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Abstract

Increasingly powerful hard- and software allows for the numerical simulation of complex
physical phenomena with high levels of detail. In light of this development the definition
of numerical models for the Finite Element Method (FEM) has become the bottleneck in
the simulation process. Characteristic features of the model generation are large manual
efforts and a de-coupling of geometric and numerical model. In the highly probable case
of design revisions all steps of model preprocessing and mesh generation have to be re-
peated. This includes the idealization and approximation of a geometric model as well as
the definition of boundary conditions and model parameters. Design variants leading to
more resource-efficient structures might hence be disregarded due to limited budgets and
constrained time frames.

A potential solution to above problem is given with the concept of Isogeometric Analysis
(IGA). Core idea of this method is to directly employ a geometric model for numerical
simulations, which allows to circumvent model transformations and the accompanying
data losses. Basis for this method are geometric models described in terms of Non-uniform
rational B-Splines (NURBS). This class of piecewise continuous rational polynomial func-
tions is ubiquitous in computer graphics and Computer-Aided Design (CAD). It allows the
description of a wide range of geometries using a compact mathematical representation.
The shape of an object thereby results from the interpolation of a set of control points by
means of the NURBS functions, allowing efficient representations for curves, surfaces and
solid bodies alike. Existing software applications, however, only support the modeling
and manipulation of the former two. The description of three-dimensional solid bodies
consequently requires significant manual effort, thus essentially forbidding the setup of
complex models.

This thesis proposes a procedural approach for the generation of volumetric NURBS
models. That is, a model is not described in terms of its data structures but as a sequence
of modeling operations applied to a simple initial shape. In a sense this describes the
“evolution” of the geometric model under the sequence of operations. In order to adapt
this concept to NURBS geometries, only a compact set of commands is necessary which,
in turn, can be adapted from existing algorithms. A model then can be treated in terms of
interpretable model parameters. This leads to an abstraction from its data structures and
model variants can be set up by variation of the governing parameters.

The proposed concept complements existing template modeling approaches: templates
can not only be defined in terms of modeling commands but can also serve as input ge-
ometry for said operations. Such templates, arranged in a nested hierarchy, provide an
elegant model representation. They offer adaptivity on each tier of the model hierarchy
and allow to create complex models from only few model parameters. This is demon-
strated for volumetric fluid domains used in the simulation of vertical-axis wind turbines.
Starting from a template representation of airfoil cross-sections, the complete “negative
space” around the rotor blades can be described by a small set of model parameters, and
model variants can be set up in a fraction of a second.

NURBS models offer a high geometric flexibility, allowing to represent a given shape
in different ways. Different model instances can exhibit varying suitability for numerical
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analyses. For their assessment, Finite Element mesh quality metrics are regarded. The
considered metrics are based on purely geometric criteria and allow to identify model
degenerations commonly used to achieve certain geometric features. They can be used
to decide upon model adaptions and provide a measure for their efficacy. Unfortunately,
they do not reveal a relation between mesh distortion and ill-conditioning of the equation
systems resulting from the numerical model.

Keywords NURBS, Isogeometric Analysis, Procedural modeling, Templates, Mesh qual-
ity, Vertical Axis Wind Turbine



v

Zusammenfassung

Die zunehmende Rechenleistung moderner Hardware erlaubt, in Verbund mit effizienten
Algorithmen und leistungsfähiger Software, die numerische Simulation immer komplex-
erer Fragestellungen. Dadurch können Modelle in höheren Detaillierungsgraden betrach-
tet werden. Infolge ihres hohen manuellen Aufwandes entwickelt sich dabei die Generati-
on numerischer Modelle für die Methode der Finiten Elemente (FEM) zum Flaschenhals in
der digitalen Prozesskette. Die im Prozess durchgeführte Idealisierung und Approximation
geometrischer Modelldaten führt unweigerlich zu Informationsverlusten und zur Entkopp-
lung von Geometrie und numerischem Modell. Im Falle von – im Ingenieurwesen durchaus
häufigen – Planrevisionen müssen alle Schritte der Datenaufbereitung und der Modellver-
netzung, sowie der Definition von Materialdaten und Randbedingungen neu durchgeführt
werden. Das ist teuer und zeitaufwändig. Modellvarianten, die in effizienteren Strukturen
resultieren könnten, werden so unter Umständen nicht in Betracht gezogen.

Das Konzept der Isogeometrischen Analyse (IGA) verspricht eine Vereinfachung der ge-
nannten Vorgehensweise. Kernidee des Verfahrens ist die direkte Verwendung eines geo-
metrischen Modells für numerische Simulationen. Dadurch können Modelltransformatio-
nen umgangen und Datenverluste vermieden werden. Grundlage hierfür sind Modelle
auf der Basis von Non-uniform rational B-Splines (NURBS), einer Klasse stückweise ste-
tiger, gebrochenrationaler Funktionen. Diese besitzen eine weite Verbreitung im Bereich
der Computergrafik und des Computer-Aided Design (CAD), da sie die Modellierung einer
weiten Spanne geometrischer Objekte erlauben. Zudem stehen stabile und effiziente Al-
gorithmen für ihre Manipulation zur Verfügung. Die Geometrie ergibt sich dabei aus der
Interpolation einer Reihe von Kontrollpunkten durch ihnen zugeordnete Basisfunktionen.
NURBS fanden bisher nur Anwendung zur Beschreibung von Kurven und Freiformflä-
chen, die Methoden und Algorithmen für ihre Modellierung sind dementsprechend auf
diese Formen beschränkt. Die Beschreibung dreidimensionaler Körper, so genannter So-
lids, erfordert hingegen die manuelle Definition der zugrunde liegenden Datenstrukturen.
Das ist fehleranfällig und – insbesondere bei komplexeren Modellen – mühselig.

Zur Unterstützung dieses Prozesses wird in dieser Arbeit ein prozeduraler Ansatz ge-
wählt, das heißt, volumetrische Modelle werden nicht durch ihre Datenstrukturen be-
schrieben, sondern als eine Sequenz von Modellierungsoperationen, die auf eine einfache
Grundgeometrie angewandt werden. Man beschreibt also gewissermaßen die „Evolution“
eines geometrischen Modells unter den Modellierungsschritten. Die Übertragung dieses
Konzepts auf NURBS-Geometrien erfordert nur eine geringe Menge an Basis-Operationen,
zum Beispiel Koordinatentransformationen oder Netzverfeinerung. Diese sind Grundbe-
standteile existierender Modellierungssoftware oder lassen sich für die Modellierung vo-
lumetrischer Geometrien erweitern. Die Darstellung durch Operatoren und Templates ab-
strahiert von den zugrundeliegenden Datenstrukturen und erlaubt die Modellbehandlung
in Form semantisch gehaltvoller Parameter. Deren Variation erlaubt die schnelle Erzeu-
gung von Modellvarianten.

Der hier beschriebene Ansatz ergänzt bestehende Ansätze der Template-Modellierung
insofern, als dass Templates nicht nur in Form von Modellierungskommandos beschrieben
werden können, sondern dass sie auch als Input für Sequenzen von Operationen die-
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nen können. Die hierarchische Verschachtelung von Templates erlaubt eine elegante Dar-
stellung komplexer Geometrien schon durch wenige Modellparameter. Zudem ermöglicht
dies Modelladaptionen auf jeder Stufe der Modellhierarchie, was anhand von Modellen
für die Fluid-Struktur-Interaktion von Windenergieanlagen demonstriert wird. Ausgehend
von Templates für die Flügelprofile kann der gesamte „Negativraum“ um die Rotorblätter
durch eine Handvoll Parameter beschrieben werden. Die Auswertung der Templates be-
nötigt dabei nur den Bruchteil einer Sekunde.

Zur Bewertung der Modellqualität der hier beschriebenen Geometrien werden eine Rei-
he von Netzqualitäts-Metriken aus der FE-Literatur verwendet. Diese basieren auf rein
geometrischen Faktoren, zum Beispiel auf den Eigenschaften der Koordinatentransforma-
tionen die im Rahmen Isogeometrischer Analysen durchgeführt werden. Anhand einer
Reihe einfacher Beispiele wird das Verhalten der Metriken sowohl quantitativ als auch
qualitativ studiert. Diese identifizieren zuverlässig Netzverzerrungen die oft zum Errei-
chen bestimmter geometrischer Merkmale eingesetzt werden. Die Metriken bilden eine
Entscheidungsgrundlage für Modelladaptionen und lassen den Effekt dieser auf die Netz-
güte klar erkennen. Leider lässt sich kein Zusammenhang erkennen zwischen Netzverzer-
rungen und den Eigenschaften eines numerischen Modells, namentlich der Kondition der
Gleichungssysteme.

Schlagworte NURBS, Isogeometrische Analyse, Prozedurale Modellierung, Templates,
Modellqualität, Vertikalachswindturbine
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Symbols and abbreviations

Latin letters

ci, j Coefficients of the piecewise polynomial on the knot interval [ξ j,ξ j+1)
i, j, k (Discrete) grid coordinates, indices

x , y, z Physical coordinates
p, q, r Polynomial degrees

Ph Control point in homogeneous space
P Control point in physical space

Q̄,Q Point samples along airfoil profile curves
N p

i B-Spline function of degree p corresponding to point Pi

Ai Weighted B-Spline function corresponding to point Pi

Ri NURBS function corresponding to point Pi

h Homogeneous Coordinate
Rn n-dimensional space of real numbers
Pn n-dimensional homogeneous space
P Perspective projection
S Set of control points
N Mapping from the parametric NURBS domain to physical space
G Mapping from the biunit parent domain to the NURBS parameter space

JN Jacobian of the mapping N
JG Jacobian of the mapping G

fOdd y Oddy metric
f⊥ Orthogonality metric

fdet Determinant metric
fcond Condition metric
Ci jkl Components of the fourth-order constitutive tensor
u, ui Displacement field

δu,δui Virtual displacement field
t̄, t̄ i Boundary tractions

b, bi Body forces
n, n j Outward normal vector

E Young’s modulus
R Matrix of basis functions
C Matrix representation of the constitutive tensor
Dk Operator matrix for the infinitesimal strain kinematic
B Strain-displacement matrix
K Stiffness matrix
f Vector of external loads

xG Gauss point
s, t, u Gauss point coordinates
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Greek letters

ξ,η,ζ Parametric coordinates
Ξ,H,Z Knot vectors corresponding to ξ,η,ζ
Ωn n-dimensional domain in physical space
Ωn

e n-dimensional domain of a finite element
Ωd

G d-dimensional biunit domain for Gauss integration
Ω̄m m-dimensional parametric domain of NURBS functions
Γ Boundary of Ωn

Γt Neumann boundary
Γu Dirichlet boundary
εkl Components of the second-order infinitesimal strain tensor
δεkl Components of the virtual strain field
σi j Components of the second-order Cauchy stress tensor
ν Poisson’s ratio
σ Vector representation of the stress tensor
ε Vector representation of the strain tensor
δε Vector representation of the virtual strain
κ Condition number of the stiffness matrix

General notation

‖ · ‖2 l2 norm of a vector
‖ · ‖F Frobenius norm of a matrix

Abbreviations

CAD Computer-Aided Design
FE/FEM Finite Element Method

IGA Isogeometric Analysis
NURBS Non-uniform rational B-Splines

VAWT Vertical-Axis Wind Turbine
HAWT Horizontal-Axis Wind Turbine



1 Introduction

Numerical simulations using the Finite Element Method (FEM) are a fundamental part in
engineering design. Once being restricted to a posteriori failure analyses, this method is
now applied to study the influence of model parameters already during the design pro-
cess (Beall et al., 2003). This is made possible by the increasingly powerful soft- and
hardware that has become available to the engineers in recent years. Fueled by the de-
mands of the consumer electronics sector, multi-core processors, dedicated graphics chips,
and large quantities of memory have become commonplace even in desktop computers.
This allows for treatment of large numerical models and three-dimensional problems as
well as for consideration of coupled physical effects. However, whereas the actual solution
of the finite element model once represented the major part of the solution procedure it
is now the model setup that has become the bottleneck of the simulation process. Current
estimates state that about 80% of analysis time are spent on the generation of numeri-
cal models from Computer-Aided Design (CAD) geometries (Hughes et al., 2005). This is
due to the fact that automatic Finite Element mesh generation is possible only for certain
classes of problems. General cases, in contrast, require significant manual intervention on
behalf of the engineers (Shimada, 2006).

Engineering tasks possess a predominantly geometric character. The majority of the
shapes to be analyzed is nowadays provided in form of 3D CAD models (Sheffer and
Üngör, 2001). These cannot be used directly for numerical simulations but have to be pre-
processed and converted in multiple steps into an analysis-suitable representation (Sheffer
et al., 1997). The single phases of this process are illustrated in Figure 1.1.

The first step of this transformation sequence is concerned with the removal of “dirty
geometry”. These inconsistencies in the geometric model are a result of data losses during
model transfer and the incompatibility between the modeling software of different CAD
vendors (Beall et al., 2003), in particular with respect to the internal representation and
the handling of tolerances (Ibid.). As a consequence, CAD geometries often exhibit various
geometric errors such as gaps and overlaps, self-intersections, inverted faces, or degener-
ate surfaces (Ames et al., 1997; Beall et al., 2003; White et al., 2005). Understandably,
the demand for “healing software” is high.

The second step deals with geometric simplification and idealization. CAD models,
in general, serve multiple purposes of which numerical simulation is but an aspect. In-
stead they are created with manufacturing or visualization in mind (White et al., 2005).
Accordingly, their level of geometric detail far exceeds the requirements of numerical an-
alyses (Ames et al., 1997). However, detail removal and model simplification can only
be automatized to a certain degree, for instance in the identification of slender model
parts by means of the Medial-axis transform (cf. Choi and Han, 2002, and the references
therein). In addition, the identification of excessive model detail requires engineering
judgment.
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Design Model, Creation and/or Edit (4 %)

Analysis Model, Creation and/or Edit (21%)

Geometry Decomposition (32 %)Meshing (14 %)

Mesh Manipulation (6 %)

Assign Model Parameters (6 %)

Assemble Simulation Model (8 %)

Run Simulation (4 %)

Postprocess Results (5 %)

Archive Artifacts (1 %)

Figure 1.1: The steps of a numerical analysis and their respective fraction of the overall time
and efforts spent. It can be easily recognized that the actual simulation process constitutes
only a small share of the expenses whereas the overwhelming part is due to data treatment
and model preprocessing. The data and the designations in above illustration originate
from a survey performed by Sandia National Labs which has been cited in (Bazilevs et al.,
2010).

The final step of preprocessing is the transformation of the CAD model into a form
suitable for numerical simulations. CAD models commonly describe volumetric objects in
terms of their boundary surfaces. Such boundary representations (cf. Shah and Mäntylä,
1995; Stroud, 2006) provide only incomplete information for three-dimensional analy-
ses (Cohen et al., 2010). The geometry therefore has to be converted into a finite element
mesh. From the point of computational geometry these meshes are so-called cell decompo-
sitions (Mäntylä, 1987), that is, sets of connected, non-overlapping shape primitives such
as tetra- or hexahedra. Cell decompositions allow to represent a wide range of shapes
but are merely an approximation to the original geometry, in particular as Finite Element
schemes are predominantly based on multilinear elements. The approximation quality of
the cell decomposition hence strongly depends on the resolution and the density of the
element mesh. This can manifest itself in convergence problems in the simulation of con-
tact problems (where the faceted representation leads to ambiguities in the detection of
contact) or as spurious boundary layers in fluid flow problems (Hughes et al., 2005).

Cell decompositions lack information on the associativity of their constituents (Shah
and Mäntylä, 1995). Changes in single entities thus cannot be propagated throughout a
model. Consequently, the complete sequence of model repair, simplification, and meshing
has to be repeated in the event of model revisions (Mäntylä, 1987; Sheffer and Üngör,
2001) since geometry and numerical model are effectively de-coupled.

Modern product design processes involve a multitude of specialized consultants for di-
verse domains such as marketing, recycling, costs, and energy efficiency—in addition to
key areas such a design, analysis, and manufacturing. Design iterations will therefore
occur with a high frequency, requiring the propagation of consistent model data to all par-
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ties involved. The current simulation pipeline clearly conflicts with such iterative design
processes and their frequent model revisions (Hughes et al., 2005). Given the large efforts
for constructing numerical models, it must be assumed that model variants are considered
seldom, if at all. That is, alternative designs that might result in more resource-efficient
structures are excluded a priori due to constrained time and budget considerations.

These factors, both the geometric approximation and the lack of associativity, motivated
the introduction of the concept of Isogeometric Analysis (IGA) (Hughes et al., 2005). IGA
is an extension of FEM in which a geometric model can be directly used for the solution
of a mathematical model given by partial differential equations. For IGA the geometry
has to be described in terms of parametric functions. Such a representation is given, for
instance, in form of Non-uniform rational B-Splines (NURBS) curves and surfaces that
are ubiquitous in the field of computer graphics and CAD. The characteristic feature of
that representation scheme is the interpolation of a set of control points using a set of
smooth Spline functions. Curves accordingly use univariate splines that depend on a single
variable. Geometric objects such as surfaces and solid bodies are described by bi- and
trivariate functions, depending on two and three parametric variables, respectively. The
degree of these functions and their continuity, together with the topological structure of
the control points, lead to characteristic geometric features, allowing to describe a wide
range of geometries. IGA is founded on the idea to use these basis functions as ansatz
for the solution of systems of partial differential equations—defined on the domain of
the geometric model. This leads to a full coupling of geometry and numerical model.
NURBS are implemented in the major CAD software packages and mature algorithms are
available for their manipulation and visualization. In combination with IGA they provide a
uniform data structure for the complete simulation process—from design over analysis to
visualization. Errors due to model transformation can thus be avoided completely (Cohen
et al., 2010).

Smooth higher-order shape descriptions as given by NURBS are invaluable for problem
settings that are sensitive to geometric imperfections. Accordingly, a major field of appli-
cation of IGA can be found in fluid flow simulations. Applications so far include fluid-
structure interaction and flow about rotating components (Bazilevs et al., 2008, 2011;
Bazilevs and Hughes, 2008; Hsu et al., 2011), turbulence simulations (Akkerman et al.,
2008; Bazilevs et al., 2007, 2010; Cottrell, 2007) and studies of arterial blood circulation
and drug transport (Bazilevs et al., 2006, 2009; Calo et al., 2008; Zhang et al., 2007).

Being an extension of the Finite Element concept, IGA can be implemented relatively
easy into existing software packages, as shown by Rypl and Patzák (2011) who deal with
the integration of isogeometric concepts into an object-oriented FE-framework. The major
difference between FEM and IGA are the employed basis functions whose higher continu-
ity allows for a drastic reduction in the number of Gauss points (Hughes et al., 2010).
Fundamental implementation aspects such as the evaluation routines for basis functions
and the architecture of single- and multi-patch IGA code are described by Cottrell et al.
(2009). A parallel implementation of IGA using the Message Passing Interface is described
in (Calo et al., 2008).

There remains a fundamental problem, though: NURBS have so far been applied pre-
dominantly for the representation of curves and free-form surfaces. Modeling applications
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therefore provide only methods and algorithms for modeling and manipulation of uni- and
biparametric geometries. Consequently, IGA has found many applications for the study of
thin-walled structures (cf. Benson et al., 2010, 2011; Kiendl et al., 2010, 2009). However,
modeling applications for the setup of three-dimensional, volumetric NURBS models are
lacking, meaning that users have to manually define numerical models. To make matters
worse, volumetric models require far more data than curves or surfaces in order to de-
scribe the interior of a body. This makes the generation of solid NURBS models a tedious
and error-prone process, effectively forbidding the setup and the simulation of complex
models for Isogeometric Analyses.

Solution approach
In order to overcome these restrictions, a procedural approach to model generation is
proposed. Instead of describing the data structures of a complex model, its “evolution”
from a simple initial shape is represented. Basis for such a description is a compact set
of modeling operators comprising coordinate transformations, set operations, and mesh
refinement operations together with established modeling algorithms. The modeling pro-
cess of an intricate object can thereby be described as a sequence of modeling operations
which provides a concise and parametrized representation of geometric objects. Con-
sistent generation of a model’s data structures is ensured by the individual operations.
Lists of modeling operations can further be stored as templates that provide a multi-level
adaptive description of both single objects and complex structures.

Outline of the thesis
This thesis begins with an overview of the mathematical properties of Spline functions
and their use for the description of parametric solids in Chapter 2. Building on these
properties, Chapter 3 starts with a review of existing modeling approaches. It gives a de-
tailed description of the concept of procedural modeling in computer graphics and shows
its adaption to NURBS-based geometries. Therefor, a compact set of modeling operations
is described. Their application to NURBS modeling is demonstrated on small sample
geometries. A combination of this concept with existing template modeling approaches is
elaborated. Chapter 4 serves as application example for the proposed modeling concept
and demonstrates the generation of three-dimensional fluid domains for wind energy tur-
bine simulations. Starting point for these models are discrete data sets describing common
airfoil sections. Their conversion into airfoil templates involves the reduction of the ini-
tial data sets by means of two simplification algorithms. The final airfoil templates are
then employed as input for a set of nested templates, resulting in the geometry of the
fluid domain.1 Chapter 5 continues with the assessment of a model’s appropriateness for
numerical analysis. Using the boundary value problem of linear elastostatics, the applica-
tion of NURBS basis functions for Finite Element procedures is illustrated. This highlights
the influence of the geometric representation scheme on the resulting numerical models.
Based on the mappings between the shapes’ parametric domain and physical space, a
handful of mesh quality metrics are formulated. Their behavior is studied on several test
models. Chapter 6 then concludes with a discussion of the achieved results,

1Parts of Chapters 3 and 4 have already been published in (Stein et al., 2012).



2 NURBS-based solid models

B-Splines1 and NURBS provide a parametric representation of geometries. They describe
an object’s shape in terms of points resulting from the mapping

N : Ω̄m→ Ωn ⊂ Rn, (2.1)

where Ω̄m denotes a m-dimensional parameter space and Ωn a subset of the (physical)
space—the object of interest. In the scope of this work above mapping is given as follows:
a collection of n-dimensional data points is interpolated using a set of m-variate functions.
Such parametric representations are independent of a chosen coordinate system and allow
to interpolate data of basically arbitrary dimension (Rogers, 2001). The dimension of the
parameter space Ω̄m and the properties of the basis functions have a large influence on
the resulting geometry, though.

A simple and straightforward approach is to use polynomial functions for the map-
ping (2.1) as it is done for the Bézier curves and surfaces based on the Bernstein polyno-
mials

Bn
i (ξ) =

�
n

i

�
ξi(1− ξ)n−i, ξ ∈ [0,1], (2.2)

where the binomial coefficients are defined as
�

n

i

�
=

n !

i ! (n− i) !
.

Polynomial functions such as in (2.2) are simple, but possess drawbacks that make them
ill-suited for shape representation. In order to interpolate a large number of points, for
instance for a detailed object representation, high-order polynomials are required which
are inefficient for processing and prone to numerical instabilities (Piegl and Tiller, 1997).
They also have a non-local support, that is, individual data points affect the shape of
the complete object, making local shape control impossible (Rogers, 2001). In order to
overcome these limitations, piecewise polynomial functions can be employed, of which
B-Splines are but one kind.

2.1 B-Spline functions

B-Splines are defined on a one-dimensional parametric domain Ω̄1 := [ξa,ξb] ⊂ R. This
domain is subdivided into segments, called knot spans. The values ξi at the respective
joints between two successive segments are called knots. The sequence of knots is stored

1Basis-Splines
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in ascending order in a knot vector Ξ, i.e., ξi ≤ ξi+1. The knot spans [ξ j,ξ j+1) serve as
domain for a set of polynomial segments of degree p:

P p
j (ξ) =

p∑
i=0

ci, j ξ
i, ξ ∈ [ξ j,ξ j+1). (2.3)

Within each segment the spline function is a C∞-continuous polynomial. In order to join
pairs of different polynomials at a knot, the continuity of the functions at the joint has
to be reduced to at most C p−1 (Bartels et al., 1987). This is related to the polynomial
coefficients ci, j and ci, j+1: enforcement of continuity higher than C p−1 would result in the
pairwise equality of these coefficients and hence in the identity of the polynomials.

The continuity of the functions might be even lower as a result of identical successive
knot values, as Bartels et al. (1987) point out. Such cases can be interpreted as compacting
one or several knot spans to a segment of zero length. Each knot repetition diminishes
the continuity of the basis functions. A knot value ξi with multiplicity k therefore reduces
the continuity of the basis functions to C p−k (Ibid.).

Different methods are available for determining B-Spline basis functions (cf. Bartels
et al., 1987; Höllig, 2003; Piegl and Tiller, 1997; Zorin and Schröder, 2000, and the
references therein). Numerical implementations commonly make use of the recurrence
relation of Cox-De Boor (Cox, 1972; De Boor, 1972) which provides an efficient and
numerically stable routine. Given a knot vector with n+ p+2 entries, it computes (n+1)
B-Spline basis functions N p

i (ξ) of degree p:

N p
i (ξ) =

ξ− ξi

ξi+p − ξi
N p−1

i (ξ) +
ξi+p+1− ξ
ξi+p+1− ξi+1

N p−1
i+1 (ξ) , (2.4)

starting from the piecewise constant functions

N 0
i (ξ) =

(
1 for ξ ∈ �ξi,ξi+1

�
0 else.

(2.5)

Some of the linear factors in Equation (2.4) can have a zero denominator as a consequence
of repeated knot values. In such cases the respective factor is defined to be zero (Piegl
and Tiller, 1997).

Two types of knot vectors are used in computer-aided design, namely periodic and open
knot vectors. They lead to different properties of the basis functions and hence to different
features of the resulting geometries. Periodic knot vectors prove to be useful for describing
closed curves or tubular/toroidal surfaces, as can be seen in the examples in (Bartels et al.,
1987; Rogers, 2001). Within this work only open knot vectors are used, though. These
are always of the form:

Ξ := { ξa, . . . , ξa︸ ︷︷ ︸
p+1

, ξp+1, . . . , ξn, ξb, . . . , ξb︸ ︷︷ ︸
p+1

}, (2.6)

that is, both the lower boundary ξa and the upper boundary ξb of the parametric domain
Ω̄1 possess a multiplicity of p+1. Hence, 2(p+1) of the n+ p+2 entries in an open knot
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vector are prescribed by these “end conditions”. Open knot vectors thus encode in their
form the number, the polynomial degree, and the continuity of the functions resulting
from their use in the Cox-De Boor recurrence.

2.1.1 Properties of B-Spline functions

The recurrence relation (2.4), together with the use of open knot vectors, leads to charac-
teristic properties of B-Spline functions, making them useful both for the representation
of geometric objects and for Isogeometric analysis. The following list is taken from (Piegl
and Tiller, 1997) which also contains proofs for these properties. Figure 2.1 illustrates
some of these properties for a set of cubic basis functions.

Local support
N p

i (ξ) = 0 for ξ /∈ [ξi,ξi+p+1). (2.7)

Conversely, each B-Spline is nonzero on at most (p+1) knot spans, namely the knot
spans

[ξi,ξi+ 1), [ξi+1,ξi+ 1), . . . , [ξi,ξi+p+1).

The actual support might be smaller due to repeated knots. As the basis functions
overlap, there are at most (p+1) nonzero basis functions on the knot span [ξ j,ξ j+1),
namely the functions N p

j−p(ξ), . . . , N p
j (ξ).

Non-negativity
N p

i (ξ)≥ 0 ∀i, p,ξ. (2.8)

This property has the effect that the geometric object is fully contained in the convex
hull of its control points (cf. Rogers, 2001), which simplifies operations such as
bounding-box queries.

Partition of unity
n∑

i=0

N p
i (ξ) = 1 ∀ξ ∈ Ω̄1. (2.9)

Linear independence

0=
n∑

i=0

αiN
p
i (ξ) ⇒ αi = 0 ∀i. (2.10)

Both partition of unity and linear independence determine the B-Splines’ suitability
as basis functions for Finite Element procedures. They ensure the convergence of
solutions produced by IGA under successive mesh refinement (Cottrell et al., 2009).

Interpolation of boundaries B-Spline functions resulting from open knot vectors fulfill

N p
0

�
ξ= ξa

�
= 1,

N p
i

�
ξ= ξa

�
= 0 0< i ≤ n− 1,

N p
n

�
ξ= ξb

�
= 1,

N p
i

�
ξ= ξb

�
= 0 0≤ i < n,

(2.11)
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Figure 2.1: The cubic B-Spline functions N3
i (ξ) and its first and second derivatives on the

domain Ω̄1 defined by the knot vector Ξ = {0, 0,0, 0, 1, 2, 2, 3,4, 4,4, 4}. The knots ξ5
and ξ6 are identical, reducing the continuity of the basis functions at ξ = 2 to C1. This
discontinuity can be observed in the jump of N

′′3
3 and N

′′3
4 at this position. The local

support and the non-negativity of the basis functions can be readily observed, as well as
the interpolative nature of the basis functions N3

i (ξ) at the boundaries of the domain.
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2.1.2 Derivatives of B-Spline functions

The derivatives of the univariate B-Spline functions can be expressed in terms of basis
functions of a lower degree. Piegl and Tiller (1997) give an expression that allows to
compute the derivatives of B-Spline functions for higher-order derivatives:

N p
i (ξ)

(s) =
p!�

p− s
�
!

s∑
j=0

α
i,p
s, j N p−s

i+ j (ξ) , (2.12)

where the factors αi,p
s, j are computed as follows:

α
i,p
0,0 = 1, α

i,p
s,0 =

α
i,p
s−1,0

ξi+p+1−s − ξi
, α

i,p
s, j =

α
i,p
s−1, j −αi,p

s−1, j−1

ξi+p+1−s+ j − ξi+ j
, αi,p

s,s =
−αi,p

s−1,s−1

ξi+p+1− ξi+s
.

2.1.3 Multivariate B-Spline functions

In order to describe volumetric bodies, trivariate basis functions are required. These can
be determined from univariate B-Spline function by means of a tensor product:

N pqr
i jk

�
ξ,η,ζ

�
= N pqr

i jk

�
ξ
�
= N p

i (ξ)N
q
j

�
η
�

N r
k (ζ) , (2.13)

where p, q, r denote the respective degree of the univariate basis functions. This allows to
carry over the properties of the univariate B-Spline functions to their higher-dimensional
extensions (Bartels et al., 1987). Consequently, the partial derivatives of the multivari-
ate basis functions N pqr

i jk (ξ) are simply a product of the derivatives of its univariate con-
stituents:

N pqr
i jk

�
ξ
�(α,β ,γ) =

∂ α+β+γ
�

N p
i (ξ)N

q
j

�
η
�

N r
k (ζ)

�

∂ ξα ∂ ηβ ∂ ζγ
= N p

i (ξ)
(α) N q

j

�
η
�(β) N r

k (ζ)
(γ) . (2.14)

The domain of the trivariate functions results from the Cartesian product of the three knot
vectors Ξ,H,Z defining the respective univariate functions:

Ω̄3 = Ξ×H× Z=
�
ξa,ξb

�× �ηa,ηb
�× �ζa,ζb

�
.

This yields hexahedral segments in Ω̄3, as illustrated in Figure 2.2. Their image under
the mapping (2.1) constitutes the volumetric Finite Element mesh used for Isogeometric
analysis (Cottrell et al., 2007). That is, the set of three open knot vectors not only uniquely
determines the trivariate basis functions, but it also encodes the mesh used for the numerical
simulation.
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ξ η

ζ

Figure 2.2: The parametric domain Ω̄3 as defined by the knot vectors Ξ =
�
ξa,ξ1,ξ2,ξb

	
,

H =
�
ηa,ηb

	
, and Z =

�
ζa,ζ1,ζb

	
. The Cartesian product of the knot spans results in

above hexahedral segments which constitute the volumetric mesh for the Isogeometric
analysis. The knot vectors given here serve only illustrative purposes and do not fulfill the
requirements for open knot vectors, i.e., the multiplicity of the exterior knots.

2.2 Control points and B-Spline solids

Given a set of trivariate basis functions, a B-Spline solid can be defined as the set of all
points x=

�
x , y, z

�T resulting from the mapping

x(ξ) =
n∑

i=0

m∑
j=0

l∑
k=0

N pqr
i jk (ξ) Pi jk (2.15)

with Pi jk =
�

x i jk, yi jk, zi jk

�T
being the elements of a set Stotal of control points

Stotal := {Pi jk | 0≤ i ≤ n ∧ 0≤ j ≤ m ∧ 0≤ k ≤ l }. (2.16)

As each basis function must be assigned to a point, T = (n+1)(m+1)(l+1) control points
are necessary to describe the mappingN : Ω̄3→ Ω3 ⊂ R3. These points must be aligned—
in a topological sense—in a regular grid with constant grid sizes throughout the structure.
This allows to define a discrete index coordinate system; single control points can thus be
addressed by their index tuple (i, j, k) that, in turn, corresponds to their alignment. Points
are arranged in layers in the grid, corresponding to their k-index. Within each layer they
are grouped in rows, denoted by their j-index, and within each row they are sorted by
their i-index, as illustrated in Figure 2.3.

Constant grid sizes allow efficient implementations of tensor-product solids. The three-
dimensional grids of control points as well as the trivariate basis functions can be stored in
continuous, block-structured arrays. The resulting blockwise alignment of the geometry
data in memory can be exploited by the algorithms for modeling and manipulation.

The set of control points fully determines size and shape of the resulting geometry
whereas the basis functions affect the smoothness of the interpolation. Due to the tensor-
product structure, different polynomial degrees as well as different numbers of control
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P001
P321

P021

P000

P300

P320

ξ, i

η, j
ζ, k

x

y

z

Figure 2.3: A grid of control points Pi jk necessary for describing a Spline-based solid body.
The origin of the solid’s parametric domain Ω̄3 is mapped to the point P000 which acts
as origin for the indexing scheme. By virtue of the geometric mapping the parametric
coordinates (ξ,η,ζ) are overlaid with the grid coordinates (i, j, k). In above figure, lines of
the same index follow the grid lines of the topology (shown in dotted lines), whereas the
parametric coordinates ξ,η,ζ follow the curved boundaries of the resulting solid (shown
in dashed lines).

points can be chosen for the individual grid directions. This provides a high degree of
control not only for the representation of a geometric object, but also in the construction of
the function spaces for the solution of partial differential equations through Isogeometric
Analysis. Slender, thin-walled structures such as plates or shells can hence be modeled
with an appropriate level of detail along different model axes.

2.3 NURBS solids

B-Spline solids already possess a high degree of flexibility for modeling volumetric objects.
However, they lack the possibility to exactly describe conic sections including ellipses and
circles. B-Splines can only represent approximations to such geometries, a factor which
motivated the introduction of NURBS. In order to overcome this limitation, the points Pi jk

are embedded in a four-dimensional projective space P4 with the additional homogeneous
coordinate h 6= 0. The control points are represented in P4 as

Ph
i jk =

�
hi jk x i jk, hi jk yi jk, hi jkzi jk, hi jk

�T
, (2.17)

where the superscript h denotes an entity in P4. The points’ coordinates in 3-space are
obtained by a perspective projection P through the origin O onto the hyperplane defined
by h = 1. This corresponds to an element-wise division of the points’ coordinates by the
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O

x

h

y

h= 1

P1 =
�

x1, y1, 1
�T

Ph
1 =

�
h1 x1, h1 y1, h1

�T

Figure 2.4: Embedding of the euclidean space R2 into a space P3 of projective coordinates.
All points Pi =

�
x i , yi

�T are lying on the hyperplane defined by h = 1. They are obtained
by a perspective projection of the respective points Ph

i =
�
hiPi ; hi

�T through the origin O
onto the hyperplane h= 1.

respective homogeneous coordinate (cf. Piegl and Tiller, 1997):

Pi jk =
�

x i jk, yi jk, zi jk

�T ≡
�

x i jk, yi jk, zi jk, 1
�T
=P

n
Ph

i jk

o
=

1

hi jk
Ph

i jk. (2.18)

The concept of this embedding is illustrated in Figure 2.4. A NURBS solid is accordingly
defined as the set of all points xh ∈ P4 that result from the mapping

xh(ξ) =
n∑

i=0

m∑
j=0

l∑
k=0

N pqr
i jk

�
ξ
�

Ph
i jk =

n∑
i=0

m∑
j=0

l∑
k=0

hi jkN pqr
i jk

�
ξ
�

Pi jk. (2.19)

That is, NURBS solids are simply B-Spline solids within P4. Application of the perspective
division by the homogeneous coordinate,

h(ξ) =
n∑

a=0

m∑
b=0

l∑
c=0

habcN
pqr
abc

�
ξ
�

, (2.20)

leads to the expression for a NURBS solid within R3:

x
�
ξ
�
=

n∑
i=0

m∑
j=0

l∑
k=0

wi jkN pqr
i jk

�
ξ
�

Pi jk

h(ξ)
=

n∑
i=0

m∑
j=0

l∑
k=0

Rpqr
i jk

�
ξ
�

Pi jk. (2.21)
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The projection from P4 into R3 effectively transforms the piecewise polynomial basis func-
tions N pqr

i jk into piecewise rational polynomial functions Rpqr
i jk . The homogeneous coordi-

nates hi jk are usually interpreted as weights of the respective control points, providing
additional degrees of freedom for shape design. If all hi jk are identical the NURBS func-
tions degenerate to polynomial B-Spline functions.

2.3.1 Derivatives of NURBS functions

The increased flexibility of NURBS with respect to shape design comes at the price of
higher efforts for determining the derivatives of the basis functions, required, for instance,
for describing kinematic relationships in the simulation of the mechanical behavior of
continua in Chapter 5. This section puts the focus on the derivatives with respect to a
single variable, ignoring mixed partial derivatives. Following (2.21), a trivariate NURBS
basis function Ri jk(ξ) is given by

Ri jk(ξ) =
hi jk Ni jk(ξ)

h(ξ)
=

Ai jk(ξ)

h(ξ)
, (2.22)

where the polynomial degrees p, q, r are tacitly assumed. The superscripts pqr are hence-
forth dropped from trivariate expressions for the sake of clarity. In addition, we collapse
the triple index (i jk) into a single index

I = i+ j (n+ 1) + k (n+ 1) (m+ 1) . (2.23)

Following the quotient rule, the first derivatives of the basis functions with respect to ξ
are then given as

RI(ξ),ξ =
AI(ξ),ξ h(ξ)− AI(ξ) h(ξ),ξ

h(ξ)2
=

AI(ξ),ξ− RI(ξ) h(ξ),ξ
h(ξ)

, (2.24)

where ,ξ denotes the partial derivative with respect to ξ. The partial derivatives of both the
weighted numerator AI(ξ) and the denominator h(ξ) can be readily computed by (2.14)
since the homogeneous coordinates hI are constant with respect to the parametric coordi-
nates ξ. Therefore

AI(ξ),ξ = hI NI(ξ),ξ (2.25)

and

h
�
ξ
�

,ξ =
T−1∑
I=0

hI NI ,ξ
�
ξ
�
=

T−1∑
I=0

AI ,ξ
�
ξ
�

, (2.26)

where T is the total number of points in the control grid, defined in Section 2.2. Analo-
gous expressions can be set up for the partial derivatives with respect to the parametric
variables η and ζ.
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2.3.2 Interpolation of the boundaries

The trivariate basis functions’ properties result in characteristic features of B-Spline solids,
a thorough overview of which is given in Ma et al. (2001). A property particularly relevant
for modeling purposes is the interpolation of the boundaries. Univariate B-Spline functions
based on open knot vectors become interpolatory at the boundaries of their domain, as
seen in Equation (2.11). This property carries over to multivariate B-Splines. As a result,
the “corners” of the parametric domain Ω̄3, that is, the tuples

�
(ξ,η,ζ) | ξ ∈ {ξa,ξb} ∧η ∈ {ηa,ηb} ∧ ζ ∈ {ζa,ζb}

	

are mapped to the respective “corners” of the control grid. For example,

x(ξa,ηa,ζa) = P000, x(ξa,ηb,ζb) = P0ml .

This can also be seen in Figure 2.3. The boundary surfaces of a solid can be described by
the isosurfaces

x(ξ= ξa,η,ζ) x(ξ,η= ηa,ζ) x(ξ,η,ζ= ζa)

x(ξ= ξb,η,ζ) x(ξ,η= ηb,ζ) x(ξ,η,ζ= ζb),
(2.27)

that is, by the images of the boundary surfaces of Ω̄3 under the mapping (2.1).2 Interpol-
ation of the boundaries by the univariate basis functions has the effect that the isosurfaces
defined by (2.27) are described purely in terms of the sets of control points

Sξa
:= {Pi jk | i = 0 ∧ 0≤ j ≤ m ∧ 0≤ k ≤ l } (for ξ= ξa),

Sξb
:= {Pi jk | i = n ∧ 0≤ j ≤ m ∧ 0≤ k ≤ l } (for ξ= ξb),

Sηa
:= {Pi jk | 0≤ i ≤ n ∧ j = 0 ∧ 0≤ k ≤ l } (for η= ηa),

Sηb
:= {Pi jk | 0≤ i ≤ n ∧ j = m ∧ 0≤ k ≤ l } (for η= ηa),

Sζa
:= {Pi jk | 0≤ i ≤ n ∧ 0≤ j ≤ m ∧ k = 0 } (for ζ= ζa),

Sζb
:= {Pi jk | 0≤ i ≤ n ∧ 0≤ j ≤ m ∧ k = l } (for ζ= ζb).

(2.28)

That is, only the respective outermost control points contribute to the representation of a
solid’s apparent shape. To put it differently: NURBS solids are bounded by NURBS sur-
faces which in turn are bounded by NURBS curves. Using the point sets defined in (2.28),
the set of control points Ptotal can be decomposed into disjoint subsets Pb,Pi containing
the control points lying on the boundary of the solid, respectively within its interior:

Sb = Sξa
∪Sξb

∪Sηa
∪Sηb

∪Sζa
∪Sζb

, (2.29a)

Si =Stotal \Sb. (2.29b)

2In addition to the surfaces defined by (2.27), implicit surfaces can result from shape degeneracies such as
self-intersections (Joy and Duchaineau, 1999). Such cases are disregarded in this thesis, though.



3 Procedural modeling of NURBS

NURBS geometries can be described by a compact set of data, allowing smooth object rep-
resentations with a fraction of the data required for polygon or voxel models (Martin and
Cohen, 2001). The fundamental component of NURBS-based geometries is the grid of
control points carrying the majority of geometric information. Whereas the knot vectors
“merely” describe the partitioned parametric domain of the basis functions, it is the set of
control points that determines the position, the size, and the aspect ratios of the “isogeo-
metric mesh”. Unfortunately, solid NURBS models have to be defined manually, which is
tedious and error-prone. This is worsened only by the fact that volumetric NURBS models
require far more information than curves and surfaces.

A major factor is here the set of interior control points defined in Eq. (2.29b). From the
standpoint of boundary-based object representations, they do not carry shape information
but fulfill only topological requirements, thus incurring an overhead of data. They have an
important function, though: these points affect the mapping of the volumetric segments of
Ω̄3 into 3-space. That is, they determine the distortion of the solid’s interior and hence its
usability for numerical simulations. In order to achieve regular, undistorted meshes, the
interior control points’ alignment should consider not only direct neighbors but also the
overall structure of the shape. This forbids a (semi)-arbitrary placement of these points.

The lack of appropriate modeling tools for volumetric NURBS poses a serious prob-
lem in light of model adaptions. NURBS data structures are but unstructured lists of
model primitives. Such models can be efficiently parsed and are suitable for numerical
processing. However, they do not represent the rules and dependencies inherent to all
kinds of shapes (Havemann, 2005). The design intent, namely the rationale behind a
given shape, can hence not be appropriately described (Shah and Mäntylä, 1995). Fur-
thermore, there is no indication as to which model entities have to be modified in order
to achieve a desired change in an object’s shape. Therefore, a more abstract treatment is
necessary which allows to reflect the structure of solid NURBS models, thus facilitating
their modification in case of design changes.

3.1 Modeling approaches for NURBS solids

A number of modeling approaches for NURBS solids has been proposed in the literature.
Each method deals with specific classes of shapes, and most of these concepts aim at
emulating the functionality of CAD applications. They can be categorized as follows:

Surface expansion Some of the most basic algorithms for NURBS geometries create
surfaces from single or multiple boundary curves. Basic operations such as sweep-
ing, skinning, extrusion, or ruling can be found in virtually every CAD package. Al-
gorithmic details for these methods are described in (Piegl and Tiller, 1997; Rogers,
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2001). The tensor-product structure of the B-Spline basis functions suggests an
extension of these algorithms for the creation of solid objects.

Aigner et al. (2009) describe a variational framework for generating swept volumet-
ric parametrizations. It allows to consider the influence of different guiding curves
on the resulting shape as well as controlling different properties such as orthogo-
nality or regularity. Martin and Cohen (2001) deal with the challenges of assigning
heterogeneous volumetric attributes to NURBS solids. Each NURBS volume is as-
signed additional attribute fields that are independent of the control grid but that
share the parametric domain with the underlying solid. This allows to maintain
different resolutions for both the shape and the properties of an object. Consis-
tent transfer of properties can then be ensured by applying the geometric modeling
operations to both the attributes and the shape. Ma et al. (2001) employ NURBS
volumes for rapid-prototyping applications. They construct complex objects from
solid NURBS objects that are created by the aforementioned operations as well as
by an additional operation which they denote as “shrinking”. A volume is thereby
generated by ruling (i.e. interpolating) a NURBS surface with another surface being
degenerated into a point or into a line segment. Assembly of the NURBS compo-
nents into the final model is achieved in a two-step process. To that end, individual
NURBS volumes are converted into voxel representations which are subsequently
combined by Boolean operations. Zhou and Lu (2005) apply “shrinking” for the
modeling and biomechanical simulation of muscle tissue. The boundary surfaces
of a muscle strand are then generated by skinning the muscle’s cross-sections from
sectioned medical image data. These surfaces are subsequently shrunk onto the
median axis of the strand, yielding solid NURBS geometries.

Constructive modeling An alternative to boundary-based representations of solid bod-
ies is given by the concept of Constructive Solid Geometry (CSG). An object is thereby
constructed from parametrized shape primitives such as cylinders or hexahedra by
means of regularized Boolean operations (cf. Shapiro, 2002). The major challenge
for NURBS in this approach is either to ensure the correct alignment of the different
meshes of the shape primitives or to provide solution strategies that cope with non-
conforming and overlapping meshes. This idea has been implemented by Natekar
et al. (2004) who describe the concept of Constructive Solid Analysis. They employ
NURBS for the description of both the shape primitives and the field quantities.
By employing a Meshless Finite Element formulation they can construct a boundary-
value problem from the solution fields defined on the shape primitives.

Transfinite interpolation A common class of free-form surfaces, the so-called Gordon-
Coons patches, results from the bilinear interpolation of a set of boundary curves.
Shih et al. (2005) extend this concept for the interpolation of boundary surfaces
that allows them to create solid NURBS bodies with appropriate interior control
points. The overhead of the grid specification can thus be avoided completely.

Constrained modeling An important issue in computer-aided geometric design is the
consideration of shape constraints. A corresponding question in the context of free-
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form surfaces might be how a given surface has to be modified in order to pass
through a specified point. Hu et al. (2001) turn this into a constrained optimization
problem. This allows them to regard positional constraints as well constraints on the
curvature and the normal of a given surface. A similar course of action is taken by
Xu et al. (2010, 2011a,b). In their objective function they consider both orthogonal-
ity and regularity of the mesh; constraint conditions then ensure non-overlapping
meshes.

Extraction of parametrizations A common problem in geometric modeling is to find
a parametrization for a given set of discrete data. Eck and Hoppe (1996) describe
a method for reconstructing tensor product spline surfaces from scanned 3D point
sets. Surfaces of arbitrary topology are thereby decomposed into a network of con-
nected patches. To that end, the given point samples are used to set up an initial
polygon mesh which serves as input for several (re-)parametrization steps. Once a
suitable parametrization has been found, the free-form surface is reconstructed by a
fitting algorithm and refined as necessary. Martin et al. (2009) present a framework
for modeling B-Spline volumes from a given exterior surface and additional interior
boundaries. These boundaries are supplied as triangle meshes describing the outer
surface and possible interior layers.

The quality of the input data is probably the most important factor in these ap-
proaches as geometry originating from reverse engineering is sensitive towards mea-
surement noise. Data originating from medical imaging similarly depends on chosen
imaging thresholds. This can lead to oscillations in the resulting geometries (Martin
et al., 2009). These methods can furthermore produce excessive model data, making
model simplification highly necessary. Wang and Zhang (2010) describe a method
for simplification and fairing of NURBS geometries that is based on a wavelet trans-
form of the NURBS geometry. High-frequency noise can thus be removed from the
model data while the geometric properties, in particular the continuity, is retained.

Template modeling Many problem settings in engineering exhibit a high geometric
similarity to previous tasks. In addition, a certain regularity can be observed for
man-made technical objects (Mehra et al., 2009). It results either from functional
considerations and technical constraints (Mitra and Pauly, 2008) or from aesthetic
principles such as proportion and symmetry (Havemann, 2005). Consequently, com-
ponents of technical systems can often be characterized by a handful of parameters.
This allows their compilation in catalogs or codes. The compact shape representa-
tion of NURBS favors such representations. Fundamental patterns of control points
and basis functions can hence be defined as templates encoding basic shapes such
as circular arcs. They may be combined in order to obtain more complex shapes,
as shown by Cottrell et al. (2009): here, a pipe segment is modeled from the com-
bination of several simple templates describing circular arcs and annular segments.
Zhang et al. (2007) describe a template-based approach for the analysis of cardio-
vascular blood flow and its fluid-structure interaction (FSI) with the arterial walls.
Templates are employed here to capture specific branching configurations of the
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blood vessels. Models of patient-specific vasculature are constructed by fitting the
template models to medical image data. Bazilevs et al. (2011) developed a set of
templates for the modeling of Horizontal-Axis Wind Turbine (HAWT) rotors. The ro-
tor blades for off-shore wind turbines are created by skinning cross-sectional curves
given at regular intervals along the blade’s length. Starting from the blade surface,
the negative space around a rotor is constructed by “imprinting” the blade’s control
point patterns into a sufficiently refined portion of a volumetric domain segment.

Templates are an invaluable aid in the setup of highly complex models. They have the
potential to drastically reduce the efforts for creating model variants in case they provide a
parametrized representation of a geometric model. However, they still have to be defined
manually which can be a major hurdle for intricate models such as three-dimensional fluid
domains. At their core they are but predefined lists of model primitives and they suffer, at
least internally, from inefficient low-level modeling (Shah and Mäntylä, 1995). In order
to overcome this limitation a procedural approach is chosen by which the low-level data
structures are described in terms of more abstract modeling operations. The following
section gives an introduction to this modeling concept; its application to (solid) NURBS
modeling is then detailed in Section 3.3.

3.2 Procedural modeling in computer graphics

Procedural modeling is a concept originating in computer graphics whereby “code segments
or algorithms . . . specify some characteristic of a computer-generated model or effect.” (Ebert
et al., 2003). That is, a complex model is not described in terms of its raw data. Instead,
a deterministic algorithm generates these data from a small set of model parameters.
The determinism of the employed algorithms is of utmost importance as it ensures that
identical input data yield identical results. One can then create the final model from the
recorded input parameters—the “data seed”—whenever it is necessary. This feature, de-
noted in the literature as data amplification, allows tremendous savings in model size. It
is invaluable for systems with limited memory. Accordingly, one of the first applications
of procedural synthesis can be found in early video games such as Elite (Acornsoft, 1984)
where an evaluation routine turned sets of parameters into the game data. Game “con-
tent” such as whole star systems or planets could hence be regarded despite the strong
limitations imposed by the hardware. Another field of application for procedural gene-
ration lies in the so-called Demo scene (cf. Reunanen, 2010; Shor and Eyal, 2004). This
branch of the hacker subculture frequently employs procedural content generation tech-
niques in the creation of “demos”. These small programs must be considered to be pieces
of art, both with respect to their content and their realization. Upon execution, a com-
puter graphics animation of several minutes length, including music and sound effects, is
computed in real-time on the host computer. The sizes of these executables range mostly
between 4 kB and 64 kB, which can only be achieved by using compression techniques
and procedural generation.

The fields of computer graphics, animation and geometric modeling have experienced
a steady increase in model complexity. Main driving force of this development is the en-
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tertainment industry with its objective of photo-realistic imagery, either in the form of
video games or as visual effects in films. This has lead to the availability of powerful ded-
icated hardware such as GPUs1 (Havemann, 2005). Once being restricted to computing
visual effects in games, they are now increasingly used in the simulation of physical phe-
nomena, providing scientists and engineers with powerful yet affordable tools. Downside
of this development are steadily rising development costs in the entertainment industry:
realism is linked with the complexity of an image, both in terms of the number and the
diversity of the image’s elements (Ebert et al., 2003)—but each visual effect, each ani-
mation, and each texture must not only be modeled by an artist but also be integrated
into the overall product. Model creation has therefore become the bottleneck in 3D com-
puter graphics (Aliaga et al., 2007; Bokeloh et al., 2010; Kelly and McCabe, 2006)—which
closely resembles the model generation in the simulation sciences with its large fraction
of manual contribution.

Procedural synthesis offers an opportunity to manage the increased complexity of mod-
els and effects. It allows to “generate plausible details of a model without much or any user
interaction” (Aliaga et al., 2007). It is hence possible to deal with models whose manual
setup is either impractical or impossible. This can be illustrated with the simulation of
urban systems, whose application is not restricted to video games and virtual reality, but
which are also employed for navigation, emergency response training, studies of urban
development, or traffic analyses (Aschwanden et al., 2009; Vanegas et al., 2009). Cities
are systems of intimidating visual and functional complexity. They are the result of a de-
velopment spanning several hundred years under the influence of various socio-political
factors (Kelly and McCabe, 2006). The sheer amount of data necessary to describe them
clearly forbids the manual setup of a model. Procedural techniques, however, render this
task feasible, as shown by Parish and Müller (2001). They describe a system for mod-
eling a complete city using a set of statistical and geographical input data. These are
provided as 2D image maps and describe, for instance, population density, elevation data,
or land use. Their system comprises a pipeline in which each generation step uses the
output of prior steps as input data. Basis for the generation of the street layouts and the
building geometry are extended L-systems, that is, systems for handling of symbol strings
which have initially been devised for algorithmic modeling of plants (cf. Prusinkiewicz and
Lindenmayer, 1990). Using information on the population density, the system connects
highly populated centers using a network of highways. These centers are “meshed” with
a network of streets according to a superimposed street pattern. Different characteristic
patterns are described in terms of road generation rules leading, for instance, to orthog-
onal or radial grids. Areas in between the roads are subdivided into convex, regularly
shaped allotments. These serve, in turn, as input for a second L-system dealing with the
generation of the buildings’ geometry. This second system operates on simple geometric
shapes and considers not only the ground area of the current allotment but also additional
data such as land use, population density, or zoning rules.

Systems such as the described can be nested even further, allowing not only to create
building models (Müller et al., 2006) or intricate facades (Haegler et al., 2010), but also

1Graphics Processing Unit, i.e. dedicated processors for computer graphics operations.
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to fill in large amounts of model details. Cities can hence be modeled in tremendous
detail—down to a level that even considers furniture (Germer and Schwarz, 2009). This
illustrates two properties of procedural systems: the generation of data from data and the
feedback of the results of one generation step to further “data generators”.

Outside the field of computer graphics, procedural generation has found only scarce
attention. A noteworthy exception is (Häfner et al., 2006) where this concept has been
applied for modeling the mesoscale structure of concrete. Thereby, aggregates of varying
size are aligned within the confines of a given specimen geometry, while contact checks
prevent overlaps of individual particles. Models with varying size and shape distributions
of the aggregates can thus be readily generated and are subsequently “fed” into a Finite
Element mesh generator.

Another, more recent application can be found in the work of Whiting et al. (2009)
who combine procedural modeling with physical constraints. Their object of research
is the procedural generation of physically sound masonry structures. To that end they
construct an inverse statics problem: given a set of constraints and a building’s topology,
an appropriate shape is derived by means of a nonlinear optimization procedure. This
highlights the possible connections of procedural modeling techniques with other areas of
research, such as mathematical optimization (cf. Togelius et al., 2010), stressing the need
for an abstract model representation.

Procedural systems provide an abstraction layer from the raw data structures of a com-
puter model. Instead of designing a single instance, a whole class of objects is described
in terms of parametrized construction steps and interpretable parameters (Berndt et al.,
2004). Each operation is basically a rule of how the current state of the model is trans-
formed into the next state. This is in remarkable agreement with the perception of shape,
as put forth by Leyton (2001). He argues that the human perceptual system is structured
as a sequence of transformations applied to groups of objects. A simple square is hence
observed as the four-fold translation and rotation of a line segment which, in turn, is
perceived as a swept point. He further formalizes this as a sequence of unfolding groups
that expand a complex shape from its structural core, its alignment kernel (Leyton, 2001).
This kernel describes the final object in its most compact form; it is successively unfolded
by a sequence of operations. Minimization of the “data seed” then emphasizes the struc-
ture of the model, which, firstly, provides a basis for understanding and communicating
shape (Havemann, 2005) and which, secondly, makes it possible to capture the “essence of
a model” (Ebert et al., 2003).

The fundamental element in formulating procedural models is the inference of the rules
that determine the desired shape, as well as their translation into an algorithm for shape
generation (Kelly and McCabe, 2006). This includes the definition of the model entities,
their connectivity, and the constraints between the components and parameters (Shah and
Mäntylä, 1995). The evaluation algorithms then stepwise resolve the given constraints
and assign values to model parameters. Model variations are achieved by adapting the
input parameters, followed by re-evaluation of the algorithm. Consequently, the setup of
design variants becomes trivial (Berndt et al., 2004). This is invaluable for engineering
practice with its frequent design changes and the geometric similarity of problem settings.



21

Procedural systems can be implemented relatively straightforward. They express only
a small range of model variations, though, and the fixed model evaluation sequence com-
plicates subsequent addition of constraints (Shah and Mäntylä, 1995). Expression of a
model in terms of modeling commands puts the focus on the selection of appropriate
model parameters and operations. This can prove to be a difficult task as it may result in
discontinuous data generation (Aliaga et al., 2007). That is, small variations in the model
parameters can, depending on the evaluation algorithm, lead to large differences in the
output.

3.3 Operator-based modeling of NURBS geometries

NURBS geometries are commonly modeled in an interactive manner within a CAD appli-
cation. A simple initial object, for instance a flat surface or a cube, is the starting point
from which complex models are created. Therefor the initial geometry is deformed by suc-
cessive transformation of groups of control points. Fine-grained shape control is provided
by mesh refinement operations that introduce new rows of control points into the object’s
data structures while maintaining its shape. The newly created points are used for further
manipulations of the control points. The modeling process is hence but a sequence of
interleaved point transformations and mesh refinements where each modeling operation
can be conceived as a transformation of the current model into a new, possibly more com-
plex state. This corresponds to the view of (Leyton, 2001). That is, the initial object acts
as the “alignment kernel” which is successively transformed into the final shape.

3.3.1 Atomic NURBS modeling operations

In order to implement procedural modeling for solid NURBS geometries, only a surpris-
ingly small set of modeling operations has to be provided. These operations comprise
the “surface expansion” operations such as sweeping, skinning, revolution, and extrusion as
mentioned in Section 3.1. In addition, the following methods are necessary:

Transformation of control points The coordinates of a solid’s control points can be
modified by means of affine transformations such as translation, rotation, and scal-
ing. They are formulated in the space P4 of homogeneous coordinates which allows
their uniform representation as (4× 4) matrices. These matrices can be easily com-
bined for the description of complex, chained coordinate transformations (Details
can be found in Akenine-Möller et al., 2008; Rogers and Adams, 1990). NURBS-
based geometry has the property of “affine covariance” (Hughes et al., 2005). That
is, the uniform transformation of all control points leads to rigid-body transforma-
tions. By restricting the transformation to subsets of control points, however, the
object under consideration is deformed.

Selection operations Selection of such subsets of points can be done either on a patch-
wise basis by means of the control points’ index coordinates (i, j, k), or in a global
manner by using their Cartesian coordinates. The results can be stored in point sets,
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Figure 3.1: The effect of a knot insertion algorithm on the control point grid Pi jk of the solid
shown in Figure 2.3. By inserting a new knot value into the knot vector Z the control grid
Pi jk is augmented by a complete subgrid of new points (shown in blue).

allowing the application of set operations such as union or intersection. Selection of
point ranges or combination of different point sets can thus be trivially implemented.

Point sets provide a mechanism for labeling of nodes: a fundamental problem of
parametric and procedural modeling schemes is that entities of the final model are
only implicitly described (Hoffmann and Joan-Arinyo, 2002). Model components
are only instantiated during model evaluation. Application of boundary conditions
or forces, however, requires that the affected entities are explicitly known. This
problem can be circumvented by node labels where significant control points are
assigned model-specific labels, denoting, for example, that they represent a certain
model support.

Mesh refinement A major advantage of NURBS over “monolithic” polynomial repre-
sentations is their high flexibility. Other than polynomial schemes, the order of
the basis functions constitutes only a lower bound on the number of control points
that can be regarded. Additional degrees for shape design can be readily added
to an existing model without affecting the overall geometry. This is achieved by
refinement operations such as knot insertion/refinement or degree elevation which
are probably the most fundamental algorithms for the manipulation of Spline-based
geometries (Piegl and Tiller, 1997).

During knot refinement, the one-dimensional parameter space described by a knot
vector is subdivided along new knot values. The number of corresponding univariate
basis functions increases by one for each new knot value. In order to maintain the
topology of the geometry, new rows of control points have to be introduced into
the grid of points. These are the result of linear combinations of existing points.
The algorithm is described in (Piegl and Tiller, 1997) for uni- and bivariate NURBS
objects but it can be easily extended to solids as a consequence of the regular grid
topology of the control points.
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Knot refinement neither changes the geometry of a NURBS object nor the properties
of the geometric mapping (2.1). Only the object’s basis functions—and hence its
internal representation—are modified (Piegl and Tiller, 1997). The recombination
of existing control points does not introduce geometric information into the model.
However, the newly created points are consistently inserted in between existing
points. This makes knot refinement an invaluable part of an operator-based model
representation. Instead of storing a fully refined model, it suffices to maintain a list
of knots to be inserted into its coarse representation. Depending on the size of the
control grid, tremendous savings in model size can be achieved. This is illustrated
in Figure 3.1 where a single knot insertion leads to the creation of twelve control
points. These efficiency gains depend only on the respective grid sizes and they
become increasingly economic for larger grids.

The second refinement operation, degree elevation, increases the order of one set of
univariate basis functions. To that end, the NURBS object is split by successive knot
refinement along the specified parametric direction into a series of Bézier segments.
The continuity of the basis functions is thereby reduced to C0 at each knot value
in the corresponding knot vector. The segments’ polynomial degree is then raised
individually whereby new control points are introduced. The modified segments
are eventually joined and excess knot values removed from the affected knot vec-
tor. Similar to knot refinement only the internal representation of the geometry is
modified.

Component extraction NURBS geometries interpolate their boundaries, as shown in
Section 2.3.2. The control points defining a boundary surface can hence be readily
extracted from the solid’s data structure along with the corresponding knot vectors.
These surfaces can serve as input for further modeling operations such as extrusion,
sweeping, or revolution. In addition to point sets, this facilitates the definition of
boundary conditions for the numerical model as the extracted objects can be used
for the prescription of primary unknowns or for the integration of flux quantities.
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Figure 3.2: Application of a sequence of modeling operators to a planar surface. The initial
surface on the left-hand side is the result of a Surface template defining appropriate knot
vectors and control points for user-defined grid sizes. The planar surface is deformed using
a combination of selection and translation operations. The first selection comprises the
points Pi j with indices i, j in the range [1,4]. This set of points is then translated uniformly,
giving the shape in the center panel. This selection is narrowed down by reselection of the
points with indices i, j in the range [2,3], which are translated by an additional offset and
yield the final shape shown in the panel on the right-hand side.

3.3.2 Operator-based modeling of NURBS geometries

Following the concept of procedural modeling, the aforementioned modeling commands
are simply stored in a list, where each command refers to the set of global parameters. This
allows, first and foremost, to define complex modeling operations from the combination of
simpler commands: finite sets of modeling commands cannot fulfill all requirements that
can come up for model generation (Berndt et al., 2004). User-defined “macros” provide
here the basis to define complex commands and to overcome the limitations of predefined
modeling operations.

The list of modeling commands can be conceived as an algorithm to turn a given ini-
tial object into the final geometry. Families of fundamentally similar shapes can thus
be trivially generated—where the resulting objects nonetheless share an identical model
structure. This puts the focus on a handful of semantically strong parameters; it provides
an abstraction from the model’s raw data structures. The generation of model variants ac-
cordingly leads back to suitably adapting the model’s parameters. This property is demon-
strated in Figure 3.2 where a planar NURBS surface is deformed by combined selections
and point transformations. Model variants of the shown surface patch can be realized by
using different selection criteria and/or translation offsets.

The code used for the creation of the shape that is shown in Figure 3.2 is given in
Listings 3.1 and 3.2. One can easily recognize the database amplification, that is, the
significant reduction of the model’s size by means of the operator representation: the grid
of 36 control points and their topology, as well as the knot vectors describing the basis
functions, can be represented by essentially nine lines of code. This does not only allow to
recognize the model’s structure, but it also simplifies the exchange of model data. Instead
of transmitting the complete set of raw model data, it suffices to transmit the smaller set of
model parameters. It is clear that this requires the availability of the modeling operations
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// create a surface described by a (6 by 6)-grid
Surface surfaceTemplate (6, 6);

// instantiate an actual NURBS patch from the template
Patch *surface = surfaceTemplate.createGeometry ();

// select all points with index i = [1,4]
surface ->select(NEW , RANGE , I, 1, 4);

// restrict the selection to the points with index j = [1,4]
surface ->select(RESELECT , RANGE , J, 1, 4);

// uniform translation of the currently selected points
// by "offset1"
surface ->transform(Translation(Z_AXIS , offset1));

// further restriction of the selection and translation
// by "offset2"
surface ->select(RESELECT , RANGE , I, 2, 3);
surface ->select(RESELECT , RANGE , J, 2, 3);
surface ->transform(Translation(Z_AXIS , offset2));

// reset selection state
surface ->select(NEW , ALL);

Listing 3.1: The code for describing the bell-shaped surface patch in Figure 3.2.

for both parties of a model exchange. An implementation of the operator-based modeling
concept requires, as shown before, only a small set of commands. They can be compiled
into a compact kernel for modeling of NURBS solids that is made available to all sides.
Model transfer is then reduced to the exchange of model parameters along with custom
modeling procedures.

3.4 Templates for NURBS geometries

Operator-based model representations excel at describing objects of technical origin which
exhibit a certain geometric structure. There exists, however, a broad range of objects
whose geometry cannot be expressed in terms of modeling operations. Their shape is
either subject to different objectives or its design intent has been lost during model and
data transformations. The former case can be found with shapes being the result of func-
tional requirements, for example airfoils that are designed to meet aerodynamic criteria.
The latter case is at hand with models resulting from reverse engineering or from image
processing. Albeit the geometry might be captured with high fidelity, the semantic of a ge-
ometry, its structure, cannot be recovered by scans and data transformations (Havemann,
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// "size1" and "size2" are the respective grid sizes for the
// indices i,j
unsigned total = size1 * size2;
Point4D ** lst = new Point4D *[total];
unsigned index = 0;
// create a regular grid of points with a spacing of 1.0

units
for(unsigned j = 0, n = size2; j < n; ++j) {

for(unsigned i = 0, m = size1; i < m; ++i) {
lst[index ++] = new Point4D(i, j, 0.0, 1.0);

}
}
unsigned sizes[] = { size1 , size2 };
// allocate a two -dimensional control grid with the
// given sizes
PointGrid *grid = new PointGrid(sizes , 2, lst);
KnotVector *kVecs [2];
// create open knot vectors for the basis functions; the
// degree of interpolation is the respective number of
// functions minus one , yielding a Bezier basis
kVecs [0] = new KnotVector ((size1 - 1), size1);
kVecs [1] = new KnotVector ((size2 - 1), size2);
NURBSBasis *basis = new NURBSBasis(kVecs , 2);
return new Patch(grid , basis);

Listing 3.2: The code generating the control points and knot vectors for a planar NURBS
surface. It is called by the createGeometry() method in Listing 3.1.

2005). Such “structure-less” shapes can, however, be described as predefined object tem-
plates whereby the compact shape representation provided by NURBS plays an important
role. The predefined data structures are instantiated only upon template evaluation to
yield the desired shape. Templates can therefore be considered to be commands that do
not modify but that create geometry. The resulting shape is, at first, only static. A certain
degree of flexibility can be added, however, by the affine transformations described in
Section 3.3.1, in particular by means of nonuniform scaling.

Template- and operator-based modeling complement each other. Templates can pro-
vide, on one hand, the input to a list of modeling commands, thus representing the
“alignment kernel” of the model (cf. Leyton, 2001). This is shown in Figure 3.3 where
some sample geometries, described in terms of templates, have been combined with se-
quences of modeling commands. The modeling operators can, on the other, hand be used
in the definition of the templates. In this case it is possible to extend their range of rep-
resentable shapes beyond static geometry. When defined in terms of modeling operations,
templates can become fully parametrized objects themselves.

The geometry resulting from a given template may be used as intermediate data within
other templates. This establishes a hierarchy of model components and leads to a system
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Figure 3.3: Sample geometries that result from the combination of different templates with
modeling operators. The leftmost frame shows a panel with a circular cut-out after a
Revolution operation (i.e. a circular sweep). The cross-section is described as a template.
The center frame shows a thin rod whose control points have been rotated such as to
describe the twisted geometry. Each 2 × 2 × 1-subset of control points in longitudinal
direction is rotated by a multiple of 36 degrees. The rightmost figure shows a thin plate
with a circular hole. This plate is composed from four instances of the panel template
that has also been used in the leftmost frame. These instances are aligned using affine
transformations and are extruded with the desired panel thickness.

of “cascading” templates. Complex models may thus be described in terms of previously
defined and reusable components, where each template encodes the rules by which its pa-
rameters are translated into the resulting shape. Nesting then allows to establish depen-
dencies among the components’ parameters. Constraints between the parts of a complex
model can be ensured by propagation of suitable parameters from a parent template to its
children. This increases the effect of data amplification and allows to efficiently describe
complex models. The most important effect, however, is that this provides model adap-
tivity on multiple levels. Parameters can be adapted on all levels of the model hierarchy
while the encoded constraints ensure consistency of the model. An extensive example for
this is given in Chapter 4.



4 Template models for NURBS solids

An excellent field of application for NURBS-based geometries and Isogeometric Analy-
sis are fluid flow simulations. These problems are highly sensitive to imperfections in
the boundaries of their domain and hence gain enormously from smooth shape repre-
sentations (Hughes et al., 2005). Of these, the simulation of wind energy turbines is
particularly interesting. It comprises a rotating large-scale system of smooth rotor blades,
together with the surrounding body of air. The definition of volumetric numerical models
constitutes here a large part of the problem.

Two basic design types can be distinguished for wind energy turbines, based on their
respective axis of rotation. Horizontal-axis wind turbines (HAWT) are the popular, well-
known concept. They can be found on all orders of magnitude, from child’s toys to large
offshore installations. Their axis of rotation is parallel to the direction of fluid flow which
lets the wind impact the rotor blades at more or less constant angles. This is commonly
taken as a basis for a dimensional reduction of the problem. Fully volumetric simulations
such as performed in (Bazilevs et al., 2011; Hsu et al., 2011) allow to recognize turbulence
or fluid-structure interaction effects, though, which indicate the contrary.

The second design type is the Vertical-axis wind turbine (VAWT). Other than HAWT,
these wind turbines are more self-contained and fit into close spaces, making them valu-
able for application in urban areas. Their axis of rotation is perpendicular to the di-
rection of fluid flow. Accordingly, the impact angle of the fluid flow is changing steadily
which forbids an exploitation of the rotational symmetry for a model simplification. VAWT
geometries nonetheless possess a certain structure, making them eligible for procedural
representations.

An integral part of modeling the “negative space” around the wind turbine is the de-
scription of the rotor blades’ geometry. It is clear that their fidelity directly affects the
quality of the fluid flow solution. Airfoil profiles are, unfortunately, one of the cases that
cannot be handled purely in terms of modeling operators. They result, similar to aircraft
fuselage and ship hulls, from optimization processes and significant experimental work,
and their shape follows aerodynamic requirements rather than geometric considerations.
template representations of the rotor blades hence become necessary. Their generation
from given profile curves is shown in the following section. The application of these tem-
plates to the setup of the fluid domain is then described in Section 4.2.

4.1 Simplification of airfoil profiles

Airfoil cross-sections are typically described in terms of analytical functions or as sets
of sample points derived from the former. Figure 4.1 shows a selection of these profile
curves. This work assumes that the profiles are given in terms of the point sets Q :=
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Figure 4.1: Cross sections of various airfoil profiles as used in (Bazilevs et al., 2011). The
point samples comprising the profiles are commonly normalized with respect to the chord
length c.
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i=0. They can be found in publicly accessible databases.1 These samples

can be converted into spline curves by means of the algorithms described in (Piegl and
Tiller, 1997) which determine appropriate control points and parametrizations through
systems of linear equations. These procedures yield curves that either interpolate the
given samples or that approximate these points in a least-squares fashion. In this work
a global interpolation algorithm has been chosen which introduces a control point for
each initial point sample. This is independent of the order of interpolation which merely
affects the bandwidth of the employed equation system. Profile curves usually consist
of several hundreds of data points in order to accurately capture their geometry. This
would lead to an overhead of point data, contradicting the conciseness of a template
representation. In order to obtain manageable sets of points, data reductions are required.
To that end, two simplification algorithms are used. Their main objective is a reduction
of the number of control points in the final curve representation while, at the same time,
its geometric character is preserved. Therefor, the sets of points describing the profile
curves are split into two subsets, corresponding to the lower and the upper portion of
the profile, respectively. Application of the global interpolation algorithm then yields two
independent B-Spline curves that are joined C0-continuously at the leading edge of the
profile.

4.1.1 Subset selection

The first reduction approach determines a subset Q̄⊂ Q from the full set of discrete curve
samples. To that end a divide-and-conquer approach is chosen. The set of discrete curve
samples is therefor split into subsets of points. The first and last points Q̄low and Q̄upp of
each set, based on their x-coordinates, are used for a linear approximation of the set. This

1For example the UIUC Airfoil Coordinates Database at http://www.ae.illinois.edu/m-selig/
ads/coord_database.html.

http://www.ae.illinois.edu/m-selig/ads/coord_database.html
http://www.ae.illinois.edu/m-selig/ads/coord_database.html
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Figure 4.2: Recursive selection of points from a full set of samples. Q̄low and Q̄upp denote
the respective lower and the upper elements in a range of point samples (shown in blue).
Q̄mid is the element in the middle of the point range. The line segment
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�
is the

current approximation to the polygon of sample points with the normal vector n(l,u). The
criterion for subdivision is based on the new line segments Q̄low − Q̄mid and Q̄mid − Q̄upp
with the normal vectors n(l,m) and n(m,u).

is illustrated in Figure 4.2. A point Q̄mid is chosen from the remaining points. It is either
located at the midpoint of the set or it is chosen simply by the cardinality of the set. This
point is used to set up the segments Q̄mid − Q̄low and Q̄upp − Q̄mid .

The criterion for further subdivision of the point sets is adapted from the one-edge nor-
mal test as described in (Espino et al., 2003). It is based on the normal vectors n(mid,low)

and n(upp,mid). If the relative difference of these vectors from the normal vector n(upp,low)

exceeds a user-defined threshold then the point Q̄mid is included in the subset Q̄ and the
selection scheme is repeated recursively for each sub-range of points

�
Q̄low, Q̄mid

�
and�

Q̄mid, Q̄upp

�
. This algorithm continues either until all line segments have been checked

or until the normal deviation stays below the defined error level.

4.1.2 Adaptive sampling

The second simplification method is based on a resampling of the “original” profile curve.
That is, a completely new set of points, independent from the given samples, is computed
for use in the interpolation scheme. Therefor the complete set of initial data points is used
for a global interpolation. This results in a one-to-one translation of samples to control
points. Starting point of this approach is a relatively coarse set of samples taken along the
arc length of this curve which is successively refined throughout the procedure.

The initial coarse sampling defines a piecewise linear approximation of the full curve
where each segment is defined by a pair of samples Q̄low = x(ξlow) and Q̄upp = x(ξupp), as
illustrated in Figure 4.3. In order to determine whether it is necessary to subdivide this
segment, the average of Q̄low and Q̄upp is compared with the sample Q̄mid . This sample is
taken at the average of the parametric coordinates ξlow,ξupp:

ξmid =
ξlow + ξupp

2
.
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To put it differently: the sample taken at the average of the points’ parametric coordinates
is compared to the points’ average physical coordinates. If that distance exceeds a given
threshold then the new sample Q̄mid is added to the set Q̄. The subdivision is then recur-
sively repeated for the segments Q̄low − Q̄mid and Q̄mid − Q̄upp as long as the coordinate
deviation exceeds the set error level.

Q̄low + 0.5(Q̄upp− Q̄low)

d

Sample point
Parametric curve
Current approximation
Potential approximation update

Q̄low

Q̄mid

Q̄upp

Figure 4.3: Adaptive sampling of a profile curve describing an airfoil. Q̄low and Q̄upp are
two sample points along a curve that results from considering all initial data points. Each
of these samples is assigned to a parametric coordinate ξlow and ξupp, respectively. The
sample point Q̄mid is evaluated at the parametric coordinate ξmid = 1/2(ξlow + ξupp). The
criterion for subdivision is based on its deviation from the average of Q̄low and Q̄upp.

4.1.3 Error analysis

The sets of point data that originate from the simplification routine are then used in the
global interpolation scheme. The resulting curves represent a good approximation to
the original, uncompressed curves, as can be seen in Figure 4.4 that compares a simplified
NACA64-618 profile (using a subset selection approach) with its original. It can be readily
confirmed that the simplification retains the geometric character of the curve—despite a
reduction to one third of the original control points. Both the control points and the
images of the knot values exhibit a regular spacing along the curve’s arc length. This
helps to ensure a nearly uniform element size distribution in the fluid domain mesh based
on this geometry. Similar compression rates can be attained for the other profiles and
for both simplification algorithms. It is important to note, however, that the two methods
perform differently for the considered profile curves. That is, there seems to be no optimal
compression method for the general case.

Table 4.1 lists the results of the reduction schemes applied to different airfoil profiles.
Apart from the NACA0018 section, all airfoils are asymmetric. Nevertheless, the section
curves are defined by the same number of initial sample points. For the shown thresholds
they are reduced to the same number of points for both the upper and the lower portion.

It is clear that the simplification of the airfoil profiles introduces errors into the geo-
metric representation. In order to determine the magnitude and the distribution of this
error, the simplified curves are compared with the original sections resulting from the full
set of point samples

�
Qi
	
. In order to determine the error, both curves are sampled along
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Figure 4.4: Comparison of a simplified NACA64-618 profile curve (resulting from the subset
selection scheme) with the curve given by a full set of samples. Both the control points and
the knot images of the curve exhibit a regular spacing, hinting at a good mesh quality for a
later application of the curve in the modeling of fluid domains.

their arc length with a predefined number of samples. However, the geometric mapping
from the parameter space Ω̄1 of the curve to physical coordinates is in general nonlinear.
That is, samples ξi that are regularly spaced in Ω̄1 are not necessarily mapped to points
x(ξi) that are regularly spaced in R2. These mappings can differ even between curves
resulting from the same set of point samples but from different simplification methods/s-
election thresholds. It is hence necessary to uniformly distribute the sample points along
the curves’ arc length larc. This length can be approximately determined by summing up
the respective distances between successive mapped samples:

larc =
m−1∑
i=0

‖x(ξi+1)− x(ξi)‖2 (4.1)

The relative position lrel(ξi) of the sample x(ξi) along the arc length can then be computed
by:

lrel(ξi) =
1

larc

i−1∑
j=0

‖x(ξ j+1)− x(ξ j)‖2, (4.2)
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Profile Threshold (Method) Segment Max. error Avg. error Initial points Final points

NACA64 0.024 (Subset)
upper 3.385 · 10−4 5.312 · 10−5

102 39
lower 2.887 · 10−4 4.216 · 10−5

NACA0018 0.022 (Adaptive)
upper 2.713 · 10−4 4.713 · 10−5

50 33
lower 2.713 · 10−4 4.713 · 10−5

DU21 0.026 (Subset)
upper 8.442 · 10−4 1.488 · 10−4

200 33
lower 8.246 · 10−4 1.599 · 10−4

DU25 0.022 (Adaptive)
upper 8.187 · 10−4 1.311 · 10−4

200 33
lower 4.041 · 10−4 5.808 · 10−5

DU30 0.032 (Subset)
upper 7.876 · 10−4 1.208 · 10−4

200 27
lower 6.691 · 10−4 1.052 · 10−4

DU35 0.036 (Subset)
upper 3.620 · 10−4 5.821 · 10−5

200 26
lower 4.182 · 10−4 7.734 · 10−5

DU40 0.065 (Adaptive)
upper 4.693 · 10−4 6.408 · 10−5

200 17
lower 5.448 · 10−4 9.193 · 10−5

Table 4.1: Overview of the compression rates and approximation errors for different airfoil
profiles. Each entry states the simplification method that achieved the best reduction to-
gether with the employed selection threshold and the resulting approximation error. With
the NACA0018 profile being the exception, all airfoils are asymmetric. The approxima-
tion error is therefore given for both the respective upper and the lower segments of each
profile. The two rightmost columns show the initial number of control points of the respec-
tive profile curves together with the number of points defining the simplified curves. Both
the upper and lower profile segments of each curve are described by the same number of
control points—in spite of the profiles’ asymmetry.

where ‖ · ‖2 denotes the l2 vector norm. For a vector a with components ai it is defined as

‖a‖2 =

s
3∑

i=1

|ai|2.

Linear interpolation of the samples’ positions allows to determine the parametric coor-
dinates leading to regularly spaced sample points along the curve’s arc length. For each
of these points both the geometric error

egeom = ‖xorig(ξ)− xred(ξ)‖2 (4.3)

and the tangential error

etang =
‖xorig,ξ(ξ)− xred,ξ(ξ)‖2

‖xorig,ξ ‖2
(4.4)

are determined with respect to the original curve. The following error analysis is based
on 200 samples taken along the arc length of the upper respectively the lower portion of
the airfoil sections.

The two simplification methods lead to characteristic error distributions along the arc
length of the profile, shown in Figure 4.5 for a NACA64-618 airfoil. Similar distributions
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Figure 4.5: The distribution of the geometric and the tangent error along the arc length of the
NACA64-618 profile for the selection threshold 0.025. One can clearly recognize the lower
error levels of the model produced by the subset selection scheme, shown on the bottom.
Errors are shown for both portions of the asymmetric profile, and the geometric error is
scaled up by a factor of 103.
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Threshold
Subset selection Adaptive Sampling

Max. error Avg. error Points Max. error Avg. error Points

0.015
upper 2.332 · 10−4 5.593 · 10−5 56 2.574 · 10−3 5.156 · 10−4 50
lower 1.644 · 10−4 4.486 · 10−5 56 3.491 · 10−3 8.569 · 10−4 50

0.020
upper 3.501 · 10−4 6.797 · 10−5 54 2.052 · 10−3 4.345 · 10−4 36
lower 2.670 · 10−4 6.398 · 10−5 54 2.856 · 10−3 7.339 · 10−4 35

0.025
upper 3.385 · 10−4 5.312 · 10−5 39 2.056 · 10−3 4.385 · 10−4 30
lower 6.884 · 10−4 7.559 · 10−5 38 2.858 · 10−3 7.315 · 10−4 30

0.030
upper 4.968 · 10−4 6.792 · 10−5 31 2.056 · 10−3 4.385 · 10−4 26
lower 6.919 · 10−4 8.921 · 10−5 31 2.859 · 10−3 7.302 · 10−4 26

0.035
upper 5.587 · 10−4 8.677 · 10−5 27 7.126 · 10−3 1.782 · 10−3 23
lower 8.209 · 10−4 1.370 · 10−4 27 1.114 · 10−2 3.007 · 10−3 24

0.040
upper 5.587 · 10−4 7.862 · 10−5 26 7.124 · 10−5 1.781 · 10−3 17
lower 4.477 · 10−3 1.254 · 10−3 25 9.807 · 10−3 2.788 · 10−3 17

Table 4.2: Comparison of the approximation error of the NACA64 profile for both simplifica-
tion methods and different selection thresholds. Each entry shows the maximum and the
average error together with the number of control points defining the resulting curve. The
error is specified for both segments of the asymmetric profile.

arise for the other profiles shown in Figure 4.1. The most salient effect is caused by the
split of the profile curve into two halves. Thereby the continuity of the curve is reduced to
C0 at the leading edge of the airfoil, corresponding to an arc length of zero. The tangent
error accordingly exhibits a large increase in this region. A second region of large tangen-
tial error can be identified for the arc length range [0.5,0.9]. Comparison with Figure 4.4
shows that this region corresponds to the smooth slope towards the trailing edge of the
profile curve. This portion possesses a relatively low curvature compared to the overall
airfoil. Both simplification methods select data points based on a linear approximation
to the original shape. Regions with low curvature can therefore be approximated by few
samples, confirmed by the low geometric error for this region.

The adaptive sampling scheme appears to be sensitive to profile curves with largely
varying curvature. This is the case for the NACA64-618 profile that exhibits large portions
of low curvature towards the trailing edge of the airfoil whereas the leading edge is, in
comparison, strongly curved. In order to capture the latter, a relatively low error threshold
has to be specified. This, however, leads to the introduction of excessive sample points
in the regions of low curvature. These regions can already be faithfully described by few
data points. This explains the low geometric error in the rear parts of the profile curve.
At the same time a large error can be observed at the leading edge of the profile. One
must assume, however, that the split of the profile curve into two halves contributes to
this error spike.

Figure 4.6 illustrates the evolution of the error for different selection thresholds for both
simplification methods. It should be noted that the principal distribution of the error, as
shown in Figure 4.5, does not change with varying thresholds, only the magnitude of the
error is affected. Therefore, only the mean geometric error is considered. A quantitative
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Figure 4.6: The size of the geometric error of the simplified profile curves and its relation to
the size of the curve’s representation. The left-hand image shows the mean geometric error
over a profile curve for different selection/sampling thresholds for the two simplification
schemes. The right-hand image illustrates the attainable error levels in relation to the
number of control points being used for the curve representation.
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comparison of the error levels resulting for different selection thresholds is given in Ta-
ble 4.2 for the NACA64-618 section. It considers, in addition to the mean geometric error,
the magnitude of the error spike at the leading edge of the simplified profile.

Interestingly, the geometric error exhibits, for both algorithms, characteristic error pla-
teaus. For certain “critical thresholds” jumps in the error level can be observed. This can
be attributed, at least for the subset selection scheme, to the initial distribution of the
point samples. Their spacing is highly irregular, both with respect to their x-coordinates
and to their distances. The leading and the trailing edge of the profile exhibit a much
higher density of data points than other parts of the curve. This leads to a certain insta-
bility with respect to the user-defined selection thresholds. That is, a slight variation in
the threshold can result in different point sets being regarded for the global interpolation.
This dependency can be reduced by using regularly spaced samples as a starting point for
the simplification routines.

The adaptive sampling scheme is independent from the initial data. Instead, it selects its
sample points from the “uncompressed” curve, defined by the full set of initial data. This
indirect relation of the adaptive selection method from the initial data points can have a
detrimental effect: new sample points are taken with respect to the interpolated profile,
irrespective of the number of initial data points. For very small selection thresholds this
method can actually result in more control points than initially given. New samples are
taken, by definition, at the midpoints between existing samples. These are compared with
a point at the average parametric coordinate of the existing samples. Due to the nonlinear
mapping, these points do not necessarily coincide with the midpoint between the given
points along the curve’s arc length. Instead, this point is slightly shifted. This effects
a sensitivity to the selection thresholds similar to that of the subset selection scheme. It
introduces, in addition, a kind of “minimum error” into these error studies. Corresponding
sample points along different curves can therefore exhibit slight offsets which can be
recognized by local oscillations in the error—although visual inspection indicates good
agreement of the curves being compared. This can be reduced by a higher number of
sample points for the error analysis in combination with a more faithful computation of
the samples’ parametric coordinates.

4.2 Templates for VAWT fluid domains

Given a selection threshold, the aforementioned simplification algorithms return a com-
pact set of control points along with an appropriate parametrization. The corresponding
profile curves provide a faithful representation of the original airfoil sections, as confirmed
by Figure 4.4. Their template implementation is straightforward. A curve’s control points
are, similar to the initial point data, normalized with respect to the chord length of the
considered airfoil. In addition to the chord length, further parameters are relevant for
airfoil shapes. These determine an airfoil’s alignment and orientation and are depicted in
Figure 4.7. Together with the chord length, they establish a natural parametrization for
the airfoil geometry.
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Figure 4.7: Parametrization of an airfoil as used in (Bazilevs et al., 2011). The chord length of
the profile is denoted by L. The aerodynamic center is located at a units from the leading
edge. The profile is twisted by an angle ϕ around the z-axis. The axis of revolution passes
through a point that is located on the median axis (dashed) at (0.25− b) units from the
aerodynamic center.

β
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Figure 4.8: Parametrization of a section of the fluid domain. The section can be completely
defined by the inner radius ri , the outer radius ro, the arc length α and the distance rc of
the profile’s median axis to the center of revolution. The angle β denotes the arc length that
corresponds to the chord length of the profile. The section cannot be modeled using a single
NURBS patch only. Instead the domain is subdivided into six patches whose boundaries are
shown in dotted lines.
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Figure 4.9: Template hierarchy for the negative space around the Vertical-Axis Wind Turbine.

Due to an ever-changing angle of attack of the fluid flow on the rotor blades, the ro-
tational symmetry of the model cannot be exploited for a dimensional reduction of the
problem. It can nonetheless be made use of in the definition of the system’s geometry.
That is, the negative space around the blades only has to be modeled for a single section
enclosing a single blade. This space can be readily described by a template. Similar to the
airfoil template, the fluid domain section is determined by a handful of parameters. These
are: the inner and the outer radii Ri respectively Ro, the distance Rc of the airfoil to the
axis of rotation, and the arc length α of the section which depends on the number of rotor
blades in the design of the wind turbine. These parameters are illustrated in Figure 4.8
along with the decomposition of the section into individual patches. This decomposition
is necessary as a consequence of the simple topology of NURBS patches; it is also the
motivation for the split of the airfoil profiles into two separate curves.

Using the simplified airfoil profiles as input, the template of the fluid domain can be fully
described in terms of modeling operations. A section of the fluid domain can accordingly
be described in terms of eight model parameters that are translated into the required
data structures. The instantiation of the template geometry proceeds as follows: at first
the section curves of the airfoil are instantiated using the specified chord length and a
possible pitch angle. The arc length β results from the center radius Rc and the arc
length α. It is used to describe the respective inner and outer arcs delimiting the fluid
domain in radial direction. These arcs are themselves provided as templates that, given
an arc length, return a quadratic NURBS curve. Affine transformations are used for proper
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Figure 4.10: The isogeometric finite element mesh of the fluid domain after full refinement.
For the purpose of visualization, each quadratic NURBS element is interpolated with 2×
2× 2 bilinear elements. Images courtesy of Y. Bazilevs.
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alignment of these arcs with the sections of the airfoil. Knot refinement is used to produce
conformal parametrizations of the arcs and the portions of the airfoil. Eventually, the
two patches around the airfoil are generated by a ruling operation. It effects, first and
foremost, a linear interpolation of the two given boundary curves in radial direction;
higher orders of interpolation can be readily achieved, though. The lateral sides of the
resulting patches are extracted subsequently and serve as input for radial sweeps. This
results in six independent patches that possess conformal point grids and parametrizations
along their respective shared edges. Extrusion of these patches along the turbine’s vertical
axis yields a segment of the volumetric fluid domain. This resulting segment can be
copied and put into place using further transformations, producing a mesh for a wind
turbine with straight blades, a so-called giro-mill design. More complex designs such as
the Darrieus rotors involve helical or outwardly bent blades. Such designs are disregarded
here; the current template can, however, act as a basis for their implementation.

The complete isogeometric mesh for a three-blade design is described by 18 solid
patches comprising, depending on the employed airfoil profile and selection threshold,
between 88 and 288 control points. The individual patches share consistent interfaces.
Their template hierarchy is illustrated in Figure 4.9. Evaluation of the templates can be
readily handled by a desktop computer in fractions of a second.

It is important to note that this model only describes the coarsest mesh for this con-
figuration. In order to allow convergence of the numerical simulation, further mesh
refinement is necessary—which can be equally well formulated as a list of operations.
Accordingly, different versions of an isogeometric mesh can be kept by storing a coarse
basic model along with different refinement macros. A fully refined mesh of the volumet-
ric fluid domain is shown in Figure 4.10. Due to the construction steps it is possible to
faithfully capture the boundary layers along the rotor blades. At the same time one can
observe the high regularity of the mesh in the bulk of the domain.



5 Analysis-suitability of NURBS models for
Isogeometric analysis

Operator-based modeling allows an abstract treatment of NURBS models and simplifies
the definition and adaption of geometric models. According to the isogeometric concept
the geometric and the numerical model are identical. That is, the proposed procedural
modeling approach is simultaneously a basis for geometric modeling and for the descrip-
tion and modification of numerical models. NURBS are inherently a higher-order, higher-
continuity approach. At least quadratic basis functions are necessary in order to describe
the full range of possible geometries (Hughes et al., 2005). They are suitable as ansatz
for Finite Element models (Bazilevs et al., 2006). As shown by Cottrell et al. (2007), their
implicit higher continuity is a benefit for the numerical solution scheme as it allows, for
instance, to limit the influence of model singularities by adjusting the continuity of the
basis functions. In the context of structural vibrations the higher continuity effects a dis-
appearance of spurious effects such as optical branches from the model spectra (Cottrell
et al., 2006). IGA models furthermore exhibit only a third of the degrees of freedom com-
pared to “classical” FEM discretizations (Uhm et al., 2008). They are consequently of high
value for structural optimization problems (cf. Cho and Ha, 2008; Nagy et al., 2010; Seo
et al., 2010a,b; Wall et al., 2008).

NURBS solids are the result of mapping a simple hexahedral parametric domain into
a (curved) geometry. Many geometric features, for example kinks or sharp edges in an
otherwise smooth shape, may only be achieved by distortion of this domain. This can
adversely affect the representation of the solution field of the mathematical model and
might even invalidate its solution (Lipton et al., 2010). Different geometric models can
furthermore exhibit varying suitability for numerical analyses. This manifests itself by
widely varying error levels between different parametrizations of the same model (Cohen
et al., 2010; Xu et al., 2010). NURBS provide a highly flexible, non-unique representation
scheme (cf. Mäntylä, 1987). That is, different parametrizations and control point config-
urations can, in general, be used for describing the same object. It is hence vital to be
able to detect already at the modeling stage a possibly detrimental influence of the chosen
representation on the properties of the numerical model.

Isogeometric Analysis is an extension of Finite Element procedures. Likewise, it con-
structs approximate solutions to systems of partial differential equations by Galerkin’s
method. The following section illustrates the features of the isogeometric concept using
the boundary-value problem of linear elastostatics. Based on these, a set of mesh quality
metrics is formulated and studied in Section 5.2.
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5.1 Isogeometric analysis of linear elasticity problems

Consider a three-dimensional body Ω⊂ R3, bounded by its surface Γ which consists of the
subsets Γu and Γt such that Γ = Γu ∪ Γt , Γu ∩ Γt = ∅. This body is subject to volumetric
body loads bi, for instance gravity, and to tractions t̄ i acting on Γt . It is supported on Γu

by prescribed displacements ūi such that rigid-body motions of the object are prevented.
Primary variable of this problem is the displacement field ui describing the deformation
of the body under the specified loads. Assuming geometrically linear behavior, the strains
corresponding to the displacement field are described by the symmetric, second-order
infinitesimal strain tensor with the components

εkl =
1

2

�
∂ uk

∂ x l
+
∂ ul

∂ xk

�
=

1

2

�
uk,l + ul,k

�
, (5.1)

where ( · ),i denotes a partial derivative with respect to the i-th coordinate. The stress
state that evolves in the body as a consequence of the external loads and the constrained
deformations is denoted by the symmetric, second-order Cauchy stress tensor with the
components σi j. Stresses and strains are linked by the generalized Hooke’s law

σi j = Ci jkl εkl (5.2)

where the Ci jkl are the components of the fourth-order constitutive tensor describing the
material behavior. This section makes use of the summation convention, that is, repetition
of an index in a given term implies summation over this index.

The pointwise equilibrium of forces acting on a material point subject to body loads is
described by

σi j, j + bi = 0 ∀x i ∈ Ω, (5.3)

with the boundary conditions

σi jn j = t̄ i ∀x i ∈ Γt , (5.4a)

ui = ūi ∀x i ∈ Γu, (5.4b)

where n j denotes the outward normal vector to the body’s boundary. Closed solutions for
the partial differential equations (5.3) subject to (5.4) can only be found for simple do-
mains (Bathe, 1996). Approximate solutions can be constructed for arbitrary geometries,
though. To that end above strong, point-wise conditions are transformed into the so-called
“weak form”, in which the equilibrium is only fulfilled in an integral sense. Therefor, Equa-
tion (5.3) is multiplied by the virtual displacement field δui and integrated over the whole
domain. Partial integration and application of the divergence theorem (cf. Bathe, 1996;
Hughes, 2000; Zienkiewicz et al., 2005) eventually yields the principle of virtual work:

∫

Ω

δεi jσi j dV=

∫

Ω

δui bi dV+

∫

Γt

δui t̄ i dA (5.5)

where δεi j is the virtual strain field corresponding to the virtual displacements. The
symmetries of stress, strain and constitutive tensor can be exploited so as to introduce
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a vector representation that simplifies the notation and that closely corresponds to the
implementation of FEM, respectively IGA. Subsequently, both vector quantities and the
vector representation of tensors are printed in boldface letters. The components of the
stress tensor are thus arranged in the stress vector as follows:

σ =
�
σ11 σ22 σ33 σ12 σ23 σ13

�T
.

Likewise, we arrange the strain tensor’s components in the strain vector

ε=
�
ε11 ε22 ε33 2ε12 2ε23 2ε13

�T
.

The constitutive relations (5.2) accordingly read

σ = Cε

with C being the 6× 6 matrix representation of the constitutive tensor. For linear elastic,
isotropic material behavior this matrix can be fully expressed in terms of Young’s modulus
E and Poisson’s ratio ν:

C=
E

(1+ ν)(1− 2ν)




(1− ν) ν ν 0 0 0
ν (1− ν) ν 0 0 0
ν ν (1− ν) 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2




In this vector representation, the weak form (5.5) reads
∫

Ω

δεTσ dV=

∫

Ω

δεT CεdV=

∫

Ω

δuT bdV+

∫

Γt

δuT t̄dA, (5.6)

where u, b and t̄ are the displacement vector, the vector of body forces, and the surface
traction vector, respectively. Furthermore, δu and δε are the so-called virtual displace-
ments and the corresponding virtual strains.

5.1.1 Discretization with NURBS

Both the Finite Element Method and Isogeometric Analysis start from (5.6) in order to
obtain approximate solutions fulfilling (5.3). To that end, they construct an approximate
solution

u≈
∑

i

φi ci

from a set of trial functions φi together with a set of coefficients ci. Using the commonly
employed isoparametric concept of FEM, the displacement field u(ξ) is described within
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a given NURBS patch by interpolating the displacements ûA = (uA, vA, wA)T of the solid’s
control points:

u(ξ) =
T−1∑
A=0

RA(ξ) ûA, (5.7)

where T denotes the total number of control points in a given patch (cf. Section 2.2)
and the RA are the corresponding NURBS basis functions. This can be formulated as a
matrix-vector product

u(ξ) = R(ξ) û (5.8)

with the control point displacements û =
�

û0, û1, . . . , ûT
�T and the matrix of basis func-

tions

R(ξ) =




R0(ξ) 0 0 R1(ξ) 0 0 . . . RT (ξ) 0 0
0 R0(ξ) 0 0 R1(ξ) 0 . . . 0 RT (ξ) 0
0 0 R0(ξ) 0 0 R1(ξ) . . . 0 0 RT (ξ)


 .

In vector representation, the kinematic relations (5.1) can be written as

ε=




∂

∂ x
0 0

0 ∂

∂ y
0

0 0 ∂

∂ z
∂

∂ y
∂

∂ x
0

0 ∂

∂ z
∂

∂ y
∂

∂ z
0 ∂

∂ x







u
v
w


= Dku= DkR(ξ) û= B(ξ) û (5.9)

with the strain-displacement matrix

B(ξ) =




R0,x(ξ) 0 0 . . . RT,x(ξ) 0 0
0 R0,y(ξ) 0 . . . 0 RT,y(ξ) 0
0 0 R0,z(ξ) . . . 0 0 RT,z(ξ)

R0,y(ξ) R0,x(ξ) 0 . . . RT,y(ξ) RT,x(ξ) 0
0 R0,z(ξ) R0,y(ξ) . . . 0 RT,z(ξ) RT,y(ξ)

R0,z(ξ) 0 R0,x(ξ) . . . RT,z(ξ) 0 RT,x(ξ)




Analogous expressions can be set up for the virtual displacements δu and the virtual
strains δε. This transforms Equation (5.6) into

δûT

∫

Ω

B(ξ)T CB(ξ) ûdV= δûT

∫

Ω

R(ξ)T bdV+δûT

∫

ΓN

R(ξ)T t̄dA. (5.10)

This must be fulfilled for arbitrary virtual displacements δû. Above equation can hence
be written as a system of linear equations:

Kû= f
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Figure 5.1: The different spaces that have to be considered during numerical integration for
IGA, shown for the two-dimensional case. The actual quadrature is performed on the biunit
parent domain Ω2

G . The integrands are evaluated at appropriate ξ(xG), xG ∈ Ωd
G , ξ ∈ Ω̄d ,

that are determined through the mapping G . The integrands comprise partial derivatives
with respect to physical coordinates which are determined by means of the geometric map-
ping N , respectively its inverse.

with the stiffness matrix

K=

∫

Ω

B(ξ)T CB(ξ)dV (5.11)

and the load vector

f=

∫

Ω

R(ξ)T b dV +

∫

Γt

R(ξ)T t̄dA. (5.12)

5.1.2 Numerical integration

Integrals (5.11) and (5.12) are evaluated by Gaussian integration which replaces the inte-
grals by a weighted sum of the integrand’s values taken at discrete points xG, the so-called
Gauss points. Therefor, Finite Element schemes compute a cell decomposition of the ori-
ginal geometry. That is, the domain Ωd is subdivided into a set of disjoint elements Ωd

e ,
each of which can be mapped to the biunit domain Ωd

G = [−1,+1]d . The actual integra-
tion is then performed for each element on this biunit domain by means of a change of
variables. In that respect Isogeometric Analysis differs from isoparametric Finite Element
methods: NURBS geometries are based on a parametric domain Ω̄d , as illustrated in Fig-
ure 5.1. This domain consists of rectangular/hexahedral segments that can be mapped di-
rectly to Ωd

G—rendering the aforementioned cell decomposition obsolete. In other words,
the parametric domain can be used for numerical integration without preprocessing. It is
this factor which allows to carry over the geometric fidelity from the source model to the
numerical model.

NURBS basis functions are rational polynomial functions. Gaussian integration there-
fore results, allows, speaking, only approximate integration of the stiffness and load inte-
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grals. Hughes et al. (2005) argue, however, that the NURBS basis functions converge to
polynomial B-Spline functions, given sufficient mesh refinement. This is due to the affine
combinations during knot refinement operations that “smoothen out” the difference in the
control points’ weights. To put it differently: while Gaussian integration remains insuffi-
cient on the coarsest mesh, its use can be justified on meshes that have been sufficiently
refined so as to provide reasonable, smooth solutions (Cottrell, 2007). Accordingly, the
number of integration points can be determined from the polynomial degrees of the re-
spective univariate B-Spline functions constituting the NURBS basis.

Two coordinate transformations are necessary for the evaluation of (5.11) and (5.12):
the integrands are expressions of the parametric coordinates ξ and they contain partial
derivatives with respect to the physical coordinates x. As a consequence of the discretiza-
tion, the latter reduce to derivatives of the employed shape functions. These can, in turn,
be computed by




RI ,x

RI ,y

RI ,z


=



ξ,x η,x ζ,x

ξ,y η,y ζ,y

ξ,z η,z ζ,z






RI ,ξ

RI ,η

RI ,ζ


= J−1

N




RI ,ξ

RI ,η

RI ,ζ


 , (5.13)

which requires inversion of the Jacobian matrix of the geometric mapping

N : Ω̄d → Ωd , (5.14)

that, in turn, is defined by

JN =




x,ξ y,ξ z,ξ

x,η y,η z,η

x,ζ y,ζ z,ζ


 , (5.15)

with the row vectors simply being the tangent vectors of the NURBS mapping at a given
parametric coordinate ξ:

�
x,ξ, y,ξ, z,ξ

�T
=

T−1∑
I=0

RI ,ξPI ,

�
x,η, y,η, z,η

�T
=

T−1∑
I=0

RI ,ηPI ,

�
x,ζ, y,ζ, z,ζ

�T
=

T−1∑
I=0

RI ,ζPI .

(5.16)

In order to obtain appropriate parametric coordinates ξ for the evaluation of basis func-
tions and derivatives, the coordinates of the Gauss points xG are mapped to the current
nonzero knot span [ξi,ξi+1)× [η j,η j+1)× [ζk,ζk+1) through the mapping G : Ωd

G → Ω̄d:

G : ξ=
1

2



(ξi+1− ξi) s+ (ξi + ξi+1)
(η j+1−η j) t + (η j +η j+1)
(ζk+1− ζk) u+ (ζk + ζk+1)


 ,
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where s, t, u denote the Gauss point coordinates within Ωd
G. This mapping has the Jacobian

JG =



ξ,s η,s ζ,s

ξ,t η,t ζ,t

ξ,u η,u ζ,u


= 1

2



(ξi+1− ξi) 0 0

0 (η j+1−η j) 0
0 0 (ζk+1− ζk)


 .

The combined change of variables transforms the stiffness matrix integral into

K=

∫

ΩG

B(ξ(xG))
T CB(ξ(xG))det(JN JG )dV. (5.17)

An analog expression results for the integral of the load vector.

5.2 Quality metrics for isogeometric models

In order for the stiffness integral (5.17) and the corresponding load integral to make
sense, the transformation relations (5.14) must be well-defined and unique. That is, the
bijectivity of the NURBS mappingN must be guaranteed (Xu et al., 2011b). A simple test
for this property is proposed in (Joy and Duchaineau, 1999; Xu et al., 2010, 2011a,b). To
that end the tangent vectors of the NURBS mapping, (5.16), are approximated in terms
of difference vectors PI − PJ , I 6= J . These vectors are combined into so-called tangent
cones corresponding to the respective partial derivatives, and overlapping cones indicate
self-overlap of the mesh. This criterion, however, allows only patch-global statements on
possible mesh distortions. It does neither allow to locate the source of this disturbance nor
is it suitable for a comparison of non-degenerate meshes. Furthermore, it might lead to
the rejection of a model even when the mesh distortion is only localized or when it could
be removed. As a consequence, mesh quality indicators considering local mesh properties
are necessary. In what follows, these indicators will be referred to as metrics1. They are
intended to reflect the properties of a NURBS model with respect to quantities such as
smoothness, regularity, or element aspect ratios.

Finite element procedures offer various criteria for evaluating the quality of a mesh.
These criteria assess the interpolation quality of an element based on its shape, for in-
stance on its aspect ratios or its interior angles (Cohen et al., 2010). Thresholds are
imposed for these quantities in order to ensure well-defined transformations from the
elements’ parent domains to physical space. Unfortunately, these criteria are designed for
multilinear shape approximations. NURBS geometries in contrast offer smooth, higher-
order shape descriptions; the NURBS equivalent of the element mesh can hence contain
curved elements. It is consequently doubtful whether such “linear” mesh quality estima-
tors can be applied for the assessment of NURBS models.

Geometric criteria are only a part of what determines the quality of a mesh for nu-
merical simulation. Even the Jacobian matrix JN is only one factor that affects the qual-
ity of an isogeometric mesh: models that are deemed optimal—judged by the Jacobian

1This designation should not be confused with the mathematical concept of a “metric” that is used to
measure distances and angles in metric spaces.
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determinant—can perform differently for a given task (Cohen et al., 2010). The quality
of a mesh depends, in addition to the shape of its elements, on the considered mathemat-
ical model, the characteristics of the desired solution, and on the employed discretization
method (Berzins, 1998; Knupp, 2007). Individual elements nevertheless have a large in-
fluence as they affect the error in the gradients of the solution field and the condition
number of the resulting stiffness equations (Shewchuck, 2002). A suitable mesh must
therefore be considered to be a sufficient condition for meaningful simulation results.
That is, a poor mesh can at least complicate the solution process (Knupp, 2007). It is con-
sequently of great interest whether existing mesh quality criteria can be employed for the
assessment of NURBS models, and which magnitudes of the respective criteria indicate an
ill-suited model.

5.2.1 Formulation of metrics

Mappings between different spaces are the essence of both NURBS-based shape represen-
tations and Isogeometric Analysis, as could be seen in Subsection 5.1.2. In particular the
properties of these mappings should therefore serve as the basis for isogeometric mesh
quality indicators. Fundamental element in these mappings is the Jacobian matrix of the
NURBS mapping, (5.15), respectively its determinant, which is therefore chosen as a basic
metric:

fdet = det(JN ). (5.18)

This quantity reflects the transformation of the parametric domain Ω̄d under the geometric
mapping and is hence affected by the steps taken during creation of the geometric model.
This metric becomes zero for singular points, where the bijectivity of the mapping is lost.
Negative values likewise indicate inverted elements with a negative volume—both cases
indicate invalid regions of a mesh.

The Jacobian can further be used to construct a series of metrics such as given in (Knupp,
2000). Of these, the condition number of the Jacobian,

fcond = κ(JN ) = ‖JN ‖F · ‖J−1
N ‖F , (5.19)

seems to be the most suitable as it provides a non-dimensional, symmetric, and scale-
independent criterion (Knupp, 2000), ensuring applicability to models on different size
scales. For its evaluation the Frobenius norm is employed,

‖JN ‖F =

√√√√ 3∑
i=1

3∑
j=1

| Ji j|2,

where the Ji j denote the entries of the Jacobian matrix. A similarly promising metric
derived from the Jacobian is described by Oddy et al. (1988). It is based on an analogy
between mesh distortions and mechanical strains. To that end, the Jacobian matrix is
used to set up the right Cauchy-Green deformation tensor. Starting from this tensor, Oddy
et al. determine the infinitesimal strain tensor, from which the deviatoric strains can be
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extracted. The second tensor invariant of the result yields the metric. In the form given
in (Knupp, 2000), the “Oddy metric” reads

fOdd y(JN ) = det(JN )
−4/3

�
‖JT
N JN ‖2

F −
1

3
‖JN ‖4

F

�
. (5.20)

Brakhage and Lamby (2008) mention, in addition, the orthogonality of the isogeomet-
ric mesh lines as a beneficial mesh property in fluid flow problems. This claim is supported
by Cohen et al. (2010) who observed notable differences in the model response for meshes
that violate this criterion to different extents. They do not, however, specify a metric for
this criterion. For its construction, the scalar products of the normalized tangent vec-
tors (5.16) are employed:

f⊥ =

 
1−
�����

x,ξ

‖x,ξ‖2
· x,η

‖x,η‖2

�����

!
×
 

1−
�����

x,ξ

‖x,ξ‖2
· x,ζ

‖x,ζ‖2

�����

!
×
 

1−
�����

x,η

‖x,η‖2
· x,ζ

‖x,ζ‖2

�����

!
. (5.21)

Expressions (5.18) to (5.21) allow to recognize the values that the metrics take on for
both undistorted and invalid meshes, the former case being given by the identity trans-
formation JN = I. The Jacobian determinant accordingly becomes one. It goes to zero
for singular mappings but can otherwise take on any value—positive and negative—for
general meshes. The condition of the Jacobian of an ideal, undistorted mesh is 3 as a con-
sequence of the employed Frobenius norm. This metric goes to infinity at singular points,
the same as the Oddy metric which, in turn, becomes zero for ideal, undistorted meshes.
The orthogonality criterion takes on values between zero and one for degenerated and
undistorted meshes, respectively.

In the presence of singularities some of the tangent vectors in (5.21) might become
undefined, in which case only the Jacobian determinant can be determined; the other
metrics then cannot be evaluated numerically. For visualization purposes this problem can
be overcome by taking regular samples over the domain of the geometry. Upon encounter
of a singular point, the metrics can be simply set to their respective optimal values or,
in the case of the orthogonality metric, to zero. The presence of the singularity will
nonetheless be indicated by neighbor samples. This is equivalent to “cutting off” the
metrics at the nearest point to a singularity in the geometric mapping.

Two strategies can be pursued for the evaluation of NURBS models, the reasons for
which becoming apparent in the following subsections. One of these strategies is a qual-
itative analysis that employs the aforementioned regular sampling over the model’s do-
main. It will be described in the following subsection where a set of sample models
illustrate the metrics’ general behavior. Furthermore, their application for the comparison
of model variants is highlighted. An analysis of the numerical properties, however, relies
on the evaluation of the metrics at the model’s Gauss points. This will be done in Subsec-
tion 5.2.3 where an attempt is made to link given values of these metrics to the properties
of the numerical model.
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5.2.2 Qualitative mesh quality analysis

Figure 5.2: Isogeometric mesh of a circular annulus with rectangular cross-section. The
mesh is the result of revolving a rectangular surface lying in the x y-plane around the
z-axis by 360◦. The coarsest model (which nonetheless exactly describes this geometry)
requires a mere 36 control points. The parametric domain is described by the knot vectors
Ξ = H = {0, 0, 1,1}, and Z = {0, 0, 0, 1, 1,2, 2,3, 3,4, 4,4}. That is, the mesh is comprised
in circumferential direction of four parametric segments that are joined with C1-continuity.

According to Finite Element heuristics, meshes with regular, uniform element size dis-
tribution are well-suited for numerical applications. As Isogeometric Analysis shares its
mathematical foundations with classical FEM schemes, the same behavior should hold,
accordingly, for isogeometric meshes. To that end, the annulus model illustrated in Fig-
ure 5.2 is taken as the first example for the application of the mesh quality metrics. The
results are depicted in Figure 5.3, which clearly confirms the impression of a high-quality
mesh: each of the shown metrics takes on values at or near their respective optima and
the mesh lines are orthogonal throughout the whole model.

NURBS geometries provide, in general, smooth shape representations for a wide range
of geometries. In order to obtain features such as kinks or sharp edges, the geometric map-
ping from the parametric to the physical domain has to be suitably modified. A prominent
example for this is rectangular panel with a circular cut-out, illustrated in Figure 5.4. This
model represents a common benchmark in structural mechanics, namely an infinite plane
with a traction-free, circular interior boundary. The mesh data for this model is described
in (Hughes et al., 2005). It is used as a landmark example for demonstrating the flexi-
bility of isogeometric meshes: the geometry of this model can be described exactly by a
single NURBS patch. The corresponding mapping of its rectangular parametric domain



52

Figure 5.3: Mesh quality metrics for the circular annulus in Figure 5.2. Only three out of
the four metrics are illustrated since the mesh is fully orthogonal throughout the domain.
The shown metrics deviate only slightly from their optimal values, thereby confirming the
good quality of the mesh. Within each segment the mesh is slightly widened, indicated
by growing metric values on the exterior boundary surfaces. This allows to recognize the
combination of the mesh from four segments.
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Figure 5.4: Isogeometric mesh of a rectangular panel with circular hole. The parametric
domain is described by the knot vectors Ξ= {0, 0, 0,1, 2,2, 2}, and H= {0, 0, 0,1, 1,1}.

into physical space is illustrated in Figure 5.1 on page 46. In order to obtain the corner in
the upper left-hand corner, the corresponding control points are made to coincide, thereby
introducing a singularity into the NURBS mapping. As will be seen in Figure 5.6, this sin-
gularity “pollutes” the surrounding mesh, despite being restricted to the very corner point
of the panel.

Said singularity can be removed by a split of the panel into two individual patches.
NURBS geometries possess, as demonstrated before, only a simple topology. In order to
describe complex geometries without excessive mesh distortions, a decomposition into
components is necessary. Therefor, two approaches are at hand, namely a top-down and a
bottom-up approach. The first method attempts to subdivide the given object into compo-
nents for which a parametrization might be found more easily. The latter ansatz, however,
attempts to determine components with a known parametrization from which the desired
shape can be composed. The template modeling concept described in Chapter 3 turns out
to be well-suited for such a course of action as it allows to define the components of a
complex model in a compact form—for which, in turn, the mesh quality can be ensured
more easily than for a global model (Kolšek et al., 2003).

Decomposition of the panel can be achieved by knot insertion into the knot vector Ξ
which reduces the continuity from C1 to C0 across the isoparametric line ξ= 1. The result-
ing control point configuration then allows the setup of two individual patches, leading to
the mesh shown in Figure 5.5. The effect of this decomposition can be readily observed
in 5.6, where one can recognize the metrics’ shift towards their respective optimal values.

Meshes with singular points reveal, regardless of these observations, a problem with
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Figure 5.5: Isogeometric mesh of the rectangular panel with circular hole, split into two sepa-
rate patches. Within the patches’ respective domains the basis functions are C1-continuous
biquadratic functions. The patches are visibly joined with C0-continuity along the diagonal.

the unbounded metrics fcond and fOdd y . Both metrics grow to infinity near singular points
in the mesh. Plots for the visual inspection of a model’s quality can be produced, however,
only with a finite step size. Depending on the sample points’ distance to the singularity,
basically arbitrary values for these metrics can be produced, which clearly runs contrary
to the purpose of a metric. Such singular values blur, in addition, the information on the
mesh quality in other regions of the model. In particular the Oddy metric is prone to this
effect as can be seen in Figure 5.6. A qualitative model analysis nonetheless gives infor-
mation on the location of a singularity, even in a complex mesh. This can be recognized in
Figure 5.7 that shows a segment of the fluid domain modeled in Chapter 4 that is located
along the outer portion of the airfoil. Here, the metrics indicate an almost singular point
at the leading edge of the profile. The cause of this singularity can be recognized in Fig-
ure 4.10 on page 40. It is the linear interpolation of the section curve with the outer arc of
the fluid domain template that introduces a so-called mesh folding, a (near) self-overlap
of the isogeometric mesh. This observation gives solid proof that even seemingly good
meshes can exhibit regions that might be causing numerical problems. The effect of this
mesh degeneration on the behavior of the numerical model is so far unknown; however,
the preliminary results of the model’s application in (Stein et al., 2012) are promising,
hinting at only a minor influence.

5.2.3 Quantitative mesh quality analysis

Lipton et al. (2010) observed a higher robustness of isogeometric meshes against distor-
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Figure 5.6: Comparison of the mesh quality metrics for the monolithic and the split rectan-
gular panel, shown in the left-hand and the right-hand column, respectively. The corre-
sponding meshes are depicted in Figures 5.4 and 5.5. The color grading of the uppermost
left-hand image is slightly adapted in order to highlight that along the circular boundary
det(JN )≈ 2.
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Figure 5.7: The mesh quality metrics plotted over a section of the fluid domain that has been
described in Chapter 4. The metrics highlight a “mesh folding” effect at the leading edge
of the profile. Different simplification levels of the rotor blade profile fail to produce a
salutary effect. On the contrary, coarser approximations of the airfoil’s geometry even lead
to self-overlaps of the mesh.

tions (compared with lower-order Finite Element schemes), the effect of which increasing
with the degree of the underlying basis functions. They attribute this to the variation-
diminishing property of NURBS. That is, noisy geometry data and mesh irregularities are
smoothened out by the interpolation in the geometric mapping. As a result, Isogeometric
Analysis can give meaningful prognoses despite severe mesh distortions in the underly-
ing NURBS models. Considering the mesh depicted in Figure 5.7, the following question
arises: which magnitude of the respective metrics can be observed in a distorted mesh
that is still suitable for numerical simulation?
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In order to establish such a relation, a linear-elastic patch test as described in (Lipton
et al., 2010) is used. Purpose of such tests is to ascertain that a given Finite element is
able to reproduce constant strain states evolving under predefined boundary conditions,
which in turn allows to make statements about the convergence of the numerical solution.

The employed geometric model is a simple unit cube with an isotropic ansatz; for this
test, linear to cubic basis functions are used. Suitable knot insertion ensures a uniform
split of the mesh into four elements along each parametric direction. The displacements of
the control points at the bottom of the cube are kept fixed whereas the points comprising
the top surface are subject to a uniform displacement in vertical direction, resulting in a
linearly varying displacement field over the cube’s height. Consequently, a constant strain
state must evolve along the vertical direction.

The stiffness matrix and the load vector of the numerical model are set up in accordance
with Section 5.1. Therefor a Young’s modulus of E = 104 MPa is employed along with a
Poisson’s ration of ν = 0.2. The quantity of interest in this study is the condition number
κ(K) of the stiffness matrix. It reflects the sensitivity of the equation system with respect
to perturbations in the input data, namely the load vector. The condition number further
affects the accuracy of the equations’ solution as well as the speed of convergence for
iterative equation solvers. This number depends on the contributions of the individual
Gauss points to the stiffness integral and is directly affected by mesh distortions through
the Jacobian matrix. It is hence taken as a representation for the quality of a numerical
model originating from a given mesh. For the considered problem, and given appropriate
boundary conditions, the stiffness matrix is symmetric and positive definite. As a result,
the stiffness matrix possesses positive real eigenvalues and its condition number can be
determined by the ratio of its largest to its smallest eigenvalues λn and λ1, respectively:

κ(K) =
λn

λ1
.

The test model, including the geometry and the boundary conditions, is formulated
in terms of a template. Mesh properties and the condition number can hence be readily
determined for various degrees of mesh degeneration—which are basically model variants
for the initial, undistorted unit cube. The mesh distortion is achieved by collapsing a
subset of control points onto a single point. Therefor a 2× 2× 2-set of control points is
selected from the grid of control points. The center of the bounding box encompassing the
selection is chosen as “singular point” xc. The distortion is applied to the selected control
points by means of a combined affine transformation

T=




1 0 0 xc

0 1 0 yc

0 0 1 zc

0 0 0 1


 ·




(1− d) 0 0 0
0 (1− d) 0 0
0 0 (1− d) 0
0 0 0 1


 ·




1 0 0 −xc

0 1 0 −yc

0 0 1 −zc

0 0 0 1




where d ∈ [0,1] denotes the degree of degeneration. This transformation scales the
coordinates of the selected control points relative to the point xc.
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d fdist fdet,min fdet,max fcond,max f⊥,min fOdd y,max κ(K)

0.0 0.000 1.000 1.000 3.000 1.0000 0.0000 183.519
0.1 0.004 0.729 1.118 3.030 0.9142 0.0665 182.803
0.2 0.008 0.512 1.236 3.127 0.8348 0.3166 183.068
0.3 0.012 0.343 1.354 3.307 0.7621 0.8756 184.127
0.4 0.017 0.216 1.472 3.598 0.6960 1.9910 185.888
0.5 0.021 0.125 1.590 4.047 0.6363 4.1870 188.209
0.6 0.025 0.064 1.709 4.735 0.5825 8.6860 191.149
0.7 0.029 0.027 1.827 5.826 0.5342 18.7700 194.887
0.8 0.034 0.008 1.945 7.681 0.4908 45.1500 199.855
0.9 0.038 0.001 2.063 11.300 0.4519 136.5000 207.229
1.0 0.042 0.000 2.181 20.830 0.4168 ∞ 220.944

Table 5.1: Overview of the mesh quality metrics for the patch test using a trilinear basis.

The mesh metrics are evaluated at the Gauss points of the isogeometric elements—
contrary to the qualitative analysis of the prior section that is based on regularly spaced
sample points. Whereas the latter yields vital information for modeling purposes, it pro-
duces an overhead of data for numerical simulation. That is, it is not the distribution
of the mesh properties that is of interest but the deformation level at which the metrics
possibly indicate an invalid numerical model. For each model variant and distortion level
d both the condition number and the Gauss point values of the metrics are computed, of
which the respective extremal values are extracted.

In addition to these values, the geometric deviation is computed for each model instance
as the distortion level d provides only an abstract quantity. To that end, the coordinates
x(ξ) are evaluated for each model at regular sample points and are stored contiguously
in a vector s. These points are compared with the points corresponding to an undistorted
mesh. The relative error

fdist =
||sorig − sdistor ted ||2

||sorig ||2
(5.22)

between the samples of different models then describes the deviation between the “ori-
ginal” and the distorted mesh.

The results of the study are given in Tables 5.1-5.3 for the respective order of the basis
functions. They allow the following observations:

1. Both the distortion measure fdist and the maximum Jacobian determinant grow lin-
early for all three orders of basis functions. The higher the ansatz of the multivariate
basis the lower the increase in mesh deformation.

2. The amount of mesh distortion is surprisingly small: in the linear case the distortion
metric indicates a mere 4% deviation from the original mesh, despite the collapse
of eight control points onto one and the introduction of singular points. Likewise,
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d fdist fdet,min fdet,max fcond,max f⊥,min fOdd y,max κ(K)

0.0 0.0000 1.0000 1.000 3.000 1.0000 0.0000 224.238
0.1 0.0022 0.7735 1.049 3.012 0.9413 0.0253 223.114
0.2 0.0044 0.5841 1.096 3.045 0.8873 0.1026 222.343
0.3 0.0066 0.4284 1.141 3.097 0.8378 0.2355 221.788
0.4 0.0088 0.3032 1.185 3.167 0.7925 0.4350 221.375
0.5 0.0110 0.2051 1.226 3.272 0.7508 0.7646 221.057
0.6 0.0132 0.1308 1.266 3.409 0.7069 1.2550 220.809
0.7 0.0154 0.0771 1.304 3.585 0.6605 1.9760 220.613
0.8 0.0176 0.0405 1.340 3.810 0.6154 3.0360 220.457
0.9 0.0198 0.0178 1.375 4.094 0.5715 4.6120 220.334
1.0 0.0220 0.0057 1.407 4.557 0.5291 7.7320 220.238

Table 5.2: Overview of the mesh quality metrics for the patch test using a triquadratic basis.

d fdist fdet,min fdet,max fcond,max f⊥,min fOdd y,max κ(K)

0.0 0.0000 1.0000 1.000 3.000 1.0000 0.0000 1550.905
0.1 0.0006 0.8986 1.027 3.005 0.9637 0.0100 1550.549
0.2 0.0013 0.8043 1.053 3.019 0.9286 0.0403 1550.946
0.3 0.0020 0.7168 1.079 3.041 0.8946 0.0917 1551.680
0.4 0.0027 0.6359 1.105 3.070 0.8618 0.1652 1552.524
0.5 0.0034 0.5613 1.130 3.107 0.8300 0.2621 1553.370
0.6 0.0041 0.4927 1.154 3.150 0.7994 0.3843 1554.166
0.7 0.0048 0.4299 1.179 3.201 0.7700 0.5337 1554.883
0.8 0.0055 0.3727 1.203 3.257 0.7416 0.7122 1555.509
0.9 0.0062 0.3208 1.226 3.319 0.7143 0.9224 1556.036
1.0 0.0069 0.2738 1.249 3.387 0.6881 1.1670 1556.461

Table 5.3: Overview of the mesh quality metrics for the patch test using a tricubic basis.

one can observe a deviation of 2% and 0.69% in the quadratic and cubic models,
respectively.

3. A significant change in the condition number κ(K) of the stiffness matrix can only
be observed in the linear case, where κ grows by approximately 20 %. Whereas the
condition number remains basically equal for the cubic basis functions, it decreases
for the quadratic basis.

4. With increasing distortion both the fcond and the fOdd y metric grow rapidly in the
linear model whereas in the models with quadratic and cubic ansatz functions the
remain relatively small.

5. Even in the fully collapsed linear model the mesh retains some orthogonality, as
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indicated by f⊥. Likewise, in the quadratic model the tangent vectors seem to retain
their orthogonality to a large part.

6. In the quadratic and cubic model the mesh metrics’ values remain close to their
optimal values. Significant changes can only be observed with fdet,min. Neither of
these models exhibits Gauss points with a singular geometric mapping.

Based on these observations it has to be concluded that the initial hypothesis is wrong.
That is, the mesh distortions are not reflected in the condition number of the patch tests’
stiffness matrices. Instead, the condition numbers remain stable and within ranges that
usually do not suggest ill-posed numerical models. Their variation must therefore depend
on other, so far unknown factors. This warrants further studies, for instance with respect
to the degree of the ansatz functions.

The orthogonality metric f⊥ retains a nonzero value even in the fully degenerated lin-
ear model. This might be attributed to an error in the evaluation routines. However,
this metric behaves similar in the quadratic and cubic models which indicates otherwise.
Considering that only the linear model fails the patch test, this can only mean that this
metric possesses only a minor prognostic value for problems of linear elastostatics. The
fdet,min, fcond,max and fOdd y metrics, in contrast, appropriately reflect the higher robustness
of isogeometric models with respect to mesh distortions, as noted by Lipton et al. (2010).
Their application to the fluid domain segment shown in Figure 5.7 explains the fact that
the model has been applied successfully for fluid flow simulations: as in all Finite Element
schemes, the Gauss points are slightly offset from the boundaries of a given element. That
is, they do not overlap with the mesh folding; the corresponding mesh metrics hence take
on values near their optimal range.



6 Discussion

This work contains an approach for the generation of numerical models from geometry. It
is based on the concept of Isogeometric Analysis and makes use of NURBS models. These
provide a common data structure for the various stages of Computer-Aided Engineering,
from geometric modeling over numerical simulation to visualization. It makes them in-
valuable in overcoming the limitations of the current design-through-analysis pipeline.

Key idea of the proposed modeling approach is a procedural representation of the mod-
eling process. That is, instead of describing the raw model data, the evolution of the
geometry from a simple initial shape is represented in terms of modeling operations.
This provides an abstraction from low-level data structures and allows a model treatment
through meaningful parameters. The proposed concept integrates existing modeling ap-
proaches such as template modeling, surface expansion, and parameter extraction. Of
these, the concept of template modeling proves to be complementary to the operator-
based representations. That is, templates can not only serve as input data to sequences
of modeling commands, but can also be fully defined in terms of modeling operations.
Complex, multi-level adaptive and reusable geometries can then be realized by nesting
templates such that the result of one template is used as input for others.

Operator- and template-based model representations lead to a trade-off between model
size and evaluation time. In order to employ procedurally described NURBS models, they
have to be evaluated first. However, the evaluation times observed so far are insignificant:
the fluid domain model of Chapter 4 could be generated in the fraction of a second on a
desktop computer. In face of increasingly powerful hardware this should also hold true
for deeply nested template hierarchies. Further improvements might even be possible by
parallelizing the evaluation of independent components.

NURBS models exhibit some topological restrictions that limit their refinability and the
range of shapes that can be modeled by means of a single patch. A common method to
circumvent these problems is the decomposition of a shape into simpler components. This
requires additional coupling conditions in the equation system in order to ensure con-
sistent behavior of the numerical model. Current approaches require (semi-)conformal
parametrizations of the components along their interfaces. In order to allow greater flexi-
bility for shape modeling and model adaption concepts such as mortar methods or weak
coupling conditions should be investigated.

Alternatively, one could overcome the limitations of NURBS by means of T-Spline repre-
sentations which have been described in (Bazilevs et al., 2010; Sederberg et al., 2003). It
is hence of great interest whether the concepts described herein can be extended such as
to allow generation of volumetric T-Spline geometries.

Procedural representations possess, despite their numerous advantages, restrictions
concerning the order of model evaluation and the addition of constraints among parame-
ters (cf. Shah and Mäntylä, 1995). A possible solution might here be given with feature-
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based model representations and their adaption to NURBS or T-Spline geometries.
Geometric design for Isogeometric Analysis requires tools for the assessment of a model’s

suitability for numerical analyses. To that end a series of mesh quality metrics have been
studied in this thesis. These reflect the properties of the geometric mapping underlying
the NURBS geometry and are therefore suitable for model comparison. Furthermore, they
allow to identify and to locate problematic regions within complex models. Using this in-
formation, model adaptions can be initiated and evaluated with respect to their efficacy.
However, a link between these metrics and the analysis-suitability of a given model, rep-
resented by the condition number of its stiffness matrix, could not be established. Here,
further studies regarding the numerical behavior of NURBS basis functions and isogeo-
metric discretizations are required.
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