decomposition of S;-)k is calculated once in advance, and afterwards, multiplied

by \/s(k) for each k.

The number of wave numbers N; is determined by two conditions. First of all, N; should be
large enough to accurately model the correct standard deviation of the random field (in our
application 256 has been used as minimum). A second condition is that the random field is
periodic with

B m27rNZ
= k;u

Lo, > L (5.63)
Since the length of the period Ly ; should be larger than the actual sample length L;, a second
condition for N; is given, although in the present examples this condition was always fulfilled.

The described algorithm yields a discretization of the random field at points on a regular
grid with spacing Ax;. However, the integration points of the elements are, in general, lo-
cated irregularly within the grid. Consequently, an interpolation between the grid points is
performed. For this purpose, a Moving Least Squares (MLS) interpolation with linear basis
functions, an exponential weighting function and an influence radius corresponding to the
diagonal in the grid \/Az? + Ax3 has been used. This small influence radius reduces the
interpolation to an almost linear interpolation, but avoiding the discontinuity in the first
derivative of a bilinear interpolation on the regular grid. Using this grid interpolation results
in an additional constraint, namely, that the spacing between grid points is smaller than a cer-
tain length, which is correlated to the correlation length. In the implementation, a constraint
Ax; < l,/3 using Eq. (5.47) has been used.

In Algorithm 5.1, the procedure for creating samples of a stochastic field using m Gaussian
variables in 2 dimensions is summarized.

5.3.4.3 Example

In the present example, a 2-dimensional (n=2) random field with two correlated variables
(m=2) is simulated. The FE-model is a rectangular area (20cm x 20cm) with an element
length of 1ecm. The two random fields F} and F, have a standard deviation of o1 = 0.1
and g, = 5 and are correlated with a correlation coefficient of 0.8 and a correlation length
of b5em. The random field was sampled 1000 times. Crosscorrelation and autocorrelation
for all pairs of integration points were calculated. Due to the fact that for each distance
several values are obtained (there are many integration points having the same distance
to each other), and only discrete values are actually sampled, a smoothing using an MLS
interpolation with an influence radius of 1lcm has been performed. In order to reduce the
number of integration points, only one point per element has been used. This restriction
only reduced the number of pairs to check the method, the speed of the sampling was only
slightly decreased (smaller number of interpolation points). The results are illustrated in
Fig. 5.8. Obviously, the sampling correlations match the target correlations. The sampling
of a single sample took about 3 seconds on a standard PC (Pentium 4, 3.40GHz, 2GB RAM).
The size of the specimen is not important, since the sampling grid (in this case the grid
was 1461.63cm x 1461.63cm) is much larger than the specimen dimension. Compared to the
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Algorithm 5.1 Sampling of a multivariate multidimensional stochastic field
1. Determine cut-off wave number by iteration and bisection until
o? Ik o?
—erf )< (1—e)=—
1 ( 2 > (=97
2. Calculate Cholesky decomposition of S?k = H'H""
3.  Calculate number of wave numbers to be considered
N; = max ( ,256)
m2m
. . k.,
4.  Determine wave number increment Ak; = N
5. Determine number of sample points M; in spatial direction
327
Mi = ma 2N;
A <lhAk; )
6. Compute auxiliary functions g,s (¢1Ax1, g2Axs) using 2-dimensional FFT
o ted! 2migol omiqyl
l1,l2 202 101
Grs (1 AT, @eAzy) = Z Z Z B, 1, ex ( YA 11) exp( M, ]1)
L1 ;=0 15=0
Bz — Sk, k5™) /Dy Ay exp ( qﬂ;;l?)
7.  Calculate random field at discrete grid points (¢; = p; mod M;)
- - SAkk
far(pAzy, paAas) = Re? gro (171, goAxs) exp lekAxk :
s=1 k=1
8. Interpolate random field for integration points using MLS on the regular grid
1 F= T T T T T T 25 T T T T T T 0~4 T T T T T T
C’V_‘O.S . target — | 20 . target — | 0.3 . target — |
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(a) autocorrelation Fy

(b) autocorrelation Fy

(c) crosscorrelation Fy, Fy

Figure 5.8 Comparison of auto- and crosscorrelation function for 1000 realization of the
random field with the target curves.
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104 5.4 Example - tensile test

Figure 5.9 Sample of a 2-D random field with two variables, correlation 0.8, o; = [0.1, 5],
correlation length 5cm on a domain 100cm x 100cm.

eigenvalue decomposition of the covariance matrix, this approach is faster for a large number
of integration points. For illustration purposes, a sample of the discretized random field is
shown in Fig. 5.9 with an increased mesh size of 100cm x 100cm. The correlation between the
variables is clearly observable. The presented procedure simulates random fields with zero
mean. A random field with nonzero mean can be simulated by simply adding the mean value
to all the samples.

5.4 Example - tensile test

The stochastic variability of material or geometrical parameters in the numerical model is
represented using stochastic finite elements [195, 196]. In general, the material parameters of
the constitutive equation or parameters describing the geometry, e.g. the thickness of a 2D
element, are simulated using random fields as described in the previous section. Afterwards,
a Monte Carlo simulation of the random field is performed with different sets of material
parameters. Although this requires many computations (which can be effectively parallelized),
this allows a reliable investigation of the influence of stochastic parameters on the statistical
character of the response.

Engineers who perform numerical simulations often try to adapt their model until a fit be-
tween simulated and experimental data is obtained. Due to cost of experiments, often only a
few experiments are performed, which does not allow an appropriate characterization of the
stochastic response. As will be demonstrated in the following example, the stochastic scatter
of the response for mesoscale models has to be taken into account, e.g. by the procedure
described in the previous section. Several examples of macroscopic simulation of concrete
using random fields can be found in the literature [197, 198, 199, 200, 201]. However, an

Jorg F. Unger PhD-thesis



Chapter 5 Stochastic character of concrete on the mesoscale 105

experimental verification of stochastic parameters such as correlation coefficients, correlation
length or coefficient of variation in the numerical model is seldom given.

For mesoscale models of concrete, experimental data describing the spatial variability of
material parameters such as Young’s modulus, fracture energy or tensile strength are not
available. This can, on the one hand, certainly be attributed to problems related to the
technical realization, and, on the other hand, to the fact that the application of mesoscale
models to concrete is relatively new.

Due to the absence of experimental data describing the spatial correlation between material
points on the mesoscale, sensitivity studies are performed in order to show the influence of
certain parameters and the general applicability of the method.

The correlation length is one of the key parameters in the stochastic description of the material
and its origin can certainly be attributed to several phenomena. On the one hand, one might
argue that the correlation length is related to the smallest aggregate size explicitly modeled in
the simulation (or similarly the largest aggregate size homogenized in the matrix). In this case,
the origin of the correlation is due to the homogenization procedure of the matrix. On the
other hand, a correlation length related to structural dimensions seems also to be reasonable.
Here, the spatial correlation between material points is e.g. due to the manufacturing process.
Theoretically, both effects can be simulated by a superposition of two random fields each
having a separate standard deviation and correlation length.

As an example, a tensile test performed by [202] was used. The geometry is illustrated in
Fig. 5.10. The main advantage of this test compared to many others is the fact that there is no
prescribed notch, which triggers the localization. As a consequence, the particle distribution
and the stochastic distribution of material parameters has a much more pronounced but
nonetheless more realistic effect compared to a notched specimen. In order to simplify the
numerical model, only the inner part with a width of 60cm is modeled, which corresponds
to the region over which the relative displacements are measured in the experiment. Strong
boundary effects, e.g. that damage develops especially in the boundary layer triggered by the
stiffer displacement constraints (compared to the experiment) was not observed. The material
parameters used in the simulation are summarized in Table 5.3. The grading curve was taken
from [202], where the total amount of aggregates is given by 77 mass-%, partitioned into 24.6
mass-% in the class 8/16, 29.2 mass-% in the class 2/8 and 23.1 mass-% homogenized in the
matrix material with a diameter smaller than 2mm.

5.4.1 Influence of particle distribution

In a first test, the influence of the particle distribution is investigated. On the basis of
50 simulations with different aggregate distributions, the influence on the load-displacement
curve is evaluated. In Fig. 5.10(b) the aggregate distribution and the damage at the final load
step for the first three samples is illustrated. It is observed that the particle configuration
has a substantial influence on the location of the final crack. Furthermore, cracks are passing
primarily along grain boundaries, and matrix cracks are only obtained when these cracks
in the interface layer coalesce. In the initial stage, many microcracks depicted by zones of
local damage are obtained. In general, the final failure mode is a single crack which has
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Figure 5.10 Geometry and final damage distribution of the tensile test performed by [202]
for varying aggregate distributions.

been developed from these microcracks. It sometimes happens - as in the right sample in
Fig. 5.10(b) - that two competing cracks are obtained and the localization into a single crack
is obtained only at an advanced loading level.

The mean and the standard deviation of the corresponding load-displacement curves are
illustrated in Fig. 5.11. It is observed that the particle distribution primarily influences the
post-peak branch - the peak load is only slightly influenced. This is due to the fact that the
particles primarily influence the crack path and, consequently, the length over which energy
is dissipated. Using varying specimen dimensions, [151] showed that only from the particle
distribution size effects can be explained.

5.4.2 Influence of correlation length

In a second test, the additional effect of spatially variable material parameters is investigated.
Due to the lack of experimental data, a sensitivity study is performed, which demonstrates the
influence of certain parameters and illustrates the overall applicability of the method. The
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Table 5.3 Material parameters for the numerical simulation of the tensile test [202].

parameter matrix interface aggregate

Young’s modulus E N 5 ~ 27500 - 54000
Lmm~ |

Poisson’s ratio v -] 0.18 - 0.2

tensile strength fet N 5 3.9 2.93 -
Lmm* ]

uniaxial compressive strength  f, N 5 39 - -
Lmm~ ]

biaxial compressive strength fe2 N 5 45.2 - -
Lmm*~ |

fracture energy G NL@] 0.219 0.164 -
L mm

nonlocal radius T [mm)] 1.5 - -

interaction value a -] - 1 -

and the actual fraction

®The parameter was calculated from the macroscopic Young’s modulus 33930 5
m

of aggregates using Eq. (4.20).

material parameters Young’s modulus, tensile strength and uniaxial compressive strengths
are modeled by a random field with a correlation coefficient of 0.5 and a variation coefficient
of 0.15. The correlation length was varied in the range of 8Smm and 1024mm. The influence
of the correlation length on the macroscopic tensile strength is illustrated in Fig. 5.12. In
the limit with an infinite correlation length, a constant material parameter within the full
specimen is obtained. This is plotted at [..,=2048mm, where the material parameters have
been simulated by correlated random variables (no random field). The other limit is the case
of an almost vanishing correlation length, implying that each material point is independent
of the neighboring point. From a numerical implementation point of view, this requires that
the mesh size is smaller than the correlation length in order not to homogenize the material
parameters within an element, since the complexity of the approximation is limited by the
applied ansatz of the shape functions. For a constant mesh size and a decreasing correlation
length, the limit is probably related to a constant distribution of parameters. The element can
be interpreted as an RVE and, in the limit of a vanishing correlation length, the response of
the RVE is homogeneous, since the numerical integration performed over the (infinite number
of) integration points homogenizes all fluctuations of the random field. This limit is plotted
at l.opr=2mm.
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Figure 5.11 Influence of particle distribution on the load-displacement curve.
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Figure 5.12 Influence of correlation length on the global tensile strength and the fracture
energy.

It is observed in Fig. 5.12(a) that the mean of the tensile strength is almost identical at the
limits, where the material parameters are not varied and the limit, where a correlated set of
random variables is used. The major difference is characterized by the standard deviation. It
is almost zero for the case where no random field is used. This is probably due to the fact
that the size of the specimen is sufficiently large. Consequently, the particle distribution has
no influence on the global peak load. This implies that the peak load is mainly influenced
by the tensile strength of the matrix and the particles. At the right limit with a constant
parameter distribution in the specimen, the variation coefficient of 0.05 is much smaller than
the prescribed correlation coefficient of 0.15. This is due to the constant tensile strength of
the interface, which has a significant influence. It is furthermore observed that a minimum
of the tensile strength is observed at a correlation length of approximately 32mm, where the
mean of the tensile strength is reduced by 15%. The correlation length corresponding to the
minimum tensile strength is related to the width of the specimen, since a correlation length
in the order of the width of the specimen weakens a full cross section. The reduction of the
mean tensile strength is primarily influenced by the length of the specimen (the longer the
specimen, the higher the probability of having a weak section) and the variation coefficient
of the material parameters. For the fracture energy, the general trend of the mean is similar,
at both limits identical values and a reduced mean of 20% at l.,,»=128mm. The reduction
at l.or»=128mm can be explained by the influence of the distributions of Young’s modulus
and tensile strength on the crack path, which is less influenced by the particle distribution
and, consequently, is less curved. As a result, the fracture surface decreases and hence the
global fracture energy. It is observed that the standard deviation is almost constant and
independent of the correlation length. This is due to the fact that the fracture energy was
assumed to be constant (in this sensitivity analysis) and the main influence on the standard
deviation of the fracture energy has the particle distribution, which is independent of the
correlation length.

Summarizing the preceding example, it can be concluded that spatially variable material
parameters have a significant influence on the mean and the stochastic scatter of the numerical
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result, and can be used to explain the stochastic scatter in experimental tests. However, a
principal problem related to the experimental determination of these parameters remains, e.g.
the correlation length, variation coefficients and correlation coefficients have to be determined
in order to apply them in a reliable numerical simulation.
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Chapter 6

Metamodels

6.1 Motivation

Growing computer capacities increase the potential of numerical simulations. However, due
to the increased level of accuracy in these models, the overall simulation time remains almost
constant. For certain applications as e.g. investigations concerning robustness or reliability,
or the coupled computation on different scales, it can be advantageous to perform several
numerical simulations at once covering a large range of possible input parameters, and then
replace the actual complicated model by a metamodel, which is much faster to evaluate. This
offers the possibility to use complex models wile keeping the overall computation time low.
On the one hand, such an approach requires the metamodel to generalize well, which means
that it should give a reasonable response for points that do not coincide with training samples.
On the other hand, the training samples should be reproduced as best as possible. Both of
these conditions are contradictory, since the best metamodel for an accurate reproduction of
the training samples is very complex with many free parameters, while, on the other hand, a
metamodel with only a few parameters generalizes best. In order to find the balance between
these two conditions, a parameter fitting of the metamodel is often required, which might be
e.g. the influence radius, the number and position of basis functions, the number of neurons
and hidden layers or certain precision values.

In this chapter, the metamodels used in this work are presented. Furthermore, strategies for
the parameter fitting of these models are discussed.

6.2 Neural networks

6.2.1 Introduction

Artificial neural networks are inspired by their biological counterpart in the brain, where as
many as 10'° neurons are connected with each other and build up an efficient system for
the processing of information. In a similar way, artificial neural networks (in the following
simply labeled neural networks) are composed of a set of neurons, which exchange information.
Mathematically, this system can be interpreted as a graph, with the neurons being the nodes.
From the total set of neurons, a set of input neurons and a set of output neurons can be
defined, which enter information into the system and, vice versa, extract information from
the system.
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The original ideas to mathematically represent the biological structure of the brain date back
to McCulloch [203]. In the following, Hebb introduced a training algorithm for the networks
known as Hebb learning [204]. Another pioneering work was done by Rosenblatt, which
invented the perceptron and an appropriate learning rule [205]. Considerable decrease in the
activity of research in this area followed the publication of Minsky and Papert [206], where it
was proven that there is no two-layer perceptron that can solve the XOR problem. Only after
the introduction of the backpropagation algorithm as an efficient tool for supervised learning
of multilayer perceptrons, the research activity restarted and neural networks were applied in
many different areas such as e.g. pattern recognition, function approximation, signal filtering
and data compression.

Nowadays, a variety of different networks types exist, e.g. recurrent networks such as Hopfield
networks [207] or Kosko networks [208], networks with higher order neurons such as Sigma-
Pi neurons [209] or self organizing maps [210] as an example for unsupervised learning. In
general, these networks can be distinguished with respect to their structure, the dynamics in
the execution mode and the learning methods.

In the following, only the multilayer perceptron as a special type of neural networks for meta-
modeling is considered. In this context, Hornik demonstrated that a multilayer perceptron
with a single hidden layer is a universal approximator [211], i.e. that any continuous function
can be approximated on a compact support to any user-defined accuracy by a multilayer
perceptron with a single hidden layer.

6.2.2 Architecture of a multilayer perceptron

The multilayer perceptron as one kind of neural networks consists of an input layer, an
output layer and a certain number of hidden layers. The number of neurons in the input
layer corresponds to the dimension of the input vector, whereas the dimension of the output
layer corresponds to the dimension of the output vector. In this work, a fully connected
network is used, i.e. each neuron is connected to all the neurons of the previous layer. The
output of a neuron ¢ in layer j is then given by

NGE-D
OEJ) = f Z wl(cai)oéa—l) _+_b1(3) 7 (6-1)
k=1

where NU) is the number of neurons in layer j and f is a transfer function. For the input
layer with 7 = 0, the output is equal to the input parameter corresponding to that neuron.
Common choices for the transfer function in the hidden layer are e.g. sigmoidal functions

et —e*

fi(r) = P (6.2)

whereas for the output layer linear functions are used. The network architecture with two
inputs, two outputs and a hidden layer with three neurons is illustrated in Fig. 6.1.

(k)
ij
culated from given associations D = {z®, ¢}, which are called training samples. In the

The free parameters of the network, which are the weights w;;” and the biases bgk) are cal-
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Figure 6.1 Architecture of a multilayer perceptron.

following, these free parameters are placed in a vector w with components w;. For each of
these training samples, the error e(™ (w) between the approximation of the neural network
and the exact value can be calculated. The squared sum over the errors of all training sam-
ples can be used to identify the quality of the approximation and the weights and biases are
calculated to minimize this sum of squared errors.

M
1

min F'(w) = Z 5 !e(m)|2 (6.3)

e (w) =t — y" (w, z™) (6.4)

where M is the number of training samples and y™ (w, (™) is the output of the neurons in
the output layer. This approach is called batch mode, since the sum of errors for all training
samples is minimized. A different approach, not followed in this thesis, is the sequential or
online approach, where the error is calculated for a single sample and the weights are adapted
accordingly. Repeating this for all samples, often with a random order, gives one cycle. After
a certain number of cycles or until another convergence criteria is fulfilled, the algorithm
stops. However, this approach has the disadvantage that convergence is not assured and that
after a cycle the objective function might increase.

Different algorithms can be used to determine the free parameters such as the standard
backpropagation algorithm [212], RPROP [213], the conjugate gradient method [214] and the
scaled conjugate gradient algorithm [215]. In this paper, the Levenberg-Marquardt algorithm
[216] and a preconditioned conjugate gradient approach has been used.
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6.2.3 Training algorithms
6.2.3.1 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is a modified Newton method. It requires the calculation
of the gradient and the hessian of the error functions with respect to the weights. The gradient
is given by

OF _ -, m9e™ S g gom)
G=—= e, ——=—) Jm elm (6.5)
oy (w) oy (w)
w1 W,
Oy (w) Oy (w)
T o

where J describes the sensitivity of the outputs with respect to the free parameters calculated
with the backpropagation algorithm and N° is the dimension of the output vector. The
Hessian can be expressed in a similar way as

2p ML N[ e getm 2,(m)
oo OPF {(%Z 0e | m e 67)
8wj8wk iy 8wk E)wj 3w]8wk
M T
= {4 agtm (6.8)
m=1

If we assume S™ to be small (at the exact solution S™ equals zero), the Hessian H can
be approximated by H where the term S is neglected:

M
H=Y gmgm (6.9)
m=1

As a result, the update of the parameters in the Levenberg-Marquardt iteration can be com-
puted as

Aw® = — {I:I + ,ukI} G, (6.10)

where py is a scalar parameter. Starting with a small value of pp = 0.01 scaled with the
maximum diagonal element of the hessian, the procedure is almost a Newton iteration. If
in the iteration step k£ no decrease of the objective function is obtained, pu; is doubled and
the iteration step is repeated, otherwise py is divided by two. For large values of py, the
iteration is almost a gradient descent method with step length 1/(u). In this work, the
Levenberg-Marquardt algorithm is only used for the standard neural networks. This is due to
the fact that it does not necessarily converge to a local minima, but might also converge to a
saddle point with small negative eigenvalues of the hessian. For the standard neural network,
this poses not problem, whereas for the Bayesian network a Laplace approximation is made,
where it is required that all eigenvalues of the hessian are strictly positive.
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6.2.3.2 Conjugate gradient method - linear case

The conjugate gradient method, developed by [217, 218, 219, 220] solves an optimization
problem
1

F(x) = §a:TA:1: — b2 — min (6.11)
with A being a symmetric positive definite matrix, which actually corresponds to the solution
of the system of linear equations

F(x)

—— =—r(x)=Ax —b. 6.12

) (612

At the minimum & holds 7(&) = 0. Starting from the origin, an iterative solution is obtained
by taking a step in the search direction p¥. In steepest descend, the search directions is the
negative of the gradient, which often results in a zigzag path to the optimum, since successive
search directions might be similar. In contrast, the conjugate gradient approach defines a set
of orthogonal directions with respect to A, which implies that the search space at iteration
k is A-orthogonal to the search space Dj_; = span {p), .., p**~D}

pD" ApD) = 0i £ ;. (6.13)

Assuming for now that this A-orthogonal basis is given. Consequently, the solution vector
can be expressed as a linear combination of these basis vectors

D
&= ap", (6.14)
=1

where & is the exact solution and D the dimension of the full search space. In an iterative
way, the solution can be determined by

with (®© = 0. In practice, much less iterations are required to obtain an approximate solution
within a certain prescribed accuracy range. The error between the exact solution and the
approximation at iteration ¢ is A-orthogonal to the search direction at iteration i, because
the error can be expressed as a linear combination of p*tY .. p(P) which are A-orthogonal
to p¥ . This condition yields an equation for the determination of the coefficients o

0= (2 —a)" Ap¥ (6.16)
— (& — (29 + a;p®))" ApY). (6.17)
Rearranging finally yields

i NT Apl )T T
a:(m_wo) ApY _ (b— Az®) p  p0Tp) (618
' p®»T Ap() p®»T Ap( pOT Ap() '
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The only problem is the determination of the conjugate directions. A straightforward ap-
proach would be the steepest descend direction as the initial search direction. The following
search directions are then created from the current steepest descend direction by a Gram-
Schmidt orthogonalization procedure using all the previous search directions:

k—1
p® =r® +3 " gpt (6.19)
=1
BT Ap()
Bi = _rT—p (6.20)
p(l) Ap(l)

For practical applications, this approach is not useful, since it requires the storage of all
previous gradients and the orthogonalization procedure actually corresponds to a Gauss elim-
ination of the full matrix. However, the storage of all previous search directions and the
orthogonalization procedure can be simplified. From Egs. (6.12), (6.18) and (6.15) it follows
that

r+) — 20 _ o, Ap). (6.21)

with £ = r(2®). Multiplication with ™7 and rearranging gives

p07 Ap = L <r(k>T7,<i> _ T(k)Tr(iH)) . (6.22)
Q;

The search space at iteration k is given by D®*) = span {p(l), ..,p(k)}. Since the residual
r*) is a linear combination of the search directions p**V, .., p(P) which are orthogonal to
D®) the residual r* is also orthogonal to D). Because the search vectors are build by a
Gram-Schmidt orthogonalization procedure from the residuals, the space span {r(l), . r(k)}

is equal to D¥) and, consequently,

rOT LG = 5ij (6.23)

with the Kronecker delta §;;. Substitution of Eq. (6.23) into Eq. (6.22) gives

@k —
(6773
r(k)Ap(z) _ 1 T(k)TT(k) k=it (6.24)
a1
0 otherwise.

Comparing this result with Eq. (6.20), it is realized that almost all 5; vanish and Eq. (6.19)
can be simplified to

(k)T (k)
rp _
p(k) — pF) _ — — p(”c 1) (6.25)
o 1ph-D7 Ap(-D)
BT, (k
— pF) _ Mp(k—l) (6.26)

r=DT p(k-1)
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In summary, only the previous residual and the previous search direction have to be stored
and used for the orthogonalization procedure, which decreases the effort from O(N?) to O(N).

Another drawback of the above procedure is the requirement to compute and store the Hessian
matrix, which is used for the calculation of the parameters «; in Eq.(6.18). Fortunately, there
is a possibility to apply the method without the need for the Hessian matrix. Assume that
we start at a point (¥, and perform a line search along the direction p(, such that F(2(+1)
has a minimum at A with @+t = 2® 4+ Ap®. Consequently, the following relation holds:

OF (D T T
0:( (ax )) P = T pliD), (6.27)

Similar to Eq. (6.21), it follows that

P — )\ Ap(®), (6.28)
Multiplication with p(i)T7 using Eq. (6.27) and rearranging finally gives

()T 1)
M= (6.29)
p(l) Ap(l)
which is identical to Eq. (6.18) and, consequently, \; = «;. It is to be noted that \; was
calculated without the knowledge of the Hessian matrix A, but a line search was used instead.
This result is especially useful in the nonlinear case.

6.2.3.3 Conjugate gradient method - nonlinear case

The problem of determining the weights and biases in the training procedure of the neural
networks is a highly nonlinear problem, with a Hessian matrix that is not positive definite
and several local minima. This can already be realized by changing the order of the neurons
in the hidden layer and the corresponding weights in a network with a single hidden layer.
The response of the network does not change, which implies that at least N*! global minima
exist, where N” is the number of neurons in the hidden layer. However, it is often sufficient to
find a local minima of the objective function. In the vicinity of a local minima, the objective
function can accurately be approximated by a quadratic function with a positive definite
Hessian matrix. The main problem in the nonlinear case is the calculation of the parameters
«;. If the exact Hessian matrix cannot be calculated, e.g. if it is computationally expensive
as in the case of neural networks, a linesearch in the search direction p® can be performed as
elucidated in the previous section. If the quadratic approximation of the objective function
is exact, this approach is identical to the conjugate gradient method in the linear case. For
an objective function that deviates from the exact quadratic function, the linesearch assures
that a decrease of the objective function is obtained. For the nonlinear case Polak and Ribiere
modified the update of the new search directions [220]:

(r®) — r(H))T rk)

(k) — plk) _
p=DT p(k=1)

pb, (6.30)

p
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Figure 6.2 Line search based on the golden section search.

In the linear case, there is no difference between Eq. (6.30) and Eq.(6.26), since pE=DTp0) — @
according to Eq. (6.23). In the nonlinear case, Eq. (6.30) seems to outperform the original
Fletcher-Reeves formula [221]. Due to numerical inaccuracies and nonlinearities of the objec-
tive function, a restart after a certain number of iterations is required, i.e. setting the search
direction to the steepest descent direction. In this work, a criterion based on [222] has been
implemented. A restart is performed, if the inequality

® T B0 > 0 2007 0] (6.31)

is fulfilled, which requires that successive gradients of the objective function are not colinear
up to a certain degree described by the factor 0.2. Under the assumption of ||r®*)|| = ||r*+D)|,
Eq. (6.31) can be interpreted as requiring a minimum angle between successive gradients of
the objective function of 78.5°.

As highlighted above, the computational expensive part in the training of neural networks
with the conjugate gradient approach is the efficient implementation of a line search. For
this reason, different line searches have been investigated. Each line search method can be
decomposed into two steps. In the first step, an interval is determined, in which the potential
minimum is located, and in a second step, the interval is narrowed until a prescribed accuracy
is achieved. In the following, two implemented line searches are presented and analyzed with
respect to their computational speed and robustness.

Golden section search

A robust linesearch is the Golden section search, which requires only function evaluations. The
main idea is illustrated in Fig. 6.2. At first, an interval is determined with f(a;) > f(@it1)
and f(a;y0) > f(ay1). Starting from the linesearch parameter ap = 0 and an initial interval
Aq, the function is evaluated at oy = ag + Aav. If f(aq) is smaller than f(ap), the procedure
is repeated until f(a;) > f(a;—1), with a; = a;-1 + Ac. Note that in each iteration the
size A« is multiplied by a factor >1, in order to increase the search interval. In the case
f(a) < f(a1), the minimum is inside the interval [y, o] and a bisection algorithm is used
until f(a;) < f(ap). In Fig. 6.2, the first interval I; which comprises the minimum is [as, as).

Jorg F. Unger PhD-thesis



118 6.2 Neural networks

Within this interval, two additional points ay and a5 are determined.

e

YO 6.32

1+ \/5 ( b ) ( )
Olgi = Qg + S (6.33)
Qp = Q — 8, (6.34)

where the left border of the interval is labeled «,, the right border a; and the intermediate
points ag; and ag;. If f(ag;) < f(ow:), the procedure is repeated within the interval [, apl,
otherwise the procedure is repeated within the interval [ay;, ap]. It is to be noted that the
position of the intermediate points is calculated from the golden ratio. This has the advantage
that for a new interval only one additional function value for the intermediate points has to
be calculated, whereas the other one can be recycled from the previous interval. In Fig. 6.2,
the second interval is given by [as) < as], and only f(cg) has to be calculated, whereas f(ay)
can be used from the previous interval. The procedure is repeated until the size of the interval
ap — o 1s smaller than a user-defined tolerance.

Brent’s method

The golden section search is a robust line search, but it requires a lot of function evaluations
until the minimum is bracketed. For a pure quadratic function is seems to be reasonable
to approximate the function by a quadratic function using the intermediate point and the
borders of the interval. The minimum of this quadratic function can then be used as a
new intermediate point. However, a closer look at this approach reveals that the algorithm
is not robust, it might get stuck in certain points or oscillate around the exact solution.
In order to circumvent these problems, a method coupling the advantage of a quadratic
interpolation and the golden section search is used [221, 223]. The principal idea is that
the quadratic approximation converges faster to the minimum, whereas in cases, where the
quadratic approximation gets stuck, the golden section search is used.

The extremum of a quadratic function defined at the points a,b and c is given by

L(b—a)’ (f(b) = f(e)) = (b= )" (f(b) — f(a)

=3 (b—a) (f(b) = f(c) = (b—c) (f(b) = fla))
The algorithm is schematically summarized in Algorithm 6.1. It stores 5 locations and the
corresponding function values - x corresponds to the smallest function value observed, w
corresponds to the point with the second smallest function value and v is the previous value
of w. The current search interval is described by a and b. Compared to the standard golden
section search, this line search could reduce the number of function evaluations required
to achieve the same accuracy by a factor of approximately three. Since the line search
is the computational expensive part of the training procedure using conjugate gradients, a
substantial decrease of the computational time could be obtained.

(6.35)
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Algorithm 6.1 Brent’s method as a line search combining a quadratic approximation with
a golden section search
Calculate the left and right borders a and b and an intermediate value x
with f(a) > f(z) and f(b) > f(x)
Initialize w=v=x and step length of step before previous e =0
while Interval length b — a > tolerance do
if |le|| > tolerance (the step before the previous is not negligible) then
Calculate the minimum x,,;, according to Eq. (6.35)
if 2., is inside the interval [a,b] and a sufficiently away from the current minima a
then
update step length e = d
accept the parabolic step with step length d = x,,,;,, — @
else
Take golden section step into the larger segment [a, | or [z, b]
if x > “T“’ then
Update step length e = a — x
else
Update step length e =b — x
d = 0.38196¢
else
Take a golden section step into the larger segment [a, z] or [z, b]
Evaluate function at u = x + d
if f(u) < f(x) (smaller function value) then
if u > x then
Update left border a = x
else
Update right border b =z
Update variables v =w, w =z, x = u
else
if u < z then
Update left border a = u
else
Update right border b = u
if f(u) < f(w) or w =z then
Update variables v = w, w = u
else
if f(u) < f(v)orv=xzorv=w then
Update variables v = u
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Preconditioning

The conjugate gradient method works efficiently, if the objective function corresponds to a
hypersphere, i.e. the Hessian matrix A is identical to the unity matrix. A measure often
used to describe the deviation from the sphere is the condition number s

)\max
o= Al flat] = 2, (6.36)

min

where Apae/Amin 1 the largest/smallest eigenvalue of the symmetric matrix A and || - || in
Eq. (6.36) is the Lo-norm. For a sphere, the condition number is unity and a small error on
the right hand side induces a small error on the solution vector. In contrast, if the condition
number is large, a small error in the right hand side may cause a large error in the solution
vector. In order to avoid an ill-conditioned system, a preconditioner should be added in the
solution procedure. This is especially useful for Bayesian neural networks discussed in the
following section, because large differences in magnitude between the hyperparameters «;
may lead to ill-posed problems with a condition number larger than 101°.

Two principal preconditioning methods to transform Eq. (6.12) in a well-posed problem can
be distinguished - a right preconditioner

AP 'Px=b (6.37)
or the left preconditioner
P'Ax =P (6.38)

with a preconditioning matrix P, which is easy to invert. In this implementation, a combi-
nation of both approaches using a Jacobi preconditioner has been used, where the matrix
P is given by the diagonal elements of the Hessian matrix A. In order to avoid numerical
instabilities due to small or negative diagonal elements, the standard Jacobi preconditioner
has been modified and the matrix P is defined as

0 i#]

A;;  otherwise

In the nonlinear case, this procedure actually corresponds to the transformation of the original
search space x to the transformed space y = Px and a local approximation with a hyper-
sphere. It is to be noted that the only difference in the prescaled version of the conjugate
gradient method is the calculation of the gradients, which are given by

F
gpre = g_y (640>
Ox OF
= —_pPlg . 41
ay ox Gorigs (6 )
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where g,,;, and g,,. are the gradients in the original and the preconditioned space. Further-
more, the linesearch has to be performed in the preconditioned space as well. However, since
only a scalar step length is calculated, the search direction in the original space pg]f,zg can be
calculated from the preconditioned search direction pgf% a priori and then the linesearch is
performed in the original system without the need for the transformation in each linesearch

step.
k _
pon, = P'p). (6.42)

In the case of neural networks, the Hessian matrix is not constant. Consequently, the ap-
proximation using only the Hessian at the starting point of the conjugate gradient iteration
may be considerably different at subsequent iterations. In order to circumvent this problem,
a preconditioning step at each reset of the search direction is used.

The implemented algorithm for the training procedure using conjugate gradients is summa-
rized in Algorithm 6.2.

6.2.4 Numerical implementation
6.2.4.1 Transformation of input and output data

In order to improve the training procedure, several heuristics are applied. One of these
procedures is the scaling of the input and the output data to have a zero mean and standard
deviation of one [224]. This is performed for all variables separately by calculating the mean
1 and the standard deviation o of this variable for all training samples, and then performing
a transformation according to
T —

—

7= (6.43)
The training of the network is then performed in the transformed space . A further improve-
ment, not implemented in this work, can be obtained, when the correlation between the input
and the correlation between the output variables is removed.

6.2.4.2 Initialization of weights

The optimization strategies described in the previous section start at an initial point. Initializ-
ing all weights and biases in the network with a constant factor leads to a highly ill-conditioned
problem. Since due to symmetry reasons all neurons and the corresponding weights in a sin-
gle layer have the same influence on the result, the gradient of the objective function with
respect to these weights is similar. As a result, these weights will only change in a similar
way during the optimization procedure. In order to circumvent this problem, the weight w;;
connecting neuron ¢ with neuron j is initialized in a stochastic procedure according to [224]
from a uniform distribution in the interval [—s;;, s;;] with

3

v
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Algorithm 6.2 Preconditioned conjugate gradient method used for the training of neural
networks

Initialize the starting point £° and the previous gradient o = 0

Calculate the scale factors s for preconditioning from the Hessian matrix A

S; =

A;;  otherwise

while ||rpred|| < tol do
Calculate the negative gradient of the objective function rg?l g at x)
(i) )
Tori
( 9/
Sj
Check for a restart using the Powell-Beale formula

Precondition (r](mn)e> =
J

lf ‘Tpre 'r'p're ‘ > 0 2|Irp7‘€ rp?“e‘ then
Calculate the scale factors s for preconditioning from the Hessian matrix A

1 A <1
S; = .
A;;  otherwise

Initialize the search direction p?”® with the negative gradient in the original space 77"

preconditioned with s

pﬁi«)e _ _ _oriyg

else
Calculate the new search direction p;ir)e using the Polak-Ribiere update formula

(r) — r(H))T r@
(-1 p6-1)

(i-1)

p

Transform the search direction into the original space

S Phre
orig s;

Perform a linesearch using Brent’s method along the search direction pomg described in
Algorithm 6.1 and calculate the new state (1
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L;; is the number of input connections of the neuron. The initial bias values are all set to
zero. For a comparison of different weight initialization procedures see e.g. [225].

6.2.4.3 Regularization

For practical applications, the complexity of the function to be approximated is not known
in advance. Consequently, the number of neurons and hidden layers required to approximate
the function is difficult to determine a priori. On the one hand, the network should be as
complex as necessary in order to accurately capture all the essential features of the exact
function, whereas, on the other hand, the network should be as simple as possible to avoid
overfitting, i.e. obtain a network that generalizes well. Obviously, not only the function to be
approximated has in influence on the optimal network architecture (number of neurons and
number of hidden layer), but also the number of training samples. Having only a few training
samples, the simple network with only a few neurons in the hidden layer is sufficient, whereas
for many training samples the number of neurons in the hidden layer can be increased.

In order to solve these problems, different approaches are proposed in the literature. In
general, they can be subdivided into two classes. In the first class of methods, the dimension
of the parameter space is adapted to the problem. Examples of these methods are network
pruning [226, 227, 228], where weights are incrementally removed from the network, or the
application of cascade-correlation network architectures [229], where - starting with a simple
network - hidden units are incrementally added. In the second class of methods, the size of
the parameters is reduced. Examples for this approach are regularization techniques such as
weight decay [230] or early stopping [231]. In the weight decay approach, an additional term
besides the mean square error is added to the objective function which corresponds to the
norm of the weight vector multiplied by a user-defined regularization parameter, whereas in
the early stopping approach the training of the network is not performed until convergence
but stopped earlier based on a criterion using a test set. It is to be noted that Bayesian
neural networks discussed in the next section are also based on the regularization approach,
but the user-defined regularization parameters are automatically determined.

Two of these methods have been implemented and, in the following, are exemplarily illus-
trated.

Early stopping

The idea is based on the fact that during the training procedure the network captures first
the general trend and then adapts to local phenomena. For that purpose, the set of training
samples is split into a test and a training set. The training set is used in the training of the
network, whereas after each epoch the objective function of the test set is evaluated. A typical
curve for the error in the test and training set is illustrated in Fig. 6.3 using an example
in 1-D with 50 training samples and 50 test samples. The function to be approximated
is f(x) = sin(z) in the interval [-9,9]. The training and test samples are created using
latin hypercube sampling. Additional Gaussian noise is added to the function values with a
standard deviation of 0.25 and a multilayer perceptron with a single hidden layer and 100
neurons in the hidden layer has been used.
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Figure 6.3 Illustration of the early stopping approach to train neural networks using a
preconditioned conjugate gradient algorithm.

At first, the mean square error of the test and the training sets decreases. At a certain number
of epochs, the mean square error of the test set does not decrease any more or even increases.
This is the point where to stop the training procedure. However, this procedure has several
drawbacks. The first problem is the requirement of a test set, which implies that only a
subset of the numerical data is actually used in the training procedure. The second problem
is to define a criteria when to stop. As can be verified from Fig. 6.3, the mean square error
of the test set is not a smooth curve which decreases and, at a certain point, increases, but
it is more or less oscillating around this curve. In order to apply this method, a smoothing
approach over a certain number of iterations is required, but the influence radius (number
of iterations used in the smoothing procedure to determine a smoothed value) is problem
dependend and must be defined by the user. For a detailed discussion on several stopping
criteria see e.g. [231].

Adaptive complexity of the network

Another approach is based on limiting the complexity of the network. Similar to the previous
approach, the total set is decomposed into a test and a training set. Starting with the simplest
network with a single neuron in the hidden layer, the network is trained until convergence
(e.g. norm of gradient of the objective function smaller than a certain value) and the error for
the test and training set is evaluated. The procedure is repeated with the number of neurons
in the hidden layer increased by a certain value. A curve obtained by this procedure is
exemplarily illustrated in Fig. 6.4(a). It is well known that due to the stochastic initialization
of the network parameters, the final response of the network differs even for the same training
data. Consequently, the procedure is repeated several times (in this example ten times) with
a constant number of neurons. Afterwards, the mean and the standard deviation of the mean
square error can be calculated for the test and the training set. In general, a minimum of
the mean square error of the test set can be identified. In the current example, this optimal
complexity of the network is approximately 10 neurons in the hidden layer. Afterwards, the
network is retrained with the number of neurons in the hidden layer fixed to 10, but this time
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Figure 6.4 Development of the mean square error during a run of a training procedure for
the training and an additional test set using a preconditioned conjugate gradient algorithm.

using the total set of data. Analog to the previous remarks concerning the influence of the
stochastic character of the initialization procedure it might be advantageous to approximate
the output by the mean of several networks trained using different initial weights and biases.

The influence of the number of neurons in the hidden layer on the network approximation is
illustrated in Fig. 6.4(b). For a simple network with only 4 neurons, the complexity of the
network is not sufficient to capture certain local curvatures, but the global trend is already
accurately reproduced. An excellent generalization behavior exhibits the network with 10
neurons in the hidden layer, while better reproducing local effects. The network with 20
neurons in the hidden layer clearly shows overfitting characteristics and the generalization
capacity of the network is only limited. One of the main drawbacks of this approach is the
computational complexity of the procedure. Since for each number of neurons in the hidden
layer the network has to be trained several times to account for the stochastic character of
the initialization, a large computational effort is required. Furthermore, overfitting is only
reduced by determining the simplest network architecture that is able to approximate the
training data, but cannot be eliminated. This is due to the fact that depending on the initial
weights, the network trained with the full set might still overfit in certain regions. Another
disadvantage is the user-defined parameter describing the ratio between the size of the test
and the training set. In this context, generalized cross validation [232] has been used. The
idea is to split the total set of training samples into a certain number of sets. For each set,
the neural network is trained using all other sets but the one, and afterwards the mean square
error of the test set is evaluated for this set. The average of the mean square error over all
sets can be used similar to the mean square error in the test set to identify overfitting.
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6.3 Bayesian neural networks

6.3.1 Motivation

In contrast to the frequentist approach demonstrated in the previous section, where the
weights and biases after the training of the neural network are fixed and the output for a
given input is deterministic, the Bayesian approach interprets the free parameters and the
output of the network as stochastic variables, where the mean values are related to the
fixed parameters in the frequentist approach. This offers the advantage of estimating not
only the input/output relation, but additionally evaluate the quality of the approximation.
Furthermore, a regularization procedure is automatically included in the training procedure.
Comprehensive reviews of Bayesian methods can be found in [233, 234].

In order to illustrate the Bayesian approach, an example from [233] is illustrated in Fig. 6.5.
Consider three different models, which all have a single parameter w and a constant output
t which is the parameter w disturbed with a certain amount of noise. For all three models,
prior knowledge about the size of the parameter w exists. In the first model, the interval
is rather large, whereas in the third model the parameter w is located only in a narrow
interval. For all these models, data points ¢ are generated by sampling w with the prior
distribution and then adding the noise. These sampling points are the clouds of points in
Fig. 6.5. Consequently, a probability density function p(t|H;) for all three models can be
calculated. Assume furthermore, that an additional point D is given. The question is, which
model has the highest probability that datapoint D has been created by that model. The
probability that datapoint D has been created by Hjs is very small, since the prior distribution
of w is very narrow. For model H;, the probability that datapoint D has been created by
this model is also small, but this time due to the fact that the probability density function
of the response ¢ is widely spread and, consequently, smaller at a certain fixed point (since
the integral over the total domain is 1). The most probable model is consequently model Hs.
In the following derivation for Bayesian training of neural networks, the width of the prior
distributions is characterized by the hyperparameters a, the noise in the model is represented
by the noise covariance 33 and the weights and biases are the free parameters w of the model.

»
L

t H;:t=w-+e
p(Hs|D ) p(t[Hs) FY
p(Hz|D

D/(b». __________________________
p(raipy [ ) PO

posterior distribution

prior distribution /

Figure 6.5 Model selection using a Bayesian approach according to [233].

Jorg F. Unger PhD-thesis



Chapter 6 Metamodels 127

6.3.2 Architecture

Within the Bayesian framework of neural network interpolation, the output of the neural
network y given the input @ is assumed to be superposed by Gaussian noise:

ptlz, w, X5) = N(y(z, w), ), (6.45)

where N (y(x, w), ) is a standard joint Gaussian distribution with mean value y(z,w) and
covariance 3. It is to be noted that, in contrast to standard Bayesian neural networks, the
author uses a full covariance matrix 33, with a separate noise variance for each output of
the network to account for a different noise level in each output component and their mutual
correlation. In a similar way, the prior distribution of the free parameters (weights and biases),
which corresponds to the distribution of the free parameters without any knowledge of the
training data D = (X, ¢), is assumed to be

p(wjlay) = N (w;]0,05). (6.46)

Theoretically, a precision parameter «; can be defined for all free parameters. However,
the network possesses a symmetry with respect to the neurons (e.g. if neuron 1 and 2 in
the hidden layer with their associated weights are exchanged, the input-output relation will
remain unchanged). In order to account for this symmetry property, the free parameters are
placed into groups with a single precision parameter for each group, which is illustrated in
Fig. 6.6 for a network with a single hidden layer and two inputs and two outputs. A group
is created for each input neuron with all connections (weights) emanating from that input
(groups 1 and 2). Furthermore, an additional group is created for the biases bgl) of the first
layer (group 5) and, finally, a group for each output with its bias and all connections flowing
into that output neuron (groups 3 and 4) is created. If an additional second hidden layer
should be introduced, an additional group with the weights connecting both layers and the
biases of the second layer has to be added.

6.3.3 Calculation of weights and biases

Assuming furthermore that the hyperparameters o; and the noise covariance 33 are known,
and using the assumption that the samples are independent and identically distributed (i.i.d.),
it follows from Eq. (6.45)

M
p(T|X, w, 5g) = [] pt™ |z, w, ), (6.47)
m=1
where T describes the output of all training samples, £ is the output of training sample
m and X contains the input vectors (™ for all training samples. Since the inputs of the
training data are fixed, the notation p(T'|X) is sometimes replaced by p(D), which is the
probability that the data is produced by the neural network model.

Marginalizing over the weights, the probability of the data for the given model can be calcu-
lated:

p(T| X, o, Xp) = /p(T\X,w, 35) p(w|a) dw. (6.48)
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Figure 6.6 Definition of groups for the free parameters (weights and biases).

Using Bayes theorem p(A|B) p(B) = p(B|A) p(A), it directly follows that
p(w|D, a, 35) o p(Dlw, ) p(wlev), (6.49)

where the factor of proportionality is p(D]ea, ¥5)~!, which is independent of the free param-
eters w. Due to the nonlinearity of the input-output relation of the neural network, the
posterior distribution of the free parameters p(w|D, a, ¥X3) is non-Gaussian. However, a
Gaussian approximation to the posterior distribution using the Laplace approximation [235]
can be determined. When maximizing the logarithm of the posterior distribution of w, which
is, due to the monotonic character of the In-function identical to maximizing the posterior
distribution itself, the products in Eq. (6.47) are converted to sums and it follows that

M T
(m) _ oy T 3= (40m) _ 4 (m)
lnp('D‘w,Eg):Zln[ 1N0 ! le(t y™) B (¢t Yy )] (6.50)
1 (2m) 2 X2

m

Il
WE
N —

[—No In27 —In |X4| — (t(m) — y(m))ngl (t(m) _ y(m))] 7

3
Il

(6.51)
which gives, using Eqs. (6.49) and (6.46):
Inp(w|D, o, X5) = Inp(D|w, X5) + In p(w|a) + const (6.52)
Rl . Nw
=3 [Z (t(m) - y(m)) 251 (t(m) — y(m)) + Zajw? + const.
m=1 7j=1
(6.53)
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N, is the number of output parameters, N, is the number of free parameters and M the
number of training samples. The terms independent of w are summed up in the constant
term, since they have no influence in the optimization procedure. Comparing Eq. (6.53) to
the objective function of standard neural networks in Eq. (6.3) including only the sum of
squared errors, it is observed that the noise covariance 33 serves as a scaling parameter for
the sum of squared errors, and an additional regularization term is added that minimizes
the norm of the free parameters. Minimizing the negative posterior distribution of the free
parameters using an appropriate training procedure (e.g. conjugate gradients) gives a mode
of the posterior distribution wyp (maximum a posteriori). Using Eq. (6.53), the covariance
matrix A of the gaussian approximation to the posterior distribution at wp4p is given by

A =—-VVInp(wysr|D, o, Xp) (6.54)
L0 [N (g T 531 (gm0 gym :
" 20w D (™ =y SE (¢ — y™) |+ diag {an, ., an} (6.55)

The second derivatives of the output with respect to the weights can be either approximated
similar to Eq. (6.9) with the scaling parameters X3 added, or exactly calculated using a com-
bined backpropagation and forward propagation scheme as explained in [236]. The advantage
of using the approximated hessian is, on the one hand, the computational efficiency, since the
exact calculation of the Hessian is computationally much more expensive, and, on the other
hand, the property of the approximated Hessian to be positive definite. From a theoretical
point of view, the Hessian matrix of p(wup|D, o, £5) at a local minimum wysp is also pos-
itive definite, but in the following calculations it is also required that the second derivative of
the sum of mean square errors be positive definite (see e.g. [237]). This can only be obtained
by an eigenvalue analysis of the exact Hessian matrix, setting all negative eigenvalues to a
small positive value and back transformation into the original system. In order to circumvent
all these problems, the approximated Hessian matrix is used.

The approximation of the posterior distribution of the free parameters can then be calculated
by

p(w|D, e, Tp) = N(w|wyap, AY). (6.56)

6.3.4 Predictive distribution

The predictive distribution of the output ¢ for a new input vector x is given by marginalizing
over the free parameters using Eq. (6.56):

p(tlx, D, o, Xp) = /p(t]w,w,Eg)ﬁ(w\D,a,Eg) dw. (6.57)

Due to the nonlinearity of the input-output relation of the neural network in Eq. (6.45), the
integration cannot be performed in an analytical way. Approximating the input-output rela-
tion by a Taylor-series expansion, where only the constant and the linear terms are considered,
gives

y(x, w) ~ y(x, wyap) + J (w — wyap), (6.58)
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where J is the sensitivity of the network output with respect to the free parameters given in
Eq. (6.6) evaluated at w = wpup. Substitution of Eq. (6.58) into Eq. (6.45) yields a Gaussian
approximation with a mean that is a linear function of the free parameters,

p(tle, w, Xs) = N (tly(x, wyap) + J (W — wymp) , Xp) . (6.59)

Using the procedure of completing the square (section C.2), this yields a Gaussian approxi-
mation to the predictive distribution

p(tle, D, o, X5) = N (tly(x, wup), X(x)) (6.60)
S(x) =3+ J(x) A T (). (6.61)

6.3.5 Optimization of hyperparameters

So far it has been assumed that the hyperparameters ae and the noise covariance 33 are known.
In the evidence framework, these hyperparameters are determined in an iterative procedure.
The evidence of the hyperparameters is obtained by marginalizing over the weights

PPl E5) = [ p(Dlw,3y) pluwla) dw (6.62)

For simplicity, the integrand p(D|w,Xs) p(w|e) is abbreviated with f(w). Using Bayes
theorem

f(w) = p(w|D, e, ¥5) p(D) (6.63)

and, with Eq. (6.56), it follows that w4p is a mode of p(w|D, ar, ¥5) and, consequently, of
f(w) with V f(w) equals zero. A Taylor series expansion of In f(w) with a truncation after
the quadratic terms gives:

In f(w) =~ In f(wyup) — % (w — wyp)” A(w — wap), (6.64)

where —VV1n f(wyup) = —VVInp(wyap|D) — VVInp(D) = A, according to Eqgs. (6.54)
and (6.63) with VV Inp(D) = 0, has been used. The Taylor series expansion is performed in
the logarithmic scale, since the logarithm of the Gaussian distribution is purely quadratic and
the approximation is exact. Taking both sides of Eq. (6.64) as arguments of an exponential
function and integrating over w gives:

PPl %) = [ fw) du (6.65)
1

——(w — wMAp)TA (w — wyup)

%f(wMAp)/e 2 : (6.66)

Comparing Eq. (6.66) with the standard form of a Gaussian density function (see section C.1)
with its integral over the total domain being equal to one, taking the logarithm and substi-
tuting f(wpap), it follows that

NY 1

Inp(D|e, Xp) = Inp(D|wnap, ) + In p(wyup|a) + —— In(27)
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with |A| being the determinant of A and |A|™! = |A™!. The joint probability of
p(D|wnap, Xp) is given using Eq. (6.47)
M
In p(Dlwarap, Bp) = In [ p(t" 2™, wrsap, Sp) (6.68)
m T m
u , , AT A
T L R (6:69)
m=1 (271—)7 |Eﬁ|§
M 1
M M ANCORD VNG
=— 5 N’In(2m) — - In 2] - ;1 5 , (6.70)
with
Am) Z gym) _ () (6.71)

Similarly, the logarithm of p(wup|a) can be expressed using Eq. (6.46) as

N'LU
1
Inp(wyppla) = —= Za] In (27) + 5 ;lnai. (6.72)

Substitution of Egs. (6.70), (6.72) into Eq. (6.67) yields:
M Am)T5=1 A (m)

Inp(D|a, Xg) = — —Za]w - Z 2ﬁ

m=1

MNoln(27r) 1 ln\A|
T S —ln|§3 |+ = Zl (6.73)

with —In || = In |Egl|. The hyperparameters o and X3 are determined to maximize the
probability of the data given the hyperparameters in Eq. (6.73) following a procedure in [238].
Differentiation of Eq. (6.73) with respect to «; and setting the partial derivative to zero gives:

81np(D|a 33)

(6.74)

iy DIEEED WP 679

j ajeC ] a]eC j:ozjeC

where Eq. (C.7) has been used. The Summation is performed over the j, for which the a;
are in the same group C, which means o; = a¢ Vj : a;eC. Multiplication with «a, and
rearranging Eq. (6.75) gives

Ve
Zj:ajeC wjz
-1
n Y A 67

JiajeC

(6.76)

Qe =
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where k. is the number of elements in group C' and 7, the effective number of parameters in
group C'. The summation in A(j;.) is performed over the j** diagonal elements of A™'. It is
to be noted that Eq. (6.76) is a fixed point iteration, since the right hand side also depends
on «.. In the numerical implementation, this poses no problem, since after an iteration
step with an update of the hyperparameters another optimization step for wyup has to be
performed, which changes the weights and due to the nonlinearity of the network response
also the covariance matrix A.

The update of the noise covariances 3 is obtained in a similar way by differentiation of
Eq. (6.73) with respect to 251:

dInp(Dla, 3p)

0= 6.78
1 (& T d1n|A|
_1 _Am) A(m) _
> (Z (—amA™T 4 ars, = ) , (6.79)
m=1 B(i5)
where the relation
0
oz ——In [ = (Zp)" (6.80)
L. In|A]| . .
has been used. The derivative ———— is obtained from
B(i7)
In|A A
0 n|1 | (A—l 8_1 ) . (6.81)
O23) O%50i5)

Using Eq. (6.55) each entry of the Hessian A can be rewritten as

M N¥ N
Ay = 5 8wk6wl (Za w? + Z Z Z A(m)A ) (6.82)

m=1 i=1 j=1

M Nv Nv . ( )8A(-m)
_ =LA D)) I At 4 pm OB .
= Ok —l— 5 9w, < ( (9wk P AV o )) (6.83)

m=1 =1 j=1

N NG (m) AL
< Am | OAT 94,

M Nw
= 0oy, + = (;ZZ ﬁu 8wkawz J ow,  Owy

=1 j5=1

(m) m) gA™)
A"y, DA OA, >)

8wk8wl : 8wl 8wk <684)

with A(™ given in Eq. (6.71). Consequently, the derivative of A with respect to Zg(lij) can
be expressed as

8Akl _1 Y702y (2™, w) iy . Oyi(2™ w) dy; (2™ w)
s YL W) A(m ) j ; '
Py (@™, w) (o  Oyi(x™,w) dy;(x™, w)
A m i ) 5 , ' '
kac?wl + 8wl 3wk ) <6 86)
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Using again the approximation of the Hessian matrix, where only the gradient information is
used, this can be simplified to

aAkl 1 i ayi(m(m)a w) ayj(w(m)v w) + ayi(m(m)7 w) ayj<m(m)7 w) (6 87)
m=1 a | .

82_1 - 5 Wi 6’wl awl 8wk

O
The sensitivities —2- can be computed using a standard backpropagation scheme. Rearrang-

Wy,
ing Eq. (6.79) gives
M
1 ™ Oln|A]|
Sp=— (D (AmAt . .
TN (mzl( )+ 05! (6:88)

Equation (6.88) is again a fixed point iteration scheme to determine 35 and by inversion 251.
It is to be noted that the fixed point iteration scheme to determine boldsymbol¥z deviates
from the standard literature due to the introduction of the full covariance matrix.

6.3.6 Numerical implementation

The proposed method is an iterative strategy for the determination of the hyperparameters
«, the noise covariance g and the weights waup. The general procedure is summarized
in Algorithm 6.3. The noise covariances 3z is initialized with the identity matrix. In order
to realize a wide prior distribution of the free parameters, values of 10~° are used for the
initialization of «;. These values correspond to an overfitting in the initial step. In the
following iterations, the regularization through the hyperparameters a leads to a regularized
final solution. The optimization of the modified objective function in Eq. (6.53) is performed
with the preconditioned conjugate gradient algorithm explained in section 6.2.3.3, where
the modifications of the gradient and hessian due to the hyperparameters o and 33 in the
calculation of the gradient and the hessian are incorporated. The convergence criteria for
this optimization step is based on the norm of the gradient in the preconditioned system.
Afterwards, an update of the hyperparameters a and 3 is performed and another inner
optimization loop of the free parameters wap is performed. Convergence in the outer loop
is obtained, if the relative modification of the objective function in Eq. (6.53) between two
consecutive outer iteration loops is smaller than a certain threshold (107% is used in the
implementation) or the modifications of the hyperparameters are small according to

(0" — a7y

Ne i (k—1)
3 o, > 1
1070>>" agk—n? (6.89)
=L (P — a2 otherwise

(k) (k=1)y2
No  Ne (Zz‘j _Zij ) (k1) S 1

107°0>>"% Eg;?—l)2 v (6.90)

i=1 j=1 (Zg?) _ Zg?*l)ﬁ otherwise.
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Algorithm 6.3 Bayesian training of neural networks

scale input and outputs of training data to standard normal distributed variables
initialize hyperparameters o;; = 107° and X5 = I, biases bgj ) = 0 and weights w,(fi) according
to Eq. (6.44)
repeat

minimize — Inp(w|D, ¢, B) in Eq. (6.53) with fixed hyperparameters o and Xz

update hyperparameters ac and noise covariance X5 according to Eqgs. (6.76), (6.88)
until convergence

It is to be noted that the exact values of the convergence thresholds do not have a significant
influence on the final result.

Within the Bayesian determination of the hyperparameters, the number of neurons has only a
minor influence. In the numerical implementation, it was advantageous to chose the number
of free parameters (weights and biases) smaller than the number of training data, which is
given by the number of training samples multiplied by the number of outputs. Consequently, a
reasonable upper bound for the number of neurons for a given network architecture (number
of inputs/outputs, number of hidden layers) is obtained. In the current work, only one
hidden layer has been used. From other tests it was found that a network with one hidden
layer performs better for additive input/output relations, whereas a network with two hidden
layers performs better for multiplicative input/output relations. The general procedure for
training Bayesian neural networks is summarized in Algorithm 6.3.

6.4 Examples of function approximation using neural networks

In order to investigate the quality of the Bayesian approach with respect to the dimensionality
of the problem, the generalization quality of the obtained metamodel and the accuracy of the
estimates for noise variance and correlation, a test example is set up. It consists of n identical
input/output mappings of the form

y; = sin (z;) ,xie[—3,3] and ie {1,..,n}. (6.91)

Additionally, Gaussian noise is added to the output variables with a prescribed variance and
correlation. Unless otherwise specified, the off-diagonal terms of the noise correlation and the
prescribed variance of all outputs are identical.

6.4.1 lllustration in 1D

In order to demonstrate certain features of the presented approach, the example is, in a first
approach, calculated with a single input and a single output variable. Figure 6.7 illustrates the
example with a varying number of training samples and different values for the prescribed
noise added to the training samples. Furthermore, the influence of the number of hidden
neurons in the single hidden layer is investigated.
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Figure 6.7 Mean and standard deviation of the approximation using a varying number of
neurons in the hidden layer and a varying number of training samples disturbed by noise with
a prescribed standard deviation.
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First of all, it is observed that the number of neurons in the hidden layer does not have
a significant influence on the approximation of the output. In contrast to standard neural
networks, where a large number of neurons in the hidden layer often leads to overfitting, the
results using Bayesian neural networks with 5 and 30 neurons in the hidden layer are almost
identical for the example with 32 training samples. It is furthermore observed that the
identified noise level of the output can already be accurately determined with a small number
of 32 training samples and the identified noise level almost coincides with the prescribed
values. With an increased number of training samples, the accuracy of the approximation
(which is the mean of the normal distributed response) is increased, while the noise level
remains almost constant.

6.4.2 Influence of the dimensionality

In the first setup of the multidimensional problem, the influence of the dimensionality of
the problem (number n of input/output mappings) is investigated. For a prescribed noise
variance of 0.1 and independent noise for each output, the dimension of the problem is varied
between 1 and 10 with a fixed number of 20 neurons in the single hidden layer. At this point,
it is important to realize that the number of neurons in the hidden layer has to be at least as
large as the number of important input variables, since otherwise the information of the input
is mapped to a lower dimension in the hidden layer. In this example, all input variables are
equally important and, consequently, the number of input/output mappings is only increased
up to 10. For many practical applications, this poses no restriction, since it is often observed
that the number of important input variables (which have a significant influence on the
outputs) is much smaller than the actual number of input variables. Furthermore, the balance
between the number of training data and the number of free parameters is to be considered.
The number of free parameters N/ is given by

weights biases
Nfree:(N1+N0>Nh+Nh+NO+NZ+NO+1
271
Ne(N°+1
+ % correlated noise (6.92)
N° uncorrelated noise

where N and N° are the number of input/output variables and N” is the number of neurons
in the hidden layer. The number of training information is obtained by

Ntrain :]\71)1\47

where M is the number of training samples. It is recommended that the number of free
parameters is smaller than the number of training information. Due to the regularization
in the Bayesian approach, the number of hidden neurons can be increased without strong
influence on the results. However, the training of the network becomes computationally more
expensive for an increased number of free parameters.
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Figure 6.8 Influence of number of training samples and dimensionality of the problem on
the mean square error and the approximated correlation for uncorrelated variables with a
prescribed standard deviation for the added noise of 0.1 and varying dimension of the sin
problem in (6.91).

In Fig. 6.8(a), the influence of the number of training samples on the mean square error of
an additional test set with 200 samples is plotted, where the test set samples are created in a
similar way as the training samples without a noise component. It is realized that the mean
square error decreases the more samples are used and supports the theorem that any function
can be approximated with a neural network up to a prescribed tolerance. As a consequence
this implies that the more training samples are used the better the metamodel is. However,
if the training as well as the test data are noisy, the mean square error of the test set will, in
the limit, not approach zero, but converge to a value related to the noise in the test data.

It is furthermore observed that the higher the dimension of the input space, the higher is
also the approximation error. This seems to be reasonable, since due to an increase of the
dimension, the function to be approximated by the metamodel gets much more complex.
This can be visualized in a 1D/2D example. Imagine functions f(z1,0) and f(0,x2) to be
approximated in 1D with a certain number N of samples (xgi), méi)),i = 1..N. For 1D, only
two lines along the coordinate axis are to be approximated, whereas for a full 2D metamodel
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138 6.4 Examples of function approximation using neural networks

an approximation over the full space (z1,x2) has to be obtained. As a consequence, it can
be stated that the higher the dimension of the input space is, the more training samples are
required to obtain a model with the same accuracy. The dimension of the output space is not
so crucial, since a network with M outputs can be interpreted as M networks with a single
output and the influence is only linear. In Fig. 6.8(b), the mean of the estimated noise level
over all outputs and 5 repetitions is illustrated, which can be extracted from the diagonal
elements of the inverse noise covariance matrix.

O_Znoise _ (Eﬁ)u (693)
It is realized that already with a small number of 128 samples an accurate estimate of the
prescribed noise level 0.1 is obtained. For 10 input/output variables, 256 samples are required.
This is due to the fact that the higher the dimension of the input space is, the more difficult
it is to distinguish between the real oscillations of a function and noise. Furthermore, the
accuracy of the estimate increases by increasing the number of training samples. In Fig. 6.8(c),
the standard deviation of the estimated noise level using 5 simulations is plotted. It can be
verified that, for this example with 256 samples (for 1-5 variables 128 is already sufficient),
the standard deviation of the noise estimate divided by its mean is smaller than 10~2, which
allows an accurate determination of the noise level already with a single run (compared to
the 5 repetitions performed here to get statistical informations).

6.4.3 Determination of important input and output variables

In practical applications, the engineer is often confronted with a huge set of parameters
describing a certain model, without any idea, which of these variables have an influence on a
set of certain output variables. The brute force method is often to use all input variables in
the metamodel, but this has the disadvantage of increasing the dimensionality of the problem.
The Bayesian approach offers the possibility to detect, on the one hand, important input and
output variables and, on the other hand, decrease the influence of variables, which are not
sensitive to changes of the input parameters. This can be observed by an examination of the
hyperparameters . Recall from Eq. (6.46) and Fig. 6.6 that a separate precision parameter
«; is defined for all weights connecting a certain input with the hidden layer and for all weights
connecting the hidden layer with a certain output. A large precision parameter implies that
weights in this group are all close to zero, since the probability distribution of the weights is
given by a normal distribution with zero mean and a standard deviation «;'. In the limit
of an infinite precision parameter, all weights in this group vanish, which implies that the
corresponding input /output parameter can be removed from the network without any changes
to the metamodel. Consequently, the precision parameters can be interpreted as a measure
of importance for input variables and a measure of the sensitivity of output variables with
respect to the input variables.

The applicability of this approach is demonstrated using a modified version of the sin problem
in Eq. (6.91):

1
c==Y sin(z; ,xie[—3,3] and ie {1,..,n}. 6.94
y Z;SIH(%) zje[—3,3] and i {1,..,n} (6.94)
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It is to be noted that the first input output mapping is identical to Eq. (6.91). The next
outputs are given by the average of all previous outputs in Eq. (6.91). Consequently, the first
input variable is the most important input variable, since it influences all outputs, whereas
the last input variable has only a small influence on the last output.

Within the procedure, the importance of the input variables is detected by the hyperparame-
ter o corresponding to each input as illustrated in Fig. 6.9. The first input has the smallest
value for the hyperparameter, consequently, the prior distribution of the weights has a larger
standard deviation. Vice versa, the last input has the highest hyperparameter and, conse-
quently, the standard deviation of the prior distribution is almost zero, which finally implies
that this input has only a small influence on the result. As a result, the Bayesian training pro-
cedure allows an automatic extraction of the importance of each input variable. Comparing
the results for 10, 20 and 30 neurons in the hidden layer, it is realized that the hyperparame-
ter decreases for an increasing number of neurons. This can simply be attributed to the fact
that the input to the transfer function of a neuron in the hidden layer is the weighted sum of
input variables and, similar, the input to the transfer function of a neuron in the output layer
is the weighted sum of outputs from the hidden layer. If more neurons in the hidden layer
are used, the smaller a single weight can be, because a single weight can - from a simplified
perspective - be replaced by the sum of two or more identical weights, which are than smaller
than the single weight. In fact, the ratio between the hyperparameter v and the number of
parameters belonging to this parameter is - for the inputs in the example - approximately
independent from the number of neurons in the hidden layer.

As a result, the evaluation of the importance of each input variable from the corresponding
hyperparameter «; should always be interpreted as a relative weighting between the input
variables and not as an absolute value, because this value depends on the intrinsic architecture
of the network.

The interpretation of the hyperparameters «; corresponding to the outputs is not so straight-
forward. On the one hand, the complexity of the approximation for a single output is charac-
terized by its hyperparameter «, since the output is a linear combination of the outputs of the
hidden layer. Since the activation function in the hidden layer is a sigmoidal function, its out-
put can be interpreted as a half buckle, which is then weighted and the sum over all neurons
in the hidden layer gives the output. As a result, the hyperparameter «; characterizes the
number of buckles required to approximate the function, thus the more complex the output
is, the more buckles are required and the smaller the hyperparameter ;. On the other hand,
it is not clear, whether a simple output (simple function without many buckles) is always
expressed as a linear combination of a few buckles from the hidden layer. Imagine a network
with a single input and two outputs - one output is a linear function whereas the other is a
highly nonlinear function (e.g. a sin-function with a period much smaller than the sample
space). In order to accurately represent the response of the complex output, the output of
the neurons in the hidden layer should capture these buckles. As a consequence, the linear
function has to be approximated by a linear combination of the same buckles, which does not
necessarily induce the weighting factors to be small, although the complexity of the linear
function is much smaller than the sin-function. Finally, this implies that the hyperparameters
«; of the outputs are not only influenced by its corresponding output, but by all other outputs
as well which renders the interpretation more difficult.
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Figure 6.9 Mean and standard deviation for 5 repetitions of the precision parameters «,
mean square error and estimated standard deviation of the noise for the modified sin problem
in (6.94) with 10 variables and a variable number of neurons in the hidden layer (10,20,30).
Independent noise with a standard deviation of 0.1 is used.
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Comparing the hyperparameters «; of the outputs for a varying number of training samples as
illustrated in Fig. 6.9, it is realized that for 20 and 30 neurons the hyperparameters decrease
with an increasing number of training samples, whereas for 10 neurons almost no difference is
obtained. A network with N neurons in the hidden layer maps the input to an intermediate
space of dimension N. The output is then a linear combination of functions from this interme-
diate space. The more neurons are used in the hidden layer, the more complex the function
can be. Using only 10 neurons in the hidden layer with 10 inputs as in the example, the com-
plexity of the intermediate space is not sufficient to accurately represent the real function.
Using more training samples increases neither the accuracy of the solution nor the complexity
of the intermediate space. This can also be realized when comparing the mean square error
for 256 and 1024 samples in Fig. 6.9. The accuracy of the solution is not increased when
using only 10 neurons in the hidden layer. The situation is different when using 20 or even 30
neurons in the hidden layer. For 256 training samples, the complexity of the approximation
is reduced due to the intrinsic regularization procedure, since the number of training data
does not allow a complex approximation without the potential problem of overfitting. When
the number of training samples is increased to 1024, the confidence in the complex function
is higher and the functions are better approximated. Consequently, the number of buckles
increases, the weighting factors increase and, as a result, the hyperparameters «; decrease.

The calculated standard deviation of the noise almost coincides for all tests with the prescribed
noise of 0.1. The only exception is the approximation using only 10 neurons in the hidden
layer, where the estimated standard deviation of the noise is slightly larger (0.1-0.15), which
is still an accurate estimate. The deviation is due to the fact that the estimated covariance
matrix, calculated by Eq. (6.88), is directly related to the error in the final approximation of
the test data. If there is, due to the not sufficient number of neurons in the hidden layer, a
discrepancy between the approximation and the training data, the standard deviation of the
noise increases automatically.

6.4.4 Determination of correlated noise in the output parameters

In a final test, the ability of the Bayesian neural network to determine the correlation within
the noise of the training samples is investigated. For that purpose, the sin-example from
Eq. (6.91) is used with 10 inputs/outputs, 20 neurons in the hidden layer and a prescribed
standard deviation of the noise of 0.1, which is added to the training data. All the off-diagonal
elements of the linear correlation matrix for the noise were set to the same value, which varies
between 0, 0.5 and 0.95. Figure 6.10 illustrates the identified correlation coefficient, where
the mean is calculated over all runs (5 runs) and all off-diagonal elements. It is observed that
for a small number of training samples the mean of the identified correlation is almost zero,
but the standard deviation is large. This is due to the fact that an approximation with 10
inputs/outputs cannot be approximated using only 32 training samples. With a reasonable
number of training samples of 128 or even 256 samples, the estimate is very close to the
exact value with small scatter. As a consequence, it can be stated that the Bayesian neural
network is not only able to evaluate the diagonal elements of the covariance matrix, which
characterizes the noise in the training data, but to estimate the full covariance matrix. This
is essential in the context of parameter identification as illustrated in the next chapter.
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Figure 6.10 Approximated correlation coefficient for the noise with a prescribed standard
deviation for the added noise of 0.1 and 10 input/output variables in the sin problem (6.91).

6.5 Support vector machines

Support vector machines are an efficient tool for classification purposes. The origins date
back to [239] and a comprehensive introduction can be found in [240]. The principal idea is
to define a hyperplane that separates the data points into two classes by further fulfilling the
maximum margin principal.

6.5.1 Linear separable case

Support vector machines define a function f
f(x) = wx + b, (6.95)

where f(x) = 0 describes the separating hyperplane between positive and negative data points.
Without loss of generality, the training data is given by (x;,v;), yie{—1, 1}, x;eR% i = 1..L,
where L corresponds to the number of training samples. Assume that there exist a separating
hyperplane as illustrated in Fig. 6.11, which separates the positive from the negative data
points, so that:

z,w+b>+1 for y; = +1 (6.96)
ziw+b< —1 for y; = —1, (6.97)

which can be combined into a single inequality

The shortest distance from the separating hyperplane to a positive (negative) point is denoted
by d*(d~). Define the margin as d* + d~. In general, there exists an infinite number of
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Figure 6.11 Separating hyperplane for linear separable problem.

separating hyperplanes. In the approach for the support vector machines, the hyperplane
which maximizes the margin is chosen. The separating hyperplane is given by wax + b = 0
and |b|/||w|| is the perpendicular distance to the origin. In a similar way, the hyperplane for
the points which fulfill Egs. (6.96) and (6.97) exactly can be evaluated and the distances to
the origin are given by

wex +b=+1 (6.99)
B

dp = 122 (6.100)
[[w]]

As a result, d¥ = d- = 1/||w]|| and the margin is 2/||w||. Consequently, the following

equivalent optimization problem has to be solved:

1 2

min §||w|| (6.101)

subject to y; (x,w +b) —1>0 Vi=1..L, (6.102)

where the factor 1/2 is added to obtain the standard form of a quadratic programming
minimization problem. The Lagrange formulation for this problem is given by

N
1
L,= §Hw\|2—20zi (yi(z;w + b) — 1) (6.103)
=1
with oy >0 Vi =1..L. (6.104)

This is a convex quadratic programming problem with the Lagrange multipliers «;. Equiva-
lently, the dual problem can be solved (section C.4.2):

L L L
max — % Z Z QG0 YY T+ Z o (6.105)
i=1

i=1 j=1
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144 6.5 Support vector machines

subject to o; > 0 Vi=1..L (6.106)
L
w = Z YT (6.107)
i=1
L
0= Z ;Y- (6108)
i=1

There exists a Lagrange multiplier for each training point. The training points for which the
corresponding Lagrange multiplier in the optimal solution are nonzero are called the support
vectors, which are located on the hyperplane xw + b = +1. Having solved the dual problem,
w can directly be determined from Eq. (6.107). The bias parameter b is determined from the
first order Karush-Kuhn-Tucker (KKT) conditions of the primal problem

Theoretically, any of the equations in (6.109) can be used to determine b although, due to
numerical reasons, the mean value from all these equations is a better choice.

6.5.2 Linear nonseparable case

In the general case, the training points do not necessarily define a linearly separable problem.
Consequently, non negative slack variables are introduced [241] to relax the constraints given

in Egs. (6.96), (6.97)

zw+b>+1—-¢ for y; =+1 (6.110)
zw+b< —1+4+¢ for y; =—1. (6.111)

By adding the term C' > &; to the objective function, the slack variables are considered in the
minimization procedure. For sufficiently large C', the number of training errors is minimized
and the separation of the remaining data with maximum margin is obtained. The parameter
C'is a userdefined constant and 10° is used in the implementation.

This choice of the objective function has the advantage that neither the slack variables nor
their corresponding Lagrange multipliers appear in the dual problem as shown in appendix
section C.4.3. The dual problem is given by

| Lk L
max — o Z Z Q0L Y YT+ Z o (6.112)
i=1

i=1 j=1
subject to 0 < o, < C Vi=1..L (6.113)
L
w = Z QYT (6.114)
i=1

L
=1
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The only difference compared to the separable problem is the additional upper bound of the
Lagrange multiplier «;. Similar to the previous derivation, the first order KK'T conditions of
the primal problem can be used to determine the bias parameter b:

Bi& = 0. (6.118)

Using Egs. (6.116) and (6.118), it follows that £ = 0 for 0 < «; < C. Consequently, any
training point with 0 < «; < C' can be used to determine b with Eq. (6.117) and & = 0, but
from a numerical point of view it is advantageous to use the mean of all these training points.

6.5.3 Nonlinear case

In the previous section, a derivation for the linear case was given. However, many problems
are not linearly separable. In order to generalize the procedure to the nonlinear case, a
transformation ® of the data to an intermediate space H is introduced.

R H (6.119)

Since the dual optimization problem in Eq. (6.112) depends only on dot products between
the training points, an equivalent formulation in the intermediate space gives:

L L L
1
subject to 0 < o; < C Vi=1..L (6.121)
L
w=">" ay(w) (6.122)
=1
L
=1

Assume that there is a kernel function K such that K(x;,x;) = ¢(x;) - ¢(x;). Since the
objective function only depends on dot products ¢(x;)¢(x;), which can be replaced by the
kernel function K, the transformation itself does not have to be performed. A common kernel
function is

i —

K(z;,x;) =e 2R (6.125)

where R is a userdefined influence radius. The corresponding intermediate space H is infinite
dimensional as is the weight vector w.
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In order to determine an approximate function value for a test point s, Eq. (6.95) is evaluated
in the intermediate space IH. By substitution of Eq.(C.19), the following formula is obtained:

f(s) =we(s) + b= Z oy d(;)p(s) + b (6.126)
:ZaiyiK(a:i,s) +5b (6.127)

Again, the explicit calculation of w and the transformation ® is not required. Similar to
the linear non-separable case, the bias parameter b is determined from the first order KKT
conditions, which are given by

0=y (p(xi)w +b) —1+&§] = o [yz <¢($i) Z a;y;0(x;) + b) —1+&|  (6.128)
= 4 [yz <Z OéjyjK(.’L'i, iBj) + b) -1+ fl (6129)

0= & (6.130)

by additionally substituting w using Eq. (6.122). Only those training points in Eq. (6.129)
are averaged to calculate b, for which 0 < a; < C and, consequently & = 0.

6.5.4 Training

For a given set of data points, the optimization problem in Eqs. (6.120)-(6.123) has to be
solved. In the implementation used for this work, this problem is solved using sequential
minimal optimization [242]. The basic idea is to divide the full optimization problem into
a set of simpler optimization problems. The simplest problem includes solving for two La-
grange multipliers oy and as, since the Lagrange multipliers must obey the linear relation in
Eq. (6.123). It is to be noted that «; and as are chosen with an heuristic approach from the
set of all Lagrange multiplies. The bounds of the subproblem are visualized in Fig. 6.12. The
idea is to express the Lagrange multiplier a; as a function of oy using the linear constraint
relation. Consequently, the bounds on as can be expressed as

ay  e|L,H] = (6.131)

[maX(O, ozgt) + agt) — (), min(C, oét) + agt))] U = Yo

Furthermore, the second derivative i of the objective function along the linear constraint
direction with respect to as can be calculated:

do? 0 day O do  Oay Oo
— = 132
" da? (80@ + 0oy 8041) (Oag + Oovs 8&1) (6.132)
= K($1,$1)+K(CL‘2,$2) —2K(:L'1,:B2), (6133)
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Figure 6.12 Bounds of the subproblem in sequential minimal optimization with two Lagrange
multipliers.

where o is the objective function from Eq.(6.120). It is to be noted that the objective function
is, under normal circumstances, positive definite. Otherwise, the problem can also be solved
as explained in detail in [242]. The gradient along the search direction can be calculated from
Eq.(6.120) using Eq. (6.126) and, finally, the solution of the unconstrained quadratic problem
is obtained by

yQ(El - Ez)
n

(= o +

(6.134)

where F; = f(x;) — y; is the error for the i-th training sample. Clipping as to the bounds
and substition for a; finally results in:

H if oY > g

2,un
ozgtﬂ) = ag:i) if L < ozgﬂ) <H (6.135)
L if af i) <L
ozgtﬂ) = agt) + Y192 (Oégt) — a§t+1)) . (6-136)

For further details on the heuristics and details of the implementation see [242].
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Chapter 7

Parameter identification

7.1 Introduction

Complex models are often used to accurately simulate real life problems. This requires the
identification of the model parameters, which are often not physically interpretable and, con-
sequently, a direct evaluation from experimental data is not straightforward. In general,
these problems are called inverse problems to the direct problem, in which, for a given pa-
rameter set, the output of the numerical model is computed. These inverse problems are
often ill-posed, which can be due to many different reasons. First of all, the number of data
sets might not be sufficient to determine all parameters or parameters are to be determined
that do not have an influence on the measured output values. A second problem are mea-
surement errors due to noisy data and, last but not least, the problem might be intrinsically
ill-posed, e.g. if several parameter configurations lead to the same set of outputs. In standard
parameter identification procedures, a certain error measure between the numerical and the
experimental data set is defined. This error is then minimized by modification of the material
parameters in the numerical simulation using different models as e.g. gradient based meth-
ods or genetic algorithms. Finally, a set of parameters for the numerical model is obtained
that seems to best simulate the experimental data, which might be e.g. load-displacement
curves, eigenfrequencies or mode shapes. A general overview of different methods for param-
eter identification is given in [243, 244, 245, 246]. Frederiksen determined unknown material
parameters of a numerical model using a least squares approach [247], whereas Soares solved
a similar problem using an inverse parameter identification procedure based on neural net-
works [248]. Araujo determines the material parameters of composite material from dynamic
test [249], [250, 251, 252] identified material parameters of a viscoplastic model using com-
plex test with a non-uniform stress state or cyclic loading and Lefik identified parameters for
an elasto-plastic model of a superconducting cable under cyclic loading [253]. Another field
of application are monitoring problems [254, 255, 256, 257, 258, 259], where often based on
modal data changes with respect to a reference state should be identified.

In general, most parameter identification procedures have the severe disadvantage that no
information about the accuracy of the estimate is given. If a certain parameter has no
influence on the given test data, or two parameters influence the response in the same way,
the experiment should be modified in order to determine these parameters separately. A
simple example is a material with different tensile and compressive strength. Obviously, an
experimental tensile test will only allow the identification of the tensile strength and an
additional compression test is required. For complex material models, the interconnection
between material parameter and corresponding tests required to identify that parameter is
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Algorithm 7.1 Design of experiments using Bayesian neural networks
repeat
Design the experiments (specimen geometry, loading, boundary conditions).
Build up parameterized numerical model and define admissible parameter space.
Perform latin hypercube sampling to create sets of material parameters
using the assumption of uncorrelated, uniformly distributed variables.
Calculate the response for all sets of parameters using the numerical model.
Train the Bayesian neural network using the responses
as inputs and the material parameters as output parameters.
Evaluate the uncertainty of the parameter estimates and their correlation.
until Quality of the parameter estimate is sufficient.
Determine the material parameters using the results from the real experiments
as input to the Bayesian neural network.

not straightforward, and often a trial and error procedure enhanced by engineering knowledge
is performed. In this context, a new methodology is proposed that offers the possibility to
estimate the parameter and the precision of the estimate. As a result, the design of a set of
experiments, which are sufficient to estimate all parameters of the model, is possible a priori,
i.e. having only the numerical model without any experimental data.

At the beginning, the general procedure for the parameter identification method using
Bayesian neural networks is explained. Afterwards, the algorithm is applied to two exam-
ples - a simple material model in 1D with 3 parameters (Young’s modulus, tensile strength
and fracture energy) to demonstrate the influence of certain parameters in the model and,
finally, a mesoscale model of concrete with 6 material parameters.

7.2 General procedure

The general procedure of the proposed parameter identification method using neural networks
can be decomposed into several steps - generation of training data by sampling the material
parameters, computation of the response using these parameters in the numerical model,
Bayesian training of the neural network using the numerical response as input parameters
and the material parameters as outputs and, finally, the interpretation of the trained neural
network model. The method can additionally be used to design a set of experiments that has
to be carried out in order to determine all parameters of a numerical model. The advantage
of the proposed procedure is that it can be carried out a priori having only the numerical
model, i.e. without any experimental data sets. The algorithm for the design of experiments
is summarized in Algorithm 7.1.

7.2.1 Generation of training data for the Bayesian neural network

At first, a parameterized numerical model has to be build up. From engineering knowledge,
the parameter space (i.e. min and max values) for these variables has to be defined. After-
wards, a latin hypercube sampling as discussed in section 5.2.3.2 is applied to sample the
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parameters with a uniform distribution in the prescribed range without any correlation. It is
to be noted that the procedure works also for correlated, non-uniform distributions, but due
to the lack of prior knowledge the proposed joint probability density function is advantageous.
Furthermore, this distribution ensures that the same density of support points is achieved in
the space of admissible parameter configurations. For each set of material parameters, the
response of the numerical model has to be calculated, e.g. displacements, reaction forces or
full load-displacement curves, eigenfrequencies, modeshapes etc. These output parameters
serve as inputs to the neural network, whereas the corresponding set of material parameters
is used as the output of the network. The number of latin hypercube samples has to be
determined a priori. A guideline for the choice might be the example of the sin function in
section 6.4, where the accuracy of the estimates is plotted against the number of samples and
the number of input/outputs.

A second question is the design of the network. In all parameter identification examples
in this work, a network with a single hidden layer has been used, since it can be shown
that any function on a compact support can be approximated with a network with a single
hidden layer up to any prescribed tolerance [260]. The maximum number of neurons in the
hidden layer can be approximated by the condition that the number of free parameters in the
network is approximately equal to the number of training data (number of training samples
multiplied by the number of outputs). Although the Bayesian network naturally performs
a regularization, the computational effort is much larger for large networks. Finally, the
network is trained using the Bayesian procedure described in section 6.3. It is to be noted
that a scaling procedure is applied a priori to the training data in order to have standard
normal distributed input/output variables.

7.2.2 Interpretation of the results from the neural network

One of the key features of Bayesian neural networks is the ability to estimate the noise level
in the data and the quality of the approximation. The quality of the approximation for an
input vector @ can be calculated from Eq. (6.60). It is to be noted that the covariance matrix
Y for the input depends on two summands, the constant covariance of the noise 3z and
the part depending on the Hessian of the posterior distribution A and the Jacobian J(x).
The quality of the approximation is determined by this covariance matrix, from which the
correlation coefficients p using Eq. (5.11) and the standard deviations o; of each output (the
material parameters to be estimated) can be derived:

0i = /(Z5),. (7.1)

If the Bayesian network is used for the design of experiments, the question is, how accurate
can each parameter be determined. The dominating influence has the noise covariance X3
so that, in a first approximation, the standard deviation and the correlation coefficient can
be calculated using only 3. For a more detailed analysis, the covariance matrix can be
averaged over all training samples. It is to be noted that the covariance matrix is calculated
in the normalized space, thus rendering all the parameter variances comparable.
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Figure 7.1 Training samples of the softening material in tension.

7.3 Parameter identification of an artifical softening material in tension

In order to illustrate the method and estimate the influence of certain parameters, a simple
example as illustrated in Fig. 7.1 is used. It can be interpreted as a tension test of a cohesive
element with a pre-peak elastic stiffness E, a tensile strength f.; and a fracture energy G,

which corresponds to the area under the curve:

FEe e <€
o= fo—¢ (7.2)
fueSF T E0  otherwise
Eo = % (73)
G c
G 4 da (7.4)

I 2E
It is to be noted that 5 > 0, otherwise the elastic energy is larger than the total energy, which
is not possible. In Fig. 7.1(a), a load-displacement curve for a single parameter configuration
is plotted. For prescribed values ¢;, the corresponding values o; are used as inputs, whereas
the set of material parameters is used as outputs of a training sample. Performing a latin
hypercube sampling with a prescribed number of samples, a set of training samples is obtained

as illustrated in Fig. 7.1(b).
= [2,4] and

The intervals used for the sampling of the parameters are Ip = [50,150], Iy,
Ig = [2,4]. Different setups, where the number of samples, the number of strains and thus

the number of input points and the position of the strains is varied, are investigated.

7.3.1 Influence of the number of points in the load-displacement curve

In a first test, the influence of the number of input points (strains ¢;) on the parameter
estimation is investigated. A network with 50 neurons in the hidden layer is trained using
100 samples. The number of strains is varied from 3 to 40, where the positions are equally
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Figure 7.2 Influence of the number of input variables equally spaced in the range 0.001-0.2
using 100 samples and 50 neurons in the hiddenlayer.

spaced in the interval [0.001,0.2]. The left border 0.001 has been chosen in order to assure
that at least one input point is in the linear elastic region. An additional test of 100 samples
with the same distribution of the material parameters as the training set has been used to
calculate the mean square error in Fig. 7.2(a). It is observed that the Young’s modulus can
be much better approximated than the tensile strength and the fracture energy. In general, it
can be said that the more input points are used, the better the approximation is. This result
might be surprising, because by increasing the dimension of the input space the number of free
parameters and thus the complexity of the network increases. This is due to the fact that due
to the additional input points additional information about the function to be approximated
is obtained, which leads to a better parameter estimate, although as detailed in section 7.5,
the numerical model must be able to represent the experimental curves. The decrease of the
accuracy from 3 to 5 points and from 10 to 20 points is due to the specific problem. When
using only 3 input points, there is only one point in the elastic domain, whereas the second
and third point are always in the post-peak region. An increase to 5 points decreases the
distance between these points and the second point might be located in the pre-peak or the
post-peak region. Consequently, the second input point is influenced not only by the Young’s
modulus, but also by the other material parameters, which adds a correlation between these
parameters (Assume that only the second point is present as a single input, then there are
multiple parameter sets that give the same output). In general, it is advantageous to decouple
the material parameters, i.e. that one input point influences only a single material parameter.

7.3.2 Influence of position of points in the load-displacement curve

This problem is further analyzed in a second setup, where the position of 5 input points is var-
ied. The results are illustrated in Fig. 7.3. If only strains in the post-peak region (g;¢[0.1,0.2])
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Figure 7.3 Influence of the position of 5 input points in the load-displacement curve using
100 samples and 50 neurons in the hidden layer.

are used, the parameters cannot be identified (the variance of the parameter estimates ap-
proximately equals the variance of the training set), which corresponds to ¢79%¢, ~ 1. If only
strains in the pre-peak region (€;¢[0.001,0.002]) are used, the estimate for the Young’s mod-
ulus is almost exact, but all the other parameters cannot be determined, since they do not
have an influence on the load-displacement curve. This is also realized when looking at the
correlation coefficients of the material parameter estimates illustrated in Fig. 7.4. In the case
of input points only in the post-peak region, all parameters are correlated. This result is not
astonishing, because all parameters influence the points in the post-peak region. When using
points in the post- as well as in the pre-peak region, only the fracture energy and the tensile
strength are correlated, since the Young’s modulus can be solely determined from a point
in the pre-peak region, which does not have an influence on the other parameters. In the

G G
fet fet
E E
E fu« G E fu @ E fu G
(a) Samples in [0.001,0.002] (b) Samples in [0.001,0.2] (¢) Samples in [0.1,0.2]

Figure 7.4 Influence of the position of 5 input points on the correlation of the noise cor-
responding to the identified output parameters using 100 samples and 50 neurons in the
hiddenlayer.
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Figure 7.5 Influence of the number of training samples using 5 input points in the load-
displacement curve equally spaced in the range 0.001-0.2 with 50 neurons in the hidden layer.

third case of points only in the pre-peak region, the parameters are all uncorrelated, but this
information is not of any additional value, since the fracture energy and the tensile strength
cannot be determined at all.

For this simple problem, these results are not astonishing. However, for a complex material
and a complex test with non-uniform stress states, it might not be straightforward to decide,
which points on the load-displacement curve influence a certain parameter. Furthermore, the
method is not limited to a single experiment, but there might also be a set of experiments
with e.g. €1 3 coming from the first experiment and £4 ¢ from a second etc. As a result, this
automatic procedure allows to determine, which parameters can be determined by a specific
set of tests. The influence of adding or removing a single test can also be used to reduce the
number of required tests to a minimum, thus decreasing the cost of the experiments.

7.3.3 Number of training samples

In the last setup, the influence of the number of samples is investigated, which is illustrated in
Fig. 7.5. Obviously, the estimate gets more accurate the more samples are used. In particular,
using only 20 samples are not sufficient for an accurate parameter estimation. However,
increasing the number of samples from 50 to 200 does not have a significant influence on the
accuracy of the material parameter estimates, and it can be concluded that in this case with
only 3 parameters to estimate 50-100 samples are sufficient. A more efficient possibility to
improve the accuracy of the estimates is to use more points on the load-displacement curve
as inputs.
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Figure 7.6 Damage variable w at the final load step.

7.4 Mesoscale model of concrete

The final application of the parameter identification procedure is performed for a mesoscale
model of concrete. In this case, the determination of the material parameters is complicated
by the fact that, in general, only macroscopic experiments are available, which are possibly
influenced by several mesoscale parameters in a similar way, e.g. the tensile strength of the
matrix and the interfacial transition zone might influence in a similar way the macroscopic
tensile strength. The aim of this example is not to determine all material parameters of
the mesoscale model, but to demonstrate the applicability of the proposed parameter iden-
tification procedure. For that reason, the compressive strength of the matrix is included as
a parameter to be determined, although it seems to be obvious that for the tensile test the
determination of that parameter is rather erroneous.

7.4.1 Numerical model

The test used to identify the material parameters is a uniaxial tensile test. The specimen
dimension was 25x25mm for the small model and 50x50mm for the large model as illustrated
in Fig. 7.6(a). Lateral displacements at the top and bottom layer are not restricted and a
direct displacement control is applied to obtain the load-displacement curve.

The mesoscale model consists of three components - aggregate, mortar matrix and the inter-
facial transition zone. Details of the geometry creation, the material models and the solution
procedure can be found in chapter 4. Aggregates between 0.5 and 8mm with a total mass frac-
tion of 0.52 are simulated. Smaller aggregates than 0.5mm where assumed to be homogenized
in the matrix material, which finally gives a mass fraction of 0.7 for the aggregates.

The material parameters for the mesoscale model are the Young’s modulus £* and the Pois-
son’s ratio v* of the aggregate, the Young’s modulus £, Poisson’s ratio ™, uniaxial tensile
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Table 7.1 Range of material parameters from engineering experience.

parameter ~ E™ G™ o s G, .
o] ]l ]l Ew] me] el
min 20000 0.05 2 20 0.0125 1.125
max 40000  0.15 4 40 0.0375  3.375

strength f, uniaxial and biaxial compressive strength f7!, f7', and fracture energy G™ of the
mortar matrix and the penalty stiffness K ;, tensile strength f?,, mixture parameter o’ and frac-
ture energy G"* of the cohesive zone model representing the interface. The Young’s modulus
E“ and the Poisson’s ratio v of the aggregates are assumed to be E* = 54 - 103$, v =10.2
which might correspond to a granite. These parameters can be directly measured for the pure
aggregate. The biaxial compressive strength f7, was assumed to be related to the uniaxial
compressive strength by a factor of 1.16 [261]. Furthermore, a Poisson’s ratio v, = 0.2 was
prescribed. The penalty stiffness K;) of the interface is only a numerical parameter to avoid
mutual penetration of the crack faces in compression and has been set to KI’; =25-103 m]:; 5.
Shear and normal crack opening are assumed to have the same influence in the interface im-
plying o' = 1. The remaining parameters E™, f,, f™ G™, f! and G* should be determined
by the parameter identification procedure described in the previous sections using the tensile
test. It seems to be obvious that a tensile test is not well suited to determine the material
parameters describing the compressive failure, but this will be one of the results. For other
tests/other material laws it might not be straightforward to decide, if a certain test procedure

is adequate to determine certain material parameters.

Figure 7.6(b) shows the damage variable w at the final load step for a certain parameter set.
Crack bridging can be clearly identified in the figure, where two parallel cracks have develop
and finally join into a single crack.

7.4.2 Sensitivity analysis

In a first approach, the sensitivity of the load-displacement curve of the tensile test with
respect to the material parameters is investigated. In order to describe the influence of
the material parameters on the load-displacement curve, the load at a distinct number of
prescribed displacement values is extracted. All material parameters, apart from the one being
investigated, are set to expected values (mean of the interval given in Table 7.1), whereas the
remaining parameter is varied within the interval. These intervals have to be chosen according
to engineering experience. Figure 7.7 shows the stress-strain curve (load-displacement curve
normalized by thickness and length) and the stress at given strains e; = 0.02%o, €2 = 1.35%,
g3 = 2.67%0 and 4 = 4.00%o for the variation of a single material parameter, where £, has been
chosen to be located inside the elastic region, 4 corresponds to the maximum displacement
applied and e, £3 are distributed equally spaced in between. Note the different scaling of the
x-axis for Fig. 7.7(a). Obviously, the influence of the Young’s modulus E™ of the matrix is
restricted to the initial elastic regime described by €, whereas the stress at the other strain
levels is almost independent of E™. In fact, the only material parameter that influences the
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Figure 7.7 Sensitivity of the stress-strain curve with respect to the variation of a single
material parameter.
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stress at strain level €; is the Young’s modulus E™. The influence of the fracture energy of
the matrix G™ and the fracture energy of the interface G* seems to be similar, although the
variation of the fracture energy G primarily changes the first part of the stress-strain curve
(at strain level e, the curves approach each other again), whereas the fracture energy G™
influences the full range of the stress-strain curve. In a parameter identification procedure
performed manually by adjusting the parameters it is not straightforward to decide, which
parameter has to be adjusted. The same holds for the tensile strength of the matrix f7,
which has a similar influence.

An interesting feature show the stress-strain curves in Fig. 7.7(c), where at g4 two groups
with an almost identical stress level in each group can be identified. This is due to the fact
that in the sensitivity analysis a constant aggregate distribution (the aggregates are for all
samples at the same position) is used. However, the resulting crack path depends on the
material parameters, and, by varying f7' only slightly, the crack path might change and a
strong variation of the stress-strain curve and, consequently, a discontinuous influence on the
stress at eo,e3,e4 is observed. This phenomenon can be avoided by either using for each
parameter set a different aggregate distribution, which actually corresponds to adding noise
due to the aggregate distribution to all samples, or even better by increasing the size of the

model to reduce the influence of a single aggregate position.

The compressive strength of the matrix fJ has, as expected for a tensile test, almost no
influence on the stress-strain curve. Only close to the final crack state, where due to crack
bridging the principal components of the stress tensor are not aligned with the axis of the
applied tensile load, a negligible influence is recognizeable.

The simulations with a tensile strength of the interface f¢, larger than the tensile strength of
the matrix f}' did not converge. This is due to the fact that in this case the interface elements
representing the interfacial transition zone (ITZ) do not open and the crack has to propagate
around the aggregates in the matrix. The I'TZ is a weak layer around the aggregates with a
reduced strength compared to the matrix. Consequently, these parameter configurations can
be excluded a priori.

7.4.3 Generation of training data

From the sensitivity analysis in the previous section it is obvious that a parameter identifica-
tion procedure by hand is difficult and no information about the reliability of the determined
parameter set is obtained. Consequently, an automatic procedure is required. A parameter
identification procedure based on Bayesian neural networks is a promising tool to circumvent
the above mentioned problems. From experience, a certain range of the parameters can be
specified. For the mesoscale example, this parameter range is given in Table 7.1.

Assuming a uniform distribution over the range with no correlations between the material
parameters, a latin hypercube sampling can be used to obtain a training set with a certain
number of samples. In the example discussed here, a latin hypercube sampling with 500
samples has been used, where the first samples where used for training and the remaining
samples for testing. It is not required to use a uniform distribution, but this assures the
same density of data points in the whole parameter space. Four different configurations

Jorg F. Unger PhD-thesis



Chapter 7 Parameter identification 159

where investigated. First of all, a large and a small model with an edge length of 50mm and
25mm was used. In the large model, the influence of a single aggregate is not as prominent
as in the small model. For each of these models, two strategies for the generation of the
mesoscale models was used. In the first approach, the geometry of the mesoscale model is
identical for all samples, and only the material parameters are varied according to the latin
hypercube sampling. In the second approach, a different mesostructure was used for each set
of material parameters. This has the advantage of including the stochastic character of the
mesostructure in the simulation, which actually corresponds to adding a certain noise level
due to the stochastic aggregate distribution to the parameter identification procedure.

For all these training samples, each with a different set of parameters, the numerical simulation
is performed. The stress-strain curves can be extracted and, similar, the stress at the strain
levels €,—1. . A Bayesian neural network is created with the stress level at strain levels ;-1 y
as input (N inputs) and the material parameters as outputs - in this example E™, f%,, f%
G™, fi, and G'. The number and location of ¢; is userdefined and should be chosen in order
to represent the most prominent features of the experimental curve. If the stress level in the
stress-strain curve is not uniquely defined by the strain level (e.g. problems with a snap back),
the strain value can be replaced by a parameter describing the integral along the curve from
the origin.

7.4.4 Network architecture and training

The network architecture should be defined by the user. In these examples, networks with
a single hidden layer and sigmoidal activation functions and an output layer with linear ac-
tivation functions are used. Theoretically, the number of neurons can be chosen to be large,
since as shown in the previous examples, the Bayesian approach offers an appropriate regu-
larization to avoid overfitting. However, the computational time for large networks increases
(the function/gradient evaluations take longer and, additionally, the number of steps in the
conjugate gradient approach increases). Consequently, it is beneficial to limit the number of
neurons. A practical approach is to determine the number of neurons such as to obtain as
much free parameters in the network (weights, biases, hyperparameters) as training informa-
tion (number of training samples multiplied by number of outputs). In the current example,
a hidden layer with 30 neurons has been used.

The training of the Bayesian neural network is performed using the procedure described in
section 6.3 with an iterative procedure for the update of the weights and biases on the on
hand, and the hyperparameters on the other hand.

7.4.5 Influence of the number of training samples

First of all, the influence of the number of training samples is evaluated. In Fig. 7.8 the
scaled mean square error (mse divided by the mean of the material parameters to obtain a
comparable magnitude) and the noise variances o; are shown for a varying number of training
samples using the large model with a varying aggregate distribution and 10 points on the load-
displacement curve equally spaced in the interval [0.0005, 0.1], which corresponds to maximum
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Figure 7.8 Influence of the number of samples on the results using the large model with
a varying aggregate distribution for each set of parameters and 10 input points on the load-
displacement curve.
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strains between 2% for the large and 4% for the small model. Tt is realized that by increasing
the number of samples, only a minor increase of the accuracy it obtained, which indicates
that the calculations with 200 samples used in the following investigations are sufficient for
this problem. It is further observed that the Young’s modulus of the matrix can be accurately
determined, which coincides with expectations. The identification of the compressive strength
is almost impossible, indicated by a scaled standard deviation of the noise being almost one.
Additionally, the interfacial tensile strength can also be reasonably well determined. From
the correlation coefficients it is further evident that the tensile strength of the matrix and
the tensile strength of the interface are negatively correlated. From a practical perspective,
this can be explained by their similar influence on the load-displacement curve - if one tensile
strength is increased, the other one has to be decreased in order to obtain the same response.
Fracture energy of matrix and interfacial transition zone are also negatively correlated, since,
for a single load-displacement curve, the overall energy dissipated in the numerical model has
to be constant.

7.4.6 Influence of the model geometry

In the second investigation, the influence of the mesomodel itself is analyzed. Figure 7.9
illustrates the results for the four investigated models with a constant/varying aggregate
distribution per training sample and a small /large model.

The Young’s modulus can be determined for the models with a constant aggregate distribution
much more accurate compared to the models with a varying aggregate distribution for each
training sample. This is explained by the fact that the stochastic aggregate distribution leads
to different homogenized initial stiffnesses and, consequently, additional noise is added to the
training data. This additional noise is automatically identified in the parameter identification
procedure. Similar conclusions can be drawn for all other parameters. However from a
practical point of view, the simulation with a varying aggregate distribution is more realistic,
since in a numerical simulation, the aggregate distribution can not be fixed. If e.g. the
geometry is only slightly varied to simulate another model, a different aggregate distribution
is obtained. As a result, the parameter estimation procedure with the varying aggregate
configuration is preferable.

A comparison between the small and the large models shows that, in general, the small model
is more accurate than the large model. This is due to the fact that, as a result of the constant
maximum displacement applied on the top of the specimen, the maximum strain is larger
and thus the softening branch is much more developed in the small model. Comparing e.g.
in the sensitivity analysis in Fig. 7.7 the influence of the fracture energy of the matrix and
the interface, it is obvious that in the strain range 0 — 0.2%¢ as used in the large model both
parameters have the same influence (which is also indicated by the strong negative correlation
illustrated in Fig. 7.9), whereas only in the strain range 0.2 — 0.4%0 the different influence
of both parameters becomes prominent and, consequently, the correlation in the parameter
estimate is reduced.
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gate distribution per sample) using 200 samples and 10 input points on the load-displacement
curve.
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samples and the large model with a varying aggregate distribution for each set of parameters.
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Figure 7.11 Cumulated distribution function of the error in the parameter estimate divided
by the confidence interval using the large model with a variable aggregate distribution, 200
training samples and 10 points on the load-displacement curve for the test samples.

7.4.7 Influence of the number of points in the load-displacement curve

In a last setup, the number of points on the load-displacement curve and, consequently, the
number of input points of the neural network is investigated. Comparing the results illustrated
in Fig. 7.10 with the previous example, where the number training samples has been increased,
it can be stated that the accuracy of the parameter estimates can be drastically increased by
considering more points on the load-displacement curve, whereas the increase of the number
of training samples has only a minor role. This is also in accordance with the example of
the sin-function in section 6.4, where similar results could be obtained. It is further to be
noted that only the accuracy of the parameter estimates for the tensile strength of the matrix
and the interface as well as the fracture energy of the interface could be increased by an
increased number of input points, whereas almost no influence on the Young’s modulus and
the fracture energy of the matrix is observed. This is certainly due to the fact that, by
using more points, the region around the peak of the load-displacement curve is much better
represented in the training samples of the network and, consequently, the approximation
accuracy increases. Additionally, this hypothesis is supported by a closer examination of the
correlation coefficients between tensile strength of the matrix and Young’s modulus. For the
setup with only four points on the load-displacement curve, a high negative correlation is
obtained, whereas in the other limit using 40 input points the correlation is negligible. This
is due to the fact that in a setting with 4 points, the first point is in the elastic region and
the second point is already far behind the peak point and, consequently, the peak point is
not accurately represented in the model. Using more input points, the region around the
peak point is better resolved and the accuracy of the parameter estimates that influence this
region can be increased.

7.4.8 Verification of confidence interval

In order to verify the methodology, the network response is calculated for the test set (the
remaining samples of the 500 latin hypercube samples, which have not been used for training
the Bayesian neural network). The cumulated density function cdf of the error between
the approximated parameter and the real value divided by the confidence interval for the
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Figure 7.12 Comparison of predicted parameter distribution with the correct values for the
large mesh with variable aggregate distribution using the first 9 test samples.

approximation is given exemplary for the large model with a variable aggregate distribution
in Fig. 7.11. It is verified that this function is close to the normalized Gaussian distribution
and demonstrates that the approximation of the response with a Gaussian distribution is
justified.

The exact material parameters of 9 test samples are compared to the approximated parameters
with their standard deviation in Fig. 7.12 for the setup with 200 samples, a variable aggregate
distribution and 40 input points on the load-displacement curve. Obviously, the estimate for
the Young’s modulus is very accurate. For the tensile strength of the matrix and the interface,
the error is in the range of 20% which is, compared to the errors in experimental verifications,
still acceptable. It is further to be noted that in the case of an overestimation of the tensile
strength of the interface, the corresponding tensile strength of the matrix is underestimated,
which proves their correlation and the difficulty to determine these parameters separately. The
estimate for the compressive strength of the matrix is just the mean of the training data, and
the estimate is constant regardless of the input parameters. This is an advantage compared
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Figure 7.13 Problem of extrapolation with the Bayesian neural network, if the numerical
model is not able to fit the experimental data.

to standard neural networks used for parameter identification, since there, the approximation
is likely to oscillate and a regularization of a single output is difficult to realize. In order
to improve the accuracy of the parameter identification for this example, additional tests
could be added, e.g. a compression test, in order to determine the compressive strength and
increase the accuracy of the other parameter estimates.

7.5 Limitations of the method

If the Bayesian neural network is used for the determination of material parameters from an
experimental setup, two conditions have to be verified. First of all, the identified parameters
should be in the range of the training intervals. Otherwise, the procedure should be repeated
with an adapted interval for the training data. A second point, even more important, is
the fact that the numerical model must be capable of reproducing the experimental data
set, i.e. there must be at least one set of parameters that can represent the experimental
data set. Otherwise, an extrapolation with the neural network approximation is obtained.
This is illustrated in Fig. 7.13. Assume a linear elastic model with a single parameter E to
be determined. Performing the described procedure, the parameter F is sampled within a
prescribed range and the corresponding load-displacement curves are obtained. In Fig. 7.13,
the curves are exemplarily plotted for the parameters F;, F, and FE3. Defining two strain
states, at which the load-displacement curve is to be evaluated, gives the training data as
illustrated in Fig. 7.13(b). All the points of the training data are located on a straight line,
which implies that o} /o’ is a constant. Assume furthermore that an experimental curve
with a bilinear distribution is given as illustrated in Fig. 7.13(a). The corresponding point
in Fig. 7.13(b) is not located on the straight line. Since training data is only available on
this straight line, an extrapolation has to be performed, i.e. the point of interest is outside
the interval included in the training data. Extrapolation with neural networks has always
to be handled with precaution and should be avoided as often as possible. In the Rayesian
framework, the experience of the author is that the confidence interval of the parameter
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estimate dramatically increases, since the eigenvalues of the Hessian matrix approach zero
and the second term in Eq. (6.60) becomes large. In this context, it is therefore recommended
to start with a complex numerical model, and then remove the model parameters that have

no influence.
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Chapter 8

Scale coupling and simulation of material behavior via
metamodels

8.1 Introduction

Simulations on small scales allow for the consideration of physical phenomena, which can only
be incorporated in a macroscale simulation in a smeared approach. However, this approach
also increases the computational effort dramatically. In order to apply these models to real
structures, two approaches are investigated in this work. In the first approach, a complex
macroscopic material model can be used, whose parameters are determined by mesoscale
simulations using the parameter identification procedure described in the previous chapter.
Another possibility are multiscale simulations, where two scales are used simultaneously in
a single model as e.g. in [262, 263], where, if a certain criterion is fulfilled, an adaptive
refinement to lower scales is performed. Other authors perform simulations in parallel with
models on both scales [264, 265, 266], which a transfer of information between these models.

The parallel computation on both scales is very time consuming, since, for each evaluation of
stresses and strains for a macroscopic point, a full mesoscale simulation has to be performed.
An alternative, presented in this chapter, is the approximation of the constitutive behavior
on the mesoscale by a neural network. From a certain number of mesoscale experiments, the
mesoscale model is approximated by a neural network. By using homogenization techniques,
the constitutive relation for a macroscopic point is obtained. In general, the complexity of the
required neural network is determined during the training such that the minimal network is
used that can accurately represent the training data. Special attention is turned to the inclu-
sion of a softening response of the material. Close to the peak load, localization and damage
accumulation occurs in certain parts of the structure, whereas other parts start to unload.
This unloading has to be modeled within the framework of the neural network. Furthermore,
the size of the localization zone is, from an experimental point of view, independent of the
mesh size, which should accurately be represented by the constitutive model. A further ad-
vantage of the method is that the training data can directly be extracted from experimental
data without the need for numerical mesoscale simulations.

The first application of neural networks to material modeling was presented in [267, 268],
where the material relation between strains and stresses of concrete under monotonic biaxial
loading under plane stress assumptions was approximated by a neural network. In [269],
the return mapping procedure in a plasticity formulation was replaced by a neural network
which reduced the computational time substantially. Furukawa used neural networks to
model a viscoplastic material [270], where the network was used to approximate the evolution
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of viscoplastic strain and history variables. Lefik demonstrated the application of neural
networks to elasto-plastic material models and discussed possibilities to reduce the influence
of the size of the strain increment [271]. In [272, 273], constitutive models of geomaterials
using neural networks are obtained from experimental tests with nonuniform stress states.
An efficient tool in this concept is autoprogressive training, where the full constitutive model
is learned in an iterative procedure by comparison between output of the neural network and
training data [274]. In [275], the nonlinear response of periodic unit cells is used to train a
network that can model the homogenized response on the macroscale. Furthermore, Hashash
used a neural network to approximate viscoelastic material behavior [276].

In general, the curse of constitutive modeling with neural networks is the fact that the com-
plexity of the function space is difficult to control and certain restrictions are difficult to fulfill.
A straightforward example is the modeling of the yield surface in a plasticity formulation us-
ing neural networks, which has to be a convex function in order to obtain a unique solution.
This convexity property is difficult to enforce with a neural network. Another crucial point
is mesh and step length independence of the results. For a different load step size or a finer
mesh, the results should be almost equal. The latter is especially important, if softening is
included in the material response, since the localization zone is often strongly related to the
mesh size.

Many of the authors applying neural networks for the approximation of the response of a
material model use the strain tensor €* as input and approximate the corresponding stresses
o" [267, 268]. For history dependent material behavior, additional variables as e.g. the stress
o1 and the strain tensor of previous equilibrium states e*~! = e* — Ae* are considered
as additional input parameters. The number of previous equilibrium states considered cor-
responds to the complexity of the history dependent material response. The drawback of
these models is the dependence of the neural network approximation on the strain increment.
When the material model is used in a complex implicit Newton-Raphson scheme to solve
for the macroscale response, the strain increment is controlled by the applied load increment
which has to be adapted according to the training interval. In order to assure a robust so-
lution, the network must be trained for a large range of Ae*. Another important aspect is
the number of training samples required to obtain a network with accurate generalization
behavior. Using only one history module which corresponds to the stresses and strains of the
previous equilibrium state requires 3d input parameters, where d is the dimension of the stress
vector (€"71 0" ! e"). Since the number of required training samples grows exponentially
with the dimension of the input vector, already a plane strain model with 5 training samples
per dimension requires 533 = 1953125 training samples.

In this work, a different approach is proposed. The history dependent material response is
considered by additional history variables, which are related to the maximum strain ever
reached for a certain point in the loading process. This definition is based on the assumption
that only the maximum strain itself - and not the path - is important for the material response.

The proposed algorithm can be decomposed into two stages. The first stage includes the
calculation of the current history parameter as a function of the new total strain using a
metamodel, which describes the loading and unloading behavior. This metamodel can be
interpreted as the equivalent of a yield function in an elasto-plastic calculation. It is modeled
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by a support vector machine, since the training samples only include the binary information
loading/unloading represented by +1. In a second stage, the stresses are calculated as a
function of the current strain and the current history variables using a multilayer perceptron.
The individual steps are discussed in the next section separately.

8.2 Generation of training data from mesoscale simulations

The training data for the approximation of the material response is extracted by homoge-
nization from results of numerical simulations of models with a high degree of detail and,
consequently, a high computational effort - e.g. a mesomodel whose response is included
as a homogenized material formulation in a macroscopic simulation. In the following, the
detailed model is named the mesoscale model, whereas the model, which incorporates the de-
tailed model as a material formulation on the integration point level, is named the macroscale
model.

In order to generate the training data, a certain number of mesoscale simulations under
different loading conditions is performed. Since softening is included in the mesoscale model,
a displacement controlled approach is used. The input to the network is the homogenized
strain, which is related to the applied displacements, whereas the output is the homogenized
stress, which is related to the reaction forces on the boundary of the model.

For standard applications using neural networks, it is in general recommended to select the
training data randomly, e.g. by Monte Carlo or Latin Hypercube sampling. Due to numerical
issues (e.g. convergence of the Newton-Raphson iteration), the final load/displacement cannot
be applied to the mesoscale model in a single step, but must be decomposed into several
increments. For all these increments an equilibrium solution of the system is found, which
can be used as training data for the network. In order to reduce the number of mesoscale
simulations to a minimum, a DOE scheme (design of experiments) is used. This is illustrated
for problems with one and two strain components in Fig. 8.1. Note that in a standard solid
mechanics formulation only 1,3,4 and 6 strain components are possible. The strains can in a
similar way be interpreted as the normal and tangential crack opening in a formulation for
an interface element, but in order to make the notation general they are denoted as strain
components €;. The example of interface elements is only added for illustration purposes,
since, for more than two strain components, the graphical representation is difficult, and for
one strain component the procedure reduces to loading up to a certain maximum strain "
and from there increase/decrease of the strain to obtain . For the interface formulation,
the inputs to the network are the total strains £} and 5 with the corresponding history
variables e and #. In a first step, the range of the maximum strain r", the number of angles
#" and the number n" of subdivisions of the radius r" is defined. For each angle ¢", the
applied displacement is increased with a constant increment until i = n”:

h i .h h
( 2 ) B ( iihii?ézh; ) i=1.n" (8.1)

At this stage, the inelastic energy W€l (g eh) stored in the system, which is the total
energy subtracted by the elastic energy, is determined. From this state, a second loading step
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Figure 8.1 Generation of training samples for a formulation with a) one and b) two strain
components

is performed in a similar way. The angles ¢, the radius 7 and the number of subdivisions

n® are prescribed

tot h Y EAN A

(4)-(4)-(2mie) oo
and the inelastic energy W (gt ") is determined, where the first parameter is the current
strain state and the second parameter corresponds to the state of the load applied in the
previous loading regime. If, for a strain state (e°!,e"), the inelastic energy in the system
increases compared to the history state (e”,€"), this direction, represented by the variables
r®, ¢, is interpreted as loading. Consequently, this direction is not followed any further,
because a further step in this direction only further increases the inelastic energy and is
therefore also in loading. As a result, the number of required mesoscale simulations is reduced.
In higher dimensional spaces, the principal components and the rotation angles are prescribed
with its maximum values and the number of subdivisions. For a plane strain analysis, this
results in two principal strains and one rotation angle, whereas for a full 3D analysis three
principal strains and three Euler angles are considered. These strains are transformed to
kinematic homogeneous boundary conditions of the mesoscale model [277]. This is illustrated
for a plane strain situation in Fig. 8.2. Additional effort is required in the case of elastic
loading in the mesoscale model, corresponding to Winel (!0t gh) = WWinel(gh eh) = (. In that
case, the history loading state has no influence on the response

o(c,eh) = (e, ) (el eh): W(e ) =0 (83)

A straightforward approach would be to interpret this as unloading, but this procedure has
the disadvantage that, at the transition from the unloading to the loading regime, the history
strain is discontinuous (in the elastic regime it is zero and in the inelastic regime it corresponds
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Figure 8.2 Kinematic homogeneous boundary conditions for different prescribed homoge-
nized strain tensors under plane strain conditions

to the current total strain). As a consequence, the metamodel approximating the stress state
as a function of the strain and history strain will also produce a discontinuous stress state,
which finally poses problems in the global iteration using a Newton-Raphson scheme.

In the following section it is demonstrated that a modified criterion is advantageous. In the
elastic regime, the norm of the strain tensor is used as a loading criterion. It is assumed
that loading takes place if the norm of the strain tensor increases. The overall algorithm
is illustrated in Fig. 8.3. The corresponding training data set is schematically illustrated
in Fig. 8.4 with n* = n® = 6 for a 1D-tension test with Mises plasticity. Based on these
training data, a loading/unloading metamodel with the input parameters (!, e") and the
output loading(f* = 1) or unloading(f* = —1) is created. Support vector machines have been
used for the approximation, since they can efficiently handle binary data.

A second network - the stress/strain network - approximates for all points (', e"), which
are either in the unloading regime (f* = —1) or in the elastic domain, the corresponding
stress tensor

o= f7(e" ). (8.4)
Multilayer perceptrons as well as radial basis functions have been investigated as network

architectures, but slightly better results with respect to the accuracy and the smoothness of
the approximation could be obtained with the multilayer perceptron, which was finally used

in this work.
in( tot ~h no
—‘yes W (et e") > tol '7

{Wﬁ“(atot,sw>wz‘n<eh,eh>} { I < ) J

Figure 8.3 Calculation of the loading function
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Figure 8.4 Training data for the loading/unloading metamodel

Softening is included in the mesomodel and, as a result, the homogenized response is a
function of the specimen dimension. This can be illustrated for a simple 1D tension test. The
zone of localization and, consequently, the dissipated energy is independent of the size of the
specimen. As a result, the homogenized dissipated energy per length is linearly related to the
length of the test specimen. As a result, the dimension of the specimen has to be included
as additional parameter in the training process for both networks. The dependence on the
specimen dimension is always considered in the following sections, but sometimes omitted in
the notation to improve the clarity of the formulas.

The maximum number of mesoscale simulations N7 is given by
NT = (n"n®)?n!, (8.5)

where d is the number of strain components considered in the mesomodel and n' is the
number of investigated specimen dimensions. The results of these mesoscale simulations are
used to train the two metamodels. The loading/unloading metamodel is trained with input
parameters (e, e") and the output £1 according to Fig. 8.3. The parameter R in Eq. (6.125),
which describes the influence radius of the kernel functions, is determined a priori in order
to ensure an overlapping of the support between neighboring support points. The input is
scaled to the interval [—1,+1] and the radius is set to R = 1/3.

8.3 Stress calculation for a material point on the macroscale

In a standard finite element software, a trial strain and the history variables of the last
equilibrium set are given as inputs to the material formulation, which determines the new
stress state and the new history variables corresponding to this stress state. In this approach,
a two phase procedure is proposed. In a first step, the new history variables are determined
using the loading/unloading metamodel, so that the strain state (!, e") is in the unloading
domain (or on the border between loading and unloading), which is comparable to the return
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Figure 8.5 Approximation of the loading function using the support vector machine

mapping procedure in a plasticity formulation. In a second step, using this new history
variables and the total strain state, the stresses are calculated from the stress/strain network.

8.3.1 Loading/Unloading condition

The approximation of the loading function for a 1D problem using support vector machines is
illustrated in Fig. 8.5. The isolines for f! = {—2,—1,0,1,2} are highlighted. From a theoret-
ical point of view, the border between loading and unloading for this simple example should
be described by €' = €". Due to the definition of loading/unloading for the training samples,
this line almost coincides with the isoline f' = —1, but for numerical reasons there might
be slight variations. Consequently, the border between loading and unloading is described
by an isoline f' = ', where b’ is a numerical parameter that is close to minus one as illus-
trated in Fig. 8.4. In the current implementation, a value of o' = —0.95 has been used. The
general procedure for the determination of the history parameter €” is illustrated in Fig. 8.6.
Starting at the strain state (swt(k) sh(kfl)), where e""*™" corresponds to the history variable
of the previous equilibrium iteration, the loading/unloading model is evaluated (point 1). If
fl(st"t(k),eh(k_l)) — b' < 0, the strain state is considered to be in the unloading regime, which
implies that the history variable e = e is not modified within this iteration step.
Otherwise, a mapping back to an unloading state by modifications of the history variable is
performed

Y

AEtot(k) _ stot(k) _ &.tot(k*l) .
A et o &)
(k)
(k) (k—1) . AstOt *)
€?m'al = Eh + s-min (1, kﬁ) AEh . (88)
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Figure 8.6 Modification procedure for the history variable using the loading/unloading
metamodel

The variable ||Ae™™ || corresponds to the norm of the strain increment of the total strain
in the current iteration step (k). The increment of the history variable Ae"™ is defined as
the difference between the current total strain and the last history state. Consequently, this
definition corresponds to the assumption that in the case of loading the history state is moved
in the direction of the total strain state until the loading function is equal to ¢. In the same
way, the equivalent strain increment of the history variable || A" || is defined. The history
strain " for the current iteration is calculated according to Eq. (8.8). The parameter k
controls the maximum ratio between the equivalent total strain increment and the equivalent
history strain increment. This restriction is used to ensure that small increments of the
total strain only lead to small increments of the history strain. The problem is illustrated
in Fig. 8.6(b), where in contrast to Fig. 8.6(a), all the elastic solutions are interpreted as
unloading. The resulting theoretical border between loading and unloading is plotted in
Fig. 8.6(b). Starting from the virgin material, the total strain is increased up to point
1, whereas the history strain remains zero. Due to the approximation with Gaussian kernel
functions, the numerically obtained border between loading and unloading is curved. Without
considering the factor k, a small increment of the total strain would lead to an increment
of the history strain of approximately £'°. This results in convergence problems for the
numerical simulation on the macroscale, since a discontinuous relation between total strain
and history strain results in a discontinuous relation between total strain and total stress
and, consequently, the global solution with a line search in the nonlinear Newton-Raphson
iteration does not converge.

The factor s represents the distance to the border between loading and unloading. Its deter-
mination is illustrated in Fig. 8.7. The approximation of the function f! between the function

. . . . k k
values -1 and +1 is almost linear. Furthermore, it is assumed that for e = "™ corre-
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Figure 8.7 Calculation of the scaling factor s

sponding to s = 1, the response of the loading/unloading metamodel is almost -1. According

R(k—1) )

to the theorem of intersecting lines (with s = 0 for & , it follows:

fie™ ) — (<) _ ¥ (-1)
: = (8.9)

Rearranging the terms in Eq. (8.9) gives

B fl(stot(k)’ Eh(’c*)) _ 310
5= fl(etot(k)yeh(kfl))_l_l' (8.10)

In the next step, the loading function is evaluated at the trial state (2). If (g™ eh" y—p! <
0, which means the trial state is in the unloading region, a Newton method is applied to

exactly find the point fl(st"t(k),aiﬁf;l) — b' = 0, where the trial state is used as starting
h(k)

trial*

point. Otherwise, the current history state e is assigned the trial state The general

procedure is illustrated in Fig. 8.8.

8.3.2 Stress calculation

Once the correct history variable e for iteration ¢ has been determined, the stresses can
be approximated by the stress/strain network:

o= (e "), (8.11)

Note that for fi(e™® ™) — p! > 0 the sample point is in general slightly outside the
region of training samples for the stress/strain network. This is due to the fact that for the
training of the stress/strain network only training samples, which are either in the unloading
regime or in the elastic domain are considered, which is illustrated in Fig. 8.9. Note that
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Figure 8.8 General scheme for the determination of eh”

in contrast to the loading/unloading metamodel in Fig. 8.9 all points in the elastic domain
are considered. During the first investigation of the method, this restriction to training
samples in the unloading or in the elastic regime was not used. Instead of deleting these
samples (marked with squares in Fig. 8.9), the response was set to f7 (e g™ which is
always in the unloading regime. This can be compared e.g. to plasticity theory, where the
current state of total strain and history variables violates the yield condition and a return
mapping is performed to modify the history variables until the yield condition is satisfied.
Instead of performing the modification of the history variable, the approach is to set the
stress of the training sample to the stress that would be obtained after the adaptation of
the history variable is performed. However, this approach results in an approximation with a
discontinuous derivative. Assume for a 1D problem with perfect plasticity a strain state in the
loading regime. For decreasing '™ the stress remains constant as long as f'—b' > 0. When
entering the unloading region, a kink in the curve is obtained. Since only a limited number
of training samples is used, this kink is smoothed by the neural network approximation and
the overall approximation accuracy is reduced, especially in the region gtot™ = gh™ 1
the elastic domain, there is no kink, since the stress response is independent of the history
variable. Consequently, only the samples marked with a square in Fig. 8.9 are not considered
as training samples for the stress/strain network.

?

In general, a full Newton-Raphson iteration is used on the macroscale and an update of the
history variables €” is performed each time an equilibrium state is reached. The stiffness for
a material point is calculated by an analytical differentiation of the metamodel.

8.4 Equivalent length

As pointed out in the introduction, the size of the mesomodel plays a crucial role in the
homogenized response when softening is considered. Consequently, the equivalent length has
been considered as additional input parameter of the loading/unloading and the stress/strain
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Figure 8.9 Training samples used for the stress/strain network

metamodels. For the mesoscale model, [, corresponds to the size of the test specimen,
whereas for an integration point on the macroscale [°? is determined as

1 1D
17 = { /A 2D (8.12)
Vvel 3D,

where [, A¢. V¢ are the length, area and volume of the corresponding finite element. Ex-
trapolation of data using neural networks is problematic. This requires that the size of any
finite element in the macroscale model is contained in the interval of the smallest and the
largest mesoscale model.

8.5 Numerical implementation

8.5.1 Stiffness calculation

The implementation of a the presented neural network model as a material formulation into
any existing FE-code is straightforward [276]. The stress calculation can be performed as
illustrated above. For the calculation of the stiffness matrices, two possibilities can be distin-
guished. In a first approach, the stiffness is calculated via differences. This requires D + 1
evaluations of the network for forward/backward differences or 2D evaluations for central
differences, where D is the dimension of the stiffness matrix. However, this approach has the
drawback to introduce the stepsize as an additional parameter. A second possibility, used
in this work, is the direct differentiation of the network response with respect to the input
parameters. The algorithm can be performed with a backpropagation scheme, similar to the
calculation of the gradient of the objective function with respect to the weights.
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superposition —
metamodel --- .~

Figure 8.10 Superposition with linear elastic material law

8.5.2 Superposition with linear function

In general, it can be assumed that for a body without any applied loads, all strains and stresses
vanish. Using neural networks in a material formulation, where the output o corresponds to
stresses and the input € to strains (or displacement differences for an interface formulation),
results in the problem that, even if there is a training point which fulfills this condition,
the metamodel does not necessarily yield vanishing outputs for inputs € = 0. In order to
represent this initial equilibrium state correctly, a superposition with a linear function is
used. This corresponds to the assumption that any mesomodel can be represented close to
the origin by a Taylor expansion using only the linear term. In this work, an isotropic linear
elastic material law is used. The parameters of this material law can be obtained from the
training samples close to the origin e.g. by a least squares fit. If, in the evaluation of the
metamodel, the equivalent total strain e, is smaller than a user-defined parameter &;, the
metamodel is replaced by the linear elastic approximation o (). In order to obtain a smooth
transition from the linear approximation to the metamodel, a transition zone with radius &,
is introduced. The superposed response o, illustrated in Fig. 8.10 is then given by

qel(e) _ 66(1 S €1

~ Eg9 — & Eeqg — € _ _

o (6) = ﬁael(e) + gfgllgmeta(é‘) €1 < geq S €2 (813)
O meta(€) Eeqg > 2.

8.6 Example

8.6.1 Mesoscale model - generation of training data

In order to investigate the proposed algorithm, a simplified one-dimensional tension test is
performed as illustrated in Fig. 8.11. The material model is a nonlocal formulation incorporat-
ing damage and plasticity. The plasticity model is based on a combination of Drucker-Prager
and Rankine, whereas the damage is a function of the accumulated equivalent plastic strain.
Further details of the material formulation can be found in [278] or in section 3.3. A mesh
size of 50mm with a nonlocal radius of 100mm is used. The area of the element in the center
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Figure 8.11 Boundary conditions and damage distribution in the mesomodel at e = gt =
0.4%o

is slightly reduced (3%) in order to weaken the structure and force the location of localization
into this element. The tension test is repeated for specimen with a different size (from 200mm
to 500mm). Furthermore, for each size, the loading and unloading process is simulated. The
range of the homogenized strains and history strains, for which mesoscale simulations are
performed, is in the interval [0,0.4%o], where the homogenization is simply performed by

Ad

l Y
where Ad is the elongation of the model and [ its length. Furthermore, this interval is divided
into ng = 11 or ny = 19 substeps, where each substep corresponds to a training sample in
the simulation. At first, the model is loaded until ", then additional displacements are
added as already illustrated in Fig. 8.1. For ny, = 2, the homogenized strain tensors which
are transformed to kinematic homogeneous boundary conditions of the mesoscale model are
given in Table 8.1. It is to be noted that for e” = 0.0%0 the case €' = 0.4%o is not computed,
because in the ascending direction £ = 0.2% is already determined as loading. Consequently
g™ = 0.4%0 is also in loading, which is not added to the training samples of the stress/strain
network as discussed in section 8.2. The loading/unloading network has 9 training samples,
whereas the stress/strain network has only 6 training samples (only the ones in an unloading
situation).

£= (8.14)

Consequently, a maximum of n?n; mesoscale simulations has to be performed, where n; is the
number of specimen sizes [200-500mm| considered. The reference solution for pure loading

= ;“5) B I I ) I I " ref 250 e |
S 30f / rei igg -
re A
E 2(5) - Mmlp |
S 19 mlp —— |
1.5 F .
1.0 .
0.5 + i

0.0 !
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
e[ %]

Figure 8.12 Load-displacement curve for varying size of mesoscale model(250-450mm),
reference and approximation with a neural network (multilayer perceptron) for 11 and 19
training points
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Table 8.1 Training data for the uniaxial tensile test

gh gt Win o loading/unloading  stress/strain
(%] [%o] [Nmm] [N/mm?] network network
0.0 0.0 0 0 -1 0
0.0 02 1.745 0.915 +1 -

0.0 04 not calculated +1 -

0.2 0.0 1.745 -2.774 -1 -2.774
0.2 0.2 1.745 0.915 -1 0.915
0.2 04 2.210 0.103 +1 -

04 0.0 2.210 -1.723 -1 -1.723
04 02 2.210 -0.810 -1 -0.810
04 04 2.210 0.103 -1 0.103

(no unloading) is illustrated in Fig. 8.12, marked as [ref250, ref350,ref450]. It is clearly
recognizeable that the dimension of the specimen plays an important role in the stress-strain
curve of the homogenized response. This is due to the fact that the size of the localization
zone is constant (the weakened element at the center). Consequently, the dissipated energy is
almost independent of the length of the model, and by smearing this energy over the length,
the sensitivity of the response with respect to the specimen length is obtained.

Using these mesoscale simulations, a neural network (multilayer perceptron) with two hidden
layers, each having 6 neurons, is trained with the Levenberg-Marquardt algorithm, until the
norm of the gradient is smaller than 107%. For pure loading, the results are illustrated in
Fig. 8.12 for ny = 11 and ns; = 19, which corresponds to the number of training samples per
dimension. The approximations are almost identical in the pre- and post-peak region. The
sharp angle in the reference solution is rounded due to the activation functions with continuous
derivatives, but with a higher number of support points the accuracy of the approximation
is increased. It is further to be noted that the training data were calculated only for the
specimen dimensions 200mm, 300mm, 400mm and 500mm. The reference solutions with
specimen dimension 250mm, 350mm and 450mm were not added to the set of training samples.
Consequently, the specimen dimension has been interpolated by the neural network.

8.6.2 Macroscale simulation

The macroscopic tension test is performed with a specimen length of 550mm. The dimension
of the center element with a weakened cross section to ensure that the localization takes places
in this element is varied. Furthermore, loading and unloading are simulated as illustrated in
Fig. 8.13. It is to be noted that the unloading stiffness decreases for increasing total strains.
This is due to the damage formulation in the mesoscale model. The reference solution is
obtained by a pure mesoscale simulation with a mesh size of 50mm. In Fig. 8.13, minor
discrepancies for 11 training points compared to the reference solution are visible, whereas
with 19 training points there is almost no difference. The first reason is the smoothing
within the peak region already illustrated in Fig. 8.12, which is more pronounced for a coarse
distribution of training points. The second reason is the approximation of the loading function.
Training points on the line £'* = &" are per definition in the unloading regime, whereas from
a theoretical point of view, this line marks the border between loading and unloading. For
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Figure 8.13 Load-displacement curve for varying element size with b = —0.99.

a coarser grid of training points, the distance to the next point in the loading regime is
larger and, consequently, the gradient of the loading function is smaller. As a result, the
approximated border between loading and unloading is shifted towards the loading regime
and therefore the approximated history variable is smaller than the true value.

An important advantage of this approach is that the load-displacement curve is almost inde-
pendent of the mesh size (ref, 300, 350 and 400 are almost identical), even though localization
takes place. A condition for this independency is that the localization takes place within one
macroscopic element. Hence, a lower limit of the element size in the macroscale model is
given by the size of the localization zone in the mesoscale model. In the example, this size
corresponds to the nonlocal influence radius for the damage formulation of 100mm. An upper
limit of the element size is only given by the condition that snap back phenomena cannot be
modeled with the stress/strain network due to the unique mapping of the strains to stresses.

In Fig. 8.14, the influence of the parameters o' and k is investigated. The parameter b
describes the border between loading and unloading in the loading/unloading metamodel.
This parameter should be chosen within the range [-1,0], but in order to describe the border

5'0 T T T T T 5'0 T T T T T
~ 1 N
S 40l b'=-0.50 - | S 40L k=1.0 < |
S 0 b'=-0.70 g 0 k=1.1
= 3.0 © b'=-0.95 = = 3.0 k=15 = -
© [=-0. © k=2.
® 20} 099 | ® 20 0
> ref — ; ref —
1.0 | / g 1.0 | .
00 1 1 g 1 1 1 00 1 1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
€[ %o €[%o)
(a) k=2, element size 400 (b) b! = 0.95, element size 400

Figure 8.14 influence of the numerical parameters b’ and k
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as accurately a possible, values close to -1 are preferable. On the other hand, it should be
assured that all points £/ = " are in the unloading regime. This is required to ensure
that the modification Ae” in Eq. (8.8) tends towards the unloading region. Due to numerical
reasons it is therefore not recommended to choose a value f’ = —1, but slightly smaller. In
the numerical examples, values in the interval f°¢[—0.99, —0.95] have given accurate results.
For higher values a poor description of the border between loading and unloading is obtained
and the results differ from the reference solution as illustrated in Fig. 8.14(a).

The second parameter of interest is the parameter k£, which ensures that small changes of the
total strain only lead to small changes of the history strain. For & = 1, which is the lower
limit, the change in the norm of the history strain is identical to the change in the norm of the
total strain. But & = 1 inhibits the transition from one loading zone to another and numerical
artifacts arising from the approximative character of the support vector machine describing
the loading function cannot be balanced. Consequently, a higher value is preferable, whereas
the upper limit is given by numerical reasons, since for k£ = oo infinitely small variations of
the total strain can lead to large variations of the history strain. Consequently, the response is
discontinuous and convergence in the numerical solution might not be obtained. As illustrated
in Fig. 8.14(b) a value of k = 2 gives accurate results and has been chosen for most of the
numerical simulations.

8.7 Summary

In the preceding section, a material model based on neural networks has been introduced.
The principal advantage compared to a standard material formulation with a prescribed set
of free parameters is the fact that the complexity of the metamodel can be adapted in the
course of the training procedure. The presented metamodel distinguishes between loading
and unloading. Consequently, a softening in the response function can be approximated as
illustrated in the examples. However, a complex history dependent loading regime cannot
be represented due to the single history strain used in the formulation. A further limitation
of the method is the applicability to low dimensional problems such as e.g. interface formu-
lations, since the number of training data required to obtain an accurate metamodel grows
exponentially with the dimension of the input space.
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Chapter 9
Conclusions

In this thesis, a framework for the multiscale simulation of concrete has been developed.
Starting from a macroscopic model for concrete, the transition was made to a mesoscale
model, where, additionally, the stochastic scatter of the response was simulated using random
fields. It was further realized that a key problem is the determination of material parameters
on the mesoscale, since often only macroscopic tests are available. As a consequence, a
parameter identification procedure based on bayesian neural networks has been developed.
Furthermore, a macroscopic material model based on a metamodel was introduced, which
is build from mesoscale simulations. This allows the application of a mesoscale model to
problems on the macroscale while still keeping the computational effort low.

On the macroscopic level, a discrete crack concept in the general framework of the extended
finite element method (XFEM) for the simulation of concrete cracking was used. This allowed
the discretization of cracks independently of the underlying elements. The cohesive crack
concept was used to model the nonlinear relation between crack opening and stresses that can
be transfered through the interface, whereas the bulk material is assumed to be linear elastic.
Based on this techniques, an automatic adaptive procedure for crack growth simulations has
been developed. It allows, on the one hand, for an adaptive refinement of the mesh close
to the crack tip using a quadtree data structure, and, on the other hand, for an automatic
initiation of new cracks and an extension of existing cracks. Using the automatic refinement
procedure, it was possible to start with a relatively coarse mesh and refine only in certain
regions which lead to a significant decrease of the computational time.

The key problem was the development of appropriate criteria to decide, whether an existing
crack grows and in which direction the crack grows. In order to consider the influence of
cohesive forces, a direction criterion based on the minimum of the potential energy was
develop and compared to criteria based on linear elastic fracture mechanics (LEFM). It was
observed that, for the investigated examples, an approximation of the crack direction based
on stress intensity factors from LEFM can give accurate results. Consequently, the cohesive
forces can be neglected for the determation of a crack extension, which reduces the numerical
effort significantly. The proposed methodology was applied to several standard examples of
fracture tests for concrete, and it could be verified that the numerical results accurately reflect
the experimental data.

Based on the macroscale model, a mesoscale model for concrete was developed that was able
to describe local damage induced by the heterogenous structure of the material. In this model,
particles, matrix material and the interfacial transition zone (ITZ) are modeled as separate
constituents. Particles, approximated by ellipsoides, were simulated according to a prescribed
grading curve and randomly placed into the specimen. It was found that the representation of
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the ITZ in the numerical model is crucial for a realistic simulation. Furthermore, localization
in uniaxial tests and a stochastic component due to the random particle distribution are
naturally included in the model. Originally, it was assumed that the discrete crack concept
could be fully transfered to the mesoscale, but due to the interaction between particles and
crack tips and the existence of many cracks on the mesoscale, it was realized that a smeared
crack concept for the matrix material is advantageous and the discrete crack concept was only
used for the ITZ. A material model for the matrix material based on a combined damage-
plasticity approach has been developed. The model uses a multisurface plasticity approach
with a Drucker-Prager yield surface in compression and a Rankine-criterion in tension. Based
on the development of plastic strains formulated in the effective stress space, an isotropic
damage formulation was added in order to simulate softening. This required the utilization
of a regularization technique in order to reduce the mesh sensitivity of the numerical model.
The applied mesh was either an aligned mesh, generated with a common meshing tool and
interface elements representing the crack, or a regular mesh, where the I'TZ is modeled using
the XFEM approach. No significant differences with respect to meshing time and efficiency
of the computation could be observed, although the meshing is slightly faster for the regular
mesh and the computation is slightly slower due to the additional DOF’s. It is assumed that
the difference becomes more prominent for 3D calculations. The model was used to simulate
a concrete cube under compression. The essential features of the experiment (failure pattern,
general shape of the load-displacement curve) are represented in the numerical model.

In an additional part, the stochastic scatter in experimental data is simulated numerically. On
the one hand, this scatter can be explained by the intrinsic stochastic distribution of particles
in a specimen, and, on the other hand, by spatially variable material parameters represented
by random fields. It is demonstrated that the influence of the particle distribution primarily
influences the post-peak region. Furthermore, a sensitivity analysis was performed in order
to investigate the influence of certain stochastic parameters such as the correlation length on
the response. It was found that a significant decrease of macroscopic material parameters
(peak load, dissipated energy) is obtained for an intermediate correlation length [.,,,., whereas
the mean responses for the limits of [.,., — 0 and [.,, — 0o are almost identical.

In the course of the work it was realized that direct parameter identification procedures for
mesoscale models are difficult due to the coupled influence of mesoscale parameters on the
macroscopic response. As a consequence, an automatic parameter identification procedure
based on bayesian neural networks has been developed. bayesian neural networks are an
extension to standard neural networks. The output and free parameters are stochastic vari-
ables - and not deterministic as opposed to the standard case. The methodology is based
on bayes theorem yielding the most probable distribution of weights under the assumption
of a given set of training samples. This procedure inherently incorporates a regularization
procedure, thus simplifying the choice of the network architecture, since the problem of over-
fitting for a network with more neurons than required is resolved. The training algorithm
was implemented using a conjugate gradient solver, where it was shown that for bayesian
neural networks a preconditioning is mandatory since the condition number of the nonlinear
problem gets large due to the influence of the hyperparameters.

A second advantage of bayesian neural networks is the additional information related to the
accuracy of the approximation, i.e. how accurate the output can be approximated. In this
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thesis, bayesian neural networks have been extended to multiple outputs with a full covariance
matrix describing the noise in the approximation. As a consequence, correlations between
the output variables can be determined. This procedure has been applied to an inverse
problem such as a parameter identification. Material parameters are interpreted as outputs,
whereas certain points on the load-displacement curve are used as inputs to the meta-model.
It is demonstrated that, with a sufficient number of training samples and input points, the
material parameters can be accurately determined. It was shown that it is advantageous to
use as many points on the load-displacement curve as possible with the restriction that the
numerical model is able to accurately represent the experimental curve. In this context, it is
recommended to start with the most complex numerical model available and then, successively,
reduce the model to the important parameters. It is further shown that the procedure can
be applied to design a set of experiments, which are used to identify material parameters of
a numerical model. Additionally, correlations between the identified material parameters are
determined, i.e. how is one parameter to be increased, if another is decreased in order to
obtain the same response of the numerical model.

A full mesoscale analysis of concrete for realistic dimensions of the structure are beyond the
capabilities of the hardware currently available. In order to incorporate the effect of mesoscale
models on the macroscopic level, a macroscopic material model based on neural networks is
developed. As a consequence, the complexity of the material model is not prescribed, but
automatically determined in the training procedure of the network. The model is capable of
simulating loading and unloading. This is realized by adding a history variable describing
the transition between loading and unloading, which is approximated by a support vector
machine. The stress of a material point is then approximated using a neural network. The
meta-model is trained using a set of mesoscale simulations. For softening materials, it is
realized that the dimension of the mesomodel has a significant influence on the homogenized
macroscopic response. Consequently, the dimension of the mesomodel has to be included
as additional input parameter of the metamodel. It is further realized that material models
based on neural networks are limited to low dimensional spaces, since the number of training
samples required to accurately represent the material response grows exponentially with the
dimension.
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Appendix A

Appendix to discrete crack models

A.1 Distance point ellipse

The shortest distance d between a point (u,v) and an ellipse can be reduced (by transforma-
tion) to a problem, where the ellipse is centered in the origin and its axes are aligned with
the principal axes - the major radius a is aligned with the x-axis. Furthermore, the point
is assumed to be in the first quadrant. Due to the symmetry of the problem, the shortest
distance of a point in other quadrants can be reduced to the problem in the first quadrant,
since d(—u,v) = d(—u, —v) = d(—u,v) = d(u,v).
All points (z,y) on the ellipse fulfill

N 2 2

(2) + (%) -1=0, (A1)
a b

where a > b. The shortest distance from (u,v) to a point (x,y) on the ellipse is described by
a line that is normal to the ellipse, which can be expressed as

V(GG )=o) (42
(u—:r;,v—y):t(z y), (A.3)

a2’ b2

where t is a scaling parameter of the normal vector.

Case1:v =0

If the point lies on the origin (v = 0,v = 0), the shortest distance to a point (x,y) on the
ellipse is d = —b. Note that the distance is negative, which implies that the point (u,v) is
inside the ellipse. If the point is moved to the right, it follows from the second coordinate in
Eq. (A.3)

t=—b? (A.4)
a’u

Eq. (A.5) is obtained by substition of Eq. (A.4) into the first coordinate of Eq. (A.3) and
then using Eq. (A.1). Since the point (z,y) lies on the ellipse, it is required that = < a and,
consequently,

(A.6)
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which implies

a2 - b2
AT
s — (A7)
As a result, the distance of a point (u,0) to the ellipse can be expressed as
a? —v?
a={ VoY us (A.8)
u—a otherwise
where x and y are obtained from Egs. (A.5) and (A.1):
2
x
Note that the distance is negative for a point inside the ellipse and positive otherwise.
Case2: v #0
Rearranging Eq. (A.3) and solving for z and y gives
2
ua
= A.10
T= (A.10)
vb?
= — A1l

which is substituted into Eq. (A.1):

F(t)=0= <ti“a2)2+ (tf’lﬂ)z—y (A.12)

The symmetry of the problem requires that x > 0 and y > 0 and from Eqgs. (A.10) and (A.11)
it follows that ¢t > —a? and t > —b? and due to a > b this finally gives

t> —b. (A.13)

Solving Eq. (A.12) for ¢ is analytically difficult, and an approximate solution using Newton’s
method is used. The first and second derivates of F'(¢) are given as

2a°u? 212
F(t)=— — A.14
VIO = ~5 5% ~ ey (A14)
2,,2 2,2
ViR = o 60 (A.15)

(t+a2)*  (t+02)*

Due to Eq. (A.13), the denominators in Egs. (A.14) and (A.15) are always positive and,
consequently, VF(t) < 0 and V2F(t) > 0 Vte(—b? 00). This renders Newton’s method an
appropriate choice, since the function F(¢) is convex and strictly monotonic decreasing and
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therefore possesses only a single solution. Starting with an initial value ) = b- (v — b), the
iterative series is obtained by
F(t®

(k1) _ (k) _ . A.16
= TR (4.16)

Having solved Eq. (A.12) up to a certain accuracy, the point (x,y) on the ellipse can be
calculated using Egs. (A.10) and (A.11) and, finally, the distance d to (u,v) is obtained by:

d=/(u—2)2+ (v—1y)? (A.17)

-G 1
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Appendix B

Appendix to smeared crack models

B.1 Eigenvalues and derivatives (first and second) of symmetric tensor in 3D

for the rounded Rankine criterion

B.1.1 Eigenvalues

The standard eigenvalue problem is given by

So— O S3 S5
0 = det S3 $1— 0 S4
S5 S4 SS9 — O

=+ ac® +bo+c
with

a=—(sg+ 81+ $2)
b— 2 2 2
= S0S1 + SpS2 + S152 — S5 — Sy — Sx

c= SOSZ + slsg + szs§ — 50S1S2 — 25354S5.
By substituting y = o + a/3, Eq. (B.2) can be rewritten as

0=y’ +3py + 2

a®> ab ¢

(B.6)

(B.7)

(B.8)

T2 6 2
b a?
P=37 9
The cubic equation has the following solution behavior as a function of the discriminate
D =p3+¢*
D >0 one real and two conjugate complex roots
D <0 three distinct real roots

D =0, g #0 | two real roots, where one is of order 2
D =0, g =0 | one real roots order 3.
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For a symmetric matrix, the eigenvalues are always real and, as a result, D < 0 and, conse-
quently, p < 0. In this case, the solution can be expressed as:

P = (50 0/l (B4)

1
g = 3 arccos (%) (B.10)
o1 = —2Pcos(f3) — % (B.11)
09 = 2P cos (6 + g) - % (B.12)

B.1.2 One positive eigenvalue

For a single positive eigenvalue, which is either oy or o3, the yield surface (Rankine) is given

by

fi=oi (B.13)

B.1.2.1 Gradient for distinct eigenvalues

For a single positive eigenvalue, the gradient can be calculated using the chain rule. In the
following derivation the assumption of three distinct eigenvalues is made. The case of two
identical eigenvalues is discussed in a second part.

80'1 80'1 8ﬁ 801 oPr 80'1 Oa

ds; 03 0s; 0P ds | da 0s, (B.14)
= 2Psin(3) 25 — 2cos(B) gi — %gz (B.15)
= e T P B (B.10
= —2Psin(f + %)gﬁ + 2 cos (ﬁ + %) gs - %3; (B.17)

The derivatives of the auxiliary variables (3, P, ¢ and p with respect to the entries of the stress
tensor are given by:

op 9B 9q 05 OP

= B.18
ds;  0qs, 0P 0s, (B.18)
1 P
_ 9¢ . ¢ 0P (B.19)
3 7 Osi 4 q Osi
3P3 /1 — o P41 — o
oP 0P 0dq OP 0Op
_ il B.2
0s; dq 0s; + dp 0s; (B.20)
signgq Op (B.21)

- _2\/—p83i
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dq 0qda  0q 0Ob  0q Oc
ds; %851 %831 %851-
B a> b\ Oa adb 10c
- (5 - a) s, 605, 205,
Op Op0da  Op b
ds; Oads; Obds;
~ 2a0a 10b
T 90s;  30s;

(B.22)
(B.23)
(B.24)

(B.25)

Finally, the derivatives of the parameters a,b and ¢ with respect to s; are determined:

[—1] 51 + 59| [ 52— 5189
—1 o+ So SE— $082
da —1 ob So + S1 oc Sg — S0S1
0s; 0 0s; —2s3 0s; 2(5953 — 5453) (B:26)
0 —254 2(8084 — 8385)
| 0 | | —2s5 | | 2(5155 — 5354) |
B.1.2.2 Hessian for distinct eigenvalues
The Hessian can be computed using the chain rule:
0?0, B 00, % 0?0, (9_P 0?0, @ ap n % 0?3
05,05 -\ o243 O0s;  O0BOPJs; 0B0ads;) 0s;  Of 0s;0s;
820'1 G_P 820'1 % 820'1 @ oP 80'1 82 g
0?P 0s;  OBOP 0s;  OP0a 0s, 851 AP Os; 05
8201@ 0%04 % 0%04 8_P Oa n % d%a (B.27)
0%a 0s;  0B0ads; OPOads;) ds;  Oa 0s;0s; '
o3 o3 0°p
=|(2P — +2 2P
( Cos(ﬂ)asj +2sin(f) as]) 0s; +2Psin(f) 83i83j+
) o6\ OP 0*P 1 9%
<2sm(ﬁ )a_s,j> 8_3Z- —2eos0) 5 a3 0s0s, (B:28)
820'273 . 820'2736_6 0'23 8P 820'23 (%L 8ﬁ 80'23 8 ﬁ
0s,05s; -\ 023 0s; 3ﬁ8P 83] 060a 83] 681 op 0s;05; 05
820'2736_13 820'273 65 820'23 da P 80’23 8 P gy
0P 0s;  0BOP 88] 8@8}7 3sj JP 0s;0s;
8202,3@ 8 0'23 86 0'23 oP 80'2,3 82(1
0%a 0s; 868@ 8s] 8@8]3 as] 851 da 0s;0s;
op : B
2P + — =2 +
( o8 (ﬁ 3) 0s; - <ﬁ ) 853) ds;
T 0%°3
2P sin (ﬂ + ) 0s;0s; +
PhD-thesis
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op ™ O*P 1 0%
( 2sin <5i ) 83]) 0s; +2cos (ﬁi ) 0s;05s; + g@siasj'

The second derivatives of the auxiliary variables are given by:

&3 _(025@ 93 a_P) dq 95 9%
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Remark: P # 0, since D = p3 + ¢* < O(three different roots), the other cases are discussed
2
separately. Furthermore <1 — —) #0 < ¢*# P® — D —p® # |p3|, since D < 0.
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B.1.2.3 Gradient and Hessian for two identical eigenvalues

Identical eigenvalues are obtained in the case of D = 0, which is equivalent to 7 = 0. As a
result, the identical eigenvalues are o, and 3. Since only one eigenvalue is positive, it has to
be o1, which is a function of P, ¢, a. In this special case the gradient and the Hessian can be

expressed as
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80’1 4
lim —& = —= B.4
—ps OP 3 (B-40)
801 1
lim — = —— B.41
qu3 da 3 ( )
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and the Hessian is given by
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The second derivatives with respect to a vanish. As a result, the gradient and Hessian can
be computed as
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where the fact that the Hessian with respect to a is zero has been used.

B.1.3 Two positive eigenvalues

For two positve eigenvalues oy, 0; the yield surface is of the rounded Rankine type
fo=1/0%+ o} (B.47)

B.1.3.1 Gradient for distinct eigenvalues

In the case of distinct eigenvalues, the gradient can be determined using the chain rule:

8f2 1 80’k 80;
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B.1.3.2 Hessian for distinct eigenvalues
By further application of the chain rule, the Hessian can be expressed as:
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B.1.3.3 Gradient and Hessian for two identical real roots

One real root is of order 2. This is equal to D = 0,q # 0. It follows directly that
q

As a result, only the yield functions o4 and o3 are relevant and the root of order 2 is given by
o3 = 2P cos (%) - %. (B.51)

For positive 093, the gradient and the Hessian of 3 with respect to ¢ and P cannot be
calculated with Eqs. (B.18) and (B.29) due to the vanishing divisor. For this special case the
derivatives are calculated as follows. The second and third principal stress are combined in
a modified (rounded) Rankine criterion:

fo=1/03+ 03 (B.52)
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In an analogue way the derivatives are calculated
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Using the partial derivatives, the computation of the gradient and Hessian is analogue to
Egs. (B.45) and (B.46). Remark: P # 0, since P = sign(q)+/( — p) and p < 0. Furthermore
3P — a # 0. The proof is as follows. Assume a = 3P. As a result

b a?
p=t_ o (B.60)
b 9p?
= - (B.61)
b
= +p (B.62)
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As a result, it follows that b = 0. Furthermore holds:

D=0 (B.63)
=p’+ ¢ (B.64)
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c
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If ¢ = 0, the characteristic equation Eq. (B.2) reduces to

o +ao* =0, (B.67)

which has the solutions 0,0, —a. This is in contradiction to the assumption of two positve
eigenvalues. As a result

c= —t—‘f (B.68)
g = —;‘—i (B.69)
P = sign (—g—i) % (B.70)
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a
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This is in contradiction to the assumption 3P = a at the beginning of the proof. As a result,
3P — a # 0 and, consequently, the terms in Egs. (B.54)-(B.59) can be computed.

B.1.4 Three positive eigenvalues

For three positve eigenvalues oy, 09, 03, the yield surface is of the rounded Rankine type

fs=1/0}+ 03+ 03 (B.73)

Using Eqgs. (B.11) and (B.12), the yieldsurface can be further simplified:
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where the theorem cos(a £ ) = cos avcos 3 F sin asin 3 has been used. As a result the yield

function f3 is given by:
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where the condition that p < 0 has been used (since the discriminante D = p3 + ¢* < 0,
because a symmetric matrix has only real eigenvalues). As a result, the gradient and the
Hessian can be expressed as
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Appendix to meta models

C.1 Standard form of the Gaussian distribution

The probability density function of a Gaussian distribution is given by

1 1
(27)% |2z

N(z|p, =) = e 2@ W B @) (C.1)

where D is the dimension of  and |X| is the determinant of 3.

C.2 Completing the square

For a Gaussian distribution, the exponent terms can be expressed as

1 1
~3 (x—p) T x—p) = —EwTE_lzc + 27Xy + const. (C.2)

Given a quadratic form of the exponent terms, the covariance matrix 3 can be determined by
comparing the pure quadratic terms, and afterwards, the mean p is expressed as a function
of the covariance matrix and the linear terms.

C.3 Linear Algebra
C.3.1 Matrix inversion

1

(A+BD'C) ' =A'-A'(D+CA'B) 'CcA™! (C.3)

This is known as the Woodbury identity, which can be verified by multiplying both sides with
A+BD'C.

C.3.2 Determinant of product of two matrices

The determinant of a product of two matrices is identical to the product of the determinants
of each matrix.

|[AB| = |A] |B] (C.4)
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C.3.3 Determinant of sum of two matrices

Given two matrices A, B of size N x M, it follows that

Iy +AB"| = |I,;+ A"B|. (C.5)
If A and B are vectors, this further simplifies to

[ Iy +ab’|=1+a"b. (C.6)

C.3.4 Derivative of logarithm of determinant of a matrix

This formula is derived e.g. in [234] in the appendix:

9 (04

C.4 Support vector machines

C.4.1 Wolfe’s dual for a quadratic convex program

The primal problem is given by

max f(x) (C.8)
subject to g;(x) <0 Vi=1..N, (C.9)

where N corresponds to the number of inequality constraints. The corresponding dual prob-
lem is given by:

N
min f(x) — Z/\igi(m) (C.10)
i=1
subject to A\; > 0 Vi (C.11)
0f(x) <~ Jgi()
ox ; A ox (€12)

If the objective function of the primal is concave and the constraints g;(x) are convex, the
optimal solution of the primal problem is identical to the optimal solution of the dual problem.

C.4.2 Application of Wolfe’s dual to the linear separable case of support vector machines
The primal problem is given by:

1
max — §||w||2 (C.13)
subject to 1 —y; (x,w +0) <0 Vi=1..L. (C.14)
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Using Eq. (C.10), the corresponding dual problem can be expressed as:
min — —HwH2 Zaz — i (x;w + b)) (C.15)
subject to a; > 0 Vi (C.16)
0f(w.b) _§~  Dgilw,b)
) N, 290 C.17
ow ; YT w ( )
0f(w.b) _§~  dgi(w,b)
CAACLIN , C.18
ab ; Yo (C.18)
From Egs. (C.17) and (C.18) it follows:
L
w = Z ;YT (C.19)
i=1
L
i=1
Substituting Eq. (C.19) into Eq. (C.15) gives:
min — — Z Z Q0 Y Y T — Z o — Zalylb + Z Z 0G0 Y YT T (C.21)
i=1 j=1 i=1 j=1
Further substition of Eq. (C.20) into Eq. (C.21) and changing the sign finally gives
max — — Z Z Q0L Y YT T+ Z Q; (C.22)
i=1 j=1
subject toa; >0 Vi=1..L (C.23)
L
0= aw (C.24)
i=1
L
w = Z QYT (C.25)
i=1
C.4.3 Application of Wolfe’s dual to the linear non separable case of support vector
machines
The primal problem is given by:
] L
2
max — —|w]* - C;& (C.26)
subject to g : 1 —& —y; (w +b) <0 Vi=1..L (C.27)
g —&<0 Vi=1.L. C.28)
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Using Eq. (C.10), the corresponding dual problem can be expressed as [279]:

L L L
i=1 i=1 i=1

subject to a; > 0 Vi (C.30)
pi =20 Vi (C.31)
Of(w,b,€) <~  gi(w,b)
T LY ow (C.52)
Of (w,b,€) <~ gl (w,b)
R Zl 0 I (C.33)
Of(w,b,€) < agz w, b £) agz w, b £)
. ; Z@ , (C.34)

where «; are the Lagrange multipliers corresponding to constraints in Eq. (C.27), whereas [3;
are the Lagrange multipliers corresponding to the non negativity constraints in Eq. (C.28).

From Egs. (C.32), (C.33), (C.34) it follows:

L

w = Z QYT (0-35)
L

0= aw (C.36)
i=1

Substitution of Eqs. (C.35) and (C.37), resolved with respect to f3;, into Eq. (C.29), the
objective function can be written as

L L L L L
Z Z Yy — C Z & — Z a; + Z & (C.38)
+zazyzb+zzaagyzy]m]+z

i=1 j=1

min —

[\DIH

Further substition of Eq. (C.36) into Eq. (C.38) and changing the sign finally gives the opti-
mization problem :

max — — Z Z Q0 YY T+ Zaz (C.39)

Z].j].

subject to 0 < a; < C Vi=1..L (C.40)
L

w = Z QY L (0-41)
i=1
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L
0= ow, (C.42)
=1

The condition C' < «; is derived from Egs. (C.37) and (C.31) and replaces the condition
G; > 0. It is to be noted that the slack variables and its Lagrange multipliers disappear in
the the dual problem.
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