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Abstract

The study introduces into the theory and application of optimization strategies in earth-
quake engineering. The optimization algorithm substitutes the intuitive solution of practi-
cal problems done by the engineer in daily practice, providing automatic design tools and
numerical means for further exploration of the design space for various extremum states.
This requires a mathematical formulation of the design task, that is provided for typical
seismic evaluations within this document. Utilizing the natural relation between design
and optimization tasks, appropriate mechanical concepts are developed and discussed.

The explanations start with an overview on the mechanical background for continua. Her-
eby the focus is placed on elasto-plastic structures. The given extremum formulations are
treated with help of discretization methods in order to obtain optimization problems. The-
se basics are utilized for derivation of programs for eigenvalue and stability analysis, that
are applied in simplified linear analysis for the design of seismically excited structures.
Another focus is set on the application in simplified nonlinear design, that uses limit state
analyses on the basis of nonlinear problem formulations. Well known concepts as the re-
sponse and pushover analysis are covered as well as alternative strategies on the basis of
shakedown theory or cycle and deformation based evaluations.

Furthermore, the study gives insight into the application of optimization problems in con-
junction with nonlinear time history analyses. The solution of step-by-step procedures
within optimization algorithms is shown and aspects of dynamic limit state analyses are
discussed. For illustration of the great variety of optimization-based concepts in earth-
quake engineering, several specialized applications are presented, e.g. the generation of
artificial ground motions and the determination of reduction coefficients for design spec-
trum reduction due to viscous and hysteretic damping. As well alternative strategies for
the design of base isolated structures with controlled impact are presented. All presented
applications are illustrated with help of various examples.



Kurzfassung

Die vorliegende Arbeit fiihrt in die Theorie und Anwendung von Optimiierungsverfahren
im Erdbebeningenieurwesen ein. Die vorgestellten Optimierungsalgorithmen ersetzen die
typische intuitive Losung von praktischen Bemessungsaufgaben, mit Bereitstellung von
automatischen Methoden und numerischen Mitteln fiir die Bewertung des Designraumes
beziiglich extremer Zustinde. Dies erfordert eine geeignete mathematische Formulierung
der Bemessungsaufgaben, die fiir typische Anwendungsfille bereitgestellt werden. Aus-
gehend von der engen Beziehung von Bemessungs- und Optimierungsaufgaben werden
wesentliche theoretische Grundlagen fiir die Ableitung praxistauglicher Analysekonzepte
entwickelt und diskutiert.

Die Darstellung beginnt mit einem Uberblick zum mechanischen Hintergrund. Der Schwer-
punkt wird dabei auf die Analyse von elastisch-plastischen Tragwerken gelegt. Die vor-
gestellten Extremalformulierungen werden mit Methoden der Diskretisierung in Optimie-
rungsprobleme umgeformt. Diese bilden die Grundlage fiir die Analyse von Eigenwert-
und Stabilitdtsproblemen im Erdbebeningenierwesen. Weiterhin werden vereinfachte li-
neare Bemessungsmethoden besprochen. Eine Erweiterung wird duch die Einbeziehung
von nichlinearen Aspekten erzielt, die einen wesentlichen Teil der Arbeit ausmachen.
Einerseits werden bekannte Konzepte auf der Basis von Antwortspektren und Pushover-
analysen einbezogen, andererseits werden auch alternative Strategien auf der Basis der
Einspieltheorie oder zyklen- oder deformationsbasierten Analyse vorgestellt.

Desweiteren werden Anwendungen von Optimierungsverfahren im Zusammenhang mit
nichtlinearen Zeitverlaufsmethoden diskutiert. Die Losung von Zeitverlaufsproblemen in
Form von Optimierungsaufgaben wird vorgestellt und Aspekte der Grenzzustandsanalyse
fiir dynamische Probleme behandelt. Die Vielfiltigkeit von Optimierungsanwendungen
im Erdbebeningenieurwesen wird anhand verschiedener Spezialanwendungen demon-
striert wie z.B. die Generierung von kiinstlichen Erdbebenzeitverldufen und die Modifika-
tion von Bemessungsspektren fiir die Analyse von nichtlinear beanspruchten Tragwerken
mit viskoser und hysteretischer Dampfung. Dariiberhinaus wird eine alternative Methode
fiir die Bemessung von basisisolierten Tragwerken unter Verwendung von kontrollierten
Kollisionen vorgestellt. Alle Anwendungen werden in zahlreichen Beispielen niher er-
lautert.
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Figure 1-1 Akashi-Keikyo Bridge, Japan

1 Introduction

1.1 Background

Structural deficiencies in the urban environment can cause tremendous casualties in case
of earthquake events. Therefore the focus of science and engineering is to assess expecta-
ble loading levels and to provide practical engineering measures for appropriate structural
resistance. Because of this outstanding and important task, earthquake engineering beca-
me one of the most interesting research and application topics. It considers structures in
extreme motion, caused by shock-like excitations.

The proof of earthquake resistance is a frequent part in projects, as a certain seismic
hazard is present in almost all regions of the world. However, it is still considered as a task
for specialists. This is mostly due to the dynamic excitation and the nonlinear response of
structures.

Most aspects of seismic design are similar to common engineering. The protection of
life remains always the key objective. A given design problem in earthquake engineering
could be described as follows: Determine a configuration of the structure, that guarantees
the best performance of the structure due to predefined criteria, as load bearing capacity,
durability and serviceability, during and after shock, while fulfilling several boundary
conditions, e.g. regarding deformations or damage limitations. The objective is to obtain a
minimum of remaining risk, with a maximum of economic efficiency. Simply summarized
as finding an optimum.



1 Introduction

Figure 1-2 Base isolated high rise building at Tokyo Institute of Technology,
Japan

Looking closely at engineering practice, it is obvious, that almost all decisions are ma-
de with regard to such optimality criteria. It can be stated that "Design is optimization".
However, most optimization is still done by experience and intuition. Therefore, it can be
beneficial to support planning processes with appropriate mathematical means - the opti-
mization algorithms. The complexity of engineering problems with all involved influences
and their solution can be greatly covered by these procedures. Establishing general ana-
lysis strategies on basis of mathematical optimization can help finding optimal solutions
and automatize design processes.

10



1 Introduction

1.2 Scope

Especially in earthquake engineering, the application of optimization strategies can be ad-
vantageous. Nowadays modern structures are not only expected to ensure life safety, but
to behave in a predefined manner. This demands complex mechanical models, to obtain
best performance and joint operation of structural elements and materials. The subject
combines various aspects of nonlinear dynamics, seismology, nonlinear material sciences
and involves even social components. Moreover, with the availability of seismic devices,
the scientific background reaches far into mechanical engineering. Using this combined
knowledge, enables the engineer to reach far beyond traditional limits in the design of
structures, as can be seen in Fig. 1-1 and 1-2). Optimization strategies can support reali-
zing such ambitious projects.

In structural optimization, two main types of optimization problems can be distinguis-
hed, the shape and topology optimization. Although both are changing the appearance
of structures, the first starts with rather few information about the principle shape of the
structure. Hereby, the calculation starts with an simply shaped solution space representing
a "full" piece of material, that is typically shaped by removement of material. Contrary to
this the second method starts with principle information about the appearance and only
selected parameters like dimensions or loadings are design variables. As both types show
their own methodological characteristics, this study will focus on the second category. It
is very practical, as most of the design tasks in earthquake engineering are based on an ad-
vanced design level, developed earlier from other criteria, as e.g. aesthetics or resistance
due to static excitations.

This study therefore provides a theoretical background and appropriate practical methods
for application in earthquake engineering. It gives an introduction to the methodology of
optimization in engineering and explains mathematical and algorithmical aspects for the
formulation of optimization problems. It can be shown that most applications can be ba-
sed on known mechanical principles, that need to be transferred into appropriate extremal
formulations. All selected aspects are considered with regard to practical earthquake en-
gineering, illustrated with example applications. As well as common design problems are
discussed, some specialized applications have been added for demonstration of the great
variability of the method.

The basic design philosophy will consider passive structures that’s behavior is designed
once according to optimality criteria. The presented methods apply and extend existing
design strategies as the Capacity Design Method [15] and Pushover Analysis. Their prin-
ciples of local and global design can be perfectly implemented at the structural or member
scale, improved by optimizing design concepts. As optimization problems directly relate
to design problems, the direct translation of design requirements into optimization for-
mulations can be utilized. Many advantages can be derived from the special interface that
is provided by optimization algorithms, for the formulation of objectives, equations and
inequalities. All contributes to an effective computationally supported design.

11



1 Introduction

1.3 Earthquake engineering design strategies

Mainly three different strategies can be distinguished in earthquake engineering

e clastic design
e plastic design

e isolation

The first category seems to be uneconomical from the first sight. However the applicability
depends on the

e seismic hazard
e importance of the structure

e dynamic properties of the structure

Most of large-span light-weight structures, such as bridges, stadiums and halls can be
designed to resist elastically, especially if small or moderate earthquake events can be
expected. For such structures, the wind load is typically dominating.

Plastic design is popular because of the economic effects, supported by probabilistic sce-
narios. The resistance of the structure is extended by provision of plastic deformation
capacities, that help dissipating the seismic energy in the structure and alter the response
due to eigenfrequency changes. This strategy involves nonlinear calculations and care-
ful dimensioning of plastic hinges and elastically remaining parts, that is adjusted in a
Capacity Design [15,152].

However, plastic design tolerates certain damage, typically expressed as cracks, spalling
and large deformations, that can result in expensive repair or even in the complete loss
of the structure. And, more damage is done, if the operability of the structure and the
equipment is restricted, e.g. in buildings of the life line infrastructure or hightec industries.

This background is the task in performance based design, that considers explicitly the
after shock performance. Special categories have been proposed, as in Tab. 1-1 or e.g.
in [9,56], for pre-selection of an acceptable performance (damage) level during design
with respect to operability and repair efforts.

Taking these performance based aspects into account, the insulation strategy can be an
interesting alternative to plastic design, illustrated in Fig. 1-3. The structure is mounted,
typically at the base, on isolation devices that reduce the amplitude of the shock and/or
alter the structural frequency. The involved large deformations are concentrated in the
isolation layer. This deformation can be combined with viscous or hysteretic damping
devices, with passive, semi-active or active control. These technologies can be beneficially
used in near-fault regions too [164].

12
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Figure 1-3 Plastic design vs. isolation

1.4 Design problem - optimization problem

Limit state analyses are of essential interest in engineering. They mark critical conditions
in structures or structural members, where the structure changes significant mechanical
properties. The quantification is done with help of limit state criteria, that can be modeled
mathematically as limit state functions. In structural engineering, limit states functions
are derived from the bearing capacity, serviceability or technological requirements with
respect to safety demands. In codes, recommendations for the choice and formulation
of adequate limit state criteria and analysis conditions are given. In special cases, the
analysis can be supported by experimental examinations. However, analytical calculations
are preferred, using the comparison of the demand S (loads) and supply R (resistance) in
the structure. For safe structures the following inequality must be satisfied

S<R (1-1)

in a unique definition space, where S and R are defined with regard of the structural/
environmental and loading properties as well as safety issues

RI R(.T,t, O'lim,”)/R,...) (1—2)

S =S(z,t,f,0,7s,...) (1-3)

Equation (1-1) is a "proof" type formulation. Moreover, the limit state can be used to
derive directly "design" formulations

13
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Table 1-1 Basic performance levels according FEMA 356 and associated analysis concepts

Performance Levels

FEMA 356 Measure/degree

Lifeline buildings and high
technology industries

Immediate occupancy (lO)

Y

Official buildings and
dormitories, general
structures

Life safety (LS)

Y

Subordinate structures Collapse prevention (CP)

Y

| Collapse A
FEMA 356 categories Accepted level of damage
Q A
10 LS CP Collapse
T”C Applicability of force based
analysis
D E
A u —— ,
Schematic force-deformation behavior Applicability qf deformation
based analysis

Y
Capacity design

14
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S<r-Ry (1-4)

that enable the scaling of a predefined basic resistance distribution 2y with a resistance
intensity factor r, or

p-So< R (1-5)

using the reverse methodology, the scaling of a load distribution Sy with a load intensity
factor p.

Economical considerations require the minimum of the structural resistance for a given
loading and/or the maximum of the load that can be sustained by a structure, that can be
mathematically expressed by

r — Min (1-6)
and
p — Mazx (1-7)

From a mathematical point of view, the Equations (1-6), (1-2) and (1-4) form an opti-
mization problem, consisting of an objective function and subsidiary conditions. In fact,
most engineering design problems can be translated into appropriate optimization pro-
blems. This is illustrated in Tab. 1-2. Design problems can be formulated with design
parameters. The problem itself is formulated in terms of these parameters, as conditions
and restrictions. All design tasks are characterized by the statement of a design objec-
tive. With these components, all aspects are given to derive an appropriate optimization
problem. The main step is the mathematical description of all conditions and objectives.
Some formulations use variational descriptions as they can be directly transformed in-
to optimization problems by application of discretization methods (e.g. Finite element
method).

The notation that is used within this study is summarized in Sec. 12.1.

1.5 Chapters overview

Chapter 2 gives an introduction to mathematical optimization. It separates the given strate-
gies of formulation and solution according to several categories often applied in practical
engineering. Several solution strategies are shortly noted and described. As well, basic
strategies for the derivation and formulation of optimization problems are illustrated.

Chapter 3 provides insight into basic mechanical principles. It uses the Hamiltonian and
Poisson principle as the basic variational principles in structural dynamics. Derived from
that, general mechanical relations and variational principles for the analysis of rigid and
flexible body motions are given for continua.

Directly following the continuum mechanical background, Chapter 4 contains discrete
model formulations, that are essential for the application of optimization routines. It con-

15
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Table 1-2 Transformation of a design problem into an optimization problem

Design problem Analytical problem Optimization problem

Y

Y
Y

Design parameters - Variables Design variables x

Y

Design objectives -

Y
Y

Extremum condition Objective function
(Principle) O(x) = Min

Subsidiary conditions Subsidiary conditions

Equality conditions

Mathematical formulation (e.g. as functional)

i i
1 1
| 1
1 1
| 1
1 1
Design conditions - —>: Field conditions - —>: h(x)=0 H
! | g : ;
1 = 1
I 1 1=} i 1
1 ! .2 1 . L. !
' | D ! | Inequality conditions '
Design restrictions - —»: Boundary conditions H 2 ' g(x)<0 H
H :—> a - :
1 ' I
! 1

siders the basic mechanical relations for the equation of motion, appropriate kinematics
and selected material laws as well as static and geometric boundary conditions. The dis-
cretization is done with respect to finite element methods and meshless concepts. The

discretization is demonstrated for structural members and cross sectional mechanical mo-
dels.

Providing basic relations for the modal analysis of seismic exited structures, basic con-
cepts of eigenvalue analysis with help of optimization strategies, for real and complex
eigenvalue problems are given in Chapter 5. As well, related problems of structural stabi-
lity are discussed. Suggestions for practical stability analysis are made.

Chapter 6 relates to the simplified linear analysis concept often applied in practical en-
gineering. It considers several strategies for the formulation of appropriate optimization
problems. It provides concepts for the design of conventional and base isolated structures.
With help of examples, the given strategies are illustrated.

As one of the most important analysis categories, in Chapter 7 simplified nonlinear ana-
lysis methods are discussed. The documentation uses selected limit states for illustration
of practical nonlinear design with help of optimization strategies. Beyond classical and
advanced principles in limit state analysis, it shows the formulation of known design
methods, e.g. the shakedown and capacity spectrum method within optimization tasks.
Example applications illustrate the described principles.

As a general analysis concept, the time domain analysis is treated in Chapter 8. The ap-
plication within optimization strategies is shown, also with help of practical examples.
Beyond common time history analysis application in structural optimization, the chapter
shows the formulation of dynamic limit state problems.

16
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Finally, Chapter 9 illustrates the huge variety of optimization strategies, practically appli-
cable in earthquake engineering. This chapter provides selected methods for the generati-
on of artificial accelerograms and shows a practical method for the graphical optimization
of base isolated structures.

17



2 Overview optimization problems and formulation strate-
gies

2.1 General nonlinear optimization problem

The most general mathematical description for an optimization problem is given as

O;(x) — Min i=1...no (2-1)

Gj(x) <0 j=1...n¢g (2-2)

with the objective functions O;(z), requiring their values to become minimum, while
respecting the subsidiary conditions GG;(x). Both functions are dependent on the design
variables x.

From an early historical development, optimization problems are also called "Program-
ming" problems, as they show abilities of automatic procedures.

In the next sections, the very basics of optimization and several categories of problems
and algorithmic solution are shortly acknowledged, without being complete and going
into detail. The mentioned algorithms have been selected with respect to possible practical
application in earthquake engineering, used throughout this work. For further reading the
comprehensive literature is advised, e.g. [101,85,179,211,82,83,189].

2.2 Summary of basic relations, conditions and categories

In practice, not only one general nonlinear algorithm is applied for solution of any optimi-
zation problems. Certain sub-categories with special mathematical properties have been
separated that provide considerable simplications and therefore a higher effectiveness.
Hereby the number of existing approaches is overwhelming, hence the following paragra-
phs present a selection of optimization problem types and solution strategies appropriate
for the topics of this study. Those categories are summarized in Tab. 2-1.

If the design variables x are independent from time the appropriate optimization problems
are called "static", otherwise "dynamic" [189]. The design variables = are used as

r=[xq,... ,xm]T (2-3)

For the purposes of this work it is sufficient to have all design variables and functions
defined in the real or complex number space. Then the optimization problem is also called
"continuous". However, special practical cases, require a design variable solution space
consisting of discrete or integer numbers. Such problems can be solved with methods of
"Discrete optimization" or "Integer optimization" [120].

Before starting the solution of an optimization problem, a starting vector for the design
variables

18



2 Overview optimization problems and formulation strategies

Table 2-1 Selection of optimization categories

Primarily task oriented categories (derived from type of optimization problem)

1

:

:

:

Static optimization Dynamic optimization :

1

;

1

Continous optimization Discrete/Integer optimization i

:

:

Single-objective optimization Multiple-objective optimization i

1

i

Convex optimization Non-convex optimization E

1

1

;

Vector optimization Matrix optimization !

i

i

Definite optimization Semi-definite optimization !

1

i

1

Constrained optimization Non-constrained optimization i

1

1

;

Differentiable optimization Non-differentiable optimization i

1

i

Linear — Non-linear optimization —® Quadratic ‘

optimization optimization i

i

P ¥ + + |

1

General Non-linear Complementarity Least square Specialized algorithms |

optimization problems problems etc. \

1

i

__: _____________________________________________________________________________________ +=1
| i
i Deterministic Hybrid optimization Heuristic optimization .
' | optimization - - i
: i
i :
| 1
| 1
! Single point optimization Muliple point optimization i
! 1
i |
i Single step optimization Muliple step optimization !
. :
i |
i Direct optimization Indirect optimization \
| i
! i
! Numerical optimization Graphical optimization H
| !
! :
! :

Primarily solution oriented categories (derived from strategy of solving optimization problems)

19



2 Overview optimization problems and formulation strategies

To = [xo,la .. 7$0,nm] (2-4)

is required. Such starting vectors can have different quality. Some algorithms or appli-
cations require just a trivial starting vector, i.e. providing a zero or unity vector. Other
algorithms require qualified starting vectors, such as initially feasible vectors, that ful-
fil the subsidiary conditions from the very beginning. Other quality demands result from
the uniqueness of the solution, that might require a starting solution in the neighborhood
of the extremum solution, either to ensure solution, simplify solution or distinguish the
solution if several extremum points exist in the solution space.

As indicated in Eq. (2-1), optimization problems can contain several objective functions.
Such problems are called "multi-objective" or "multi-criterion". Most solutions can be
found by defining weights to assign the importance to the functions (sum method, com-
promise method) in order to transform all objective functions into an appropriate single-
objective problem. Others use a transformation into appropriate subsidiary conditions or
the separation in several dependent "one-step" optimization problems. Additionally, the
functions can be evaluated by taking selected objective functions as constant and perform
an evaluation in solution maps (Pareto optimality) [211].

Another category can be derived from the "convexity" of the objective and subsidiary
functions. The convexity of a simple function can be defined by application of [39]

fAzy + dawa) = A f(x1) + Ao f(22) A1, A2 € (0,1) AM+A=1 (2-5)

If the problem is multidimensional, the (local) convexity of the nonlinear optimization
problem is given if the Hesse matrix

0*f(x)
H(x) = 2-6
(:L‘) axlﬁxj ( )
of the objective function is positive semi-definite
det H(z) > 0 2-7)

and the Jacobi-matrix, i.e. the first derivatives of the subsidiary conditions is positive
semi-definite.

Closely connected to convexity is the determination of the global minimum in the feasible
region )

O(xopt) < O(x)Vx € Q (2-8)

and local minimum

O(xopt) < O(x)Vx € Q with ||z — zop| | < 0 (2-9)
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that is defined as minimum for all  in a small neighborhood of z,,. In convex pro-
blems, global and local minima are identical. The existence of a minimum is given by the
Weierstrass theorem, that states for f(x) a global minimum if it is continuous and 2 is
non-empty, feasible, closed and bounded [7]. Another optimality criterium is given by the
Kuhn-Tucker theorem (see later in this section).

Algorithms have been developed for "vector" and "matrix" optimization problems, i.e.
the design variables are given as vector or matrix. The matrix formulations commonly
respect additional relations between the matrix components, as symmetry and being de-
finite or semi-definite. This also introduces "definite" and "semi-definite" optimization
problems. Semi-definite programming (SDP) considers optimization problems with sym-
metric semidefinite matrix variables with linear objective function and linear constraints,
e.g. [226].

Other categories can be stated by evaluation of the subsidiary conditions. The catego-
ries "constrained" and "unconstrained" are basic to solution strategies. In preparation of
numerical solution strategies it is useful to separate the subsidiary conditions into pure
equality conditions and pure inequality conditions [161]

helz) =0  k=1...m (2-10)

gi(x) <0 j=1...n,4 (2-11)

or even highlight simple constraints for all design variables

Tm,min < Ty < T, max m=1...n, (2-12)

Any constrained optimization problem , e.g. Eq. (2-1) and (2-2) can be transformed into an
simply constrained problem by introduction of Lagrange multipliers A and slack variables
y. In a first step, the inequality conditions are modified with introduction of the slack
variables

O(z,y) = O(z) = Min (2-13)
Gj(x)—y=0 j=1...ng (2-14)
y <0 (2-15)

Then, the Lagrange multiplier method is applied to include the original subsidiary condi-
tions into the objective function

O(z, \,y) = O(z) + \T(G(z) —y) — Min (2-16)
while the non-negativity conditions

A>0 (2-17)
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y=0 (2-18)

need to be fulfilled. As the new variables A and y are complementary, the following com-
plementarity condition must be fulfilled

Ny =0 (2-19)

This property will often be utilized in solving algorithms. The necessary conditions for
optimality of convex problems are summarized by the "Kuhn-Tucker Theorem" [135] that
is given in Tab. 2-2. Hereby the Kuhn-Tucker Theorem is the extension of the Lagrange
multiplier method for duality problems with inequality conditions. Herein the "Lagrange
function" is describing a saddle point (or max-min) problem, that is characterized by

O(xl,opta .752) S O(xl,opta xQ,opt) S O(fL’l, x2,opt) (2'20)
where several variables show different extremum conditions (either as minimum or maxi-

mum) at the optimum point.

From the Kuhn-Tucker conditions the property of duality of optimization problems can
be derived. A dual optimization problem

o(x,\) = max (2-21)

90(=, A) =0 (2-22)
oz

A>0 (2-23)

is the called "dual" problem to the "primal" problem in Eq. (2-1,2-2), as the results are the
same while respecting the same set of Kuhn-Tucker conditions. Such duality properties
can be beneficially used in solving optimization problems and for identification of the
physical meaning of Lagrange multipliers [225].

Other categories can be separated from the type of applied objective or subsidiary func-
tions. Generally, the functions are considered as linear or nonlinear. The problem with
linear objective function and linear constraints, first introduced in [116], are called "Line-
ar optimization" (or Linear programming LP) problems

O(z) = Lz — Min (2-24)
Gr+ Gy <0 (2-25)
with the coefficient matrices L and G of the objective function and subsidiary conditions.

The value Gy is the constant part of the subsidiary conditions. This type of optimization
problem can be solved with
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Table 2-2 Lagrange function and Kuhn-Tucker conditions for optimality

Given convex optimization
problem

O(x) = Min xeR"
G(x)<0

Y

Gradient conditions

Introduction of non-negative slack variables y

O(x,y) = O(x) = Min X,y € R"
G(x)-y? =0
y2 >0

Taking y squared is not changing the problem, but is
for derivation convenience

Lagrange function
O(x,y,A)=0O(x) + XT[G(X) + yz] — stationary

A>0 Lagrange multipliers reR"

Y

Subsidiary conditions

Complementarity condition

Y

Y

Non-negativity conditions

Kuhn-Tucker conditions of optimality

00(x,Y,A) _ 00(x) . 0G(x)

Y

=0

OX [6)4 OX
00(X,Y,1) 2
20D _G(x)+y2 =0

=) (x)+y
0%y, 1) _ 2Ty =0

oy
y2 20
A>0

23



2 Overview optimization problems and formulation strategies

e Simplex algorithm [65]
e Revised simplex algorithm using dual problem properties [157]
e Ellipsoid algorithm [127]

e Projection algorithms [118]

or other concepts, e.g. described in detail in [7,189].

The other group of optimization problems are the "Nonlinear optimization" (or Nonlinear
programming NLP) problems, in the general form of (2-1,2-2). These problems are divi-
ded into several important subcategories. One important representative is the "Quadratic
optimization" (or Quadratic programming QP) problem

1
O(zx) = éxTQx + Lx — Min (2-26)
Gr+ Gy <0 (2-27)

that consists of a quadratic objective function and linear subsidiary conditions. Former
approaches use simplex type calculation methods, whereas newly concepts involve more
strategies known from general convex optimization. Then, as the Hesse matrix H = @) is
directly given, the calculations can be very efficient. Popular solving strategies are

e Modified simplex method, e.g. [224]

e (Cutting edge method, e.g. [124]

e Potential method, e.g. [79]

e Method of reduced gradients [83]

A special type of nonlinear optimization problems are the "Complementarity problems"

(CP). These are characterized by linear subsidiary conditions, except of one quadratic
condition

O(z,y) — Min (2-28)
G(z.y) +Go < 0 (2-29)
2Ty =0 (2-30)

the origin of such problems result from duality problems with dual variables = and y
that behave orthogonally. Specialized algorithms are available [78], however most general
nonlinear optimization algorithms can be utilized for solution.

Another special case of optimization problems are least square problems

O(z,r) =rTIr — Min (2-31)
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G(x)—Go=r (2-32)

where 7 are the residuals, = the coefficients of the fitting function G(z) and G, contains
the original function. Such problems turn out to be either quadratic or nonlinear optimi-
zation problems.

The most general group of optimization algorithms is given by nonlinear optimization,
that target either convex or general non-convex optimization problems [5]. Algorithms for
convex optimization are described e.g. in [101,85,179,211,82,83,194]. There are mainly
two solution categories. First, the "Deterministic programming" algorithms that evolves
from a starting solution z to the extremum solution by directly evaluation of the given
functions and gradients. Second, the "Heuristic optimization" methods involve certain
components of random/stochastic variable modifications [149]. Algorithms belonging to
either category are listed in Tab. 2-3. As all algorithms show different advantages and
disadvantages, the combination of two or more algorithmic concepts can be beneficial.
Such "Hybrid" optimization strategies are often used in non-convex optimization.

Most of the heuristic and deterministic algorithms work at first as "single-point" strate-
gies, i.e. the evaluation is only performed at one single point in the design space. However
most concepts can be involved in "multi-point" concepts, where the solution relies on the
evaluation of several distinct points in design space, that are provided in parallel. The-
se methods try to combine the information from either point, to improve the extremum
search. A popular representative method is the Particle Swarm optimization, that combi-
nes methods of evolution algorithms with probabilistic evaluations [126].

All functions in optimization problems could be dependent on results of subordinate op-
timization problems. These problems are called "multiple-step" problems. Then the opti-
mization problem can be treated by solving several but coupled "one-step" optimization
problems. As well, categories can be distinguished regarding the solution strategy. The
"direct" methods evaluate a problem in the given form. The "indirect" methods evaluate
approximation or substitution problems, that e.g. are defined by simplification, gradient
evaluation or dual problem solution.

Finally, the solution can be obtained by graphical or numerical means. However, the gra-
phical version is restricted to very few variables only [211].

Other concepts and categories can be found at [222] and [165].

2.3 Approximation methods

Non-linear optimization problems can show a certain complexity, e.g. resulting from the
problem size, the non-convexity or order of the problem. In order to get solutions, or to get
them more efficiently, approximation methods are applied to simplify the task. Besides lo-
cal approximation methods, like Taylor or Binomial series, mainly global approximation
methods like the Response Surface or Reduced Basis Methods, or mixed type approxima-
tions are applied [130,183].
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Table 2-3 Selection of algorithms for deterministic and heuristic optimization

Deterministic
optimization

Y

Hybrid optimization

A

Heuristic optimization
(Evolutionary algorithms)

\

e.g.
Exhaustive search

Sequential linear
programming

Reduced gradient
method

Sequential quadratic
programming

Sequential convex
programming

Method of conjugate
directions

Method of feasible
directions

Steepest descent
method

Variable metric method
(quasi — quadratic)

Newton’s method

Interior/Exterior penalty
function method

Augmented Lagrange
Multiplier method

Method of Centers

Y

Sequences of different
programming techniques to
combine advantages of
several methods.

A

e.g.
Monte Carlo search

Successive random
inprovement

Genetic search
Greedy algorithm

Devide and conquer (grid
optimization)

Dynamic programming
Branch and bound
Simulated annealing
Tabu search

Neural network
programming
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From probabilistics, the Response Surface Method is well known, that replaces the origi-
nal function by a simpler, but in a given region sufficiently representing function that can
be treated more efficiently [49]. The method can be generally used for nonlinear optimiza-
tion problems as well. Basically, all objective and subsidiary functions can be replaced by
a response surface function. For this reason the functions are evaluated at a finite number
or selected or randomly chosen supports within a reasonable variable range. The results
are used to fit the parameters of a predefined response function, using least square or other
regression methods (e.g. neural networks [87]). The response function usually consists of
a polynomial of a certain order, that can be adapted by regard of additional response
points, by replacement of points with less performance or by increase of the function or-
der. Under appropriate conditions the solution can converge to the exact optimum of the
original problem [41].

The simplest response surfaces for the original optimization problem are linear or quadra-
tic functions. This approach is most effective, because the resulting optimization problems
can be solved with fast linear or quadratic optimization algorithms. Other than the original
problem, the simplified problem is convex and has distinct results. With additional eva-
luations of the objective function the parameters of the linear or quadratic sub-problem
are improved. This is similar to the strategy that is applied in the sequential linear (SLP)
or quadratic programming (SQP) methods. An improvement to this method is a piecewi-
se substitution of the original functions with several linear or quadratic approximations.
Generally, this procedure can be extended for higher orders [201].

Furthermore, the applied regression methods can be used to condense the problem and
therefore to reduce the number of unknowns. This approach is commonly named Reduced
Basis Method. However, this concept is not necessarily successful for any application.
The properties of the original problems must be carefully explored in order to select an
appropriate response surface. The quality of the response surface is dependent on the
reasonable selection of the supports (Design of Experiments, [158]). The application is
often limited to few design variables. Each calculation should finalize in a verification run
with the original problem. Putting less efforts into the adaptation of the response surface,
the method is valuable to provide quality starting vectors for other optimization solvers.

2.4 Uncertainty and sensitivity of the design

Practical design often uses only one set of conditions to evaluate the given situation.
However, most variables and coefficients cannot be determined to a certain extend, thus
they can vary. The inclusion of such effects requires the estimation of the uncertainty
of the parameter, given as stochastic moments (e.g. mean values, standard deviation).
Such optimization problems can be formally assessed similarly as deterministic parameter
problems. Only the design variables will be exchanged by the stochastic parameters.

As well, not only the parameters can vary but the function values as well. So in design,
the effects of little changes in the design variables can be of essential interest. This is part
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of the sensitivity analysis, that mainly operates by evaluation of the gradient information
at the optimum point.

This study will not primarily focus on these types of analyses. Further reading is given
e.g. in [43].

2.5 Principles for practical derivation of optimization problems in engineering
2.5.1 Algorithmic concepts

The interface of optimization algorithms is illustrated in the upper scheme in Tab. 2-4.
The problem consists of two sides, first the core that provides the problem functions and
secondly the optimization algorithm, that evaluates the function values and determines
modifications for the design variables in order to get closer to an extremum (or optimal)
solution. After a certain amount of iterations, the optimization algorithm provides a solu-
tion or error indications.

Regarding the connection of the core function and optimization algorithm, two concepts
of algorithmic realization can be distinguished. Most applications in engineering use exi-
sting design software, that is externally coupled via an interface with an optimization
software. Basically both codes are separated. Either of them can be provided as "gray
boxes", the contents is hidden, or known but not changeable. For communication an in-
terface language /protocol need to be specified, e.g. [165]. Such problems use the exterior
formulation as indicated in the center part of Tab. 2-4. The advantages of this concept can
arise from the availability of problem solvers, that work very effective because of task
specific code preparations. However, those programs might not provide all useful infor-
mation to assist the solution of the optimization problem. Such information can be certain
parameter vectors, coefficient matrices and especially gradient information. Some of the
algorithms provide approximate gradients by finite differences.

Contrary to this, the second group is dealing with these requirements, as all algorithmic
formulations are given in function form, i.e. are open for access and algorithmic handling.
Such problems use interior formulations, that give the chance to provide all necessary in-
formation for the optimization algorithm. Usually both parts are compiled into one code.
This type uses the most flexible interfaces and function formulations for the user. Ho-
wever, all formulations need to be provided, at least as library functions. This concept is
illustrated in the lower part of Tab. 2-4.

2.5.2  Intuitive derivation of optimization problems

Some known engineering problems can be directly and intuitively translated into optimi-
zation problems, without using additional mathematical preparations. This is demonstra-
ted schematically in Tab. 2-5.

These tasks often deal with simple targets, like the minimum or maximum of a single para-
meter, optionally combined with some restrictions to this or other parameters. The intuiti-
ve derivation bases commonly on exterior optimization problem descriptions (Sec. 2.5.1).
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Table 2-4 Algorithmic concepts

Start vector xo

{

Core problem

Provision of information

A

Y

Optimization algorithm

Evaluation of information

General formulation

|

Solution vector Xopt

{

Start vector xo

Exterior core problem

Provision of functions

Interface

New set of x

Optimization algorithm

Evaluation of functions

Approximations for gradients

Exterior formulation

Solution vector Xopt

{

Separate codes

Start vector xo

New set of x

Interior core problem
Provision of functions

O(x)
G(x)

Provision of additional
information, e.g.

|

Direct transfer

|

Optimization algorithm
Evaluation of functions

O(x)
G(x)

Evaluation of additional
information, e.g.

Interior formulation

Solution vector Xopt

00(x)  0G(x)
ox ' ox
A
One code

00(x)  9G(x)
ox | ox
New set of x
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Table 2-5 Scheme of engineering model-optimization algorithm coupling

Pre-design Start vector

Y

N R | o v

Engineering model H
1
1

1

i

i | Mechanical model New design vector
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1 x e

o @ :
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' % Value of objective function ! Objective function
' 5 ™ O(x) | O(x) > Min
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2.5.3  Derivation using mechanical principles

As structural engineering problems base on mechanical principles, they are a natural basis
for derivation of appropriate optimization problems. Such principles can be, exemplarily
e Minimum of total energy

e Balance of impulse

e Balance of momentum

e Principle of Hu-Washizu

and conditions e.g.

e Equilibrium

e Material laws

e Kinematic compatibility

e Contact conditions

and much more, that all describe parts or the total behavior of structures.

Mechanical formulations can be described as variational principles, e.g. [214]. Such for-
mulations commonly state an extremum or stationarity condition using an integral term

[ V(x)dz— > Eut. (2-33)

with respect to several subsidiary conditions, mostly given as differential equations or
inequalities.

The traditional concept of transforming variational principles into a set of differential
equations is given by the Euler-Lagrange equation [39]. After discretization a system of
algebraic equations can be obtained as illustrated in Tab. 2-6. However, the similarity of
variational and optimization problems can be directly utilized to derive appropriate opti-
mization formulations. The direct discretization of the variational principle is leading to
the appropriate optimization problem. For discretization, known methods can be utilized,
e.g. finite difference method, finite element method or meshless representations. With the
coupling to variational problems, the powerful means of variational calculus can be uti-
lized to modify and prepare the optimization formulations according to several solving
requirements.

The variational principles themselfs can be constructed from their underlying differential
equations, such as the Poisson differential equation (see Sec. 3). There are three main
representations of a differential problem

e Strong form

e Weak form
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Table 2-6 Concepts for solving variational problems

Variational problem

System of differential equations
(Euler-Lagrange Equations)

Discretisation Discretisation
Algebraic problem Optimization problem

Classical approach

e Variational form

The strong form consists of a system of ordinary or partial differential equations in space
and/or time together with a set of boundary conditions. The weak form is a weighted
integral equation that relaxes the strong form into a domain-averaging expression. The
variational form is a functional, whose stationary conditions generate the weak form and
the strong form [214,22]. Thus any of the forms can be transformed into the other. For
derivation of appropriate variational formulations the strong form of differential equa-
tions can be firstly transformed into a weak form and later to a variational form. This
transformation is illustrated schematically in Tab. 2-7 where the differential equations
and boundary conditions are considered. Within these transformations the concept of La-
grange multipliers is often utilized to transfer subsidiary conditions into the extremum
principle function.

As an example of application, the well known principle of stationary potential (Reissner
Principle) for linear elasto-statics is derived in Tab. 2-8. The basis is the differential equa-
tions of equilibrium, material law and kinematic conditions, accompanied by the static
and geometric boundary conditions. First a coupled weak form of the equilibrium con-
ditions and extended kinematic conditions is established, that is modified by application
of the partial integration rule. With introduction of the boundary conditions as variations,
the variational equation is obtained. Integrating this expression will provide the extremum
principle in the Reissner form.

As this concept of derivation of optimization problems from variational expressions is
very practical, other examples are presented in the following sections.
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Table 2-7 Principle for derivation of variational formulations from strong form via weak forms

approach

Body with volume V und surface S

Differential formulation

Set of Field conditions

F=F(x,y,y,...) eV

G =G(x, y,y',....)

Set of boundary conditions

eS

Y

|

Transformation of selected differential
equation in their weak form

fodv -0

1

Identification of weight function &

{

Partial integration of selected mixed

terms

Insertion of boundary conditions

A

1

Y

If applicable: Insertion of terms in strong

form

If applicable: Insertion of variations of
terms in strong form

{

Variational equation

{

Transformation in variational principle

Extremum condition

Subsidiary condition

Variational formulation

33



2 Overview optimization problems and formulation strategies

Table 2-8 Derivation for principle of stationary potential with weak forms approach

Equilibrium condition Material law Kinematic condition

BTG_(p:O cV Do+gp=¢ eV Bu-¢=0 eV

1

Extend. kinematic condition

Y

Bu—D'1cst =0 eV

Y *

Weak form of differential equation

1l
o

.[SuTBTc av- I suTe dv + I&JBu av- I 36TD "o dV - J' SoTeg dV

Partial Integration

|

ISUTBTG dv = ISUTNG ds— _[ 5"Bdu dV

ISGTBU dv = IUTNSG ds— _[ u"BT56 dv

Y

- j oTBsu dV I(SUT(pdV - J u"BT86 dV — j 36TD o dV — j 36T dV + J&uTNc dS+ JuTNSU ds =0

Stat. boundary condition Geom.boundary condition
No=0cy €Sg T u=u, €98,
Variation Variation
Ngdo =805 =0 €Sg T du=35uy =0 €Sy
Y

ST = —IGTB6udV - J'SuTq;dv - _.' u"BTs0dV - J'SGTD*cdv - .[SGTSO av+ J.SUTGO dSg + J' N3G dSy =0

i

Self-adjointness of operators B

JGTBU av = IUTBTG dv

i

Principle of stationary potential (HELLINGER-REISSNER-Principle)

Mg = —J'cTBu dV—.[uT(p dV—%IcTD’% dV—.[cTso dV+IuTGO dSs +J.u0chSu = Stat.
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3  Continuum mechanical background

3.1 Hamiltonian principle
Dynamic problems in structural engineering can be solved according to the Hamiltonnian
principle

Ju = [T(z,t)dt — Min 3-1)

with the mechanical potential II. This potential can be derived from extremum conditions
of mechanical principles as the Lagrange and Castigliano principles [214]. Fixing time ¢,
the potential is identical to that from a static problem. As other principles, the Hamiltonian
needs to respect given subsidiary conditions defined in time.

From this, the Hamiltonian principle enables that the dynamic problem can be separated
into (quasi-) static sub-problems at fixed times, and a superior time integration problem.
This separation is the key for almost all numerical solution methods, where single quasi-
static problems are solved and integrated separatelly with respect to time. To solve the
problems numerically, time and space need to be discretisized.

3.2 Quasi-static sub-problems

Mechanical problems, at discrete times, can be described on the basis of elliptic differen-
tial equations. Most problems can be derived from Poisson’s differential equation

div (D . grad u) +o=0 (3-2)
and it’s special case, the Laplace equation
div (D . grad u) —0 (3-3)

Herein, ¢ denotes a source that can result e.g. from external forces or damping and inertia
forces. The unknown % can be identified as the deflections of the material points. The
material properties of the system are defined by the constitutive tensor D.

According to Tab. 3-1 the 2nd order differential equation can be transformed into a set of
Ist order differential equaltions by substitution. These functions, consisting of

e equilibrium (or static) conditions, that define the relation of external and internal
forces /stresses

e kinematic (or compatibility) conditions, that define the relation of deflections and
strains

e material (or constitutive) laws, that define the relation of strains and internal forces/
stresses
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determine uniquely the state of a considered material point. On selected material points
at the surface of the volume, appropriate boundary conditions can be defined

e static boundary conditions, pre-defining the state of stresses or forces

e geometric (or kinematic) boundary conditions, pre-defining the state of deflections or
deformations

The motion of arbitrary three-dimensional solid bodies can be characterized by their posi-
tion and shape variation in time, within coordinate systems. The motion will be recognised
as the states of the body in distinct times. It can be described with help of two considered
configurations, firstly, the "reference” (or "initial") configuration ‘z = x(t) and secondly,
the "current" (or "end") configuration ‘*2'z = z(¢ + At). In general, the body movement
can be divided into

e rigid body motion

e relative motion between material points (strain-inducing part).

3.3 Material point motion

According to deterministic formulations in continuum mechanics [223], each material
point can be uniquily identified at a given time ¢. Therefore, the state of the system can be
described dependent on the motion of the material points. Such motions can be formulated
as mathematical functions in the Euclidian vector space. In this study only orthonormal
bases are applied. With the definition of a fixed origin for a Cartesian coordinate system
and a Cartesian vector basis, all positions of points (e.g. as part of a considered volume V')
can be described uniquely as coordinate tensors Z at a certain time ¢ in R3. The movement
of material points can be described with help of the "reference" (or "initial") configuration

tr = 2(t) eV (3-4)
and the "current" (or "recent” or "final") configuration

HAG = Gt + AL €AY (3-3)
Both configurations can be related as follows:

ALy = = (Y2, t, At) (3-6)

This is called the "material" or Lagrangian formulation, describing the current configura-
tion as a function = of the reference configuration. Stating the truth of bijective mapping,
the inverse operation is defined as well, resulting in the "spacial" or Eulerian formulation:

g =27 (A, ¢, At) (3-7)

describing the reference configuration as a function of the current configuration.
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Table 3-1 Structure of general differential equation system (DES)

POISSON's differential equation

vI(DVi) +$=0eV

X,t Cartesian coordinates, time
% Nabla differential operator
U=u(x,t) Solution tensor (deflection)
¢ =o(x,1) Source tensor (force)

D= D(x,t) Constitutive tensor (material)

A

X, Initial configuration

Current configuration

=Y

r

A

£=V0

Transformation of DE of 2nd order in DES of 1st order
by introduction of a new variable (strains)

Boundary
condition

u=ug ESU

Y

vIDs) +$=0 eV
£=VU eV

relation (stresses), e.g.

A

6=D& eV

Specification of a constitutive

Boundary
condition

6N =Gy € Sg

Y

Field conditions

vIié+ $=0  Equilibrium condition
£=V0 Kinematic condition
5=D¢ Material law

Y L

Boundary conditions

U

C}ﬁ=(}0 ESS

=Up €Sy Geometric bound. condition

Static boundary condition
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The differences in the coordinates can be identified as the deflections @

= "Ag  tp (3-8)

Such formulas describe pure flows of material points. Only the knowledge of their position
in the reference and in the current position is necessary (only translatory components).
In this study, the focus is set on the Lagrangian formulation, as mostly applied in solid
mechanics.

3.4 Rigid body motion

Rigid bodies do not have any relative deflections between the points of the body. So only
one reference point needs to be observed. Therefore the problem becomes similar to a
material point motion. The motion can be uniquely described, in terms of the associated
translational and rotational motion components. Figure 3-1 describes the movement of a
three dimensional body. The separation of the rotational part of the motion is possible, if
both the initial and current states are related to a global basis, as follows:

tp=tL"% (3-9)
t+Ati, — t-‘rAtLTt-‘rAti. (3_10)

with 'L and 2], as left side rotational transformation matrices. These matrices trans-
form the points of the appropriate body from a global coordinate system to local directi-
ons.

3.5 Deformable body motion (line segment example)

Solid deformable bodies are characterised by changeable relations between material points.
In order to determine the internal deformation state, the rigid body motions need to be ex-

cluded from the total motion, similar to Section 3.4. The motion of a differential element

of a solid body can be exemplarily illustrated with help of a line segment with length s,

as in Fig. 3-2. The effect of rigid body rotations is illustrated in Fig. 3-3 and 3-4.

Whereas the rigid body motion component can be principally determined according to
Sec. 3.4, the internal deformation state (Ilength change of the line segment) can be exclu-
ded with different strategies:

Method (a) Relation of body segment lengths in the reference and current configuration
using Pythagoras’ theorem, e.g.:

tJrAtSQ B t+Atx% + t+AtI§ + t+Atl.§

(3-11)

te2 tp2 | the2 | g2
S r1 + 'z + txg

Method (b) as (a) but returning to a linear measure
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(3-12)

A 2 \/t+Atm%+t+Atx%+t+Atx§

te2 62 02 1 1,2
s T+ try + tag

Initial

Current

Global

Figure 3-1 General body motion

Initial Current

Figure 3-2 Motion of a line segment
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Difference in the rotations
in the local initial and current
coordinate systems

Local current
coordinate system

Al

nonlin

Local initial Initial

coordinate system

Y

Global [,

Figure 3-3 Difference in the strain measure in the initial and current system

Current

Initial

Al

Global

Figure 3-4 Elongation of a line element in current and initial coordinates
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Method (c) Relation of body segments in a global coordinate system using orthogonal
transformations, e.g.:

Y, t+AtZ)

ts B “r - (txatyatz)

tHALg AL (t—&-Atx’ t+At

(3-13)

Such relations are known as strains or strain measures. They describe the internal de-
formation state independent from the initial and current geometry of structural elements.
In engineering, different strain measures are applied, that describe the relative change of
deformable elements.

Within this study, only a selected number of strain measures are considered, that are most-
ly applied in structural mechanics

e Engineering strains .,

e Linear (or Cauchy) strains e¢

e Nominal (or Biot) strains ,,,,,

e Logarithmic (or Hencky) strains ;,,

e Quadratic (or Green-Lagrange) strains €44

Other strain measures are discussed in [223].

The engineering strains ignore rigid body rotations, so the strains are measured in the
original coordinate system. Thus the coordinates can be treated independently

dx
dEeng = g

(3-14)

with dx as the length change in initial coordinate directions. The integrated strains are

t+At$ dx t_;’_AtI

Eong = [ — = —1 (3-15)

ty ty

ty
This provides sufficient approximations for small deformations.

In large deformation theory, the rigid body rotations have to be respected. The nominal
strains can be defined with respect to the reference state

d
A pom = 1 (3-16)
5
including the infinitesimal length difference ds and the initial segment lenght s. The inte-

grated value becomes

t+Ats ds t+At$

Enom = f P —1 (3-17)

i ls ts
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Similarly the strains can be defined with respect to the current deformation state, as pro-
posed by the Hencky approach

ds d
depy = e = — (3-18)

t+ AL S s
The appropriate integrated measure is logarithmic

t+At5 dS t+At$

€log = f — =1In

i S ts

(3-19)

The necessary parameter for the Biot and Hencky strains can be calculated with help of
Method (b) or (c). Alternatively, the Green-Lagrange definition corresponds to Method
(a), with

s-ds
dgquad = ? (3-20)
that results for a defined line segment change in
t+AL
s g 1 [tHAtg2 _ tg2 1 [t+Atg2
Equad = t{ t3_2d8 = 5 |:t$—2:| = 5 |: t52 — 1:| (3-21)

The reason for application of different strain measures is either the simplicity of treatment
or the correctness of the superposition of different strain increments. If any increment is
calculated with respect to the initial configuration, the superposition of the Biot strains is
correct, as

ASl + ASQ
Enom = ——F (3-22)

ts
This is identical to the superposition of the single increments

ASl 4 ASQ _ ASl + ASQ (3_23)

tg ts tg

Enom = AEnom,l + AEnom,Z =

If the original length of the considered line element cannot be determined, the logarithmic
measure should be applied

s+ A A
Clog = In S 2T OS2 (3-24)

lg

and accordingly for the assembled strain increments

Elog = AElog,1 + AEing 2 (3-25)
thus
ts + A ts + A A ts+ A A
f1og = In Sts i Sts jfs 2, 2 f;* %2 (3-26)
1
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The calculation of Green-Lagrange strains is relative straighforward, as avoiding trans-
formations. The governing equations require a incremental formulation [22] involving li-
nearizations. Alternatively, a recalculation into Biot or Hencky strains can be considered.
All strain measure can be transformed into each other

Elog = IN(Epom + 1) (3-27)

Equad = 0.5(e2,,, +1) (3-28)

Moreover, recalling the differences in the linear and nominal strain measures, a direct
link to the Cauchy measure can be established stating a transformation (indicated here as
operator 717)

t+At t+AL

X

—1=T(ec+1)—1 (3-29)

Enom = n
S s

This relation layouts a practical strategy switching from geometric linear to nonlinear
calculations.

It should be noted, that other strain measures exist, especially those of the Eulerian for-
mulation type [22]. In structural engineering traditionally Lagrangian formulations and,
out of these, the nominal (Biot) measure can be advantageous, because it maintains the
affinity between the stress/strain and force/deformation relationship. It is therefore a na-
tural extension to the linear theory. In most practical cases, the required knowledge of the
undeformed initial configuration is given.

3.6 Deformation gradient (3D-continua)

In the previous section, the strain definition was illustrated for one dimensional systems.
For arbitrary systems, the derivation of the strain/displacement relationship can be gene-
ralized with use of the deformation gradient X. Infinitesimal bodies with Z; as it’s local
origin and dz; as the extent are considered. For time increments dt the motion is given in
Lagrangian formulation

AR = X td (3-30)
and it’s inverse (Eulerian)
tdp = X1 AL G (3-31)

related by the deformation gradient X
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r t+Atax1 t+Atax1 t+At0$1 E
tAaxl '?:EQ tgxg
t+AL t+AL t+AL
X = ey | 20z MOz, O, (3-32)
tdx, tOx, toxs
t+Atax3 t+Ata$3 t+Ata$3
L t@xl t@xg ta.’L'g .

This deformation gradient serves as transformation for other quantities too, e.g. as for the
normal tensors of surfaces

ALY XfT 7 (3-33)
The changes in volumes in three dimensional bodies
HALGY = det(X) fdV (3-34)

that are as well appropriate for the special cases of one and two dimensional problems,
thus involving lengths and areas. Hence, the mapping of a directed surface element area
from the initial to the current configuration is given by the Nanson formula [223]

AR AL A — det(X)X Tt tdA (3-35)
An associated deflection gradient can be derived from Eq. (3-8) by
Vi=VHas - Vii=X - XX"'=X-1 (3-36)

with I as the unity tensor, resulting in

[ 8u1 8u1 8u1 T
tgl'l tgl‘g tgfbg
A U U2 U2 )
V= tal'l taZL‘Q taZL‘g (3 37)
8U3 0u3 8u3
B t@xl tal'g tf)xg _

3.7 Tensor strain measures

As outlined before, the total strains are derived from their relationship to the displace-
ments

€11 €12 €13
E(z) =e(u(x)) = [ €21 €22 €23 ] (3-38)

€31 £32 €33

One appropriate, but more theoretical linear strain measure is the Cauchy strain

Ec=X—-1 (3-39)
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This is more often applied in it's symmetric form, that is preferred in small deformation
mechanics and called engineering strain

1 - ~ “
Eeng = sym(éc) = E(X + XT) -1 (3-40)

For large deformation compatible strain measures, the properties within the deformation
gradient need to be explored. For consideration of rigid body rotations the deformation
gradient is splitted using polar decomposition

X=ILT.U (3-41)

that divides the deformation gradient into a left orthogonal rotation tensor L determining
the rigid body rotations, and a symmetric tensor U, known as the stretch tensor. The
rotation tensor is identical to the rotational transformation matrix introduced in Eq. (3-9).

Alternatively, the polar decomposition can be expressed in terms of the right rotation

tensor R

X=U-R! (3-42)
thus

U=X-R with R=X"'LX (3-43)

The polar decomposition is commonly calculated from the Cauchy tensor, defined as
C=XTX=UTLLTU =UTU (3-44)

It can be seen that this tensor is insensitive to rotations. According to this approach (Tab. 3-
2), the stretch tensor can be calculated from the eigenvectors 7> of the Cauchy tensor

U=TATE (3-45)
with the principal stretch tensor

; S e\ 2

A= (TEeTe) (3-46)

Alternatively, the transformation matrices L and R can be directly calculated from the
geometry gradient X, as it is illustrated in Tab. 3-3. For three-dimensional problems the
procedure is iterative. In practice, only a small number of iterations is required to gain suf-
ficent accuracy. The method is extremely fast for two dimensional deformation gradients,
as no iterations are necessary. The procedure is summarized in Tab. 3-4.

In order to avoid square root operations during strain determinations (as discussed for
Method (a) in Sec. 3.5), modifications of the Cauchy strains are often directly used as
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Table 3-2 Polar decomposition of deformation gradient (regular approach)

Left polar decomposition of deformation gradient

Right polar decomposition of deformation gradient

X=L"U=L"U X=U-R'

X Deformation gradient X Deformation gradient

L Left orthogonal rotation matrix R Right rotation matrix

U Positive definite stretch matrix U Positive definite stretch matrix

Deformation gradient Quadratic form

X = Cc=X"X Cauchy strains

Eigenvectors
Tc = eig(C)

Stretch matrix Decoupled form
U=Tc A>T 1 A’=T.JSCT,

Y Y

Left rotation matrix Right rotation matrix
L=Uux' R=X'U=X'LX

strain measures [22,223]. For example, the Cauchy strains are the basis for the Green-
Lagrangian tensor

o = % (X% 1) = % (¢-1) (3-47)

The advantage is the simplicity of the derived mechanical relations. The Hencky strains (3-
19) are calculated as

Elog = InU (3-48)

For practical purposes, nominal measures according to Eq. (3-17) are often preferred,
generalized in three dimensions:

A

é o =U—1 (3-49)

Contradictory to engineering measures, this formulation avoids the influence of the rigid
body motion and has the advantage of material compatiblity to linear strains.
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Table 3-3 Polar decomposition of geometry gradient (Orthogonal transformation approach)

Positive definite (m,m) Matrix = Xy =X
X=L"U=UR"
Lo=1
-y
Y
L= |
4>| i=i+1 I =J"
(= |
— = -
Y
Orthogonal transformation matrix
B -
0
1
. L - a -b
a=X[ii]+ X[} J] l = = o
1
b = X [i, j1- X[} 1] T =
1
¢ =+va? +b? i - b g
c
1
0
L 1_
Xir1 =T X Lier =Tk Lk
Y Y
Y )
j<m >
B
Y .
i<m >
B
n
X el <>
vy
Stretch matrix Left rotation matrix Right rotation matrix
|
U = X1 =Lkt X=L X L= Lk R=X'LX
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Table 3-4 Polar decomposition of 2D-geometry gradient (Orthogonal transformation approach)

Positive definite (2,2) Matrix
X=L"U=UR"
Parameter Parameter
a = X[0,0]+ X[11] d = X[0,0]- X[1,1] - X[0,1]- X[1,0]
b = X[0,1] - X[1,0] > o= X[0,0]- X[0,1] + X[1,0] - X[1,1]
¢ =+a? +b? f = X[0,1% + X112
g = X[0,0]? + X[1,0]?
Y Y
Left transformation matrix Right transformation matrix
Lzla —b R:l da-eb —fb
clb a dc| gb da+eb

Y

Stretch matrix

U=LX=XR

Generalizing, a common form of strain calculations can be declared. It is convenient to
understand the large strain theory as an extension to the linear theory. Then, any strain
calculation can be stated in a linear form

~ ~

e=X-T,— 1 (3-50)

with Tu as the transformation tensor of the kinematic conditions, that contains strain mea-
sure transformations and rigid body rotations. The tensor is calculated, if ¢ is exchanged
by any appropriate strain measure. It is obvious, that for Cauchy strains T, = I and for
nominal strains Tu = R.
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3.8 Kinematic condition

The kinematic condition relates the internal to the external strain configuration. Combi-
ning different internal components, the total strains can be assembled from several parts
e.g. from elastic, plastic and predefinded parts, thus

de = deyorar — (dee + dep +deg + .. .) (3-51)

This is true if all components are defined on the same strain measure basis. Otherwise,
transformations to a reference measure must be conducted. Finally, the kinematic condi-
tion reads

de =0 eV (3-52)

3.9 Material law

The material relation is either given as a function of strains

o =o0(é) (3-53)
or as it's reverse

£ =¢(6) (3-54)

An often applied differential stress-strain relationship is the special case of elastic mate-
rial, the relation between strains and stresses is defined by Hook’s law

Ee = Do (3-55)

with D as a forth order constitutive tensor. In practical cases, D often simplifies due
to symmetric properties, e.g. of isotropic or orthotropic materials. The determination of
the material tensor D is dependend on the selected measures for the stresses and strains.
The use of work-conjugated pairs of strains and stresses is often applied. Transformations
between different stress measures can be considered in the eqilibrium condition. Changing
strain measures is conducted in the kinematic condition. Hence, the energy balance may
require a modification in the material tensors D as well. An example is given in Fig. 3-5.
Very often, hyper-elastic material laws are considered in software codes using the large
deformation theory [1,6].
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Figure 3-5 Differences in nominal and logarithmic strain measures for a
linear force/ displacement relationship

In order to determine the appropriate components of the material tensor, multi-axial tests
can be conducted. In these tests, the initial and current geometry can be monitored for a
given load intensity. After loading, the deformation gradient X can be calculated directly
from the geometry changes. This is the basis to determine the strains ¢, dependend on
the selected measure, e.g. with Eq. (3-47-3-49). On the other hand, the force is used to
determine the stresses, e.g. the Cauchy stresses in the direction 7

fi

% = A (3-56)

From this, transformations into selected stress measures can be calculated. The selecti-
on of appropriate stress-strain pairs is mostly done with a view to effective handling in
calculation. In material science the combination of Green-Lagrangian strains with 2nd
Piola-Kirchhoff stresses is preferred. In structural engineering, most material laws are
given for nominal stress-strain parameters, that can be adopted from the geometrically
linear theory.

Plastic deformations ¢, can develop if a yield function Y is fulfilled:
Y()=0 (3-57)

Within this study, Y is always assumed to be a convex function. A formulation in terms
of stresses o is more often preferred, leading to an expression for perfect plasticity

Yyp(o) =0 (3-58)

The appropriate plastic strains are calculated from

0Yps
oo

de, = d) (3-59)

with the plastic multiplier A\, having the property of non-negativity
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A>0 (3-60)

The multiplier is a general unknown of the augmented Lagrange problem and can be
calculated by introduction of the extended kinematic condition into the yield function.

Beyond perfect plasticity, as in Eq. (3-58), real materials develop hardening effects, thus
the yield function can be extended, e.g. in dependency to the plastic multipiers

YYF(O', )\) =0 (3-61)

In compliance with the Drucker stability postulate [71], the product of the stress and
plastic deformations rate is positive

dode, > 0 (3-62)
The yield law is called "associated" if the derivatives of the yield condition in the yield

function Eq. (3-58) and plastic strain condtion Eq. (3-59) are identical

ONps  Oyr Y
do do  Oo

(3-63)

Large strain problems often raise questions about the volumetric behavior of the consi-
dered body during extreme excitation. The rate in volume change can be described as a
function of the current deformation state and time

AV = V(e df) (3-64)

or even as a inequality condition

dV < V(t*+dg, dt) (3-65)

A special case is the isochoric behavior, where

av =0 (3-66)

The change in volume within the time step d¢ can be evaluated with the change of the
geometric gradient

t+th
V= M (3-67)
det(*X)

3.10 Stresses and Equilibrium

The equlibrium ensures the equivalence of all forces in the system. Within this context it
provides a relation between the external forces and stresses (internal forces) in the body.
Generally for an infinitesimal volume, the internal stresses are
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t+At d (;5

AL A (3-68)

7=

for the current area ‘2'd A loaded by external forces ""2!d¢. All parameters are given in

t+At

the current configuration and same direction n, that describes the orientation of the

loaded surface within the coordinate system.
The equilibrium requires the sum of all internal forces to vanish. The equation can be
directly obtained from Eq. (3-68), integrating over the appropriate regions

FUALGA 4 t+Atd¢§ —0 (3-69)

The transformation between surface-oriented stresses 7 and volumetric-oriented Cauchy
stresses ¢ can be formulated as

=G0t (3-70)

+A%h of the normal to the plane on which the forces
act. The Cauchy stresses can be assigned to three coordinate directions to form a 2nd

order tensor

with the vector of direction cosines

. 011 012 013

oc = | 021 022 0323 (3-71)
031 032 033

With substitution of Eq. (3-70) into Eq. (3-69), the equilibrium reads

Go AR AL A t+Atd¢§ -0 (3-72)

Furthermore, the stresses in the current configuration of an infinitesimal volume can be
related to the surface in the initial configuration by application of Eq. (3-35), thus giving

6o det(X)XTtRtdA 4+ 24 = 0 (3-73)
Here another stress measure can be defined by the 1st Piola-Kirchhoff stress tensor

op = 6c det(X)X T (3-74)
thus the equilibrium is

6piRtdA +HAG = 0 (3-75)

Using the Gauss/Ostrogradski theorem [39]

opntdA = 2&p tav (3-76)
ox

leads to
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QA tdv+t+Atdq5 —0 (3-77)

op
ox

This is the most common applied form of equilibrium conditions. It can be modified to fit
for other stress measures. To provide a general form that is not dependent on the applied
stress definition, the equilibrium conditions can be witten as

5%‘3 T, tdV + A dg = 0 (3-78)

Herein o is the selected stress and 7, is the appropriate transformation tensor of the equi-
librium conditions, governing the stress measure switches and rigid body transformations.

For instance, some implementations of the Hencky type theory use, e.g. [6]
0Ty = 0oy det(X)X T (3-79)
As the nominal (Biot) stresses are

Onom = LUP (3'80)

the implementation is as follows

0Ty = 0pomL” (3-81)
If the forces are given in the initial configuration, the following transformation holds
tdp = X1 AL (3-82)
Then, the equilibrium is as follows

0 . . NP

—GptdV + X' =0 (3-83)

or re-arranged

gX—l&p LV +tdg = 0 (3-84)
a

and with introduction of the 2st Piola-Kirchhoff stress

Gquad = X ' 60 det( X)X T = X"15p (3-85)

a special form of the equilibrium conditions is obtained

0 A
5= 0quaa'dV + ') = 0 (3-86)

The stress measures can be exchanged by other measures. These basics are intensively
shown throughout the literature, e.g. [22,14,32,170].
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Generally, pairs of strain and stress measures can almost arbitrarely be selected. However,
reasonable combinations are only obtained, if the pairs of strains € and stresses o have
the same configuration basis and being "work-conjugate". They can be directly used to
express the internal work rate

dVVintern = ode (3'87)

that is typically derrived by transformations from the reference pair Cauchy stresses o¢
and tensor of deformation velocity D, as in [168]

dVVintern = ode = UCD (3'88)

for pairs in the current configuration and

AWintern = 0de = oD det X (3-89)

for pairs in the initial configuration, involving the volumetric change in the transformati-
on.

3.11 Static and geometric boundary conditions

The static boundary condition provides an equation, that specifies the stresses at the sur-
face S, of the considered volume

ons — 09 =10 € Ss (3-90)

It is obvious, that this formulation is formally similar to Eq. (3-70).

The geometric boundary condition relates the deflections @ of material points at the sur-
face S, to given deflections 1

Un, — gy =0 € Su (3-91)
The direction cosines are given with the tensors 7, and 7.

3.12 Static forces, inertia and damping

Forces within the structure can be of different origin. In structural dynamics, according to
d’Alemberts principle, the forces can be separated due to static effects dpgyqs, inertia de
and damping d¢¢, and so on:

dd = doys + doc + ddsrar + - - (3-92)

The static forces are distributed throughout the volume V, or along a surface S or as
concentrated forces

dbsiar = GvdV + psdSs + f; (3-93)
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The inertia forces are dependent on the density p, and the acceleration i within the body
don = pudV (3-94)

The damping can be given similarely, introducing the damping density v and the velocity
U

doc = vudV (3-95)

It should be noted, that all of these quantities can change throughout motion and deforma-
tions. The appropriate transformations need to be applied, typically volumetric adaptions
as in Eq. (3-34).
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4 Discrete systems and matrix formulations

4.1 Discretization

For numerical evaluation only a finite set of parameters needs to be considered. For the
necessary approximation of continuum mechanical problems, discretization procedures
for time and space are applied. Subspaces (elements) or time steps are selected, that be-
have less complex as the overall system and therefore can be simplified. In the resulting
meshes, the governing functions of the discrete problem are expressed with respect to
a limited number of reasonable selected times or positions. Besides others, often used
discretization methods for solving boundary value problems in structural dynamics are:

e Finite Element Method (FEM) [22,230]
e FElement Free Galerkin method (EFG) [27,28,29]

that are considered within this study. The concepts apply different discretization strate-
gies. In the traditional FEM and EFG, the time discretization is done with help of finite
differences, whereas trial functions are applied for volume discretization (Tab. 4-1). In the
following sections the basic approaches are summarized.

For numerical calculations it is necessary to derive a matrix/vector form of the gover-
ning equations and inequalities. Appropriate tensor-matrix transformation operators need
to be defined. In the appendix Sec. 11.1, examples for three-dimensional operators are
provided.

Table 4-1 Discretization categories in structural dynamics

Dynamic problem (Hamiltonian system)

{

f

{

Finite Difference Methods

Traditional variational
methods (FEM, EFG,...)

Space-Time Element
Methods

! !

1 !

1 1

Discrete Discrete Discrete Discrete Discrete Discrete
time space time space time space
Finite Finite Finite Trial Trial Trial
differences differences differences functions functions functions




4 Discrete systems and matrix formulations

4.2 Geometry

The behavior of the element is expressed as functions of the parameters given in a grid
of discrete points (nodes, times). The nodes can be identified at a discrete time ¢ in a
Cartesian coordinate system by the location matrix

tin = diag [txl,txg,ta:g,]T eV 4-1)

The directions are independent, so a vector form
tl'N = t.fj'N -1 (4—2)
with [ as the unity vector is often used as well. After a time step At the same node is

characterized by

~ . T
t+At$N — dzag [tJrAtI‘l, t+At1,2’ t+Atl,3] cVv (4_3)

The subspaces considered as elements (e.g. in FDM, FEM) or supports (e.g. in EFG)
are defined by associated nodes. The node coordinates, belonging to one element, can be
assembled, independent from the considered time

Tp = 2N, ... ,x]Tvn}T (4-4)

Any point within the element can be addressed by geometric field equations

v =Hy(x) 2p (43)
that consists of the interpolation matrix H,,

Hy(x) = Fy(x) - Gy(wp)™ (4-6)

The matrix F; is the polynomial interpolation function, commonly consisting of complete
polynomials of the linear Lagrange type. The appropriate coefficients are provided with
the inverse of the nodal polynomial function

Gg(37E) = [Pg(xN1>> cee Pg(mNn)]T 4-7)
Coordinates in different times can be assessed by implementing directly

Ay = Hy('x) - A 2p (4-8)

where the shape matrix can be defined for a reference system (time ¢). The derivative
relation at different times was introduced in Eq. (3-30) with the geometry gradient

% . 8Hg(ti’>

X, = ALy o (4-9)
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For different times the derivatives can be directly calculated from:

t+At 5 tay
aHg(ax i) aﬂgi 2 g @10)

4.3 Displacements

The difference in coordinate positions through time is the displacement u

Ao tHAL

Un ry — loy = diag [ul,u2,u3]T eV 4-11)

The element’s nodal displacements can be assembled as
i = [4F o 1" 4-12

The displacement behavior between the nodes of a subregion is described by shape (or
trial) functions, that are usually formed from polynomials with potentials from = and
appropriate coefficients a,,

a(x) = Py(z) - (4-13)

The polynomial matrix of the displacements Pu(x) is preselected in FEM, according to
the order of the selected shape function. The coefficient matrix a,, can be calculated from
the node values

~

up = Gu - Gy (4-14)
with
Gy = [Pu(@n), - Pu(@na)l” (4-15)

If the number of unknowns in the element and the number of shape functions as well as
the shape function order are compatible, the matrix GG, is invertible, then

by =Gyt -l (4-16)

Combining Eq. (4-13) and (4-16) leads to

~

i(x) = Pu()Gyt - g (4-17)
thus any material point in the considered subregion can be addressed. The direct invertibi-
lity of &, is requested in FEM. In other methods, like the Element Free Galerkin method,
the matrix G, is non-quadratic, from over-determination. This can be eliminated by in-
terpolation methods. Besides others concepts [156], most popular in this context is the
Moving Least Square method [136]. The method first constructs a non-singular quadratic
matrix
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4 Discrete systems and matrix formulations

Iy = Wgre - GereGhpg (4-18)

where G pr¢ is constructed similar to (4-15), but is in general non-quadratic. Additionally
a weight vector wgr is introduced that evaluates the contribution of the considered node
to the result at the considered point z. Often spline type functions are used e.g. the cubic
spline interpolation function with radius  around the considered point z [27]

2

3 — 42 4 43 forr <0.5
= 4 )

w(r) S~ 4r? for0.5<r<1.0 19

0 forr > 1.0

An example is given in Fig. 4-1. A second matrix is defined

Ly = dpre - Grre (4-20)
that together with Eq. (4-18) gives finally

G =T7'T, (4-21)

so that Eq. (4-17) can be used similarly to the FEM concept. Equation (4-17) is commonly
shortened to

~

a(z) = Hy(z) - ip (4-22)

with H, () as the matrix of the displacement shape function. In case that H,(z) is iden-
tical with the interpolation matrix of the geometry H,(x) from Eq. (4-5), the formed
element is called 'isoparametric’.

The nodal deformations can be expressed in vector form as

unN = fLN -1 (4-23)
Accordingly, the element displacements are

up = [ufy, ok, ] (4-24)

4.4 Geometric boundary conditions

The geometric boundary conditions relate the displacements on the surface of a body to a
set of pre-defined displacements. In discretized systems, continuous boundary definitions
are transformed into discrete formulations by application of form functions, e.g. in a linear
formulation the geometric boundary condition reads

gu(x)Hu(a:)uE —up(z) = Ny(x)Hy(v)up — Hy(x)uo(zp)

Ny(z)ug — up(xg) =0 €S, (4-25)
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4 Discrete systems and matrix formulations

1 Cubic spline weight function

06

Figure 4-1 Example weight function

The matrix NV, is the direction matrix, that additionally identifies a material point to be
a part of the geometrically predetermined boundary S,,. Any applied kinematic boundary
condition induces a resisting support force c, as a dual parameter.

A special case of geometric boundary conditions are contact problems. They can be ma-
thematically formulated as inequality conditions

Nu(x)ug —up(xg) <0 (4-26)

Whereas the consideration of contact conditions in traditional finite element calculations
involves the organization of an iterative calculation strategy. The consideration of such
inequality conditions within optimization problems is straightforward.

4.5 Total strain/displacement relationship

As sketched in Sec. 3.7, the strain measures for large deformations can be interpreted as
an extension of the linear (Cauchy) theory. The basic derivation of the linear coefficient
matrices from continuum mechanics is illustrated in Tab. 4-2 including the engineering
simplifications. The linear strains can be derived from the symmetric part of the displace-
ment derivatives

Bu(z) = (a%) (4-27)

The ignorance of the antimetric part, that contains the rotational components, is characte-
ristic for linear approximations.
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Table 4-2 Derivation of engineering operator matrix of kinematic conditions

Position change of a material point

t+At)"( _ t)2+LAJ

Y

Strain tensor separation

povocQu_ Mfow ) Mjow
aXJ 2 aXJ 8xi 2 aXJ aXi
N J ¢ J
Vv Vo
!
symmetric antimetric = 0 (engineering model)
A
Strain tensor (symmetric part)
a1 ) 1A aw)
8X1 2 6X2 6X1 2 8X3 6X1
s tfow ) uy 1[6&+6%]
2 8XJ aXi 6X2 2 8X3 6X2
6U3
symm. —
L 0X3
g Transformation into vector/matrix formulation

Y

Strain vector and operator matrix (engineering model)

auy K
aX»] 6x1
R Y 2
&11 6X2 6X2
2 | | oy 2 |tq,
g=| o3 |- 2 =Byu= 3|1y
T2y | |our oup || 0 0 2
A ~ v u
2993 | | O%2 X OXy  OXq 3
2 6U2 6U3 0 0
L€Y13] | ——+—— -
6X3 6X2 6X3 6X2
a2y I
| OX3  OXq | | OX3 0Xq |
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4 Discrete systems and matrix formulations

The derivative matrix of the displacement field with respect to element shape functions
can be directly calculated from the shape functions Eq. (4-22)

OP,(z) - G A A
(—% u ):Bmm(x) (4-28)

In Sec. 3.7 a general form of the kinematic condition was proposed, that can be stated
independently from the selected strain measure. The general transformation tensor 7, is
within the kinematic condition

HEATE(z) = AT (@) By (x) Hu(x) Mg — 1 (4-29)

As known from Sec. 3, the strain measures can be derived from the deformation gradient
Xy

t+AtXu(x) _ Eu(x)ﬁu(x)HAth (4-30)
thus
HALA (1) = AT () A () — T (4-31)

The transformation tensor ”A"Tu(x) is dependent on the selected strain measure and can
be generally calculated from reversing Eq. (4-31), thus

HAUD (1) = (At (x) — [)HALX () (4-32)
while replacing the strains **22(z), e.g. with either of

HAtE () = t+AtXu(x) ] (4-33)
Hatg (x) = LAY () = [ =U — 1 (4-34)
At (o) = In(tFA LAY (1)) = In U (4-35)
O paa(w) = 0.5 % (FAXT (1) A4 X (@) = 1) = 05(C = ) (4-36)

Now with Eq. (4-32) and (4-33) any of the strain measures can be written as a function of
the Cauchy strains

AL (7) = t+AtTu(l‘)t+Atéc($) (4-37)

Such strains can evolve from previous strain states, thus Eq. (4-29) can be written as

~

HAlz(g) = Tu(x)éu(x)ﬁu(x)(txg +ug)—1 (4-38)
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Separating an initial strain condition for time ¢

o ='éc = By(x)H,(x)tag — 1 (4-39)
that itself needs to be a valid Cauchy strain, the equation turns to

HHALE (1) = AT (1) (B + T + Bu(x)Hy(x)ug) — 1 (4-40)
The coefficients of the deformations vy are simplified, using

Ay (x) = AT, () By (2) H, (2) (4-41)
and transformed

Ay(x) = spr(Ay(z)) (4-42)

with spr as the transcription operator that shifts the tensor form into an equivalent matrix
appearance (Sec. 11.1). Accordingly, the transformation tensor ‘*2!T,, (x) of the initial
strains reads in matrix form

T.(z) = arr(*T2T, () (4-43)

And, the vector forms of the strains and initial strains read

e(x) = vec("TAe(z)) (4-44)

eo(x) = vec(*éc(x)) = vec(éo(x)) (4-45)

If static boundary conditions are defined (see Sec. 4.9), the dual support displacements c,,
need consideration within the kinematic conditions. Summarizing the matrix form of the
kinematic conditions, the following expression is derived

e=Au(v)ug +Ty(z)(go + I) — I + NI(z)c,(z) (4-46)

The calculation of all matrices simplifies, if isoparametric elements are applied. Then the
shape functions of geometry and displacements are identical and therefore

A

Xy(z) = Xu(2) = X () (4-47)

4.6 Handling of strain components and increments

As defined in Sec. 3 it is assumed that in linear theory the total strains can be calculated
from different strain components e.g.

ec = [dec =3 Aecy (4-48)
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4 Discrete systems and matrix formulations

e.g as a combination of elastic and plastic contributions.

In nonlinear theory this concept can be adopted almost similarly. As £, in Eq. (4-40) could
be considered as the sum of different Cauchy strain components, the following equation
can be stated

AL () = AT, (1) (zi@m) +1+ Eu(x)ﬁu(x)uE) —1 (4-49)

Either component must be given in a compatible strain measure. Difference in measures
A and B can be expressed using the matrix equation

~

Teap=Ea+Dép+1)! (4-50)

and used for strain transformations. For the transformation of material laws, a useful direct
transformation formula is

Tpap = Eség (4-51)

provided that €5 is not evaluated at the zero point. As indicated, the transformation is
generally strain dependent. Therefore the transformed material tensor is

Du(éa) = Tp.a_pDp(ép) (4-52)

Mostly, the available solid mechanics software is based on persistent nonlinear approaches
as symbolized in Tab. 4-4. Alternatively, interfaces between measures (e.g. nonlinear and
linear) can be installed at any position as it is illustrated in Tabs. 4-4-4-6, involving strains,
stresses or forces separately within the nonlinear measure range. Most compatibility with
traditional engineering approaches is obtained, if the nominal strain approach is used
throughout any calculation or if the transformations are organized as indicated in Tab. 4-
6.

However, the tasks in finite element analysis are widely spreaded, that's why given finite
element programs select one or more strain measures and material descriptions that in
combination fits best for the intended situation. To be consistent with most of the appli-
cations, tools for least square fittings for determination of appropriate material constants
have to be provided e.g. [1].

4.7 Stresses and internal forces

With introduction of appropriate stress shape functions, all stresses within an element can
be expressed as functions of the nodal stress values 7.

. 011 012 013

ON = | 021 022 023 (4-53)

031 032 033

All nodal stresses within an element can be summarized within a matrix
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Table 4-3 Linear/nominal strain measures

< - Operator
Deflections Forces
u linear T f
Affine material
law
Strains Strains Stresses
Eges Eelastic Z linear c

Strains

e

Strains

€

Table 4-4 Use of nonlinear strain measures (nonlinear strains, stresses and forces)

> = Operator
Deflections Forces
u non-linear f
Non-affine
material law
I
a
Strains Strains Stresses
Eges Eelastic linear c
Strains
s
non-linear measures

< non-linear >

Strains

€
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Table 4-5 Use of nonlinear strain measures (nonlinear strains and stresses)

= Operator

Deflections Forces
u linear Tl f

Non-affine

material law

Y [ i

Strains Strains Stresses
Eges Eclastic linear o

Strains

foner
< non-linear >

non-linear measures

Strains

€0

Table 4-6 Use of nonlinear strain measures (nonlinear strains)

= Operator
Deflections Forces
u linear f
Affine material
law
Y I
|
Strains Strains 1 Stresses
1
.
Eges Eelastic H c
|
non-linear
measures

Strains

|
1

1

1

1

|

1

1

1

1

|

Eother 1

1

1

1

|

1

1

|

< non-linear >

ey

Strains

&
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op = [on1T, ... ,oNnT]T (4-54)

The shape functions, are commonly formed from polynomials with potentials from  and
appropriate coefficients a,

6(x) = Py(x) - as (4-55)

with ]58 as the matrix of basis functions. The coefficient matrix a, can be calculated from
the node values

~

&E = Gs : ds (4_56)
with

~ N N T

Gs: Pg(d]Nl),...,Pg(fL’Nn) (4'57)

If the number of unknowns in the element and the number of shape functions as well as
the shape function order are compatible, the matrix G is invertible, then

as=G;'-op (4-58)

Combining Eq. (4-55) and (4-58) leads to

A

6(x) = Py(v)G5 ' i (4-59)
Approaches for the Element Free Galerkin method are formally possible, similar to the
approaches of Eq. (4-18-4-22). Equation (4-59) can be shortened to

~

o(x) = Hys(x)-0p (4-60)

with H,(x) the matrix of the stress shape function.

Dependent on the problem, it is sometimes useful to use partly integrated stresses (stress
resultants or internal forces) in order to reduce the dimension of the problem (longitudinal
forces, transversal forces, moments). These parameters are derived by introduction of
cross-sections with e.g. area, moment of inertia and height, and integration with respect
to the stresses in such cross-sections. They are mostly used to simplify the calculation of
such structural elements, whose dimensions have been reduced in the mechanical model,
e.g. beams, plates and shells. As an example, the calculation of a bending moment in a
simple beam element is given

M, = [ §6(x,y)dxdy (4-61)

As internal forces are just integral parameters directly dependent on the stresses, the me-
chanics in terms of internal forces is not different from that in terms of stresses. For
generalizing the mathematical treatment of stresses and internal forces within mechanical
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procedures of this study, a superior variable s is introduced, that represents either stresses
or internal forces. The assignment to the appropriate variable is then dependent on the
selected element formulation.

The stresses, and internal forces respectively, can be expressed in vector form

o(x) = vec(a(x)) (4-62)

4.8 Material law

In a general material law the stresses are defined as the function of the strains or vice
versa, as mentioned in Sec. 3. The number of available material laws is overwhelming. In
this study, only two material law types are selected for detailed consideration

e Linear elastic material law
e Linear elastic - plastic material law
that have a major practical relevancy for seismic design purposes.

4.8.1 Linear elastic material law

For linear elastic materials, or elastic parts of strain components, the relationship is
6(z) = D(z)éc(x) (4-63)

determined by the elasticity tensor D(x). The derivation of D () out of continuum mecha-
nical considerations is illustrated in Tab. 4-7. With application of symmetry conditions,
the important isotropic and orthotropic cases can be derived. Two dimensional special ca-
ses are discussed in Tab. 4-8. The transformation into matrix form is generally given by
the operation

D(z) = mat(D(z)) (4-64)

with the 2nd order pseudo-tensor [)(x), that have been condensed for orthotropic elastic
material out of the 4th order tensor D(z).

Equation (4-60) can be directly used to replace the volume stresses (z) in the elastic
material law Eq. (4-63) by the element’s nodal stresses g

ée = D(x) "Hy(z) - 65 (4-65)

If the strains are also to be calculated at the nodes of elements the following expression
can be applied

épe=HT(2)D(z) ' Hy(x) - 65 (4-66)

With
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Table 4-7 Elastic material matrix D

4th-order material tensor

D =Djjq

Symmetry conditions 2nd-order pseudo-tensor

Diji = Djiki =D

Isotropic elastic material

1

=L

! 1

D'=—
symm.

-V
YOUNG’s modulus
POISSON’s ratio

Y

1

f

Transformation into vector/matrix formulation

f

Material matrix (spatial)

E

D = mat(D)

(1+v)(1-2v)

1-v L L 0 0 0
1-v ) 0 0 0
1-v 0 0 0
1-2v 0 0
2 1-2
-2v
symm. 0
y 2
1-2v
L 2 ]

Q(z) = H (2)D(x) " H,(x)

(4-67)

the equation simplifies to

~

éE,e = Q(fl') - OE

(4-68)

The handling of compressible/incompressible material can be organized by substituti-
on of Eq. (4-9) into (3-67), that leads to a nonlinear matrix function. It can be directly

introduced as a subsidiary condition of an optimization problem.

The formulation of elasto-plastic material behavior as inequality conditions of an optimi-
zation problem makes the implementation very convenient. The commonly applied proce-

dures of prediction and ¢

orrection of the stress state as in classical incremental approaches

need not explicitly be performed. The problem is solved as a nonlinear problem. The ne-
cessary iterations need not to be organized by the user, they are part of the optimization

algorithm.
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Table 4-8 Elastic isotropic material matrix D (plane special cases)

Isotropic elastic behavior

e=Ds

1 -v —vu
D'==|-v 1 -v

-v -vuv 1

Inverse 2"-order material tensor (spatial)

Special case
Plane stress state

Gz =0y, =0y, =0

Special case
Plane strain state

€, =Exz =8y, =0

1

Eliminate zero tensor components

6_1_1 1 Y
TEl-v 1

Calculate Inverse

5=L v 1-v
(1+v)(1-2v)

1

Calculate inverse tensor

~ E 1 v
D=
1—02{0 1}

Eliminate zero tensor components

5_ E {1—0 U:|
(1+v)(1-2v)| v 1-v

<—| Transformation into vector/matrix formulation |—>

Y

Material matrix Material matrix
1 v 1-v v
~ 1 - 1-
D = mat(D) = v D-mat®)-——2 | © 1V
1-p2 1 -v (1+v)(1-2v) 1-v -v
v 1 -v 1-v
Special case oy = oyx Special case cxy = oyx
V) 1-v v
= E ~ E
D=mat(D)=——|v 1 D=matD)=———| v 1-v
1-v 1-v (1+U)(1—2\)) 1-2v
2 2
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Elastic-plastic material laws commonly apply the superposition approach, starting from
an elastic basis and adding plastic components

dé = dé, + dé, (4-69)

Except for pure linear elasticity, the total strains within a body are generally history depen-
dent. Those material laws will be usually combined with a yield hinge assumption, where
the plastic strains are concentrated in discrete points or lines, as introduced in Sec. 3.9.

Following, the derivation of matrix notations for selected elasto-plastic material laws are
exemplarily demonstrated. The matrix forms allow for convenient numerical treatment for
the yield condition as well as for gradient determinations. Only the case of "associated"
yield rules is illustrated. It should be noted, that the selected material laws are appropria-
te for most design purposes. Dependent on the considered problem, analysis tasks may
require more complex descriptions [22,223].

4.8.2  Linear plasticity condition

The yield condition is a linear function, given as

~

Yi(x) = LE, (2)6(x) — Gpim(z) = 0 eV, (4-70)
The linear coefficients L,, 1 () read
Lyp(@)=[Lpa = Lpn, | (4-71)

with the number of interacting stress components ng at the plasticize volume part V},. The
constant part of the equation is Gy;,.

Equation (4-70) can be extended for the case of hardening materials, here given as a
function of the plastic strains

Vi = V(o,e,) 4-72)
The hardening can be incorparated in Eq. (4-70) as follows
Ly (6(x) = Av(A(@))) = 6um(x) =0 €V, (4-73)

with the hardening function A, that is dependent on the plastic multipliers or plastic
deformation. For example, it can be defined as a polygonal approach, i.e. as a function of
the plastic strains

An(Ep(w)) = iz’;hxx)e;,(x) (4-74)

with ny, as the polynomial degree. Examples are shown in Fig. 4-2.

The plastic strain components are calculated from
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S A S A
g,=1 g,=1
As(e,=1)=h, As(e,=1)=Zh,
> >
L , > € L y > €
Se 8[:J ge gp
As =h, g, As=Xh g,
Linear hardening Polynomial hardening
Figure 4-2 Hardening concepts
Ep(x) = LI:QL(x) - A(x) eV, (4-75)
More generally, for linear hardening, the corresponding relation can be given in matrix
form
Ap(Mx)) = Ap(2)A(2) (4-76)

In the correspondent isotropic hardening rule, matrix A, is computable at point = from
Apiso(2) = ho1im (2) 4 () 4-77)
As well, Prager’s kinematic hardening approach reads

Appin(x) = LT Ly (4-78)
with h as the hardening modulus [133]. Koiter’s hardening is stating the independence of

the hardening modes with the implementation of a pure diagonal hardening matrix [61].

Linear plasticity is numerically effective to express a yield function. If possible, nonli-
near problems should be linearized, as can be seen in the example of Fig. 4-3. Here an
interaction condition of two stress/internal force components is implemented as a linear
condition. The coefficient L_p,L contains the yield plane parameters a;; and oy;,, is the
distance b;.

4.8.3 von Mises yield criterion

The von Mises yield criterion [153] is given at a material point as a function of the second
stress deviator invariant .J,
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v

aAN

direction vector
of the yield function

am

Figure 4-3 Linearization of plasticity conditions

~

As in Eq. 4.8.2, the condition can be extended for hardening materials.

The invariant is in three dimensions

Jo(x) = = [(o11 — 022)° + (011 — 033)° + (092 — 033)2} + 07y + 033 + 03, (4-80)

=

and is always a positive number. From the inequality (4-79) it is obvious, that the von Mi-
ses limit stress oy, 007 () is always greater or equal to y/Jo(x), hence it is also positive.
Thus the condition still holds for the squares

Jo(x) < 67 onr () (4-81)

The invariant J5(z) can be expressed in matrix form

Jo(x) = %UT(w)Qp,vMo(x) (4-82)

where o (z) is the stress component vector and (), is a constant coefficient matrix
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-9 1 -
31 23

3 3
Qp,vM: _i _1 2 (4-83)

3 3

2
2
L 2_

Thus the von Mises yield criterion becomes finally a quadratic inequality

1
S (@)@t () = OBy rs () <0 (4-84)

4.8.4  Drucker-Prager yield criterion

The Drucker-Prager yield criterion [72] is an extension to the von Mises approach, given
as a function of the first stress invariant /; and the second stress deviator invariant J

Ypp(o(z)) = appli(x) + v/ J2(x) — Tpp <0 eV, (4-85)

The parameter o pp is a friction coefficient, that estimates the influence of pressure on the
yield limit, important for materials with cohesive frictional properties such as concrete.
The parameter 7pp is the limit yield stress under pure shear loading. The parameters app
and 7pp are commonly calculated from the friction angle ¢ and the cohesion ¢

- 6 sin(¢) (4-86)

V3(3 = sin(¢))

_ bcceos(o) ]
Tpp = \/§<3 — 3@n<¢)) (4 87)

With rearrangement of (4-85)

V() < mpp — appli(z) (4-88)

it is obvious, that from the non-negativity of \/Js(z) follows the non-negativity of the
right side of the inequality. Thus the condition is equal to it’s quadratic form

Jo(z) < (tpp — appli(z))? (4-89)
or
Jo(z) < 75p — 21ppappli(z) + % pli () (4-90)

The third term is given as:
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2rppappli(r) = 27—DP05DP% (011 + 092 + 033)
that is in matrix notation

2rppappli(z) = L] ppo(x)

with the vector

2TppQ 2TppQ 2TppQ
Lypp = DI; DP DI;) DP DI; DP 4 0 0

Accordingly, the forth term of (4-90) is in matrix notation

1
0hpT2e) = S0 (1)@pa0

with
1 11
o0 1 11
o 1 11
@2 =y 0
0
0

Including Eq. (4-82), the yield criterion is

%UT(J:)QP’”MU(J;) - %UT(I>QP,2‘7(I) + LZ,DP‘7<=T> < 7-127P

or combined, in a quadratic form

1
EUT(QS)Qp,DPU(IE) + LZ:DPJ(.Z') < TJ2DP
with
3— o —0.5(3+a?) —0.5(3+a?)
—05(3+0a?)  3—a®  —0.5(3+a?)
_ 2| -053B+a”) —05(3+a?)  3-a?
Qp,DP —

9

Respectively, the condition can be extended for hardening materials.

4.9 Static boundary conditions

(4-91)

(4-92)

(4-93)

(4-94)

(4-95)

(4-96)

(4-97)

(4-98)

Static boundary conditions relate the stresses on the surface of a body to a set of pre-

defined stresses. As well as for the kinematic boundary conditions, continous boundary
definitions are transformed into discrete formulations by application of form functions,

e.g. in a linear formulation the static boundary condition reads
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Ny(z)Hs(x)op — oo(x) = Ns(z)Hs(x)op — Hy(x)oo(xg) = Ns(z)og — oo(zp) =
0 €Ss (4-99)

The matrix NV, is the direction matrix, that additionally identifies a material point to be a
part of the statically predetermined boundary S. Similarly to stresses, the static boundary
conditions can be defined for internla force values. Any applied static boundary condition
induces a support displacement ¢, as a dual parameter.

4.10 Equilibrium condition

The equilibrium condition connects the external with the internal forces/stresses. Gene-
rally, the equilibrium condition can be formulated

By(2)Ty(2)6(z) + ¢(x) =0 % (4-100)

where B, (x) is a derivative tensor. Table 4-9 is illustrating the derivation of the appropriate
linear derivative matrix B, from continuum mechanics. In comparison with the operator
matrix of the kinematic conditions B, it becomes obvious, that By is the transpose of B,,.
Thus, because the problem is formulated in the reel number space, the operators fulfill the
property of self-adjointness.

Using the stress shape functions defined in Sec. 4.7, the equilibrium condition (4-100) can
be defined as

~ A~

B,(2)T,(2)H,y(2)65 + ¢(z) = 0 (4-101)

Similarly to the strain/displacement conditions, the coefficients can be assembled in one
operator

Ay(w) = By(@)Ty(x) Hy(x) (4-102)
Then Eq. (4-100) is shorter

Ay(@)op + p(x) =0 (4-103)
The matrix formulation is obtained by application of tensor-matrix transformations

Ay(z)T = spr(A,(z)T) (4-104)

If the motion of the material point is restricted by geometric boundary conditions, the
resulting reaction forces c4 are considered within the equilibrium conditions. The equili-
brium condition in matrix notation is

Ay(x)op + Ny + p(x) =0 (4-105)
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Table 4-9 Derivation of operator matrix of equilibrium conditions

Stress tensor

11 G612 G613
o= 622 623
symm. G33

Y

Equilibrium condition

6011 " 6612 " 8613
6X1 8X2 6X3

L0F
. 0oy
VT6+(p:—”+(pi _ | Doz + 0522 + 0523 +| @y |=0
OX; O0X4  OXp  OX3
?3
6631 o 6632 - 8633
5X1 8x2 6X3
gt Transformation into vector/matrix formulation
Y

Stress vector und operator matrix

) 0 o ][on]
6X1 6X2 6x3 622 01
Beo + 0 = 0 9 RRE
S . 6x2 6x1 6x3 G12 2
R R
6x3 6X2 6x1 G13
Y

Self-adjointness of operators of
equilibrium and kinematic conditions

then:
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4.11 Forces

As well, external forces are discretized, while assuming conservative loads within this
study. The function of the forces can be given as a shape functions H,. Following the
procedure in Sec. 4.3 and 4.7, the shape function can be derived

p(r) = Hy(x) - op (4-106)
dependent on the nodal forces ; within the element
o =[en1,- - onnl" (4-107)

According to d’Alembert’s principle, inertia and damping forces are superposed as already
indicated in Eq. (3-92). For these components, discrete descriptions can be provided as
well. The mass is dependent on the mass density p and the distribution in the vicinity of
x, given by the shape functions H,,

pu(r) = p(a)ii(x) = T Hy(2)pp™ > Hy ()iip (4-108)

With respect to the change of the material direction, during deformations the relation turns
to

pu(r) = Hypn(2)L(z)pp L () Hy (2)iip (4-109)

The damping is mostly treated separately, dependent on the stiffness and masses (Rayleigh
approach). Nevertheless a general formula with the damping density v and the damping
distribution function /. can be given

po(x) = v(z)i(r) = He(z)L(z)vpL" (z)Hy (v)ie (4-110)

u

4.12 Geometric nonlinear numerics for material point

The relations derived in the last section can be implemented for the numerical solution
of tasks in engineering. The appropriate governing equations are as follows for physical
linearity:

Equilibrium condition:

As(z)og + Hy(x)or =0 eV (4-111)

Kinematic condition:

Ay(@)up + Ty(z)(eo(z) + I) — I = e(x) eV (4-112)

Linear elastic material law:
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op = Q (z)e(x) eV (4-113)
and the geometric and static boundary conditions

Nu(x)ug — ug(xg) =0 eV (4-114)

N,(z)og — oolzp) =0 €V (4-115)

Equations (4-111-4-113) can be combined to

Knu()us + 9yeola) = —Ho(2)ps @-116)
with

Kyp(r) = Ay (2)Q () Au(x) (4-117)
s = A2)Q (@) (L) @0 (w) + 1) = ] @ns)

In dynamics, ¢ contains inertia and damping forces. Then Eq. (4-116) is known as the
‘equation of motion/, i.e. for elastic problems

Knp(2)up + @geo(T) + Osia(T) = —op(7) — oo () (4-119)

The boundary conditions can be included according to the preceding sections. The engi-
neering simplifications are given if

T, =1 (4-120)
and
A, = Ag (4-121)

If the structure is subjected to large deformations, considerable differences in geometric
linear and nonlinear calculation can be expected, as illustrated in the example of Fig. 4-4.
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Elastic shell structure Small strain theory Large strain theory

Figure 4-4 Comparison of geometric linear and nonlinear calculation of an
extremely loaded shell structure

4.13 Physical nonlinear numerics at material points (elasto-plastic systems)

Generalizing all physical nonlinear matrix equations and equalities, a basic condition
scheme can be provided with Tab. 4-10. Here the conditions are summarized for linear
yield functions and linear boundary conditions. It contains all governing functions with
respect to a primal variable set, specified at the top of the scheme. Associated to any func-
tion, a dual variable at the very left of the table is given. Such dual variables are identical
to the associated Lagrange multipliers of the function, that are often given as part of the
results of nonlinear optimization problems. The condition system is complete, because the
scheme is symmetric and can be rotated by 90 degree and the primal variables become the
dual and vice versa. Within the system the inequality conditions of the yield conditions
are eliminated by introduction of the dual slack variables A and y. Such slack variables
are generally non-negative (non-negativity conditions in the dual formulations).

If appropriate in practical calculations, this general scheme can be simplified. Some equa-
tions can be used to substitute variables, as the material law can be introduced in the kine-
matic condition. In such a case the strains can be eliminated, as demonstrated in Tab. 4-11.
Furthermore, symmetric schemes can be transformed into non-symmetric, if conditions
are only substituted in the primal system. An example is given in Tab. 4-12, where the
slack variables are eliminate and the boundary conditions are included in the equilibrium
and extended kinematic condition.

A purely kinematic formulation is given in Tab. 4-13, where only kinematic parameters,
the displacement u and the Lagrange multipliers of the plasticity conditions A (related to
the plastic strains) are the remaining unknowns of the mechanical system. Such schemes
are often applicable in structural optimization, because most structural conditions (such
as the material law) can be defined as a function of kinematic parameters.

In such schemes, all mechanical properties are provided. Such schemes are perfectly sui-
ted as a set of subsidiary conditions in nonlinear optimization. The advantage of the re-
duced schemes is the reduced number of unknowns. Because of the arbitrary objective
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Table 4-10 Detailed relation scheme of mechanical quantities for elastic-plastic structures
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Table 4-11 Reduced relation scheme of mechanical quantities for elastic-plastic structures (Strains
eliminated)

Primal variable
c Cu Cs u A y 1
4 Ext. kinematic
-D Ns B -Lp =€0 L
condition
T Static boundary
Ns =00 L
condition
Geom. boundary
Nu = Uo .
condition
B" Nu" =0 Equilibrium
Plasticit:
-Lp' 1 =-Glim o Y
condition
1 >0 Non-negativity
ATY | =0 | Complementarity

function, a variety of different optimization task can be solves, e.g. the calculation of the
deformation based limit state.

4.14 Gaussian volume integration

The governing system equations, described in the previous sections, are formulated for
material points within elements/supports. The assessment of the entire body needs inte-
gration of the functions p(x) over the given volume.

y = [ p(x)dV (4-122)

The integration can be simplified, because the volume is divided in several elements and
the single contribution to the parameter is summarized

ng ng

y=>> = [plre)dV; (4-123)
i=1 i=1

Within elements,all parameters are described in terms of nodal parameters and definition

of shape functions for all parameters. The numerical integration within elements is easily

done by Gauss integration [22]. The integral is exchange by a sum of weighted function
values at n¢ distinct points ¢ (integration or Gauss points)
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Table 4-12 Simplified relation scheme of mechanical quantities for elastic-plastic structures
(Strains, slack variables eliminated, boundary conditions introduced)

Primal variables
c u A 1
Ext. kinematic
D" B Lp =0 X Kihemat
condition
B' =9 Equilibrium
- L' Gim | >q | Plasticity condition
1 >0 Non-negativity
AT ( - Lp" Glim )=0 Complementarity
ng
yi = 3 wi(ze)p(e,) (4-124)
Jj=1

For standard finite elements, especially for isoparametric types, the Gaussian parameters,
the position of the integration points within the element x and the associated weights
w;(xq), are provided in tables [22].

For numerical calculation of Gauss integration parameters, a nonlinear optimization pro-
blem can be solved. The procedure is illustrated in Tab. 4-14 for a trapezoid area. For
arbitrary elements, the integration value can than be assembled from the values of a group
of trapezoid areas, as illustrated in Tab. 4-15. The elements edges are forming several
trapezoid areas, defined by the lines between nodes. The integrals are calculated for these
partial area according Tab. 4-14. The resulting values are positive or negative, depending
on the direction of the trapezoidal boundary lines. The direction of the lines is defined by
the numbering of the nodes. A continuous, clock wise numbering of the nodes is ensuring
a positive value of the integral.

For integrals of linear matrix functions p(z) = P - z,

yi=[P-xdx (4-125)
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Table 4-13 Simplified relation scheme of mechanical quantities for elastic-plastic structures
(Stresses and strains eliminated, boundary conditions introduced)

Primal variables
u A 1
B'DB -B'DLp =0 Ext. Equilibrium
-L,'DB L' DLy Gim | >0 | Plasticity condition
1 Non-negativity
AT ( - L' DB L, DL, oim | )=0 | Complementarity

the Gauss integration can be formally expressed as a matrix multiplication. The integra-
tion matrix W contains the weights of the Gaussian points as diagonal values. The as-
sociated coefficient matrix P of the linear function p(z) is a vector of submatrices, that
have been built with respect to all ng Gaussian points within an element 7. The integration
becomes

w1 0 T
yi=Po-W-zg=[p1 - Png | A (4-126)
Tn,

G G

4.15 Element matrices and vectors

As described in the previous sections, finite element concepts divide the considered bodies
into several subregions (elements), that's behavior can be described with help of simpler
approximations. Those approximations are the shape functions, that are provided for all
governing parameters. The appropriate system equations require the integration of the
volume of the body or of the surfaces for boundary conditions. With help of numerical in-
tegration, the governing equations can be transformed into matrix /vector formulations for
effective numerical treatment. Following, the main concepts for derivation of important
system matrices are discussed.
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Table 4-14 Gauss integration parameter derivation (2D example, trapezoidal object)

Trapezoid
ode 2 i@ funeien Bounding line function
y ode y(x)=a-x+b
Position of
) Node 1 -
Gauss point a=32N
Xo — X4
Y2
\2 ® b=-a- Xq1+Y1q
3 I
X
XW X2
+—t
T,
Integral over trapezoidal area Approximation (Gaussian integration method)
X2 y(x) n
J:I If(x,y)dydx Jzzwi‘f(rxirryi)
X1 0 ]
I, Tyi Position of integration point i
W Weight value
n Number of integration points
m Number of coordinates and weights
(for 2D m=3)
Construct n x m different Calculate exact integral using
orthogonal function (i.e. Binomial rule
Monome functions)
1 .4
- — x%
fi(xy)=x%-y" g=0h20 ! Zk:ck
Least square problem to determine
integration point positions and weights
n-m
o(x, y) = ZEJ? = Min
i
- n L
Ej=J; —Zwi Ai(hity)  j=1...(n-m)
i
n
ZWi:A w;>0 i=1..n
i
Y Y
Direct solution Approximation
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Table 4-15 Integration of arbitrary volumes (2D example)

Arbitrary element Re-combination of partial areas

y

Positive area

Negative area

X X
Partial frapezoidal area

! ! !

Separation in simpler elements — Calculation of integrals (Trapezoids) Integral

Yy J= J0
@ ) z ;
J J i

JU]
J@ ﬁ

The concept covers the provision of the vectors of the external state variables, the forces
fr and displacements u g, at the nodes of the element. The appropriate values within the

element are calculated with help of shape functions. The internal state variable vectors
are denoted by the internal forces s and deformations e. These notations are introdu-
ced for generalization, to provide unique variable names for different types of internal
parameters. For instance for continuum elements is s = o the stresses and e = ¢ are
the strains, for non-continuum elements, like beams and plates, the variable s denotes
integrated stresses (stress resultants) F,, F,, M, ... and e is the vector of displacement
differences Au,, Au,, A¢,, .. ..

At the integration points, the vectors of deformations e and internal forces s¢ are cal-
culated, that are the basis for the integration over the body volume. From this, the static
term of the equilibrium condition is in matrix notation

[ By(2)T(x)s(x)dV = By(zg)Ts(xa)Wse (4-127)
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The external forces need to be known at the nodes, thus distributed forces must be inte-
grated over the loaded region, here shown for volumetric forces

fe= [e(x)dV = H (vc¢ ) )We(zas) = Hf (xa,r)W Hy(2a.5)p(2ER) (4-128)

with H as the distribution function of the forces. For integration, the Gauss approach is
applied as well. The used integration points x¢ ¢ are dependent on the complexity of the
shape function H,. Accordingly, the mass and damping terms are provided

[ Hw) L) piL” (@) HE (2)iipdV

= Hm(xG,m>L(wG,m)pEWLT(mG,u)HE(xG,u)aE (4'129)
= Miug

[ He(x)L(z)vpg LT (x) HE (z)updV

= HC(LEG’C)L<.Z'G)I/ELT(I'GM)WH;{(.TGM)UE (4—130)

= Cug
Within the kinematic conditions, the total strains are calculated at the integration points
eq = [ Ty,(x)By(x)u(z)dV = WT,(xg)Bu(ze)ur (4-131)
Accordingly, the linear elastic strains are

ece = [ D(z)s(x)dV = D(zg)W sa (4-132)

Following the concept of yield hinges, the plastic conditions are described at distinct
points, typically at the integration points where the stresses are known. Thus the plastic
strains are derived from

eap = Ap(ra)A (4-133)
with the vector A, that contains the plastic multipliers of n,, plasticity conditions
A=[M o Ay, ]7>0 (4-134)
The matrix A, is the coefficient matrix of the linear plasticity condition

AgsG — Saim < 0 (4-135)
incorporating several yield conditions at integration points with

Ay =[paxa) - pm(e) ] (4-136)
The constant part is a vector

SGiim = | Olim1 0 Tliman, | (4-137)
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Accordingly, all boundary conditions are formulated at the element nodes or integration

points
Nyup = up (4-138)
Nssa = sao (4-139)

In this concept, the knowledge of shape functions for the stresses/strains is not necessary.
However, as shown with Eq. (4-103) the strains and stresses can be made dependable from
the nodal strains and stresses by application of stress shape functions. Then all system
equations can be summarized, e.g. for elastic material

Agsp+ Nlcg s+ Miig 4+ Cig + fr =0 (4-140)
Awup — Qsgp — AN+ Nlcp, = exp (4-141)
Nyup =ugg (4-142)
Nssg = sgp (4-143)
Al'sp < spiim (4-144)
A>0 (4-145)

4.16 Cross-sectional models for longitudinal force and bending moment problems
4.16.1  Separation of the volume integration

As mentioned in Sec. 4.7, for certain types of structures it is convenient to separate the
integration of the entire volume into a structural part and a cross-sectional part. The re-
sulting problems become simpler, as the number of integration dimensions is decreased
in either analysis. For instance, the considered dimension of a beam element reduces to
one in the structural model and down to two in the cross-sectional part. If the dimensions
of the cross section are small compared to the dimensions in the structural model, some
simplifications can be applied to summarize the behavior of the entire cross section with a
few number of parameters. As well, this strategy requires integrated loads or excitations,
compatible with their internal counterparts.

The properties of the cross-section are expressed in terms of areas, moments of inertia
and internal forces. These parameters are traditionally applied, e.g. for elastic materials to
derive longitudinal forces in a beam, that are the integrated stresses, parallel to the main
structural dimension x

N = [o,(z,y,2)dydz = [ E(z,y,2)e.(x,y, 2) dydz (4-146)
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The integration is simplified by introduction of the area
Ze Ye
Alw) = [ [ dyd= (4-147)

Za Ya

and the assumption of an average material in the cross section

E(z) = E(x,y, 2) (4-148)

and the average strain calculated by the mean value theorem

1 Ze Ye

E(x) = R é{yfa e.(z,y, 2)dydz (4-149)

This expression simplifies with the introduction of the Bernoulli hypothesis. Hereafter
plane cross sections remain plane after deformation. The resulting strain plane (Bernoul-
li plane) is completely defined by three parameters, e.g. with the strain values at three
distinct points, not lying on one line. More often the parameter triple consist of one repre-
sentative strain €,, at a reference point m and two curvature values x,, and ., that are the
rotation angles of the Bernoulli plane in the coordinate system (y, z). The strains at point
¢ can be calculated with the equations

£i(x) = em(x) + Ky(2i — 2m) + K=(Yi — Ym) (4-150)

It should be noted, that the reference point m is not necessarily the center of gravity of the
cross section. However this is often preferred, because the strain at the center of gravity
is the mean strain, given as a property of the Bernoulli plane for homogeneous materials.
The mean strain in turn can be used for determination of the appropriate longitudinal force

N(z) = E(x)A(z)é(x) (4-151)

However, the governing equations can be formulated at any point m, provided that any
mechanical parameter can be transferred to be compatible to the conditions at m.

The moments M, and M, can be similarly defined. The dependent strain components are
the curvatures x, and

My(z) = E(x)1,(z)k, (4-152)

M, (z) = E(z)I.(x)k, (4-153)

with application of the moments of inertia /,, and /..

All made assumptions qualify this approach for the treatment of elastic or linearized ma-
terials. However, if physically nonlinear behavior or hybrid structures are considered, the
necessary averaging of parameters over the entire cross section can be complex. Fur-
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Original coordinates Rotfated coordinates
I n £=EM) S
e=¢(Y,2) P
,,/8=8(n)
> g strain
y &=EM) isolines

Figure 4-5 Integration over bounds using coordinate rotations into the
Bernoulli-plane

thermore, the obtained values may not sufficiently represent the real behavior anymore.
Alternatives are described in the following sections.

4.16.2  Direct integration of homogeneous cross sections

The analytical integration over the area of the cross section in order to determine the inter-
nal parameters is a practical opportunity, if the material law and kinematic condition are
mathematically simple. For this purpose, the boundary of the cross section is discretized
in several parts, so that the integration can be calculated with respect to the area under
these curves. Such a strategy is comparable to the finite element method, in forming frag-
ments (elements) that can be treated simpler than the overall region. Thus, the internal
forces of the entire cross section are determined from the sum of the results obtained
from the segments

zi+1 y(2)
Nx)=YN,=> [ [ oy, 2)dyd=z (4-154)
zi+1 y(2)
My(z) =Y M,; =5 [ [ oy,z)zdydz (4-155)
7 it oz 0
zit1 Y(2)
M,(z) =M., => [ [ oy, 2)ydydz (4-156)

With application of the Bernoulli hypothesis, the integration simplifies considerable for
homogeneous cross sections. The stain state is dependent on three parameters €,,, x, and
K, (see [81,187]). In the coordinate system (y, z) all parameters are generally a function
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of two directions. However, the properties of the Bernoulli plane allow for an additional
simplification. For a given loading state and if the curvature in the cross section is different
from zero, a unique distribution of isolines can be determined, where strains and stresses
remain constant. Their direction is given as the angle « in the original coordinate system
(y, z). As the strains are constant, the appropriate orthogonal curvature is zero.

Transforming the problem into this direction, gives the new coordinate system (£, ) that
is defined at the same origin as the original system, but is rotated so that the & direction is
parallel to the strain isolines in the Bernoulli plane (see Fig. 4-5). Now the set of unknowns
1S €, k = K¢ and a. The coordinates transform according to

& =y cos(a) + z;sin(a) (4-157)

n; = z; cos(a) — y; sin(a) (4-158)
Then the strains and stresses are a function of the orthogonal coordinates 7 only

e(n) = em + k0 (4-159)

a(n) =o(e(n)) (4-160)

Consequently, the discretization of the boundary and determination of the internal forces
is done in the same coordinate system

Ni+1 £

)
N(w) =3 Ni = Zf fa ) dédn (4-161)

ni+1 &(n

)
Me(z) = 3> Me; = Zf fa )n dédn (4-162)

%

niv1 £(n)

My (x) = Z ni=> | | o(n)§dédn (4-163)

t om0
The back-transformed internal forces at the origin of the (z, y) coordinate system are

M, (x) = M¢(z) cos(a) — M, (x) sin(a) (4-164)

My(xz) = M,(x) cos(a) + M¢(x) sin(a) (4-165)

that must be equivalent to the external forces at this point.
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Polygonal cross-section n e(m) o(e)

e(n) o(e)

e(Misr) o(&.1)

Direction \

of circumscription

Figure 4-6 Model of a polygonally bounded cross section

4.16.3  Polygonally bounded cross sections

The application of the direct integration model from Section 4.16.2 within numerical pro-
grams, requires the boundary functions £(7) to be relatively simple. An efficient strategy
uses the approximation of an arbitrary boundary with piecewise linear functions [81]

§(m) = ma(n —m) + & = man — mg (4-166)

which are evaluated in the interval between adjacent boundary points ¢ and ¢ + 1, thus
forming altogether a polygon. Here m; is the gradient

Ei — &
=~ for miv1 # i

my = Mi+1 — Tl 4-167)
0 for mig1=mn

and m represents the constant part of the line equation

mon; — & for miy1 Fmi
mo =

0 for miy1=m;

(4-168)
with the conditions for vanishing integration regions (1;.1 = ;).

The obtained integration regions are trapezoids (similar to elements), as illustrated in
Fig. 4-6. Here is indicated, that for the proper integration, all line functions of the trape-
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zoids are to be defined following the same direction of circumscription. The internal force
components, as defined in Eq. (4-161-4-163) for one trapezoid are

Ni(z)= [ [ o(n)dédn =miAy —moAyg (4-169)
0

Me;i(z) = f f o(n)ndédn = mi1Ay, —moAy, (4-170)

7i+1 m1n—mo
M,(x)= [ [ o(n)é&dédn =miAys — 2mimeAy; +miAyo (4-171)
i 0

The functions Ay, of order n are integrals with respect to 7
Ni+1
Ay = yn(Mi41) — yu(mi) = [ o(n)ndn (4-172)

b

If possible, the integrals can be solved in the present form, or can be transformed for
x # 0 into a relation dependent on strains by application of Eq. (4-159)

D) = 9(6) = 7 [ o(e)(e — )i @173)

Furthermore, dependent on the applied material law, integration by parts can lead to more
convenient forms, as suggested in [187]. Then the integrals read

Yo(e) = %wo (4-174)
yi(e) = % [(€ = &m) Yo — 1] (4-175)
ya(€) = % [(e — em)® o — 2 (¢ — &m) W1 + 200 (4-176)
with

Po(e) = [o(e)de (4-177)
Pi(e) = [ole)de (4-178)
Pa(e) = [hi(e)de (4-179)

As in [187], all integrals can be provided for non-smooth or composed material laws too.
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General model Fiber model Layer model

AZ Az

\ Eoi N

<V
<V

Figure 4-7 Tllustration of cross section discretization as a fiber or layer
model, using rectangular shapes and averaged material properties

4.16.4 Layer and fiber models

The previously described polygonally bounded cross sections are characterized by the dis-
cretization of the cross section into relatively few elements with complex material laws.
With layer and fiber models, a contrary strategy is pursuited. The cross section is dis-
cretized into a relatively large number of fibers (elements) with simple geometry (like
rectangles), while each of the fibers can behave differently but according to a relatively
simple material law (preferentially linear or constant). This on the one hand increases the
number of unknowns in the problem but decreases considerable the efforts for integration.

Principally, one fiber is treated like one cross section in Sec. 4.16.1, with the averaging
over the fiber area. If the discretization is fine enough, the before-mentioned simplifica-
tions can be applied without greater loss of accuracy. The problem simplifies to a layer
model, if the material properties and strains in a cross section are constant in a unique
direction, denoted as coordinate directions (v, ¢) in Fig. 4-7.

The basic assumption for this type of models is again the Bernoulli hypothesis, hence
Eq. (4-150) applies as well. In any fiber the stress and internal force state can be calculated
separately. In the equilibrium condition, all internal force and moment contributions from
the fibers are summarized

N(z) =3 Nj(x) (4-180)
M(x) = 3 M. ;(z) = 3 Nj(x)y; (4-181)
M,(z) = Z M, ;(x) ~ Z Nj(x)z; (4-182)
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Composite cross section

e o Constant
approximation

i Linear approximation

Perfect bond assumption  Plane strain assumption

Figure 4-8 Example: Application of nonlinear material laws in layer models
of composite cross sections

using the distances y; and z; from a reference point m to the centers of gravity of the
fibers or layers j.

The application of nonlinear material behaviors is quite easy, because the nonlinear mate-
rial functions can be applied separately to each fiber. For example, a simple elasto-plastic
material law is

0 = (&) < Otim (4-183)

in form of a inequality condition. Although the stresses in the fibers are linear or constant,
the resulting stress distribution in the cross section is nonlinear, as illustrated in Fig. 4-8.

4.16.5 Composite cross sections

Composite cross sections combine several parts with different properties. The strains in
the components are related to each other, according to compatibility conditions, that spe-
cify the overall contribution of the part to the load transfer, or as bond conditions, descri-
bing the states at contact surfaces. Hereby cross sections need not necessarily be compact.
If such conditions are given as mathematical equations or inequalities, they can be intro-
duced as subsidiary conditions in optimization problems.

In structural engineering, most problems exhibit small deformations, thus the assumpti-
on of plane strains is appropriate. This already includes the assumption of perfect bond
between the components. As can be seen in Fig. 4-8, fiber and layer models are natu-
rally qualified for the analysis of composite cross sections. More details on the general
treatment of composite structures are discussed later in Sec. 4.17.
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4.16.6  Segment models

In the before-mentioned cross section models, the plane strain state has been assumed.
This is appropriate for thin cross sections. An extension are segment models for the ana-
lysis of divided cross sections. The main characteristic is, that the Bernoulli hypothesis
is not applied to the overall cross section, but locally for distinct segments. This is useful
also for cross sections with non-perfect bond conditions between components.

The bond between the segments is organized either by the assumption of a deformation
relation (e.g. rigid membrane effects) or definition of connection force functions (shear
connections) at coupling points. Hereby the deformations and coupling forces serve as
dual variables of the same problem. The definition with shear forces is often preferred,
as the integration of specialized bond rules can be easily conducted, e.g. to implement
an elasto-plastic behavior in the joints. Besides for member sections, segment models are
often applied for the analysis of cross sections if an entire structures is cutted horizontally
at the floor levels. Then the bearing walls form an appropriate cross section.

In order to describe the state of a structure between two components of a system, new va-
riables can be introduced according to the methods of sections in mechanics. It is neces-
sary to define appropriate coupling locations and parameters. In a kinematic formulation,
the displacements or rotations between two segments are related by a coupling function.
As dual variables, the coupling forces are derived. On the other hand, a static formula-
tion relates the forces in both components, triggering appropriate deformations as dual
parameters.

Any segment can be discretized in fibers (Sec, 4.16.4), or modeled as a polygonally boun-
ded cross section (Sec. 4.16.3) or by forming an equivalent beam model according to
(Sec. 4.16.1). Some methods are illustrated in Fig. 4-9. The equivalent beam model is
very effective, because of the small number of unknowns. It is often used in the enginee-
ring practice to simulate low and high-rise panel buildings [2,75]. Because all walls are
simulated as equivalent beams, given structural software can be applied. The necessary
coupling conditions need to be specified, e.g. as in Fig. 4-10. Then the connection nodes
are related to the beam nodes in a small deformation theory

ok = U (4-184)
b

Ul = Uy — “T (4-185)

Kk = Km (4-186)

stating the membrane, shear and local Bernoulli condition for the displacements » and
plane rotations s, given at the reference point m of the wall and the coupling point k.
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Figure 4-9 Derivation of segment models, using fiber or equivalent beam
discretizations

Accordingly to this kinematic condition, the relation can be formulated in a static (equili-
brium) formulation

tor = N + fy (4-187)

tye = Vi + f (4-188)
tob

top = My, — % + fu (4-189)

for the joint forces ¢ and beam internal forces N , V, M and the external forces f. The
segments are connected by joint functions between two nodal parameters. An elastic-
perfectly plastic behavior in joints can be implemented with a inequality condition

ty < liim (4-190)

The behavior of continuously connected walls is analysed with help of the shear flow
between two walls, e.g. with a linear distribution

te,B — th,A
T = —h

(4-191)
4.16.7  Matrix notation for cross section problems

As well as for structural problems, cross section calculations can be formulated in matrix
notation. Independent from the discretization method, cross sectional problem are cha-
racterized by internal parameters, as internal forces and strains in the discretized parts,

e.g.

s=[N;, M,;,...) (4-192)
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Figure 4-10 Equivalent beam model for the analysis of wall structures

e=gj,Kyjs--- (4-193)

The external parameters are discrete (integrated) external loads, such as longitudinal
forces and moments, and the deformations that are the parameters of the Bernoulli plane,

e.g.
f=[N,M,, M.,] (4-194)
U = [Em, Ky, K] (4-195)

Then, for a fixed strain state the following form of the governing equations, including all
necessary transformations, can be derived, with the kinematic condition

Au—eg=ce (4-196)

the material law

QRe)s=e (4-197)

and the equilibrium condition

Ags+f=0 (4-198)

In comparison with the definition of structural problems in Sec. 4.15 it is obvious, that the
basic formulation of both the cross sectional and structural problems is identical. There-
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fore in the following, both problems are treated similarly, in the derivation of extremum

and optimization problems.

4.17 System matrices and vectors of general composite structures

The assembly of structural components consisting of

e Components derived by discretization (e.g. finite elements, meshless discretized regi-
ons, fibers)

e Structural components (e.g. reinforcement, concrete)

e Structural members (e.g. girders, plates)

e Partial structures (e.g. main building and extensions)

into a global model is required for analysis. Such components are characterized by diffe-
rent

e [.oading (concentrated, distributed)
e Material behavior (material type, rheology dependent,temperature dependent,...)

e Pre-states (pre-strain, pre-stress,...)

Hereby the parameters of the components are related by definition of coupling conditions.
Basically two models for coupling can be distinguished.

Firstly, the "direct coupling" of parameters p; of the component 1 and p, of component 2
states a functional relation like

p1 = p(p2) (4-199)
or as an inequality condition

p1 < p(p2) (4-200)

The relation is "explicit" if it is applied as an additional subsidiary condition. The varia-
bles belonging to the interface are still part of their origin models, thus the number of
unknowns in the problem remains constant. If on the other hand the relation is used to
eliminate the connected variable from the system, thus reducing the number of problem
unknowns, the coupling becomes "implicit". Then the interface variables (Index ;,;) are
shared variables. In Tab. 4-16 the two forms of direct coupling are illustrated for the Pois-
son scheme of two elastic systems. The displacements u are implicitly coupled, whereas
for the internal forces s the coupling is explicit.

As an application example, direct coupling is used to connect different parts of a structure,
that have been discretized with different discretization methods, having the linked para-
meters be incompatible. This is given, e.g. if FEM and EFG models are coupled. Because
of the applied interpolation methods, the displacement variables u ¢ of the EFG model
are not the real displacements at the nodes of the problem. However, the node displace-
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Table 4-16 Direct coupling of systems with different pre-deformation state (elastic example)

Component 1 Interface Component 2
r—=—i1
St Ut Uint-1 [ Uit | | U2 Uit S2 1
1 1
1 1
1 1
= Al 1 1 fi | =0 | Ext. equilibrium
c 1 1
[
5 ! ! o
E‘ 1 T T T
1 1 ! | Ext. kinematic
3 Q4 Aty 1 1 eo1 =0 "
" condition
F—-—— =7 === A-=—d+=-=-=-=-F-==4 -==i |
' 1 1 I
I I | T X
1 1 1 Couplin:
1 Hsa 1 ! Hez ! =0 ping
1 1 1 ! I condition
i | ! L I
1 | I
il s Mt 0> = O . VYT T T T I | Ext. kinematic
o~ 1 Az Q2 eo2 | =0 "
= 1 I I condition
g =1 1 I
[e] o — =
Q.
1S i _
3 A f | =0 | Ext. equilibrium
\ Implicite \ Explicite \ Pre-
coupling coupling deformations

ments can be calculated from the shape function Eq. (4-22). Hence a possible coupling
condition can be

Hu,FEMUFEM - Hu,EFGUEFG =0 (4-201)

commonly formulated explicitly as additional coupling conditions within optimization
problems. Examples are given in Sec. 7.3.4 and 7.3.5.

Another interesting application is the coupling of models from different model categories.
For instance, it can be used to connect a structural model with the appropriate cross section
problems. The structural model part typically consist of simple elements, such as beams.
At the predominant parts of the structure it is sufficient to state the material behavior of
the beams with simple moment-curvature relations. Only at selected points a connection
to a cross section model is established. This is useful, if extreme nonlinear responses
are anticipated, that can be more efficiently or realistically estimated with help of cross
section models. The application is especially advisable, if the interaction of internal forces
needs to be considered [92,188].
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Table 4-17 Indirect coupling of systems with different pre-deformation state (elastic example)

Component 1 Interface Component 2

St ui Uint tint uz S2 1

Al fi | =0 | Ext. equil.

Ext.
-Qq eo,1 | =0 | kinematic.
condition

Component 1

Nu,1 -Nuintt =0
Kinematic
Coupling
-Nu,int2 Nu2 =0 | condition

Interface

Ns,1 -Ns int1 =0
Static
Coupling
-Ns,int2 Ns.2 =0 | condition

Ext.
Az -Q2 €02 | =0 | kinematic
condition

Component 2

A", fa | =0 | Ext. equil.

Secondly, as already practiced for linking segment models in Sec. 4.16.6, it is sometimes
useful to introduce additional variables, that itself can now be better related to further
conditions. Then the coupling functions become, for the additional interface parameter

pint
Pint = p(p1) (4-202)
Pint = p(D2) (4-203)

to state an "indirect" connection. Respectively, the condition can be expressed as an ine-
quality condition. Furthermore, as p(p;) and p(p,) can be arbitrary functions, the variable
p;nt has not necessarily the same mechanical meaning as the connected variables. Ta-
ble 4-17 illustrates the indirect coupling for two elastic systems.

All coupling functions must establish the compatibility of the involved parameters. This
applies especially for the parameter transformation of different components into the same
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(often global) coordinate system direction. For continuum elements, the transformation
matrices L and R (obtained by polar decomposition according Sec. 3.7) already contain
the transformations from local to global directions. Using the engineering simplificati-
ons for the strain calculation, the transformation from local into global directions must
be explicitly provided. Then the matrices are L = T and R = T as the appropriate
transformation matrices.

A special case of composite structures are hybrid structures. Hybrid structures are charac-
terized by the connection of at least two structural components, that alone can fulfill the
structural task. As for all composite structures, the advantages of the involved components
can be emphasized, while the disadvantages can be compensated to a certain extend.

Figure 4-11 is illustrating the coupling of composite and hybrid structures. Generally,
from this section it is obvious, that the treatment of coupling problem is generally straight-
forward within mathematical optimization.

4.18 Time integration

Following the Hamiltonian principle, the integration over time can be separated from the
calculation of quasi-static problems. For time discretization, the application of the Finite
Difference Method is often applied. Hereby the solution can be achieved with information
of the past (explicit methods), as well as current and past information (implicit methods).
Depending on the number of considered events in the past, the methods are called one- or
multi-step methods. Beyond traditional methods, as in [166], a comprehensive summary
about general treatment of linear multi-step time integration is given in [80]. A detailed
discussion of time integration within optimization problems is provided in Sec 8.

4.19 Calculation strategies

For analysis and design in earthquake engineering the following calculation strategies are
applied

e Modal decomposition analysis

e Simplified analysis

e Time history analysis

Modal decomposition methods evaluate the behavior of the structure without considering
the loading. The structure is modeled linearly. Using eigenvalue analysis, the problem
is transformed into the frequency domain. This information is valuable to estimate basic
motion forms in the structure and the vulnerability to excitation frequencies. It is part of all
simplified analysis methods. Furthermore, mainly due to complex eigenvalue analysis, the
dynamic stability of a structure can be characterized. The application of modal analysis
concepts on the basis of optimization algorithms is discussed in Sec. 5.

Simplified analysis methods avoid direct time history calculations of the structure. They
use modal decomposition in order to derive decoupled differential equations. For the ge-
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Figure 4-11 Examples for composite structures
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nerated SDOF systems, the time history analysis is performed. This information can be
gathered in advance and independent from the actual structure and is typically provided
as response spectra, that contain the maximum responses of several SDOF calculations
with varying eigenfrequencies. The main principle of simplified analysis is the transfor-
mation of the dynamic problem into an equivalent static problem, that exhibits approxi-
mately the same extreme reactions as the original problem. The following concepts can
be distinguished:

e Simplified linear analysis

e Simplified nonlinear analysis

The first group is often called "force based design" whereas the second is called "dis-
placement based design" [35], although in either method forces and displacements are
evaluated. The main difference is, that linear methods base on linearizations and linear
calculations, even if nonlinear structures are designed. The nonlinear methods however
involve nonlinear relation directly in the calculation concept. Both design concepts are
popular in codes, e.g. [24,105,73] and are herein discussed in Sec. 6 and 7.

Time history methods solve the dynamic problem directly by application of time integra-
tion methods. The solution is obtained at distinct times, commonly calculated in a step-
by step strategy. Time history analysis is considered to be the most precise calculation
concept. However it requires more information and numerical efforts. This complicates
optimization strategies, where the time history analysis is repeatedly performed in order
to monitor the effects of modified parameters. Furthermore, time history calculations for
design purposes require the consideration of several earthquake records, in order to obtain
a representative average solution. Examples for earthquake sets are given in the Appendix
Secs. 11.6 and 11.7. Strategies based on time history analysis are presented in Sec. 8.

As all types of analysis are known to have their limits and benefits, for structures of a
certain complexity a typical analysis requires mixed concepts. The simplified methods
are quick and conceptive and are therefore perfect means for pre-design and basic con-
figuration. Furthermore, in some countries the analysis based on spectra interpretation
is considered to be the basis of defining a minimum safety level [104,105,73]. The time
history analysis is applied to check the performance of the chosen design, to refine the
concept and to decide necessary changes.
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5 Modal and stability analysis

5.1 Eigenvalue problems

Exploring limit states is the main tasks in structural engineering in order to optimize the
behavior according to given criteria. Herein one analysis type deals with the evaluation
of the system performance, that can be defined by mathematical solvability limits. For
instance, the static problem

Ku=f (5-1)

can only be uniquely determined (i.e. is solvable), if the determinant of the system matrix
is greater than zero

det K >0 (5-2)

In this case, the matrix is positive determinant or definite. Hence, in structural mechanics,
the investigation of zero-determinant conditions, generated as

det(K —...) =0 (5-3)

becomes of practical interest, as they mark limit states of the structure, e.g. regarding
stability or resonance. Such problems are called eigenvalue problems as they describe
important properties of the system without regard of external influences.

The evaluation of eigenproblems can be simplified, if the problems (5-3) can be trans-
formed into a set of decoupled equations, thus providing only diagonal elements in the
matrices. Such forms can be obtained if appropriate orthogonal transformations can be
found.

For the simple case
det(K — 1)) = 0 (5-4)

where [ is the unity matrix and \ a scalar value, it is sufficient to find the diagonal matrix
K* with application of the orthogonal transformation matrix ¢

K*=0TK® (5-5)
The elements of the matrix K™ can be separated by stating

K*=AI (5-6)
introducing the vector

A = diag (K*) (5-7)
Then Eq. (5-5) is written
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TKD — AT =0 (5-8)

As @ is orthogonal, the following condition holds

o = o7 (5-9)

Therefore Eq. (5-5) can be rewritten

Ko —IPA =0 (5-10)

As ® has the ability of decoupling in Eq. (5-5), this relation can be shortened for distinct
vectors of ¢

D= [ug, .. Uy Uy (5-11)
and scalar components of A
A=y d )" (5-12)

thus giving

This formulation is called a real special eigenvalue problem and is identical to solving
problem (5-4). In general, this relation holds for 1 to n (dimension of matrix K') com-
ponents of ® and A. The values \;,u; and ® are called the eigenvalue, eigenvector and
modal matrix of the problem. The task is to find non-trivial solutions for \; and ;.

5.2 Special eigenvalue problems

For the solution of Eq. (5-13) specialized algorithms can be provided. As well, optimiza-
tion strategies can be utilized. They can be directly derived from the properties of eigen-
value problems:

e matrix ® is orthogonal

e as for orthogonal transformations, the problem is independent from the scaling of
matrix ¢

e matrix K is positive definite, thus orthogonal transformations with ¢ lead to a decou-
pled problem

e the eigenvalues can be sorted, generating \; < ;1. The index 1 is used for the
smallest eigenvalue in the following sections.

Summarizing, the following optimization problem for determination of the smallest ei-
genvalue and it’s associated eigenvector can be stated

O(Ul, )\1) = )\1 — Min (5-14)
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Ku1 - ]ul)\l =0 (5-15)

ulup =1 (5-16)

The last subsidiary condition regards for the scaling of the eigenvector, and can be almost
arbitrarily modified.

Different from other eigenvalue problem solvers, in the optimization version additional
possibilities of calculation control are offered, e.g. the calculation of the smallest eigen-
value that is beyond a certain limit \;;,,,. T hiswillleadtothe f ollowingtask

O(ui, Nj) = Ay = Min (5-17)
Ku;—Tu\; =0 (5-18)
ulu; =1 (5-19)
Ai < Atim (5-20)

This form also offers a strategy to calculate successively all eigenvalues of matrix K.

Furthermore, the scaling condition itself, given in the form of Eq. (5-16) can be applied for
deriving an equivalent problem. Condition (5-15) can be multiplied with the eigenvector,
SO

ulTKul — ulTIul)\l =0 (5-21)
With knowledge of Eq. (5-16) it becomes

U{K’Ul = /\1 (5'22)

This relation can be introduced in the objective function Eq. (5-14), thus this subsidiary
condition and one variable are eliminated, leading to the following optimization problem

O(uy) = ul Kuy = \; = Min (5-23)

ulup =1 (5-24)

For determination of the next eigenvalue A\, and the associated eigenvector us, the ortho-
gonality condition can be used

ugul =0 (5-25)

by using the previous solution u;. Generalizing, the following optimization problem can
be stated
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O(Ui+1) = ugjg.lKui—i-l = >‘i+1 — Mwn (5-26)
uﬂluiﬂ =1 (5-27)
ul, @ =0 (5-28)

As indicated, all eigenvalue/eigenvector pairs can now be determined, starting with the
smallest value and successively calculating the next. In the matrix ®; the vectors u, . .., u;
of previous calculation steps are collected.

5.3 Modal decomposition of undamped systems

Similar strategies are adopted for the analysis of dynamic systems, here first given by
neglecting the damping

Ku+ Mii = f(t) (5-29)

that for itself is a linear differential relation. Such linear problems can be solved by modal
decomposition, i.e. providing a set of basic solutions of a homogeneous problem

Ku+ Miu=0 (5-30)

that afterwards can be appropriately superposed in order to get the final solution. The first
step is the substitution of the unknown displacement by a basic function

u = et (5-31)
then providing the derivatives with respect to ¢

U = iwe™ = iwu (5-32)
i = —w?e™ = —w?u = —\u (5-33)
Equation (5-33) is now introduced into the homogeneous system Eq. (5-30)

Ku— MuX =0 (5-34)

thus giving the characteristic equation. As can be seen, this is a similar problem as Eq. (5-
13) and can be therefore solved with means of eigenvalue analysis.

Utilizing again an optimization approach, the problem can be stated as

O(Ui_‘_l) = u;?FHKuiH = >‘i+1 — Mwn (5-35)

ull, Mugyy =1 (5-36)
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ull , M®; = 0 (5-37)

providing the eigenvalues \ and eigenvectors v of the system. As before, the purpose of
Equation (5-36) is to provide a fixed scaling for the eigenvectors, e.g. here given as a mass
proportional norm.

The values w; = +/); are the circle frequencies of the system, indicating important reso-
nance frequencies of the structure. If the system is harmonically excited exactly at these
frequencies, the system is responding with the deformation shape given by the eigenvector
u;, known in dynamics also as modes, collected in the modal matrix ®.

Despite neglecting the (practically small) damping in this kind of calculation, the know-
ledge of the eigenvectors and eigenfrequencies is essential for earthquake engineering
as they help to position the structural behavior against the frequencies of the earthquake
excitation. They help estimating the possible vulnerability of systems.

After determination of the modal matrix, the decomposition can be finished in a second
step, by application of the modal matrix ®, introducing a set of generalized coordinates v

u = du (5-38)
Now Eq. (5-29) is given as

K®v+ Mo = f(t) (5-39)
With multiplication of the transposed modal matrix

PTKDv + T MPi = & f(¢) (5-40)
only diagonal matrices are left

K*v+ M6 = f*(t) (5-41)
Thus the problem decouples into a set of simple equations

Ky + M7 = f7(t) (5-42)

that can be solved e.g. by Duhamel integral or numerically by a step-by-step solving
approach. The application of the modal decoupling is shown in Sec. 6

5.4 Simplified modal decomposition of damped systems

A simplification for the modal decomposition of damped systems
Ku+ Cu+ Mi = f(t) (5-43)

can be established in structural engineering, as the relatively small damping is not signi-
ficantly influencing the quantity of eigenvalues and eigenvectors. First the eigenproblem
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Figure 5-1 Real and imaginary parts of complex modes

is solved without acknowledgement of damping. Secondly, the decomposition regards the
damping

CI>TK<I>yZ- + <I>TC<I>g'ji + <I>TM<I>;QZ- = f*(t) (5-44)
or shorter
K*v+ C*v 4+ M*o = f*(t) (5-45)

The matrix C* is not necessarily diagonal. However, using the Rayleigh approach that
compiles damping as

C = K + BuM e

results in a mass or stiffness proportional representation for what 3, and [y are ap-
propriate scalar values. Using this or similar approaches, e.g. from [22], the generalized
matrix C* is diagonal as well. The resulting decoupled equations can be solved in the
known manner.

5.5 Modal decomposition of damped systems

The simplicity of the undamped or simplified analysis strategies described in the previous
section is given because the eigenvalue problems have only real solutions. This also means
that damping effects are not considered in the modal analysis. This will change to complex
solutions, if damping is directly involved. The contents and meaning of complex modes
is illustrated in Fig. 5-1 where it is obvious, that the real part of the system energy is
transformed into motion whereas the imaginary part is dissipated through damping.

Solving strategies based on mathematical optimization can be principally derived in the
same manner as in the previous sections. The homogeneous equation

Ku+Cu+ Mii=0 (5-47)
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is transferred into the characteristic equation

Ku+ Cuiw — Muw?® =0 (5-48)

by application of the basic functions Eq. (5-31-5-33). As the eigenvector v needs norma-
lization, the following mass-proportional norm is stated

uMu =1+ 01 (5-49)

thus giving a first form of an optimization problem

O(u,w) = w?* — Min (5-50)
Ku+ Cuiw — Muw?® =0 (5-51)
uMu =1 (5-52)

This form of optimization problem requires for solving not necessarily special algorithms
that are prepared for complex analysis. Conventional real solvers can be utilized too.
Complex calculations are only necessary before entering the interfaces of the optimization
algorithm. For computation, just the real and imaginary parts of complex numbers are
treated as separate variables. Hence, the eigenvector w is a real vector, but containing the
complex number components

U = [uqeal’ ullma97 o ureal ytmag

’ '

1" (5-53)

Thus the amount of unknowns and subsidiary conditions is typically doubled compared
with the appropriate real problem.

As described in Sec. 5.2, the equation is multiplied by the eigenvector u, giving

uKu + uCuiw — uMuw? = 0 (5-54)
With application of the norm Eq. (5-49), the optimization problem can be simplified

O(u,w) = w?* = uKu + uCuiw — Min (5-55)
uMu =1 (5-56)

The result is the smallest eigenvalue and the appropriate eigenform. By assembling the
eigenvectors in a complex modal matrix ¢ the successive calculation of higher modes can
be performed

O(ui+17wi+1) = wi2+1 = Kui+l + CUiJrl?;wiJrl — Min (5-57)

Ui Muip =1 (5-58)
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Figure 5-2 Example eigenvalue analysis (spatial model)

Q;Muipq =0 (5-59)
with the orthogonality condition Eq. (5-59).

5.6 Solution by optimization strategies

All optimization problems for analysis of the previously described set of eigenvalue pro-
blems are quadratic complementarity problems, as they consists of quadratic objective
functions, linear subsidiary conditions except for the orthogonality condition that is qua-
dratic. They can be solved with specialized algorithms or ordinary nonlinear optimization
strategies, as in Sec. 2.

The solution of the real problem is typically non-problematic, as those problems are con-
vex, thus leading to an unique solution. However the complex problem as given in Sec. 5.5
is generally non-convex, resulting in the necessity of suitable starting vector provisions.
As the damping in structural engineering is typically small, the solutions of damped and
undamped problems are close and the real eigenvalue problem can provide these starting
vectors. Then, a positive side effect is, that the solution duration is decreased for the com-
plex system, as the algorithm needs only to search within the vicinity of the given start
solution.

5.7 Example dynamic eigenvalue analysis

The following example is demonstrating the analysis methods given in the previous chap-
ters. The structure of Fig. 5-2 is applied. For simplicity only a plane substructure is ana-
lysed as given in Fig. 5-3.

First, real and complex eigenvalue analyses are performed simultaneously. The results
for the eigenvalues are listed in Tab. 5-1. This example uses mass proportional damping.
As the mass is uniquely distributed in this example, the real part is constant for different
modes. In Tab. 5-2 a stiffness proportional version is shown for comparison. Here the
influence of the changing stiffness of columns and beams can be studied. For all cases,
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Figure 5-3 Example eigenvalue analysis (plane frame)

the eigenforms are given in Tabs. 5-3, 5-4 and 5-5. Here also, the influence of damping is
obvious.

Table 5-1 Example: Real and complex eigenfrequencies using mass proportional damping

No. Figenvalue  Real = Complex real part Complex imag part
1 8.1793 -0.326250 8.172686
2 25.492 -0.326250 25.489321

Table 5-2 Example: Real and complex eigenfrequencies using stiffness proportional damping

No. Figenvalue  Real = Complex real part Complex imag part
1 8.1793 -0.511073 8.163213
2 25.492 -4.964206 25.003372

5.8 Classical stability (statics)

The classical stability (or buckling) analysis tries to determine a multiplier for the applied
forces that exactly describes the stability limit state. Often this principle is exchanged
for a multiplier for the internal forces or stresses in the structure. Then, two different
stiffness parts are distinguished, a linear part K, and a geometric nonlinear part K,
that is dependent on the internal force situation

u+ f=0 (5-60)

Characterizing the solvability of the problem, the following eigenvalue problem can be
stated
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Table 5-3 Example: Real modes

ODYN 1.48

ODYN 1.48
Eigenform_Classical Eigenform_Classical
ul> -5.3024e-308 ul > -6.9283e-002
ul< 8.2097e-002 ul< 7.6636e-002

u2 > -7.5987e-003
u2 < 7.5987e-003

U2 > -2.8022-003
U2 < 2.8022¢-003

Eigenform 1 Eigenform 2

Table 5-4 Example: Complex modes mass proportional damping

oDYN 1.48

Eigenform_Real_1M Eigenform_Imag_1M
ul > 0.0000e+000 ul > -5.9760e-003
ul < 2.0695e-001 ul < 0.0000e+000
u2 > -7.0640e-003 U2 > -2.0400e-004
u2 < 7.0640e-003 U2 < 2.0400e-004

Eigenform 1 real part Eigenform 1 imaginary part

oDYN 148

Eigenform_Imag_2M
ul > -1.7437e-001 ul > -2.0000e-006
ul< 1.9288e-001 ul< 2.0000e-006
u2 > -1.9125-002 2 > 0.0000e+000
u2 < 19125002 2 < 0.0000e+000

Eigenform_Real_2M

Eigenform 2 real part Eigenform 2 imaginary part
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Table 5-5 Example: Complex modes stiffness proportional damping

0oVN 1.48 0OVN 1.48

Eigenform_Real_1K Eigenform_Imag_1K|
ul > 0.0000e+000 1> -6.1260e-003
ul< 2.0694e-001 ul < 0.0000e+000
u2 > -7.0630e-003 u2 > -2.0900e-004
u2 < 7.0630e-003 u2 < 2.0900e-004

Eigenform 1 real part Eigenform 1 imaginary part

Eigenform_Real_2K Eigenfor ag_2K]
ul > -1.7437e ul > -1.0000e-006
ul < 1.9288e-001 ul < 1.0000e-006
u2 > -1.9125€-002 2 > 0.0000e+000

2< 1.9125¢-002 2 < 0.0000e+000

Eigenform 2 real part Eigenform 2 imaginary part

u=20 (5-61)

The eigenvalue A can serve as the required limit state multiplier. Two aspects need to be
fulfilled for the correctness of such a limit state problem. First, the pre-deformation state
necessary for the determination of the internal force state must be linearly dependent on
the force application. Secondly, the geometric stiffness matrix /4., needs to be indepen-
dent on the strain state. Such a prerequisite is only given, if the systems are linear, that's
why this theory is called linear stability analysis.

In order to evaluate the stability of a general system, the situation near to the bifurcation
point need to be assessed. Or, the claim of determination of a multiplier will be abandoned.
Then the solvability of a given system under given excitations need to be assessed. The
situation is as follows, using the notation from Sec. 4

KNLU+@geo+f =0 (5-62)

The definiteness of the problem is now only dependent on the properties of the nonlinear
stiffness matrix, thus can be solved with methods of Sec. 5.2.
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5 Modal and stability analysis

5.9 Dynamic stability
5.9.1 Lyapunov exponent

The dynamic stability analysis evaluates the behavior of dynamic systems in time. Hereby
a system can have the following basic states:

e The system is asymptotically stable (or dissipative). The solution has an attractor whe-
re most of the motion is concentrated. The phase space is contracting.

e The system is conservative (non dissipative) if the volume of a phase space remains
constant around a trajectory.

e The system behaves chaotic, i.e. small changes in excitation can result in extreme
responses.

The most general measure to distinguish between these three states is the Lyapunov ex-
ponent, that is determined for a dynamic function y(t, x, zo) as

A= lim 1111
t—o0

dy(ta z, l’o)

. (5-63)

This exponent is positive if chaotic, zero for conservative systems and negative for asym-
ptotically stable systems. The more negative the exponent, the greater the stability. As can
be seen, the Lyapunov exponent is basically a statistical parameter, being a mean value
for a dynamic process.

For multi-dimensional problems, the exponent is given as a spectrum of values

A= [/\1, et )\z] (5'64)

that are the eigenvalues for the Jacobian matrix of the function y

J = M (5-65)
dz

calculated by the eigenforms of the quadratic form

T; = eig(JJT) (5-66)

resulting in

A=1In[(TTJJTT;)*] (5-67)

Usually, the evaluation of the maximum value is taken for system characterization. The
basics on that topic are provided e.g. in [212,173]

Theoretically, the determination of the Lyapunov exponent seams to be a convenient con-
cept of stability analysis, that can be also used for design of systems. The following opti-
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mization problem can be stated, here noted in dependency on the general system parame-

ter x

O(z) = Mz) = Min (5-68)
y(z) =0 (5-69)
T <= Tiim (5-70)

containing a general description of the structure in the function y(z) and restrictions.
However, the calculation of A(x) is quite costly, as it involves a huge number of times ¢
with a representative amount of excitations.

5.10 Simplified stability estimation
5.10.1 Method description

The dynamic stability of a dynamically excited structure can be determined by

e the geometric stability (buckling)

e the physical stability (kinematic chain)

or combined effects. In static calculations without inertia forces, these instabilities are ea-
sily detected, because no equilibrium can be found. In dynamic calculations, such effects
are complex and hard to detect.

However, for practical reasons in earthquake engineering, a simple eigenvalue analysis
can be helpful. As known, eigenvalue analyses are limited to linear problems. That's why
the analysis can only be performed, if the time and system properties are linearized and
therefore all coefficients are constant. This simplification is possible to apply at distinct
times, if all nonlinear influences are introduced in the coefficient matrices, including geo-
metric and physical nonlinear effects, e.g. deformations and damages contained in the
structure. Then the method given in Tab. 5-6 can be applied. Compared with the Lyapu-
nov exponent, the procedure generates conservative but practically useful results.

5.10.2  Example simplified stability analysis

The above described method is illustrated with help of an example. The structure is given
in Fig. 5-4. The cross-sectional material behavior of the system is linear elastic - perfectly
plastic, i.e. the admissible moments in all beams ends are restricted to be greater than
-150 kNm. The structure is excited by an artificial earthquake (Fig. 5-5). For discussion
of results one beam end has been selected.

In a first calculation a linear and a nonlinear time history analysis is performed. The ben-
ding moment result for the selected beam end is illustrated in Fig. 5-6. The redistribution
effect of the moment is well visible.

Secondly, the structure is loaded at two load intensity levels:
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Table 5-6 Principle of a simplified stability estimation

Physical nonlinearity

LLG*G”m <0 eS

Equation of motion

KnLU +fgeo MU+ CU+f(1)=0 eV

Y

03
02
o1

0

01

t=t+At
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- Time integration

02

03

A

Excitation function

()

et [

I
A

|
I

Results

Time history analysis

Effective stiffness matrix

Kefr =KnL(tEerr)

Eigenvalue analysis

Complex eigenvalue analysis

Keffu—Muco2 +Cuin=0 eV
uMu = 1+0i

f

Re(w?)<0
Re(0?) >0

Evaluation of real parts

stable

unstable

f

Plot of real parts changes
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Figure 5-4 Example: Structural configuration
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Figure 5-5 Example: Artificial accelerograms
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Figure 5-6 Example: Differences in moment development calculated in a
linear and nonlinear analysis at Load level 1

norm A Re

Load level 1

t[s]

20

-0.2

-0.4 4

-0.6

-0.8 -

Table 5-7 Example: Comparison of real part eigenvalue differences

T
norm A Re

t[s]

Load level 2

e Load level 1: Given load path effects in plastic hinges are not considered during de-

sign. The applied accelerogram intensity is 1.0.

e Load level 2: The structure is designed according to the shakedown limit state (see

Sec. 7.4), therefore the development of plastic hinges during excitation is controlled.

The appropriate accelerogram intensity is 0.71.

For both levels, the analysis steps given in Tab. 5-6 are performed. The appropriate results
for the real parts of first complex eigenvalues over time can be compared in Tab. 5-7. As

can be seen for Load level 1, the system becomes kinematic during the excitation. This

behavior was not directly discovered in the time history analysis, but in the simultaneously

performed complex eigenvalue analysis.
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0.006 -

eps | Load level 1
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WV V Load level 2

0.001
t[s]

Figure 5-7 Example: Development of concrete strains in the considered beam
end

In Load level 2, these problems vanish, as the adaptive limit state analysis avoids the
development of a kinematic chain. In Fig. 5-7 the total deformations are given for the
considered beam end. As can be seen, also for Load level 2 a more conservative behavior
is obtained, by showing lower strains in the concrete as the limit of 0.0035.
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6 Simplified linear analysis

Simplified linear methods base the analysis of nonlinear structures on linear models in
order to utilize the computational advantages. For this purpose, nonlinear problems are
transformed into equivalent linear models, that show approximately the same response
characteristics as the original problem. Load reduction coefficient concepts and equivalent
linearization strategies are applied.

6.1 Linear response spectrum analysis

The method uses modal decomposition of a discrete linear dynamic problem with npor
degrees of freedoms

Mii+ Cu+ Ku+ f(t) =0 (6-1)

with the excitation , commonly given as a function of the ground acceleration value i,
f(t) = M1, yiiy, (6-2)

where I;,,; is the influence vector. This multi degree of freedom system (MDOF) is trans-
formed into a set of single degree of freedom systems (SDOF) by using orthogonal trans-
formations with help of ny0qe < npor eigenforms, given in the modal matrix ¢ and

generalized coordinates v [51]. With the substitution

u = dv (6-3)

in Eq. (6-1) and multiplication with ®7 the following form is achieved

OTMPH + PTCPo + PTKDv + T M 51y = 0 (6-4)

that is, because of the orthogonality, identical with the solution of 1,4 decoupled equa-
tions

ST MP0; + T CP;0; + ®T KPv; + O M, 41, = 0 (6-5)
Or simplified, if the modal mass m; = ®7 M ®, is not vanishing, the equation reads

with the angular frequency

[oTK o, %
i — d : - —Z 6-7
YN eTme,  \m, (©-7)

the damping rate
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6 Simplified linear analysis

b = 206TK®D;  2wim; (6-8)

and the participation factor

B ST Mg B OTMI s

I = = 6-9
ST M P, m; (6-9)
For non-vanishing participation, Eq. (6-6) can be written as

so that the obtained relation represents an SDOF system, that is only dependent on the
damping ratio, the natural frequency and the ground acceleration. Hence, the values Sa,
Swv, Sd can be provided in advance as response spectra, for a fixed damping ratio, a par-
ticular ground acceleration and a given interval of frequencies. An response spectrum is
defined as the extreme absolute response of an SDOF system with defined natural an-
gular frequency w to a particular dynamic acceleration signal i, with a fixed duration
t =1gy...1,, under a fixed rate of damping &, e.g. for the deformations

Sd(w, &, ity (1)) = max | Sd(w, &, i, (1), )| 6-11)

The spectrum is commonly provided as a plot of (T,S(T)) pairs, if the natural period 7" =
27 /w of the SDOF is stepwise altered within an interval. The necessary time integration
is done e.g. by solving Duhamel’s integral, here given for the deformations

4

Sd(w, &, iig(t),t) = é Ofibg exp [fw (t — 7)]sin [w (t — 7)] dT (6-12)

or by application of a step-by-step numerical integration scheme (see Sec. 8). In the cal-
culation of fixed-base structures, the damping ratio is relatively small. In this case, the
explicit calculation of the modal acceleration and velocity is approximately

Sv~ PSv = Sdw (6-13)

Sa ~ PSa = PSvw = Sduw? (6-14)

thus the spectral values are replaced by pseudo spectral values.

The classical procedure in Tab. 6-1 neglects the damping for the eigenvalue analysis (real
eigenvalues)

(K —@*M)® =0 (6-15)
whereas in the spectrum the damping is considered. For decoupling of the differential

equation system Eq. (6-1), the damping matrix needs to have the property

123



6 Simplified linear analysis

OTCD = diag(c;) (6-16)

that is e.g. provided by a linear combination of the mass and stiffness matrix (Rayleigh
approach)

C'=auM +axK (6-17)

Furthermore, the classical procedure consequently applies the pseudo spectral simplifica-
tions. After determination, the spectral values are re-transformed into the time domain,
applying the participation and eigenvectors. The procedure is repeated for all selected
modes. Finally all modal results can be superposed to get the response of the structure.
The application of a superposition rule is necessary, because spectral values itself are al-
ways positive and the sign of the mode shapes is not definite. The most commonly applied
superposition rules are

e Sum of absolute peak values
e Square root of the sum of squares (SRSS)

e Complete quadratic combination (CQC)

For design purposes, spectra are provided in codes. Such "design spectra" are calculated
from several ground motions and are treated by statistical means. They are simplified for
practical use. Typically, codes provide a basic spectrum ("elastic spectrum") that considers
a global viscous damping of 5%. The basic spectral values are then modified by seismic
coefficients, e.g. for coverage of a different damping ratio or local soil characteristics, as
described in the following sections.

The response spectrum analysis can be solved as an optimization problem (Sec. 5). De-
pending on a design parameter p and for a given acceleration spectra Sa, a typical design
task in earthquake engineering is

»— Min (6-18)

with the subsidiary conditions

w= ] S uz  (SRSS) (6-19)
i=0

u; = I';Sa;(wi(p))®i(p) (6-20)
F (p)M (p)Ling

T, — 6-21
7 (p)M (p)®:(p) (02D

U < Uiy, (6-22)
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6 Simplified linear analysis

Table 6-1 Classical response spectrum analysis

Structural model

Y

Modal analysis
(K+ oM @ =0

1

d, 0*

Eigenvectors and vector of
angular eigenfrequencies

(Inelastic) response
spectrum

1

f

Participation factor for i"-mode
oM
O M,

Period of i"-mode

=2
o

Spectral deformation

Sa;
Sd, = =0
| (Di2

—

1 Y

Spectral acceleration
Sa; =f(T; &)

{

{

{

Deformation vector
U = @;-I; - Sdj

Acceleration vector
a = ®;-T;-Sa

Base shear force
fB,i = |T Mq)l FI ~Sai

{

{

{

Superposition of modal results e.g. using SRSS u= Zulz a= ‘/Z aiz F= \/Z F,2
i i i

®;(p), wi(p)

YK (p)®; = w? — Min

(I)ZTM(p>(I)i =1

o]

N

lM(p)q)i =0

The last inequality contains the limit condition, for that p is adjusted. The values ®;and w;
are derived from a reel eigenvalue problem , e.g. with help of an embedded optimization
problem from Sec. 5

(6-23)
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Figure 6-1 Example: Tuned mass damper

6.2 Example: Optimization of a tuned mass damper

The tower given in Fig. 6-1 can be simplified to a cantilever MDOF system. At the top
of the building, a tuned mass damper should be installed. This device is modeled as a
combination of spring and additional mass. The effect is illustrated in Fig. 6-2 where
for a grid of mass damper properties the maximum accelerations are given. The typical
minimum point can be seen, that can be as well determined by means of mathematical
optimization, using gradient solvers. For this example, the acceleration was reduced down
to 43%.

6.3 Example: Retrofitting a frame structure using linear response spectrum
analysis

The two-story frame structure in Fig. 6-3 is to be retrofitted in order to reduce the inter-
story drift. The structure is loaded by the displayed ground acceleration. The limit state is
defined by the admissible interstory drift, that is set to 1%. For retrofit, additional cable
braces should be installed and appropriately designed for each story. The design variable
is a scaling factor for the area of the cables A.,;. For analysis, the classical linear response
spectrum method is applied. The structure is to remain elastic.

First the original structure is analysed (p = A, = 0). The first natural period is 77 =
1.39s. The calculation is done with help of nonlinear optimization, using a gradient solver.
For the eigenvalue analysis, the first three natural modes of the structure are included in
the calculations. From this, the maximum interstory drift for the non-modified structure
is 4.75% that is not sufficient.
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Figure 6-2 Example: Tuned mass damper, Illustration of design space,
minimum point

Au,, = 0.03
-

-~ Properties: Acceleration spectrum
Beam: EA=2+10° °% ;
fl ] .104 500 7So [m/sec ]-
| coumn:  EA=1e10° 7|
El=5+10°
3 Braces: E=2¢10°

2,00

. 0.00
£ Story masses: 10t 0.00

0.50 1.00 1.50 2.00

Figure 6-3 Example: Application of response spectrum method for the retrofit
with cable braces

Second, the cables are installed. From solving the optimization problem (6-18-6-23), a mi-
nimum area of 1.5 cm? for each steel cable is required to guarantee the ultimate interstory
drift. As the effect of the stiffening, the first natural period is decreased to 77 = 0.99sec.
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6.4 Reduction coefficient/seismic coefficients for inelastic analysis

The classical response spectrum method was developed for the analysis of linear elastic
structures. Because of the energy dissipation during inelastic deformations, the internal
forces of the structure can be significantly decreased. Approximately, this effect can be
simulated in a linear response spectrum analysis, if the seismic loads are reduced. This
strategy utilizes spectral reduction coefficients R in order to reduce the spectral excitation
values Sa or Sd to a level, where the ultimate forces in the linear (substitute) system and
nonlinear system are identical. Assuming a linear elastic - perfectly plastic behavior, the
level of excitations in a system is then defined by

1
fe="tu=13f (6-24)

However, the appropriate deformations are much higher than in the fictitious elastic sy-
stem. For calculation of ultimate displacements of the inelastic system u,,, equivalent dis-
placement approaches or equivalent energy approaches are proposed according to Fig. 6-
4 [51]. It becomes clear, that the reduction factor depends directly on the ductility, given
as the ratio between the ultimate and yield deformation

= Uy /U (6-25)

The reduction coefficient concept is widely used among seismic design recommendati-
ons [73,69,105]. Codes provide rules to determine fixed reduction coefficients R (or some-
times called as structural system coefficients [208], or behavior factors with ¢ = 1/ R [73])
or seismic coefficients c;.

The coefficient R is applied in order to reduce the loading, e.g. acceleration spectra

Sa
Sared = E (6'26)

The seismic coefficient is a factor to calculate the base shear force
fB=cs- W (6-27)

from the total weight W of the structure. Both concepts can include considerations of the
e Importance of the structure

e Regularity and rigidity of the structure

e Material, structural system, ductility supply

e Site effects, distance from the epicenter

In modern seismic codes, these criteria can be additionally combined with a performance
factor, that accounts for an intended post-seismic performance [73,105,77]. Problematic is
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Figure 6-4 Comparison of equivalent displacement and energy approaches
for the derivation of the reduction factor
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Figure 6-5 Example: Application of the reduction coefficient method

the appropriate determination of effective material parameters and the missing sensitivity
to internal force re-distributions during nonlinear excitations.

6.5 Example: Reduction coefficient design of a core structure

The bending capacity of the reinforced concrete core structure in Fig. 6-5 is to be dimen-
sioned. The length of the wall as well as the reinforcement is to be adjusted. Except for
the length of the wall, all other geometric parameters are fixed. The loading is according
to the acceleration spectrum in Fig. 6-5. The reduction coefficient is given with R = 2.0.
The necessary area for the wall reinforcement in cross section A-A need to be calculated.

The calculation is performed in two steps. It starts with a pre-design of the wall length
L. The design criterion is a limit interstory drift of 1%. The necessary effective stiffness
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Longitudinal force Bending moment Deformation and interstory drift
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Figure 6-6 Example: Results from linear calculation obtained with spectrum
reduction (R=2.0)

of the wall is determined from solving an elastic response spectrum analysis according to
Model (6-18) - (6-23). The spectrum is reduced by application of R. In this calculation,
the inelastic deformation is estimated with the equal energy approach (Fig. 6-4). The
optimum value is an effective stiffness of

O(L) = El;; — Min (6-28)

that is calculated to 465660 kNm?. From this, the appropriate length of the wall is cal-
culated with the assumption of a 70% ratio of the stiffness of cracked to uncracked cross
section. The necessary length is L = 2.07m. The plots of the appropriate deformation
state, longitudinal force and bending moment distribution in the structure is shown in
Fig. 6-6.

In a second step, a minimum optimization problem is solved to dimension the reinforce-
ment of the structure to match the elastic longitudinal force /N, and the elastic moment of
M. For analysis, the core is treated as an equivalent beam model according to Sec. 4.16.6,
using a layer discretization for the cross section problem. The objective function is to pro-
vide a minimum reinforcement a, that is identically used in the tension and pressure zone
of the cross section

O(as) = as — Min (6-29)

The subsidiary conditions contain the equilibrium condition, dependent on the stresses at
the layer boundaries o

ATg = f (6-30)

with the loads f at the same points. The kinematic condition is

Au—e=0 (6-31)
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connecting the strains at the layer boundaries ¢ with the appropriate deformation. The
following material law for concrete within cross section models is taken

_fcd fO’f’ Ee2 2 & Z Ec2u
o=1 —f, (1 _ (1 _ —)") for  0>e>en (6-32)
0 for e>0

with n = 2, f.q = 1.13, and .o = —0.002 for C20/25 [68]. The steel behaves linear
elastic until the yield limit f, 4 is reached. After yielding, the material is perfectly plastic.
As the yield limit of the steel is determining the yield moment of the cross section, the
following criterion is added

0s < fya (6-33)

The problem is mainly determined by the boundary condition. This is Bernoulli’s hypo-
thesis, stating that any deformation in the cross section is dependent on the deformation
at an selected point m, beeing a plane cross section, thus

uw = Apu,y, (6-34)
with

Ly,
A= |01 (6-35)

as the appropriate coefficient matrix (2D excitation). The matrix A, connects the defor-
mations at the point 7 with those at point m (see definition in Sec. 4.16). The deformation
state is identically described with

U = [Em, Ky (6-36)

The matrix A, is identical with those that can be used to summarize the internal force
state in the cross section at point m

fm=ALf (6-37)

Hence, the Egs. (6-34) and (6-37) can be used to substitute the layer parameters f and u
by the parameters f,, and u,,, thus

ATATg = §,, (6-38)

AAyu,, — =10 (6-39)

131



6 Simplified linear analysis
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Figure 6-7 Example: Cross-section behavior for a fixed reinforcement

that is considerably reducing the dimension of the matrices. For this example, the follo-
wing excitation is applied

£ =[N, = 1050kN, M, = 3809kNm] (6-40)

containing the elastic internal forces from the equivalent beam modes at the wall bottom.

Using this optimization problem, the reinforcement can be calculated. The result is a; =
38.81cm? for either side of the cross section. For this reinforcement,the elastic curvature
of the cross section is K, = 1.91- 1072, readable from the moment-curvature relationship
in Fig. 6-7. The ultimate capacity is M,, = 407979k N'm while the appropriate maximum
curvature is K, , = 9.83 - 10~°. At this point a limit concrete strain of —0.0035 is reached.

For control, the ductility

= Kyu/Kou = 3.05 (6-41)

is determined. Therefore it is obvious, that the reduction factor R = 2.0 was selected with
enough safety margin, as the ultimate ductility in the equal energy approach is

py = 0.5(R?+1) =25 (6-42)
It should be mentioned, that the effects of interaction of longitudinal force and bending

moment is disregarded for the sake of simplicity in this example. However, in real design
it is imperative to check for the effects of changing longitudinal forces.
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Figure 6-8 Definition of equivalent stiffness

6.6 Equivalent linearization for fixed-base structures

Besides spectrum reduction, a second strategy for application of the response spectrum
procedure from Sec. 6.1 for inelastic systems is possible. It uses the transformation of
the system into an equivalent linear system. One basic assumption in equivalent lineari-
zation is the comparability of the responses due to hysteretic and viscous damping. The
generally nonlinear material law in hysteretic damping will be replaced by an equivalent
linear elastic system with relatively high viscous damping. For that purpose an appropria-
te combination of equivalent stiffness and damping has to be provided. This topic was
intensively studied in the last decades, e.g. in [106,107,110], and is already utilized in
several design concepts. Because of observed analysis deficits in different fields of app-
lication, many adjustments and modifications have been proposed, mainly for fixed base
design e.g. [52,53,106,22], or for base isolation designs, e.g. [115,103].

The fundamental approaches in equivalent linearization will be summarized as follows.
To calculate the stiffness of the equivalent linear system the maximum structural forces f,,
at the maximum deformations wu,, in the viscous and elasto-plastic models are equated. As
illustrated in Fig. 6-8 this will lead to the following expression for the equivalent stiffness

Kequ: & :Kl

u

A+ py—1) (6-43)

dependent on the initial stiffness K, the ratio between the first and second slope stiffness
v = K3/K; and the ductility p. Since the masses in both systems are identical, the
corresponding equivalent period is given by

1
Toge =Th [ ——— 6-44
! 1(1+m—7> (4

[SIES
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6 Simplified linear analysis

Hereby T denotes the period of the elastic structure. The basic concept to derive the
appropriate equivalent damping is, firstly, to assume a steady state response (sinusoidal)
and, secondly, to assume that at maximum deformations one complete cycle in the respon-
se will be observed. Those two issues play a major role for the accuracy of the method
especially if applied to real earthquake records.

Thus, for the derivation of the equivalent damping coefficient 4, the equal dissipated
energy rule will be applied. Both energies are schematically shown in Fig. 6-9. The dissi-
pated energy of the hysteretic model is given by

E,=4 -Ku.(u—u)(1—7)=4- KjuS (u—1)(1 —7) (6-45)
The corresponding viscous energy is
E, = mcwu? (6-46)

is dependent on the square of the deformations u, the damping coefficient ¢ and the circle
frequency of excitation w. Using an expression dependent on the damping ratio £ will
incorporate the parameters of the equivalent system

By = 2t oqu K equi® — (6-47)
equ
Equating both energies Eq. (6-45) and Eq. (6-47)
E, = E, (6-48)
leads to the following original expression for the equivalent damping ratio
2(p — 1A =) TequT
gequ,om’g = ’7T,LL2 T12 (6'49)

A review of existing concepts showed that the frequency dependency of the damping is
often simplified applying

T = Togu (6-50)
so that

2(p—1)(1 =)
equ — 6-51
e (1 + py — ) (€D

The definitions in Eqn. (6-44) and (6-50) are widely accepted and used in earthquake
engineering, e.g. as a basic part of the capacity spectrum method described in ATC40 [9].
Fig. 6-10 shows the effect of ductility change on the damping ratio ¢ with respect to
different stiffness ratios ~.

Finally the inelastic spectral value can be derived from reduced spectra, that can be cal-
culated by time history analysis applying the appropriate viscous damping ..
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Figure 6-9 Equivalence of responses in viscously and hysteretically damped

Cequ
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

systems

vy=0.00
y=0.05
y=0.10
y=0.15
v=0.20
60

Figure 6-10 Dependency of equivalent damping on ductility and stiffness
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S(l ~ f(Tequ7 éequ> (6'52)

It should be noted, that the application of the linear equivalent model requires the know-
ledge of the maximum deformations u, since the stiffness and damping are directly de-
pendent. As those are mostly not available in practical cases, all calculations are basically
iterative.

The method is qualified as a design strategy. The application is illustrated in Tab. 6-2.
The procedure consists of two iteration loops. First, the appropriate damping ratio £ is
determined from the displacement of an substitute SDOF system. Otherwise a complex
eigenvalue analysis can be alternatively performed. Second, the resistance parameter p is
calculated that is the ratio between the elastic stiffness K and equivalent stiffness K,
in the plastic hinge zones. The design is finished if all deformation limits ;;,, are fulfilled
or matched. For example, possible deformation criteria can be formulated depending on
the cross-section curvatures or the interstory drift.

The control of the analysis can be organized as an optimization problem. Here the resistan-
ce factor p and the SDOF ductility parameter y are the design parameters. The problem is
illustrated in Tab. 6-3. The minimum of p is required in the objective function. The ana-
lysis is finished if the minimum parameter is found for that the subsidiary conditions are
fulfilled. The calculation stops, if one kinematic parameter ¢,,,, reaches it’s limit criterion

Elim -

6.7 Example: Design of MDOF system as an equivalent linear system

The structure in Fig. 6-11 is to be designed for the shown earthquake excitation. Only
the marked beam sections are selected to develop plastic hinges. The analysis is done
according Tab. 6-3 with application of a nonlinear optimization algorithm. For equivalent
linearization, the stiffness in the plastic zones is modified with a factor p, that can be
modified between 0.0 and 1.0. As the design criterion, the maximum affordable total
curvature in the beams must not exceed xy;,,, = 0.01. The result of the analysisis p = 0.14,
then the limit curvature is reached at the first story beam. Fig. 6-12 contains a comparison
of the bending moments for the initial elastic and inelastic system. From this, the moments
are reduced by a force reduction coefficient of R = 382/231 = 1.65.

As the optimization problem is only dependent on the parameter p, the solution space
can be graphically illustrated. This is done in Fig 6-13, where the local curvature in the
first-story beam and the global ductility ;4 are given in dependency from the stiffness
modification factor p. From this it is obvious, that the solution space near the solution is
relatively smooth and convex. Thus, the application of gradient optimization solvers is
advisable for most solving efficiency.

6.8 Conventional simplified base-isolation design

The concept of base isolation effects two mayor modifications in the structural configura-
tion.
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Table 6-2 Iterative analysis of MDOF systems using equivalent linearization
Pre-design (e.g. from static analysis) MDOF system
Selection of plastic hinge zones - K,
[ Keay Equivalent
A *  linear system
Special case: u . 8 >
Linear elastic — ideal plastic zones o Potential [
-+——+ plastic hinges
Equivalent % .
Y linear Elastic
Iteration i=0 SDOF d oarts
* >
SDOF Ductility wi=po=1
Stiffness coefficient pi=po=1
A
Y
2u -2
g =Hi—2
p
1 1 £ .
py=— * = | p g Cmaxi
1 Pi+1 > [pl eim
Inelastic spectrum \
+ Sa(T,&)
1 Elim sa 1 USDOF,i
py = 1+ —— His1 = 5| Hig t——
2 [ Emax,0 210 usporo
| |
T
yes yes no
no| Check of elastic * Check of elastic
% remaining parts - - - - remaining parts
Equivalent stiffness in plastic
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| geree A
Kequ,i =Dpi I<l
yes * no yes no
1 €max0 < Elim Linear response spectrum Uspori ® Uspoki-1 [ ™ €maxi ® Elim
no analysis
! ! y e
SDOF displacem. ugpog, USDOF,i Check of overall
Limit deformation  €,x0 - L €max.i design
i=0 i>0
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Table 6-3 Analysis of MDOF systems using equivalent linearization and nonlinear optimization

Pre-design
Selection of plastic hinge zones

Analysis kernel Nonlinear optimization problem

|

N — |
Damping ratio - Design variables |
E=¢(u) ' ! X = |
P X =p |

1 1 |

* 1 1 |

1 | |

1 1 :

Inelastic spectrum Vo :
Sa(T, &) b Objective function |
: : pP— Min :

Sa : : |
1 1 |

1 1 |

1 1 |

1 1 |

1 | |

b |

! | Subsidiary conditions !

. |

' ' 1 = Uspor |

T :_»: €max < €lim :

1 I

1 |

1 |

1 |

Equivalent stiffness in plastic
hinge regions

Kequ =p Kl

f

Linear response spectrum
analysis

1

SDOF duCtlllty Uspor
Limit deformation g,
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Figure 6-11 Example: Design of MDOF structure using equivalent

Envelope for bending moments (Initial design)

linearization

Envelope for bending moments (Nonlinear design)

381 kNm

Mt

L [E—

S_ENVELOPE 6

1.0202¢+001
9.1060e+001

| e \ |

231 kNm

Figure 6-12 Example: Moment envelope for the elastic and inelastic systems
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Figure 6-13 Example: Solution space; Dependency of the curvature and
system ductility on the stiffness multiplier

Firstly: Providing a story with reduced stiffness commonly applied next to the base. Rub-
ber bearing devices and sliding systems are combined in order to adjust the stiffness [171].
Dependent on the device configuration, the structural periods are shifted into long and ve-
ry long range. Periods far beyond three seconds can be obtained [227,163]. This will result
in greatly reduced super-structural forces and accelerations. Naturally, this has practical
limits mainly because of the gradually growing flexibility. Limits given by isolation de-
vice characteristics, the disposable clearance to neighboring facilities as well as desired
self-centering capabilities will determine the design.

Secondly: Instead of purely adjusting the stiffness, a combination with damping devices
can be considered. This adds dissipative capacities to the system and reduces deformations
due to an increase in the effective stiffness. This can be advantageous up to a certain point
from that on additional damping will lead again to an increase in the loading of the super-
structure [125]. Finding a beneficial balance of the stiffness and damping contribution to
the structural behavior and the appropriate selection of suitable device combinations is a
challenging task in design. The application of optimization strategies can be beneficial in
the planning process.

Figure 6-14 shows basic device types and the typical composite reaction. The changes
in the structural configuration require special precautions, especially for large deformati-
ons, to prevent impacts against surrounding facilities and to maintain the operability and
stability of isolation devices. Additional interest arises for the accelerations in the su-
perstructure. This parameter mainly determines the operability within the superstructure.
Limit values are e.g. given in order to maintain sensitive equipment or to ensure the well
being of patients in hospitals.

For analysis and design, simplified and time history methods are commonly utilized to-
gether. The former is quick and conceptive and is therefore a perfect mean for pre-design
and device configuration. Furthermore, simplified analysis is often considered to be the
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Figure 6-14 Base isolation basic devices and combined reaction

basis to define a minimum safety level [105,73]. Time history analysis will be applied to
check the performance of the chosen design and to refine the concept.

The classical simplified design concepts base on equivalent linear models, as described in
Sec. 6.6. They are used to replace the nonlinear behavior of the isolating layer. Generating
a soft story, the superstructure motion is close to a rigid body motion for low- and midrise
buildings. Therefore SDOF or 2-DOF systems are mostly sufficient. Highrise buildings
show more flexibility, thus the application of MDOF shear-models can be necessary. Fi-
gure 6-15 illustrates often applied model variants. As can be seen from Fig. 6-14, the
hysteretic behavior of an isolation layer is close to a linear-elastic-plastic system. There-
fore the model can be simplified, as shown in Fig. 6-16.

6.9 Examples: Conventional base isolation design

The application of the linear simplified method for base isolation design has been explored
for two examples.
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Figure 6-15 Typical base isolation model assumptions
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Figure 6-16 Elasto plastic analysis model for base isolated structures

Example a.): A SDOF model for a base-isolated structure is examined. The mass is set to
1000t. The stiffness K (e.g. provided by natural rubber bearings) was chosen to provide
a period of 4 seconds. The yield force [, (e.g. determined by hysteretic dampers) was
adjusted to resist elastically a horizontal load of 10% weight of the structure. This device
combination was altered for a parameter study in the range of equivalent periods from
around 2 to 8 seconds. The structure is subjected to a mean spectrum from the Kobe near
fault set (Appendix 11.6). The calculation algorithm corresponds to Tab. 6-3. For compa-
rison, the effects from different well known spectral reduction concepts are investigated,
using [73,122,24,167]. The applied reduction concepts do not respect influences from the
structural period and are described in Appendix 11.2. As the damping induced by the iso-
lation devices can be considerable, the deviations in the coefficients may cause significant
impact on the results.

For reference the appropriate time history solution is calculated as well. In Fig. 6-17 the
displacement and acceleration is shown for the chosen period range. As well, the relative
errors are given with respect to the appropriate time history solution. It can be seen that
spread results are obtained. The use of the relations given by BCJ 2000 and Newmark-
Hall within this procedure seems to be generally inappropriate. They give evidence that
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Figure 6-17 Example: Comparison of maximum deformations and
accelerations for SDOF obtained by time history analysis and simplified linear
analysis, utilizing period-independent spectrum reduction coefficients

an uncontrolled extrapolation of formulas out of their original context can be problematic.
Within a first view only the simplified Kawashima/Aizawa and EC8 relationships seem to
be capable of deriving acceptable approximations, but only for structures with equivalent
periods less than 3 to 4 seconds. It should be mentioned, that the Kawashima/Aizawa-
relationship was originally derived to reflect reductions of total acceleration spectra, rather
than pseudo-accelerations. This will explain the tendency of overestimation in the short
period range. The observed percentage of deviations in this range corresponds with ob-
servations from conventional design [55,56]. However, all models gradually fail in higher
period ranges.

Example b.): Generally the same behavior can be stated for MDOF structures. In Fig. 6-
18 selected results for a 10-story stick model with lumped 1000t story masses, 2000t
baselevel-mass and 1.3 seconds fixed base period are given. Whereas the maximum de-
formations in the superstructure u and at base level v, are qualitatively behaving like the
SDOF solution in Example a), the accelerations as and a; are dramatically underestima-
ted.
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Figure 6-18 Example: Maximum deformations and accelerations for 10-DOF
obtained by time history analysis and simplified linear analysis, utilizing
period-independent spectrum reduction coefficients

6.10 Improved simplified base-isolation design

As obtained in the previous sections, contrary to fixed-base design, simplified methods
show less accuracy in the design of base isolated structures. This is unexpected, becau-
se base isolation makes the structural behavior simpler and facilitates simple calculation
methods [159]. In [221] it has been shown, that the reasons for errors arise from uncondi-
tional extrapolation of concepts known from fixed-base design. The period elongation and
the introduction of high damping requires special modifications in the analysis concepts.
This is mainly the appropriate use of reduction formulas dependent on the period, the
modified estimation of the damping in the structure and an appropriate relation between
maximum accelerations and maximum deformations.

A considerable part of the observed deviations are caused by the use of the reduction for-
mulas given in Appendix 11.2. These relations are constant with respect to the periods of
vibration. For small damping ratios and small periods these models give sufficient appro-
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Figure 6-19 Deformation-acceleration relationship at isolation level for:
SDOF, MDOF example and principle of period shift

ximations. However, in all other cases the differences can be significant. This applies for
the differences in pseudo and total spectral accelerations that become more significant in
the long period range. This effect is strongly dependent on the amount of involved dam-
ping. For this purpose, the appendices 11.2 and 11.3 provide period-dependent spectral
reduction concepts from [221] appropriate for the long period-large damping range.

Additionally, the equivalent linearization procedures require adoption to longer periods
and higher damping ratio. From the examples it is obvious that the deviations in the de-
formations rise for longer periods. Obviously in this part of the spectrum, the assessed
damping is too high and needs to be lowered continuously. A period-dependent modifica-
tion of the damping can be easily established, because the simplification Eq. (6-50) in the
damping ratio assessment Eq. (6-49) is not appropriate in the long period range. Therefore
the formula (6-51) from engineering practice can be modified as

gmod = éeunIVZ (6-53)

with the damping modification factors v, and v, that are in detail described in Appendix
Sec. 11.4.

Following the response spectrum approach in Tab. 6-1, the spectral deformations are eva-
luated at their corresponding natural periods. On the other side, the accelerations given at
this period are only acceptable for SDOF solutions, because then the acceleration history
is directly linked to the history of the deformations, as illustrated in the deformation-
acceleration plot of Fig 6-19.

For MDOF systems the situation changes significantly. In the example of Fig. 6-19 it can
be seen that the peak in the acceleration record occurs not at the same time as the deforma-
tion peak. The acceleration, corresponding to the maximum deformation, as determined
by response spectrum approach, can be significantly different from the real maximum
value. This effect can be approximately considered within simplified procedures by shif-
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ting the read-out period in the spectrum (Fig. 6-19). The estimation of such a shift due to
specific single ground motions is difficult, but average predictions for motion sets can be
determined. Hereby the acceleration increase corresponds approximately to the ratio of
the base- and super-structural initial periods. This observation is utilized for shifting the
read-out period for the accelerations

TO m
Toee = T— withTy s = 27w, | —— (6-54)
TO,s " fb,v/uy

Here, T ; is the initial period, evaluated for the overall mass m with the elastic limit base
shear f3,, and the elastic limit deformation u,, at the top of the structure. This formulation
includes, that very stiff MDOF structures behave almost like SDOF.

All modifications fit now in the procedures of linear equivalent design using optimization
strategies as described before.

6.11 Examples: Improved base isolation design

The examples a) and b) from Sec. 6.9 are again calculated with respect to the modifi-
cations for the long period range. In Fig. 6-20 the results for the deformations and ac-
celerations are given. From this it is obvious, that the modifications greatly contribute
to a better assessment of the dynamic behavior of either SDOF and MDOF structures.
For reference, the time history calculation and the non-modified model based on the EC8
spectral reduction coefficient are plotted again.
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Figure 6-20 Example: Comparison of deformations and accelerations for
SDOF and MDOF structure
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7.1 Physical nonlinear limit states

Different from the simplified linear methods in Sec. 6, simplified nonlinear methods solve
nonlinear governing equations in calculations, without explicit consideration of time ef-
fects. In seismic design, especially the evaluation of the physical nonlinear capacities gain
importance, as the utilization of the energy dissipation by plastic deformation is the most
applied concept in seismic design. Those solutions are preferred, that exhibit sufficient
ductility, while maintaining enough capacity in cross sections during plastic excitations.

Although real elasto-plastic materials or material combinations show general nonlinear
behavior, the transition from elastic to plastic behavior is often visible as a distinct break
in material laws. This enables approximations of the material law as piecewise linear,
especially if the integral cross section behavior is considered. For most practical design
cases, a bilinear simplification can be sufficient, mostly due to the steel behavior or parti-
cipation of steel. For instance in reinforced concrete structures, the concrete itself shows
negligible ductility. However, if properly designed, the reinforcement dominates the limit
state behavior, thus obtaining a quasi-ductility on the cross section level. The same ap-
plies for timber structures. Typically, the timber parts are elastically designed, whereas
the steel connections add yielding capabilities. For this reason, most practical calculation
strategies, especially those proposed in codes, base on bilinear material laws. Also the
considerations in the following sections will focus on this approximation.

As mentioned before in Sec. 1.3, besides failure prevention, the definition and design of
the structural performance after impacts becomes more and more important. From a me-
chanical point of view, the following basic limit criteria can be distinguished to determine
the extend of inelastic excitation in structures with bilinear materials

e Elastic limit

e Plastic limit

e Conservative limit
e Adaptive limit

e Deformation based limit

It is the advantage of design concepts based on optimization algorithms, that they already
contain an interface for formulation of limit states - the inequality conditions. Further-
more, the possibility to pursue design objectives enables the engineer to utilize the limit
criteria to find economic solutions. All simplified nonlinear analysis methods base on one
of the mentioned limit state evaluations. The different strategies are examined in detail in
the following sections.
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7.2 Elastic limit state

The elastic limit state is defined as the maximum load intensity or minimum resistance
configuration, for that plastic limits are reached, but no plastic deformations or failure or
any other kind of damage is observed. The definition allows for different interpretations,
dependent on the level of the considerations, e.g. whether it is a structural (global) or a
cross-sectional (local) problem. The limit states are generally different in the stress space
or internal force space or external force space. While having a linear material law and
ignoring geometric nonlinear effects, the elastic limit state and all states below this limit
can be calculated from superposition of load cases and by linear scaling. If the structure
or member is unloaded, no residual stresses/forces are maintained.

For mechanical formulation, the following types of extremum principles are often applied
in the calculation of elastic structures:

1.)  Poisson principle

2.) Stationary principles (Hellinger-Reissner, Hu-Washizu)
3.) Castigliano principle (Principle of conjugated potential)
4.) Lagrange principle (Principle of total potential)

5.) Mixed type principles

As all principles generally represent the same mechanical background, all obtained so-
lutions are identical. They can be transformed out of each other by using methods of
variational calculus (Sec 2). Thus the selection of a certain principle is only due to ef-
fectiveness of the problem formulation and numerical treatment. In the traditional forms,
geometrical linear behavior and small strains are assumed (Sec. 4.5).

The principles of the Poisson category contain all mechanical relations as equalities or
inequalities and are free of extremum conditions. In this form, the mechanical governing
relations are just "listed" in the subsidiary conditions and are therefore easily formulated.
The free extremum condition can be utilized conveniently for design tasks.

Contrary to this, the second category is a pure extremum condition, free of subsidiary
conditions. It forms saddle point problems with different extremum conditions (maximum
and minimum) for different types of unknowns. Such problem formulations are seldomly
applied in practical calculations and are not further considered.

The third and fourth types are special among extremum principles, because of their depen-
dency on one group of unknowns only and therefore their resulting simplicity. Whereas
the Castigliano principle bases on internal forces or stresses, the Lagrange principle is
based on kinematic values only. They are an important basis for the formulation of force
based or deformation based calculation concepts in mechanics.
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The fifth category contains all intermediate principles, that are obtained during variatio-
nal transformations. They usually contain several subsidiary conditions and are typically
dependent on a larger number of variables.

Because of the importance of the Poisson, Castigliano and Lagrange principles for the
formulation of simplified analysis methods, the derivation is illustrated in the following
subsections. The principles serve as a basis for optimization problems, because they can
be directly transformed into linear or quadratic optimization problems. Moreover, they
are often applied as core relations for others than elastic calculations.

7.2.1 Poisson principle

In terms of variational calculus, the Poisson principle consists only of subsidiary condi-
tions, describing all governing relations of mechanics (equilibrium, kinematic condition,
material law, boundary conditions) as introduced in general in Secs. 3 and 4. Dependent
on the stresses o and displacements u, the equations can be summarized as follows

Byo — Nlc,+ 9 =0 cVv (7-1)
Buu— Nlec, —e=0 eV (7-2)
Dlo+eg—e=0 cVv (7-3)
—N,u = ug € Sy (7-4)
N,o = sg €S, (7-5)

specified at one material point. An extremum condition is initially not specified, but can
be conveniently used to define design objectives. It is therefore not a typical variational
principle, but is of practical relevance and the basis to derive other formulations.

A numerically effective form of the Poisson principle can be obtained, if the stresses o and
strains ¢ are eliminated. For this purpose the material law Eq. (7-3) is incorporated into
the kinematic condition Eq. (7-2) to eliminate the strains ¢, to form an extended kinematic
condition

B,u — NSTcu — D lo—g,=0 eV (7-6)
This equation can be re-arranged

o= DB,u— DNZXec, — Dg (7-7)

to separate o. This expression is introduced into Eq. (7-1)

B,DByu— B,DNT¢, — B;Dey— Nlc,+ =0 €V (7-8)
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7 Simplified nonlinear analysis

Under the condition B, = B! = B, Eq. (7-8) simplifies to
BTDBu— BT"DNZ¢, — B'Deg — Nlc, +¢9 =0 eV (7-9)
that have to be solved, with respect to the boundary conditions (7-4,7-5). Herein the term

B'DB =K (7-10)

is known as the linear stiffness matrix. The Poisson principle (in the given traditional
form) can be directly transformed into a linear optimization problem, by application of
discretization methods. The resulting problem contains of linear subsidiary conditions.
The value of the objective function is left free and can be arbitrarily chosen.

7.2.2  Castigliano principle

The Castigliano principle is derivable from the Poisson principle using the weak form
approach in Tab. 2-7. The weak expression is obtained for one material point out of the
extended kinematic condition Eq. (7-6), resulting in

[ é0"BudV — [§c"NTc,dSs — [607QodV — [doTeqdV =0 (7-11)

The first term can be partially integrated

[ 60" BudV = [u"NsbodS — [u"BYéodV (7-12)

where the surface S can be splitted into one part S, where the static boundary conditions
are applied and a second part S, where the geometric boundary conditions are applied,
therefore

Ju'NéodS = [ ¢]NybodSs + [u"Nléc,dS, (7-13)
On the other hand, the equilibrium condition Eq. (7-6) is varied

Bs-60=0 (7-14)

The Egs. (7-13-7-14) are introduced into (7-11), thus giving the principle of virtual stres-
ses

[ ¢ENLesdS, — [d0" Do dV — [doTegdV =0 (7-15)

Including the geometric and static boundary conditions Egs. (7-4,7-5) and integrating with
respect to o gives the principle of conjugated potential, or Castigliano principle

e =—2 [o"D 'odV — [upcs dSy+ [ ulNyo dS, — [ oTeqdV — Max (7-16)

2

By 60— Nlc,+5p =0 eV (7-17)
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Nso =059 € Ss (7-18)

that contains the equilibrium and static boundary conditions as subsidiary conditions. This
principle can be directly transformed into an optimization problem, by application of dis-
cretization methods. The resulting problem is quadratic, containing a quadratic objective
function and several linear equality subsidiary conditions.

7.2.3  Lagrange principle

The Lagrange principle can be derived with the dual method of variation according Tab. 2-
7. Here the equilibrium condition (7-1) is transformed into it's weak form

[ou'BTodV — [6u' N,csdS, + [dulpdV =0 (7-19)
The first term is integrated by parts

Jou"BTodV = [du"NyodS — [ o' BéudV (7-20)
The surface S is divided according to Eq. (7-13), so obtaining

SIl = [dc¢INyo dSs — [ o BéudV + [dulpdV =0 (7-21)

as the principle of virtual deformations. In this equation, the static boundary condition
Eq. (7-5) is applied, as well as the transformed extended kinematic condition Eq. (7-7),
resulting in

— [6cT0ydS, — [ (DBu— DNTe, — Deg)’ BsudV + [ dulpdV =0 (7-22)

Integrating with respect to u, leads to the principle of total work or Lagrange principle

I, = —% fuTBTDBudV+f CZNSDBudV—kf eoDBu dV—f cr'sg dS—I—f ul'odV —
Max (7-23)

together with the geometric boundary conditions

—N,yu = uyg € Sy (7-24)

With this principle the deformations in a structure can be calculated. The appropriate
stresses or internal forces are calculated from Eq. (7-7). This principle forms a quadratic
optimization problem if discretization methods are applied.
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7 Simplified nonlinear analysis

7.2.4  Elastic limit load and resistance calculation using mathematical optimization

With help of the Poisson, Castigliano and Lagrange principles, serving as core principles,
the elastic limit load of a structure can be calculated. Because of the special form of the
Poisson principle, the free objective function can be directly used to search for the maxi-
mum of the applicable load (limit load). A simple and practical form is a one parameter
optimization problem, that is maximizing a multiplier p for a given load pattern f

p — Max (7-25)

The force pattern f is containing a quasi-static representation of the dynamic excitation
and can be given as a "unity" force distribution that is scaled by p.

Alternatively, multi-parametrical limit state problems can be declared. Herein, the force
distribution f itself is altered in the optimization problem, this means, that a maximal
force function for the structure is in demand

p(f) = Max (7-26)

However, such problems are very rare in earthquake engineering, because the essential
distribution of the forces is commonly predetermined by the ground excitation and the
structural assembly.

Using the one-parametrical form Eq. (7-25), an eigenform solution is often utilized as
force distribution f in order to approximate the dynamic load. The Poisson principle is
applied e.g. in the shortened matrix form

Ku—ATQ 'NTc, — ATQ ey — Nlcy +pf =0 cV (7-27)
—N,yu = uyg € S, (7-28)
Ns (Q_lAuu - Q_leTcu - Q_lgo) = 30 € Ss (7'29)

with the scaled unity force. The limit criteria of the elastic limit state can be added in form
of a yield criterion of a plastic material law

LT (Q_lAuu - Q_leTcu - Q_lg()) S Slim (7'30)

p

as discussed in Sec. 4.8.

A corresponding design problem is the limit resistance factor calculation, that reads

r — Min (7-31)

with the resistance limit factor r that is a multiplier of a unit resistance distribution 5.
Then the appropriate subsidiary conditions are
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Ku— ATQ'NT¢, — ATQ ey — Nlcy,+ f =0 eV (7-32)
—Nyu = ug €S, (7-33)
N, (@' Ayu— Q7 'NTc, — Q7o) = s9 € S, (7-34)
LT (Q7'Ayu— Q7' Nle, — Q'eo) < rSiim (7-35)

For both forms of elastic limit state calculation, the one-parametrical optimization sche-
mes are illustrated in Tab. 7-1 for the case, that only simple boundary conditions —N,u =
0 and N,s = 0 are applied and the assigned unknowns in the vectors « and s are elimina-
ted.

The application of the Poisson principle results in a one-step optimization procedure for
the calculation of the elastic limit state. Contrary, the Castigliano and Lagrange principles
demand for two-step strategies in the calculation of the elastic limit state. In a first step
a base answer § is calculated by application of the principles from Sec. 7.2.2 and 7.2.3.
Then, in a next step, the appropriate limit state factor p or r is calculated under the condi-
tions

5 < rSim (7-36)
or
P35 < Siim (7-37)

that are linear optimization problems. For the limit load calculations 5 can be even a
normalized answer e.g. due to unity forces. In Tabs. 7-2-7-1 the optimization problems
are illustrated as optimization schemes, assuming simple boundary conditions. The multi-
step character of the calculation is indicated.

As for the limit load problem, a multi-parametrical form for the resistance calculation can
be established. Herein the resistance distribution sy, is not fixed, but is itself an unknown
of the problem

T(Stim) — Min (7-38)

In practice, only a selected part of the s;;,,, vector needs to be made variable. The function
(s1m) is commonly a normative type of function, to obtain a single objective function,

e.g.

T = |Stim| (7-39)
or simply
r=> s (7-40)
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Table 7-1 Determination of elastic limit resistance and limit load factor (Poisson formulation)

Linear

e optimization
u r 1
1 Min Objective
- function
ATQTA ¢ -0 Equilibrium
condition
Static
-Nu =0 boundary
condition
Plasticit
Lo GiA Sim 20 conditioz

Linear

optimization
u p 1

1 Ma Objective

- Max function
ATQ A ¢ -0 Equilibrium
condition

Static

-Nu =0 boundary
condition

Plasticit

L Sim 20 condiltiloz
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Table 7-2 Steps for determination of elastic limit load factor (Lagrange formulation)

Step 1a

Primal variables

Quadratic
optimization

%A'QTA

) = Min

Objective
function

Geom.
boundary
condition

Step 1b

Step 2

se=Q"Au

Primal variables

Ext. kinematic
condition

Linear
opfimization

— Min

Objective
function

Se

-Siim

Plasticity
condition
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Table 7-3 Steps for determination of elastic limit resistance factor (Castigliano formulation)

S-I-ep _| Primal variables QUOdrOTiC
S 1 optimization
AT P 0 Equilii;->r.ium
condition
Static
Ns =0 boundary
condition
v — Linear
rimal variables
Step 2 1 optimizafion
p
p L\ Min Objective
function
Plasticity
Lp's ~Sim <0 condition

With this type of formulations, particularly economical solutions can be obtained. Howe-
ver, it should be noted, that the solution of such problems is computationally intensive
and the solution space is commonly non-convex. Specialized algorithms (Sec. 2) must be
applied. Furthermore such formulations require additional restrictions, in order to obtain
technologically meaningful solutions.
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Figure 7-1 Example: System and initial conditions

7.2.5  Example: Calculation of elastic limit resistance

For demonstration of a design according to limit loads, the following example is introdu-
ced. In the following sections, this example will be concluded for other limit criteria. The
mechanical system of an unsymmetrical frame structure and the appropriate geometrical
and material conditions are summarized in Fig. 7-1. All cross sections are assumed to be-
have elastic perfectly plastic. The stiffness was manipulated by a factor of 0.8, simulating
a drop of the section capacity due to possible inelasticity or predamage. A limit moment
distribution is noted, symbolizing the load bearing capacity of the cross sections. The fra-
me is loaded by static and seismic loads. The seismic load is given in form of a response
spectrum. For analysis, it is assumed to have a lumped mass distribution.

For this configuration, the quasi-static substitution loads are calculated first via modal
decomposition and response spectrum application. For simplicity, the calculation is re-
stricted to only the first modal period. The first modal shape is given in Tab. 7-4. The first
natural period is 7" = 0.806s. The quasi-static substitution load case is calculated with
means of modal decomposition (Sec. 6.1). The structure can be loaded by two possible
load combinations

e Combination I (LC I): Load case 1 + Load case 2
e Combination II (LC II): Load case 1 - Load case 2

The one-parametric elastic limit resistance factor 7 is calculated using the model in Tab. 7-
3. The resistance factor for load combination I 'is » = 1.575 and for load combination II
r = 1.529. Therefore the resulting elastic resistance factor is the maximum of all load

158



7 Simplified nonlinear analysis

Table 7-4 Example: First natural mode and quasi-static substitution load cases

= 5.28kN
33.76kN ¥
Lo 0.61kN B>
e v 4 0.35kN
177.5kN
Load case 2
(1) . .
(quasi-static)
1
- 17777777

Table 7-5 Example: Moment distribution (Elastic limit resistance)

59.44 275.7

200.7 -393.8 »zss.al,,,,ﬂ——— 340.1

Reaching _—"" Reaching

plastisity plastisity

condition condition

r = 1.57506 r=1.52874 \
474.3 -458.6
. R | Load combination I . . Load combination II
. J/ Moment [kNm] - an Moment [kNm]
L, -206.4 L, 254.3

combinations . = 1.575. The obtained moment distribution is given in Tab. 7-5. Only
at distinct points the plasticity conditions are reached, without loading beyond. Thus, the
residual moment distributions for both load combinations are vanishing (Tab. 7-6). As
indicated in this table, non of the load combinations are inducing residual moments, as
accepted for elastic load cases.
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Table 7-6 Example: Residual moment distribution (Elastic limit resistance)

cow 1.5 o 1.4

r=1.57506 r=1.52874
0 0
Load combination I . . Load combination II
Residual Moment [kNm] " Residual Moment [kNm]
[ 0 L o

7.3 Plastic limit state

Statically undetermined structures can contain additional bearing capacities, when rea-
ching the elastic limit. These reserves can be utilized by accepting plastic deformations
and internal force redistributions. Those structures demands for a sufficient ductile beha-
vior. Most materials or material combinations exhibit a certain amount of plastic defor-
mability. In codes, the utilization of plastic reserves is generally permitted, under predefi-
ned circumstances. In earthquake engineering, the use of the inelastic capacities became
the most important strategy in the design of seismic resistant structures. The occurring
dissipation of energy during plastic deformations leads to a significant reduction of the
structural impact.

Different to elastic limit state calculations (Sec. 7.2), the load and resistance limit factors
p and r cannot be simply calculated using superposition rules. However, the limit state
problems can be altered according to the plasticity theory. The concepts have been ori-
ginally developed for statically excited structures. However, the theorems can be applied
to quasi-static simplifications, as discussed in this section. The basic theorems have be-
en stated for structures with rigid perfectly plastic materials. They can be derived from
the mechanical properties of plastic bodies, assembled in matrix form in Tab. 7-7. From
this, it is obvious that the kinematic and static parameters are decoupled. Therefore two
basic forms of limit load calculations can be derived. They are the basis for the classical
theorems of plasticity [86,181], the kinematic, static and uniqueness theorem of the limit
load [37,64,141].

7.3.1  Core principles for elasto-plastic materials

Generally, the principles presented in Sec. 7.2 can be altered to meet the requirements of
the elasto-plastic analysis. The only difference to elastic structures is the changes in the
material law, as discussed in Sec. 4.8
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Table 7-7 Relation scheme for analysis of rigid plastic bodies (simple boundaries)

Primal variables

I'______________l | R 1

i s Y i i A u i 1

: o i Ext. kinematic

I thoLe A =0 iy

! e ] condition

! i i

' -1 08 1 ! >0 Non-negativity

: il i

E -Lp" 1 E , = -Sjim Plasticity condition

L AT b i =f Equilibrium

i b Y =0 Complementarity

1 static i 1 kinematic

\ variables ! variables

L decoupled J

Qs+e,+eog—e=0 eV (7-41)
e,=L,-A €V (7-42)
Ll's — sim <0 cV (7-43)

It contains additional plastic strains and, here exemplarily, linear plasticity conditions.
The derivation of appropriate extremum principles can be done similar to Sec. 7.2. The
variational derivation of Castigliano and Lagrange extremum principles for linear elastic-
perfectly plastic structures are summarized in the Tabs. 7-8-7-10.

7.3.2  Static, kinematic and uniqueness theorem of the plastic limit state for rigid plastic
bodies

The static theorem is giving a lower bound on the solution of the limit load of a structure:

Theorem 1: The structure is kinematically stable if a statically admissible
internal force state can be found.
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Table 7-8 Derivation of the principle of conjugated potential (elasto-plastic material)

Equilibrium condition Material law Kinematic condition
Bo+¢p=0 eV IAPG—Gjm<0 eV | Bu-e=0 eV
! 1
L Aph =ep Ve *
'A>0 i

b o oo ' Extend. kinematic condition

Y

e g Bu-D'o—¢gp—go =0

{

Weak form of differential equation

J' 56TBu dV - J' 56™D s dv - J' SoTep dVp — J' d6Tep dV =0

Y

Variation Partial integration

Y
A

BToc=-3p =0 eV J‘&JBu av = J' u"Ngdo dS —J'uTBTac av

Y

- I 36D "o dV + j u"Ngdo dS— _[ SoTep dVp - J SoTeg dV =0

Stat. boundary condition Geom. boundary condition
] Nso=0cp €Sg - u=uy €S,
Variation Variation of stresses in
| plastic hinges
Ngdo =809 =0 eSg N 3c=0 eVp

Principle of virtual stresses
ST = — '[ 56D s dV+Iu3NSBG ds, - J SoTep dV =0

Al *

Principle of conjugated potential (CASTIGLIANO-Principle)

Mg = —%‘.‘GTD_1G av+ J' WNso dS, —IcTso dV = Max -
L ]

BTo=—¢ eV i Non-required conditions |

Ns()' =0p & SS : Apk =é&p € Vp :

Apo-Gjim <0 €V P20 :
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Table 7-9 Derivation of the principle of total potential (elasto-plastic material)

Equilibrium condition Material law Kinematic condition

.
Blos=0 eV ELLG—G,im:Y eV Bu-e=0 eV

1220 i *

| d Extend. kinematic condition

Y

e - Bu-D's—gp—g5 =0

Y

Weak form of differential equation

j 5u™BTs dv - J' suTe dV =0

Partial integration

Y

J' 5u™BTo dV = IauTNSG ds— J' oAU dV

- J' o'BSU dV — I suTo dV + J' 5uNgo dS =0
Stat. boundary condition Geom. boundary condition
Nso=0p €Sg o u=uy €95y ]

f

Variation

A

5U=6U0=0 ESU

Principle of virtual deformations

Il
o

811 = —I o"Bsu dV - J' suTo dV + j suTog dSs

A

Extend. kinematic condition

A
A

6=DBu-DLpA-Dgyg €V
Y 1

81T = _J' (OBu ~DLpA ~Deg Y Bsu dV —JSu% dv+ J' suTop dSg =0
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Table 7-10 Derivation of the principle of total potential (elasto-plastic material); continued

Yield condition

|
|

LEDBU = Y +LEDLpA +LEDeg + 0y €V

m - —%IUTBTDBU v+ J' WTYAV + J' ATLIDLpA dV + J' WTLEDeg dV + J' Wi dV

+jaoDBu av - j N dV+IuTco dSs = Max

—
e}

Y
Principle of total potential (LAGRANGE-principle)

m - —%fuTBTDBu av+ I HTLEDLpA dV + f ML TDeg dV + _[ Moy dV

+jsODBu av - j uTo dv + j uTop dSg = Max

u=uy €Sy
A20 eV

An internal force state is admissible, if the equilibrium conditions, the static boundary
conditions and the appropriate yield conditions are fulfilled. The plastic limit load can
be calculated on basis of the static theorem as indicated in Tab. 7-11. The relations have
been simply derived from Tab. 7-7, by meaningful scaling of the decoupled kinematic pa-
rameter part of the scheme. Then some of the variables and conditions can be left out. It
must be noted, that for rigid plastic bodies the obtained internal forces s are undetermined
in the local regions with non-plastic behavior. Because the internal forces and displace-
ments are not coupled in the kinematic condition, the appropriate displacement state is
undetermined as well.

The kinematic theorem states

Theorem 2: A structure is statically stable, if a kinematically admissible dis-
placement state can be found.

A displacement state is kinematically admissible, if the appropriate kinematic conditions,
the kinematic boundary conditions and plasticity conditions are fulfilled. This theorem
can be used to calculate a limit load of the structure.

p— Max (7-44)

Au—LA=0 €V (7-45)
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Table 7-11 Optimization scheme for limit load analysis of rigid plastic structures (Static

formulation)
Primal variables |_| near
Optimization
s Y p
Objective
1 — Max .
function
1 >0 Non-negativity
Plasticit
-LPT 1 = Siim as .Ic.:l y
condition
AT f =0 Equilibrium

(7-46)

(7-47)

(7-48)

(7-49)

This complete set of conditions is required, as the equilibrium condition (containing the

force with the scaling factor p) needs to be respected

~

Als = fp <%

However, this condition can be multiplied with the displacement

uTATs =T fp eV

With the insertion of the kinematic condition Eq. (7-45)
TrT._,TF¢

AN Lys=u"fp eV

and substitution of the plasticity condition, the equation reads

N Spim = UTfP eV

(7-50)

(7-51)

(7-52)

(7-53)
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Table 7-12 Nonlinear optimization scheme for limit load analysis of rigid plastic structures
(Kinematic formulation)

Primal variables Nonlinear
Optimization
u p
. Objective
1 — Min ’
function
A Ly =0 Ext. kin?rnatic
condition
1 >0 Non-negativity
Energy
-pfl T -0
] o condition

This is similar to an energy condition, relating the external energy to the plastic energy of
the structure. Then the limit load task can be written

p— Mazx (7-54)
Nsim=uTfp €V (7-55)
Au—LA=0 €V (7-56)
u = € S, (71-57)
A>0 (7-58)

The appropriate nonlinear optimization scheme is given in Tab. 7-12. In this form, only
kinematic quantities are left as structural variables.

For further simplification of the problem, the nonlinearity in the calculation can be elimi-
nated by introducing a scaling

uTf=—1 (7-59)

Hence, the problem is as given in Tab. 7-13.

Theoretically, pure kinematic formulations of the limit load problem can be defined. Then
the loading of the structure is given as deformations. Accordingly, the stress based formu-
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Table 7-13 Linear optimization scheme for limit load analysis of rigid plastic structures (Kinematic
formulation)

Primal variables Llnegr

Optimization
u
T ) Objective
Slim — Min .
function
Ext. kinematic
A -Lp =0 -
condition
1 >0 Non-negativity
Scalin
i = -1 . _9
condition

lation of the yield criterion needs to be transformed into a deformation based form. Then
the appropriate extremum principle is

p— Mazx (7-60)
Ayu— Nle, —pé =0 eV (7-61)
—N,u = ug € S, (7-62)
Ag,gs — c1im <0 eV (7-63)

The plastic limit load is determined by application of the uniqueness theorem. It states

Theorem 3: If a load can be found for a kinematically admissible mechanism
and a statically admissible internal force state, then this load is the plastic
limit load of the structure.

It states that solutions due to static and kinematic formulations of the limit state analysis
must be identical.

As in Sec. 7.2, the limit state can be alternatively described in terms of a limit resistance
intensityr rather than a limit load intensity p. Furthermore, the previously introduced op-
timization problems are one-parameter formulations, because only the scalar value of p is
altered. Alternative formulations can consist more parameters or a completely decoupled
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modification of loading or resistance parameters, e.g. the objective function in Eq. (7-44)
can be changed to

f— Max (7-64)

Such formulations result in non-convex problems, thus global optimization methods must
be adopted for solution. The calculations can be relatively costly.

7.3.3  Example I: Plastic limit load for beam structure

In continuation of the example from Sec. 7.2.5, the frame structure is analyzed regar-
ding the plastic limit resistance. The optimization scheme of Tab. 7-11 is applied, slightly
changed for derivation of a scalar limit resistance factor. Then the following optimization
scheme can be applied (static formulation)

O(r,s) =1 — Min (7-65)
ATs = f eV (7-66)
L)'s 4 1Siim < 0 (7-67)

Furthermore, in comparison with Tab. 7-11, the slack variable y has been eliminated by
transformation of the plasticity condition to a inequality condition.

For this example, both load combinations are applied. For LC I, the resistance factor is
r = 1.040 and for LC I » = 1.020, hence the plastic limit resistance factor considering all
possible load combinations is the maximum value, hence rp = 1.04. The moment distri-
bution is illustrated in Tab. 7-14. Three plastic hinges are developed and at one additional
position the plasticity condition is touched. Thus an infinitesimal increase of the loading
will result in the failure of the structure.

Residual moments can be observed, if the structure is completely unloaded. The distribu-
tion is given in Tab. 7-15. It can be seen, that the position of plastic hinges and the residual
moment distribution of both load combinations are different.

7.3.4  Example 2a: Plastic limit load for mixed FEM and EFG model

In this example the Finite Element Method (FEM) and Element Free Galerkin (EFG) me-
thod are applied for simplified seismic analysis according to the previously discussed limit
load approaches. The mechanical background has been introduced in Sec. 4.3 and 4.17.
While considering hybrid structures it can be necessary to decompose the structure into
different model domains that can be discretized alternatively:

e Single domain models (either FEM or EFG) or
e Mixed domain models (FEM and EFG).
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Table 7-14 Example: Moment distribution (Plastic limit resistance)

288.2
-259.9 255.1, 408.2
"% Reaching _ Plastic
plastisity Plastic hinge Plastic
condition hinges hinges
r = 1.03956 \4 r = 1.02049 \4
. 415.8 Reaching -306.1
Plastic ‘ plastisity
/ hinge / condition
Load combination I . Load combination II
" Moment [kNm] S ; Moment [kNm]
LX -311.9 LX 408.2
Table 7-15 Example: Residual moment distribution (Plastic limit resistance)
215.]\ 13.21,
r=1.03956 r=1.02049
“‘ -58.43 152.5
.. Load combination I . Load combination II
” 7 Residual Moment [kNm] S Residual Moment [kNm]
Lx -105.4 LX 153.9
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Table 7-16 Optimization scheme for plastic limit load analysis for different domains EFG and FEM

Design variables SEFG SFEM CsEFG | CsFEM fe p 1
Objective function -1 - Min
Agra’ NuEere Hera' | -fm1 | - fiere | = 0
Equilibrium cond. . |
AFEM Nu,FEM - HFEM “Im,2 - fd,FEM = 0
Ns.er Y - So,EF = 0
Static bnd. SEFG 0EFG
conditions
NS,FEMT - So,FEM = 0
.
Lrers - Simgre | < 0
Plasticity condition
Lp,,:EMT - SimFEM | < 0

Because of the non-direct compatibility between the unknowns ugpg of the meshless
model and the nodal deformations u g, of the FEM solution it is necessary to provide a
interface or transformation relation. It can be easily done by utilize the displacement inter-
polation (shape) functions matrices H,, ppy and H,, prq. Equating both conditions leads
to Eq. (4-201) that can be directly applied for all interface points between two domains.

In Tab. 7-16 an optimization scheme for solving the plastic limit load problem according
to the Castigliano approach is given. The number of unknowns will increase with the
vector of coupling forces f. along the domain interface. As in this example scheme, the
objective function and all subsidiary conditions are linear, the problem can be solved by
linear optimization.

For comparability of the solutions derived with single and mixed domain models for both
FEM and EFG, the same configuration of the mesh and Gaussian quadrature is chosen.
This results in models with identical number of unknowns. For the modeling of shear
walls, a standard 4-nodes finite element with bilinear shape function is used. For the EFG
part, a bilinear basis and circular support function is applied.

In Fig. 7-2 a hybrid beam-column-shear wall structures is given. The structure is loaded by
dead loads and a seismic horizontal load. In this structure, two different types of models
are connected. For the wall structure part the EFG method is used, whereas for the beam
and columns common FE beam elements are applied. Because of the pure quality of EFG
results for beam structures this decomposition is always recommended. Fig. 7-3 shows
the discretization of the two domains and the interface points. The mesh in the EFG part
is for domain integration only and can be chosen for convenience.

The following state and limit state analysis cases will be discussed:
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Shear =
Wall

3

2 4 5 4 m)

Horizontal accelleration

Parameters:

E = 3000 MN/m? v = 0.3

w = 0.15 m (shear wall thickness)

Ageom = 0.4m2 oo = 0.021 M*

Ay = 0.25M2 Iy, = 0.00521 m*

a = 1.0 m/s? (unit horizontal accelleration)

Figure 7-2 Example EFG-FEM: Structural system and parameters

EFG-Modell

Transformation I

!

FE-Modell

Figure 7-3 Example EFG-FEM: Domains of different discretization
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Table 7-17 Example EFG-FEM: Results of analysis

4—’!’//// 7 " //
//f/r///l/ R / ,
_ //r//f —/
A /
— _
— N 4 J k | /] 1
L. L.
Elastic Response o, (case 1) Elastic Response o, (case 1)
E ]
I ] | i
~ — 7—/ I
rﬁl /)\4/’ /
= R S—
| ﬁ T /l ]
Il ‘
L. « L.
Plastic Deformation (case 3) Plastic Response o, (case 2,3)

1.)  Elastic state with load intensity p = 1.0

2.) Plastic limit state with equal yield limitations in both tension and pressure direction
3.) Plastic limit state with different yield limitations in tension and pressure direction
In this example, simple non-interacting uniaxial plasticity conditions for the stresses and
internal forces are used. Selected results of the calculation are given in Tab. 7-17 The
plastic limit load is 2.85. This result can now be compared to the seismic loading applied

to the structure. Despite the relatively coarse mesh in the wall section the resulting stress
distribution is continuous. This applies also for the linear and nonlinear stress distributi-

ons.

7.3.5 Example 2b: Coupled shear wall system

The analysis in mixed EFG-FEM domains is demonstrated for a coupled wall system
according to Tab. 7-18. The appropriate system discretization and selected deformation

figures are given in Tab. 7-19

For examination purposes three cases will be considered:

1.) Both walls are FEM-discretized
2.)  Wall 1 will be EFG and wall 2 FEM modeled
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Table 7-18 Example: Coupled shear wall: Structural system and parameters

0—0]
Parameters:
0—0)
b—l E = 3000 MN/m? v = 0.3
5 o~ w = 0.15 m (shear wall thickness)
Wall 1 p— Wall T a = 1.0 m/s? (unit horizontal accelleration)
o—
o—O
o—
— 2 L )

Horizontal accelleration

3.)) Both walls will have an EFG discretization

For all cases an elastic state and plastic limit state analysis will be performed. The results
are listed in Tab. 7-20. As visible in the mixed structure results (Tab 7-21 and 7-22) the
EFG-discretization has an advantage in representing the stress distribution in the structure.
In limit state analysis the difference in modeling is not so important for the determination
of the ultimate limit load itself. But it is essential for the approximation of the resulting
stresses and deformations. It should be stated that the FE solution can be approved by
refining the mesh or using better element formulations.

The investigations show a good adaptability of the meshless methods to the design of
hybrid structures by using optimization strategies. As well as single domain models, mi-
xed domain models can be used. With this method, the advantages of both finite element
and meshless methods can be utilized most suitable. With the property of a minimum
amount of unknowns by maintaining an adequate quality of the results the application of
mixed finite element and meshless methods can be an alternative to traditional methods
in structural analysis and optimization.
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Table 7-19 Example coupled shear walls: System and deformation for case 2 elastic p= 1.0 and
case 2 elasto-plastic p=1.835

Coupling Points

Table 7-20 Example coupled shear walls: Summary of results

Modell Elastic calculation Elastic-Plastic calculation
Intensity max u Intensity max u Intensity max. u
case wall 1 wall2
factor [mm] factor [mm] factor [mm]
1 FEM FEM p=1.0 3.0 p=1.0 3.2 1.835 18.0
2 EFG FEM p=1.0 3.1 p=1.0 3.3 1.835 28.5
3 EFG EFG p=1.0 3.2 p=1.0 3.4 1.835 196.2
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Table 7-21 Example coupled shear walls: Elasto-Plastic Response (case 2, p=1.0)

oW 10 w10 oo 1.0

Table 7-22 Example coupled shear walls: Elasto-Plastic Response (case 2, p=1.853)

4
|/
/
.l i 1 'l

7.4 Shakedown limit state analysis
7.4.1 Background

The application of the theorems in Sec. 7.3 actually requires monotonically increasing
plasticity histories. In reality the structure exhibits several changes in the plastification.
An unconditional application of quasi-static loads within the plasticity theory can be cri-
tical. The sequence of loading needs to be considered in order to monitor alternating or

progressive plasticity effects. Such plastifications are often experienced as damage, that
can be accumulated in time. In [90] an observation was described, that if the intensity of
loading is limited to a certain level, the structure first shows a limited number of plastifi-
cation and afterwards only elastic responses, always if the load program is repeated. This
state is called shakedown or adaptation state. This state is characterized by a stable resi-
dual parameter distribution in the structure. Basic relations for a theoretical assessment of
the phenomenon have been formulated in [25,147,148,134] for perfectly plastic materials.
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Elastic Elastic Plastic Rafchetting Immediate Collapse
shakedown shakedown (incremental collapse)
c ° (adaptation) c (alternating plasticity)  © © —
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}‘— high-cycle fatigue } low-cycle fatigue —>\<— non-cyclic fatigue —>\

Figure 7-4 Behavior characteristics due to different load intensities of
elastic-plastic structures

Later on, shakedown of structures under various conditions have been widely investiga-
ted, e.g. [216,217,132,143,144,175,176,177,36,113]. The following general categories of
structural behavior are distinguished for cyclic loaded elasto plastic structures (geometric
linear):

1.)  Elastic response: The structure is loaded below all yield limits, any response is
elastic.

2.) Elastic shakedown: After a limited number of inelastic deformations a stable resi-
dual state will be constituted, all further behavior is elastic (adaptation).

3.) Plastic shakedown: The plastic cycles stabilize to closed loops of plastic deformati-
ons (alternating plasticity).

4.) Ratchetting (incremental collapse): Unlimited plastic deformation until failure.

5.) Immediate failure (plastic collapse): The structure fails immediately due to the de-
velopment of a kinematic mechanism.

They are illustrated in Fig. 7-4, here exemplarily with perfectly plastic branches in the
material law. Looking for the first three categories, for practical purposes only the limi-
tation below the elastic limit or elastic shakedown limit state are reasonable to adopt for
design. Even if the application of higher load intensities within seismic designs seems to
be theoretically possible because of the limited amount of expected cycles, plastic sha-
kedown is difficult to establish and to control for real materials. Therefore following, the
elastic shakedown is further considered, abbreviated next just as shakedown or adaptation.

Special aspects of dynamic shakedown have been highlighted in [48,60,61,102,186]. In
seismic design, as specified in [197,219], the shakedown state denotes an appropriate
performance level for structures with limited damage levels. Utilizing the shakedown state
in structural design ensures the usage of plastic reserves for energy dissipation, but the
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avoidance of infinite damage accumulations (low cycle fatigue) and therefore a limitation
of plastic deformations. It is most interesting in performance based design because of the
assurance of full operability at the same safety level (after-shock resistance).

Shakedown of structures can be characterized as the bounding of plastic deformations in
time. This can be expressed in terms of plastic multipliers

tlg(r)lo A(t) < o0 (7-68)
Conditions for shakedown have been mostly explored for elastic plastic structures. In ge-
neral, the test of all possible load histories, will give proof for the existence of shakedown
and respectively the true bounds for all considered structural parameters. This procedure
can be extremely costly even if only for a fixed load intensity the shakedown of a structure
has to be proven. The efforts are even increased, if the appropriate shakedown limit state
is to be identified.

The great value of shakedown analysis for seismic design is the option to mainly ignore
the actual characteristic of the seismic response of a particular earthquake. The response
to such a record is rather hypothetical, as the loading is uncertain. Instead of performing a
probabilistic analysis, shakedown analysis tries to evaluate extremum responses without
considering any possible load sequence. Contrary to time history analysis methods, sha-
kedown analysis needs only the information about the intensity of elastic response in form
of an elastic result envelope. This intensity information can be determined simpler than
defining a significant ground acceleration. This envelope information can be determined
either by simplified elastic analysis according to Sec. 6 or by application of linear elastic
time history analyses (Sec. 8).

7.4.2  Shakedown theorems

The total response of a structure is assumed to be dividable into an elastic (subscript ¢)
and a residual part (subscript r) , e.g. for stresses, strains and displacements

o(z,t) = o(x,t) + 0,() (7-69)
e(z,t) = ee(x,t) +&.(x) (7-70)
u(x,t) :Ue(l',t) +ur(x) (7-71)

thus both parts are regarded separately and can be superposed. As can be seen in Fig. 7-5,
this assumption is realistic for elastic plastic structures because such structures behave
linear elastic in the first stage even if a certain inelastic deformation history was attended.
However, this assumption requires sufficient independence of the elastic response from
the residual state. Otherwise iterative concepts need to be applied.
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Stress

Stiffness
degradation
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elastic future plastic

Figure 7-5 Elastic behavior after certain amount of plastic cycles

The residual state itself consists of an elastic and plastic part. The stresses represent only
the elastic components according to the material law, whereas the residual strains are
composed of an elastic an the total plastic part.

or(x,t) = 0,(x, 1) (7-72)

Er(x7 t) = 61“,6(’9:? t) + gP(:B) (7'73)

In simplified design, tracking of the exact damage history is omitted, however the as-
sessment of magnitudes is intended. Therefore the elastic part o.(x,t) in Eq. (7-69) is
typically simplified by representation as an envelope response at any location x

Yyp(O’e(iL’)) = max (YYF(Ue(fL‘,t))) Vit (7-74)

analyzed with respect to the yield function Yy r. The elastic (dynamic) response o.(z, t)
has to be calculated with the same structural assumptions, with the applied actual loading
(given load pool), but with purely elastic material. The elastic envelope can be calculated
by methods of linear elastic analysis, e.g. time history or simplified linear analysis. Ho-
wever, with the obtained envelope response, any further dependency of time is neglected.
Therefore the elastic envelope solution is sometimes also called fictitious or quasi-static.
The meaning of the compound solution defined in Eq. (7-69) is illustrated further in Fig. 7-
6. It can be seen, that the residual state o, is leading the actual response o of the structure
back into the elastic envelope range of the yield function Y. The same case is illustra-
ted for nonlinear yield conditions in Fig. 7-7. Here the definition of an convex envelope
polyhedron for the elastic response in general three dimensional case is illustrated. This
polyhedron reduces the entire elastic response to only some representatives at the poly-
hedron edges. This concept is useful for yielding conditions that form a convex domain
of admissible elastic responses in order to reduce the size of the vector o, in calculations.
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(Ficticious)
elastic response

- Residual stress
22 /

Nonlinear response

Domain of admissible
elastic responses

Figure 7-6 Principle of superposition of elastic and residual response
components

In addition the application within a limit load analysis and a limit resistance analysis is
demonstrated.

Under these conditions, the static theorem of shakedown (Bleich-Melan theorem [147])
states

Theorem 4: Shakedown occurs, if for a given elastic envelope response o, a
self-equilibrated residual stress field o, can be found, and the superposition
of 0. and o, is fulfilling the plasticity conditions.

This theorem can be provided in mathematical form. The equilibrium condition for the
residual stresses is

Ao, =0 (7-75)
and the plasticity condition reads

YYF(O"I" + DPsta * Oe, >\> S 0 (7'76)

The corresponding load intensity for the elastic envelope pg;, 1s giving a lower bound on
the shakedown limit load p,

Psta S Da (7'77)

The appropriate kinematic theorem (Koiter theorem [134]) is

Theorem S: Shakedown cannot occur, if for a given elastic envelope response
Drin - Oc the power of the elastic envelope on the plastic deformations exceeds
the general dissipation power capacity of the system in time.
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yield conditions

Moved elastic
envelope polyhedron

Figure 7-7 Determination of the elastic envelope response for nonlinear yield
conditions and simplification by polyhedron envelope

In mathematical form the theorem can be written as

t

[ [ st = Drin - 0ecpdVdt <0 (7-78)
0V

Herein s;;,, A is denoting the plastic dissipation capacity with s;;,,, as the constant part of
the plasticity condition. The condition holds for plastic strain fields that are compatible
with the residual displacements u, in the system, e.g. for perfectly plastic material

ey = Avy (7-79)

The kinematic theorem is an inadaptation theorem, giving an upper bound on the shake-
down limit load intensity

Pa S Pkin (7'80)
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The shakedown limit load is defined with the uniqueness theorem

Theorem 6: The load intensity is the shakedown limit, if all conditions of the
static and kinematic theorem are fulfilled.

Shakedown analysis only considers the knowledge of the envelope response o.(x), wi-
thout reflections on the actual process o.(x, t). This means firstly, that although the ma-
gnitude of all loads in the given load pool remains constant, their sequence must be con-
sidered to be variable, with infinite number of repetition of any load of the pool. This
fact limits possibilities to test in practice any possible situation. Secondly, the analysis is
implicitly considering load situations that are not part of the original load pool, but are
producing responses that fit the given elastic envelope as well. This property inherits a
special suitability of the method for seismic design, where the specifics of the response
history are mainly unknown, except for an estimation of the magnitude. It is an easy con-
cept to take the stochastic character of the seismic loading into account, without explicit
probabilistic calculations.

7.4.3  Load or resistance bounds for the shakedown state of elasto-plastic structures

Simplified analysis methods have been developed for special types of structures. For seis-
mic design, simple linear elastic - plastic model assumptions are often appropriate. The
stiffness degradation has to be regarded. The necessary cross-sectional parameters can
be determined in a pre-phase with use of simple fiber models (push over analysis for the
cross section). Conditions for the shakedown of linear elastic-plastic materials with linear
plasticity and hardening have been derived, e.g. in [59,133]. According to this, a structure
will shake down if

Lp(O'T + Je) — Ah)\ — Slim S 0 (7-81)

Except for the plasticity condition (7-81) and self-equilibrium condition (7-75) for the
residual stresses, any other mechanical relationship remains unchanged. Thus the core
relations from Sec. 7.3 are only minimally altered to fit the requirements of shakedown
analysis. Then the appropriate extremum principle, in either Castigliano, Lagrange and
Poisson formulation, can be formally derived. The calculation of the limit load inten-
sity with means of optimization can be adopted. The appropriate formulation is given
Tab. 7-23 for the calculation of the limit load intensity p, or the resistance limit r,. As
the kinematic and material conditions have not been respected, the obtained vector s, is
independent from the displacement field. In Tab. 7-24 the optimization scheme for the
calculation of the appropriate residual state for linear elastic perfectly plastic material
is given. Both given forms are derived by modification of the Castigliano and Lagrange
principles introduced in Tabs. 7-8 and 7-9.
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Table 7-23 Optimization schemes for shakedown limit state analysis of rigid plastic structures
(Static formulation)

Primal variables I_I near Primal variables |_| near
Optimization Optimization
Sr y P Sr y r
1 - Max Objec'tive 1  Min Objective
function function
‘ -1 >0 Non-negativity ‘ =l >0 Non-negativity
T T _ Plasticity Plasticity
‘ - ! Lo s = Sim condition L' 1 - Sim =Ll condition
AT =0 Equilibrium ‘ AT =0 Equilibrium
Limit load Limit resistance

Table 7-24 Optimization scheme for shakedown state analysis of elasto plastic structures (Static
formulation)

Primal variables Quadratic
Optimization
S y

Objecti
5T Q — Min Jecive

function

Non-

= >0 L
‘ negativity
Plasticity

T — T

‘ Lp i FSin P Lo’ se condition
‘ AT =0 Equilibrium

7.4.4  Example shakedown resistance bounds

This is the continuation of the example in Sec. 7.3.3. For simulating time effects, the
following load sequences are defined, that are composed of the previously defined load
combinations LC I and LC II

e Sequence A:LCS,R,LCLR,LCILR,LCLR,..
e Sequence B:LCS,R,LCI,R,LCLLR,LCILR, ...

consisting in total of four complete cycles. Both sequences start with load case "LC S",
that is a pure static load case, "R" is symbolizing a zero load step with total unloading
of the structure in order to analyse the residual state after load applications. This analysis
can be performed with methods of Sec. 8, ignoring the mass and damping in the system.
It should be noted, that the simplicity of the sequences is a property of this particular
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Table 7-25 Example: Cyclic behavior for plastic strains at plastic limit state for Load Sequence A

0.08
0.06
0.04
0.02
0.00
-0.02
-0.04
-0.06
-0.08

and B

| €p [-]

ﬁ Sequence A

Node 5

| Plastic limit

resistance

Sequence B

1 [steps]

15

example. In other examples, more than two load combinations might be considered. Then
combinatorical rules need to be applied to develop all possible load sequences, so the
calculational efforts rise exponentially with the number of load combinations.

From Sec. 7.2.5 itis clear, that a structure with the capacity due to the elastic limit resistan-
ce (r. = 1.575) will withstand all sequences without developing any plastic deformation.
Therefore the elastic behavior is preferred for structures that necessarily need to survive
any seismic impact without any damage, because the importance is eminent and a repair is
too costly. The efforts to build such structures can be tremendous and are therefore mostly
applied in regions of lower seismicity.

Alternatively to the elastic design, the plastic resistance level, calculated in Sec. 7.2.5, can
be made a criteria for design (Plastic limit resistance factor r, = 1.04). From the defini-
tions of plastic limit, it seems to be perfect for structures with low importance. However,
just preventing the kinematic chain can be dangerous as the structure is experiencing se-
veral plastic cycles. Such cyclic behavior is disregarded in the concept of plastic limit
design. At node 5 of this example, the plastic deformations develop according to Tab. 7-
25. It is visible, that the plastic deformations due to the load sequences develop differently
and without stabilization. This means, that nearly any cycle is introducing new damage to
the structure. This can also be observed from the bending moment plots in Tab. 7-26. The
residual moments of either load sequence are permanently alternating.

The plastic limit state seems to be non-adequate for higher numbers of cycles. Taking the
effects of cyclic behavior into account, the design according to the shakedown limit can
mitigate the effects of plastification. Using the static shakedown theorem, the following
optimization problem can be solved in order to calculate the limit resistance factor

O(r,s,) =r — Min (7-82)

ATls, =0 eV (7-83)
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Table 7-26 Example: Cyclic behavior for bending moments at plastic limit state for Load Sequence
Aand B

800 800
M [kNm] Sequence A Node 5 M [kNm] Sequence B Node 5

jzz 7 ﬁ Mornent 222 Morment
AAAAY FAAAA
= VIV V] =V VIV Y

-400 | -400 |

<00 | Plastic imit Resiaual | Plastic limit Residual
- ) Moment -600 )
resistance t [steps] resistance Moment t [steps]
-800 -800
0 5 10 15 0 5 10 15
T
Lp Sr 4 Se +7Spim <0 (7-84)

Herein s, is the envelope function for all elastic results s, ; for all nyc considered load

combinations
s. = max (L7's.;) (7-85)

i=1

The envelope function is given in Tab. 7-27. The calculation of the limit resistance factor
gives 1, = 1.333. The appropriate residual moment distribution is drawn in Tab. 7-27. If
this residual moment distribution is obtained, all following load impacts from each of the
load combinations cannot change the residual state again. As well the expected positions
for plastic hinges are indicated. For the two load combinations, the appropriate superposed
moment distributions are given in Tab. 7-28.

The experiment is continued by testing the effect of the single load cases at the shake-
down limit resistance level. The residual moment distributions left in the structure after
loading and complete unloading are given in Tab. 7-29. As expected, no load combinati-
on is leaving exactly the same plot as calculated previously (Tab. T. Example shakedown
envelope). Only at plastic hinge points the values coincide or at least are not exceeding
those of the calculated shakedown state. This gives intentions to analyse the uniqueness
of the shakedown results more in detail.

The analysis is continued with a load sequence analysis using the sequences defined in
Sec. 7.3.3. In this analysis, the sequence is applied and all predeformation effects resulting
from plastifications caused in the previous load steps are considered. Tab. 7-30 and 7-31
illustrate the effect of shakedown. Contrary to the plastic limit state, the plastic strains
and the residual moments will stabilize after a limited number of load impacts. It can be
concluded, that the calculated resistance level is able to prevent alternating or progressive
plastifications. However, the calculated internal forces and deformations are only approxi-
mations. The approximation is sufficient to be used in design tasks of seismic engineering.
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Table 7-27 Example: a.) Envelope function b.) Residual moment distribution

o 1

.
mazeracz
] 2.72056+002
ssrnerans
Lorttessez
g 2o

-1.193,

Plastic /

hinges
r=1.33269

58.82

Residual Moment [kNm]

Table 7-28 Example: Moment distribution for load combinations (Shakedown limit resistance)

218.7,
r=1.33269
507.2
- . Load combination I
v 57 Moment [kNm]
LX -234.

Wi
261.8
s
295.7 363.4
r=1.33269
-399.8
B o Load combination II
v T Moment [kNm]
Lx 286.2°

Table 7-29 Example: Residual moment distribution for load combinations (Shakedown limit

resistance)

18,
r=1.33269
“‘ 32.97
: o | Load combination I
- J/ Residual Moment [kNm]
Lx -28.03

31.93

r=1.33269

58.82

Load combination II
Residual Moment [kNm]
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Table 7-30 Example: Cyclic behavior for shakedown strains at plastic limit state for Load

Sequence A and B
0.015 0.015
&[] Node 4 &[] Node 5
0.010 : 0.010
0.005 |- 0.005 |- :
Sequence A Sequence A
0.000 L L L 0.000 T ! ! !
0005 | /. Sequence B 0005 b\ <
' ' Sequence B
-0.010 [ Load sequence analysis at -0.010 | Load seguence analysis at
shakedown limit 1 [steps] shakedown limit 1 [steps]
-0.015 -0.015
0 5 10 15 0 5 10 15

Table 7-31 Example: Cyclic behavior for moments at shakedown limit state for Load Sequence A
and B

800 800
M [kNm] Sequence A Node 4 M [kNm] Sequence B Node 4

Moment

600

Moment
400 R/ " I R 400

200
i 1

VWV V| VIV VY

-400 -400
00 | Shakedown Stable Residual 00 | Shakedown Stable Residual
limit Moment (70.79) t [steps] limit Moment (60.59) t [steps]
-800 -800
0 5 10 15 0 5 10 15

If a detailed load sequence analysis is performed, the final residual moment distribution
is as in Tab. 7-32.

7.4.5  Dissipative energy bounds for the shakedown state of elasto-plastic structures

Another characterization of the shakedown process is the estimation of the lower and
upper bounds of the dissipative energy (plastic potential). With these bounds the amount
of damage in the structure can be assessed, or controlled. Classical shakedown theorems
as in Sec. 7.4.3 can be used to calculate the lower limit. The derivation of the appropriate
calculation schemes is given in Tab. 7-33. As can be seen, the classical concepts, following
the Castigiano and Lagrange type of problem derivation, are both supporting the minimum
calculation. This is due to the minimum energy properties of the classical theorems.

The estimation of the upper dissipative energy bound is much more complicated, as ac-
tually for a correct analysis, all possible load histories must be considered. This is often
not efficient, therefore other concepts are proposed. Most given concepts simply manipu-
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Table 7-32 Example: Residual moment distribution after load sequence application (Shakedown
limit resistance)

-27.83

" Load Sequence A . . | Load sequence B
" Residual Moment [kNm] . Residual Moment [kNm]
Lx 9.918 LX 19.78

late the classical theorems, by neglected or altering one or more of the subsidiary condi-
tions. For an increase of the plastic potential

E, = sL A (7-86)

either the number of active plasticity conditions must rise and/or the values of plastic
multipliers A are increased and/or the plasticity conditions (e.g. the constant part s;;,, or
indirectly the elastic envelope s.) are altered. As one representative concept, in [12] the
plasticity conditions are changed to

Spom = max [LI17s, + s7; LITs, + sF] (7-87)
at one cross section in the structure, having both minimum and maximum elastic envelo-
pe values s_ and sI. Afterwards, the elastic envelope is changed as well to the value s*
leading to the maximum result in Eq. (7-87). The size of the coefficient matrices and vec-
tors in the plasticity condition reduces accordingly. The entire derivation of the proposed
concept is outlined in Appendix Sec. 11.9. As can be seen, the formulation presumes the
constancy of the elastic energy in the shakedown state, although the obtained value of the
dissipative energy might be larger.

However, the mechanical background of the applied manipulation is not explained in de-
tail. Furthermore, this proposed problem formulation has the disadvantage of being non-
convex, thus the result is dependent on the starting vector. For the calculation, a special
quadratic programming algorithm is required that is working without a positive definite
Hesse-matrix, or a general nonlinear optimization algorithm needs to be applied. There-
fore, an alternative, result compatible, but simpler formulation, based on a Castigliano
derivation, is given as well. This alternative, either used to calculate the lower or upper
bound of the dissipative energy show better performance and calculation stability.

Alternatively a successive deactivation strategy can be used for assessment of the upper
bound of the dissipative energy for a given load pool. The background for the derivation
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Table 7-33 Classical optimization problems for determination of the lower bound for dissipation

energy
Elastic envelope s, Poisson formulation
-

at shakedown state

ATs, =0 eV

Qs; +LpA-Au=0 eV

A>0 eV

L;Sr +Se—S|im=y <0 eV

Ay=0 eV
Castigliano formulation Lagrange formulation
(Theorem of MELAN) (Theorem of KOITER)

1 _ _
Oy(s, )= % sTQs, = Min Oplur 1) =~ J' uTATQ 'Au, dv +ijL{)Q Lyh dv
ATs, =0 cV +J‘7LT(s”mfse) dV = Max
LTs, +s, <s; Vv
pSr e lim € 130 cV
Dual variable A Minimum des plastischen Potentials
Ep,min = }"Tslim o

is illustrated in Fig. 7-8. Here the reasons for different plastic states in a structure are
explained with help of an example. The elastic envelope can consist of different parts, that
are initiated by different load cases. Then the sequence of the load cases can considerable
alter the residual state in the structure and therefore the bounds of the dissipative energy.

An alternative strategy therefore proposes a systematic deactivation of plasticity conditi-
ons at different locations, in order to favor load case results, that otherwise will be predo-
minated by larger events. In this way the activation of different plasticity conditions may
be obtained, other than activated with the calculation in Sec. 7.4.3. Thus a broader dis-
tribution of possible plastifications is represented. In additional steps the newly obtained
plastic strain states are used as pre-deformation in an classical shakedown analysis. From
this, the maximum plastic energy can be assessed. This principle procedure can be alte-
red in general using different and multiple deactivations and plastic strain superpositions
combinations. If all possible combinations are analysed, the maximum plastic energy can
be obtained.
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Figure 7-8 Illustration of possible differences in the residual state
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For most practical purposes, a two step strategy is sufficient as provided in Tab. 7-34. He-
re the plasticity conditions are successively deactivated in the order of hinge activation.
The plastic strains calculated in this step are applied to the classical shakedown calcu-
lation (e.g. Melan's theorem), but with predeformations triggered in the first step. This
procedure simulates the case that the "smaller" load case is acting first, followed again by
the "dominating" load case. In that way, other strain distributions are obtained. Then the
maximum energy can be calculated. Contrary to expectations, the method is not capable
to calculate the residual displacements or residual internal forces bounds. This is because
the applied analysis steps are based on a minimum energy approach too.

In comparison to the classical shakedown analysis, this strategy needs several calculations
steps. But contrary to load sequence analysis problems, for that the number of possible
sequences is dependent on the number of considered load cases or combinations, the num-
ber of steps is dependent on the number of locations with possible plastic hinges that are
commonly relatively low. Using this strategy can considerably reduce the computational
efforts.

7.4.6  Example dissipative energy bounds

Continuing the example of Sec. 7.3.3, the dissipative energy bounds of the system loaded
with the possible load sequences A and B are derived. First, a load sequence analysis is
performed in order to determine the "real" energy bounds. The progress is given in Tab. 7-
35. As well the minimum dissipative energy level is indicated, that can be calculated from
classical shakedown analysis, e.g. from Tab. 7-33. It can be seen, that each load sequence
exceeds the minimum level.

If the successive deactivation strategy of Tab. 7-34 is applied, the maximum value of
E, = 7.67TkNm (calculated previously in the load sequence analysis) is confirmed. Due
to the fact that in this example only two plasticity conditions are possible to be activated by
the elastic envelope, only two analysis loops have to be performed. This effort is less than
necessary for the appropriate load sequence calculations. It becomes even more effective,
if the amount of considered load cases is rising.

7.4.7  Displacement bounds on shakedown state of elasto-plastic structures

The formulations used in Sec. 7.4.3 can be applied for the estimation of the residual
displacements in the structure that are associated to the minimum of plastic stain energy
in a shakedown process. These residual displacements are not uniquely determined, if the
loading pool consisting of different load cases is applied to the structure. As the loading
sequence can be arbitrary, the resulting residual displacement state u,., €.g. calculated with
Tab. 7-24, can be different for any tested sequence.

Only if all possible sequences are calculated, appropriate values for upper and lower
bounds for the residual deformations can be obtained. However, as already mentioned,
this is rather theoretical, as a detailed testing is in most cases impossible because of the
combinatorical increase of the number of sequences with increasing amount of load ca-
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Table 7-34 Two step strategy for estimation of the upper bound of dissipative energy at shakedown
state (Successive activation strategy)

System at shakedown state Elastic envelope s,

1 1

a.) Determine vector of slack variables y

y= I-I)Sr +8e ~Sim

b.) Sort plasticity conditions in ascending order of y

c.) Determine number ny of plasticity conditions with negative y

<t

/
Fictitious system with less applied plasticity conditions Dual variable vector
-
~ 1T~ . iy
045, )=EsrTQsr - Min Aj
=i+ ATS -0 *
T ~ .
A LpkSr +Sek < Sjimk k=j...np Plastic strains
% = Lo
System with pre-deformations et
0,(s, )=%§rTQ§r +88, > Min ™| Dual variables 3
ATs, =0 *
T s —
LpkSr +Sek < Siimk k=1...np Estimation for maximum of plastic
potential
* T
y Ep max ® max (Aj+2j) Stim
j < NN +1 =1

Important:

Collecting an envelope of residual displacements and
residual internal forces is giving no useful results because
Problem O3 is again a minimum energy problem
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Table 7-35 Example: Load sequence analysis of dissipative energy at shakedown limit

9.000
8.000

7. - i
000 Sequence B
6.000 : ﬁ Sequence A
5.000 | S
4.000 e Minimnum level calculated with

3.000 1 = classical shakedown analysis
2.000 [

1.000
0.000

| E kN

Load sequence analysis af
shakedown limit t [steps]

0 5 10 15

ses in the considered load pool. Following the concept of shakedown analysis, everything
should be evaluated with respect solely to the elastic envelope solution.

Specialized bounding principles have been developed by several authors, e.g. [174,178]
or [213,137,138,205,44,45,63,70,10,11,12,13]. Generally two major strategies in bound
estimation can be distinguished:

1.) Bounds based on principle of virtual energy (e.g. [178,213,205,137,70])

2.)  Bounds based on maximum plastic energy estimation (e.g. [10,11,12,13])

The first category mainly bases on the Castigliano (static) formulation of the shakedown
problem. The residual state is superposed with a virtual load case, consisting of a single
load at the position where the extremum displacement is to be calculated. According to
the principle of virtual energy the external energy of the virtual load developed on the
residual displacements must be equal to the internal energy of the residual state. Then
the extremum displacement can be calculated. This procedure must be repeated for all
locations where the extremum residual displacements need to be determined.

In [138] several concepts for upper and lower displacement estimations are compared.
According to this, the best results are obtained from the approach of Ponter [178]. The
appropriate derivation of the Ponter formulation is given in Appendix Sec. 11.10. The
associated optimization problem is nonlinear. Another disadvantage is that the problem
often is singular for the shakedown limit state.

Alternatively, the virtual load superposition concept can be divided into several steps.
These steps are illustrated in Tab. 7-36. First the lower bound on the resistance needs to
be calculated with help of a linear optimization problem (similar to Tab. 7-23). Next the
necessary limit load factor for the virtual load is calculated solving another linear opti-
mization problem. In a last step the lower or upper bound on the displacement can be
calculated with help of a quadratic optimization problem. This concept has the advan-
tage over the existing displacement bounding methods because it produces limited and
improved bounds, even directly at shakedown limit.
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Table 7-36 Strategy for estimation of the upper and lower bound of residual displacements at
shakedown state using virtual loads

System at shakedown state

{

Residual state of actual system (Castigliano formulation) Virtual elastic state (Castigliano formulation)
O(s, )=%sIer —Min 0(sv)=%sIst —Min
ATs, =0 ATs, =f, f, =[0.....0,f0,...0]

LI,Sr +S¢ < Sjim
fi  concentrated load at DOF i with |f|| =1

{ 1 1

Shakedown limit resistance factor for Superposition of residual and virtual elastic state at

original system (Castigliano formulation) shakedown limit state

(Linear optimization problem) Calculation of virtual load intensity (Castigliano formulation)
(Linear optimization problem)

O4(s; ,ra)=ra > Min i

ATs, -0 Oy (s, ,p)=p —> Max

T ATs, =0
Lpsr +8Se <I3Sjim

-
LpSr +Se +PSy <raSim

{

Calculation of appropriate residual state (Castigliano formulation)
(Quadratic optimization problem)

Os(s; ):%sr Qs, — Min
ATs, =0

T
LpSr +Se +PSy <ISjim for r>r,

{

Dual variable: Extreme value of u;; in the direction of f;

The second category of residual displacements bounding strategies uses estimations for
the maximum expectable dissipation energy. The dissipative energy bounds F,, .4z, €.8.
obtained from Appendix Sec. 11.9 can be applied. The procedure is described e.g. in [12]
and is summarized in Appendix Sec. 11.11. Two different strategies of implementation

are discussed. The first version replaces the plasticity condition in the Poisson formulation
with the energy condition

)\Tslim S EP,mam (7'88)
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Table 7-37 Strategy for estimation of the upper and lower bounds of residual displacements and
stresses at shakedown state using dissipative energy bounds

System at shakedown state

{

Poisson formulation Deformation based formulation
ATs, =0 eV ATQ Ay, ~ATQ LA =0 eV
Qs; +LpA-Au=0 eV A>0 eV

™ s =Q'Au-QL,n ™

=0 eV LQ 'Au-LLQ Lh +8g — S =y <0
-

Lpsr +Se —Sjm =y <0 eV ATy =0 cV
Ay=0 eV

Replacement of complementarity condition with Maximum of plastic

dissipative energy condition potential at

- - - shakedown state
A'Q Ay, —A'Q LA=0

E
%20 pmax

LhQ"Au-LTQ Lok + 8¢ — S <0

—
A Siim < Ep max

f

Use as subsidiary conditions for:

Y Y

Extremum of displacements at DOF i Extremum of residual stress component j
(Linear optimization) (Linear optimization)

Min 1 il Min
O1(Ur ,7\,) =Urj= Max O»](Ur ,7\,) =S, 0= QJ AU—QJ' Lp)\. = Max

while searching for the extremum of the displacements. On the other hand, the second
version favors a replacement of the extended kinematic condition with the energy con-
dition (7-88). Several modifications of the governing equations have been introduced for
either version in order to reduce the number of unknowns.

Alternatively the bounds can be explored with releasing the complementarity in the origi-
nal Poisson principle. Thus also at different positions plasticity conditions can be activa-
ted. The appropriate concept is summarize in Tab. 7-37.
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Table 7-38 Example: Load sequence analysis of residual horizontal displacement (shakedown limit
state)

0.020

Ur [MN] Node 4
0015 |

Sequence A
0.010 /

0.005
/‘ Level calculated by —

0.000
0005 |k \K classical shakedown
0,010 Sequence B

-0.015 } Load sequence analysis af
shakedown limit 1 [steps]

-0.020
0 5 10 15

7.4.8  Example displacement bounds

Continuing the example of Sec. 7.3.3, the upper and lower bounds for the residual displa-
cements are calculated. For verification reasons, the appropriate load sequence analysis
result is calculated firstly. The result for the horizontal displacement at node 4 is illustra-
ted in Tab. 7-38 for either load sequence A and B. It can be seen that the load sequences
produce different residual displacements. The classical shakedown analysis is calculating
just the lower value.

The application of the virtual loads strategy of [178] gives a minimum value of ;. i, =
—0.0198288m (positive direction is indicated by the vector from node 1 to 5). Howe-
ver, only an infinite value for the upper displacement bound can be calculated directly at
shakedown limit. For meaningful application, the resistance factor must be increased.

By application of the method in Tab. 7-36 the extremum horizontal displacements at no-
de 4 are determined to —0.11m < wu, < 0.18m. Secondly the dissipative energy base
method of Tab. 7-37 is applied using the previously determined maximum plastic energy
from Sec. 7.4.6. The determined bounds are —0.0179347m < u, =< 0.0245203m. Both
methods have shown that they are capable of estimating safe upper and lower bounds for
the problem. While evaluating the results it should be mentioned, that the deviations from
the sequence calculations are acceptable, because the method is not referring to the ori-
ginal load sequences, but only to the envelope response, that theoretically can contain an
infinite number of different load cases. Commonly, as can be seen also in this example,
the dissipative energy method has advantages, because the value of the maximum plastic
energy is calculated with "pseudo sequences" if the successive deactivation strategy of
Sec. 7.4.5 is applied.
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7.4.9  Residual stress bounds on shakedown state of elasto-plastic structures

As well as the dissipative energy and the residual displacements, the residual stresses
are not necessarily unique for a given pool of loads, applied in arbitrary load sequences.
According to [12], the residual stresses are only unique if the maximum and minimum
dissipative energies of a systems are equal

Ep,min - Ep,max (7‘89)

In all other cases, the residual stresses e.g. obtained with an optimization problem in
Tab. 7-24 are only approximations. The real bounds can be estimated using bounding
techniques. Most of the previously discussed bounding principles can be used for combi-
ned calculations of the appropriate residual stress state as well. In Tab. 7-37 one concept
is indicated, on the basis of the maximum plastic energy estimation. It is mostly identical
with the displacement bound principle introduced in Sec. 7.4.7, so that upper bounds for
displacements and internal forces can be calculated on the same basis.

7.4.10  Example residual stress bounds

Again, the example of Sec. 7.3.3 is continued. The lower and upper bounds for the residual
moment calculated with Tab. 7-37 are determined. At node 4 the bounds are —128.88 <
M, < 60.59 and at node 5 it is —58.82 < M, < 58.82. In comparison with the load
sequence results previously presented in Tab. 7-29, the calculated bounds are practically
useful.

7.4.11 Hardening materials and geometric nonlinear problems

The previously described concepts rely on materials with perfectly plastic branches in the
stress-strain relationship. The presence of hardening may significantly affect the shake-
down limit state. Kinematic hardening (see Sec. 4.8.2) can lead to alternating plasticity
(plastic shakedown). On the other hand, the structure will shake down under any load in-
tensity if the hardening matrix A; (see Eq. (4-76) is positive semi-definite (as for Koiter’s
hardening concept) [133].

Specialized theorems regarding geometric nonlinear problems have been studied e.g.
in [66,62]. Ignoring the influence of plasticity on the geometric nonlinear effects, both
problems of elastic envelope calculation and shakedown state calculation can be adapted
separately with terms for geometric nonlinear effects (see Sec. 4). If the effects are not
negligible, an iterative strategy can be applied according to [197]. This feedback strat-
egy is illustrated in Tab. 7-39 for a shakedown limit load calculation and in Tab. 7-40 for
the appropriate shakedown limit resistance calculation. The limit load analysis requires
additional modifications for the load intensity in the elastic envelope calculation. From
these illustrations it is obvious, that the appropriate calculations can be costly. A general
alternative to this procedure is discussed in Sec. 7.6.
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Table 7-39 Iterative calculation for geometrical nonlinear shakedown analysis (Limit load analysis)

Load intensity Pre-deformation

P = Ppo g =0

Structural system Elastic analysis Calculation of
- -

SE, Ug shakedown state

PA; SR, €rR

+ + N | &oi~¢er

Load intensity Pre-deformation
Pi = Pa € = &R * y

+ + Y n{ pax1

vy

Shakedown state

7.4.12  Stress and deformation-based conservative limit states

As described in Sec. 7.4.7 and 7.4.9 the residual displacements and stresses are stable
but not necessarily unique for arbitrary load sequences from a fixes load pool, if the load
intensity is below the shakedown limit. In practical cases, the exact knowledge of the
response might be of interest and an undetermined stress or deformation state is inadmis-
sible. The load sequence independence can be reached by further limitation of the load
intensity to the level of the conservative limit load. The basis of all calculations is again
an elastic envelope response derived from load case calculations. As an extension to the
definitions in [218], two types of conservative limit states can be distinguished. First, the
stress-based conservative limit load is defined as follows

Theorem 7: If for any possible load sequence, consisting of all possible load
cases, the resulting residual stress state is unique, the loading intensity is
below the stress-based conservative limit load.

Energetic conditions can be utilized for numeric calculation of this limit state. The strat-
egy can be deducted from Sec. 7.4.9. If the residual stress state is unique, the minimum
and maximum plastic energy bounds are identical (see Eq. (7-89)). This condition, in
conjunction with the method in Tabs. 7-33 and 7-34 can be applied within optimization
procedures in order to calculate the stress-based conservative limit state.
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Table 7-40 Iterative calculation for geometrical nonlinear shakedown analysis (Limit resistance

analysis)
Pre-deformation
&= 0
Structural system Elastic analysis Calculation of
™ SE, Ug ™| shakedown state
FAs SR, €R
} 1
Pre-deformation » n| g=~eg
€0 T €ER i

vy

Shakedown state

Accordingly, a deformation-based variant can be stated

Theorem 8: If for any possible load sequence, consisting of all possible load
cases, the resulting residual deformation state is unique, the loading intensity
is below the deformation-based conservative limit load.

This condition is always fulfilled if only one load case or impulse can trigger plastic
deformations in the structure. Regarding the classical limit state definitions the following
relation can be stated for the resistance factors r and limit load factors p

Te 2 Ted 2 Tes 2 T'q Z Tp DPe S pCd S Des S Pa S Pp (7'90)

relating the elastic (e), deformation-based conservative (cd), stress-based conservative
(cs), shakedown (a) and plastic (p) limit states.

7.4.13  Example conservative limit resistance

The conservative limit states for the example of Sec. 7.3.3 are calculated. The appropriate
stress-based resistance factor is 7., = 1.5289. The appropriate residual moment distri-
bution as well as the development in Node 4 is described in Tab. 7-41. Contrary to the
shakedown limit load results from Sec. 7.4.4, the residual stress level is unique for either
load sequence (Tab. 7-41).
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Table 7-41 Example: Residual moment distribution after load sequence application (Stress-based
conservative limit resistance)

-30.37,

i Load Sequence A " i Load sequence B
" Residual Moment [kNm] " Residual Moment [kNm]
LX 18.58 Lx 18.58

Table 7-42 Example: Residual plastic strain distribution after load sequence application
(Deformation-based conservative limit resistance)

0 o
0, -0.00206
-0.00206
r=1.5289 r=1.5289
Load Sequence A . . Load sequence B
o Plastic Strains [-] " o Plastic Strains [-]
L L

For this example the deformation-based and stress-based conservative resistance factors
are identical r.q4 = rs, thus the plastic deformation state is stable and unique as illustrated
in Tab. 7-42.

7.5 Cycle-based limit state analysis
7.5.1 Introduction

For structures facing cyclic excitation, e.g. in seismic regions, the demand for non-degrading
or limited-degrading structures with ductile behavior is rising. Samples are buildings of
lifeline and high technology industries that have to maintain their operability during and
after the event. Furthermore, it is required to restrict the amount of accepted damage to
limit repair efforts. These requirements define a minimum performance or capacity level
that have to be maintained after excitation. In these cases the application of isolation tech-
nologies is not always appropriate and necessary. Structural dissipating strategies can be
applied as well, if a performance level can be adjusted that utilizes plastic reserves for
energy dissipation, while assuring a predefined damage limit [9,3,52].
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Figure 7-9 Decreasing capacity due to cyclic action

Problems arise if the capacity of the members decreases rapidly after some cycles with da-
maging (plastic) potential, as illustrated in Fig 7-9. Hereby, substantial damage is caused
from several re-plastifications. This can be critical for cross-sections with limited ducti-
lity, such as in reinforced concrete members. Besides failure prevention, high degrading
levels are often not acceptable, e.g. for life-line structures. They demand for limited dama-
ge extends, in order to ensure operability and quick repair. Requirements can reach from
a purely elastic behavior to higher but limited damage levels that can be characterized by
maximum plastic excitations and the number of plastic cycles or re-plastifications.

In the following sections, a simplified performance-based design procedure is described
that considers the following circumstances and objectives:

e Planned application for performance levels operability and immediate occupancy

e Application for structures with elasto-plastic cross sectional behavior (at plastic hin-
ges) like r/c-, src-, steel- or mixed type structures

e Avoidance of equivalent replacement systems, use of all kind FE structural models,
especially of models proposed by codes

e No a-priori necessity for regular systems
e No modification of loads by global reduction factors

e Including a response abstracting step (relying on the statistical character of earthquake
excitations, no direct dependency to a specific time history like in nonlinear dynamic
analysis)

e Reduction of responses considering acceptable deformations and numbers of replasti-
fications
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e Individual scalability for each point of the structure
e (Capacity validation and design at local points, including estimation of global behavior
e Reflection of cross sectional behavior including force interactions

e Direct verification of performance, direct feedback of design decisions to the structural
behavior

e Direct support and application of capacity design principles

e Use of simple and fast calculation algorithms (mainly on a linear basis even if the
analysis is nonlinear itself, manual approaches should be considered for simple struc-
tures)

e Evaluation of effects caused by damping or isolation devices

e Optionally: direct design improvement by application of optimization technologies

7.5.2  General design approach

The design method is derived from signal evaluation methods that consider amounts of re-
plastifications caused by a sequence of plastic cycles. They are used to reduce the elastic
response of the structure for the design, due to the utilization of plastic dissipation.

The enhancement in the approach is the implementation of signal reduction procedures
considering the number of re-plastifications. The principle is almost similar to approa-
ches that reduce spectra data on a cycle basis. These approaches were originally speci-
fied to support the application of linear response spectrum methods for nonlinear structu-
res [121,91]. The idea is to reduce the resistance of the structure to a certain level, from
that only a predefined amount of load peaks effect hysteretic behavior. With the choice of
the parameter n as "number of re-plastifications" a simple method to scale and influence
the perspective damage can be established.

However, the application within this study provides a main difference. Contrary to the
mentioned methods, the reduction procedure refers not to the loads but to the linear struc-
tural response in the member cross-sections. Thus a linear time history analysis or re-
sponse spectrum analysis has to be performed. Commonly this is not a problem because
physically linear analysis is well established, and theoretically clear.

It is the convention herein, to refer not on complete cycles (complete hysteresis) but on
the number of re-plastifications n, as the number of altering inelastic deformations. The
purely elastic case will be referred as a special case with n = 0. Starting with n = 1, the
cross-section performs plastic deformations, but only one-directional. The first cycle of
inelastic deformation is characterized by n = 2 and so forth.

The reduced response can be used within two concepts of limit state analysis:

e FElastic limit state analysis (Elastic basis)

e Adaptive limit state analysis (Adaptive basis)
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Elastic Basis cycle
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Figure 7-10 Principle of signal reduction corresponding to the number of
re-plastifications n

The two concepts are discussed in the following sections.

7.5.3  Design based on the elastic limit state

The simplest concept is to assume, that if the elastic limit is exceeded, cyclic behavior can
be obtained. The elastic limit (or reduction of the elastic response) is defined, according to
the pre-defined number of re-plastifications. The main principle of reducing the maximum
amplitude of internal forces by cycle approaches is illustrated in Fig. 7-10. All peaks
that exceed the elastic limit are potential candidates to trigger plastic deformations. If the
reduction is done for the positive and negative values respectively, a cyclic behavior can be
expected. The disregard of the dissipation effects of the plastic hinging is responsible, that
this approach is conservative. This means that the relation between the "really observed"
number 1., and the previously intended number of re-plastification 74c;qy, Of the design
is

Neal

<=1 (7-91)
Ndesign
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Figure 7-11 Example: Plastic rotations development for the design procedure
based on the elastic limit load forn = 0,2, 4

7.5.4  Example: Design based on the elastic limit state

This assumption is proofed with help of the example of Fig. 7-14. The structure is again
designed for plastic hinging at the ends of the horizontal beams only. The initial distribu-
tion of the limit moments in all hinges is —H0kN <= M <= 50kN. At the beginning
of the considered beam (Point 3), the elastic moment according to Fig. 7-12 is obtai-
ned. In this figure, the reductions of the response for three numbers of re-plastifications
n = 0, 2, 4 are marked. If these reductions are used to perform the design of the structure,
the plastic deformations ¢, at beam 5 will develop according Fig. 7-11. They are calcula-
ted with nonlinear time history analysis. This step is not part of the procedure but to test
the effects caused by this approach. Additionally, the reduction factors r, as the multiplier
of the plastic limit distribution, are given in Tab. 7-43, as well as the comparison of the
previously intended number of re-plastification n4e4iq, and the observed number 7.

From these results, it will be obvious, that the approach is able to activate plastic reserves
in the structure, if n >= 1. However, the post-elastic behavior complies not to the inten-
ded cyclic behavior if the number is n >= 2. In this example, even a value of ngesign = 4
is only resulting in n.al = 1. This behavior is conservative, but to a relatively large extend.
The reason is the initial shakedown of the structure in the first plastic cycles. Taking this
effect into account, an improved concept can be derived, that is presented in the following
section.
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Figure 7-12 Example: Elastic moments at beam 5 and levels of reduction
according to n = 0, 2, 4 for an elastic basis

Table 7-43 Example: Resistance factors r for intended numbers of re-plastifications n4esign and
the obtained numbers n.,; (on basis of elastic limit state)

Ndesign  Neal r % of elastic limit
0 0 2.57 100.0
2 1 242 94.2
4 1 2.34 91.0
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Figure 7-13 Principle of signal reduction corresponding to the number of
re-plastifications n

7.5.5 Design based on the adaptive limit state

This concept was already introduced for the design of seismic excited structures in Sec. 7.4.
The application of shakedown theory leads to conservative solutions compared with other

design strategies, that accept plastic hysteretic behavior. It determines the limit from whe-

re altering or unlimited progressive plasticity have to be expected. Starting from this limit,

load impacts beyond the shakedown limit level can result in inelastic hysteretic behavior

combined with re-plastification cycles in plastic hinges. Because of this, the adaptive limit

state is therefore a better basis to derive a cycle based design procedure than the elastic

basis.

Maintaining the original definition, the number of re-plastifications n = 0 is indicating the
pure elastic behavior. The pure shakedown state is indicated by n = 1. A complete cycle
of inelastic deformation is characterized by n = 2 and so forth. This differs slightly from
the definition with elastic basis. Having an adaptive basis, the maximum peak already is
associated to n = 1. The principle to derive the reduction levels on an adaptive basis is
illustrated in Fig. 7-13.
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7.5.6  Design procedures

Both concepts, the elastic and adaptive basis, can be used within a common design pro-
cedure. Short chart descriptions can be found in Tab. 7-44 and 7-45. The first strategy
(designated as strategy V) is conceived regarding structural verification. The mechanical
system, the loads and masses are determined traditionally. According to this, the com-
plete detailing has to be provided. Important is the determination of regions for potential
plastification, according to Capacity Design rules. Out of this, the resistance (supply) of
the structure can be calculated. After calculating the elastic response (either with time
history or simplified analysis), the derived envelope will be reduced due to the targeted
number of re-plastifications. In a limit state analysis, the resistance factor r and the resi-
dual state are derived. The factor scales linearly the resistance parameters of a pre-defined
cross-sectional resistance distribution, e.g. for reinforced concrete structures, this can be
interpreted as changing the reinforcement. The resulting behavior has to be evaluated with
respect to the plastic hinge distribution and loading. For structural safety, the resistance
factor  must be greater than 1.0.

The second strategy follows a design and dimensioning objective (noted as strategy D).
The core sequences are almost similar to procedure V. However, the advantage is the shor-
ter pre-design, that requires only an assessment of the structural stiffness distribution. The
calculation of the elastic envelope is according to procedure V. This is the basis to deter-
mine an appropriate kinematic mechanism, by placing limit conditions to the potential
hinge regions. After this, the appropriate resistance factor is calculated, with the elastic
limit state analysis according to Sec. 7.2 or with the adaptive limit analysis (Sec. 7.4). The
appropriate residual states are fictitious, and represent the behavior for the reduced exci-
tation for n > 1. On an elastic basis the residual states are always zero, independent from
n. The superposition of the residual results and the elastic envelope can be used as design
relevant internal forces. The hinge distribution has to be evaluated and the detailing can
take place. In a last step, the previously made stiffness assumptions should be compared
with the design. The calculation should be repeated in an iterative process in case of great
differences as indicated in Tab. 1 and 2.

In Tabs. 7-46 and 7-47 two options for the derivation of the elastic envelope solution in
the design procedures are presented in more detail. The derivation of the elastic envelope
is illustrated in Tab. 7-46 for the strategy that utilizes linear time history responses. For
respectation of the statistical distribution of the response parameters, sets of time histo-
ry data should be evaluated. For any of this the elastic responses are calculated for the
structure. In the traditional procedure, the maximum and minimum response peaks are
determined at each point of the structure (Strategy I). In an advanced procedure (Strategy
II), the response can be selected at the plastic hinge regions with respect to the number
of re-plastifications n. For all other points, that are supposed to remain elastic during the
excitation, the envelope calculation can omitted or the envelope is simply determined for
n = 1. Consequently, a reduced envelope response is derived. The calculation has to be
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Table 7-44 Design procedure "Verification"

V1 Determination of System,
loads, masses

{

V2 Detailing, supply

{

A
A

V3 Elastic analysis Plastic hinge Global design loop
(Reduced) elastic envelope design loop
* no + no
V4  Limit state analysis V5 Evaluation of yes V6 r<1.0
Determination of residual Bl behavior s

state and resistance factor r

yes

End

repeated for all selected sets of time history loads. Then the elastic envelope consists of
extreme results for all time history sets.

In Tab. 7-47 a method is sketched for utilizing cycle based response spectra data for
calculating the elastic envelope. The calculation of the spectral values must be altered, so
that the extreme responses are selected with respect to the cycles in the linear response.
This step mainly corresponds to the time history evaluation method given in Tab. 7-46,
but for SDOF systems only. If the procedure is repeated for different structural periods in
the SDOF, the corresponding response values are collected to form a reduced spectrum.
This spectrum is the basis to calculate the elastic response of the entire structure to the
selected excitation, to calculate the envelope solution. Also in this procedure, several sets
of excitations can be beneficially included.

In Tab. 7-48 the sequence of calculating the limit state and the appropriate residual state
is presented. The shown approach bases on optimization technologies. The procedure
consists of two separate steps. First, the calculation of the adaptive resistance factor r,
that scales the resistance parameters in the cross sections. This value is used to scale
the resistance (here indicated exemplarily as the constant part of the plasticity conditions
s1im)- Secondly, the appropriate residual stress distribution can be calculated with help of
a quadratic optimization approach. This calculation can be done with the reduced elastic
envelope s, ,, that gives an approximate average plastic performance overview. Using the
non-reduced envelope s, ; (for n = 1) instead is adequate to indicate the extreme results
for the plastic deformations. The use of the residual state information within the design
procedures V and D are sketched shortly within Tab. 7-48.
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Table 7-45 Design procedure "Dimensioning"

D1 Determination of System,
loads, masses

{

D2 Pre-design stiffness

{

D3 Elastic analysis
(Reduced) elastic envelope

{

A

D4 Choice of plastic -t Plastic hinge Global design loop
mechanism, supply design loop
* no + A
D5 Limit state analysis D6 Eval. plastic
Determination of residual Bl behavior
state and resistance factor r
yes * no
D7 Detailing D8 Control stiffness
B assumptions
yes
End

The results obtained by this procedures are conservative. That means, that the indicated
number of re-plastifications is an upper bound that will never be exceeded. The real re-
sponses due to single dynamic events can be smaller than calculated within this procedure.
This is due to simplification that are made to neglect time effects and therefore to reduce
the response to their envelope values. The effects can be caused by plastic dissipation
that takes place prior to the actually considered extreme events in the time history. Such
plastic dissipation reduces the amplitudes of the subsequent response peaks, so that the
caused plastic deformations can be smaller than those calculated with the elastic envelope
simplification. However, the maximum expectable plastic deformations can be assessed
conveniently.

For extension of the given procedure further approaches can consider a probabilistic treat-
ment for reducing the elastic envelope.
7.5.7  Example Design based on the adaptive limit state

A simple beam-column structure is given in Fig. 7-14, excited by an artificial ground
acceleration. For simplicity the usually recommended load case studies are not performed,
thus excitations only from one time history and only from one direction are considered.
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Table 7-46 Elastic analysis and derivation of the reduced envelope for strategy based on time

history analysis

Set of representative
ground acceleration
time history data

a [m/s*/g]

I |
YT MWW\V\ ‘V‘(\ ‘M“N WV “MA\\”M“ \/ ’
I

Full structure elastic time
history analysis

- including damping effects
- including p-delta effects

Repeat procedure for all load
cases and sets of data and
assemble envelope

A
Response history at all om
points \
— W AN
Adaptive limit state Cycle-based approach:
approach:
For all potential plastic hinges:
For all parts: Choice of number n of acceptable re-plastifications
Determination of
envelope for n=1 For all elastic remaining parts:
Determination of envelope for n=1
KkNm - n=1
i 1 e -My(n)
[
\/\ \ \/\ Pl T Fitter :> ——
n=3
L 2 —] +My(n)
— e n=1
Time history response Reduced envelope
Result:
Elastic reduced envelope
R
T
AT
fant Mg A
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Table 7-47 Elastic analysis and derivation of the reduced envelope for strategy based on response
spectrum analysis

210

Elastic response spectrum analysis

Set of representative atmss]
ground acceleration time - b | h mﬂ Repeat
history data “, 1w [l Wl M procedure for all
ry MWU\{\/V 4 I\(\« / HM “\ i W\J W\M ‘\\‘ | sets of data
W | l J ‘\W | ettt
) I} and assemble
envelope
' I
SDOF with period T Repeat for
time history analysis » range of
including damping effects - SDOF
Ta<T<Te
Y )
Response history oNm
/N N N
A | A \
~— NN / \/\ /N/ \\ ™
v (YY) \/
\V \\/\
Strategy I: Strategy Il (cycle-based approach):
Number n of acceptable Choice of number n of acceptable
re-plastifications n=1 re-plastifications
kNm n=1
iy n ——— Sa(n)
K n=3
A\ / \ \ A [ Filter :>
Y \ \ /’
v NN ——
— sec
Time history response Reduced envelope
Reduced response spectrum
Sa
Result:
Elastic reduced envelope SN

AL

TS
N
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Table 7-48 Limit state analysis

Choice of plastic - - Elastic envelope
mechanism, = determination e
Initial supply = — - |
ultimate capacity Reduced elastic envelope 1] TS
,,,,,, — TS
Loy 4
Su | | Se,red | | Se |

1 1

Linear Optimization Problem

) . .
r > Min L Resistance factor r
A's,=0

LPTSF +Sered —rsu<0

* Y Y
Quadratic Optimization Problem Quadratic Optimization Problem
1/2's; 'Qs; —> Min 1/2 s, 'Qs; — Min
Als =0 ATs;=0
Lstr + Sered—rsu<0 Lstr +8e-rsy<0
Average Residual stress distribution s, Maximum plastic rotations
Maximum residual stresses

1 Superposition of elastic and residual state

' Save design if
i

- Sdesign = Sered * Sr B
|

r<1.0
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Artificial ground acceleration and response spectrum
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Figure 7-14 Example: System, loads, masses, pre-design of stiffness

The application of Design Procedure D (according to Tab. 7-45) is demonstrated for the
Example of Fig. 7-14. For result discussion, the behavior at the end of the beam in the first
floor (Beam 5, Node 3) is focused most. After performing an elastic time history analysis
the elastic envelope is calculated.

The response values will be used to assemble the elastic envelope solution according to
the sequence in Tab. 7-46. After choosing the plastic mechanism the reduced envelo-
pe values can be filtered. For demonstration in this example three different numbers of
re-plastification (1,3 and 5) are chosen (Fig. 7-15). The position of the potential plastic
hinges and the initial values of the moment capacities are given.

The reduced elastic envelope is used to calculate the resistance factors. In Tab. 7-49 the re-
sistance factors r according to their appropriate numbers of re-plastification n are shown.
The theoretical case of total elastic behavior (n = 0) is given for comparison. The residual
forces are calculated as well.

Table 7-49 Example: Resistance factors r for intended numbers of re-plastifications n4esign and
the obtained numbers n.,; (on basis of adaptive limit state)

Ndesign  Neal r % of elastic limit
0 0 257 100.0
1 1 0.90 35.0
3 3 075 29.2
5 5 068 26.5

For better distribution of plastic deformations within the structure, a simple loop back to
step D4 can be done to rearrange the initial moment capacity distribution and calculate the
limit state again without considering the time history again. In computer implementations
an automatic procedure for finding the optimal distribution with help of a programming
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D3 Elastic analysis, elastic envelope

kN =1
40" n=3 Adaptive|  TTUTCTCTL M>-50
g Basis o t t g
M < 50
L T 1 O I
-80 1
---------------- M >- 80
100 -O—rt + + @
................... M < 50
n=5
-120 n=3
n=1
sec
-140
0 5 10 15 20 A A [KNm]

D4 Choice of plastic mechanism and supply

Figure 7-15 Example: Design steps D3/D4.

ODVN 1.35

5756
-5.4309e+001 /

-2.6844e+001
6.2232e-001

| | 2.8088e+001
5.5554e+001

. 8.3020e+001

83.02 kNm

Figure 7-16 Example: Design steps D5/D6. Calculation of limit state:
Fictitious residual state

213



7 Simplified nonlinear analysis
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Figure 7-17 Bending moment at point 3 for n=5
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Figure 7-18 Plastic beam rotations at point 3 for n = 1,3 and 5; Marked:
changes in plasticity direction

approach can be included easily. Having an acceptable behavior, the procedure can be
finished by superposing the residual state and the elastic envelope for the derivation of the
design forces. The detailing can now be established according to Capacity Design rules.

To control how this design will perform during an earthquake, a comparison with a non-
linear dynamic analysis is provided here. It should be noted, that this step is not part
of the design routine. The given ground acceleration of Tab. 7-14 is used as excitation.
In Tab. 7-17 the bending moment history for n=5 and the plastic part of the rotations at
the considered beam end (Point 3) are shown for different numbers of re-plastification.
It can be outlined, that according to the design objective all accounts of re-plastification
will stay below it's projected values. For this specific example the ultimate number of
re-plastification is adjusted. This is not necessarily and always the case. The procedure
just guarantees, that the ultimate number is not exceeded. As expected the maximum pla-
stic rotations calculated by the limit state analysis is not exceeded at the observed point
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(Fig. 7-18) . The calculated value of residual moment is almost as calculated by the sim-
plified approach.

7.6 Deformation based limit states
7.6.1  Basic concepts

The previously discussed limit state concepts commonly assume sufficient plastic de-
formability. However, even if the level of plastification is limited as for shakedown, the
associated state may be not acceptable due to large deformations. Restricting limit state
problems with respect to deformations is leading to deformation based limit state pro-
blems. They are especially developed for direct consideration of the large increase of
deformations in plastic zones or due to geometric nonlinearities, that can cause local fai-
lure before developing kinematic chains. These problems are discussed in detail in [218]
also for seismically excited structures and are summarized shortly in the following.

Three main concepts of simplified calculation can be distinguished:

1.)  Calculation without consideration of load sequence problems

2.)  Calculation with consideration of load sequence problems according to the concept
of superposed residual state

3.)  Calculation with consideration of load sequence problems according to the concept
of shared plastic response

All concepts are schematically explained in Tab. 7-50. The first concept mainly conforms
to the simplified method given in Sec. 7.3. However, it commonly bases exclusively on the
Poisson or Lagrange type of formulation. This is because the unknowns contain deforma-
tions. In these formulations just additive inequality conditions for solving the appropriate
optimization problems can be applied in order to integrate deformation limit criteria, e.g.

U < Wi, (7-92)

The second method is mainly related to the shakedown state analysis given in Sec. 7.4,
especially using deformation unknowns. The influence of time is neglected as well. This
allows to consider not only a single given seismic load but a class of excitations. As before
the deformation criteria can be added simply by introducing an additional inequality.

The third concept integrates all load combinations into one optimization scheme for the li-
mit state analysis. The unknowns are the deformations resulting from the appropriate load
combinations that are superposed to a shared plastic response. One example for an opti-
mization problem is given in Tab. 7-51. The difference is, that no elastic envelope needs
to be calculated. The advantage of this model is the extension of the analysis for geo-
metrically nonlinear calculations, as the unknown displacements are total displacements,
without superposition with an elastic envelope part.

Using deformation based limit analysis, all limit criteria can be applied in one universal
format. So by application of deformation criteria and scaling the load or resistance factors,
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Table 7-50 Concepts for deformation based limit state analysis

Without load sequence With load sequence With load sequence
considerations considerations considerations
(Concept of superposed (Concept of shared
residual state) plastic response)
Load combinations Load combinations Load combinations
et ez | e [rer]lLe2 ][ e..] [ et e2 || Le..]
Elastic envelope
4 4 v ¢ v v v
[0] [0} [0) L
T2 | 82| &2 Limit state
“— “-— N - i
o> o> 0> analysis Limit state
= =© =®© .
ES|ES | E = analysis
S| 3% || 3
Envelope Residual > Envelope
v ‘ !
Result Result Result

arbitrary conditions can be introduced, e.g. limit bearing or serviceability conditions. One
major application in seismic engineering is the limitation of displacements and ductility
demands.

7.6.2  Example Deformation based limit state

The concept of Tab. 7-51 is applied to the example from Sec. 7.3.3. In Tab. 7-52 the
deformations at the plastic limit state (r, = 1.039) are compared to the displacement
bound of w;;,,, = 10mm at Node 4. It can be seen, that for both load sequences, the limit
displacement is lower than the applied bound. The appropriate limit resistance factor is
rq = 1.125. From this it is obvious, that the resistance factor is between the plastic and
adaptive limit factor calculated in Sec. 7.4.4).

7.7 Capacity-spectrum-based concepts

The application of capacity spectrum methods recently gained popularity in the evaluation
of nonlinear structures. The differences to the linear methods previously described arise
mainly from the substitution of the eigenform by a pushover curve derived by nonlinear
static analysis. In combination with the capacity spectrum method, that provides concepts
to transform these data as well as response spectra into a capacity-demand spectrum for-
mat. This is done on the basis of equivalent linear modeling. In a visible way the structural
supplies can be assessed [9,52].
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Table 7-51 Optimization scheme for calculation of deformation based limit state according to the
concept of shared plastic response

Primal variables
uy Un A r
1 - Min
A'Q"A -A"Q" Lp =f;
Ext. Equilibrium
ATQ'A | -ATQLe =1,
L' Q'A L' Q"L Siim 20
Plasticity condition
1L'Q'A|l L'a'L Sim >0
1 >0 Non-negativity
AT( L' QTA L' Q" Ly Siim )=0
Complementarity
AT ( L'Q'A | L'a'L Sim )=0
-Ny 2 Uiim
Deformation limit
-Nu 2 Uiim
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Table 7-52 Example: Limitation of the total horizontal deformations using deformation based
optimization strategies

0.250 0.250
0,200 | Us [m] r = 1 04 L|m|1 0.200 | Un [m] Sequence B Node 4
' ' Lirnit Load sequence analysis
0.180 - 0.150 %:1 125 at plastic limit
0.100 0.100

0.050 | W \/ \/ 0.050 | / A

0.000 0.000

cn T\ \4/ \4 v/
r— 1.125
-0.100 Sequence A Node 4 -0.100 S
-0.150 [ . o -0.150 [
Load sequence analysis at plastic limit  t [steps] r=1.04 1 [steps]
-0.200 -0.200
0 5 10 15 0 5 10 15

It is known from conventional design, that the simplified linear analysis method for the
assessment of a nonlinear behavior is performing less accurate than the methods based on
pushover curves. The main reason for that is the non-appropriate estimation of the nonli-
near structural behavior observed during transient excitation on the basis of eigenvectors.

The basic assumptions regarding equivalent linearization are generally the same as out-
lined in Sec. 6.6. Exceptionally is the fact that the equivalent stiffness is not calculated
explicitly during the iterations because it is an inherent part of the capacity curve. As in
the original procedure the period dependency of the damping ratio is neglected as well, so
Eq. (7-93) is commonly applied [9]. For simplicity the explicit calculation of the ductility
and stiffness ratio is bypassed. Instead, the identical form expressed in terms of directly
readable yield and maximum spectral accelerations and deformations is used

2(Sa, - Sd, — Sd. - Say)
w-Sa, - Sd,

Eequ = (7-93)
The capacity curve is dependent on the load pattern chosen for the pushover. It has been
found that the traditional load distribution, conform with the product from modal shape
and mass is appropriate for this purpose. Following the suggestions given for conventional
design the deformations are traced at the very top and the shear forces at the bottom of
the structure in order to derive the pushover curve.

As illustrated in Tab. 7-53 the following analysis steps are performed, mainly following
ATC40 [9]. As the equivalent damping is dependent on the knowledge of the deformation
and acceleration, the calculation is iterative.

First, the structure is modeled with nonlinear characteristics. The eigenvalue analysis is
done with the initial material parameters. As a result, the eigenvectors Y, eigenvalues A
and participation factors I' are obtained. The mass distribution is multiplied with a selec-
ted eigenvector to form a load pattern. This load pattern is used to perform a stepwise
nonlinear static analysis (pushover analysis). The maximum deformation (measured typi-
cally at the roof of the structure) and the appropriate base shear force is traced throughout
the steps and are both assembled in the "pushover curve". This curve is transformed into a
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"capacity spectrum" and relates to the behavior of an equivalent SDOF, showing the same
maximum deformation and base shear force as the original structure. This approximation
is sufficient for regular systems.

Secondly, for the loading, an elastic mean spectrum (calculated from time history sets)
or code spectrum must be selected. In the first iteration loop, a damping ratio £ is esti-
mated. The damping ratio is used to calculate the inelastic spectrum Eq. (6-26). This
reduced spectrum is transformed into the "demand spectrum". Both, the capacity and de-
mand spectrum are intersected in one diagram. The intersection point is the "performance
point", giving the ultimate spectral deformation Sd,, and acceleration Sa, for the struc-
ture. These values are used to calculate the damping ratio Eq. (7-93). This damping ratio
is compared to the previously assumed value. If the difference is too big (>5% difference)
the calculation of the demand spectrum must be repeated while using the newly calculated
damping ratio. The iteration is stopped if the changes in the result will be within reaso-
nable limits. In the end, spectral values Sd and Sa have to be retransformed into real
deformations and accelerations.

This procedure can be used as analytical kernels in optimization problems. An example
for an appropriate optimization scheme is

O(r) =r — Min (7-94)
u(z;) <0 (7-95)
i) <0 (7-96)

where u(z;) and i(z;) are responses calculated by the capacity design method. Any pre-
viously discussed limit state can be reproduced.
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220

Table 7-53 Principle of capacity spectrum analysis
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8 Optimization problems on basis of time history approaches

8.1 Time discretization and integration

Time domain problems are initial value problems, that can be transformed from time-
space continuum to discrete problems by application of discretization methods. As already
discussed in Sec. 3.1, the dynamic problem can be divided into quasi-static subproblems
(at fixed times) using a superior integration with respect to discrete times. This separation
leads to a considerable simplification for the numerical treatment. For this purpose, several
time integration methods are known, e.g. described in [22,230]. The most popular are
named in Tab. 8-1.

In time discretization methods, the knowledge of results at discrete times is utilized in
order to calculate the integral behavior. According to d’Alemberts principle, the sum of
all forces must be zero at all times. Then the internal, external, inertia and damping forces
can be added in the equilibrium condition, that can be transformed, together with the
kinematic and material conditions (Eq. (4-119)) into the equation of motion for the time
t, e.g. as a linear function

K'u=—-M'i—Cla—"fg (8-1)

In the following, as indicated herein, only proportional (viscous) damping is considered,
that is commonly composed according to the Rayleigh assumption

C = OéMM + OéKK (8'2)

Results at successive times, are used to replace the temporal derivatives, according to
Taylor series substitutions (e.g. Runge-Kutta, Leap Frog, Newmark) or finite difference
approaches (e.g. Central Difference). Depending on the selected information, the followi-
ng integration categories are distinguished

e explicit

e implicit

e semi-implicit

that can be formulated as one- or multi-step methods. In explicit time integration only

information from the past are involved (p is here symbolizing an arbitrary time dependent
parameter)

t+Atp = f(tpa tp’ tﬁ? t_Atpa s ) (8'3)

By application of the Central Difference Method, the derivatives of the displacements are

te-

il (1At — 2y Ay (8-4)

T AP
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Table 8-1 Selection of time integration methods in structural engineering

Time integration

{

Finite Differences

Temporal functions

{

{

Explicite Methods

Implicite Methods

e.g.

e.g.

e.g.

Central Difference

Trapezoidal rule

| Discontinious Galerkin

Houbolt

Newmark

Adams-Bashforth

Wilson

| Wood-Bossak-Zienkiewicz |

Hilbert-Hughes-Taylor |

| Crank-Nicolson |

| Leap-Frog |

| Runge-Kutta |

| Park-Housner |

| Truijillo |

and
ty 1 t+At t—At
U= AL ( u— u) (8-5)
The resulting problem is
1 1 t+At t
EM + EC u = t—AtR (8'6)

where R contains all terms related to the times ¢ and £ — At.

In implicit time integration, parameters at time ¢ + At are calculated with parameters at
all times

t—i—Atp — f‘(t—&-Atp7 t+At " t+At )

P, AP p, (8-7)
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The application of implicit methods is common in structural engineering. Especially im-
plicit one-step methods (Newmark-Wilson type procedures) are often applied. Table 8-2
explains the basic procedures of derivative substitution within such methods. One special
case is the Newmark scheme, most popular in engineering software. It is exemplified in
Tab. 8-3. The classical choice of the coefficients 6 = 1/4 and v = 1/2 corresponds to a
constant acceleration. For this, the solution is unconditional stable. A linear acceleration
is achieved for § = 1/6 and v = 1/2, that is conditional stable. The conditionally stable
method of finite differences is represented by 6 = 0 and v = 1/2.

Semi-implicit methods combine implicit and explicit features. They use weighted infor-
mation from current and past time steps

t+Atp = f(aDH_Atp? CYIH_Atpa O‘2t+Atp.7 Bﬂtpa H ) (8'8)

The selection of appropriate time integration schemes is dependent on the consistency,
stability, accuracy and efficiency of the method in the intended application. The consi-
stency describes the ability of the method to reduce the numerical error with reduced time
steps. The class of consistency is given by the exponent of time in the error term. The
numerical stability describes the ability to prevent accumulation of errors in the solution,
in order to stay sufficiently close to the actual solution. The stability of a method can be
tested by analysis of the amplification function of the dynamic problem

LRALY Tt g AL (8-9)

by calculation of the eigenvalue problem

(2= M) =0 (8-10)

with the complex eigenvalues

)\x,l,2 = Upeal = Qimag (8-11)

and evaluation of the spectral radius

p= a’?‘eal + azzmag (8-12)
Whether or not being dependent on the time step size, the method is called conditional
or unconditional stable. With p < 0 the problem is non-conditional stable. The expected
numerical damping is

1 2 2
Enum = b In (areal + aimag) (8-13)

2arctan (—
arc an(a)

Adjusting the numerical damping is a general mean to control stability.
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8 Optimization problems on basis of time history approaches

Table 8-2 Time integration scheme for implicit one-step methods

Time discretization of HAMILTON’s potential into n (equidistant) subintervals (trapezoidal rule)

t2 n—1

t2-t1
j“Ldt ~ Z 0-567L,t1+im Tt ia)at )“ At=
t1 i=0

n

Separation of integrations with respect to
[~ time

- space

Y

Equilibrium condition for time t+ At

BT t+AtG+ pt+Atu + VHMU 4 t+At 0

Substitution of u and U by TAYLOR series Linear accelerations within time step

. .. ALt
Aty 4+ At T+ BoAt? T+ Boat® tie . tjo_ Y-y

u=
Lt . At
ALt 4 BaAt Hi+ Baat? ti+ ..

! !

WILSON time shift At — 6At

T=1t+0At
3 = 0At

Tu=tu+ 9 t0+By92 ti+py9d it

TU=t0+ B39 i+ Ba9% Wit

A

Y

Equilibrium condition for time © (BATHE generalization)

BT o +(atop + ok Fu+ o = ploug i+ o '+ ag ) + (g ti + aug U+ 0 u)

f

Matrix formulation (NEWMARK-WILSON type procedures)

AT%s+(M+CFu +°f =0
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Table 8-3 Newmark time integration scheme

Equilibrium condition

BT titgy pteaty L taty sty _g
L :
Substitution of uand U by TAYLOR series i Linear acceleration method !
A=ty At T+ BAt? i+ poat® i+ - E1 i?/g E
1 2 = H
ARGt 4 BaAt i+ BaAt? Y+ .. ! Ba=1.0 :
1 Ba=05 i
Linear accelerations within time step NEWMARK parameters 8, y
LB ~*7 1=05 Ba=5
U= Ps=1.0-y Pa=vy
NEWMARK standard form
teAt t te, ] 2t 2 (ot te
u="u+At "u+(=—3)At® "u+ At u—u ...
(5-9) Cita)
ALY 4 (1—y)AL i+ yAt ‘*A‘U—tu)...
Transformed
teaty_ty (At t At AT tuj
- At? 2
BAGLG 4 (1-y)At tij+yAtﬂt(j+12(”Atu—tu—At tu—(%—a)mz *uﬂ—‘u}.‘.
At
Y
Equilibrium condition (NEWMARK approach)
BT tisy 1 p+—Ly [FrAty bty _ i—1 tijJritL]+—1 tuleviaf Lt ftid] Loqfta+Lty
SAtZ T At 25 SAt T SAt2 28 5 SAt
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8 Optimization problems on basis of time history approaches

Closely related is the accuracy of the numerical solution, that evaluates the relation of
the numeric to the exact results due to the governing differential equations. Finally, the
efficiency relates costs and benefits of the numerical treatment.

Further reading on time integration methods is provided e.g. in [8,22,230,166] or [38,100,207,172].

8.2 Variational problem formulation
8.2.1 Basic concept

Time domain analysis can be applied for structural optimization. For the derivation of
appropriate tasks to solve nonlinear dynamic problems, modifications of traditional prin-
ciples can be used, that have been originally formulated for static problems. Everything
can be based on the Poisson principle (Sec. 7.2.1). More often appropriate are the smaller
Lagrange and Castigliano extremum principles (Sec. 7.2.2 and 7.2.3), that pursue either a
deformation based (Lagrange) or force based (Castigliano) assessment of the mechanical
system.

These principles can be used as quasi-static cores II for dynamic calculations. This is
possible according to the Hamiltonian principle

Ju = [T(z,t)dt — Min (8-14)

respecting given subsidiary conditions. The introduction of the Lagrange and Castigliano
principles is illustrated next.

8.2.2  Implicit Lagrange principle

Traditionally, the Lagrange principle 1I; serves as core principle. This principle is for-
mulated for dynamic behavior similar to Sec. 7. The difference is, that an extended equi-
librium condition, consisting of static, inertia and damping force components, must be
considered. As for static problems, the principle is assembled from separate system equa-
tions. If necessary, physical and geometric nonlinearities can be introduced within the
core, similar to Sec. 4.12 and 4.13. If an implicit integration scheme is applied, e.g. Ne-
wmark approach, one considerable advantage of this approach is obtained because the
number of unknowns is identical to the quasi-static formulations known from Sec. 7.2.3.
Thus relatively little modifications need to be introduced for the dynamic extensions.

In general, the Lagrange potential for dynamic systems states the balance between the
kinetic and potential energy

I, =W(u,u,i)— V(u) (8-15)

This potential is integrated into the Hamiltonian principle (or action integral) in Eq. (8-
14). By means of discretization, the extremum principle can be transformed into an op-
timization problem. Using the implicit Newmark-Wilson time integration approach, the
appropriate optimization scheme is given in Tab. 8-4 and 8-5. Here already an elasto-
plastic material is considered. If the problem is geometrically linear and the plasticity
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8 Optimization problems on basis of time history approaches

Table 8-4 Optimization problem for implicit time integration (Lagrange approach, elasto-plastic
material)

d’ALEMBERT's principle Material law Kinematic condition

BT s +(+vJu+'9=0 eV B'u-fe=0 eV

i A =0 i

e e e e ) Extend. kinematic condition

Y

L T TR ' B'u-D "o —ApTh—gy =0

Y

Weak form of differential equation

J.éuTBTTc dV+J.5uT(o+v)‘u dV+ISuT‘¢ av =0

Partial integration

IauTBT‘c av = J' 5uTNINg o dS - J' “sBsu dV

Y

—J"cTBaSu dV+J'5uT(p+v)fu dV+J'5uT‘<p dV+J.5uTNLTJNs’c ds =0

Stat. boundary condition Geom. boundary condition

Y

Ns‘c=0cy €Sg Nyfu=ug €Sy

1

Variation

|

Nydu=38uyg =0 €Sy

Principle of virtual deformations

ST :—j “s"Bsu dV+I5uT(p+v}udV+JSUTT¢ dV+I5uTNﬂco dSs =0

|

Extend. kinematic condition

“c =DBTu-DAp L -Dgy

conditions are linear, the optimization problem can be solved with means of quadratic
optimization.
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Table 8-5 Optimization problem for implicit time integration (Lagrange approach, continued)

= —%j‘uTBTDBTu dV+%jTuT(p+v)‘udV+_[fxTAEDBTu av

+IaODBru av +j TuT‘<pdV+J"uTNﬁco dSg = Max

Yield condition

|
|

APDBU =Y + AfDApL + AfDgg + oy €V

Y
Principle of total potential (implicit dynamic LAGRANGE-principle, elasto-plastic)

m— —%J “TBTDB U dV+%I W+ vFudv

+ I AT ARDAR LAV + J “ATAlDg, dV +I Al ojm dV

A

+J‘soDB‘u dv +J'fuTT¢dV+IfuTNLGO dSg = Max

NUTU =Ug
20

|

Discretisation

A

Numeric integration

Y

Optimization problem

M= —%TUTATQ'1ATU +%TUT(M +CJu
+ATALQ AR A+ TATARQ e+ A )i
+80Q AU +TuT T+ UuTNTsg = Max

Ny‘u=ug

20
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Table 8-6 Quadratic optimization scheme for step-by-step analysis of elasto-plastic structures
(implicit dynamic Lagrange formulation)

Primal variables
u A cu ;
IaTq A
1 5 ,
u( 2 1 E(NSQ 1A)T ATQ 180 ~f)
-—(M+C)
2
T - A;Q_1Ap A,IQ‘EO ~Sjim ) = Objective
a Min function
T Insa A -50)
Cu ( 2
Geometric
Nu Uo =0 boundary
condition
Non-
-1 <0 negativity
condition

Thus, the optimization problem is (as a core algorithm) solved in any time step. It requi-
res a pre-calculation of the Bathe parameters (Tab. 8-2) from the previous time step. After
determination of the displacements ‘+2ty, by optimization, the appropriate velocities, ac-

celerations and stresses can be calculated in a post-calculation step.

In case of plastic deformation, the plastic strains are calculated from the Lagrange mul-
tipliers A. They need to be accumulated over time and serve as predeformations in the
successive time steps

t
t+At50 — Z tigp (8—16)

ti=t0

The appropriate translation into a quadratic optimization scheme is given in Tab. 8-6,
considering constant geometric and static boundary conditions and linear yield conditions.
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8 Optimization problems on basis of time history approaches

8.2.3  Implicit Castigliano principle

As the "force-based" counterpart to the Lagrange principle, the preparation of the Ca-
stigliano principle for dynamic calculations is demonstrated in Tabs. 8-7 and 8-8. Also
here, only the equilibrium condition is changed for consideration of additional inertia and
damping forces. Contrary to the quasi-static Castigliano principle, the dynamic version
contains stresses and displacements as well, so the number of unknowns is increased.

The application of this core within a step-by-step calculation procedure is demonstrated
for the dynamic Castigliano principle in Tab. 8-9. As time integration method the implicit
Newmark-Wilson scheme 8-2 is applied.

8.2.4  Explicit formulations

Similar to the implicit derivation schemes, explicit forms of time integration procedures
can be implemented. As the unknowns of the problem are only dependent on the pre-
vious time step results, the explicit schemes simply evaluate the equilibrium condition.
As exemplarily seen for the Central difference method in Tab. 8-10 and 8-11, the expli-
cit Lagrange and Castigliano principles are easily derived and are related directly by the
Lagrange multiplier method. Within the Castigliano principle, the extremum principle is
arbitrary and can be set constant. Thus the problem can be solved with linear algebraic
solvers. On the other hand, the Lagrange form is a quadratic optimization problem with
constant boundaries. For both forms, dependent on the number of pre-steps in the explicit
time integration method, the necessary starting solutions due to previous time steps can
be calculated, e.g. with help of implicit calculations.

8.3 Contact Problems
8.3.1 Mechanical background

Traditional numerical concepts base on the transformation of nonlinear problems into
linear algebraic approximations, that are assembled and solved in an iterative manner. The
most difference of optimization algorithms is the supply of an interface for the formulation
of an objective function and inequality conditions additionally to the equality conditions.
The encapsulation of the iterative processes from the user is characteristic. Especially
the inequality conditions provide various chances for the formulation of limit conditions,
such as contact conditions. Usually, the treatment of contact conditions require permanent
monitoring of the deformations, and if the contact condition applies, the solution has to
be traced back to the limit condition and an additional equation needs to be introduced
temporarily. If several conditions apply simultaneously, the organization of an effective
procedure can be costly. Contrary to this procedure, the application of an optimization
algorithm needs only the addition of an inequality condition, e.g.

u(x, t) < Ulim,x (8'17)
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Table 8-7 Optimization problem for implicit time integration (Castigliano approach)

d’ALEMBERT'’s principle Material law Kinematic condition

B s+ +vfu+sip=0 eV B'u-¢=0 eV

{

Extend. kinematic condition

Y

B'u-D""6-gy=0 eV

{

Weak form of differential equation

ISGTBTU av- I 856D "o dV - I d6Teg dV =0

Y

Variation Partial integration

Y
|

BT80+(p+vﬁu+8q>:0
500 [85B" av = [ “u"Ngdo ds- [ “u"BT80 av

Y
—ISGTD*% dV+jfuT(o+vbu dV+jfuTNSSG dS—chsTsO v =0

Stat. boundary condition Geom. boundary condition
Ns‘c=09 €Sg Tu=suy €S,

Variation

Ngdo =809 =0 €Sg o

Principle of virtual stresses

S = 7J'50TD*“G dV+.[‘uT(o+v)Su dV+JugN360 dSufj.ScTso v =0

Ty Y Y

Extremum principle (implicit dynamic CASTIGLIANO formulation)

Mg = —%_[TGTD*“G dV+%J"uT(o+v)(u dV+J‘u-0rNS1G dSu—ITGTso dV = Max
BTIG+(p+v)‘u+Iq):0 eV

Ns o =op eSg

Agcf Glim <0 eV

f
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Table 8-8 Optimization problem for implicit time integration (Castigliano approach, continued)

Discretisation

A

|

Numeric integration

Y

Optimization problem

O(u,s) = %TSTQTS —%TUT (M+CYu—uiNs"s+*s"eq = Min
AT*s +(M+CFu+*f =0
NSTS =9y

Ags —Sjim <0

Here a contact to a fixed support is simulated. As well, contact conditions between degrees
of freedom can be stated accordingly, e.g.

hu(zy, t) + lou(rz, t) < Wim,12 (8-18)
or in general matrix formulation
LTu(t) < g (8-19)

Mathematical programming is known to be an efficient calculation strategy for contact
problem, with or without involvement of friction and pressure problems [131,228,229]
or [111,54,142,128,26,169,182]. However, the duality of parameters is not always pro-
perly respected in any approach.

The treatment of contact conditions is similar to those of the plasticity conditions intro-
duced in Sec. 4.8.2. With introduction of a slack variable v, the inequality condition can
be given as

LEu(t) — wiim = yu (8-20)

The appropriate dual variable is the Lagrange multiplier )\, that is connected with y, as a
complementary couple

Ay >0 (8-21)
Yu >0 (8-22)
Ay =0 (8-23)
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Table 8-9 Quadratic optimization scheme for step-by-step analysis of elasto-plastic structures
(implicit dynamic Castigliano formulation)

Primal variables
s u Cs 1
s'( 1a £0)
2
1 Objective
: () ) vin |
u'( 2 = Min function
-u
osT( o)
Equilibrium
AT M+C Ny" =0
( * ) v condition
Plasticity
Ay -sii <0
P Stm condition
Static
Ns So =0 boundary
condition

The appropriate parameter system for the continuum, is illustrated in the relation sche-
me Tab. 8-12. The duality must be fulfilled, hence obtaining always a symmetric relati-
on scheme. It is obvious, that besides the contact condition an additional term must be
considered in the equilibrium condition (equation of motion). The parameter )\, can be
identified as the Lagrange multiplier that is related to the support or linking force in case
of contact

ce = Ly, (8-24)

All these conditions can be similarly considered in all discussed mechanical principles,
e.g. the Poisson, Lagrange and Castigliano principles used before.
8.4 Example time history analysis

The following simple example illustrates the application of optimization strategies to-
gether with time integration methods. The structure is given in Fig. 8-1 as well as the
excitations. The eigenperiod is appropriately high as for a shear wall structure with 0.25s.
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Table 8-10 Optimization problem for explicit time integration (Lagrange formulation)

d’ALEMBERT's principle Material law Kinematic condition

) t+At

(p+v u+p=0 D_“G-%—So:ts eV Blu-te=0 eV

1

Weak form of differential equation

j suT(+v)f =ty dv+ f suTp dv =0
Stat. boundary condition Geom. boundary condition
N3(5=(50 ESS u=up ESU

1 v

Principle of total potential (explicit dynamic LAGRANGE-Principle)

I, :J‘tuTGHv)*AtudV +J.tuT<pdV:> Max

u=ug ESU

Table 8-11 Optimization problem for explicit time integration (Castigliano formulation)

d’ALEMBERT's principle Material law Kinematic condition
e+vy™u+ep=0 D Mo+e=le eV Blu-'t=0 eV
Stat. boundary condition Geom. boundary condition
Ngo =09 €Sg u=u; €8S,
Y 1

Extremum principle (explicit dynamic CASTIGLIANO formulation)

Il = const..

(e+v) " Mut+o=0 eV
u=ug €S,
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The structure is firstly subjected to an impulse load (Case 1) applied at the bottom of
the structure. The appropriate time history of the deformation and equivalent stress, as-
suming a pure elastic behavior is given in Tab. 8-13. The introduction of high frequency
components in the signal from impulsive loading can be seen in the stress plot.

Secondly the analysis is repeated, using an elastic perfectly plastic material law, assuming
a limit of equivalent stress of 20MPa in the wall. The analysis results are summarized in
Tab. 8-14. The limit of the stress can be observed, as well as the development of plastic
strains. In this case, only with few plastic steps the final plastic strain state is reached.
And, only one directional plastification is obtained.

Thirdly, the analysis is performed for the given seismic (transient) loading. The results
for the points A and B are documented in Tab. 8-15 and 8-16. It can be seen, that in
case of the plastic analysis (again with 20MPa yield limit for the stresses) the stress plot
is shifted, showing the residual part of the stresses remaining in the structure, also after
all excitation is over. As well, the appropriate displacement is enlarged compared with
the elastic results. And, in this example, the plastic strains show the replastifications that
occur at the given load level.

Table 8-12 Relation scheme of mechanical quantities for contact problems

Primal variable
c Cu Cs u AU yu 1
i Ext. kinematic
-D Ns B =€o .
condition
T Static boundary
Ns = 0o -
condition
Geom. boundary
Nu = Uo .
condition
| l Equation of
B Nu -Lu = @R .
motion
Ly 1 =-Ujim | Contact condition
1 -1 >0 Non-negativity
kuTyu =0 | Complementarity
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Structure

Concrete shear wall
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Figure 8-1 Example: Time history analysis, case 1.) impulsive load, case 2.)
transient (seismic) load

Table 8-13 Example: Case 1.) Impulsive load at elastic structure

]
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Deformation at point A

8.5 Dynamic limit state analysis
8.5.1 Summary

Equivalent stress at point B

A dynamic limit state analysis can be performed similarly to the quasi-static procedures
already discussed in Sec. 7. Thus in this section only the main statements need to be
repeated and adopted for time histories.

The elastic limit state can be calculated with help of the following optimization problem,
here for elastic perfectly plastic material, similar to the procedure of Sec. 7.2.4.

O(p) =p — Max
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Table 8-14 Example: Case 1.) Example: Impulsive load at elastic-plastic structure

] flev/m2]
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Table 8-15 Example: Case 1.) Seismic load at elastic structure
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Table 8-16 Example: Case 1.) Example: Seismic load at elastic-plastic structure
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Deformation at point A Equivalent stress at point B
Plastic strain at point B

ATQAu(t) — ATQL () + Cu(t) + Mi(t) = pf(t) (8-26)
® = LTQAu(t) — LTQL A(t) — siim < 0 (8-27)
A (H)® =0 (8-28)

The difference is the dependency of the problem on time. This can be interpretet as the
performance of all steps of the time integration in one optimization problem. This method
is quite costly. On the other hand, one simple calculation with a unity force f(t) (taken p =
1) can be performed and the results of the extremum stresses s, can be scaled accordingly

O(p) =p — Max (8-29)

Pbse < Slim (8-30)

The plastic limit state can be determined as already given in Sec. 5.10. As well, the sha-
kedown, cycle based and deformation based limit state can be obtained as described in
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Sec. 7.4, 7.5 and 7.6, exchanging the static load sequences by dynamic loading, applied
in steps.

8.5.2  Example limit state analysis

The example of Sec. 8.4 is concluded. In Tab. 8-17 the results for the elastic, plastic
and adaptive limit state are listed. All factors are related to the basic load intensity (p =
1) for the seismic load given in Fig. 8-1. For the elastic limit state, all plastifications
are avoided. The plastic limit state is determined by the complex eigenvalue analysis
procedure, determining the kinematic chain behavior. The given value is naturally high
for wall structures. The shakedown limit ensures that only one-directional plastification
occur in all parts of the structure.

Table 8-17 Example: Dynamic limit load intensity factors

Limit state Load intensity factor p
Given load level 1.00
Elastic limit state 0.73
Plastic limit state 3.78
Shakedown limit state 0.89
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9 Special applications

Within this section, special applications for optimization strategies are discussed. They
are selected from a wide range of design tasks, in order to demonstrate the universality of
optimization strategies.

9.1 Generation of artificial time histories

Time history analyses in seismic design commonly require several input ground motions
in order to assess the structural response behavior sufficiently. Only sets of time histories
provide the statistically representative frequency content and amplitude. The number of
required time histories is dependent on the selected code, e.g. three in [73] and seven
in [105].

For this purpose, ground motion sets have been proposed, e.g. in [200,164], to match the
requirements of local regions. For some seismically active regions in the world, the sets
can be composed out of recorded accelerograms. As far as these ground motion sets can-
not be obtained or transformed for other locations, artificially generated ground motions
are applied that match design spectra provided in codes. Two groups of generation con-
cepts can be distinguished, the generation in the frequency domain (indirectly) and in the
time domain (direct method). All methods can be supported by application of optimiza-
tion strategies. First applications of genetic algorithms for ground motion selection and
scaling has been published in [160].

9.1.1 Classical generation in frequency domain

This version follows the traditional concept for derivation of artificial time history re-
cords. The method utilizes the similarities of Fourier and response spectra to achieve an
approximation for the time history plot matching a given response spectrum. Among se-
veral methods, the method proposed in [109,84] is commonly applied. The method bases
on a reverse Fourier transformation approach. It states, that any periodic function can be
decomposed into a series of trigonometric functions, e.g. a sinusoidal representation for
the acceleration time history

n
to(t,a) = I(t) > a;sin(w;t + ;) (9-1)
i=1

depending on the number of series n, the representation will be more or less approxi-
mate. In numerical calculations, the acceleration is determined for a number of discrete
times from ¢ = ?y...t.,q and discrete angular frequencies w;. The acceleration history
is dependent on the vector a; and ®; containing the amplitudes and phase angles of the
ith component. The envelope function /(t) is to assign the appearance of a real earthqua-
ke consisting of initialization, strong motion and phase-out periods. In Fig. 9-1 the most
often applied envelopes are illustrated according to [210].

240



9 Special applications

A Linear Envelope A Exponential Envelope A Compound Envelope
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Figure 9-1 Shape functions for artificially generated time history plots

The corresponding response spectrum is calculated from time history analysis, with the
previously generated acceleration function iig(¢, ) that is dependent on the amplitude
vector

Sa(whf?u(t?a)) = max|ﬂ(w,§,u0(t,a),t)| (9'2)

with Sa as the maximum response of an SDOF system over time ty — t.,4, having the
eigen angular frequency w; and considering the damping ratio &.

The phase angle field ® must be pre-selected, either arbitrarily or calculated from a given
time history that has comparable properties. In the classical procedure, the appropriate
amplitudes are calculated in an iterative procedure. Starting with a constant vector other
than zero, the amplitudes are improved according to the assumption that the ratio of the
Fourier spectrum between the current a; and target values ar,; behave approximately like
the ratio in the response spectrum between the current Sa; and target spectrum Sar; for
a given eigenfrequency

ari <SGT,i)1'"2 9-3)

a; SCLZ‘

This relation is used for iteration control, with a; .., = ar,. The entire procedure is do-
cumented in Tab. 9-1. The iteration uses the newly obtained amplitudes for improvement
of the approximation. The iteration stops if no further improvement is achieved. This par-
ticular form of iteration control has the disadvantage that the sign of the amplitude cannot
change because the fraction term in Eq. (9-3) is always positive. A correction of defi-
ciencies in the phase function is not possible. A change in the iteration control might be
helpful.

The previously described strategy is numerically effective. However, the method often
results in relatively large deviation errors in the approximation of the target response
spectrum. Then the recommendation is to repeat the calculation with a new random phase
function. Alternatively, the accuracy can be improved if the update of the amplitudes is
performed with help of a nonlinear optimization routine. The design variables are the
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Table 9-1 Classical artificial time history determination

Time history
envelope 1;[0,1]

Random phase function ®; [-r,n]

Y

Target response spectrum
(o, Sarj) i=1...n

Start vector aj

i=1

Inverse Fourier-Approach

n
uF(tj) = Zai -Sin(mitj 4F CDI) th = tO ---tend

f

Baseline correction

f

Envelope application

tio(t) = () e (1)

f

Response spectrum for Up(t)
Sai

f

Error evaluation, e.g.: p-norm

Enew = "(SaT,i - Sai]p

f

Updating aj

Iteration control

€old = Enew

Response spectrum
compatible time history

Up(t)
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amplitudes a; for which a minimum of the deviation from the target spectrum is to be
found. The objective function is

O(a) = ||Sar; — Sai(a)|| = Min (9-4)

with a baseline correction as a conditional subsidiary condition

S i(t,a) = 0 (9-5)
t

Furthermore, the baseline correction can be even managed within the nonlinear objective
function, thus a unconstrained nonlinear optimization problem is obtained. Those nonli-
near optimization problems can be solved with help of gradient solvers. The accuracy is
comparable or higher than in the classical iteration method. The accuracy can be further
improved, if non-convex solving strategies, like successive search or genetic algorithm
solvers (see Sec. 2) are applied. Most effective regarding the accuracy is a combination of
non-convex and convex solving strategies.

The following advantages of optimization strategies compared to classical iterations can
be noted:

e higher independence from chosen phase function
e improved solution control

e option for multi-stage improvement strategies

9.1.2  Example: Time history generation in frequency domain

The generation of artificial ground motions by modification of parameters in the frequency
domain is demonstrated in the following example. A typical design acceleration spectrum
is selected as target. The simulation of such spectra can be challenging because of the
constant peak acceleration and the overall smooth spectrum characteristics.

The target spectrum, derived from Eurocode 8 [73], for spectrum type 1 and soil condition
C, is applied for time history generation. The spectrum should be mapped in a period ran-
ge from 0.055s up to 3s. The damping is fixed at & = 0.05. The peak spectral acceleration
is defined by 250cm/s%. The spectrum is drawn in Tab. 9-2.

The length of the desired time history is predefined by 20 seconds. A compound envelope
function according to Fig. 9-2 is chosen. The calculation of the artificial data is done either
by the classical approach according to Tab. 9-1 or alternatively by using the optimization
approach Eq. (9-4,9-5). For start conditions, the amplitudes vector is selected as constant
Sa; = 100cm/s* and the phase function is randomly preselected (uniform distribution)
in the range —7 < ¢, < 7.

The obtained result data are illustrated in Tab. 9-3. For comparison with the target respon-
se spectrum, the corresponding response spectra are introduced in Tab. 9-2. Whereas the
results given by the classical approach show the typical peak-like deviations, the optimiza-
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Table 9-2 Example: Time history generation in frequency domain

300.00
Sa [cm/s?] 30.00
£
Al |ASa | [crmy/s?)]
250.00 [ == : — Target RS
— Classical lteration 25.00 F — Classical lteration
Optimization Optimization

200.00 [

Generation in frequency domain 20.00 Geneation in frequency domain

150.00
15.00

100.00
10.00

50.00

RS

| |
IR \ |
0.00 ‘V‘U \| \| T[S]\
000 050 100 150 200 250  3.00 0.00 ; ; ; ‘ ‘ A
000 050 1.00 150 200 250 3.00

Target spectrum and result spectra from artificial
time history generation Absolute errors

I-1 Compound envelope
1.00 | :

t[s]

0.00 5.00 10.00 156.00 20.00

Figure 9-2 Example: Compound envelope function

tion routine produces almost a smooth spectrum. From the deviations plot the differences
can be estimated for both calculation strategies. It should be noted, that these results can
be improved, however for the classical method just by accident, finding a better fitting

random phase function.
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Table 9-3 Example: Artificial time history results obtained by modification of the spectrum

amplitudes
150.00 150.00
afem/s? Classical Iteration Optimization
100.00 100.00
50.00 50.00 J’ |
iy )
0.00 0.00 W","u}““ hjbbtor ot
-50.00 -50,00 '
-100.00 -100.00
t[s] t[s]
-150.00 -150.00
0.00 5.00 10.00 15.00 20.00 0.00 5.00 10.00 15.00 20.00
Generated by classical iteration method Generated by optimization method

9.1.3  Generation of statistically compatible artificial time histories

There are some suspicions about the level of reality of the ground motions generated with
methods from the Sec. 9.1.1. The most obvious deviation to natural records is the obtained
unrealistic high number of cycles in the time history. To mitigate this problem, there are
several chances of correlating the problem to natural events, e.g. [210]. One alternative
strategy is to affect the randomly chosen phase function @;.

In Tab. 9-4, one strategy to derive improved phase angles estimates is sketched. The me-
thod uses real earthquake input. The motion record is treated with Fourier analysis, to
calculate the phase function. For this function, the progress of phase differences are

Ad; = &; — &;_ (9-6)

For this difference function, a cumulative density function is calculated to analyse the
statistical distribution of the phase angle differences in the signal. This plot is used to
generate randomly a new set of phase differences, showing the same cumulative density
function as the natural event. Finally the differences are reassembled in order to obtain
the new phase function. This phase function can now be used within the procedures of
Sec. 9.1.1.

9.1.4 Example: Generation in frequency domain with statistically compatible phase
function

The example from Sec. 9.1.2 is repeated with the same conditions, but for the case of stati-
stically compatible phase functions. The selected original time history is given in Tab. 9-5
together with the appropriate cumulative density function of the phase differences. From
this the new phase function is calculated according to the strategy of Tab. 9-4. The time
history result is given in Tab. 9-6. As well, a randomly generated phase function is plotted
for comparison. It is obvious, that the compatible phase angles behave more periodic.
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Table 9-4 Statistically compatible phase function generation

Recorded Motion

Y

Fourier-Transformation

Flor) = D Ax-exp(i- )
k

Establish Phase Spectrum
(PS)

Y

Phase Difference Spectrum
(PDS)

LRI AL 04

Generation of a new
Difference Spectrum for
desired period range using
CDF [-27,27]

ADg

Random Number
Generator [0,1]
k=2...N

A

Random Number
Generator [-n, 7]

Cumulative density function
(CDF) of Phase Difference
Spectrum

Y

New phase spectrum @
k=2..N [-m,n]

CDk = q)k71 aF Aq)k
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500.00
400.00
300.00
200.00
100.00
0.00
-100.00
-200.00
-300.00
-400.00
-500.00

0.00

4.00

Table 9-5 Example: Input time history

| acm/s?

Natural ground motion

1 [s]

10.00 20.00 30.00 40.00

Acceleration record

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

CDF []

Natural ground motion

APhi [rad]

-6.28 -4.28  -2.28 -0.28 1.72 3.72 5.72

Cumulative density function of phase differences

Table 9-6 Example: Phase function generation

3.00 I

2.00
1.00
0.00

APhi [rad]

T V V V!
-1.00 : :
-2.00
-3.00
Random phase angles TIs]
-4.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Randomly generated

4.00
3.00
2.00
1.00

APhi [rad]

T

0.00
oo \j \j LTI \\l \,
-2.00
-3.00 | ,
Compatible phase angles T1s]
-4.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Statistically compatible

This phase function is applied in the generation of the artificial ground motion. The

ground motion result is plotted in Tab. 9-7 as well as the appropriate acceleration spec-

trum.

9.1.5 Generation in time domain

Using the advantages of optimization approaches, the question is, why the generation of

artificial time histories should be performed in the frequency domain, as proposed in the

traditional methods. The generation in the time domain contains several options to include
specific time effects as e.g.

e influence time characteristics (change of frequency content in time)

e influence number of cycles

e influence number, time and amplitude of extreme peaks.
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Table 9-7 Example: Artificial ground motion

300.00 >
Sa [cm/s o )
[ | /s°] Generation in frequency domain
100.00 250.00 | ‘ Phase compatible
Artificial time history
50.00 Phase compatibility 200.00
— Target RS
150.00
0.00 — Artificial
100.00
-50.00
50.00 |
-100.00
aem/s?) tIs] 0.00
-150.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00
0.00 5.00 10.00 156.00 20.00

Acceleration spectrum in comparison to the target
Acceleration plot spectrum

The appropriate problem can be solved with optimization algorithms. The following ob-
jective

O(iig(t)) = ||Sar; — Sa;(ie(t))|| = Min (9-7)
can be stated, subjected to a baseline correction

; iio(t) = 0 (9-8)

In contrast to the problem (9-4-9-5), the time history itself is the design variable. The
objective function is evaluating the generated history in comparison to the target spectrum.
However, the number of unknowns is usually increased, if an appropriate time increment
and length of the ground motion has to be obtained.

Modifications on the artificial time history can be introduced in two ways:

e formulating additional subsidiary conditions

e using specified start vectors.

The last way is preferable, as the main characteristics of the starting vector is mostly pre-
served during the calculation. And the problem size and therefore the numerical efficiency
is not changed.

9.1.6  Example: Artificial time history generation in time domain

The generation method in the time domain is illustrated in an example. The target spec-
trum from Sec. 9.1.2 is applied in the same period range. The method is applied for two

cases
(a) Generation with random start vector
(b) Generation with a superposition of 50% random and 50% sinusoidal content
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Table 9-8 Example: Generation in time domain using random start vector

150.00

a[cm/s?] Random start vector
100.00 |

50.00 |

0.00 LH\ ‘\H ‘H‘I 1T YNT—
(A

-560.00 |

-100.00

ts]
-150.00

0.00 5.00 10.00 156.00 20.00

Table 9-9 Example: Generation in time domain

150.00
150.00 a[cmy/s?] Sinus + random start vector
alem/s?]  Sinusoidal start vector component 100.00
100.00 | i ) 1 [
“ \\ w‘“‘ \‘ “\‘\\\\“\ i
50.00 \‘ }‘H U“‘M ‘ ‘”‘\‘ \\”\ \“ “ \“ \u ‘M“ \L ‘ ‘ “ “‘ 50.00
' T “‘H YT
| il | | I
| WH ‘hm”“ \“U‘u““ ”\”w‘\‘m UL 0.00
0.00 H‘HH HHH\““‘U“ ‘ 7]
MW‘\‘HW ‘ H‘“H‘ \““‘u\“ -50.00
= [
| HIIM‘._\\”‘\J“\,‘\J . | ‘u N VVELUY Y -100.00
-100.00 | A [u U GLY u (!
t[s]
t[s] -150.00
-150.00 0.00 5.00 10.00 15.00 20.00
0.00 5.00 10.00 15.00 20.00

) ) . Time history generated using sinusoidal and random
Sinus function for superposition start vector

In the first case the components of the start vector are randomly generated with a uniform
distribution in the range of —200cm/s? < iig(t) < 200cm/s?. The obtained vector is
multiplied by the compound envelope function of Fig. 9-2. The result is given in Tab. 9-8.
It is visible that the number of cycles is relatively high.

The conditions for the second case are similar, however the start vector contains the sum
of a uniform randomly generated part and a sinusoidal function, both in the range of
—100cm /s* < iig(t) < 100cm/s%. The sinusoidal function is a swelling function, simu-
lating the fact that the long period content in real earthquakes is increasing with time. The
sinusoidal function is illustrated in Tab. 9-9.
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Table 9-10 Example: Spectra for random and sinusoidal+random case

300.00

Sa [em/s?] —
25000 | arge

— Random

200.00

— Sinus+Random

150.00
Generation in time domain
100.00

50.00

0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00

9.1.7 Generation of time history sets

The application of single time histories is not advisable in the design of structures. Se-
veral calculations with different time histories must be conducted. This applies also to
artificially generated ground motions. It is possible to generate sets that fulfill statistical
requirements. In general, both the generation in the frequency and time domain can be
utilized for this task. According to the selected number of earthquakes j = 1...ngq the
following optimization task can be solved

. 1 . . .
O(tip () - U0, (1)) = ||Sar; — — > nrgSa;(iy(t, j))|| = Min (9-9)
npqQ j=1

subjected to n ¢ subsidiary conditions for managing the baseline correction

;uo(m) =0 (9-10)

This form is an example for a generation in time domain. The appropriate frequency do-
main model can be formulated similarly. In addition to the mean calculation, the objective
function can be completed by the evaluation of the standard deviation. This is demonstra-
ted in the following example.

9.1.8 Example: Artificial time history set generation

The combined generation of 10 time history sets is demonstrated in this example. The
objective is to have a set with a mean spectrum according to the example of Sec. 9.1.2 and
with a target standard deviation of o7 = 40cm/s? in the entire period range. For variety,
the envelope functions are changed for any member of the set. The following optimization
problem is solved
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Table 9-11 Example: Generation of time history set

300.00 1.20
Sa [emys?] Target response spectrum Compound envelope range
250.00 1.00 T
I\ \\
200.00 0.80 ‘X \
/AN \ Motion No. 10
150.00 0.60 1\ \
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N\ \\\
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0.00 5.00 10.00 15.00 20.00
200.00
Vi
15000 | OemsT Mofion No. 5

t[s]
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0.00 5.00 10.00 15.00 20.00
200.00
2 .
150,00 | @M Mofion No. 8
100.00

100.00
150.00
tls]
200.00
0.00 5.00 10,00 15.00 20.00
nNEQ

t[s]

200.00
0.00 5.00 10.00 15.00 20.00
200.00
2 )
150.00 | 9 fem/s] Motion No. 6

0.00 5.00 10.00 15.00 20.00
200.00
2
s0.00 | A1CMST Motion No. 9

5.00

10.00 15.00 20.00

Sar; — —— > Sa;(iig(t, 7))||+|lor: — oiliio(t,j = 1.
NEQ j=1

subjected to Eq. (9-10).

Motion No. 1

0.00 5.00 10.00 15.00 2000
200.00
2 .
150,00 | O CMS Motion No. 4

t[s]

200.00
0.00 5.00 10.00 15.00 20.00
200.00
2
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000 5.00 10,00 15.00 20,00
20000

>
15000 | OCMST Motion No. 10

tis]

nwo))|| = Min

5.00

10.00 15.00 20.00

9-11)

For special importance weighting of either the mean or the standard deviation some
weight factors can be introduced for the terms in Eq. (9-11). The target spectrum, the
envelope and the generated ground motions are given in Tab. 9-11. The resulting spectra
for all single time histories and the statistical evaluation is plotted in Tab. 9-12.
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Table 9-12 Example: Spectra of ground motion sets

400.00 350.00
Sa [emy/s?] Generation of sets Sa [cm/s?]

350.00 \ in time domain 300.00 ”

Target Generation of sefs
in time domain

Mean

300.00

250.00 | " 5
25000 lean + Sigma

200.00

Mean - Sigma

200.00
150,00 150.00
100.00 100.00 |
50.00 50.00
0.00 0.00
0.00 : : : ' : : 000 050 1.00 150 200 250  3.00

All spectra Mean and standard deviation

9.2 Determination of pseudo spectral reduction coefficients

In simplified analysis according to Secs. 6 or 7, maximum structural deformations are
traditionally calculated from pseudo-accelerations PSa,. Examples of spectra, calculated
by time history analysis are given in Tab. 9-13. Instead of calculating all spectral values
for damping ratios ¢ directly by time-history analysis, PSa, is derived from pseudo-
acceleration spectra with fixed-damping ratios (typically 5%) by utilizing reduction coef-
ficients R

. PSCL5%

= -12
R PSag ©-12)

In Tab. 9-14 an example is given for the reduction coefficient, that can be calculated via
time history analysis.

Among others, easy-to-use expressions such as the reduction formula given in [73], based
on investigations in [34,35] are often applied

10 —0.5

R = — 9-13
pes (1005 + 5) O-15)

Alternatively, according to the Japanese code [24]

15 \ 7

R = —- 9-14
BCJ ( 106 + 1 ) (9-14)

or according to Kawashima/Aizawa [122]

Riam (-2 o5) (9-15)
KA \g0e+1 "
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Table 9-13 Mean acceleration spectra of ground motion sets with applied damping

PSa[cm/s?]

1600.00

1400.00

1200.00 -

1000.00

800.00 ~

600.00 -

400.00 +

200.00

Mean LA Set
10% in 50 years

PSa[cm/s?]

1400.00

1200.00 +

1000.00 5

800.00 +

600.00

400.00 -

200.00 +

Mean FN-Kobe Set

& =5%

£ =10%

0.00
0.00

T[s]

Table 9-14 Reduction coefficients calculated by time-history analysis

PSa(5%)/PSa(¢)

LA Set 10%in 50 years

§ = 50% £ = 40%

& =30%

2.00 -
1.50 -
1.00
= 20% —
0.50 & £=10% £ = 5%
Proposed reduction coefficient

0.00 : : :

0.00 2.00 4.00 6.00 T[s]

PSa(5%)/PSal(s)

2.50 -

2.00 +

1.50 ~

Mean FN-Kobe Set

& = 50%

1.00 J
0.50 + & =20% . £=10% £ =5%
0.00 f f }
0.00 2.00 4.00 6.00 T[s]
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5.0
4.0 A : —_— g
3.5 - simplified £=50%
3.0 1 ECS Kawashima/ e £240%
2.5 Aizawa

. SRS &—— £_-20n0
2.0 4 e §=30%
1.5 —— — &,:20%
1.0 - Q £=10%
0.5 1 - : £=5%
0.0

Spectral reduction coefficients, constant with changing periods

Figure 9-3 Comparison of different period-independent reduction coefficients

or following Newmark-Hall [167]

3.21 — 0.681n(1006)\
RNH:( 21;( O) (9-16)

It should be noted that these formulas are originally derived with specific background and
intension and therefore, as illustrated in Fig. 9-3, are leading to significant differences
in the reduction. Nevertheless they are often found to be recommended unchanged for
use in extended fields of application, as for seismic isolation design e.g. [8,30]. Further
comparison of the concepts is given in Fig. 9-4.

Considerable deviations have been observed in [221], that are caused if the formula is
applied independently from the period of vibration. As illustrated in Tab. 9-14, the actual
relationships are highly nonlinear with respect to the natural period. Furthermore, they are
dependent on the specific time-history. To include this attribute in the reduction concept,
a period-dependent modification is proposed. As viscous damping is related to velocity
(see similarity between the coefficient in Tab. 9-14 and the 5% damped pseudo-velocity
spectrum PSvsy in Tab. 9-15, the reduction of the pseudo-acceleration spectrum due to
different damping ratios can be established with help of a velocity-based coefficient

1
Rmod =1 + (Rg - 1)77_PSU5% (9—17)
1

Herein R, denotes a reduction coefficient, dependent only on the damping ratio. The last
term includes the period dependency. Principally, this concept adds a period dependency
to any period-independent reduction formula, hence ¢ can be replaced, e.g. by Rgcs
in Eq. (9-13). The coefficient 7); is constant for each specific ground motion or ground
motion set and can be determined by means of mathematical optimization.

The following nonlinear optimization problem can be solved
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PSa(5%)/PSa(§)
3.50
Mean FN-Kobe
3.00 A Newmark/Hall 30% Damping
Proposed
2.50 - f Kawashima/Aizawa+Sadek et al.
T‘:? Lin/Chang
1.50 -;tb Bommer -t - Zz
et al.
1.00 1 Time History
«—le e
0 50 7 a- V- d_
sen. sensitive sensitive
0.00 . . .
0.00 2.00 4.00 6.00 T[s]

Figure 9-4 Comparison of reduction concepts for damping ratio of 30%

Table 9-15 Pseudo velocity spectra

PSv[cm/s?] PSv[cm/s]
140.00 250.00
Mean FN-Kobe Set
120.00 +
200.00 + £=5%
100.00 +
£ =10%
| 150.00 +
80.00 £ =20%
60.00 + 100.00 +
40.00 -
= 0 ) 4
20,00 | §=40% et 50.00
£ =50% 10% in 50 years
0.00 ! ! i 0.00 i i i
0.00 2.00 4.00 6.00 T[s] 0.00 2.00 4.00 6.00 T[s]
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Table 9-16 Proposed approximation

PSa(5%)/PSa(t) PSa(5%)/PSal(t)
3.50 3.50
LA Set 10%in 50 years Mean FN-Kobe Set
3.00 T 3.00 +
= = 50%
& =50% £ = 40% & = 50%
2.50 + 2.50 1 £ =40%
£ =30%
2.00 + 2.00 + £ =30%
1.50 f 1.50 +
1.00 1.00
/ J
£ =20% £ =10% B £ =20% _J £ =10% o
0.50 + 5=5% 0.50 + £ =5%
Proposed reduction coefficient ‘ Proposed reduction coefficient ‘
0.00 f f } 0.00 f f }
0.00 2.00 4.00 6.00 T[s] 0.00 2.00 4.00 6.00 Tls]
O(m) = [[PSa(etar, §) — PSarn(§)|| — min (9-18)

in order to determine the optimum value for 7;, matching several levels of damping (e.g.
& =5...50%). PSa(etay, &) is the mean pseudo acceleration spectrum generated by a
standard 5% spectrum reduced by multiplication of R,,,q4(71) (Eq. (9-17)). PSary(§) is
the mean pseudo acceleration spectrum calculated by time history analysis. This task can
be solved by gradient solvers for unconstrained problems. For example, the value of eta,
is 1.31m/s for the Kobe near fault set (Sec. 11.6) and 0.95m/s for the LA10in50 set of
SAC/FEMA Project (Sec. 11.7). The example result for the Kobe and LA set is given in
Tab. 9-16. The good agreement to the time history results in Tab. 9-14 is obvious.

As published in [221], the determination of the parameter 7; can be further simplified.
The procedure is documented in Appendix Sec. 11.2. According to Appendix Sec. 11.3
the appropriate conversation between pseudo to total acceleration values can be achieved.

9.3 Design of base-isolated structures for low acceleration transmissions
9.3.1 Introduction

Recent seismic events triggered the introduction of special near-field regulations in most
codes [105,24,73] this results in modifications for the design motion level. This applies
also for base isolated structures. Those codes propose the avoidance of collisions due to
ultimate seismic excitations. In order to achieve this objective, the design has to consider
either larger or stiffer, highly damping devices, resulting in increased super-structural
responses also in lower excitation levels. The costs are rising and the benefits gained
from the isolation effects are reduced. This is contradictory to the fact that such events
are rather seldom. So dependent on the local conditions, alternative design strategies that
consider explicitly collisions, can be an economic compromise 9-17. This also includes
cases where less clearance to surrounding facilities can be provided as in urban areas.
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Table 9-17 Pounding problem

retaining wall
ﬁ

superstructure retaining wall
) collision
surrounding
soil
seismic isolation and facilities
foundation

This section concentrates on passively isolated structures. The collision of structures has
been discussed in [50]. Kawashima et al. [139,123,191,192,215] investigated colliding
bridge decks, wave propagation and appropriate retrofit measures. DesRoches and Mut-
hukumar analyzed multiple-frame bridges [67]. Unjoh et al. mentioned a utilization of
collisions as a possible energy dissipation option [209]. Kashiwa et al. [119] explored the
influences of different retaining wall characteristics on the inter-story drifts during crashes
of base-isolated structures.

Already for the design without collision according to classical perceptions, the configu-
ration of a base isolation layer is challenging, because an appropriate device combination
has to be selected that respects different influences, risks and constraints. The device con-
figuration needs to be balanced for a generally stochastic excitation considering safety
and serviceability demands. Involving extreme changes of the device parameters in the
considerations as well as collisions against device stops or surrounding facilities will dra-
matically increase the efforts during design.

A general approach for solving multi-parameter-multi-constraint design problems is gi-
ven by the mathematical optimization. This approach provides a general interface for the
definition of mechanical problems and combines it with effective computational treat-
ment. The existence of optimum parameter combinations for base-isolated structures has
been explored by Jangid [108]. Sinha and Li [199] presented a design strategy involving
additional absorbers . Constantinou and Tadjbakish [57,58] developed a general design
strategy for base isolated structures based on optimization routines, involving a probabi-
listic approach . Baratta and Corbi [19] examined soil-structure interactions within their
optimization models based on energy approaches . Kaplan and Seireg as well as More-
schi and Sing [117,155] describe design procedures for specific isolation systems . Ta-
kewaki [203] quantifies influences of stiffness and damping within optimum designs .
Kitagawa et al. [204,114] presented a selection strategy for isolation devices with help of
genetic/simulated annealing algorithms.
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9.3.2 Mechanical model

In order to reflect the nonlinear behavior in base isolated structures and the nonlinear
behavior of the retaining wall, a multi-linear model is applied. This model is assembled
by superposition of n linear-elastic perfectly-plastic bodies. Each body is defined by the
deformation u, describing the starting point of linear excitations, the deformation u, de-
noting the deformation at the yield limit and the yield force f. In order to determine the
ultimate shear force F), in the isolation interface, the ultimate deformation w,, in the struc-
ture the number n. of elastically remaining bodies and the number 7, of in-elastically
deformed bodies has to be known. Then the ultimate force can be calculated by

np ne
Fo=>fi+t X [i— (9-19)
i=1 j=1 Uy — Yo,

The underlying concept is additionally illustrated in Fig. 9-5. Equation (9-19) can be con-
veniently used in time history approaches. However in some countries, the exclusive use
of time history approaches for design is not permitted. According to the codes [105,73],
the design has to be based on (or at least accompanied by) simplified considerations using
response spectra. Furthermore, time history approaches can be computationally expensi-
ve within optimization processes, especially if several ground motion out of motion sets
need to be evaluated. Simplifications can be beneficially used in the pre-design phase to
provide starting vectors for further optimization.

In order to utilize the hardening options specified in the material law Eq. (9-19) only
the application of simplified nonlinear methods can cover all possible combinations. The
adaptation of a special procedure derived for base isolated structures described in Sec. 7.7
consisting of a combined pushover and capacity spectrum approach is suggested.

9.3.3  Simplified pounding model

The response due to a collision event is dependent on the characteristics of the retaining
wall - soil interaction and the velocity of the structure prior to the collision. After the colli-
sion the structure, retaining wall and system behaves like a coupled system. The behavior
of this system can be simplified by stating a linear equivalent system. If the superstructure
can be assumed to be rigid, the structural system can be simplified as a single mass M.
The appropriate stiffness consists of the stiffness K .4, Of the structure and K, 4, of the
wall/soil compound according to Fig. a.) in Tab. 9-18. Both values are dependent on the
deformation u or on Awu, describing the intrusion depth of the superstructure.

The velocity and the acceleration of the structure at the wall 7, and ,, can be appro-
ximately determined from the responses of a non-colliding system i frec, Ufree aNd U free
by

lhy = T free cos( o ) (9-20)

Ufree
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Figure 9-5 Composition of multi-linear material law out of several elastic
perfectly-plastic bodies

Table 9-18 Simplified pounding analysis
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a.) Model configuration and parameters b.) Phase diagram
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iy = i free Sin ( o ) 9-21)

Ufree

Figure b.) in Tab. 9-18 shows this relationship, for stationary responses. Hence, for an
SDOF system, the change in the acceleration as a result of the collision is

Kpequ + K
Adi = 1 y ,equ w,equ 9.22
ii 1L¢ i (9-22)

The appropriate intrusion depth is

M
AU = 1y, 9-23
\/Kb,equ + Kw,equ ( )

The overall accelerations and deformations can be estimated as

1 = iy, + Al (9-24)

U= Uy + Au (9-25)

9.3.4  Solution Strategy

The given problems are nonlinear and contain a considerable amount of design variables.
Herein not only the determination of an optimal designed isolation layer is of interest,
also necessary design or retrofit measures for the superstructure have to be considered.
As for any design or retrofit a minimum of measures is demanded, optimization problems
have to be solved. The utilization of computational approaches is beneficial, so means of
the nonlinear mathematical programming are proposed for application.

As aresult of the analysis the design parameters are given, such as the characteristic of the
base isolation layer. These parameters have to be translated into device properties. Despite
catalog devices usually provided by the manufacturers, nowadays industry is prepared to
provide the devices with exact specified properties. Hence the calculation with continuous
coefficients can be conducted. As seen in the parametric maps of Fig. 9-19 the parametric
surfaces are dependent on the ground motion. These figures have been calculated for a
2DOF configuration by time history analysis using the Kobe near-fault set from Appendix
Sec. 11.6. In the cases, that the calculations can be based on time history sets, all functions
are practically convex as can be seen in the last figure. Thus, the use of convex, nonlinear
optimization algorithms is mostly appropriate. Gradient solvers can be used conveniently
for calculation. Suitable start vectors can be obtained by using simplified methods as
described in Sec. 7.
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Table 9-19 Plots for deformations, dependent on yield force and post-yield stiffness at base level
for 2DOF example

/@
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Kobe set component FN-AMC Kobe set component FN-KOB Kobe set mean

9.3.5 Optimum design strategies for buildings with potential collision
9.3.5.1 Strategy I: Prevention of collision

The first way is to prevent the collision by implementing additional devices that regulate
the deformations due to the given limits. This option can be applied by adding stiffness,
hysteretic or viscous damping to existing isolation components. This option seams best
for cases in that the accelerations are determining the structural configuration, because any
bumping will increase the accelerations dramatically. However, these measures are also
influencing the responses in smaller earthquakes, because the accelerations are higher due
to the accompanied increase in the effective stiffness.

Traditionally, the prevention of collision has to be considered as the primary objective.
The retrofit task is closely related to the design of new buildings. The simplest way is
the enlargement of the given clearance. However this is not always an option, because
of given constraints in the vicinity. Moreover, device limits restrict possible deflections
as well. The deformations can be restricted by reducing the flexibility of the layer and
by incorporation of damping. Several measures or combinations are possible to consider,
involving

e additional stiffness

e additional hysteretic damping

e additional viscous damping

It should be noted, that the addition of devices will commonly induce higher responses in
the superstructure. This measure is often appropriate, if the superstructural accelerations
are not the primary objective in the design.

To find an optimum combination is a challenging task in engineering. The design can be
supported by optimization. The derivation of appropriate optimization schemes for the
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design of base isolated structures is explained for structures that do not or only negligibly
exhibit changes in the post-yield behavior. This case applies for the majority of projects
that combine natural rubber bearings with hysteretic or viscous dampers or sliders. The
simplest model of such a structure can be constructed by implementing a linear super-
structure and a bilinear isolation system. As the super-structural parameters are typically
unchanged the problem is only dependent on four parameters that are

e Post-yield stiffness K

e Ratio to the initial stiffness

e Elastic limit force F' in the isolation interface
e Additional viscous damping &,

contained in the vector of design variables.

Representing the maximum observed structural responses, the evaluation of the following
parameters is of interest:

e Deformation u, in the superstructure
e Deformation at base level uy
e Acceleration i, in the superstructure

e Shear force F} in the superstructure

that can be expressed as response functions dependent on the design variables.

r=r(us(x),up(z),is(x), Fs(z)) (9-26)

Thus the following general optimization problem can be stated:

O(z,r) — Min (9-27)

9(x,7) < Giim (9-28)
The constraint functions are dependent on limit values g;;,y,.

9.3.5.2 Example Strategy I

The application of these problems is demonstrated with help of an example. A 2DOF
model is applied with 1000t superstructural mass and 200t at the base level. The fixed
base period is 1.3sec. The structure is subjected to mean Kobe set excitations according
to Appendix Sec. 11.6. The maximum provided clearance is 40cm. Pounding has to be
prevented.

Case a.): The objective is to find the appropriate stiffness K}, and yield force F; of the
isolation layer that minimize the accelerations in the superstructure 4, while keeping
a maximum deformations u; at base level of 0.4m. The stiffness ratio is fixed to v, =
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0.6. The design variables are restricted to lower limits to ensure the performance under
serviceability conditions. The following optimization problem is solved:

O(Ky, ) = ity — Min (9-29)
up < 0.4 (9-30)
F, > 200 (9-31)
Ky > 1200 (9-32)

The optimum solution is K}, = 1557kN/m and F, = 252kN, providing exactly the
limit base deformation u;, = 0.4m, a roof deformation of u, = 0.42m and acceleration
iis = 0.76m/s>.

Case b.): If Case a.) is changed in order to minimize the deformations, the following
problem has to be solved:

O(Ky, F,) = upy — Min (9-33)
up < 0.4 (9-34)
s < 1.0 (9-35)
Fy, > 200 (9-36)
K, > 1200 (9-37)

In this case the acceleration have to be restricted as well. The optimal solution is K} =
1925kN/m and F, = 372k N, having a base deformation u;, = 0.38m and roof deforma-
tion u, = 0.40. The acceleration is i, = 1.0m/s%.

The deformations and accelerations due to the Cases a.) and b.) are indicated in the con-
tour plots of Tab. 9-20. Here a parameter area is given in dependence on the isolation layer
parameters. Whereas the accelerations are monotonically changing in this parameter ran-
ge, the deformations show a distinct minimum.

The introduction of additional viscous damping is another option to limit the deformati-
ons. As well this measure is increasing the effective stiffness of the structure as well, thus
leading to higher accelerations for high level events. But compared to hysteretic dam-
ping the increase is velocity dependent. The calculation of an optimum amount of viscous
damping can be determined by solving optimization problems.
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Table 9-20 Example Strategy I: Deformations and accelerations for varied isolation stiffness K and
yield force F, solutions to the design cases a.) and b.)
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9.3.5.3 Strategy II: Acceptance of collision

In the traditional design, collision is completely prevented. However, recent events, like
the Mid Niigata Prefecture (Chuetsu) Earthquake in Oct. 2004 show that ground accele-
rations can be far beyond design levels. Such rare events exceed the serviceability and
security levels. The knowledge will influence new design but will lead to some review
and retrofit requirements for existing structures. However, in the case of insufficient per-
formance the means to prevent collision are limited. New design has better chances to
consider extended levels of excitation.

However, basing the design on this load level will dramatically change the demands for
the 1solation interface. Furthermore, as device sizes and clearances cannot be scaled un-
limited, more damping and stiffness is usually incorporated for control of the deforma-
tions, that increases costs. This is increasing the superstructural responses and therefore
reducing the efficiency of seismic isolation for lower excitation levels. Considering the
occurrence probability of such events, the influences on the design and the resulting costs
can be significant. In those cases the consideration of an additional design option, the
acceptance of collisions, can be beneficial.

But the collision has also positive effects. Firstly, limiting deformations that is important
to maintain the operability of the isolation devices and secondly, during the collision
additional energy is dissipated in the retaining wall and the soil.

The following principles for the design should be followed:

264



9 Special applications

e Bumping against the surrounding walls should be as soft as possible
e Movement should stop before ultimate device limits are reached
e The superstructure has to survive without major damage

e The local strengthening effect in the corners, where the retaining walls merge, should
be avoided. The joints between the walls should be movable.

From a mechanical point of view the pounding against surrounding walls can be simi-
larly treated as hardening of a bearing in longer deflections. The response is not directly
dependent on the frequency content of the earthquake. The velocity of the structure prior
to collision, the mass of the structure and the characteristics of the wall-soil interaction
determine the intensity of the impact.

Commonly the responses due to pounding are relatively high, compared with the respon-
ses without collision. It is of economical interest to know, what relation is received while
comparing with a fixed-base design. In order to discuss the effects induced by pounding
against surrounding walls a parametric study has been conducted. The objective was to
explore given margins and to quantify the effectiveness of a collision-utilizing strategy,
compared with an alternative fixed-base design.

In Tab. 9-21 the results for a 5-story building, with a fixed-base period of 1.0sec, 3.8sec
base isolated period, and 1000t story masses are given. The structure was subjected either
to the complete Kobe set (Appendix Sec. 11.6), or only to the FN-EKB component, that
exhibit the large responses for this example. The load was varied between 0.5 and 1.0
times the original magnitude. The ratios between the responses due to base-isolation de-
sign with collision and responses of a fixed base design are compared. Values larger than
1.0 indicate the exceedance of the fixed-base values. The figures. a.) and b.) in Tab. 9-21
show the results for the inter-story drifts, in dependency of the retaining wall strength.
For most records, the ratio is smaller than 1.0, as can be seen in the mean evaluation of
a.). However, if the structure is subjected to the FN-EKB motion, advantages can be on-
ly gained for a limited parameter range. Considering the accelerations in c.) and d.), it
becomes clear, that almost any colliding event produces high accelerations. The use of
the proposed strategy should be weighed, if the structure contains acceleration sensitive
equipment.

The response due to collision is dependent on the distance ratio between the clearance .,
and the deformation due to an freely moving system  fye.:

§ = Uree (9-38)
Uny

In Tab. 9-22 the influence of changing distance factors and rising load intensity on the

maximum superstructural inter-story drifts can be studied. They have been calculated for

the previously described 5-storey example structure. The contour diagram contains again

relative values to the corresponding fixed-base design. As can be seen, almost all values

are smaller, so a wide region for possible acceptance of collisions is available.
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Table 9-21 Parametric study for the influence of the Load intensity and strength in the retaining

wall for the Kobe set and the FN-EKB ground motion
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Table 9-22 Parametric study for the influence of the Load intensity and distance factor; for the
Kobe ground motion set
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Most attention has to be paid for the determination or definition of retaining wall/soil
model parameters. The initial stiffness can be approximated from passive earth pressure
calculations. If an elastic perfectly-plastic approximation is chosen, the yield force can be
estimated from soil shear failure investigations. According to investigations of Kashiwa
et al. [119], the model parameters can be conveniently determined by finite element ana-
lysis. This has the advantage, that surrounding foundations and facilities of neighboring
structures can be included.

In limited bounds, the parameters can be influenced. One way is the change of the soil
and the material of the wall. Another way is the modification of the failure mechanism.
Penetrating the retaining wall for a defined shear failure can be an option to modify the
failure line in the soil, as is illustrated in Fig. 9-6.

If the collision against retaining walls cannot be afforded, additional stops can be imple-
mented as indicated in Fig. 9-7. Non-destructive versions can utilize any kind of stiffening
or damping devices. Masonry infills, e.g. consisting of aerated concrete, which will be de-
stroyed during crashes, can be an economic alternative.

For analysis any simplified method from Sec. 7 or even time history approaches from
Sec. 8 can be used. The parameters of the system can be conveniently determined by
application of nonlinear optimization routines.
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Figure 9-6 Penetration of the retaining wall for modification of the
mechanical parameters
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Figure 9-7 Pounding against stops, destructive or non-destructive variant
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Figure 9-8 Example Pounding SDOF: Capacity spectrum analysis

9.3.5.4 Example Pounding SDOF

A SDOF model with a mass of m = 1000t is examined. The base isolation parame-
ters are: F, = 1000kN; K, = 40000kN/m; v, = 1/16, w,, = 0.025m. The clea-
rance is u,, = 0.5m. The stiffness of the wall is K,, = 500000kN/m, the strength is
F,, = 10000kN. The model is loaded by the FN-FKA ground motion from the Kobe set
(Appendix Sec. 11.6).

First, the problem is solved by time history analysis. The solution is © = 0.54m and
i = 12.37m//s%. This solution is provided for reference.

Second, a pushover analysis (Sec. 7.7) is utilized, leading to the results illustrated in
Fig. 9-8. The deformations are u = 0.58m and i = 12.53m /s>

Third, the approximate solution using the simplified pounding model of Sec. 9.3.3 is
calculated. The calculation starts with the analysis of the non-colliding problem. The pa-
rameters of the equivalent system are: 1., = 3.22sec, Kp g = 12260kN/m, Eequ =
0.2. The deformation is u ... = 0.69m, the acceleration is i f..e = 2.96m/ s the ve-
locity is tf..e = 1.71m/s calculated with simplified linear analysis (Sec. 6). Accor-
ding Egs. (9-20) and (9-21), the velocity and acceleration at the wall distance is ,, =
1.71 c0s(0.5/0.69) = 1.28m /s and ii,, = 2.96sin(0.5/0.69) = 1.96m/s?. The equivalent
stiffness of the wall is /,, = 71400k N /m. The intrusion depth is A,, = 1.281000/ (122604
71400) = 0.14m. The increase in acceleration is A, = 1.28(12260 + 71400)/(1000) =
11.71m/s?. The resulting deformation is u = 0.64m and the appropriate acceleration is
i = 13.67m/s%.
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Figure 9-9 Example Pounding 10-DOF: System configuration

9.3.5.5 Example Pounding 10-DOF

A 10-story building, according to Fig. 9-9 is originally designed and constructed using the
conventional time history set according Sec. 11.8. The fixed-base period of the structure is
1.0 second, the stiffness and yield force at the top are 80% of base stiffness, intermediate
values are linear distributed. The post-stiffness ratio of the superstructure is 0.05. All
story masses are 700t. The mass at isolation level is 1400t. In the original design, the
superstructure was planed to remain elastic.

Because the building contains acceleration-sensitive equipment that can resist a maxi-
mum acceleration of i = 3m/ 52, it was base isolated, using a combination of rubber
bearings and steel dampers. The isolation interface was designed for a fundamental peri-
od of around 3 seconds. The bearings provide a maximum design deflection of 50cm, the
collapse deformation is u..;; = 65cm. The analysis results are given in Fig. 9-10. Based
on the maximum observed deformation of © = 33cm, the retaining wall distance was
chosen to u,, = 50cm, with intension to provide comfortable margin against pounding.
The maximum acceleration is i = 2.6m/s%.

After new evaluations, the location was considered as near-field area, and the design was
reviewed using ground motions from Kobe set (Sec. 11.6). Under these excitations, the
pounding of the building against the retaining wall cannot be excluded anymore. Three
out of 11 ground motions exceed the clearance of 50cm. Two have the potential to exceed
even the ultimate device deformation of 65cm. As the clearance is restricted to the given
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Figure 9-10 Example Pounding 10-DOF: Response for conventional time
history set

distance, different strategies for retrofit are examined. All retrofit versions must utilize
nonlinear reserves in the superstructure. Necessary strengthening in the superstructure is
expressed by a vector of strengthening factors A. The ductility supply in the superstruc-
ture is moderate, so drifts are limited to A4, = 2%.

Case a.): This case is primarily for comparison. The retaining wall is not considered, the
structure can move without collision using the original isolation configuration. The FN-
FKA ground motion generates the largest deformation response. The results for this record
from time history analysis are plotted in Tab. 9-23, the maximum deformation at base
level is u, = 67cm, exceeding the critical deformation of the bearings. The accelerations
exceed the limit of i = 3m /s

Case b.): The target is to avoid the collision by incorporation of additional stiffness
K aaq and hysteretic damping () 444 The necessary parameter configuration (including
the strengthening vector) can be calculated by solving the following optimization problem

nstory
O(Qbv,adds Kp,ada; As) = Asi — Min (9-39)
i=1
Up < Uy (9-40)
Aus S Aus,lim (9'41)
Asi = 1.0 (9-42)

The optimal solution is Kj 440 = 1.91K} and @ 490 = 1.78(Q)y, this is nearly a triplication
of the amount of devices. The maximum acceleration is increased up to ii = 8.2m/s?,
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Table 9-23 Example pounding 10-DOF: a.) - ¢.) Comparison of maximum responses d.) Necessary

strengthening of the superstructure

10
9| ——No wall
—¢ Hysteretic
8 1 = Viscous
7 1 —&—Collision
6 4 —o—1.5 Kw\Fw
>
1S
g °]
4 -
3 4
2 1 —_—
1 {{FN-FKA 2
0 T T T

0.2 0.3

04 05 0.6 0.7 0.8
deformation [m]

a.)

story

——No wall
—— Hysteretic
—=- Viscous
—A— Collision
—— 1.5 Kw\Fw

0 d
0.0 2.0 4.0
drift [%]
c.)

story

story

10

9 4
g | —e—No wall

— Hysteretic
7 —=~ Viscous
6 —— Collision
54 —— 1.5 Kw\Fw
4
3 4
2 4
']
0 ot T T T T

0 2 4 6 8 10 12
acceleration [m]
b.)
10

9 —e—No wall
o — Hysteretic

—8- Viscous
7% —— Collision
68 —— 1.5 Kw\Fw
58
4 4
38
24
1 4
0 T T T

1.0 1.2 1.4 1.6 1.8

strengthening factor [-]

d)

thus does not comply with the given limit. The strengthening factors are given in Tab 9-
23 figure d.), thus the building needs to be retrofitted up to the 6th floor.

Case c.): The collision is avoided by incorporation of additional linear viscous damping

devices. The optimal amount of damping and the appropriate strengthening of the super-

structure can be determined by solving the following optimization problem

nstory
O(Cadd,)\s) == Z )\57,‘ — Min
=1
Uy S Uy
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Table 9-24 Example pounding 10-DOF: Maximum responses for 86% excitation

10 7 - 10
9 — Hysteretic 9
g | —&- Viscous 8
—— Collision —< Hysteretic
71 7 4 X
—=- Viscous
= ©] > 67 —2— Collision
£ 1)
o 51 Q 51
‘6 -
4 o 4 4
3 b 3 -
24 24
11 86% FN-FKA 11 86% FN-FKA
0 T e = T T 0 T T
0.2 03 04 05 06 07 0.8 0 6 8 10 12
deformation [m] acceleration [m]

The deformations can be restricted to the given limit, if damping devices, providing a
coefficient of Cyqq = 7410kNs/m, are installed. The results are given in Tab. 9-23.
The responses are reduced compared with Case b.). The necessary strengthening of the
superstructure is relatively small and concerns only the first two floors. However, the limit
in the accelerations is not fulfilled.

Case d.): The original configuration is kept unchanged; collision is accepted. The wall
is modeled as elastic-perfectly plastic. The parameters are K,, = K 15t0ry and @, =
10000k N. The maximum deformation has to be restricted to the collapse deformation of
Uerit = 65cm. The strengthening is calculated by:

nstory
O(N,) == Asi — Min (9-47)
i=1
Up < Uerit (9'48)
Aus S Aus,lim (9'49)
Asi > 1.0 (9-50)

The resulting maximum deformation at base is u, = 61cm. The accelerations are incre-
ased up to i = 7.2m/s% The structure has to be strengthened in the first three floors
according to Tab. 9-23.

Case e.): The system of Case d.) is tested for 50% increased stiffness and yield force of
the retaining wall and the soil. The deformation at the base is reduced to u, = 59cm.
The accelerations are increased about 25%. Necessary retrofit is limited to the first three
floors. The results are again plotted in Tab. 9-23.

Discussion of all cases: The safety of the structure can be ensured with either solution.
In any case, retrofit measures are demanded. The least measures for the superstructure
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can be obtained by incorporating viscous damping. However, the decision has to be ma-
de by comparing the overall costs for the project. All solutions fail for the objective to
ensure a limited acceleration level. It is clear, that in the case of an earthquake with high
magnitude, the safety of the structure requires that the limit cannot be reached at all. It
is interesting to determine the solution that provides the highest excitation level possible,
ensuring the operability of the building. It is clear that all measures provided for safety
will influence the performance of the structure in lower excitation levels. If additional
devices are incorporated into the isolation interface, the responses are increased. Hence
the Case d.) and e.) should provide the best serviceability. Above a magnitude of 86%,
the pounding occurs. Up to this level, the maximum acceleration is 2.94m/s* using the
original isolation configuration (see selected results in Tab. 9-24). For Case b.) the value
is already i = 7.2m/s?, for Case ¢.) up to @i = 4.6m/s*. The acceptance of collisions
provides operability up to 86%. Only under extremely rare conditions, the operability
has to be abandoned, but structural safety can be ensured through retrofit. Strengthening
measures for the superstructure are necessary anyway.

Base isolation can be a beneficial alternative to the traditional fixed base concepts. Colli-
ding is by all means avoided so far, but the potentials are shown and theoretical approaches
are provided. It has been shown, that the risks can be managed. The acceptance of poun-
ding has to be decided with consideration of the probability of the event. It was shown
that collision is a worthwhile option to check during design. Nevertheless more research
is needed, especially for the assessment of the wall and soil parameters under impact.
In general, the application of optimization strategies has proved to be a valuable design
measure for design of base isolated structures.

9.4 Graphical design of base isolated structures
9.4.1 Introduction

The design of base-isolated structures is commonly iterative and can be described as an
optimization process (Tab. 9-25). The task is to appropriately combine several devices
within isolation layers. Most of the concepts apply one of the following combinations

1.) rubber bearings/sliders and hysteretic damping
2.) rubber bearings/sliders and viscous damping.
3.) rubber bearings/sliders and hysteretic + viscous damping

4.) other systems and combinations

Combination 1.) is often preferred in engineering practice because of the well-understood
behavior and the cost effectiveness [171]. As well combination 2.) gained recently incre-
asing importance in design.

The analysis of such systems requires the dimensioning of the devices with respect to
the overall structural behavior. The traditional analysis is based on simplified analysis
methods, as indicated in Tab. 9-25. Recent publications show difficulties in realistic as-
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Table 9-25 Iterative procedure for optimization of base-isolated structures

First estimate concept of base isolation layout

Y

Evaluation of structural responses

v 1 v Y

Non-linear Time history Analysis 1 Response | i Pushover P
e, ' Spectrum i 1 Analysis P
1 Set of time histories ! ' Analysis o b
b Jpﬂv‘Ww‘%’W«ﬂfvﬂfﬂhﬂ-ﬁﬂkw"wm%w'ww Pl Lo o
! ‘ : I b b
B — 1 N I =
i Statistics i i P b

Structural response

Y

Change of base isolation layout
Optimization of base isolation layout

| ! !

Stiffness Hysteretic damping Viscous damping
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sessment of the actual structural behavior, e.g. [221]. Therefore the analysis of base-
isolated structures is increasingly performed with time history approaches. The main pro-
blem is the costly and complex nonlinear analysis using appropriate sets of acceleration
records. And, repeating the analysis for several times within an iterative design procedure.

However, the design can be simplified without refraining from the precision of time histo-
ry analysis. The key is the simplicity of the structural behavior of base-isolated structures.
This is illustrated in Fig. 6-15. Basically, superstructures show sufficient stiffness, so that
the mechanical system can be simplified as a nonlinear 2-DOF system.

The following assumptions are made:

e Usage of 2-DOF models of base isolated structures provides sufficient accuracy for
design

e Superstructure behaves elastically, all parameters are constant

e Base isolation behaves bilinear

o Initial stiffness of base isolation can be fixed or correlated to the model parameters
e Ratio of the superstructural to base-layer mass is constant

e Model can be used for device combinations 1.) and 2.)

Such assumptions are common in structural design of base-isolated structures. The dif-
ferences from the reality are marginally [159]. Then the base isolation behavior can be
described with a two-parametric model.

9.4.2  Base isolation with hysteretic damping

The mechanical background for the simplification of the model is illustrated in Tab. 9-26.
As can be seen from device tests, the behavior of the rubber bearings can be approximately
simplified to a linear behavior. As well, lead damper behavior is close to linear elastic
perfectly plastic. Therefore the combined action is linear elastic plastic. As the initial
stiffness is assumed to be fixed or dependent on the second slope in the material law,
only two parameters are necessary to describe the device behavior in total. These two
parameters are for device combination 1.)

e Second slope (or yield stiffness) K in the isolation layer

e Yield force () in the isolation layer, indicating the yielding of the hysteretic damping
component

Thus, the function of these two parameters can be graphically provided in maps. A design
strategy can be established on a graphical basis that consists of two main parts:

e Preparation phase (established only once)

e Application phase, using prepared maps
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Table 9-26 Derivation of a two-parametric model for base isolation layers (hysteretic damping)

Principle Behavior of Natural Rubber Isolators

Original Simplified: elastic

horizontal force
horizontal force
£

““““““““““““““““““““““““““““

horizontal displacement horizontal displacement
Principle Behavior of Lead Dampers +
Original Simplified: ideal plastic

horizontal force
.
hotizontal force
I
=
|

““““““““““““““““““““““““““““

horizontal displacement horizontal displacement

Principle Behavior of Lead Rubber Bearings (LRB) — Combined Response of both components

Original Simplified: elastic - plastic

B

horizontal force

horizontal force
i =

horizontal displacement horizontal displacement

f

Two-parametric bilinear model (appreviated notation)

Yield Stiffness K=ky =kgr4
Yield Force Q =FRim =Ry Q Ki(K,Q)

Initial Stiffness K1 can be approx. fixed or
related to Kand Q
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Table 9-27 Major preparation and application steps

Preparation Application

2-DOF model

Map generation [---i# Map application

] |

|
|

Structural responses :
Base isolation parameters i

__________________________________________________________________________________

The steps are summarized in Tab. 9-27. The first part consists of the generation of design
maps. These design maps consists of the two involved input parameters and one selected
response parameter of the structure. The generation follows Tab. 9-28 for the hysteretic
damping (combination 1.)).

It should be noted, that the maps are to be generated not for a single structure, but for a
variety of structures having approximatelly the same:

e superstructural eigenperiod 7'

e ratio of initial stiffness K; to yield stiffness of the base isolation layer (commonly
determined by other service limit states, e.g. wind)

e superstructural to base-layer mass ratio
e same structural damping & (except hysteretic damping)

e loading sequence (Time history set), not magnitude

The calculation is commonly performed using computational support. The generation
starts by choosing the previously listed parameters. Just for map generation, a basis mass
for the generation must be arbitrarily chosen. Then, dependent parameters as the base
mass mp, the superstructural stiffness kg and the total mass m are calculated. For the
maps, an appropriate range of parameters K and () needs to be specified. Then this range
is divided into sufficient subdivisions, forming an analysis grid on the parameter map.
Following, in a successive procedure all possible value combinations of K and () in the
parameter grid are used to perform a time history analysis. The recommendation is to use
appropriate time history sets that are modified to meet appropriate statistical properties for
the local situation. The intensity of loading can be scaled using the load intensity scaling
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Table 9-28 Map generation using time history method

Definition of map selection
parameters

ie. T=05, u=2.0

Initial
Stiffness

Ki = f(Q,K)

{

Choice of a basis sub-
structural mass

i.e mg =1000

{

Calculation of dependent
parameters
ms

u

m,
Ks :41:2?;

my, =

m=my + Mg

Structural
damping

i.e&=0.05

f

Non-linear Time history Analysis

Set of time histories

“WWVw WJ‘WM‘A'MWWW\’“ RN gt ]

Definition of Parameter
Range for Q and K and

Intervals

Successive Parameter
generation

K;

Q

_________________________________

Maximum Responses

Fsij Ubj

Normalizing all map parameters

i K= F

i =

F

s i
m

Up jj = Ubj

s jj = 3

ij

factor \. All values must be normalized in order to eliminate the effect of the arbitrarily
chosen basis mass.

The responses are introduced in the maps. For better readability, the map can be prepared
to be a contour plot showing the response values. Such plots need to be provided once and
can be collected in catalogs. Appendix Sec. 11.12 shows several example maps for the LA
10in50 time history set form the SAC-FEMA projects [200] that have been generated due
to the described procedure.
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The application of the maps in design of a new or review of an existing structure is now
possible and simple. In Tab. 9-29 the necessary steps are given. First, the given struc-
ture must be transformed into an sufficiently equivalent 2-DOF system. The load level for
analysis can be chosen (usually the maps are provided for load level A\ = 1.0). With the
calculation of the fixed base period 7" and the mass ratio y the appropriate map is chosen
from the catalog. Then with the normalized map parameters K* and (Q* the normalized
maximum responses (superscript *) can be read from the map. Afterwards the real respon-
se values can be determined. There is a wide variety of applications for these maps, that
are illustrated next with help of examples.

It should be noted, that the method contains no simplifications other than listed in Sec. 9.4.1.
The usage of the maps is identical to the application of a nonlinear time history analysis.
The following advantages can be stated:

e Method is graphical, easy and fast
e Usage for pre-design, design and review, device selection

e Incorporates seismic loads, base isolation characteristics and maximum structural re-
sponses in one chart

e Avoidance of complex nonlinear calculations, while having the same precision
e Parameters can be easily scaled to consider different load levels

e No usage of abstract device parameters (like equivalent damping): Parameters in the
map for the description of the base isolation layer behavior (Q,K) can be easily read
from real test results

e Maps can be provided for any structural parameter of the model
e Maps can be generated using time history - or response- or pushover-analysis,...

e The proposed method of accessing data in maps is generally independent from the
method of map generation (map generation can be more sophisticated)

e Maps can consider real or artificial earthquakes
e Maps can consider statistical representations of earthquake responses
e Maps can consider site depended characteristics

e Maps can be globally or locally adjusted for the consideration of other effects e.g.
specific behavior of isolation devices (e.g. hyper elasticity in ultimate deformation
state), special code provisions

e Different levels of overall structural viscous damping can be adjusted using the scaling
factor for the seismic loads

A main advantage is the possibility of immediate change of device parameters, for opti-
mization of the overall behavior. This simplifies optimization processes of isolation layers
considerably, as the consequences for the changes can be visually pursuited. Some typical
applications are illustrated in the following sections.
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Table 9-29 Principle of map application

Transformation into 2-DOF model

A Load level scaling factor
: ms Mass of superstructure
Ks Stiffness of superstructure
my, Mass near base isolation layer

—_————=
| 1 1

Calculation of fixed base period Calculation of mass ratio Calculation of total
mass
m
— Mg =S
sznz s mp m=mg +my

1 1

Selection of appropriate map (Catalogue or simple interpolating program)

_'
1
o
=
—

_|
1
=)
w
=
=

_|
1
V
=

f Y

Determination of map parameters Calculation of map parameters
Q K = K

|
Y

“om m

A
Y

Base isolation parameters Q, K

Structural responses

Up =AUy g =2l

Q Fo =A-m-F

9.4.3  Examples for principle usage of maps

Example 1.): This example shows a basic application of the maps. For a known device
configuration Kand (), the appropriate response values for the base-isolation deflection
up and the superstructural acceleration 4 can be taken from the map. This example is
graphically illustrated in Fig. 9-11 for load level A = 1. For better convenience, both
response parameters have been plotted together in one contour plot.
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3=

Yo,

Figure 9-11 Example 1.): Determination of responses using given base
isolation parameters K and )

Example 2.): This example shows another basic form of application in Fig. 9-12, that is the
determination of base isolation parameters () and the necessary base isolation clearance
up using a given K and a preferred maximum acceleration i in the superstructure. The
method is to find the appropriate isoline for the acceleration that will be crossed with the
stiffness K. Following a vertical line from this intersection point will give the appropriate
necessary yield force (). As well at this point, the maximum deformation at base level can
be determined.

Example 3.): The example in Fig. 9-13 illustrates an application corresponding to a solu-
tion of an optimization problem. It shows the determination of optimal parameters () and
K, while knowing the maximum given base isolation clearance u;, the maximum accele-
ration 4 and some known constraints for the choice of base isolation parameters. Within
the map an area for choice of parameters is derived, from that a solution can be chosen.

Example 4.): This examples demonstrates the application of maps for calculation of the
necessary amount of isolators of the same type (see Fig. 9-14). Knowing the specifications
K and @ for one device, other numbers will be find on a strait line. Then according to
given limits (here the maximum base deformation) the number can be determined.

Example 5.): This example illustrates sophisticated use of the maps, involving changing
device parameters or different device characteristics in different parts of the deformati-
on behavior (e.g. hardening in the rubber bearings, see Fig. 9-15). The behavior can be
introduce in two ways
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Acceleration

iis = 0.4g

K
Us=0.4g Us=0.59
oy, -
min. Clearance
Us = 0.3g up = 0.58

Up = 0.4
Up = 0.5
u, =0.6 Q'
Y
Q=m-Q
Figure 9-12 Example 2.): Determination of responses using given base
isolation parameters K and acceleration i
Max. Acceleration
il = 0.59
maxK" = maxK
Space for choices
Up = 0.4
minK' — minK - up, =0.5
i \
up = 0.6 Q*

mnQ =

min Q

Max. Clearance
Up = 0.6

Figure 9-13 Example 3.): Determination of responses within a decision area
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42 Devices
s =0.41g

~ 10K

Y
&
I
o
o

&
I
o
=Y
Yo

Figure 9-14 Example 4.): Determination of number of isolators

Ki additional hardening

0.5 Up

Figure 9-15 Example 5.): Different hardening characteristics for bearings

e Include behavior directly into the map (i.e. provided by manufacturer)

e Provide functions to adjust general map

The first variant is changing the map, whereas the second variant uses a basis map and
applies some changes. In Fig. 9-16 such a modification is exemplarily illustrated.
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3|=

Amplification
function for
Accelerations
lis = Uis - Z(up)

1o,

Reduction
function for
Deformations
Up = Up - R(up)

Figure 9-16 Example 5.): Involvement of hardening within maps

9.4.4  Base isolation with viscous damping and other device combinations

Generally, the visual design method presented in the previous chapters can be applied for
other device combinations. The strategy for determining and usage of the maps remain
basically the same. It should be considered, that the combination of three devices within
one base-layer is possible while fixing one component or establishing the relation bet-
ween two parameters. The application of rubber bearing together with viscous damping
is straight forward. Example maps, for the LA 10in50 set [200] are given in the Appendix
Sec. 11.13. Here the two independent parameters are the stiffness in the rubbers /i and the
sum of viscous damping C'. Comparing the plots from hysteretic (Appendix Sec. 11.12)
and viscous damping (Appendix Sec. 11.13), it can be seen, that the overall structural
behavior of these systems is completely different.
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10 Conclusion

10.1 Summary

The study provides insight into the basic theories and applications of optimization stra-
tegies in earthquake engineering, with a main focus on methods of shape optimization
that relates to practical usage. The relations between design and optimization problems
are discussed and utilized for derivation of appropriate mathematical formulations. It is
obvious, that most engineering problems can be treated as optimization problems. And,
the advantages using optimization strategies in comparison to traditional methods or in
combination with established procedures can be noted.

For basic and special engineering tasks, the theoretical background is provided. The app-
lication is demonstrated with help of several examples throughout all sections. The basics
of mathematical optimization are discussed and the main categories of algorithmic solu-
tion methods are introduced.

An overview is given on the mechanical background of solution strategies based on ma-
thematical optimization. Means of variational calculus are applied for derivation and rear-
rangement of mechanical principles. Here intentionally, well know classical principles of
mechanics have been chosen for demonstration. Their beneficial application particularly
in seismic engineering is illustrated within several chapters.

In order to prepare the numerical treatment and to provide basic continuum mechani-
cal background, some theoretical insight into the mechanics of elastic and elastic-plastic
bodies is provided. It helps understanding important starting points for the formation of
extremum principles, for geometrical and physical nonlinear problems. Their transforma-
tion into discrete formulations is the key issue to obtain optimization formulations. The
underlying methods based on matrix notation are provided.

Much emphasis is given to the practical application of optimization strategies in earth-
quake engineering. One chapter is dedicated to modal analysis concepts. The analysis of
eigenvalue problems with help of optimization algorithms illustrates the application also
in classical topics. The derivation of new design tasks and the formulation of appropria-
te solution concepts is shown. New bases for practical stability analysis in dynamics of
structures with elasto-plastic behavior are introduced.

The most important concepts of simplified linear and nonlinear analysis are assessed, with
the provision of several optimization tasks. The application for elastic, plastic and base
isolation design is demonstrated, always with reflection to the theoretical background
and provision of examples. The well known response spectrum based analysis methods
have been reformulated to fit into optimization concepts. Those chapters not only show
classical design, but highlight new concepts of performance based design. Here the low
damage design is emphasised with design alternatives based on shakedown theory and
applications of the base isolation concept. With several examples, the variability of the
analysis and design with help of optimization strategies is illustrated.
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As well, analyses in the time domain using step-by-step numerical treatment can be sup-
ported by optimization strategies. Here the classical principles of dynamics are utilized
for derivation of appropriate optimization formulations. The given formulations can be
extended for dynamic limit state analysis.

The variety of applications of optimization strategies in seismic engineering is shown for
specialized engineering tasks. Those tasks involve the generation of artificial accelero-
grams, the determination of spectral parameters, the design of base isolated structures
using controlled impact and methods of graphical optimization.

10.2 Future work

The presented content points out the great potentials and benefits that can be gained by the
application of optimization concepts in earthquake engineering. The discussed topics are
to provide a basis for theoretical problem solution in mathematical optimization, possible
applications are illustrated with selected examples. The natural compatibility of optimi-
zation strategies with design tasks of practical engineering enables to provide adopted
methods for almost any other application. Therefore the following fields of investigation
are worth studying.

One of the most interesting topics in structural optimization is topology optimization. This
topic is characterized by non-convex problem classes that are difficult to formulate and
solve even for statical problems. Involving seismic conditions will be a challenging task,
as the time aspect in dynamics will considerably influence the outcome of the optimization
process. The task will combine statical and dynamical load cases, that can be differently
weighted, with a combination of different objectives in design.

Accordingly, the extension of the presented engineering problems for probabilistic as-
sessment will be an interesting combination. The stochastic character of the seismic ex-
citation can be better respected and evaluated. The presented problem classes can serve
as deterministic cores for probabilistic analyses. All or selected design variables are gi-
ven as probabilistic parameters. The objective and subsidiary functions are formulated as
functions of these stochastic parameters.

The analysis of the sensitivity of design variables at the optimum point is always strongly
related to structural optimization. This additional information can be obtained by gradient
evaluations. Moreover, the sensitivity itself can be treated as a optimization target, in order
to generate robust solutions.

This study focusses on elasto-plastic structures. The involvement of other (mainly nonli-
near) material laws in combination with difficult path dependent behavior is challenging
in solution. This category of analysis needs to embed time history procedures on a small
step scale for a proper characterization of the structural behavior under optimization cri-
teria.
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11 Appendices

11.1 Appendix A: 3D-Tensor-Matrix transformation operators

To handle non-symmetric tensors, the following transformation operators are introduced.

The second order - three dimensional tensor

R Too Toa1 Top
T = Tl’() Tl,l TLQ (11-1)
Top Ton1 Top
can be made symmetric
~ 1 /4 -
sym(T) = 5 (T+ T ) (11-2)
or can be transformed into a vector
V= VeC(T) =[Too Tix To2 Tip Tox Ton Tip Too Toa }T (11-3)
The inverse operation for the vector V' is
5 Vo Vi Vs
T=ten(V)=|Vs VI Vs (11-4)
Vi Vs Vs

Furthermore, the tensor 7" can be transformed into a non-quadratic matrix with this spread

operation
C Too .
Thq
T 155
. 1,0
spr(T) = To 1 (11-5)
2.1
T
Tsp
i Toz |

Too0 Toq To2
T4 Tio Tia
T 15,4 Ts0

arr(T) = T, " Too Too ’ (11-6)
15, T2,0 TQ,Q
T T4 T

Th 2 Toq To
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The material pseudo-tensor D

Doo Do1 Dop
Dig D1y Dip (11-7)
Dyo Dy Dy

D=

can be spreaded into matrix form

mat(D) =
T Doo Do1 Dop _
gl,o gu 5172
20 Do1 Dap
% (Doo — Do) % (D11 — Dop)
5 (Doo— Do) 5 (D11 — Doy) (11-8)
3 (D11 = Diz) 3 (Dap = D2a)
5 (D11 —Dia) 5 (D22 — Day)
2 (Doo = Doz) 5 (D22 = Day)
- 3 (Doo — Do2) 5 (Daz— Dayp) |

soorpuaddy 11
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11.2 Appendix B: Simplified period dependent reduction coefficient for pseudo-
acceleration spectra
The determination of the reduction factor according Sec. 9.2 can be simplified for prac-
tical use. If B¢ = Rpcg within Eq. (9-17) a physical meaning can be assigned to 7; in
representing a dominant velocity of the ground motion. Then the value is approximate-
ly determined by the dominant pseudo-acceleration P.Sasy 40, and the dominant period
Tdom

~ P5a5%,dodeom

~ 11-9
m o ( )

Herein PSasy q40m denotes the average value of the 5% damped pseudo-acceleration spec-
trum between the beginning of the sensitive part in the pseudo-acceleration spectrum (so-
metimes indicated as the plateau or constant part) at period 7;, and the beginning of the
sensitive part in the pseudo-velocity spectrum at period 7,. The appropriate dominant
period T},,, is estimated from averaging the plateau periods

T, + 7T,

5 (11-10)

Tdom =

In this equation, 77,,,, characterizes the center of the period region with high accelerations.
Examples for the manual derivation of 7); are provided in Fig. 11-1-11-3. In code spectra
the ‘corner periods’ can be used to derive P.Sasy dom and Ty, (Fig. 11-1). Because of
the smoothing effect, the reading of the appropriate values in the mean spectra becomes
almost as easy as for code spectra, as illustrated in Fig. 11-2 and 11-3. Summarizing the
simplified version, incorporating Eq. (9-17) leads to

10 % .
100¢ + 5 a

For further detail refer to [221].

PS(Z5%<T) T
Psa5%,dom Tdom

Riod =1+ (11-11)
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Figure 11-1 Example: Determination of plateau periods and 7; for code

spectra
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Figure 11-2 Example: Determination of plateau periods and 7; for mean
acceleration spectra
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Figure 11-3 Example: Determination of plateau periods and 7; for mean
velocity spectra
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PSa(5%)/PSa(t)
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Figure 11-5 Example: Proposed simplified reduction concept spectra
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11.3 Appendix C: Period dependent reduction coefficient for total acceleration
Spectra

In engineering practice, the differences in pseudo-accelerations PSa and total accelera-
tions Sa are often neglected. As illustrated in Fig 11-6, however, the deviations become
considerable in the long-period range if large damping is applied. Respecting this aspect
is especially obligatory in base isolation design.

As can be confirmed from Fig. 11-6, the relation between the total and pseudo-accelerations
in the long period range from 2 to 8s is nearly linear. So a linearized version for the long-
period range is proposed

Sag(T) 5/3

= ——— =T (2 1 11-12

The coefficient 7, is constant for each ground motion set. It provides an adjustment option
using 7509 (T = 6sec) that is determined by time-history analysis at a period of 6 seconds
and a damping ratio of 50%.

1
- [r509% (T = 6sec) — 1] (11-13)

2 =

For practical purposes, 7, 1s approximately

1
N~ g sec™ ! (11-14)

An example application is plotted in Fig. 11-7.
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Sa/PSa
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Figure 11-6 Ratio of mean total accelerations to pseudo-accelerations for
different levels of damping calculated by time-history analysis

Sa/PSa
4.50
Mean FN-Kobe Set
4.00 +
3.50 +
3.00 1 £ =40%
2.50 | £=30%

2.00 7¢ =20%
1.50 -

1.00 - g J
1 _ - 100
0.50 &£ =5% £ =10%

0.00 ] | |
0.00 2.00 4.00 6.00 T[s]

Figure 11-7 Ratio of mean total accelerations to pseudo-accelerations for
different levels of damping calculated by the proposed approximation
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11.4 Appendix D: Coefficients for modified equivalent linearization in the long
period-high damping range

For flexible structures, the difference between the excitation period 7.,. and equivalent
period of a structure 7., are increased. The viscous and hysteretic damping energy are
not equivalent. The explicit consideration of a period dependency of the damping ratio is
incorporated by the following damping modification factor

Te:)cc
Tequ

v = (11-15)
Because the seismic response is non-stationary, a mixed influence of the dominant ground
motion period 7},,, and the structural eigenperiod 7" on the response is notable. The fol-
lowing weighted average formulation for the excitation period describes this influence

Teve =T+ (1 —a)Tgom  0<ap <1 (11-16)

From parametric studies, the contribution of the eigenperiod 7" is found to be greater than
that of 7},,,, so the interpolation coefficient a; ~ 0.6 can be adopted. The dominant
period is according to Eq. (11-10). The relation of the excitation period to the eigen- and
dominant period within the acceleration spectrum is illustrated in Fig. 11-8.

The equivalent damping is commonly derived with the assumption of stationary response,
establishing perfect hysteretic loops. It is known that cycles due to transient excitations
are often incomplete and therefore develop less damping, thus larger responses. Figu-
re 11-9 explains this effect, wherein the maximum deformation ,,,, 1s mainly dependent
on the maximum deformation in the previous half-cycle u,re. To account for reduced
damping, resulting from incomplete cycles, adjustment factors for the damping ratio are
utilized [140,115]. However, it can be shown that the formation of cycles is period de-
pendent and so the accompanied damping reduction effect. At smaller periods, where the
dominant ground period is close to the structural period, the damping ratio is reduced
because the cycles are often interrupted by short elastic pulses. For longer periods this
influence decreases, as high frequencies are filtered. However, the total amount of cy-
cles and the transmitted energy are reduced. Consequently, the probability for a hysteresis
completion is reduced as well, and the real damping is again smaller than estimated within
the equivalent model. It can be observed, that the location of the maximum is close to the
plateau period 7}, determined in the reduced deformation spectrum (see Appendix 11.2).
At this period, where the sensitive part of the deformation spectrum begins, the response
is characterized by large deformations accompanied by high energy, which increases the
probability of full cycle responses.

The effect can be considered in the equivalent model by the modification of the damping
ratio with a second factor. As in Fig. 11-9, the tendency for full cycles reduces with
increasing distance of the structural period 7" from the period 7}, approximately according
to a quadratic function with the maximum value at 7;. The following approach is applied
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T, — T)?
vy =1 — ayt dT2 S with oy~ 10 (11-17)
d
Sa
Tdom Texc T
v | v } V&
0.00 2.00 4.00 6.00 T[s]

Figure 11-8 Definition of the excitation period
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11.5 Appendix E: Galerkin Method for solving Poisson differential equation

298

POISSON's differential equation (elliptic differential equation)

Strong form (2nd order differentiation)

v (DVi) +=0 eV

X,t Coordinates, time

v Nabla differential operator
U =u(x,t) Variable function
f=f(x,t) Source function

D =D(x,t) Constitutive tensor

{

Method of weighted residuals

{

Variational form (2nd order differentiation)
jso(vT Vi) +f v :IS\?FdV:O

A Weight function
r Residual

Integration by parts

{

Natural boundary
condition

(Dirichlet conditions;
Direct boundary
conditions)

Essential boundary
condition

(von Neumann-
condition;

Gradient boundary
conditions)

Dvl‘:l =0p € SS

Weak form (1st order differentiation)

IvTao O Va) +s dV—J.S\"/(ﬁVG)dS:O

-0

{

|

Galerkin method

hu,j = hv,j Basis functions

[)) o B et Rl

i

{

Weak form (Galerkin)

IVT su (DVG) +8uf dV =0

du Virtual displacements

Approximation

N
u(x) = Y iy j(x)
i=1

Cuj Coefficients

hyj Trial functions

N
v(x) = Y ey jhy )
i=1

Cyjj Coefficients

h Test functions

v,j
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11.6 Appendix F: Kobe ground motion set

Table 11-1 Kobe near-fault set (fault normal) [ 164]

Record PGA (m/s?) max Sv(m/s) 1 (2-8 sec) (m/s)

FN-AMC 3.45 1.72 4.40

FN-EKB 4.05 3.87 11.54

FN-FKA 8.28 3.30 19.23

FN-KB3 3.28 2.28 10.22

FN-KBU 3.22 1.72 3.94

FN-KOB 8.49 3.29 6.06

FN-KOJ 5.09 2.21 9.41

FN-PR1 6.80 1.45 5.29

FN-RKI 3.68 2.43 7.10

FN-TKT 7.41 4.89 16.60

FN-TKZ 6.38 1.97 7.57

KOBE-FN-MEAN - 2.02 8.21

0 0 o [\ —
mi! R el =
ek
- o) 7

Figure 11-10 Spectra of Kobe ground motion set
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11.7 Appendix G: SAC-FEMA project Los Angeles 10in50 ground motion set

Table 11-2 LA set (10% probability in 50 years) [200]

Record PGA (m/s?) max Sv(m/s) 11 (2-8 sec) (m/s)

LAO1 4.52 1.71 6.36
LAO2 6.63 1.81 5.51
LAO3 3.86 1.89 8.67
LAO4 4.79 1.73 7.67
LAOS 2.96 2.17 9.98
LAO6 2.30 1.17 6.12
LAO7 4.13 1.82 4.62
LAO8 4.17 1.46 4.20
LA09 5.10 2.44 6.84
LA10 3.53 1.71 6.36
LA11 6.52 1.84 8.01
LA12 9.51 1.40 322
LA13 6.65 1.82 5.60
LAl4 6.44 2.25 6.41
LAI15 5.23 1.65 8.88
LA16 5.69 1.89 8.42
LA17 5.58 1.98 7.83
LA18 8.01 1.93 9.30
LA19 9.99 1.76 6.39
LA20 9.68 1.94 13.03
LA-MEAN - 1.29 5.94
e SEE
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Figure 11-11 Spectra of SAC-FEMA project LA 10in50 ground motion set
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11.8 Appendix H: Conventional ground motion set

Table 11-3 Conventional set

Record PGA (m/s?) max Sv(m/s) max Sd(m)
El Centro EW 2.10 1.09 0.56
El Centro NS 3.42 1.18 0.41
Hachinohe EW 1.83 2.93 1.62
Hachinohe NS 2.25 3.14 1.67
Miyagi EW 2.03 0.90 0.24
Miyagi NS 2.58 1.50 0.28
Taft EW 1.76 0.65 0.39
Taft NS 1.53 0.64 0.28
C-MEAN - 2.02 0.59
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11.9 Appendix I: Dissipation energy bounds (strategy Atkociunas/Norkus)

The strategy is according to Atkociunas/Norkus [12], for estimation of the upper and
lower bounds of the dissipation energy at shakedown state.

Ext. kinematic condition Self-Equilibrium Elastic envelope sg

System at shakedown state

1 !

Qs, +LpA-Au, =0 eV ATs, =0 eV

ss =Q'Au, —Q7Lpr =" Plasticity
>
ATQ Ay, ~ATQ L0 =0 +=0 v
Lps; +Se¢ —Sjim =y <0 eV
! ay=0 eV
- u = (ATQ—1A)—1ATQ—1LPK _ K’1ATQ’1pr

Y | !

Qs, —(AK’1ATQ’1Lp ~L=Qs, ~GA=0 Lagrange formulation of shakedown problem
1 - 1 _
! O4(uy ,k):—EIurTATQ Au, dV+§.[xTL;Q Ly dV
s QG + J' 2T (Sim —S¢ ) dV = Max
A>0 eV
Equivalent result with Shortened formulation (Quadratic optimization problem)
1 . 1 _

Oa(s; ) =5 S7Qs; —Min 0y(1) = -5 "e"a G +ij(s,im ~s.) dV = Max

ATs, =0 LI)sr + 8¢ < Sjim rA=0 eV

Minimum of Moadification of plasticity conditons

plastic potential Stim(X) = max [L*(X)SR +Sg(x); L-‘E_(X)SR + SE(X)] vx e Vp (a)

—Ts. * _
Ep.min =2 Sim Sg(X)=sg(x) or sg(X)  depending on maximum in Eq. (a) (b)
L;,(X) = L;(X) or Ly(x) depending on maximum in Eq. (a) (c)
Maximum of
plastic potential *
Epmax =* 'Sim thus  Lp's, +Se =Sjm  with dim(L}) < dim(L})
Equivalent result with Repeated calculation with modified plasticity condition
oo 1 T ) . 1 e *T b * N .

Os(s; ) =5 5Qs; —Min 040 = -2 "6 Ta e +Ix T(sim —So) dV = Max
ATsr =0 L-II; S +Se < Sjim A0 eV

! !

Problem non-convex: Solve with start vector # 0

Equivalance: Oy =05 =04 =—-03 =05
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11.10 Appendix J: Displacement bounds (strategy Ponter)

The strategy is according to Ponter [178], for estimation of the upper and lower bounds
of residual displacements at shakedown state.

System at shakedown state

1

Residual state Virtual elastic state (Castigliano formulation)
(Castigliano formulation)

1 O(s, ):1sIQsV —Min
O(s; )=—=s]Qs, — Min 2
2 ATs, =1, f, =[0,....0,f 0,...0]
T
A's, =0

LES, +Se <Sim f  concentrated load at DOF i with |fi| =1

Y Y

Principle of virtual load Superposition of residual and virtual elastic state
Theorem of PONTER
1 ™ (Nonlinear optimization problem)
Uy 'pfv:Ur,i'pfi:_Sl:rer pz0 .
2 0 B Uijinf B 1 TQ Min
p non-negative intensity factor for virtual load (Sr.p)= Uisup ﬁsr St = Max
ATs, =0
L};(Sr +PpSy )+Se < Sjim p=>0
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11.11 Appendix K: Residual displacement bounds (strategy Atkociunas/Norkus)

The strategy is according to Atkociunas/Norkus [12], for estimation of the upper and
lower bounds of residual displacements at shakedown state.

System at shakedown state

{

u =(ATQ'A)'ATQ =K 'ATQ o =H [

{

Qs, ~(AK'ATQ L, -L)h=Qs, ~GL=0 [™] s, =Q G

Modified formulation Poisson formulation
Qs; -GL=0 eV ATs, =0 eV
420 eV - Y Qs; +ApgL-Au=0 eV
LpQ "G +S¢ —Sjim =y <0 €V 150 vV
XTy:O eV L-";sr +Se —Sjim =Y <0 eV
Ay=0 eV
Replacement of plasticity condition Maximum or minimum residual displacements
with dissipative energy condition for i-th DOF
Version 1: Linear optimization problem
Qs, —-GL=0 eV
Ui Min
A=0 eV Bl 01(srv7¥)=ull’mf :Hi}thl
7\,TS|im < Ep,max eV ESUR 2x
Qs, —GA=0 eV
A>0 eV
}‘*Tslim £ Ep,max eV
Y
Replacement of ext. kinematic Maximum or minimum residual displacements
condition with energy condition for i-th DOF
_ | Version 2: Nonlinear optimization problem
Me'a ey = 25, eV o
uj; Min
Q! —8y = 0y(0)= "™ —Hp
LpQ 'Gh+se —Sjm =y <0 eV 2(2) T = Max
A>0 eV T ATt
s v, AG'Q Gh=2E, eV
im S &
lim p,max L>0 cV
o
A Sjm < Ep,max eV
17 .
O3(s; )=Eg = Esr Qs, — Min
ATSr =0 L-‘l; S, +Sg < Siim
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11 Appendices

11.12 Appendix L: Example parameter maps (hysteretic damping)

The given maps are examples for the graphical design of base-isolated structures using a
combination of rubber bearings and hysteretic damping (using LA 10in50 set [200]).

Hysteretic Damping T=0.5
np=5.0

Deformation Base Isolation

Stiffness K ‘
9 \ -
5 2 2 -
o [}
[N
77 L
6, -
o
5
57 L
o
) e
(3] ‘Oo {J\
4 L
3, -
3 0.15 \
2, -
1+

T
0.5 1 1.5 2 2.5 3 3.5
Yield Force Q

Figure 11-12 Design map for determination of the maximum deflection at
base isolation layer height

305



11 Appendices

Hysteretic Damping T=0.5
n=50

Acceleration Superstructure

Stiffness K
97 L
8+ : =
[N Qe
77 L
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Figure 11-13 Design map for determination of the maximum acceleration at
the center of gravity in the superstructure
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Hysteretic Damping T=0.5
n=>5.0

Shear Force Superstructure
Stiffness K
97

0.5 1 1.5 2 2.5 3 3.5
Yield Force Q

Figure 11-14 Design map for determination of the maximum shear force in
the superstructure measured at the bottom
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11.13 Appendix M: Example parameter maps (viscous damping)

The given maps are examples for the graphical design of base-isolated structures using a
combination of rubber bearings and viscous damping (using LA 10in50 set [200]).

Viscous Damping T=0.5
u=>5.0

Deformation Base Isolation

Stiffness K ‘
97 L
Q 0
&) .
8 5 3 L
04
77 L
0'?5 9 35 0.3
6,
%

54 06\

%
A |
o
4 % T %35 -
0

o %
Koy
3] 3 %% »
o

A )
3%
2] N

0.5 0.6 0.7 0.8 0.9
Damping C

Figure 11-15 Design map for determination of the maximum deflection at
base isolation layer height
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Viscous Damping T=0.5
n=>5.0

Acceleration Superstructure
Stiffness K ‘

|
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54
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Figure 11-16 Design map for determination of the maximum acceleration at
the center of gravity in the superstructure
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Viscous Damping T=0.5
n=>5.0

Shear Force Superstructure
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Damping C

Figure 11-17 Design map for determination of the maximum shear force in
the superstructure measured at the bottom
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12 Notations and lists

12.1 Notation and abbreviation

If not otherwise stated in the text, the following notation is applied:

Table 12-1 General notation

Variable Description

a Tensor notation

ag Element related, discrete value
an Node related, discrete value

a Matrix /vector/scalar notation
ta Related to time ¢

a Transposed value

a! Inverse value
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12 Notations and lists

Table 12-2 Indices

Index Description
0 Initial value
1,2,3 Counts or principal directions
a Shakedown (adaptation) state related parameter
b Base related parameter
C Cauchy type or Damping related
cd Conservative deformation limit state
cs Conservative stress limit state related parameter
d Deformation based limit state related parameter
DP Drucker-Prager
e Elastic behavior related parameter
E Element edge related parameter
EFG EFG related
eng Used in engineering
10) Force related parameter
g Geometry related
Inequality condition related parameter
¢ Geometric nonlinear part
7 Count variable related
intern Internal parameter
150 Isotropic parameter
J Count variable related
kin Kinematic parameter
L Linear plasticity condition
lim Limit or ultimate value
log Logarithmic or Hencky type
M Inertia related
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Notations and lists

Table 12-3 Indices (conclusion)

Index Description

mode Mode related value

nom Nominal or Biot type

N Node related

NL Nonlinear

(0] Objective function related parameter

opt Value at optimum point

P Plastic behavior related parameter

P 1st Piola-Kirchhoff

PS Plastic strain related

quad Quadratic or Green-Lagrange/2nd Piola-Kirchhoff type
r Residual state related parameter

s Stress or equilibrium condition or Superstructural parameter
stat Statical component

total Total amount

U Kinematic condition related parameter or ultimate value
v Virtual state related parameter

vM von Mises

x Design variable or coordinate related value

YF Yield function related
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12 Notations and lists

Table 12-4 Parameters and variables

Variable Description
0 Zero value, vector, matrix
a Variable, coefficient or Amplitude vector
@ Vvariable
A Area or Coefficient matrix of kinematic and equilibrium conditions
Ap Hardening coefficient matrix
b Variable
B Differential operator
c Variable
C Cauchy tensor or Damping matrix
Cs Constant value of statical boundary conditions or Seismic coefficient
Cy Constant value of geometric boundary conditions
d Variable
D Material tensor or Elasticity tensor
e Variable, General strain parameter
E Modulus of elasticity or Energy
Strain
f General function/variable or External forces vector
fB Base shear force
F Field conditions or Shear force
s Surface force density
0,0V Volumetric force density
é Force tensor
P Modal matrix or Matrix of phase angles
h Equality condition or hardening coefficient
H Hesse matrix
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12 Notations and lists

Table 12-5 Parameters and variables (conclusion)

Variable

Description

&

ElE

w

= =

»

Qa0 Qs

=2
R

= 2
=

.

Nyixjw?v?g%-

&~ &~

Interpolation matrix of damping distribution
Interpolation matrix of mass distribution
Interpolation matrix of geometry

Interpolation matrix of stresses/internal forces
Interpolation matrix of displacements

Inequality condition or variable

General inequality condition or boundary condition
Nodal polynomial function of geometry

Nodal polynomial function of stresses /internal forces
Nodal polynomial function of displacements
Safety factor loading

Safety factor resistance

Matrices of EFG method or Participation factor
Count variable

Identity matrix of vector

Count variable

Invariant

Hamiltonian potential

Counting variable

Stiffness matrix

Geometric stiffness matrix

Lagrange multiplier, plastic multiplier

Linear contact coefficient

Left rotational operator or Linear coefficient matrix

Linear plasticity coefficient matrix
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12 Notations and lists

Table 12-6 Parameters and variables (conclusion)

Variable Description

L, Linear contact coefficient matrix

A Principal stretch tensor

A Vector of eigenvalues

m Modal mass

M Mass matrix or Bending moment

n Number or Normal tensor or Number of replastifications
N Direction tensor/matrix

v Damping density or Poisson coefficient

0 Dual objective function

(0] Objective function

Q Region

D Load intensity factor

P Polynomial interpolation function

II Potential

q Behavior factor

Q Quadratic matrix or Flexibility matrix

Qp Quadratic plasticity coefficient matrix

r Resistance intensity factor or Radius

R General resistance or Right rotation operator or Reduction coefficient
p Mass density

s Internal forces/stresses or Line segment length
S General loading,excitation or Surface

Sy Force related surface

o Stress

Olim Limit stress
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Notations and lists

Table 12-7 Parameters and variables (conclusion)

Variable Description

t Time, current time

At Time step

T Transformation

Tc Eigenvectors of Cauchy tensor
S} Temperature

T Surface related stresses

U Displacement or eigenform

U Velocity

U Acceleration

g Ground acceleration

U Stretch tensor

v Generalized coordinate

\%4 Volume or Extremum function
w Weight function

w Work or Weight

x Coordinates or general design variable
X Deformation gradient

= Transfer function

Y Slack variable or coordinate or general function
Y Yield function

z Coordinate
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12 Notations and lists

12.2 Abbreviations

Table 12-8 Often used abbreviations

Abbreviation Description

CP Performance level Collapse prevention
CP Complementarity problem

CQC Complete quadratic combination

DOF Degree of freedom

EFG Element Free Galerkin Method

FDM Finite Difference Method

FEM Finite Element Method

10 Performance level Immediate occupancy
LP Linear programming

LS Performance level Life Safety

MDOF Multi degree of freedom system

NLP Nonlinear programming

QP Quadratic programming

SDOF Single degree of freedom system

SDP Semi-definite programming

SLP Sequential linear programming

SQP Sequential quadratic programming
SRSS Square root of sum of squares

12.3 Notation of optimization problems
12.3.1 Notation as formulas

All optimization problems can be noted in formula form. In the braces of the objective
function the design variables of the problem are indicated

O(x) — Min (12-1)

As well, the subsidiary conditions are given as equations or inequalities

h(z) =0 (12-2)

g(z) <0 (12-3)

All involved functions can be generally nonlinear.
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12 Notations and lists

12.3.2  Tabular notation

For linear or quadratic functions a tabular form is applied within this study. This form
enables to display symmetries and dual dependencies between variables.

Table 12-9 Tabular notation of optimization problems

X4 Xo Xn 1 result
objective a, ( k1 | koo | .. Ka | C ) > Min
Subsidiary 1 d1 aq ( k11 k12 k1n Cq ) = 0
Subsidiary 2 d, as ( Ko1 Koo Kon Co ) < 0
subsidiary m| dp, am ( Km1 | Km2 Kmn | Cm )< 0

kz1---kzm knm

a,, ai...am

Cz, C1...Cm

number of design variables

number of subsidiary conditions

vectors of primal optimization variables (design variables)
vector of dual optimization variables

coefficients of the objective function or subsidiary conditions
multipliers of the objective function or subsidiary conditions

constant values of the objective function or subsidiary conditions
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12 Notations and lists

12.4 List of figures
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Akashi-Keikyo Bridge, Japan 9
Base isolated high rise building at Tokyo Institute of Technology, Japan 10
Plastic design vs. isolation 13
General body motion 39
Motion of a line segment 39
Difference in the strain measure in the initial and current system 40
Elongation of a line element in current and initial coordinates 40
Differences in nominal and logarithmic strain measures for a linear force/
displacement relationship 50
Example weight function 60
Hardening concepts 72
Linearization of plasticity conditions 73
Comparison of geometric linear and nonlinear calculation of an extremely loaded
shell structure 80
Integration over bounds using coordinate rotations into the Bernoulli-plane 90
Model of a polygonally bounded cross section 92
[lustration of cross section discretization as a fiber or layer model, using
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Example: Application of nonlinear material laws in layer models of composite
cross sections 95
Derivation of segment models, using fiber or equivalent beam discretizations 97
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Examples for composite structures 103
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analysis at Load level 1 120
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Example: Tuned mass damper 126
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Example: Application of response spectrum method for the retrofit with cable

braces 127
Comparison of equivalent displacement and energy approaches for the derivation
of the reduction factor 129
Example: Application of the reduction coefficient method 129
Example: Results from linear calculation obtained with spectrum reduction
(R=2.0) 130
Example: Cross-section behavior for a fixed reinforcement 132
Definition of equivalent stiffness 133
Equivalence of responses in viscously and hysteretically damped systems 135
Dependency of equivalent damping on ductility and stiffness ratio 135
Example: Design of MDOF structure using equivalent linearization 139
Example: Moment envelope for the elastic and inelastic systems 139
Example: Solution space; Dependency of the curvature and system ductility on
the stiffness multiplier 140
Base isolation basic devices and combined reaction 141
Typical base isolation model assumptions 142
Elasto plastic analysis model for base isolated structures 142
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Example: Comparison of maximum deformations and accelerations for SDOF
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spectrum reduction coefficients 144
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Decreasing capacity due to cyclic action 200

Principle of signal reduction corresponding to the number of re-plastifications n
202
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205
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213
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Example: Time history analysis, case 1.) impulsive load, case 2.) transient
(seismic) load 236
Shape functions for artificially generated time history plots 241
Example: Compound envelope function 244
Comparison of different period-independent reduction coefficients 254
Comparison of reduction concepts for damping ratio of 30% 255
Composition of multi-linear material law out of several elastic perfectly-plastic
bodies 259

Penetration of the retaining wall for modification of the mechanical parameters
268

Pounding against stops, destructive or non-destructive variant 268
Example Pounding SDOF: Capacity spectrum analysis 269
Example Pounding 10-DOF: System configuration 270
Example Pounding 10-DOF: Response for conventional time history set 271
Example 1.): Determination of responses using given base isolation parameters K
and () 282
Example 2.): Determination of responses using given base isolation parameters A
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Example 3.): Determination of responses within a decision area 283
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Determination of elastic limit resistance and limit load factor (Poisson formulati-
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Steps for determination of elastic limit load factor (Lagrange formulation) 156
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analysis) 197
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Elastic analysis and derivation of the reduced envelope for strategy based on
response spectrum analysis 210
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Optimization problem for implicit time integration (Castigliano approach) 231
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