Technical Report manuscript No.
(will be inserted by the editor)

David Exner - Erich Bruns - Daniel Kurz -

Oliver Bimber

Anselm Grundhofer -

Fast and Reliable CAMShift Tracking

Abstract CAMShift is a well-established and funda-
mental algorithm for kernel-based visual object tracking.
While it performs well with objects that have a simple
and constant appearance, it is not robust in more com-
plex cases. As it solely relies on back projected proba-
bilities it can fail in cases when the object’s appearance
changes (e.g. due to object or camera movement, or due
to lighting changes), when similarly colored objects have
to be re-detected or when they cross their trajectories.
We propose extensions to CAMShift that address and re-
solve all of these problems. They allow the accumulation
of multiple histograms to model more complex object ap-
pearance and the continuous monitoring of object identi-
ties to handle ambiguous cases of partial or full occlusion.
Most steps of our method are carried out on the GPU
for achieving real-time tracking of multiple targets simul-
taneously. We explain an efficient GPU implementations
of histogram generation, probability back projection, im-
age moments computations, and histogram intersection.
All of these techniques make full use of a GPU’s high
parallelization.

Keywords Kernel-Based Tracking, CAMShift, Ap-
pearance Modeling, Re-Detection, Object-Identification,
Real-Time

1 Introduction

The CAMShift algorithm [1] was derived from the ear-
lier Mean Shift algorithm [2] and is a simple, yet very
effective, color-based tracking technique. It is applied as
basic component in many advanced trackers.

David Exner, and Anselm
Grundhofer
Bauhaus-University Weimar, Germany

E-mail: {firstname.lastname}@medien.uni-weimar.de

Oliver Bimber

Bauhaus-University Weimar, Germany
Johannes Kepler University Linz, Austria
E-mail: oliver.bimber@jku.at

Erich Bruns, Daniel Kurz,

CAMShift essentially climbs the gradient of a back-pro-
jected probability distribution computed from re-scaled
(to a range of [0, 1]) color histograms to find the nearest
peak within an axis-aligned search window. With this,
the mean location of a target object is found by comput-
ing zeroth, first and second order image moments

Moo =Y > Plx,y), (1)
My = ZZJTP(%?J); Mo, = ZZyP(J:,y), (2)
Mo = szzp(l’ay); Moz = ZZZﬁP(l’,y)v 3)

Ty

where P(z,y) = h(I(x,y)) is the back projected proba-
bility distribution at position z,y within the search win-
dow I(z,y) that is computed from the histogram h of I.
The target object’s mean position can then be computed
with

- Mo _ Mo, (4)
c MOO y Ye MOO)
while its aspect ratio
M
ratio = xf?o/Moz, (5)
ye?
is used for updating the search window with
width = 2Myo - ratio; height = 2Mgyg /ratio. (6)

The position and dimensions of the search window are
updated iteratively until convergence.

One of the main drawbacks of standard CAMShift track-
ing is, that it is prone to tracking failures caused by
objects with similar colors. The reason for this is that
only the peak of back-projected probability distribution
is tracked without paying attention to color composi-
tion. For the same reason, objects with similar colors can
not be distinguished. Stable tracking despite appearance
changes (e.g., due to lighting or perspective) and par-
tial or full occlusion, and re-detection of lost objects are

David Exner et al.

other problems of standard CAMShift.

Overview and Contribution: The remainder of this
article is organized as follows: Section 2 reviews the re-
lated work and distinguishes our approach from exist-
ing ones. Section 3 explains our extensions to the basic
CAMShift algorithm as outlined above. We describe how
to accumulate multiple histograms for making CAMShift
more robust against appearance changes (section 3.1),
how to support object identification for tracking multi-
ple targets in cases of partial of full occlusion (section
3.2), and how to realize a fast and reliable re-detection
of lost targets (section 3.3). Section 4 presents a GPU
implementation of our extended CAMShift tracker that
enables the simultaneous and robust tracking of multiple
targets in real-time. In particular, we explain how his-
tograms can be generated fast (section 4.1), how proba-
bility distributions can efficiently be back-projected (sec-
tion 4.2), how image moments can be computed in paral-
lel 4.3, and how histogram intersection can efficiently be
carried out on the GPU (4.4). Section 4.5 summarizes
how all these components interplay — partially on the
GPU and partially on the CPU. Finally, section 5 eval-
uates our approach, and compares it to the CAMShift
implementation of OpenCV, which is most commonly
applied. We compare our extended GPU CAMShift with
both — the standard CPU implementation as available in
OpenCV, and our own GPU re-implementation of stan-
dart CAMShift.

2 Related Work

Since its introduction as a technique for face tracking,
CAMSHhift has been object to a variety of modifications
to accommodate other tracking applications.

An adaptive background model was proposed in [4] for
tracking targets in front of similar backgrounds.

Prior to histogram back-projection, multidimensional his-
tograms have been weighted with monotonically decreas-
ing kernels in [3] to reduce the influence of similar back-
ground colors.

Similar to this, hue-saturation and saturation-value color
spaces have been applied in [5] for computing joint prob-
ability density distributions to model human faces and
hair, respectively.

An adaptive histogram computation for CAMShift track-
ing has been introduced in [6]. This allow tracking an
object with changing appearance. In order to avoid back-
ground pixels to negatively influence the histogram, it is
only updated when the back projected probabilities are
excellent (i.e., when the objects track is clear). In cases
the object appearance changes rapidly, however, the his-
togram is not updated and the objects track is lost.

3 Extended CAMShift Tracking

In this section, we describe several extensions to the stan-
dard CAMShift algorithm for making it more robust
against similar object colors and appearance changes,
and to enable object identification and re-detection of
lost objects.

Note, that each subsection validates the advantage of one
individual extension only, while all other extensions are
always enabled and used in addition. Comparing against
standard CAMShift, that does not incorporate any of
these extensions will make the full benefit of our ap-
proach clear. This comparison is presented in section 5.

3.1 Accumulating Multiple Histograms

Using a single histogram is a reasonable choice to rep-
resent simple objects, such as ones that have the same
appearance on every side or objects that do not change
their appearance over time (e.g., through different light-
ing). If objects have a more complex appearance, stan-
dard CAMShift will most likely fail. The reason for this
is, that the back-projected probabilities are low for under-
represented appearance conditions, such as differently
colored sides of an object.

Our solution is simple, but effective: We utilize an arbi-
trary number of histograms to model different appear-
ances of target objects. For every appearance condition
that strongly varies in color, we pre-compute and store
one re-scaled ([0, 1]) reference histogram. In addition, we
sum all reference histograms that belong to the same ob-
ject, and re-scale the result back to [0, 1].

During run-time, this accumulated histogram is then used
for computing the probability back-projection of the cor-
responding object, while the individual reference his-
tograms are only applied for object identification, as ex-
plained in section 3.2. Figure 1 illustrates the difference
between tracking with a single reference histogram and
with multiple accumulated histograms to consider differ-
ent appearances of the same object.

Accumulating multiple histograms for determining the
probability distribution of the same object provides an
ad-hoc and compact multi-view appearance representa-
tion. It does not cost additional performance, since the
histogram accumulation and re-scaling is computed off-
line. Additional reference histograms can be added and
deleted at any time for updateing the accumulated his-
togram.

3.2 Object Identification

In principle, CAMShift can track multiple objects simul-
taneously by converging individual search windows to
each corresponding target object. This is straight for-
ward, if the back-projected probabilities of all objects

Fast and Reliable CAMShift Tracking

e

il

2

Fig. 1 Left two columns: If an object is tracked with only one
reference histogram, CAMShift fails if appearance changes
strongly (e.g., object is rotated (top rows) or the lighting con-
ditions change (bottom rows)). Right two columns: If two ref-
erences histograms are accumulated for the two correspond-
ing appearance conditions, CAMShift succeeds tracking the
object under both conditions. The respective lower rows visu-
alize the back-projected probability distribution for one his-
togram (computed for the left case) and for the accumulation
of both histograms.

are substantially different, or similar objects don’t over-
lap. A problem arises, however, when similar objects do
interact. Their back-projected probabilities then have al-
most the same values, which results in a drift as soon as
one object occludes or crosses the trajectory of another,
resembling object. In this case, the search window will
stay attached to the occluding object while the occluded
one is lost.

The problem of search window drift is inherent to many
probability-based trackers, such as standard CAMShift,
since these techniques only track the peak of a probabil-
ity distribution — not taking into account the composi-
tion of probabilities.

We solve this problem by continuously monitoring the
identity of every target to regain stable tracks after par-
tial or full occlusions: After successfully tracking an ob-
ject, a histogram of its search region is computed, re-
scaled and matched against the appearances reference
histograms (see section 3.1) of the tracked object via
histogram intersection.

Histogram intersection is defined by

B—-1
d(h,g) =" min(h(b), g(b)), (7)
b=0

where h(b) and g(b) are the values stored in the bins b
of the histograms of size B.

The best match with the target histogram ¢ among all
possible (m) reference histograms r;,0 < j < m is the
one that maximizes d(t,r;).

If the maximum of d(¢,r;) falls below a certain thresh-
old, the object’s track is marked lost and the re-detection

process is launched. This is explained in section 3.3.

Fig. 2 Upper row: Tracking with occlusion fails for standard
CAMShift if objects have similar colors (the box is tracked
while the bottle is used for interference). Lower row: Match-
ing histograms to monitor all objects supports partial or full
occlusion. The back-projected probability distributions are
shown in all cases. Center row: The same probability back-
projection is used for both cases.

The frame-by-frame computation, re-scaling and match-
ing of histograms for every object is an additional effort.
However, it provides far more stable tracks in cases of
occlusions than omitting the object identification. An
example is shown in figure 2, and in the accompanying
video.

3.3 Hierarchical Re-Detection

Since objects frequently become fully occluded and can-
not be monitored with the technique described above, or
temporarily leave the camera’s field of view, a reliable
method has to be employed to stably regain tracks as
soon as the objects reappear.

For a probability-based method, such as standard CAM-
Shift, the re-detection is likely to fail when —due to sim-
ilar colors— more than one back-projected probability
blob is present in the actual search region. The reason
for this is, that standard CAMShift always converges to
the largest blob of probabilities within that region.

To overcome this, we apply a hierarchical quad-tree re-
detection strategy. If one or multiple objects are lost, we
begin the re-detection with a search window that covers
the whole image. The zeroth moment of the actual search
windows serves as one exit condition for our recursion. If
it is substantially small, the object is not present within
its boundaries and further processing is skipped. Other-
wise, the region is split into four, and their moments are
recomputed.

In each quadrant, our extended CAMShift tracker is ap-
plied to re-detect the lost object. By doing so, the tracker
will, in all four cases, readjust all four search window
instances accordingly. If these search windows converge

David Exner et al.

to the same region as the search window of their par-
ent level, and the best match of the identified object is
above a threshold, we stop the recursion. In this case, a
lost object was re-detected within this region, its track is
marked as valid again and tracking continues normally.
Otherwise, the recursive subdivision continuous and is
applied to each of the four quadrants.

4 GPU Implementation

This section explains how various aspect of our extended
CAMShift tracker can be optimally implemented to reach
real-time performance. Thereby, we try to achieve an op-
timal load-balancing between CPU and GPU, reduce up-
and down-load sizes of exchanged data structures, and
take as much advantage as possible of SIMD parallel pro-
cessing on the GPU. Our techniques are described for the
OpenGL API and its programmable shading pipeline.

4.1 Histogram Generation

CAMShift makes heavy use of 2D or 3D color histograms
(e.g., HSV, YUV, or RGB) for computing back-projected
probability distributions. Therefore, a fast implementa-
tion of histogram generation is essential for a fast CAM-
Shift implementation.

Given that a histogram generation is merely a counting
and sorting of pixels corresponding to their values, ver-
tex or geometry shaders are efficient tools for supporting
this process in real-time (cf. figure 3).

In principle, we can assign a vertex to each pixel in
the camera image and store it in a vertex buffer object
(VBO). For a given search window region for which a
histogram has to be computed, the corresponding list of
indexed vertices are rendered by the GPU. We assign
a texture coordinate to each vertex that links it to its
corresponding pixel position in the camera image tex-
ture. This texture coordinate serves as a look up of the
actual color value linked to each vertex. Depending on
these values the vertices’ positions are transformed to
the according bin position of a texture bound to a frame
buffer object (FBO) which will store the histogram data.
The alpha value of each transformed vertex is set to 1.0,
which, in combination with additive alpha blending, is
used to fill the bins of the histogram. After rendering
the vertices of all required pixels, the histogram is com-
plete, but still not scaled to [0,1]. An occlusion query
allows to count the number of valid histogram entries
during the generation. This query returns the number of
pixels that pass the rasterizer. All pixels with invalid col-
ors (e.g. colors with undefined hue or saturation values)
are not written to the histogram texture in the FBO,
and are therefore not rasterized and counted. After the
histogram is complete, we can use the final count deter-
mined by the occlusion query to subsequently re-scale

the histogram by means of a fragment shader.

Since the size of the VBO is constant, it has to be initial-
ized only once while the indices of vertices that need to
be rendered are computed on the fly — depending on the
actual search window. Obviously the number of rendered
vertices influences the processing time of the histogram
generation. This has multiple reasons: The required ad-
ditive blending step only can be carried out sequentially
for each histogram bin and the number of shading units
of the used GPU constrains the number of vertices which
can be processed in parallel. The latter can be optimized
for our approach in a way similar to the method proposed
in [7]. We render only every ith vertex (in both dimen-
sions) instead a vertex for each individual pixel. This
reduces the computational load on the vertex shader.
For each incoming seed vertex a geometry shader then
generates all vertices for the corresponding sub-region
(i.e., the seed vertex and its i2-1 neighboring vertices at,
for example, the lower right area of each seed vertex, as
shown in figure 3). This is be done in parallel for each
seed vertex, until the number of geometry shader units is
exceeded. The optimal choice of ¢ is therefore related to
the number of available geometry shader units. For uni-
fied shaders, this number is not constant, but depends
on the actual load balancing of the GPU. Empirically
we found that an 4 of 4 is optimal in our case (i.e., 15
neighbors per seed vertex).

While HS and YU histograms are 2D, RGB histograms
are 3D. However, we still store 3D histograms in 2D tex-
tures by tiling 2D color planes. A 16x16x16 RGB his-
togram, for instance, would be tiled into 16 (indexing B)
16x16 RG color planes. For this example, they are in-
dexed with the simple modulo operation z = B % 15/4
and y = B * 15%4, where 0 < B < 1 is the blue color
value.

4.2 Probability Back-Projection

The back-projection of probability distributions is car-
ried out through indexing the histogram texture by using
the pixel colors (e.g., RGB, HS, or YUV, depending on
the histogram type being used) as texture coordinates. If,
as explained in section 3.1, more than one reference his-
togram exist, the corresponding accumulated histogram
is indexed. This is done in an individual fragment shader.

4.3 Computations of Image Moments

The computation of image moments in each iteration
is another crucial step of the CAMShift process, as ex-
plained in section 1.

Our GPU implementation applies a similar strategy as
explained for the histogram generation in section 4.1.
For every ith pixel in the given search window region of
a back-projected probability distribution texture, we di-
rectly render a vertex with texture coordinates that point

Fast and Reliable CAMShift Tracking

(2) occlusion query (counts number of histogram entries)

1

normalization

(fragment shader)

TRl 0 O H 0 0 . O . 0 ‘E".'_:_j' '.'_;'_)'.' '6:_';)'.' '6:;'): ':
n 3 g o[[Te P sl 2wl 2l 7
7! 7] H ._~;. ._._). ._h). ._~;. H

R NOZ S0 AURRCRNORED ro (o (o [
oo re [fefol T fsl ot 1o LA LA AT A
E g e TN | N [N
| search Bl B : OEED N P P P N A P A e
= CEnEaC=a0E
N OCREOEEOEEOEEOEEOREOREC i e el s s el s s il s s
N | N | N [N

main memory camera image texture (HSV) search window in geometry shader

Fig. 3 Histogram generation on GPU.

to the associated pixel. The probability of this seed pixel
is summed with the probabilities of the remaining -1
neighbors using a vertex shader. Within this neighbor-
hood, pixels are accessed by iterating texture look-ups
in a loop. To compute all five image moments at the
same time, as in equations 1,2 and 3, the z, y, 2 and
y? factors are directly multiplied during summation and
the final five values are stored in the RGBRG channels
of two 1x1 textures of a single FBO. Since all seed ver-
tices are actually rendered to the same FBO pixel (i.e.,
a texel of one of the two textures that are bound to the
FBO), again, additive alpha blending is applied to sum
the single contributions of all seed vertices within the
moment-individual color channels.

The final result are the values of the five image moments
for the entire search window stored in the RGBRG chan-
nels of the two 1x1 textures, assigned to one FBO pixel.
Only these five values have to be read back to the CPU,
thus minimizing data transfer between VRAM to normal
RAM. This process is illustrated in figure 4.

o[(ol [el - Te]-K"

r HC S A B S I B S A R S

o TR T I T 1R T T8I o[| [o] [To[] sl 7 71 7 !
VN | N [N [N

: o DZE0 E.'_-_\' o [o-k .____\-:
eE e e e o[s 1 fs| 1 ls R o e el B
g % [N PR U NP R [N R M N M
% g D ENED . E._+\° o [of -k o E
= s s s Tl s T LR A | A | A
H N Nt [N [N H

search

E window % 4 4 4 4

DRI

R G B

2|z
R G B

two 1x1 textures storing moments Moo, Mio,Mo1,Mz20,Moz

CPU main memory

Fig. 4 Computation of image moments on GPU.

Once again, a good choice of i (i.e., the seed pixel res-
olution in both dimensions) is important to optimally
exploit the GPUs parallelization. Each seed vertex can
be processed in parallel until the number of vertex shader
units is exceeded. The number of per-vertex loop itera-
tions sets another limit, as each loop invokes costly tex-
ture lookups. Similar to the histogram generation (sec-
tion 4.1), the ideal number of seed vertices is related to
the number of available vertex shader units. Again, for
unified shaders, this number is not constant, but depends

unnormalized histogram texture (using alpha blending) normalized histogram texture

on the actual load balancing of the GPU. Empirically we
found that an i of 8 is optimal in our case (i.e., 63 neigh-
bors per seed vertex).

4.4 Histogram Intersection

To compute the intersection of two histograms (eqn. 7),
we also apply a VBO containing as many vertices as his-
togram bins that each point to the coordinates of the bins
of the two histogram textures. A vertex shader renders all
of these vertices into the same FBO pixel (i.e., a texel of
a 1x1 texture that is bound to the FBO), where the min-
imum of both corresponding bin entries are summed over
all vertices (i.e., bins) through additive alpha blending.
The result of the histogram intersection is then stored in
this single FBO pixel, which can efficiently be read-back
to the CPU. This is illustrated in figure 5.

' 1
H
H
H
H
H
'
H
PO
H)
! '
\J ’
CPU main memory

Fig. 5 Histogram intersection on GPU.

precomputed reference histogram texture 1x1 texture

A lower resolution sampling of the VBO as it is the case
for computing the image moments or for generating the
histograms is not necessary in this case, since the his-
togram resolutions are significantly lower than the image
or search window resolutions.

4.5 Summary of Steps

Figure 6 summarizes the sequence of all steps that are
carried out on the CPU as well as on the GPU. Initially,
the reference histograms of all objects under all appear-
ance conditions are uploaded to and stored on the GPU.
Initially, the reference histograms of all objects under all

6 David Exner et al.
GPU uploads precomputation of
and downloads histograms for all objects
................................. - e e e e e e e e e e e —————————— -
|' 1 1 : :
1 next frame capture and upload ! camera | |color space conversion| ! 1
1 a T o I
' camera image : image (RGB) 1 RGB to HSV | " :
1
' = '
] , : | camera image s '
, 1 1 ! texture (HSV) ey
1 . |
1 next object start ' objectiD ! back-project : _Cz L :
, tracking 1 . probabilities accumulated histogram =
1 1 U + 1
1 . -
. 1 1 | back-projected 5 3 '
1 1 pees
! | robabilities texture ==l
X N 1 1 p I~
: hierachical SW update 1 search 1 compu 0 RN
' re-detection search window | window W) ! i | s o N
' " - 4, image | TS
: not converged converged 1 moments 1 c = I
1 1 1 I f_U & 1
1 generate search " i 3 ° I
, histogram 1 window (SW) ! 2 1
! el 1
1 1
1 . c
1 for all objects : : X histogram of = :
: I - - - 1 |] current search window 1
. match not found identify 1__objectID 1 match] '
1 object : : histogram Lt individual histograms of .
! ., __match 7 X the current object f
: foundmatch 1 probability X 1
1
1 ! ! D vertex-/fragment shaders
A 1 1 ! !
: SW, Object ID 1 1 E vertex-/fragment & geometry shaders | !
1 1 ! !
1
1 CPU " 1 shader programs : buffers on the GPU }'
\
N oo oo oo o omm e e e e e e e e e e Ee e e e e e e e e e omm omm o ommomm ?) moemowm owm e e oem owm omm mm omm o em Em E e e e e e Em e Ee mm m e e Em e e e e e e o

Fig. 6 Overview of CPU and GPU steps of extended CAMShift with up- and downloads. Computation of image moments,
histogram generation, and histogram intersection are illustrated in more detail in figures 3 - 5.

appearances are computed, re-scaled and stored to the
GPU. Additionally, the accumulated histograms of all
objects are computed, re-scaled and also stored.

During runtime, each camera image is uploaded and op-
tionally converted into the desired color space (e.g. HSV,
as shown in the examples). For each target object, the
CPU triggers the tracking process, and the object indi-
vidual probability distribution is back-projected on the
GPU. The CAMShift iterations are managed on the CPU,
while all time consuming operations are carried out on
the GPU. For a given search window (full camera im-
age initially), the image moments are computed and re-
turned. The CPU computes the updated position and
size. If these parameters have converged (compared to
previous iterations), the histogram of the search window
area is generated and intersected with all reference his-
tograms to identify the object. If a match was found, the
object has been identified and its position and size are de-
termined. If no match was found, the object’s track was
lost and the hierarchical re-detection is triggered for this
object. The same applies, if the search window does not
converge. The re-detection recursion is also managed on
the CPU to update all hierarchical search sub-windows.
The recursion terminates as soon as one of the two exit
conditions (i.e., low zeroth moment or convergence of
search window in two hierarchy levels) are fulfilled, as
explained in section 3.3. This is repeated for each target
object and each camera image.

5 Evaluation

Figures 7 and 8 illustrate the the timings that were taken
on a Core2Duo 3GHz PC with 3.25GB RAM (CPU) and
a NVIDIA GeForce GTX 285 with 1024 MB VRAM
(GPU). CPU and GPU are comparable mid-level de-
vices.

The color coding indicates which portions of the algo-
rithm has to be executed per frame and per target object,
and which ones are variant to the search window size or
to the histogram resolution. In all cases, CAMShift was
computed in HSV color space.

We evaluated a fixed VGA image resolution, a HS his-
togram resolution of 32x6 bins, and tested against dif-
ferent search window sizes.

On the GPU, we timed our extended CAMShift tracker
and a re-implementation of a standard CAMShift tracker
without extensions, and with and without color space
conversion. On the CPU, we timed standard CAMShift
(OpenCV implementation) with and without color space
conversion.

Our extended CAMShift on the GPU outperforms the
standard CAMShift on the CPU by a factor of approxi-
mately 7.2-13.0 (10.3 on average). To allow a direct com-
parison, all timings are for one tracked object and one
reference histogram. For extended CAMShift, the pro-
cessing time for probability back projection, image mo-
ments computation and object identification increases

Fast and Reliable CAMShift Tracking

CAMShift (GPU)

0,0078576 _ 0,0078576 _ 0,0078576 _ 0,0078576

0,0078576 0,0078576 0,0078576 0,0078576 0,0078576 0,0078576 _ 0,0078576 0,0078576

RGB2HSV (image resolution: 640x480) 0,2524690 0,2524690 0,2524690 0,2524690

0,2524690 0,2524690 0,2524690 0,2524690 0,2524690 0,2524690 0,2524690 0,2524690

0,1772700 0,1772700 0,1772700 0,1772700

0,1772700 0,1772700 0,1772700 0,1772700 0,1772700 0,1772700 0,1772700 0,1772700

0,2128640 0,2214190 0,2204340 0,2432310

0,2653210 0,2618590 0,3076920 0,3422530 0,3750360 0,4403180 0,4474350 0,4528160

histogram generation 0,2066480
0,0999987

0,1613750

0,2117740
0,0999987
0,1613750

0,2496630
0,0999987
0,1613750

0,2925430
0,0999987
0,1613750

0,3946590
0,0999987
0,1613750

0,5049310
0,0999987
0,1613750

0,5942130
0,0999987
0,1613750

0,6849230
0,0999987
0,1613750

0,8221900
0,0999987
0,1613750

1,0227400
0,0999987
0,1613750

1,0470900
0,0999987
0,1613750

1,2250700
0,0999987
0,1613750

total (extended CAMShift)
total (standard CAMShift with RGB2HSV)
total (standard CAMShift without RGB2HSV)

1,1184823
0,6504606
0,3979916

1,1321633
0,6590156
0,4065466

1,1690673
0,6580306
0,4055616

1,2347443
0,6808276
0,4283586

CAMShift (CPU)

1,3589503
0,7029176
0,4504486

1,4657603
0,6994556
0,4469866

1,6008753
0,7452886
0,4928196

1,7261463
0,7798496
0,5273806

1,8961963
0,8126326
0,5601636

2,1620283
0,8779146
0,6254456

2,1934953
0,8850316
0,6325626

2,3768563
0,8904126
0,6379436

RGB2HSV (image resolution: 640x480) 12,8759000 12,8759000 12,8759000 12,8759000 12,8759000 12,8759000 12,8759000 12,8759000 12,8759000 12,8759000 12,8759000 12,8759000

1,6248200 1,6248200 1,6248200 1,6248200 1,6248200 1,6248200 1,6248200 1,6248200 1,6248200 1,6248200 1,6248200 1,6248200
image 0,0590979 0,0703719 0,1300480 0,2223960 0,4238720 0,5958240 0,8002350 2,2153200 3,0853400 3,0550700 3,1391800 2,5212200
total (standard CAMShift with RGB2HSV) 14,5598179 14,5710919 14,6307680 14,7231160 14,9245920 15,0965440 15,3009550 16,7160400 17,5860600 17, 17, 17,0219400
total (standard CAMShift without RGB2HSV) 1,6839179 1,6951919 1,7548680 1,8472160 2,0486920 2,2206440 2,4250550 3,8401400 4,7101600 4,6798900 4,7640000 4,1460400

per frame (independent of #objects, dependent on image resolution) dependent on search window size

Fig. 7 Timings of different components of extended/standard CAMShift on GPU and standard CAMShift on CPU.

linearly with each additional object. The latter also in-
creases linearly for each additional reference histogram.
The main bottleneck of standard CAMShift on the CPU
is the color space conversion. Disabling color space con-
version, however, our own GPU implementation of stan-
dard CAMShift (i.e., without the extensions explained
in section 3, but with GPU implementations of the re-
maining parts, as described section 4) is still by a factor
of approximately 4.2-8.4 (5.7 on average) faster than the
CPU implementation of standard CAMShift.

20
15

108

s 4.—//

0

66x66 75x75 110x110 150x150 210x210 254x254 300x300 360x360 425x425 500x480 525x480 640x480

search window size

-+ GPU ext. CAMShift # GPU std. CAMShift (with RGB2HSV)
CPU std. CAMShift (with RGB2HSV) - CPU std. CAMShift (without RGB2HSV)

Fig. 8 Overall performance of CPU/GPU stan-
dard/extended CAMShift with respect to an increasing
search window size.

GPU std. CAMSHhift (without RGB2HSV)

Figure 8 plots the overall performances of the individual
CPU and GPU variations for different search window
sizes.

Compared to standard CAMShift, the extensions do cost
extra performance. Our extended CAMShift is by a fac-
tor of approximately 1.7-2.7 (2.1 on average) slower, than
our implementation of standard CAMShift on the GPU.
Yet, these extensions make CAMShift tracking signifi-
cantly more reliable. The accompanying video compares
the robustness of standard CAMShift and extended CAM-
Shift under different conditions.

References

1. Bradski, G.R.: Computer Vision Face Tracking For Use in
a Perceptual User Interface. Intel Technology Journal Q2
(1998)

2. Cheng, Y.: Mean Shift, Mode Seeking, and Clustering.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 17(8), 790-799 (1995)

3. Allen, J.G., Xu, R.Y.D., Jin, J.S.: Object tracking us-
ing Cam$Shift algorithm and multiple quantized feature
spaces. Proc. of the Pan-Sydney area Workshop on Visual
Information Processing, 3-7 (2004)

4. Stolkin, R., Florescu, I., Kamberov, G.: An Adaptive
Background Model for CamShift Tracking with a Mov-
ing Camera. Proc. of the 6th International Conference on
Advances in Pattern Recognition (2007)

5. Xiang, G., Wang, X.: Real-time follow-up head tracking
in dynamic complex environments. Journal of Shanghai
Jiaotong University (Science), 14(5), 593-599 (2009)

6. See, A., Bin, K., Kang, L..Y.: Face detection and tracking
utilizing enhanced CamShift model. International Journal
of Innovative Computing, Information and Control (2006)

7. Diard, F.: Using the Geometry Shader for Compact and
Variable-Length GPU Feedback. GPU Gems 3, chap. 41,
Addison-Wesley Professional, 895-897 (2007)

