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Abstract

Text classification deals with discovering knowledge in texts and is used for
extracting, filtering, or retrieving information in streams and collections. The
discovery of knowledge is operationalized by modeling text classification tasks,
which is mainly a human-driven engineering process. The outcome of this pro-
cess, a text classification model, is used to inductively learn a text classification
solution from a priori classified examples. The building blocks of modeling text
classification tasks cover four aspects:

(1) the way examples are represented

(2) the way examples are selected

(3) the way classifiers learn from examples

(4) the way models are selected

The goal of this thesis is to explore methods that improve the prediction quality
of text classification solutions for unseen examples, especially for non-standard
tasks where standard models do not fit. In what follows, I will summarize my
original contributions, sorted by the aforementioned aspects of modeling:

(1) The number of text classification tasks beyond topical categorization in-
creased in the last decade. This thesis proposes topic-orthogonal representations
for a great deal of these tasks.1

(2) In general, a classifier is trained on labeled examples that are sampled from
the text population of a given task. Sampling influences the effectiveness of the
resulting classifier. This thesis examines a new active learning strategy that goes
beyond standard sampling.

(3) The majority of non-standard text classification tasks suffer from the fact that
in a real-world scenario (“in the wild”) examples occur that are not represented
by the training sample. With a sample that represents at least the target class, a
one-class classifier can be trained. This thesis proposes one-class ensembles for
improving the one-class classification effectiveness.

(4) The classification of texts drawn from the Web introduces nontrivial problems
such as unknown class balances, mislabeled training examples, and drifts of the
underlying target concepts. This thesis proposes a model selection framework
to cope with the resulting subclass distribution shifts.

1The paper on the new representation “co-stems” was nominated for the best paper award at
the ECIR 2010.





Notation

Elements & Sets
D population of documents
d ∈ D document (an unstructured text unless otherwise mentioned)

Y = {+1,−1} (binary) class scheme
y ∈ Y class label

D population of feature vectors
d ∈ D feature vector that represents the document d
S ∈ 2D sample of feature vectors (2D denotes the power set of D)

Classification
c : D → Y target concept or ground truth

α : D → D feature engineering function
β : D→ {0, 1}sampling strategy

h : D→ Y classifier or hypothesis
L : 2D → H learning algorithm (2D denotes the power set of D)
H hypothesis space

T = (D, Y) text classification task
M = (α, β, L) text classification model
m = (α, h) text classification solution

NB naïve bayes classifier
SVM support vector machine

Probability
X random variable that models the document distribution over D
Y random variable that models the class distribution over Y
H random variable that models the hypothesis distribution over H
E expected value
P probability

Effectiveness measures
Acc accuracy
F F-measure
P, Prec precision
R, Rec recall
AUC area under ROC curve

0The table excludes notation that are exclusively used in single chapters.





Chapter 1

Introduction

This thesis deals with technologies for automatic text classification based on
machine learning and aims to improve the effectiveness of classifying unseen
texts. The focus is on non-standard text classification tasks.

We call a task “non-standard” if the classification goes beyond the texts subjects
and a machine learning algorithm cannot generalize under bag-of-words models.
A bag-of-words model is a common text representation that reduces texts to
an unordered collection of words and utilizes the word frequencies as features.
Figure 1.1 shows a variety of non-standard text classification tasks. It shows
the effectivenesses of a classifier in terms of the F-measure when bag of words
(stems) and a complementary representation (co-stems) are employed. To
illustrate the difference of these representations consider for example the word
“timelessly”, which is either represented by its stem “time” or by its co-stem
“lessly”. Tasks on the diagonal in the figure perform equally well under both
representations; however, the complementary representation is independent
of the content of the texts and is preferred because of the resulting generality.
Therefore, tasks near the diagonal are referred to as non-standard. Typical
standard tasks are found in the upper left of the figure, whereby a bag-of-words
model is sufficient to achieve a high effectiveness. Topic categorization, for
example, classifying news articles from the 20 Newsgroups corpus by their
topic, is clearly a standard task in contrast to many other tasks in the figure.
Non-standard text classification tasks provide clues about in-depth knowledge
such as

• authorship,

• author’s gender,

• effects (is the text humorous, an act of vandalism, spam),

• sentiment,

• genre,

• sector, or

• information quality.

Improving the effectiveness of non-standard tasks has a high impact on several
applications. The information age reclaims filtering, extraction, and retrieval
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Figure 1.1: The figure presents a landscape of text classification tasks mostly considered
to be non-standard. The axes show the averaged effectiveness of a linear support vector
machine classifier under different text representations: (1) a standard bag-of-words
representation with word stems on the y-axis and (2) the complementary representation
on the x-axis. The complementary representation is based on the residuals if the word
stems are removed from the text; therefore, topic information is excluded. The co-stem of
the word “timelessly” is “lessly”.

applications to satisfy the society’s thirst for knowledge and to gain insights
used as intermediate inputs or as final results in (big) data mining processes.
These applications need to handle unstructured texts, which are a substantial
source of information in the Web. Common examples are authorship and Web
genre analyses. Authorship analysis is a tool for forensic linguistics, which helps
to verify claims of responsibility, confessions, wills, or to identify plagiarism
offenses. In particular, plagiarism identification requires a high degree of
automation; the number of suspicious texts is growing since publishing in the
Web and reusing content is easier than ever. Web genre analysis is applied
for filtering blog, news, or scientific articles and the like; the number of these
applications is growing and they are no niche products anymore. It should
be noted that the results of genre analyses can also be reused as metadata to
improve the ranking effectiveness of vertical search engines. This applies in
general for text classification, and our leitmotif is:

“The more knowledge exists about a text, the higher is the potential of
filtering, extracting, or retrieving it.”

While the loss of information that occurs under bag of words, namely the
order of words, is not decisive, bag of words misses to unveil deeper text
characteristics to the classifier. As an unintended consequence a different target
concept is learned; classifiers with a bag-of-words representation are likely to
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become topic-, domain-, or time-dependent and do not generalize beyond these
bounds. For example, a classifier that is trained to distinguish between authors
through a bag-of-words lens implicitly learns to distinguish between the topics
in the training sample (texts that are given to the learning algorithm) instead of
unveiling the authors’ writing styles.

In addition to the employed model of text representation, the training sample
takes an important role and decides on the appropriateness of learning algo-
rithms. A training sample has to be representative for the population of texts
and the target concept. The representativeness is compromised by the following
aspects, which also characterize non-standard tasks:

• lack of target or complementary examples and open classes

• unknown class balances and drifting target concepts

If only the target class is properly represented in the training sample but not
the complementary class, a standard learning algorithm is not able to evaluate
the class boundaries. This applies in a similar way to the reverse case, namely,
highly imbalanced classes where the target class makes up a small fraction of
the training sample. If the class balance is unknown or if the target concept is
open, the entire training sample becomes questionable.

When unseen texts are to be classified, standard classification approaches often
make unreliable decisions in non-standard tasks because of two difficulties:
(1) the classifier has no support, that is, training examples with high similarities
to the unseen texts are not available, and therefore its confidence estimation
fails, and (2) a different concept might have been learned.

This dissertation is endeavoring to address these problems in non-standard
text classification, which are rooted in the text representation and the training
sample. Sophisticated models are proposed that capture the gist of non-standard
tasks and that have the capability to generalize. In summary, bag of words
holds the risk of deluding the learning algorithm for particular tasks, moreover,
it is difficult diagnosing this risk with standard evaluation methods, such as
leave-n-out validation. Therefore, appropriate experimental evaluations are
proposed. Furthermore, difficulties that result from the training samples are
approached by proposing strategies for feature engineering (the creation of
text representations), sampling (the creation of training samples), learning (the
creation of text classifiers), and evaluating text classification solutions.

1.1 Thesis structure

Text classification deals (1) with the discovery of knowledge in texts and (2) with
the application of this knowledge for extracting, filtering, or retrieving informa-
tion in text streams or collections.
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Figure 1.2: The figure shows the building blocks for text classification (feature engineer-
ing, sampling, supervised learning, model selection), which also represent the structure
of this thesis. As illustrative example, consider the text classification task (D, Y) that
comprises the population D of Wikipedia articles and the class scheme Y with the classes
“+, featured articles” and “-, non-featured articles”. The articles are represented under
a bag-of-words model and a training sample is randomly drawn from Wikipedia. A
support vector machine is trained on the labeled training sample.

(1) The kind and the source of knowledge to be discovered are encoded by
a text classification task. A text classification task T, T = (D, Y), comprises
a population D, the source of knowledge, and a class scheme Y, the kind of
knowledge. The population comprises the texts that are or will be considered
during classification. Often, only little information exist concerning D. The
class scheme specifies a partition concept, regarding topics, authors, genres, and
the like. The so-called target concept c is a generally unknown function that
correctly maps the population to the class scheme.

Discovering knowledge is implemented by finding a hypothesis (or classifier) h
that is a close approximation of the target concept. A learning algorithm L,
which is also known as classifier, induces h from a sample of examples, for
which the class membership is known. This induction is known as supervised
learning or simply training. For learning from examples, two further functions
are needed: a feature engineering function α, which maps a text to the input
format of L and a sampling function β, which implements a strategy for selecting
examples from D.

(2) The application of knowledge, in terms of classifying texts, is implemented
by a text classification solution of T. A solution m = (α, h) comprises a feature



1.1 Thesis structure 5

engineering function α and a classifier h. A text is classified by m as follows:
α is employed for representing the text and h is employed for predicting its class
value.1

The process of modeling T is on the “how” of the discovery and the application
of knowledge. Modeling is regarded as the process of specifying a model M =
(α, β, L) that is used for building automatically a solution for T. Informally,
modeling is on exploring how examples are represented, how they are selected
for training, and how one learns a classifier from them. This is an ambiguous
undertaking. The engineer has to gain an understanding of the task at the
level of a domain expert along with a profound understanding of machine
learning since, most important, the feature engineering α and sampling β need
to support the learning algorithm L. Furthermore, the engineer designs and
chooses appropriate experiments and measures so that model selection can be
applied to find effective solutions for T. Modeling starts either in a top down or
bottom up fashion and continues iteratively. Top down: understand the task
and then conduct experiments. Bottom up: conduct experiments and then gain
a better understanding of the task. The described processes are demonstrated
for various text classification tasks in this thesis.

The modeling process for text classification tasks can be summarized in four
building blocks, cf. Figure 1.2:

(1) feature engineering

(2) sampling

(3) supervised learning

(4) model selection

In the first three building blocks, engineers define the methods used for building
a classification solution; in the fourth block, they choose a strategy for measuring
the effectiveness of the resulting solution.

(1) Feature engineering is the process of developing, selecting, extracting, and
generating features that represent a text in a metric space. Feature engineering
defines the construction of a text representation; more formally, it defines a
function α,

α : d 7→ d,

where d is a text document represented by a feature vector d. During this
thesis d is always, unless otherwise mentioned, an unstructured text, a text
without metadata such as formatting, revision history, or source information.

(2) Sampling is the process of choosing examples, here, from a stream or collec-
tion of texts. Formally, it is a function that selects elements from a population D
of represented documents to form a training sample S of documents:

β : D 7→ S, S ⊆ D.

1Note, the output comes often along with a confidence value or a class probability, which
might be used for additional processing, for example, ranking in a retrieval application.
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The sample S is utilized for learning and evaluating a text classifier. Depending
on the text classification task, the examples are labeled with respect to a classifi-
cation scheme. Since labeling usually entails costs, the size |S| is restricted to a
budget of time, money, or whatever resources are needed.

(3) Supervised learning is the process of learning from examples. A learning
algorithm L induces a hypothesis h from labeled examples S,

L : S 7→ h, h : d 7→ y,

where, during this thesis, the class label y ∈ {+1,−1} is binary, unless otherwise
mentioned.

(4) Model selection is the process of estimating the effectiveness e(m, S) of a
classification solution m = (α, h), given a sample S, an effectiveness measure,
and an experiment, and selecting the best model accordingly.

The structure of this thesis corresponds to the building blocks in Figure 1.2.
Chapter 4 describes analyzing non-standard tasks and feature engineering
under laboratory condition, that is, the analyses are based on text corpora with
a closed set of classes and examples. The challenge is to understand, from an
engineering perspective, the particular classification task and to design a text
representation that supports the employed classification technology. Chapter 5
provides research towards text classification in the wild by proposing robust
feature engineering, sampling, and learning algorithms. Finally, Chapter 6
contributes to model selection in the wild.

1.2 Contributions

Chapter 2 This chapter provides the background of the most relevant text classi-
fication tasks. It provides a categorization scheme for text classification
tasks, which is based on the Lasswell Formula, a language function model
used in communication theory.

Chapter 3 This chapter establishes a taxonomy of different types of bias found
in the literature; a classifier’s inductive bias is an explanatory model of
the classifier’s capability for predicting the class of unseen examples. The
chapter also reviews the inductive biases of common supervised learning
algorithms, and, finally, gives an introduction to support vector machines,
which are often employed in text classification tasks.

Chapter 4 This chapter comprises sections, which examine a variety of text clas-
sification tasks and new text representations. In this regard, each section
also focuses on tailored experiments and evaluations for the particular
task.
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Section 4.1 We combine the output of a stemming algorithm (stems) and
the stem-reduced words (co-stems) in text representation for non-standard
text classification tasks. Besides the content, the writing style is an im-
portant discriminator for many tasks. Ideally, the solution of such a task
employs a text representation that models both kinds of characteristics.
Word stems are clearly content capturing, whereas word suffixes qualify
as writing-style indicators. We analyze the discriminative power of our
new representation for a broad range of tasks and provide insights into the
adequacy and task-specificity of text representation models. For several
relevant tasks, co-stem-based representations outperform bag-of-words
models.

Section 4.2 We contribute to core-vocabularies for Web genre analysis and
discuss existing and new technologies for their construction. So-called
core-vocabularies focus on the words that are descriptive for a specific
class. Combining concentration measures with core-vocabularies results in
non-linear features with a high generalization capability. We also present
new evaluation measures and show in a quantitative analysis that our
features are superior to state-of-the-art Web genre representations.

Section 4.3 Wikipedia provides an information quality assessment model
with criteria for human peer reviewers for identifying featured articles;
for the task “Is an article featured or not?” we exploit the articles’ dis-
tributions of character trigrams. This representation does not require
meta-features such as the edit history and aims to evaluate writing style.
We conceptualize an experiment design where, among others, the domain
transferability is analyzed. Character trigram representations outperform
existing methods for this information quality task.

Section 4.4 It is known that language identification can be accomplished
with a high precision for ordinary texts; we extend these findings and
compare for the first time the effectivenesses of state-of-the-art language-
identification approaches on very short, query-style texts. In a multi-
language information retrieval setting, the knowledge about the language
of a query is necessary for further processing. The results show that
already for single words an identification accuracy of more than 80% can
be achieved; for slightly longer texts we report accuracies close to 100%.

Section 4.5 We study the applicability of Koppel and Schler’s unmasking
approach [153] for authorship verification analyses. In these analyses one
is given writing examples from an author A, and one is asked to determine
whether unseen texts are also written by A. Therefore, unmasking assesses
the usage of function words in A’s writing examples and unseen texts.
The main research question is to what extend unmasking is applicable if
the prior writing examples are noisy, that is, not all of them are originally
from A. This question is relevant for the subsequent section on intrinsic
plagiarism analysis.
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Section 4.6 We examine the question whether plagiarized text sections
can be detected within an automatized analysis even if no reference is
provided, for example, if the plagiarized sections are from a book that is not
available in digital form. We refer to this automation as intrinsic plagiarism
analysis, which can be transformed into an authorship verification analysis.
Therefore, stylometry and, for the first time, one-class classification are
utilized for constructing a set of reliable and a set of suspicious writing
examples; both sets serve as the input of an authorship verification analysis.
We study the effectivenesses of this transformation process and of the entire
intrinsic plagiarism analysis.

Chapter 5 This chapter addresses the problems of applying text classification
in the wild. The major problems relate to the training sample: first, the
labeling of training examples usually involves a great deal of expense
and is limited or even impossible; second, the laboratory conditions pre-
sumed in almost all classification studies and text corpora do not meet the
challenges of text classification problems in the wild, i.e., in the real-world.

Section 5.1 Text classification tasks in the Web deal with collections of
enormous size, which makes the ratio between the training sample and the
set of unseen texts extremely small. With a sample ratio close to zero, the
evaluation of the generalization capability of a classification solution with
leave-n-out-methods becomes unreliable and leads one astray. In order to
alleviate this problem we introduce the idea of robust models where the
engineer intentionally restricts the hypothesis structure within the feature
engineering process.

Section 5.2 We explore a sampling strategy for active learning, a sub-
discipline of supervised learning, for achieving a greater classification
effectiveness with fewer training examples. This is largely accomplished
by allowing the active learning heuristics to select the examples from
which it learns. Our new, more general sampling strategy is based upon
machine learning and learns the informativeness of examples from prior
classification tasks.

Section 5.3 We suggest to conceive a text classification task as a one-class
classification problem if the complementary class is unrepresentable, for
example, because of noise or volatility. As an illustration of this situation,
we study the task “Is a Wikipedia article flawed by a flaw f ?” since
Wikipedia provides cleanup templates for tagging articles that are flawed
by f . Untagged articles cannot serve as complementary examples since
they might be flawed but not tagged yet, and, more important, since their
distribution is dynamic. Tackling this situational condition, we employ a
one-class classifier and thoroughly analyze its effectiveness.

Section 5.4 For learning in a one-class classification problem multimodal
distributed target classes, we propose a new cluster-based ensemble that
outperforms standard one-class technology for several text classification



1.2 Contributions 9

tasks. Various relevant tasks in information retrieval, filtering, and ex-
traction are one-class classification problems at heart; that is, common
discrimination-based classification approaches are not applicable. Achiev-
ing a high effectiveness when solving one-class problems is difficult and
it becomes even more challenging when the target class is multimodal,
which is often the case. Our idea is to learn for each mode a separate
one-class classifier.

Chapter 6 This chapter covers model selection for text classification solutions
when the underlying data source undergoes unknown subclass distribu-
tion shifts. This information volatility is observed, for examples, in online
media, such as tweets, blogs, or news articles, where the text emissions
follow topic popularities. We propose the notion and the estimation of
the “expected effectiveness” of text classification solutions under subclass
distribution shifts and introduce a probabilistic effectiveness bound for
selecting solutions with a superior stability.
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Chapter 2

The history of text classification

This chapter provides a landscape of the most relevant text classification tasks.
The tasks are organized by a function scheme that is usually used in communi-
cation studies. Furthermore, the descriptions of the tasks offer insights into the
development history of text classification solutions. The landscape establishes
the relationship between standard and non-standard text classification in our
conducted research. For a general overview of text classification, many surveys
on text classification exist [3, 266, 343, 207].

In communication studies, several well-known models exist which decompose
the functions of a text. A text is an utterance that can be represented in written
language. Throughout this thesis, a document is a written and unformatted text,
which is also known as plain or unstructured text in the literature. Table 2.1
summarizes four models of language functions arranged by communication
aspects: the four-sides model by Schulz von Thun [264], the Jakobson functions
of language by Jakobson [131], the Lasswell formula by Lasswell [163], and
the Organon model by Bühler [46]. The Lasswell formula “who says what to
whom in which channel with what effect” is often utilized for organizing the
research in communication studies and serves here as the basis for organizing
text classification tasks.

Text classification is the generic task of making a functional statement about a text.
One of the first text classification tasks in history, namely topic categorization,
is the determination of what a text is about. Within this task, a classifier makes
a functional statement about the subject of a text, the “what” of Lasswell’s
language function model. In the early 1960’s, a lot of research was carried
out into automatically assigning a text to one or more given topics. This is
driven by text representations derived from the words in the texts, starting
with index terms in the papers by Maron and Kuhns [195], Maron [196], and
Borko and Bernick [32, 33]. Today, text representations for topic categorization
include more sophisticated meta-features that, for example, rely on external
knowledge retrieved from Wikipedia [92]. In what follows, we will discover that
more and more tasks are related to language functions other than just “what
a text is about”; these tasks typically belong to the group of non-standard text
classification tasks and need specialized features.
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Table 2.1: Models of language functions.
Aspect Bühler [46] Lasswell [163] Jakobson [131] Thun [264]

Source Expressive Function Who says Emotive Function Self-Revealing Layer
Subject Referential Function what Referential Function Matter Layer
Receiver Conative Function to whom Conative Function Conative Layer
Medium – in which channel Phatic Function Relationship Layer
Message – with what effect? Aesthetic Function –
Code – – Metalingual Function –

2.1 Who is speaking

Authorship attribution, verification, and profiling are the most prevalent text
classification tasks related to the source of a text. The difference between the first
two tasks is that within authorship attribution a set of candidate authors with
writing examples is given, which is not necessarily the case with authorship veri-
fication. The third task, authorship profiling, is on characterizing an anonymous
author by dimensions such as gender or age. The text representations, utilized
for analyzing these tasks, are often writing-style-related. It should be noted that
the writing style of an author depends on the time lapse between text formations,
disclosure requirements, and the like, and is not always author-invariant.

2.1.1 Authorship attribution

During the 19th century, the Shakespeare authorship debate arose, questioning
whether William Shakespeare’s poems and plays were written by himself. One of
the suspicious candidates was Sir Francis Bacon. Mendenhall [200] conducted in
1901 possibly the first quantitative analyses of writing style in this context, which
compares the word-length distributions observed in Shakespeare’s plays and
Sir Francis Bacon’s texts. Therefore, Mendenhall [199] applied his research on
languages and writing style, and his finding was that Bacon could be excluded
from the candidates as the stylistic differences are too large. In 1975, Williams
[334] rejected Mendenhall’s conclusion by showing that the comparison of
Shakespeare’s verse and Bacon’s prose is inappropriate. An author is likely to
produce different writing styles when writing verse and prose, therefore one
cannot draw conclusions related to the authorship from these differences. On
the contrary, same writing style is a good indicator for same authorship, and,
however, the Shakespeare authorship question was the first prolific authorship
attribution task tackled by a statistical analysis.

A second famous case is the disputed authorship of the Federalist Papers, which
is one of American history’s most infamous questions. Between 1787 and 1788,
85 articles were anonymously published in several of New York’s newspapers
with the goal to promote the ratification of the United States Constitution.
While the authorship of the articles had been largely clarified, twelve of them
were disputed. In 1964, Mosteller and Wallace presented a reliable authorship
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analysis based on the frequencies of a set of function words (“the”, “and”,
“for”, etc.). The usage of function words is still today a strong feature within
authorship tasks.

Within the field of authorship attribution various features evolved. In 1939,
Yule [348] introduced the sentence length as a statistical characteristic for au-
thorship questions. Later, Yule [349] proposed word-frequency distributions,
the characteristic K, alphabetical distributions, and vocabulary distributions.
More detailed, the word-frequency distribution determines how many words
occur once (hapax legomenon), twice (dis legomenon), and so on. Yule’s K is a
measure of lexical repetition where 1/K is the probability that two randomly
chosen words are the same assuming the word occurrences are governed by
the Poisson Law. The alphabetical distribution is the frequency distribution of
initial letters. Finally, the vocabulary distribution is the distribution of a set of
words over a set of classes: given n classes, determine the number of words
that occur in n, n− 1, . . . , 1 classes. Additionally, Yule analyzed each part of
speech (noun, verbs, adjectives, pronouns, etc.) separately. His work laid the
foundations of authorship analysis features.

In the 1960’s and 1970’s more lexical-complexity measures such as Yule’s K were
developed. Among them are Herdan’s Vm, Sichel’s S, Brunet’s W, Honoré’s R.
All of them are based on word frequencies and the size of the used vocabulary.
Furthermore, a good deal of readability measures, such as the Automated
Readability Index, LIX, SMOG Grading, or Flesch-Kincaid readability test, were
published in these decades. “Non-traditional authorship attribution” was born,
and stylometry, which is the field on quantifying writing style, makes up the
largest part of it. Informally, the goal of stylometry is to identify text features
(style markers) that are writer-invariant; features that only tend to similar values
or characteristics when the represented texts are from the same author—often
only the combination of features become writer invariant.

2.1.2 Authorship verification and intrinsic plagiarism analysis

Authorship verification first occurred in the 21st century with the objective of
verifying a singular authorship of a set of texts. In contrast, intrinsic plagiarism
analysis works on one text as input, but the goal basically remains the same.
Trivially, the input text has to be chunked in a set of text sections for reducing
an intrinsic plagiarism task to an authorship verification task. Even though
the applied features are the same as in the field of authorship attribution, the
statistical evaluation is fundamentally different. Authorship verification is a
one-class classification problem because no reliable examples from the comple-
mentary class are available. Without the complementary class, which represents
all foreign authors, it is not possible to determine the discriminativeness of
features. van Halteren [314] reformulated the task as a two-class problem by
representing the complementary class by a large reference corpus. Koppel and
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Schler [153], Koppel et al. [155] worked with the reformulation “are two texts
written by the same author” and suggested an analysis of the learning curves
that are formed by impairing the text representation. In the context of this
thesis, machine-learning-based one-class classification technology [303] has been
employed for the first time in intrinsic plagiarism analysis, cf. Stein, Lipka, and
Prettenhofer [294].

2.1.3 Authorship profiling

Authorship profiling, which is closely related to sociolinguistics, encompasses
all tasks that determine further information about the author. The field of
sociolinguistics arose in the beginning of the 20th century and concerns the
relationship between society and language. Sociolinguistic analyses provide
information of the social contexts of authors. The important subfield of dialec-
tology arose slightly earlier, in the 19th century, and concentrates on the variety
of language, which is a so-called “lect”. The variety of language over individ-
uals is known as “idiolect”, which is the linguistic perspective on authorship
attribution and verification. The variety is known as “sociolect” if it depends
on social classes, and it is known as “regiolect” if it depends on geographical
areas. Lects can also depend on historical eras (stylochronometry) or on political
groups, which can give clues to the intention of a text. Even though dialectology
was around for a long time, the automatic classification of dialects was studied
much later, for example in 2006 by Huang [126]. More examples of state-of-
the-art authorship profiling are on classifying the nativeness of language use
[315], the author’s gender [120, 262], the author’s age [262, 227], or the author’s
personality [228, 14, 205].

2.1.4 Stylochronometry analysis

Stylochronometry analysis is the task of determining the creation date of a
document, which is not only relevant to historians but, for example, to all
Web search users, who like to chronologically filter retrieved documents. For
analyzing documents without meta-information, either writing-style or content-
based methods are employed. One of the first works determining the creation
date via language models based on word unigrams was by de Jong et al. [68]
in 2005. This approach was improved by Kanhabua and Nørvåg [138] with
advanced features such as part-of-speech tags and collocations. Other studies
examined a variety of content-based features: Swan and Jensen [300] studied the
temporal dimension of word usage, and, on the other hand, Garcia-Fernandez
et al. [95] considered dates of entities occurring in documents extracted from
Wikipedia and also neologisms and archaisms extracted from Google books n-
grams.
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2.1.5 Provenance and lineage analysis

Provenance and lineage analyses unveil information about a document’s origin
and history of ownership. Documents in the Web are copied, modified, and
stored in different places. Knowing the origin of documents can help, for
example, to judge its trustworthiness. While this field is well studied for
scientific data processing and database management systems [275, 34, 56], to
our knowledge, the automatic identification of provenance for text documents
in general has not been studied by now.

2.2 What is the text about

The classification of texts with respect to their topic (or subject) dates back to
the first libraries around 2600 BC. The libraries in Nippur about 1900 BC had
the first library classification systems. In general, a library classification system
categorizes documents by index terms that describe what a text is about.

In the 1920s and 1930s the first automatized information retrieval systems were
developed. In 1931, Emanuel Goldberg patents a document search engine, which
uses pattern recognition techniques for retrieving microfilmed documents based
on their metadata. Hans Peter Luhn started in 1947 developing an information
retrieval system for chemical compounds based on punch cards. And, in 1950,
Mooers [209, 210] used the term information retrieval for the first time.

Text categorization relies on indexing technology used in information retrieval.
The entry of probability theory in information retrieval has it’s own history,
starting with Maron and Kuhns [195] in the 1960’s, followed by Cooper, Robert-
son [249], and van Rijsbergen [316, 317]. Probabilistic topic categorization was
operationalized for the first time by Maron [196] in 1961. Even though automatic
information retrieval systems focus on the idea of ranking documents by their
relevance to an information need, which is formulated as a query, ranking and
categorization are conceptually the same. The two most influential projects in
information retrieval and topic categorization are from Salton and Lesk [254]
and Fuhr et al. [91]. Salton and Lesk founded in the 1960’s the SMART in-
formation retrieval system, where the vector space model was invented and
implemented, along with statistical term weighting schemes [255]. Later, the
vector space model was extended to the generalized vector space models [337]
and the topic-based vector space models [18]. In contrast to the SMART project,
Fuhr et al. [91] founded the AIR/X system, which is one of the first automatic
text categorization systems that handles numerous categories and documents.
Then, in the 1990’s, topic categorization became more appealing and found
application in many filtering, organization, and dispatching tasks, as well as in
the generation of metadata [266].
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2.3 To whom is the text addressed

In general, texts have implicit or explicit audiences, where an audience can be a
group that speaks the same language, private persons, adults, or maybe children.
An implicit audience is a group of people who can read and understand a
text whereby we identify language identification as a task related to implicit
audiences. An explicit audience is a group of direct addressees whereby adult
and private content detection are related to explicit audiences.

2.3.1 Adult content detection

The protection of children is a matter of concern to all of us. The classifica-
tion of adult content is becoming ever more important since the Web offers
pornographic material in masses.1 For spotting this content, Santos et al. [259]
employed compression procedures that also had been shown to be effective
in spam classification by Bratko et al. [38], and, moreover, Kim [146] classified
texts in a four level grading scheme via standard classifiers. Although, this task
is relatively new and arose with the commercialization and popularization of
the Web, more related work can be found in Ho and Watters [117] and Hu et al.
[124].

2.3.2 Private content detection

A private text has specific recipients and several types of information, such as
security information, corporate trade secrets, or personal content, should not be
read by others. In contrast, a public text is allowed to be broadcasted. Nguyen
[216] applied statistical learning methods to the task of discriminating between
private and public texts. The analyzed datasets comprise emails from the
Enron Email dataset serving as private texts, versus Twitter messages, Myspace
forum discussions, and Slashdot comments serving as public texts. The Enron
Email dataset contains emails of the U.S. energy company Enron Corporation,
which are accessible because of the investigations in one of the largest cases of
accounting fraud in 2001. In a 1 : 1.12 setup (public : private), 95.6% accuracy in
discriminating the data can be achieved.

A highly related task is “data loss detection/prevention”. Its goal is to detect
texts that are private but readable outside the authorized scope of recipients
and to prevent unauthorized readability. Usually this task refers to data in
general, which can be in-use, in-motion, and at-rest [269, 225]. With the growth
of cloud computing the demand for data loss detection systems is likely to be
increased in the private and in the commercial sector. The aspect of identifying

1At the upcoming WSDM 2013 will be a dedicated workshop on this topic, called SEXI 2013
(Workshop on Search and Exploration of X-Rated Information).
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data, for example, credit-card data, intellectual properties, or social security
numbers, range from precise (via hashing) to imprecise (via regular expressions
and statistical machine learning) identification approaches.

2.3.3 Language identification

Language identification deals with the identification of a text’s language. This
task is seen as solved for conventional texts, and current research is on language
identification for special use cases, such as short texts or queries, for example,
by Gottron and Lipka [99]. Ingle [130] is one of the first who proposed a
statistical approach for identifying the language of a text. In the 1990’s, Dunning
[77] and Cavnar and Trenkle [51] studied n-gram models as a representation for
the classification task. Standard approaches are summarized in the comparative
study by Lena Grothe and Nürnberger [168].

2.4 Which channel is used

The channel that is used for publishing a text is often an implicit outcome of
text classification tasks. We propose Web genre classification with appropriate
schemes, for example, the differentiation between Wiki articles, blog posts,
forum entries, private or commercial homepages, for identifying channels. Web
genre classification is, however, a special case and is examined on its own merits
in Section 2.6.

Also the grading of text with respect to readability [162, 64, 86, 147, 52] can be
seen as a channel-related task. The popularization of these grading schemes and
indexes is driven by the military to minimize the risk of misunderstandings [142].
It should be noted that the readability of a text is also audience-related.

2.5 What is the effect of the text

Modern research in text classification is on the effects of texts. The questions
behind the respective tasks are, for example: is a text an act of vandalism; is it
making people smile; or does it express a sentiment. Especially the last task
received much attention recently.

2.5.1 Opinion mining

A large part of research in opinion mining concerns movie and product reviews,
see [223] for a detailed survey. In the context of product reviews, additional
information extraction is needed to identify product features and consecutive
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sentences [182, 123, 231]. Building a list of product features is a classification
task by itself, known as terminology extraction [137, 35]. It is worth mentioning
the subtask of retrieving comparative sentences, where two or more entities are
compared with respect to a product feature [94]. In contrast, opinion mining for
movies is more straightforward and requires less preprocessing.

The central elements in mining opinions are sentiment, polarity, and subjec-
tivity analyses. Early related work was already conducted in the 1970’s by
Carbonell [48] and later by Wilks and Bien [333]. This was followed by re-
search in identifying the point of view in texts [332, 331, 110, 253]. Later,
Hatzivassiloglou and McKeown [109] and Wiebe [330] deal with the semantic
orientation of adjectives, before sentiment analysis became a vibrant research
field in 2001 [65, 302, 307, 72, 212, 66, 222], followed by hundreds of publications.
Different learning setting and specialized features were examined: unsuper-
vised approaches [223], domain transfer [185], polarized word lists enhanced by
synonyms, antonyms, negations, or emoticons [145, 65, 243].

Sentiment analysis is of high importance for economics, and therefore detecting
opinion spam is relevant [132]. A distinctive example for sentiment analysis in
economics is the work by Archak et al. [12]; it studies how important specific
product features are, and, regarding these features, how the polarity of a review
affects the customers’ buying decisions. This is only one demonstration of the
impact of opinion mining. Today’s big data experts consider sentiment analysis
as a key technology for retrieving valuable information for making strategic
decisions in companies.

2.5.2 Vandalism detection

Vandalism is a phenomenon that occurs in editable online content such as
Wikipedia articles. For the case of Wikipedia, “vandalism is any addition,
removal, or change of content in a deliberate attempt to compromise the integrity
of Wikipedia.” 2 Depending on the vandalized domain, the types of features
can go beyond capturing textual characteristics and evaluate editor profiles, edit
histories, or other meta-information.

In a study by Potthast et al. [235], vandalized and well-intentioned Wikipedia
edits are discriminated by a logistic regression classifier using features such
as the longest consecutive sequence of the same character, the compression
rate, the frequency of upper case letters, and the frequency of vulgar words.
Meta-information is utilized as well, such as the anonymity of the editor, the
length of supplied comments, and the similarity between the old and updated
articles.

The range of features was expanded by Wang and McKeown [326] where
punctuation misuse (e.g. “!!!”), Web slang (e.g. “LOL”), comment cue words

2http://en.wikipedia.org/wiki/Wikipedia:Vandalism accessed 12-September-2012

http://en.wikipedia.org/wiki/Wikipedia:Vandalism
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were suggested. Chin et al. [57] utilized the revision history to build language
models for vandalism detection in Wikipedia. In addition, Wang and McKeown
[326] considered the probabilities that edits are generated by syntactical and
semantic n-gram language models function as features.

Based on the hypothesis “vandalism can be detected by writing style”, Harpalani
et al. [106] proposed probabilistic context free grammars (PCFG) for unveiling
syntactic patterns. Basically two PCFG parsers are trained, one on vandalized
and one on well-intentioned Wikipedia edits. A parser ouputs a probability of
generating an edit, and, for the classification of an unseen edit, the correspond-
ing probabilities of both grammars are compared. Other features in this context
relate to an author’s reputation [1] and the impact of an edit [237].

2.5.3 Other tasks

There are several uncommon tasks that are related to the effect of a text. Koppel
et al. [156] studied ideology identification, which is, for example, the discrim-
ination between speeches of Republicans or Democrats. Yu [347] evaluated
text classification methods for classifying erotic language patterns in poems
(eroticism) and for classifying sentimentality levels in texts (sentimentalism).
Yang et al. [340] classified emotions expressed in blog entries; Mihalcea and
Strapparava [204] classified humor.

Carvalho et al. [50] and Reyes et al. [246] detected irony in user posts of news-
paper and tweets, whereas Gibbs [96] provided a descriptive analysis of irony
types (hyperbole, sarcasm, rhetorical questions, understatements, and jocularity)
and Filatova [83] crowdsourced a corpus for irony and sarcasm classification in
Amazon reviews.

Further common tasks are the classification of ads, fake reviews, patents, frauds,
and lies. In natural language processing, there are even more tasks such as
part-of-speech tagging, grouping adjacent words, and anaphora resolution. In
field of information extraction the list continues with named entity recognition,
named entity detection, relationship extraction, and comment extraction. And,
the number of text classification tasks is still growing.

2.6 A comprehensive task: Web genre analysis

Web genre analysis is of high practical interest and provides information, with
respect to nearly all language functions, cf. Table 2.1, depending on the assigned
class scheme. Web genres relate to the presentation, the intended target group,
the effects, the channel in use, and the authorship of a text. Regarding the Web,
due to different user groups and technical means, several favorite specializations
of Web documents emerged: a document may contain many links (e.g. a link
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collection), scientific text (e.g. a research article), almost no text but pictures (e.g.
an advertisement page), or a short answer to a specific question (e.g. a message
in a help forum). These are examples for, what is called here, “genre” or “Web
genre”.

This section outlines the use cases in [295], where Web genre analysis forms an
essential building block in the information processing chain, namely retrieval ser-
vices that are empowered by genre labeling and information extraction that uses
genre classification as auxiliary technology. Web genre analysis demonstrates
two general observations for text classification tasks:

• The use cases of text classification tasks can be manifold.

• Tasks can be related to more than one language function.

2.6.1 Genre-enabled Web search

Search engines are the most influential and important applications in the
Web. An integration of genre analysis can happen according to two differ-
ent paradigms, namely filtering and Web search. Under the filtering paradigm,
a user declare their information needs in terms of genre preferences, and the
retrieval process accounts for these constraints. Under the classical Web search
paradigm using Google, Bing, Yahoo, and the like, Web genre information is
introduced by assigning genre labels to the snippets in the search results. Both
approaches have their advantages and disadvantages, pertaining to retrieval
time and retrieval precision. Different Web genre schemes along with technology
for identifying the genre classes are compiled in Table 4.5.

2.6.2 Information extraction based on genre information

Web genre schemes provide a diversification of documents into text types that
is oriented at search habits and the emerged culture of Web presences. In a
technical sense, Web genre models can be understood as a collective term for
classification models that quantify arbitrary structure and presentation-related
document features, while being topic-orthogonal at the same time. Examples
for high-level Web services that need a special text type as input are:

Market forecast summarization Market forecasting seeks to anticipate the future
development of new technologies at an early stage. It is vital for most
companies in order to develop reasonable business strategies and to make
appropriate corporate investments. Market forecasting can be supported
by automatically collecting, assessing, and summarizing information from
the Web into a comprehensive presentation of the expected market volume.
For this purpose a four step approach was implemented by Stein and
Busch [289]: collecting candidate documents, report filtering, time and
money identification, and phrase analysis along with template filling. The
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third and fourth steps are computationally very demanding, and the ratio-
nale of the proposed approach is reducing unnecessary natural language
processing effort by a reliable identification of interesting business reports
published on the Web. The heart of this strategy is a genre analysis in the
report filtering step.

Retrieval of scholary material Specialized search engines and technology for verti-
cal search are building blocks of future information extraction applications
for the retrieval of academic research material. They shall be able to iden-
tify, synthesize, and present Web documents related to exercises, FAQs,
introductory readings, definitions, or sample solutions, given a topic in
question. The driving force is a reliable document type and genre analysis.

Focused crawling for plagiarism analysis The discriminative power of a genre clas-
sifier can also be utilized at the crawling stage. Here, the challenges result
from a classification model that has to get by with few and small document
snippets. An interesting application is plagiarism analysis, which focuses
on research articles, book chapters, and theses.





Chapter 3

Supervised learning

Supervised learning means to induce from labeled training examples a function,
known as hypothesis or classifier, that predicts the labels of unseen examples.
The ultimate goal in statistical classification is to find a hypothesis h that is a
close approximation of the target function c, which is generally unknown and
therefore the closeness of both functions cannot be directly evaluated. The most
fundamental question in supervised learning is: if h can generalize, i.e., predict
the classes of unseen examples. The need of these predictions is prevalent in all
text classification tasks. This chapter reveals an understanding of supervised
learning that forms the foundation of this thesis.

3.1 An explanatory model of generalization: inductive
bias

Each hypothesis h, as part of a solution of a classification task T, makes, be it
implicitly or explicitly, a-priori assumptions about T. These assumptions will be
introduced in what follows as inductive bias. The inductive bias forms the ratio-
nale for learning—better: for generalization; without bias is no generalization
possible [206, 108].

Let h be a hypothesis selected by an inductive learner L when given the examples
of a training sample S to L. An example in the training sample is a pair of an
input variable d, which represents the document d, and an output variable y,
which represent the class label of the d. Using h, the class label of an unseen
example d can be computed, h(d), precisely stated: “the prediction h(d) follows
inductively from S, L, and d”, which is the semantics of the formula below:

L ∧ S ∧ d � h(d)

Because of the inductive situation, the predicted class label h(d) need not
necessarily correspond to the true class label c(d). As a consequence, h(d)
is not provably correct. Mitchell [206] asks what minimum set of additional
assertions B could be added to L ∧ S ∧ d so that h(d) follows deductively:

L ∧ S ∧ d ∧ B |= h(d)
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Figure 3.1: Mitchell’s inductive bias is defined as the size or complexity of the smallest
set of assertions B. For example, a rote learner classifies without any assertions training
examples provably correct but is not able to classify unseen examples. This learner has
therefore no inductive bias and does not generalize. In contrast, a constant classifier has
a strong inductive bias, namely, the assertion h = c.

The inductive bias of a learner L is defined as the smallest set of assertions B such
that for all d ∈ D the class label h(d) can be deductively inferred, cf. Figure 3.1.
If the additional assertions B are fulfilled, the deduced class label h(d) is equal
to the true label c(d); hypothesis and target concept are equal h = c.

Even though this understanding of the inductive bias is appealing, this bias
is hard to be quantified: typically B represents a formula in predicate logics,
specifying the assertions in an axiomatic way, while there is no intuitive and
sensible calculus for measuring the complexity, the extent, or the scope of
the propositions contained in this formula. Describing the inductive bias of a
learner L, either formally or informally, however, describes L’s gist. It tells us
how much of the variation in a sample S is captured by the inductive learner,
which in turn correlates with the complexity of the hypothesis space H, which
comprises all hypotheses that L can generate.

The idea behind Mitchell’s inductive bias becomes perspicuous if two extreme
strategies of inductive learners are considered, the here called maximum-bias
learner and the zero-bias learner, cf. Figure 3.1. The maximum-bias learner, for
example, a constant learner, is able to classify an example d without knowing
anything about it. Its decision is always the same and nothing of the variance
contained in a sample S is modeled. By contrast, the zero-bias learner captures
the entire variance in S, even if its elements are randomly distributed. An
example for this extreme is a hash table. Hash tables model arbitrary hypotheses,
which comes at the price that from an unseen example d nothing can be induced
with respect to c(d). Consequently, the generalization ability of a hash table is
zero.
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Table 3.1: A taxonomy that relates the different types of bias found in the literature.
Inductive Bias

Structural bias bias(H) Estimation bias bias(L)
(learner-independent) (learner-dependent)

Model formation Hypothesis Preference
bias complexity bias bias

3.1.1 Bias types

The main findings in computational learning theory are based on results in the
fields of combinatorics (how many hypotheses are consistent with a given train-
ing sample) and probability theory (how likely is the selection of a hypothesis
with an error smaller ε). Since the hypothesis space H comprises the hypotheses
a learner L infers from 2D (all possible training samples), its characteristics take
a major role in this context, which are affected by different types of biases.

The types of biases found in the literature are organized within the taxonomy
shown in Table 3.1. Commonly accepted is the distinction between a structural
bias and an estimation bias, cf. Line 2 in the table. The former is learner-
independent and is also known as model bias; the latter is learner-dependent.

Line 3 in the table shows three types of inductive bias that have an impact on the
hypothesis space H in terms of its size and elements. The types are: (1) model
formation bias, in the form of heuristics and assertions in the feature engineering
phase, (2) hypothesis complexity bias, which results from the structure of the
hypothesis function, and (3) preference bias, which is a consequence of the
optimization strategy of the learner. The feature engineering and the resulting
representation restrict H in a structural way and introduce a learner-independent
bias. The hypothesis complexity relates to the flexibility of modeling even small
differences between randomly drawn samples S. Hastie et al. [108] use the term
“model complexity” in this connection. Mitchell [206] subsumes this kind of
structural property under the term “restriction bias”; it depends on the structure
of a hypothesis h, which is determined by the parameter number and parameter
interaction. The exploration strategy defines whether or not H contains all
hypotheses of a certain structure. The situation that H is not complete can also
be understood as a complete hypothesis space H′ that is incompletely explored,
such that, the “effective size” of H′ corresponds to |H|. Mitchell subsumes this
kind of structural property under the name “search bias” or “preference bias”;
it is determined by the learner.

Finally, all types of bias entail an incurred bias, which cannot be controlled;
incurred biases are caused by statistical deficiencies, by shortcomings in design
ot the learning algorithm, or by a lack of appropriate features. Furthermore,
some of the mentioned structural properties influence each other, while others
are orthogonal. Altogether they can be used for reducing |H| and improving
the generalization capability of a text classification solution m = (α, h).
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Figure 3.2: Illustration of the hypothesis space that a learning algorithm produces when
learning from different training samples. h∗ is the optimum hypothesis and E(H) is
the expected hypothesis. In the upper part, the probability density function of H can be
seen.

3.1.2 Bias quantization

The following definitions unify the notion of biases. The statistical learning
theory considers d to be a realization of the real-valued multivariate random vari-
able X and, for simplicity, the assigned class label y to be a value of the binary
random variable Y ∈ {−1, 1} with the joint probability distribution P(X ,Y).
The symbolH denotes a random variable whose observed values are hypotheses
in the hypothesis space H.

Most important is the generalization error of a text classification solution. The
minimization of this error is the ultimate goal since it concerns the entire
population of the classification task.

Generalization error of a hypothesis h, err(h):

err(h) := E(loss(h(X ), c(X )))

=
∫

loss(h(d), c(d))dd,

where

loss(y, y′) :=
{

0 if y = y′

1 otherwise.

The generalization error is also known as prediction error, real error, or true
error [108, 313, 70, 335, 261]. Usually the population cannot be analyzed in its
entirety, and one resorts to an estimator of err(h). The most common estimator
of err(h) is the sample error errS(h), which is defined as follows:

errS(h) :=
1
|S| ∑

d∈S
loss(h(d), c(d)),
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where S denotes a sample of examples. errS(h) is known as “training error”
if S is used for the construction of h by a learner L; it is known as “test error”
otherwise.

The generalization error err(h) describes a property of a single hypothesis h.
In addition, there are also statistics that measure properties of a hypothesis
space H such as the structural bias, as well as statistics that measure properties
of a learner L such as the estimator bias [90], cf. Table 3.1 and Figure 3.2.

Structural bias of a hypothesis space H, bias∗(H):

bias∗(H) := err(h∗)
:= min

h∈H
err(h).

The structural bias quantifies the expected difference between an optimum
hypothesis h∗ ∈ H and the target concept c; Hastie et al. [108] terms it model
bias. The optimum hypothesis h∗ is defined as the hypothesis in H with the
lowest generalization error. Depending on the structure of H, h∗ does not
necessarily need to be equal to c.

Estimation bias of an inductive learner L, bias(L):

bias(L) := E
(
loss(H(X ), h∗(X ))

)
=

∫
loss(E(H)(d), h∗(d))dd,

with

E(H)(d) = argmax
y∈Y

∫
1(h(d), y)dh

and

1(y, y′) :=
{

1 if y = y′

0 otherwise.

The distribution over the hypotheses in H is characterized by the random
variable H, which can be estimated by learning from randomly drawn training
samples. The estimation bias quantifies the expected difference between the
expected hypothesis returned by L and an optimum hypothesis h∗ ∈ H [206,
108]. The expected hypothesis is not necessarily an element of H. Informally
speaking, the expected hypothesis E(H) classifies the document d as follows:
d receives the class label that is predicted by the majority of hypotheses in H,
cf. E(H)(d).

The structural bias is independent of the distribution of hypotheses and consid-
ers only the structural aspects of the hypothesis space. In contrast, the estimation
bias is based on the distribution and is therefore learner-dependent. Both char-
acteristics are practically not computable since it is not possible to identify the
optimum hypothesis h∗ without exhaustively exploring the complete hypothesis
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space. The expected hypothesis can be estimated by repetitive resampling and
learning. When approximating h∗ by the target function c, which is known for
the training examples, the estimation bias can also be estimated. The quality
of this estimate is unknown but, nevertheless, the estimate can be applied for
comparing different text classification models.

3.2 Inductive biases of common learning algorithms

The inductive bias of a learning algorithm describes its way of learning from
examples. Understanding the inductive bias of learning algorithms is an essen-
tial part both in applying and in developing them. It also enables the engineer
to explain the effectiveness and generalization capability of an algorithm to a
large extent. This section lists the most common learning algorithms used in
text classification and describes their inductive biases.

Linear support vector machine (SVM) An SVM is a maximum margin classifier.
The learning algorithm finds a linear classification boundary (hyperplane)
that separates the training examples and maximizes the margin to the
closest training examples regarding their class labels. A soft margin SVM,
proposed by Cortes and Vapnik [59], also allows the misclassification of
examples to a certain degree, which is needed when the examples are not
separable by the classification boundary. A variety of research studies, for
example, by Joachims [134], [133], showed that linear SVMs have good
generalization capabilities and rank for most text classification tasks under
the top classifiers. In general, a learner with a maximum margin inductive
bias selects consistent hypotheses that are maximizing the distance to the
closest training examples with different labels.

Naïve Bayes (NB) The naïve Bayes classifier is a probabilistic learning algorithm,
which assigns an unseen example to the class that has the highest condi-
tional probability under a parametrized model. Its inductive bias maxi-
mizes the conditional independence. The training phase is made up of
computing the maximum likelihood estimate of the classifier’s parameters.
Within the field of text classification the class probability estimates of naïve
Bayes are often poorly calibrated but the classification decisions are still
reliable [105]. SVMs are often the better choice in general but it was shown
that naïve Bayes classifiers are robust to the concept drift problem where
the distribution of classes or subclasses changes over time [88].

Decision tree (C4.5) The C4.5 algorithm by Quinlan [239] classifies an unseen
example with a decision tree. Each path in a decision tree is a conjunction
of constraints on the feature values. The tree is constructed by choosing
for each node the feature and constraint which maximizes the information
gain in the resulting split of training examples. Often, decision trees have
a bias that controls their complexities. For example, a learner with a
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minimum-description-length inductive bias selects the simplest hypothesis
in terms of its description length. This bias is typically implemented by
pruning strategies for tree learning algorithms, which prefer smaller trees,
for example, in terms of the number of nodes, the maximum path length,
or the number of leafs.

k-Nearest Neighbor (k-NN) The k-NN learning algorithm stores the training ex-
amples and assigns the most frequent class among the k nearest training
examples to an unseen example. Usually the Euclidean or Hamming
distance determine the neighborhood of examples. For small k, k-NN is
sensitive to the local distribution of the training examples and tends to
overfit. The nearest neighbor classifier maximize the distance between the
closest examples and has therefore a maximum margin bias. This is not
necessarily true for the k-nearest neighbor algorithm with k > 1. These
learners have a so-called nearest-neighbor inductive bias that assigns an
example to the class majority of its neighborhood. This bias is connected to
the clustering assumption; that is, similar documents have similar labels.

3.3 Optimization for learning algorithms

Training or learning is the process of selecting a hypothesis based on the
available training examples. In many cases the training process is done via
optimization, whereas the inductive bias of a learning algorithm is nested in
the objective function and the constraints of the optimization problem. The
hypothesis that minimizes the objective function is neither necessarily the best
hypothesis nor the target concept.

Learning algorithms can be divided into two groups, namely generative models
and discriminative models [215]. Generative models estimate the conditional
probability density functions. Often no numerical optimization is needed
and the hypotheses can be computed in a closed form, which is for example
the case for naïve Bayes or linear discriminant analysis. The name linear
discriminant analysis might be confusing but the approach belongs to the
group of generative models; here, the conditional probability density functions
are assumed to be normally distributed, and they are parametrized during
the training. Discriminative models are not able to regenerate the observed
examples but to discriminate them; they are often trained via optimization.
Examples for discriminative models are support vector machines, perceptrons,
or logistic regression algorithms.

Linear support vector machines take an important role in text classification
and are therefore introduced in this chapter. The feature space is often high-
dimensional as it is often spanned by large vocabularies. Linear support vector
machines implement an implicit sampling strategy by focusing on examples
(support vectors) that are close to the class boundary. The strategy is effective
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as it avoids the curse of dimensionality and reduces the computational effort
of training. Because of the high dimensionality in text classification, a linear
class boundary is often sufficient for approximating the target concepts and
more complex hypothesis classes are less common. Therefore, we do not go into
the details of kernel learning, which is usually part of support vector machine
literature since it allows the learning of complex hypotheses. We introduce
in the following subsections the basic concepts of optimization for a better
understanding of formulating training processes as optimization problems.

3.3.1 Standard form

The standard form of an optimization problem is

minimize
x

f (x)

subject to gi(x) ≤ 0, i = 1, . . . , m
hi(x) = 0, i = 1, . . . , p,

with the objective function f (x), the inequality constraints gi(x) ≤ 0, and the
equality constraints hi(x) = 0 and f , gi, hi : Rn → R, see [36].

A quadratic programming problem is of the form

minimize
x

f (x) =
1
2

xTQx + cTx

subject to gi(x) ≤ 0, i = 1, . . . , m
hi(x) = 0, i = 1, . . . , p,

where Q is a symmetric quadratic matrix.1

An optimization problem is convex, if the objective function f and the inequal-
ity constraints g1, . . . , gm are convex and the equality constraints h1, . . . , hp are
affine. The key property of convex optimization problems is that a local mini-
mum is simultaneously the global minimum and corresponds to their optimal
solution.

3.3.2 Lagrangian

The Lagrangian of an optimization problem in the standard form is

L(x, λ, ν) = f (x) +
m

∑
i=1

λigi(x) +
p

∑
i=1

νihi(x),

1If Q is positive semidefinite, then f is convex, and if Q is zero, then the problem is a linear
program.
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with the Lagrange multiplier λi for the ith inequality constraint and the Lagrange
multiplier νi for the ith equality constraint. The term λi fi is an underestimating
approximation of the indicator function I( fi(x)), which makes interpretation of
the constraint integration in the Lagrangian more obvious:

I( fi(x)) =
{

0 if fi(x) ≤ 0
∞ otherwise.

The Lagrange dual function is

g(λ, ν) = inf
x

L(x, λ, ν).

The optimum solution has the value p∗ and for λi ≥ 1, i = 1, . . . , m

g(λ, ν) ≤ p∗.

Therefore the Lagrange dual problem, which is a convex optimization problem
no matter if the original problem is, is:

maximize
λ,ν

g(λ, ν)

subject to λi ≥ 0, i = 1, . . . , m.

The optimum solution of the Lagrange dual problem d∗ is d∗ ≤ p∗.

3.3.3 Karush-Kuhn-Tucker conditions

Given a convex optimization problem with differentiable objective and constraint
functions, the solutions that satisfy the Karush-Kuhn-Tucker (KKT) conditions
are optimal for the primal and the dual problem. The optimal value of the
Lagrange dual function is the optimal value of the primal optimization problem,
d∗ = p∗. Furthermore, if Slater’s condition holds, then the KKT conditions are
necessary and sufficient conditions for optimality.

For x̃, λ̃, ν̃ the KKT conditions are:

gi(x̃) ≤ 0, i = 1, . . . , m
hi(x̃) = 0, i = 1, . . . , p

λ̃ ≥ 0, i = 1, . . . , m
λ̃gi(x̃) = 0, i = 1, . . . , m

∇ f (x̃) +
m

∑
i=1

λ̃∇gi(x̃) +
p

∑
i=1

ν̃∇hi(x̃) = 0.
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3.3.4 Support vector machines

A hyperplane is a set of the form

{d|wTd = b},

where w ∈ Rn, w 6= 0, and b ∈ R, see [36]. A hyperplane is the boundary of
two halfspaces. Linear classifiers can be represented by a hyperplane, whereby
an example d is classified with the sign function:

h(d) = sgn(wTd + b),

with the classes c = {+1,−1}.

Separable case Informally, the inductive bias of an SVM can be formulated
as the objective of finding the hyperplane that maximizes the distance to the
closest examples subject to the constraint that all training examples are correctly
classified. For a linear separable training sample S = {(di, yi), di ∈ Rn, yi ∈
{+1,−1}} with i = 1, . . . , m. The inequality constraints

yi(wTdi + b) ≥ 1

ensure that the set of feasible solutions only comprises consistent hypotheses.
The resulting optimization problem is:

minimize
w,b

f (w) =
1
2
‖w‖2

subject to yi(wTdi + b)− 1 ≥ 0, i = 1, . . . , m.

Geometrically, w is orthogonal to the hyperplane and |b|/‖w‖ is its perpendic-
ular distance to the origin. The closest positive and negative examples have the
perpendicular distances

dist+ = |1− b|/‖w‖ and
dist− = | − 1− b|/‖w‖.

The hyperplane w and its offset b are scaled so that the closest positive example
d+ and the closest negative example d− fulfill

wTd+ + b = 1 and
wTd− + b = −1.

Therefore, the margin dist+ + dist− between these examples is 2/‖w‖, which is
maximized by minimizing ‖w‖2. Minimizing 1

2‖w‖2 leads to the same solutions
and is mathematically more convenient.

Introducing the Lagrange multipliers λi for the inequality constraints of the
form gi(x) ≥ 0, the optimization problem can be stated as:

maximize
λ

inf
w,b

1
2
‖w‖2 −

m

∑
i=1

λi

(
yi(wTdi + b)− 1

)
,
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Figure 3.3: Geometric representation of the hyperplane w and its positive margin in a
two dimensional feature space.

where the optimal solution of the dual is the solution of the primal problem.
With the KKT conditions the same problem becomes:

maximize
λ

1
2
‖w‖2 −

m

∑
i=1

λi

(
yi(wTdi + b)− 1

)
subject to yi(dT

i w + b)− 1 ≥ 0
λi ≥ 0
wd −∑

i
λiyixi,j = 0

−∑
i

λiyi = 0,

with i = 1, . . . , m and j = 1, . . . , n. Due to the KKT conditions, the solution w is
a linear combination

w =
m

∑
i=1

λiyidi,

where only the closest training examples, namely the examples with a perpen-
dicular distance of one, influence the solution. These examples are so-called
support vectors. The value of b can directly be computed by selecting any i
with λi > 0 and set it into the KKT conditions [47].

Substituting the constraints to the objective function the optimization problem
becomes:

maximize
λ

∑
i

λi −
1
2 ∑

i,j
λiλjyiyjdT

i dj

subject to λi ≥ 0,

with i, j = 1, . . . , m.

Non-separable case For the case, where the training examples are not sep-
arable by a linear hyperplane, no feasible solution can be found. Therefore
the concept of a soft margin was proposed by Cortes and Vapnik [59] where
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misclassification is allowed but penalized. The penalty is introduced in the
inequality constraints by slack variables ξi,

yi(wTdi + b) ≥ 1− ξi, i = 1, . . . , n.

Without going into the details, an important result of Cortes and Vapnik is that
a C parameter can be introduced in the dual form of the resulting optimization
problem, which virtually removes the slack variables:

maximize
λ

f (λ) =
n

∑
i=1

λi −
1
2 ∑

i,j
λiλjyiyjdT

i dj

subject to 0 ≤ λi ≤ C
n

∑
i=1

λiyi = 0.

Non-linear SVMs Based on the idea of projecting examples into a so-called
inner-product space, SVMs are able to learn concepts that are not linear. In
the inner-product space, the trained hyperplane is linear. A kernel func-
tion K(di, dj) = φ(di) · φ(dj) avoids computing the projection φ and the training
examples are processed as dot products during the optimization procedure. The
same applies, if a new example d is classified:

h(d) = sgn(wTd + b)

= sgn

(
∑

i
λiyidi

Td + b

)
,

with xi ∈ ”support vectors”.

3.4 Evaluation of text classification solutions

A text classification solution m is a tuple comprising a feature engineering
function α and a classifier h. The estimates of the effectiveness of a binary
classifier are based on the confusion matrix, cf. Table 3.2. This table organizes
the number of true positives (TP), false negatives (FN), false positives (FP),
and true negatives (TN) reported in a testing procedure (e.g., leave-n-out) on
a test sample. A sample has P positive and N negative examples, whereby
PP examples are positively and NP examples negatively predicted.

The quality of m’s predictions is quantified by measures summarized in Table 3.3,
such as recall or precision. Some of these measures are known by other names:
recall, for example, is also known as true positive rate or sensitivity; true
negative rate is also known as specificity; false positive rate is also known as
fallout; precision is also known as positive predictive value. We associate all
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Table 3.2: Confusion matrix. This matrix organizes the predicted along with the actual
class values of the test sample that is used during an evaluation.

Actual class

Positive Negative Total

Predicted class
Positive TP FP PP

Negative FN TN NP

Total P N

measures with the positive class by declaring the positive class as the class of
interest (target class).

Without loss of generality, we use the term “effectiveness” as a generic term
for such measures and presume the range [0; 1]. A higher effectiveness e(m, S)
corresponds to a larger value of a measure if m is applied to a labeled test
sample S, and hence to a better prediction quality of m.

As mentioned above, when calculating one of the measures in Table 3.3, the
target class is considered to be the positive class. In a two-class problem, the
perspective from the negative class might also be important. In this context, the
true negatives take the role of the true positives and the false negative the role
of the false positives. For example, the recall Recneg of the negative class can be
defined as

Recneg =
TN

TN + FP
.

Because of the false positives, the precision of the positive class explains the
recall of the negative class and vice versa subject to the class balance.

Furthermore, for the interpretation of the results, one should always have the
effectiveness of a classifier in mind that makes random predictions in terms of
a uniformly distributed outcome over Y. The recall of this classifier is 1/|Y|,
and its precision is equal to the class balance. In contrast, in a multiclass setting
with more than two classes, the precision of the class of interest is not sufficient
to infer the recall of a specific counter class.
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Table 3.3: Common measures (name, event, statistic) that can be computed from the
confusion matrix for estimating the effectiveness of a text classification solution m.
The values +1 and −1 are associated with the positive and negative class labels. A
prediction is denoted by h(d) and the true value is denoted by c(d).

Name Event Statistic

Accuracy Acc P(h(d) = c(d)) TP+TN
P+N

Precision Prec P(c(d) = +1|h(d) = +1) TP/PP

Recall Rec P(h(d) = +1|c(d) = +1) TP/P

True neg. rate TNR P(h(d) = −1|c(d) = −1) TN/ N

False pos. rate FPR P(h(d) = +1|c(d) = −1) FP/N

False neg. rate FNR P(h(d) = −1|c(d) = +1) FN/P

Rate of pos. predictions RPP P(h(d) = +1) PP
P+N

Rate of neg. predictions RNP P(h(d) = −1) NP
P+N

F-measure F 2 Prec·Rec
Prec+Rec



Chapter 4

Feature engineering for
non-standard text classification tasks

In this chapter, we study methods for representing texts for several non-standard
text classification tasks. A task is non-standard if classifiers combined with
standard bag-of-words models suffer from symptoms either of low effectiveness
or of low generalization capability. The quantization of these symptoms is a
major hurdle in text classification. We therefore stress appropriate experimental
setups and evaluation measures for each task.

Modeling text classification tasks without a representation that goes beyond the
subject of texts becomes difficult for non-standard tasks with a topic-orthogonal
class scheme. In this context, we point out the important role of writing style,
which is discriminating for many non-standard text classification tasks. We
introduce a novel form of representation, known as co-stems, which mainly
captures the writing style in a text. Section 4.1 examines co-stems for a variety
of tasks. In addition, this chapter explores features for the following tasks in
detail:

• Web genre analysis (Section 4.2)

• information quality analysis (Section 4.3)

• language identification (Section 4.4)

• authorship verification analysis (Section 4.5)

• intrinsic plagiarism analysis (Section 4.6)

The experiments are conducted under laboratory conditions using standard
text classification corpora to ensure the comparability and reproducibility of
our results. A controlled environment is common and essential for feature
engineering. Necessary conditions with respect to the features can be validated
and descriptive statistics calculated. This is important for qualifying the dis-
criminative power and the interaction of features with respect to the given task.
Descriptive statistics are typically used for scaling and normalizing features.
Evaluations under laboratory conditions are also useful for parameter tuning
in order to approach the goals in information filtering and retrieval, where one
might prefer a high precision for spam filtering, and one might prefer a high
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Table 4.1: Overview of information filtering tasks. The tasks which are analyzed in this
section are tagged with the 3-symbol.
Task Description Reference

Age group analysis Determine the age of the author who wrote d. [262]
Authorship attribution Determine the author of d, given a set of authors. [281]3
Authorship verification Determine if d is written by more than one author. [153]
Gender analysis Determine the gender of the author who wrote d. [262]3
Genre analysis Determine the genre of d, given a set of genres. [295]3
Information quality analysis Determine whether d is of high quality. [177]3
Language identification Determine the language of d. [99]
Sarcasm analysis Determine whether d is sarcastic. [308]
Sentiment analysis Determine the sentiment expressed in d. [224]3
Spam detection (email, webpage) Determine whether d is spam or non-spam. [26, 218]3
Topic categorization Determine the topic of d. [161]3
Vandalism analysis Determine whether d is vandalized. [237, 235]

recall for patent retrieval. A drawback is that it is difficult to observe if a text
representation misleads a classifier, which affects the generalization capabilities.
The employed corpora are not representative of the real situation in the Web;
class schemes and balances are unknown, and labeling noise occurs.

4.1 Co-stems in non-standard text classification tasks

Identifying relevant, interesting, high quality, or humorous texts in wikis, emails,
and blogs is the tedious job of every information seeker. Algorithmic infor-
mation filtering [104] simplifies this process by finding those texts in a stream
or a collection that fulfill a given information interest. Current information
filtering technology mostly relies on text classification where the classes describe
the information interests. Usually the text representations are content-based,
although various filtering tasks are characterized by their intricate combination
of content and style.

In this section, we evaluate whether the untapped potential of a style represen-
tation is substantial. We propose a model that encodes both (1) text content
and (2) text style in the form of word stems and word co-stems respectively.
To draw a clear and comprehensive picture of the underlying effects and their
importance we resort to a straightforward vector representation. We consider the
computational simplicity of this representation as a useful contribution, and to
the best of our knowledge the co-stem representation has not been proposed or
investigated in this respect. Also the number and heterogeneity of information
filtering tasks that are compared in this section goes beyond existing evaluations.
In particular, we analyze the tasks in Table 4.1 that are marked with ticks (3)
and refer to the relevant literature. In this table, d denotes a text that is extracted
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Table 4.2: Different co-stems for the words “timelessly” and “timeless” resulting from
different stemming algorithms.

Stemming Co-stem Stem Co-stem Co-stem Stem Co-stem Reference
Algorithm

Porter, Lancaster,
Krovetz

– timeless ly – timeless – [233, 221, 158]

Lovins – time lessly – tim eless [189]
3-Truncation – tim elessly – tim eless
rev. 3-Truncation – timeles sly – timel ess

from an email, a wiki page, a blog entry, or a webpage, depending on the task
in question.

4.1.1 Co-stems

Co-stems are constructed by the following operation: given a word its stem is
computed first, and then the residuals of the word without its stem are taken as
co-stems. For example, consider the words “timeless” and “timelessly” along
with the application of different stemming algorithms, shown in Table 4.2.

Stems are the output of a stemming algorithm, which is “[. . . ] a computational
procedure that reduces all words with the same root (or, if prefixes are left
untouched, the same stem) to a common form, usually by stripping each word of
its derivational and inflectional suffixes” [189]. A root is the base form of a word
and cannot be reduced without losing its identity. An inflectional suffix changes
the grammatical role of a word in a sentence, it indicates gender, number, tense,
etc. A derivational suffix is used for word-formation. For example, the word
“timelessly” has the inflectional suffix “ly” and the derivational suffix “less”.

A word can have at most three co-stems, namely the part before, after, and inside
the stem. Depending on the employed stemming algorithm, a co-stem can be a
single affix or a combination of affixes. Note that most stemming algorithms are
language-dependent, and that some stemming algorithms regard a stem as one
or more root morphemes plus a derivational suffix (the Lovins stemmer does
not).

Derivational affixes and inflectional suffixes depend on the part of speech.
Typical derivational affixes are for example for nouns “-ion, -ment, -ance” and
for verbs “en-, be-, de-, -ify, -en, -ate, -ize”. Therefore, analyzing co-stems
provides not only information about the usage of derivations and inflections,
but also implicit information about the usage of the part of speech.
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4.1.2 Analyzing co-stems

The general setting in our evaluation is as follows: Given a text classification
task, the Lovins stemming algorithm [189] computes the stems of an extracted
text. The algorithm uses a list of 297 suffixes and strips the longest suffix from a
word; hence the resulting co-stems in this study are suffixes.

Since the goal is to capture the writing style of a text, we enhance the set
of co-stems with stop words and punctuation. A text d is represented by
a vector d, where each dimension specifies the frequency of its associated
token. A token can be a word, a stem, or a co-stem. We apply as classification
technologies a generative approach, as well as a discriminative approach, namely
naïve Bayes (NB) and linear support vector machines (SVM). Naïve Bayes is
a generative classifier that learns a model of the joint probability, P(D, Y). Its
decision rule selects the most likely class y by calculating P(y | d) using the
Bayes rule. The SVM is a discriminative classifier that learns a direct mapping
from D to Y by following the structural risk-minimization principle.

Each corpus in this study is specific for its respective field and accepted as
comparable standard resource. The corpora consist of several categories that
are regarded as classes or labels in a classification setting. Here, each corpus
is broken down into two classes by randomly selecting two categories and
ignoring the additional ones. The number of examples in each category is kept
assessable.

“The Blog Authorship Corpus” from Schler et al. [262] is used, which contains
blog entries from blogger.com organized by female and male bloggers and by
topical categories.

We compiled a corpus with the texts extracted from Wikipedia articles. It
distinguishes between “featured” (high quality) and “non-featured” articles that
were randomly chosen from the entire Wikipedia without restricting to selected
domains.

Moreover, the well-known “20 Newsgroups” corpus with Usenet articles is em-
ployed. Therefore, we have sampled articles from the top-level category “comp.*”
(computer-related discussions, comprising 5 categories) and from the top-level
category “rec.*” (recreation and entertainment, comprising 4 categories).

Another corpus is the “7-Web genre collection” from Santini [257] which consists
of webpages categorized in blogs, eshops, FAQs, online newspaper front pages,
listings, personal home pages, and search pages.

Furthermore, we took course pages and non-course pages, used in the co-
training experiments by Blum and Mitchell [28], from “The 4 Universities
Dataset”.

Finally, the “SpamAssassin public email corpus” and the “Cornell Movie Review
Dataset” by Pang and Lee [222] are employed.
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Figure 4.1: Task-specific discrimination analysis of co-stems. Each plot shows the
classification accuracy over the number of employed features for a given task. The
curves correspond to the naïve Bayes classifier (dotted) and SVM (solid) respectively.
The striped bars illustrate whether a stem (white) or a co-stem (black) is chosen by
information gain as the i-th feature. The results are obtained from a 10-fold cross-
validation and the averaged value is reflected by the shade of gray. A dark left area
indicates the superiority of co-stems.

Effectiveness comparison Table 4.3 compares the classification effectivenesses
of words, stems, co-stems, and co-stems combined with stems. The sym-
bols ◦ and • indicate a statistically significant improvement and degradation
respectively, compared with the bag-of-words model in a paired T-test with
0.05 significance. For each precision, recall, F-measure, and area under ROC
curve (P, R, F, AUC) the average is given, weighted by the class distribution.
The best solution of a task in terms of the F-measure is shown bold. The effec-
tivenesses are averaged over ten repetitions of a 10-fold cross-validation. The
table also shows further details of the used corpora. Since we consider only
binary classification tasks, we randomly select two categories for those corpora
that cover more than two categories.

Co-stems are effective in gender analysis, while the combination of co-stems and
stems leads to the best classification result. The combination leads also to the
best results in information quality analysis and authorship attribution, and it is
able to compete in topic categorization. For genre analysis (e-shop vs private
home page) and genre analysis (course vs non course) the effectivenesses of the
representation based on stems is comparable with the best solution. Finally, the
standard bag-of-words model performs best in spam detection and sentiment
analysis.

Influence of co-stems To understand the influence of stems and co-stems in
information filtering, Figure 4.1 illustrates the feature importance characteristics
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Figure 4.2: Continuation of Figure 4.1.

for each task. The illustrations show the 10-fold cross-validation accuracies of
the SVM and NB classifiers if the top k features (stems and co-stems) are used.
The top k features are computed by the information gain criteria on the training
split in each fold. The striped bars below the figures illustrate the preference
between stems (white) and co-stems (black) according to the information gain
criterion among the top 200 features.

The frequent occurrence of co-stems in all tasks among the top 200 features
emphasize the discriminative power of co-stems. Each task has its own charac-
teristics that are shown by the classification accuracy and the gray scale. A dark
left area indicates a superior impact of co-stems with respect to the classification
effectiveness in the specific task, which can be observed in particular for gender
analysis and information quality analysis. Co-stems are valuable within tasks
where the texts to be filtered typically originate from a specific writer or group
of uniform writers. Examples are authorship attribution and information quality
analysis, where a high quality Wikipedia article is edited by a group of writers
who are likely to share style elements.

4.1.3 Summary

Each non-standard text classification task has its own characteristics in terms
of the importance of co-stems. For the tasks gender analysis, information
quality analysis, and authorship attribution the combination of stems and co-
stems leads to a statistically significant improvement compared with bag of
words. We provide evidence for the discriminative power of co-stems by setting
up experiments with accepted corpora and by analyzing and illustrating the
distribution of the top discriminating features.
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Table 4.3: Classification effectiveness. ◦, • indicates a statistically significant improve-
ment or degradation with respect to the std. bag-of-words representation in a paired
T-Test with 0.05 significance. Each measure is class-dependent and the weighted average
result is given. The best solution of a task in terms of the F-measure is shown in bold.
Continued in Table 4.4.

Naïve Bayes SVM
Representation P R F AUC P R F AUC

Task: Gender analysis
Corpus: 400/400 blog entries written by different male/female bloggers.
Source: “The Blog Authorship Corpus” [262] with 681,288 blog entries from 19,320

bloggers on blogger.com.

Bag of words 0.72 0.71 0.71 0.78 0.70 0.70 0.70 0.74
Stems ∪ Co-stems 0.82 ◦ 0.82 ◦ 0.82 ◦ 0.90 ◦ 0.87 ◦ 0.86 ◦ 0.86 ◦ 0.91 ◦
Stems 0.77 ◦ 0.77 ◦ 0.77 ◦ 0.84 ◦ 0.80 ◦ 0.80 ◦ 0.80 ◦ 0.85 ◦
Co-stems 0.83 ◦ 0.83 ◦ 0.83 ◦ 0.90 ◦ 0.86 ◦ 0.85 ◦ 0.85 ◦ 0.91 ◦

Task: Information quality analysis.
Corpus: 255/255 “featured” (high quality) and “non-featured” articles.
Source: The english version of Wikipedia.

Bag of words 0.79 0.78 0.78 0.87 0.84 0.83 0.83 0.87
Stems ∪ Co-stems 0.80 ◦ 0.80 ◦ 0.80 ◦ 0.88 ◦ 0.87 ◦ 0.87 ◦ 0.87 ◦ 0.91 ◦
Stems 0.80 ◦ 0.80 ◦ 0.80 ◦ 0.86 0.81 • 0.81 • 0.81 • 0.84 •
Co-stems 0.78 0.78 0.78 0.87 0.86 ◦ 0.85 ◦ 0.85 ◦ 0.91 ◦

Task: Authorship attribution
Corpus: 357/481 blog entries from one author/from all other authors.
Source: The engineering category from“The Blog Authorship Corpus” [262].

Bag of words 0.98 0.97 0.97 1.00 0.98 0.98 0.98 1.00
Stems ∪ Co-stems 0.97 0.97 0.97 1.00 0.99 ◦ 0.99 ◦ 0.99 ◦ 1.00
Stems 0.96 • 0.96 • 0.96 • 1.00 0.98 ◦ 0.98 ◦ 0.98 ◦ 1.00
Co-stems 0.96 • 0.95 • 0.95 • 1.00 0.95 • 0.94 • 0.94 • 0.99 •

Task: Topic categorization.
Corpus: 1,000/800 messages from the (top-level) newsgroups computer-related

discussions/recreation and entertainment.
Source: The well-known “20 Newsgroups” with 20,000 Usenet articles.

Bag of words 0.98 0.98 0.98 1.00 0.97 0.97 0.97 0.99
Stems ∪ Co-stems 0.98 0.98 0.98 1.00 0.98 ◦ 0.98 ◦ 0.98 ◦ 0.99
Stems 0.98 0.98 0.98 1.00 0.98 ◦ 0.98 ◦ 0.98 ◦ 1.00
Co-stems 0.83 • 0.82 • 0.82 • 0.90 • 0.88 • 0.88 • 0.88 • 0.93 •
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Table 4.4: Continuation of Table 4.3
Naïve Bayes SVM

Representation P R F AUC P R F AUC

Task: Genre analysis (e-shop vs private home page).
Corpus: 200/200 webpages from eshops/personal home pages.
Source: The “7-Web genre collection” [257] with 1,400 webpages.

Bag of words 0.96 0.96 0.96 0.99 0.94 0.94 0.94 0.98
Stems ∪ Co-stems 0.95 • 0.94 • 0.94 • 0.98 • 0.94 ◦ 0.93 0.93 0.98
Stems 0.97 ◦ 0.97 ◦ 0.97 ◦ 0.99 0.94 0.93 0.93 0.98
Co-stems 0.87 • 0.85 • 0.85 • 0.95 • 0.88 • 0.86 • 0.86 • 0.94 •

Task: Genre analysis (course vs non course)
Corpus: 230/821 webpages about courses/non-courses.
Source: The subset of “The 4 Universities Dataset” used in the co-training

Experiments [28].

Bag of words 0.94 0.94 0.94 0.98 0.93 0.91 0.91 0.98
Stems ∪ Co-stems 0.92 • 0.92 • 0.92 • 0.96 • 0.91 • 0.88 • 0.89 • 0.98
Stems 0.93 • 0.93 • 0.93 • 0.97 • 0.93 ◦ 0.92 ◦ 0.92 ◦ 0.98
Co-stems 0.88 • 0.89 • 0.88 • 0.91 • 0.91 • 0.90 0.90 • 0.95 •

Task: Spam detection
Corpus: 160/320 spam/non-spam emails.
Source: The “SpamAssassin public email corpus” with 1,397 spam and 2,500 non-spam

emails. http://spamassassin.apache.org

Bag of words 0.92 0.92 0.92 0.97 0.95 0.94 0.94 0.98
Stems ∪ Co-stems 0.92 0.91 • 0.91 • 0.96 • 0.93 • 0.91 • 0.91 0.98 •
Stems 0.92 0.91 • 0.91 • 0.96 • 0.94 • 0.92 • 0.93 0.98 •
Co-stems 0.89 • 0.89 • 0.89 • 0.95 • 0.93 • 0.93 • 0.93 • 0.96 •

Task: Sentiment analysis
Corpus: 1,000/1,000 positve/negative movie reviews.
Source: The “Cornell Movie Review Dataset” [222] with 1,000 positve and 1,000 negative

reviews.

Bag of words 0.80 0.80 0.80 0.88 0.85 0.85 0.85 0.91
Stems ∪ Co-stems 0.76 • 0.76 • 0.75 • 0.84 • 0.84 • 0.83 • 0.83 • 0.91
Stems 0.81 0.80 0.80 0.89 0.82 • 0.82 • 0.82 • 0.89 •
Co-stems 0.63 • 0.62 • 0.62 • 0.68 • 0.72 • 0.72 • 0.71 • 0.79 •

http://spamassassin.apache.org
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4.2 Core-vocabularies in Web genre analyses

This chapter contributes to Web genre analysis and core-vocabularies. A core-
vocabulary is a group of words that indicates a functional aspect of a text.
We propose concentration characteristics of genre-specific core-vocabularies as
generalizable and efficiently computable features for genre analysis. In this
connection we introduce methods for mining tailored core-vocabularies, as well
as particular statistics as a means for a sensible feature quantization. Special
focus is put on the generalization capability of Web genre classification, for
which we present evaluation measures and, for the first time, a quantitative
analysis.

4.2.1 Web genre analysis

The genre of a Web document provides information related to the document’s
form, purpose, and intended audience. Documents of the same genre can
address different topics and vice versa, and several researchers consider genre
and topic as orthogonal concepts. Though this claim does not hold without
exceptions, genre information attracted much interest as positive or negative
filter criterion for Web search results.

Early work in automatic genre classification dates back to 1994, where Karlgren
and Cutting [139] presented a feasibility study for a genre analysis based on the
Brown corpus. Later on followed several publications investigating different
corpora, using more intricate or less complex retrieval models, stipulating other
concepts of genre, or reporting on new applications [143, 346, 282, 11, 241, 69,
85].

Genres on the Web have been investigated since 1998, for example, by Bretan
et al. [41]. Table 4.5 compiles research that received attention: the table lists
the basis of the analysis, the genre palette Q, and the text representation d.
The underlying use case is a genre-enabled Web search. The approaches from
Crowston and Williams [62], Roussinov et al. [250] and Dimitrova et al. [71]
are not included since the authors provided suggestions rather than a technical
specification about their genre retrieval models.

Though the undoubted potential of an automatic genre identification for web-
pages, models for genre could not convince in the Web retrieval practice by
now. The reasons for this are threefold. First, also observed by Santini [258], the
proposed genre classifier technology is corpus-centered: their application within
Web retrieval scenarios shows a significant degradation of the classification
effectiveness, rendering the technology largely useless for genre-enabled Web
search. Second, the existing genre retrieval models are computationally too
expensive to be applied in an ad-hoc manner. Third, there is no genre palette
that fits for all users and all purposes. Ideally, the users should be able to adapt
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Table 4.5: Research in the field of automatic genre classification for Web-based corpora
and digital libraries. An important use case is the development of a richer retrieval
result representation in the search interface. From Stein, Meyer zu Eißen, and Lipka
[295].

Author
Analysis basis Web genre palette Q Text representation d

Bretan et al. (1998)
user study with 102
interviewees

private, public/commercial, journalistic,
report, other texts, interactive, discussion,
link collection, FAQ, other listing

simple part-of-speech features, emphatic and
down-toning expressions, relative number of
digits, average word length, number of
images, proportion of links

Lee and Myaeng
(2002)
7615 documents

FAQ, home page, reportage, editorial,
research article, review, product specification

genre-specific core-vocabulary

Rehm (2002)
200 documents

hierarchy with three granularity levels for
academic home pages

HTML metadata, presentation-related tags,
linguistic features

Meyer zu Eissen and
Stein (2004)
user study with
286 interviewees,
800 documents

article, discussion, shop, help, personal home
page, non-personal home page, link
collection, download

word-frequency class, part-of-speech,
genre-specific core-vocabulary, other
close-classed word sets, text statistics, HTML
tags

Kennedy and
Shepherd (2005)
321 documents

personal, corporate, organizational HTML tags, phone, email, presentational tags,
CSS, URL, link, script, genre-specific
core-vocabulary

Boese and Howe
(2005)
342 documents

abstract, call for papers, FAQ, sitemap, job
description, resume, statistics, syllabus,
technical paper

readability scales, part-of-speech, text
statistics, HTML tags, bow, HTML title tag,
URL, number types, closed world sets,
punctuation

Lim et al. (2005)
1224 documents

home page, public, commercial, bulletin, link
collection, image collection, simple list, input,
journalistic, research, official material, FAQ,
discussion, product specification, informal

part-of-speech, URL, HTML tags, token
information, most frequent function words,
most frequent punctuation marks, syntactic
chunks

Freund et al. (2006)
800 documents

best practice, cookbook, demo, design pattern,
discussion, documentation, engagement,
FAQ, manual, presentation, problem, product
page, technical, technote, tutorial, whitepaper

bag of words

Santini (2007)
1400 documents

blog, listing, eshop, home page, FAQ, search
page, online newspaper front page

most frequent English words, HTML tags,
part-of-speech, punctuation symbols,
genre-specific core-vocabulary

Santini (2007)
2480 documents

[as before] text type analysis plus a combination of
layout and functionality tags
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a genre classifier to their information need, for examples, by labeling documents
as being of an interesting genre or not.

From the mentioned deficits the first one is the most severe: put in a nutshell,
the existing Web genre classification models generalize insufficiently. Also the
second deficit is crucial since it makes the important use case of a genre-enabled
Web search unattractive for users who expect a result list from a search engine
by the press of a button. We demonstrate how so-called core-vocabularies are
employed to construct effective text classification solutions for this task.

Insufficient generalization capabilities The authors of the approaches listed
in Table 4.5 report on classification results for the correct assignment of genre
classes. The obtained cross-validated accuracies are surprisingly high, reaching
from 75% with |Q| = 16 genre labels in [173] up to 90% with |Q| = 7 genre
labels in [167]. These and similar results are achieved with rather small training
corpora, containing between several hundred and a few thousand documents.

Let m1 be the genre classification solution trained on corpus D1, and let m2 be
the solution trained on corpus D2. With respect to the common genre labels of
two concrete classification models, Santini [258] investigated the generalization
capability of m1 to corpus D2 and vice versa.1 It turns out that the precision
decreases by more than an order of magnitude.

The classification knowledge that is operationalized within m1 can only be
exported to a corpus D2 if the model captures the intensional semantics of the
concept “genre”. The intensional semantics of a genre classification model can
be understood as its capability to comply with the extensional semantics of
genre in different worlds, say, as its capability to correctly classify documents
from different corpora. If so, the model provides a high generalization capability
resulting from a moderate inductive bias, cf. Section 2. Most of the Web genre
models listed in Table 4.5 have a weak bias.

High computational efforts Table 4.5 lists a wide range of feature types com-
monly used in Web genre analysis:

Presentation-related features Frequency counts for figures, tables, paragraphs,
headlines, captions. HTML-specific analysis regarding colors, hyperlinks,
URLs, or mail addresses.

Simple text statistics Frequency counts for clauses, paragraphs, delimiters, ques-
tion marks, exclamation marks, and numerals.

Special closed-class word sets and core-vocabularies Use of currency symbols, help
phrases, shop phrases, calendar, or countries.

1Santini [258] uses the term “exportability” in this connection. Actually, she measured the
agreement between m1 and m2, which is a particular facet of the generalization capabil-
ity [309].
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Word-frequency class analysis Use of special, common, or misspelled words.

Part-of-speech analysis Frequency counts for nouns, verbs, adjectives, adverbs,
prepositions, or articles.

Syntactic group analysis Use of tenses, relative clauses, main clauses, adverbial
phrases, or simplex noun phrases.

Following Stein, Meyer zu Eißen, and Lipka [295], the effort of computing
the mentioned features is between linear time in the text length, for simple
frequency counts, and ranges up to cubic effort and higher for the parsing of
syntactic groups. The usefulness and, even more important, the cost-benefit
ratio of these features with respect to a reliable genre analysis is unclear. Hence,
the researchers who build genre retrieval models tend to include a feature
instead of leaving it out.

The feature selection is shifted to the learning algorithm, which identifies and
weights the most discriminating features with respect to the training sample.
This strategy is acceptable if the training sample is plentiful and sensibly dis-
tributed with respect to the classification task; both requirements are not fulfilled
here. The construction of training corpora is expensive, as the small sample
sizes in the first column of Table 4.5 show. Moreover, the different user and
task-specific genre palettes and the impracticality of estimating the document
distribution on the Web are the reasons that very little can be stated about the
a-priori probabilities of genres. The combination of rich feature models with
small training corpora is crucial in two respects: it compromises generalization
capability and makes the learning process sensible to the training sample. A
way out is the use of few features with a coarse domain.

4.2.2 Core-vocabularies

For the set D of documents let C = {C1, . . . , Ck} be an exclusive genre partition
of D; i.e.,

⋃
C∈C C = D and ∀Ci, Cj,j 6=i ∈ C : Ci ∩ Cj = ∅. For a genre C ∈ C,

let TC denote the core-vocabulary specific for C. Similar to Broder [43], we argue
that TC is composed of navigational, transactional, structural, and informative
words. The combination, distribution, presence or absence of these words
encode a considerable part of the genre information.

Navigational words appear in labels of hyperlinks and in anchor tags of web-
pages. Examples are: “Windows”, “Mac”, or “zip” in download sites, links
to “references” in articles.

Transactional words appear in sites that interact with databases, and manifest
in hyperlink labels, forms, and button captions. Examples are: “add to
shopping cart”, “proceed to checkout” in online shops, buttons labeled
“download” on download pages.
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Structural words appear in sites that maintain meta-information such as time
and space. Examples include meta-information of posts in a discussion
forum (“thread”, “replies”, “views”, parts of dates) and words that appear
in addresses on home pages (“address”, “street”).

Informative words appear not in functional HTML elements but imply function-
ality though. Examples include “kB” or “version” on download sites,
“price” or “new” on shopping sites; and “management”, “technology”, or
“company” on commercial sites.

Vocabulary construction The words in TC are both predictive for C and fre-
quent in C. Words with such characteristics can be identified in C with ap-
proaches from topic categorization research, in particular Popescul’s method
and the weighted centroid covering method [232, 164, 165, 290]. For min-
ing a genre-specific core-vocabulary both methods must be adapted: they do
not quantify whether a word is representative for C; a deficit that can be re-
paired without compromising the efficient O(m log(m)) runtime of the methods,
where m designates the number of words in the dictionary [292].

Concentration measures In the simplest case, the relation between TC and a
document d can be quantified by computing the fraction of d’s words from TC,
or by determining the coverage of TC by d’s words. However, if genre-specific
vocabulary tends to appear concentrated in certain places on a webpage, this
characteristic is not reflected by the mentioned features, and hence, it cannot
be learned by a classifier. Examples for webpages in which genre-specific core-
vocabulary appears concentrated: private home pages (e.g., address vocabulary),
discussion forums (e.g., words from mail headers), and non-personal home
pages (e.g., words related to copyright and legal information). The following
two statistics quantify two different vocabulary concentration aspects:

Maximum Word Concentration Let d ∈ D be represented as a sequence of words,
d = {w1, . . . , wm}, and let Wi ⊂ d be a text window of length l in d starting
with word i, say, Wi = {wi, . . . , wi+l−1}. A natural way of measuring the
concentration of words from TC in different places of d is computing the
following function for each Wi:

κTC(Wi) =
|Wi ∩ TC|

l
, κTC(Wi) ∈ [0, 1]

The overall concentration is defined as the maximum word concentration:

κ∗TC
= max

Wi⊂d
κTC(Wi), κ∗TC

∈ [0, 1]

Gini Coefficient In contrast to the κTC statistic, which quantifies the word concen-
tration strength within a text window, the Gini coefficient can be utilized
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for quantifying to which extent a genre-specific core-vocabulary is dis-
tributed unequally over a document. Again, let Wi be a text window of
size l sliding over d. The number of genre-specific words from TC in Wi
is νi = |TC ∩Wi|. Let A denote the area between the uniform distribution
line and the Lorenz curve of the distribution of νi, and let B denote the area
between the uniform distribution line and the x-axis. The Gini coefficient
is defined as the ratio g = A/B, g ∈ [0, 1]. A value of g = 0 indicates an
equal distribution; the closer g is to 1 the more unequal νi is distributed.

Concentration measures capture the distribution of different subsets of a doc-
ument’s words with respect to their position in the document. These subsets,
denoted as core-vocabularies here, as well as their concentration analysis, form
the basis for non-linear features that cannot be constructed by the state-of-the-art
learning technology.

4.2.3 Analyzing Web genre models

This section addresses the evaluation-related issues of Web genre analysis. We
discuss approaches for improving the generalization capability and propose
statistics for quantifying this property for genre classification models. Each
experiment is repeated and averaged using ten randomly drawn samples of
the respective number of training examples; the applied learning algorithm is a
support vector machine and the text representations vary. Our empirical analysis
illustrates the theoretical observation from above: the stronger the structural
bias of a classification model is, the higher is its generalization capability.

Corpora The analysis is based on the Web genre corpora “KI-04” with eight
Web genre classes by Meyer zu Eißen and Stein [201], denoted as A, and the
“7-Web genre collection” by Santini [257], denoted as B.2 These corpora are
sketched in Table 4.5, row 4 and row 8.

Feature engineering We improve a classifier’s generalization capability by
restricting its structural bias. In practice, this goal is achieved by (1) reducing
the number of features, (2) reducing the number of values a feature can take,
and (3) replacing weak features by discriminative features. The proposed
concentration measures, maximum concentration and Gini coefficient of core-
vocabulary distributions, impose one feature per genre class, resulting in eight
features for a document of a collection with eight genre classes. In comparison
with a standard genre model, the number of features introduced by these
concentration measures is orders of magnitude smaller. The following text
representations are examined:

2KI-04 can be downloaded from http://www.webis.de/research/corpora. In the experi-
ments the extended version of this corpus (1 200 webpages) is used.

http://www.webis.de/research/corpora


4.2 Core-vocabularies in Web genre analyses 51

GenreVSM The vector space model using t f · id f term weighting scheme, com-
prising about 3 500 features.

GenreVoc A core-vocabulary model based on the core-vocabulary analysis as
introduced in Subsection 4.2.2, comprising a total of 26 features.

GenreBasic A basic genre model based only of HTML features, link features,
and character features, comprising a total of 54 features.

GenreRich A rich genre model based on the features of GenreBasic along with
part-of-speech and vocabulary concentration features, comprising a total
of 98 features.

GenreRichNoVoc The GenreRich model without the vocabulary concentration
features, comprising a total of 72 features.

Measuring generalization capability In what follows, the concepts classifier
agreement and export accuracy will be defined; the notation is adapted from Tur-
ney [309]. Informally, these concepts quantify the classification effectiveness, the
impact of classifier variation, and the impact of corpus variation.

Classifier agreement Let D be a document set organized according to a genre
scheme Q. Moreover, let α1 : D → D1 and α2 : D → D2 be two text
representations and let m1 = (α1, h1) and m2 = (α2, h2) be two genre
classification solutions. Then the agreement of the classifiers h1 and h2 is
defined as follows:

agree(h1, h2) := P (h1(d1) = h2(d2)) ,

where d1 and d2 are representations of the same document d ∈ D gener-
ated by α1 and α2 respectively.

That is, the classifier agreement is the probability that two genre classi-
fication solutions make the same decision on the genre of a document.
α1 = α2 can hold: the two solutions rely on the same text representation
but differ with respect to their machine-learning settings. In particular, h1
and h2 can result from training on different samples while using the same
classifier type. In this important analysis case, the classifier agreement
quantifies the training sample sensibility of a genre classification solution.

Export accuracy Let D1 ⊂ D and D2 ⊂ D be two document sets organized
according to the genre palettes Q1 and Q2, Q1 ∩Q2 6= ∅. Moreover, let α

be a function that computes the text representations D1 ⊂ D and D2 ⊂ D,
and let (α, h) be a classification solution for D1. Then the export accuracy
of the classification solution (α, h) with respect to D2 is defined as follows:

eh,D2 := P (h(d2) = c∗) ,

where d2 ∈ D2 is the representation of a document d2 ∈ (D2 \ D1) with
genre class c∗ ∈ (Q1 ∩Q2).
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Figure 4.3: Accuracy (left) and export accuracy (right) of the text representations
GenreVSM and GenreRich, depending on the size of the training set, which is always
drawn from corpus A (KI-04). The accuracy is estimated on a test sample of corpus A,
while the export accuracy is estimated on a test sample of corpus B (7-Web genre
collection).

That is, the export accuracy is the probability that the assigned genre of a
document of an external corpus is correct. Note, the export accuracy is
affected by the homogeneity of the training corpus. The export accuracy of
a genre classification solution (α, h) with respect to D2 quantifies whether
the combination of D1, α, and h1 captures the gist of the genre classes
in Q1 ∩Q2. Only if the document set D1 is representative, if α is sensible,
and if h generalizes sufficiently, the classification solution will perform
acceptably for the documents in D2.

Experiment 1: Export accuracy The presumably most important property of
a Web genre classification solution is a high export accuracy. In this connection,
the left plot in Figure 4.3 shows the accuracy of the representations GenreVSM
and GenreRich, trained on and applied to documents of corpus A containing
1 200 documents. The right plot shows the export accuracy of these representa-
tions with respect to corpus B containing 600 documents, with QA∩QB = {shop,
personal home page, link list}. In both plots the x-axis shows the sample size
of the training set taken from corpus A; the y-axis shows the corresponding
accuracy on corpus A (left plot) and the export accuracy on corpus B (right
plot).

The GenreVSM model achieves a significantly higher accuracy than the Gen-
reRich model (see Figure 4.3, left plot); with respect to the sample size both show
the same consistency characteristic. We explain the high accuracy of GenreVSM
with its higher training sample sensibility, which is beneficial in homogeneous
corpora. Even under a successful cross-validation test the accuracy and the
export accuracy will considerably diverge.

A corpus may be homogeneous because of the following reasons:

• The corpus is compiled by a small group of editors who share a very
similar understanding of genre.
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Figure 4.4: Accuracy (left) and export accuracy (right) of the text representations Gen-
reVoc, GenreRichNoVoc, and GenreBasic, using the same settings as in the experiments
shown in Figure 4.3.

• The editors introduce subconsciously an implicit correlation between topic
and genre.

• The editors collect their favored documents only.

• The editors rely on a single search engine whose ranking algorithm is
biased towards a certain document type.

Corpus homogeneity is unveiled when analyzing the export accuracy, which
drops significantly (by 21%) for the GenreVSM model (see Figure 4.3, right plot).
For the GenreRich model the export accuracy drops only by 8%. The robustness
of the GenreRich model is a consequence of its small number of features, which
is more than an order of magnitude smaller compared with the GenreVSM
model.

The plots shown in Figure 4.4 quantify also the drop in export accuracy (left
plot → right plot), but analyze different classification model variants whose
feature sets are subset of the GenreRich model:

• The GenreVoc model shows a small drop in the export accuracy, which is
rooted in the fact that the core-vocabulary has a small, acceptable corpus
dependency.

• For the GenreRichNoVoc model, the export accuracy remains pretty con-
stant. The reasons for this stability are the small hypothesis space and a
small corpus dependency of the features.

• For the GenreBasic model, the export accuracy is significantly higher than
the accuracy. We explain this behavior with the high discriminative power
of the HTML features and link features with respect to the genre classes
shop, personal home page, and link list.

Experiment 2: Classification agreement Figure 4.5 shows results from an
agreement analysis for classifiers of the GenreVSM model and the GenreRich
model. The x-axis denotes the size of the training set, which is always drawn
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Figure 4.5: Classifier agreement of the text representations GenreVSM and GenreRich,
depending on the size of the training set, which is always drawn from corpus A. In the
left plot the agreement is analyzed on corpus A, and in the right plot the agreement is
analyzed on corpus B.

from corpus A (KI-04). As expected, both plots show the monotonous character-
istic of the classifiers subject to the training set size.

In the left plot of Figure 4.5, it can be observed that the agreement of both
classifiers is quite similar, although the model formation bias of the GenreVSM
model is weaker than the bias of the GenreRich model. Again, this behavior can
be explained by the homogeneity of the corpus. Nevertheless, the situation is
different if the classifier agreement is analyzed on a test corpus different from
the training corpus (see the right plot in Figure 4.5): the agreement of classifiers
under the GenreRich model is much better than the agreement of classifiers
under the GenreVSM model. I.e., classifiers under the GenreVSM model are
corpus-specific (overfitted) whereas classifiers under the GenreRich model are
not, they provide a much higher generalization capability.

4.2.4 Summary

Most of the existing genre text representations exploit high-level features, such
as part of speech, tailored text statistics, or information about the document
structure. Apart from the high computational effort, a negative consequence is
that the resulting genre classification solution tends to generalize unsatisfactorily.
Especially because of the last point, classification solutions for genre analysis
did not convince in the Web retrieval practice. Our research addresses this issue
as it provides formal means for measuring the generalization capability. We also
propose a feature type for text representations that quantifies the concentration
of genre-specific core-vocabularies in a document, and that has the potential of
improving the generalization capability of existing genre classification models.
Our analysis shows that this new feature type is successful in this respect.
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4.3 N-grams in information quality analyses

The automatic assessment of information quality is becoming a key factor in
information retrieval. If this is possible in its generality is an open question
since the quality of a text is subjectively perceived: it depends on the users’
contexts, their expectations, and their prior knowledge. Wikipedia provides a
controlled environment, where high-quality articles are labeled as “featured”,
after being run through an extensive human peer review process. The Wikipedia
community characterizes featured articles among others as well-written, com-
prehensive, well-researched, neutral, and stable. In Wikipedia, but of course in
every retrieval situation, the declaration of an article’s quality helps users to
focus on the valuable information sources. This section focuses on the automatic
identification of featured articles in Wikipedia.

Several researchers develop metrics that are suitable for capturing quality indica-
tors but demanding in computational respects: Zeng et al. [351] and McGuinness
et al. [198] computed an article’s trustworthiness using revision history features
and citation features. Stvilia et al. [298] developed metrics that are based on
edits, editors, links, article length, age, and readability indices. Brandes et al.
[37] indicated structural parameters of the edit network. Stein and Hess [296]
and Adler and de Alfaro [1] developed authorship-based quality ratings, which
concern the amount of the authors contributions in an article and a reputation
estimate. Hu et al. [122] took the reviewership into account, which relies on
the assumption that unedited content is reviewed by an author who edits the
respective article.

Blumenstock [29] proposed the word count of an article; it is a simple metric
that works significantly better than several of the aforementioned metrics. His
approach, the classification of articles with more than 2 000 words as featured, is
performing well for an unbalanced corpus with a large amount of short articles.
Our experiments show an effectiveness decline for balanced corpora, as well as
when only articles with 1 500–2 500 words are used.

Assessing the quality of a text can be operationalized as a text classification
task. In the case of classifying texts from all possible sources (e.g., wikis, blogs,
mailing lists, and comment boards), structural features such as the word-count
mentioned are not generalizing anymore. Our approach opens the powerful
toolbox developed for tackling authorship problems. We employ various tri-
gram text representations along with a classifier to identify featured articles. In
particular, we examine their robustness and generalizability in domain transfer
experiments. Especially character trigram vectors, which are not yet consid-
ered in information quality research, are a promising representation: they are
comparable to word counts in simplicity but gain a higher discriminability.
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Table 4.6: The most discriminative character trigrams.
Rank Trigram

1-20 ing|ng |, a|at |e, |er | an|ed |d a| be
ter|s a| re|as |ted|g a|tha|n t| a |ly

21-40 to | th|nd |. a|on |sed|t t|eve|tin|er,
as|r, |d s|th |red| on|ear| to|n a|he

41-60 at|or |d t|s, |g t|, w|for|s w|s f| fo
e a|s t|r t|est| ha|din|hat| wi| di|all

61-80 s s|d o|e s|s r|by |ver|d, |ve | in|ore
rin|ere|s c|the|in |and|st |d b|t a|wit

81-100 s. |en |e o| ma|ion|e w|s b| by|ved|ut
no|ain|d w| wh|’s |her| de|e t|e e|was

4.3.1 Automatic information quality assessment

Starting point is the classification task “Is an article featured or not?”. For
this purpose we apply, again, linear support vector machines (SVM) and naïve
Bayes (NB). Our study deals with writing-style-related representations of articles
and their binarizations: character trigram vectors and part-of-speech (POS)
trigram vectors.

An n-gram vector of a text d is an `1-normed numeric vector, where each
dimension specifies the frequency of its associated n-gram in d. An n-gram in
turn is a substring of n tokens of d, where a token can be a character, a word,
or a POS tag. The vector is binarized if the occurrence or non-occurrence of an
n-gram is counted as 1 and 0.

POS n-gram vectors and character n-gram vectors are writing-style-related since
they capture intrinsics of an author’s text synthesis traits. POS n-grams un-
veil sentence construction preferences; character n-grams unveil preferences
for sentence transitions, as well as the utilization of stop words, adverbs, and
punctuation—all of which are important authorship indicators [281]. To illus-
trate how writing style matters with respect to our classification task, Table 4.6
compiles the most discriminative character trigrams, ranked by information
gain on our evaluation corpora. It should be noted that authorship indicators
are more important than topic indicators such as word stems.

4.3.2 Evaluation

The English Wikipedia domains Biology and History are used as sources for
the compilation of two corpora: given the extracted plain texts with more than
800 words per article from a domain, all available featured texts and the same
number of non-featured texts are added to the respective corpus. Altogether
180+180 articles belong to Biology, and 200+200 articles belong to History. We
run three kinds of experiments:
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Table 4.7: Identification performance for featured articles, within and across domains
(P/R/F ∼ Precision / Recall / F-measure). Maximum F-measure values are shown in
bold.

Representation Classifier Identification of featured articles (P/R/F)

Cross-Validation. within Biology within History
bin char trigram SVM 0.966 / 0.961 / 0.964 0.888 / 0.955 / 0.920
bin POS trigram SVM 0.949 / 0.933 / 0.941 0.889 / 0.925 / 0.907

word count SVM 0.755 / 0.600 / 0.669 0.874 / 0.870 / 0.872
bag of words NB 0.832 / 0.989 / 0.904 0.860 / 0.950 / 0.903

Domain Transfer. History→ Biology Biology→ History
bin char trigram SVM 0.800 / 0.978 / 0.880 0.886 / 0.855 / 0.870
bin POS trigram SVM 0.799 / 0.883 / 0.839 0.898 / 0.790 / 0.840

word count SVM 0.772 / 0.733 / 0.752 0.878 / 0.830 / 0.853
bin bag of words SVM 0.800 / 0.889 / 0.842 0.930 / 0.665 / 0.776

Cross-validation Evaluate a classifier h by 10-fold cross-validation within a single
domain. Rationale of the experiment is to minimize the influence of topical
discrimination, which can occur if articles of more than one domain are
shuffled.

Domain transfer Construct a classifier h with articles from a source domain (train-
ing), and apply h to a different target domain (test). The experiments,
denoted as “source domain → target domain”, show both the potential of
transferring relations about information quality across domains and the
generalization ability of h.

Length sensitivity Apply a classifier h constructed within the domain transfer
experiment to the three sets that contain articles with less than 1 500 words,
with 1 500–2 500 words, and with more than 2 500 words. The interesting
questions are:

• Is the article length sufficient for robust feature computation?

• Is it sensible to combine a word-count-based classifier with an n-
gram-based classifier?

Table 4.7 (Cross-Validation and Domain Transfer) and Table 4.8 (Length Sensitiv-
ity) summarize the results of the trigram vector representations and, as baselines,
the bag-of-words representation and the word count approach. Only the best
performing representations, binarized or non-binarized, and classifiers, SVM or
NB, are mentioned in the tables. Here, binarized trigram vectors outperform
the non-binarized: about +0.2 averaged F-measure in the cross-validation exper-
iments and +0.3 in the domain transfer experiments. The binarized character
trigram vectors are most effective. The length sensitivity analysis shows that the
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Table 4.8: Identification effectiveness for featured articles across domains, broken down
with respect to article lengths (F ∼ F-measure). Classification technology are SVMs. ⊥
indicates Precision=Recall=0.

Representation Identification of featured articles (F)
< 1500 words 1500–2500 words > 2500 words

Length Sensitivity. History→ Biology
1% featured articles 22% featured articles 77% featured articles

bin char trigram 1.000 0.860 0.885
word count ⊥ 0.677 0.852

Length Sensitivity. Biology→ History
3% featured articles 8% featured articles 89% featured articles

bin char trigram ⊥ 0.316 0.888
word count ⊥ ⊥ 0.905

combination of a word-count-based classifier with an n-gram-based classifier
achieves no improvement.

The word count discrimination rule Blumenstock [29] suggested a length
discrimination rule: articles with more (less) than 2 000 words are classified as
featured (non-featured), yielding an accuracy of 0.96 for an unbalanced corpus
(ratio 1:6, featured : non-featured).

Figure 4.6 shows the probability densities over word count for our balanced cor-
pora; also here, the 2 000 word threshold is close to the optimum discrimination
rule. Yet, we achieve only an accuracy of 0.79 within Biology and 0.89 within
History via the length discrimination rule. In contrast, the binarized character
trigram vector representation combined with an SVM yields an accuracy of 0.96
within Biology and 0.92 within History.

4.3.3 Summary

We examine the character trigram feature, originally applied for writing-style
analysis [281], which has not been considered for the information quality as-
sessment in Wikipedia so far. We study existing research and new solutions
that combine different text representations and learning algorithms. Altogether,
the combination of a linear SVM with a binarized character trigram text rep-
resentation has convincing properties: it yields for featured articles a high
identification effectiveness, even across domains, it handles unstructured text,
and it is computationally efficient.
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Figure 4.6: Probability density over absolute word count.

4.4 N-grams in short text language identification

The focus in research on language identification has been usually on analyzing
full documents, i.e., on reasonably long and well formulated texts. This is
considered a solved problem. For cross-language applications, identifying the
language on short texts becomes important, which is rarely studied.3 This
section shows the potential and reliability of common language-identification
approaches applied to very short, query-style texts. Because of the lack of large
annotated multi-language query corpora, we based our experiments on news
headlines of the Reuters CV1 and CV2 collection and single words, which we
extracted from bilingual dictionaries.

Automatic language identification on written texts, also known as language
detection or language recognition, is a text classification task. The most distin-
guished related work is based on statistical learning algorithms and lexical text
representations, particularly n-grams [77, 51, 320, 299, 274]. Dictionary-based
approaches, concerning words as lexical representation, are discussed by Dun-
ning [77] and by Rehurek and Kolkus [245]. Non-lexical representations, such
as phoneme transcriptions or the rate of compression, have been studied by
Berkling et al. [22] and Teahan [305].

4.4.1 Use cases

The difficulty of a Cross Language Information Retrieval (CLIR) system is to
find relevant documents across language boundaries. This induces the need
for a CLIR system to be capable of doing translations between documents and
queries. If the system has to handle more than one language for queries or
documents, it additionally needs to be able to detect the language of a text.
This is necessary for correctly translating the query or the document into the
language of the respectively other. Queries, instead, are rarely formulated as
full sentences and are usually very short (typically 2-4 words for web search).
Recent systems that have participated at CLEF detect the language of queries by

3Two month after the publication of our study [99] a similar results have been reported on
different corpora by Vatanen et al. [319].
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applying tools intended for long texts, e.g., [219]. Therefore, we ask how well
these approaches work on short texts such as single words?

4.4.2 N-gram-based language identification

As short, query-style texts provide too little data for approaches that are based
on multiple words or full sentences, we focus on methods based on character n-
grams, for short n-grams. An n-gram consists of n sequential characters; usually
its relative occurrence in a text is determined for building a text representation.
A language identification method based on this were proposed, for example, by
Cavnar and Trenkle [51]. The following classification methods are studied in
the evaluation section:

Frequency-rank Following the observation that each languages has character-
istic n-grams that appear frequently, this model compares the n-gram
frequency-rank of an unseen text with the frequency-ranks of reference
texts for different languages. The text is then attributed to the language
with the most similar rank according to an out-of-place measure. As this
measure is problematic because of the few entries in the frequency-rank
list of short texts, we normalize the ranks in our implementation to values
between 0, for the most frequent, and 1, for the least frequent n-gram.

Naïve Bayes The naïve Bayes classifier uses the conditional probabilities of ob-
serving n-grams in a text to deduce the class probability that a text is
written in a given language.

Markov The idea is to detect the language of a text via the probability of
observing its character sequences in a specific language. The classifier
selects the language that maximizes this probability [320, 77].

Vector space A text is represented as a vector of its n-gram frequencies. A
language is represented by the mean vector of all example texts in this
language. To classify the language that belongs to a text, the most similar
language in the vector space is determined by the cosine similarity.

4.4.3 Evaluation

Corpora All the proposed methods need to be trained on reference texts.
We use the English texts in the Reuters collections CV1 [171] and the Danish,
German, Spanish, French, Italian, Dutch, Norwegian, Portuguese and Swedish
texts from CV2. Table 4.9 shows the distribution of the individual languages
among the 1 102 410 texts.
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Table 4.9: Distribution of languages in the Reuters corpus and in dictionary terms.
From Gottron and Lipka [99].
Corpus da de en es fr it nl no pt sv
Reuters 11 184 116 209 806 788 18 655 85 393 28 406 1 794 9 409 8 841 15 731
Dictionaries – 3 463 12 391 3 260 1 153 2 432 – – 501 –

Experiment To study the influence of the length of n-grams we varied n be-
tween one and five characters. The relatively short and noisy Reuters headlines
are retained for classification. They are on average 45.1 characters and 7.2 words
long, thus, longer than an average query on the Web. The titles frequently
contain named entities (“Berlusconi TV faces legal cliffhanger”) or numerical
values (“Dollar General Q2 $0.24 vs $0.20”). These entities and a lack of stop
words render the headlines a quite suitable set of short, query-alike texts for
language identification. For the evaluation of single words, we obtain words
from small, bilingual dictionaries; from English to French, German, Spanish,
Italian and Portuguese. We extract the words, which are unambiguous from a
language point of view, i.e., which exist in only one language. This results in a
total of 20 048 words of on average 8.1 characters, see Table 4.9 for details about
individual languages.

The algorithms are implemented from scratch and trained on the Reuters
articles. For the frequency-rank approach, we additionally use a readily trained
implementation of the original algorithm, which we include in the evaluation
process as LC4J4. We use each of the algorithms to detect the languages of
the previously unused Reuters headlines and the words obtained from the
dictionaries.

Table 4.10 shows the accuracies for detecting the language of the Reuters head-
lines and the dictionary entries across all algorithms and all settings for n. But,
the values of LC4J need to be treated carefully: in many cases the algorithm
could not detect any language at all. This might be because the language models
provided with the implementation are too sparse for short texts. The values
given here are solely based on those cases where the language identification
resulted in an output. When taking into account the unclassified texts, the
accuracy drops drastically to 39.24% for the headlines and to 30.33% for the
dictionary words.

The poor effectiveness of the Markov process and our own frequency-rank
implementation for higher values of n can be explained with data sparseness,
too. The accuracy of Markov drops due to the high number of n-grams that are
not seen during training and an unequal language distribution in the training
sample. The frequency-rank approach instead suffers from the sparseness of n-
grams in the query-like texts, which results in skewed rankings. Even with the
normalized ranking, the effectiveness drops for larger values of n.

4http://olivo.net/software/lc4j/

http://olivo.net/software/lc4j/
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Table 4.10: Accuracy of language classifiers (in %). From Gottron and Lipka [99].
Data Method 1-grams 2-grams 3-grams 4-grams 5-grams

Headlines

Naïve Bayes 87.90 95.01 98.52 99.40 99.44
Multinomial 65.42 90.08 97.63 99.17 99.22
Markov 10.28 85.87 73.13 4.50 0.00
Frequency-rank 6.07 14.90 59.93 25.91 3.47
Vector space 54.68 47.21 61.04 69.67 75.37
LC4J (where successful) – – 67.72 – –

Dictionaries

Naïve Bayes 52.26 64.40 73.49 79.13 81.61
Multinomial 35.65 57.04 68.27 75.74 77.88
Markov 19.95 57.34 55.14 21.52 2.95
Frequency-rank 12.32 24.04 42.82 23.25 6.70
Vector space 29.99 33.98 44.28 52.73 59.23
LC4J (where successful) – – 49.93 – –

The best performing method for short texts is the naïve Bayes classifier and
its multinomial variation without the class distribution normalization. For
larger values of n both variations perform remarkably good and achieve an
accuracy close to 100% on the headlines. This observation holds also when
studying the accuracy for individual languages. On a language level, the
accuracy varies between 99.71% for Italian and 96.52% for Norwegian. The
misclassifications of Norwegian headlines are mostly assigned to Danish. In
general, the Scandinavian languages tend to be confused more than other
languages. A similar observation is made for dictionary words of Latin-based
languages. Here the most mistakes occur between Spanish, Portuguese and
Italian.

4.4.4 Summary

Applying n-grams for identifying the language of short, query-style texts is
demonstrated, for the first time, to be effective. Comparing different approaches
based on n-grams, it turns out, that naïve Bayes classifiers perform best on very
short texts and even on single words.
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4.5 Function words in authorship verification analyses

In an authorship verification problem one is given writing examples from an
author A, and one is asked to determine whether or not each text has been
written by A. Koppel and Schler [153] compared the usage of function words
in A’s writing examples and in the unseen text with in a so-called unmasking
approach. In this section, we report to what extend unmasking is applicable
if the a priori given writing examples are noisy, that is, if not all of them stem
from A.

4.5.1 Authorship verification

The heart of an authorship verification analysis is the quantization of an author’s
writing style along with the identification of anomalies via outlier classification.
For outlier classification, one is given a target class for which a certain number
of examples exist; objects outside the target class are called outliers. A one-class
classifier tells apart outliers from target class members. Actually, the set of
outliers can be much bigger than the target class, and an arbitrary number of
outlier examples could be collected. Hence a one-class classification problem
may look like a two-class discrimination problem; however, there is an important
difference: members of the target class can be regarded as representatives for
their class, whereas one will not be able to compile a set of outliers that is
representative for some sort of “non-target class”. This fact is rooted in the
enormous number and diversity of outliers. Put another way, solving a one-class
classification problem means to learn the concept of the target class in the
absence of discriminating features.5 Within authorship verification the target
class comprises writing examples of a certain author A, whereas each piece of
text written by another author B, B 6= A, is an outlier.

The major part of existing research focuses on models for writing-style quan-
tification. Research related to authorship verification divides into the following
areas: (1) models for the quantification of writing style, using classical measures
for text complexity and grading level assessment [52, 121, 147, 101, 64, 86, 349],
as well as author-specific stylometric analyses [284, 283, 154, 153, 152], (2) tech-
nology for outlier analysis and machine learning [303, 304, 240, 192], and
(3) meta-knowledge processing. Regarding the last area we refer to techniques
for knowledge representation, deduction, and symbolic knowledge process-
ing [252, 285].

Koppel and Schler [153] introduced a new approach, namely unmasking, to
determine with a high accuracy if a set of writing examples is a subset of the
target class. The unmasking approach does not solve the one-class classification
problem for a single text but requires two sets of texts, D1 and D2. Di, i = 1, 2,

5In rare cases, knowledge about outliers can be used to construct representative non-target
sample. Then a standard discrimination approach can be applied.
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Figure 4.7: Unmasking: given are two sets D1 and D2 of outlier texts and target
texts. The basic idea is to measure the separability of D1 vs D2 when the style model is
successively impaired. From Stein, Lipka, and Meyer zu Eißen [293].

have to be a clean set of texts, that is, all texts must either stem from the target
class or not. As this is not often the case in practice, we study the effectiveness
of unmasking if this condition is violated.

4.5.2 Function words

Unmasking operationalizes a function-word analysis; it analyzes an author’s
usage of function and stop words. These words are characterized by a high
frequency in texts and conditional independence with respect to topics. Early
studies reported that function words are discriminative in authorship tasks,
cf. Section 2.1.

The unmasking approach requires a closer look to understand its rationale. At
first, the text sections in D1 and D2 are represented under a reduced vector space
model, designated as D1 and D2. The 250 words with the highest frequency
in D1 ∪ D2 form the initial feature set. Unmasking happens in the following
steps, cf. Figure 4.7:

(1) Model fitting Training of a classifier that separates D1 from D2. Koppel
and Schler [153] implemented a 10-fold cross-validation experiment to
determine the accuracy of a linear SVM.

(2) Impairing Elimination of the most discriminative features with regard to
the model obtained in Step (1) and the new construction of the collec-
tions D1, D2 under the impaired representations of the texts. Koppel and
Schler [153] reported on convincing results by eliminating the six most
discriminating features; however, this heuristic depends on the text length.

(3) Go to Step 1 until the feature set is sufficiently reduced. Typically, about
5-10 iterations are necessary.

(4) Meta learning Analyze the degradation in the quality of the model fitting
process: if after the last impairing step the sets D1 and D2 can still be
separated with a small error, assume that d1 and d2 stem from different
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Figure 4.8: Unmasking at work: each line corresponds to a comparison of two papers,
where a solid (dashed) line belongs to papers from two different authors (the same
author). From Stein, Lipka, and Meyer zu Eißen [293].

authors. Figure 4.8 shows a characteristic plot where unmasking is applied
to short papers of 4-8 pages.

In this step, a meta-learner is trained to distinguish the unmasking learning
curves. The input vectors of the meta-learner comprise the following
elements: the accuracy in iteration i, the ∆-Acc to iteration i− 1, the ∆-Acc
to iteration i− 2, and a class label “multiple authors” or “single author”.
This meta-learner is also realized by a linear SVM.

The rationale of unmasking is the following: two sets of texts sections, D1 and D2,
constructed from two different texts d1 and d2 of the same author can be told
apart easily if a vector space model is chosen. The vector space model considers
all words in d1 ∪ d2, and hence it includes all kinds of open and closed class
word sets. If only the 250 most frequent words are selected, a large fraction of
them will be function words and stop words. Among these 250 most frequent
words a small number does the major part of the discrimination job. These
words capture differences that result from genre, purpose, topic and the like. By
eliminating them, one approaches step by step the distinctive and subconscious
manifestation of an author’s writing style. After several iterations the remaining
features are not powerful enough to discriminate two texts of the same author.
By contrast, if d1 and d2 stem from different authors, the remaining features will
still quantify significant differences between the impaired representations D1
and D2 of the two sets of sections D1 and D2.

4.5.3 Evaluating unmasking in authorship verification

Corpus Our test corpus contains scientific documents written in German.
Basis of the corpus are dissertation and habilitation theses from the following
fields: philosophy, psychology, sociology, medical science, historical science,
and law. From the original theses all explicitly declared citations are removed,
and clippings of about 10 000 words are extracted. These clippings represent
the documents written by a single author; 10% of these documents are used to
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Table 4.11: The table illustrates the potential of unmasking in authorship verification,
when D1 and D2 are constructed from d. It is important to note that if D1 or D2 is
empty, unmasking cannot be employed; these cases are not listed. The baseline hypothesis
is: if two non-empty sets could be constructed, d is written by different authors.

Different Construction of D1 D2 Potential of unmasking
Authors D1 and D2

perfect construction; unmasking can only decrease effectiveness
true perfect clean clean can decrease recall 3

imperfect construction (noise); unmasking can in-/decrease effectiveness
false imperfect clean noisy can increase precision 3

true imperfect noisy noisy can decrease recall 3

true imperfect noisy clean can decrease recall 3

true imperfect clean noisy can decrease recall 3

construct impure documents by inserting 4 to 8 text sections of 500 words from
foreign authors.

Experiment: Unmasking Under laboratory conditions, the two sets D1 and D2
within authorship verification are clean, i.e., D1 does not contain elements from
another author, while D2 does not contain elements from the author of D1’s
elements. This scenario rarely occurs in practice, cf. Table 4.11. In fact, the
majority of possible scenarios where unmasking can be applied involves the
risk that the recall of authorship verification decreases whereas the potential of
increasing the precision only occurs in one scenario.

To evaluate unmasking under realistic conditions, “noisy” sets D1 and D2 are
needed. For each document d in our test corpus, D1 and D2 are constructed as
follows:

Decomposition The document d is chunked into text sections of equal length.
Remark: Meyer zu Eißen and Stein [202] proposed an additional sentence
detection for this step. Also, a more sensible interpretations of structural
boundaries (chapters, paragraphs) is possible, which should consider spe-
cial text elements such as tables, formulas, footnotes, or quotations [247].
The detection of topic boundaries has a significant impact on the useful-
ness of a decomposition [58]. Graham et al. [100] even tried identifying
stylistic boundaries.

Set compilation, D1 and D2 A two-class classifier with a text representation based
on style features proposed by Stein and Meyer zu Eißen [291] and Meyer
zu Eißen and Stein [202] is trained for distinguishing between singular
and multiple authorship. This classifier achieves a recall of 0.80 for both,
the class of outlier sections and the class of target sections.6

6The classifier is artificially constructed. It cannot be trained for real-world authorship
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Table 4.12: Classification results for the unmasking strategy compared with the
minimum-risk baseline.

Impurity minimum risk unmasking
θ Prec Rec F Prec Rec F

0.20 0.12 1.00 0.56 0.73 0.90 0.82
0.30 0.20 1.00 0.60 1.00 0.93 0.97
0.40 0.18 1.00 0.59 1.00 0.87 0.94

Table 4.12 shows an effectiveness comparison between the baseline (minimum
risk) and unmasking:

Minimum risk outputs “multiple authors” if |D1| ≥ 1 and |D2| ≥ 1; “single
author” otherwise, and

Unmasking outputs the result (“single author” or “multiple authors”) of the
described unmasking approach.

As expected, the recall in authorship verification decreases if unmasking is
employed but the precision increases, cf. Table 4.11. When comparing the
F-measures, unmasking seems to decrease the overall effectiveness compared
with the baseline. However, this interpretation is critical. The baseline does
not identify any single-author documents. The precision increase is of great
importance in this context and unmasking clearly outperforms the minimum
risk strategy.

4.5.4 Summary

The analysis of function words with the unmasking approach of Koppel and
Schler [153] has a high risk to decrease the recall of finding documents that are
written by multiple authors, and it has a low chance to increase the precision of
authorship verification. Even though, we report that unmasking makes the best
of this situation: it improves, on average, the precision by about 60% relative to
a simple baseline, and the recall is lowered by about 50%, “only”.

4.6 Style markers in intrinsic plagiarism analyses

Research in the field of automatic text plagiarism detection focuses on the devel-
opment of algorithms that compare suspicious documents against a collection
of reference documents. Recent approaches perform well in identifying copied

verification because of missing representative training examples. Usually, a tailored one-class
classification approach should be applied here which learns from target examples only,
cf. Section 4.6.
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or modified foreign sections; however, they assume a closed world where a
reference collection is given.

This section investigates the question whether plagiarized text sections can be
detected by a computer program even if no reference collection is provided,
for example, if the foreign sections stem from a book that is not available in
digital form. We call this problem class intrinsic plagiarism analysis. The term
plagiarism refers to text plagiarism, that is, the use of another author’s informa-
tion, language, or writing, when done without proper acknowledgment of the
original source. Plagiarism analysis refers to the unveiling of text plagiarism.

The contributions of this section are threefold. (1) We organize the algorithmic
building blocks of intrinsic plagiarism analysis and show how to transform
intrinsic plagiarism problems via stylometry into authorship verification prob-
lems. (2) We employ “unmasking” to post-process weak or imperfect stylometry
results. (3) We operationalize an analysis chain consisting of document chunk-
ing, style model computation, one-class classification, and meta learning, and
we provide a plagiarism corpus with about 3 000 cases to evaluate the potential
of our ideas. The meta learning combines heuristic voting with unmasking.

4.6.1 Intrinsic plagiarism analysis

Research on automated external plagiarism detection presumes a closed world
where a reference collection D is given; the question is whether a given doc-
ument d contains a section s that has a high similarity to a section si of a
document di ∈ D. Since D can be extremely large, possibly the entire indexed
part of the Web, the main research focus is on efficient search technology:
near-similarity search and near-duplicate detection [42, 118, 23, 112, 114, 341],
tailored indexes for near-duplicate detection [84, 23, 44], or similarity hashing
techniques [150, 129, 97, 287, 288].

Intrinsic plagiarism analysis is closely related to authorship verification: the
goal of intrinsic plagiarism analysis is to identify possibly plagiarized sections
by analyzing a document with respect to “undeclared” changes of writing style.
Similarly, in an authorship verification problem one is given writing examples
from an author A, and one is asked to determine whether or not a text with
doubtful authorship is also written by A. Intrinsic plagiarism analysis and
authorship verification are one-class classification problems, whereas intrinsic
plagiarism analysis can be understood as a more general form of the authorship
verification problem where one is given a single document d only, and the
question is whether or not d contains sections from other authors.
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4.6.2 Operationalizing intrinsic plagiarism analysis

Plagiarism detection can be operationalized by decomposing a document into
“natural” sections, such as sentences, chapters, or topically related blocks, and
analyzing the variance of stylometric features for these parts following [294].
We organize this process into three stages:

Pre-analysis stage A knowledge-based “impurity” assessment gives us hints re-
garding the size and the distribution of suspicious sections in a document d,
and where a tailored decomposition strategy is chosen. These decisions
influence the construction of a model for writing-style quantification in
the next stage.

Stylometric analysis stage A style model is constructed and style outliers are
identified with respect to the typical writing style in d. Based on this
analysis, an instance of an intrinsic plagiarism task is transformed into an
instance of an authorship verification task.

Post-processing stage The result of the stylometry analysis stage is further an-
alyzed with additional knowledge and meta-learning technology. Main
objective in this stage is the improvement of the analysis’ overall precision
and recall.

Table 4.13 organizes the building blocks to operationalize these stages. Each
column lists methods that can be applied, combined, or adapted in order
to address a certain subtask in the entire authorship verification process. If
this happens in a skillful manner we may end up with an analysis process
comparable with the power of human readers, however, their salient strength
is the integration of context-dependent meta-knowledge in the analysis. The
following subsection discusses the stylometry building block. For a discussion
of all three stages in greater detail see Stein, Lipka, and Prettenhofer [294].

4.6.3 Stylometry

Style model construction The statistical analysis of literary style is known
as stylometry, and the first ideas date back to 1851 [119]. The automation of
this task requires a quantifiable style model. Efforts in this direction became
a more active research field in the 1930s [358, 349, 86]. Meanwhile various
stylometric features, also termed style markers, were proposed. They measure
writer-specific aspects, such as the vocabulary richness [121, 349], the text
complexity [86], or reader-specific grading levels that are required to understand
a text [64, 147, 52]. However, the mentioned style markers were developed to
judge longer texts ranging from a few pages up to book size.

The style model construction has to consider the decomposition strategy: fea-
tures have various strengths and pose various constraints on text length, genre,
or topic variation. Since text plagiarism typically relates to sections that are
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Table 4.13: Building blocks of an intrinsic plagiarism analysis. The first two columns
list pre-analysis methods, the third and the fourth column list the modeling and clas-
sification methods, which form the heart of the intrinsic plagiarism analysis, and the
last two columns list post-processing methods for improving the analysis quality. The
highlighted blocks indicate the employed technology for the analysis in this section.
From Stein, Lipka, and Prettenhofer [294].

Pre-analysis Stylometry Post-processing
Impurity

assessment
Decomposition

strategy
Style model
construction

Style outlier
identification

Knowledge
technologies

Meta
learning

Document length
analysis

Genre Analysis

Analysis of issuing
institution

Uniform length

Structural
boundaries

Text element
boundaries

Topical boundaries

Lexical character
features

Lexical word
features

Syntactical features

Structural features

Language modeling

One-class
classification:

density estimation

One-class
classification:

boundary
estimation

One-class
classification:
reconstruction

Two-class
discriminant

analysis

Heuristic voting

Citation analysis

Human inspection

Unmasking

Qsum

Batch means

shorter than a single page [193], the decomposition of a document into sections
s1, . . . , sn must not be too coarse; it is questionable which of the features work
for short sections. It should be clear that features that employ measures such as
the average paragraph length are not reliable in general. Meyer zu Eißen et al.
[203] investigate the robustness of the vocabulary richness measures Yule’s K,
Honore’s R, and the average word-frequency class. They observe that the aver-
age word-frequency class could be called robust: it provides reliable results even
for short sections, which can be explained with its word-based granularity.

Table 4.14 compiles an overview of important stylometric features that were
proposed so far; we distinguish between lexical features (character-based and
word-based), syntactic features, and structural features. Our overview is re-
stricted to the well-known style markers; the features marked with an asterisk
were reported to be particularly discriminative for authorship analysis and are
used within our stylometric analysis.

Style outlier identification The decomposition of a document d yields a se-
quence of sections, s1, . . . , sn, and the application of a style model yields for
these sections a sequence of feature vectors s1, . . . , sn, which in turn are analyzed
with respect to outliers. The identification of outliers among the si has to be
solved solely on the basis of target examples and therefore poses a one-class
classification problem. Usually, a tailored one-class classification approach
should be applied; according to Tax [303] such approaches fall into one of the
following three classes:

Density methods Density methods directly estimate the probability distributions
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Table 4.14: A compilation of important and well-known features used within a sty-
lometric analysis. Those implemented within our style model are marked with an
asterisk.

Stylometric feature Reference

Lexical features, character-based
Character frequency [353]

* Character n-gram frequency/ratio [149, 256, 136, 157]
Frequency of special characters ( ’(’, ’&’, ’/’, etc.) [353]
Compression rate [281]

Lexical features, word-based
* Average word length [119, 353]

Average sentence length [119, 353]
* Average number of syllables per word [119]

Word frequency [213, 119, 157]
Word n-grams frequency/ratio [256]
Number of hapax legomena [310, 353]
Number of hapax dislegomena [310, 353]
Dale-Chall index [64, 52]

* Flesch Kincaid grade level [86, 147]
* Gunning Fog index [101]
* Honore’s R measure [121, 310, 353]

Sichel’s S measure [310, 353]
* Yule’s K measure [349, 119, 310, 353]

Type-token ratio [349, 119, 353]
* Average word-frequency class [201]

Syntactic features
Part of speech [281, 157]

* Part-of-speech n-gram frequency/ratio [152, 157]
* Frequency of function words [213, 119, 13, 152, 353, 157]

Frequency of punctuations [353]

Structural features
Average paragraph length [353]
Indentation [353]
Use of greetings & farewells [353, 281]
Use of signatures [353, 281]
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x

Style feature distribution in target sections
Style feature distribution in outlier sections

H = StH = So H = So

uncertainty interval uncertainty interval

Figure 4.9: Targets and outliers can be separated if they are differently distributed.
From Stein, Lipka, and Prettenhofer [294].

of features for the target class. Outliers are assumed to be uniformly
distributed, and Bayes’ rule can be applied for separating outliers from
the target class (see Figure 4.9 and the following paragraph).

Boundary methods Boundary methods avoid estimating the multi-dimensional
density function and focus on the definition of a boundary around the
set of target objects. The computation of the boundary is based on the
distances between the objects in the target set.

Reconstruction Methods If we are given both the style model representation s
and the original section s, we may be able to reconstruct s from s and to
measure the reconstruction error. It is assumed that α captures the domain
theory underlying the target class, and the smaller the reconstruction error
is the more likely s belongs to the target class.

Tax [303] investigated different representatives for these approaches: mixture
of Gaussians, Parzen density, k-center, nearest neighbor, support vector data
description, k-means, and self organizing maps. In particular, Tax provides meta-
knowledge for selecting among these classifiers by interpreting the presence of
outliers, the scaling sensitivity, the number of free parameters, or the sample
size.

Stein, Lipka, and Prettenhofer [294] propose the following density method
for finding writing-style outliers: let St denote the event that a section s ∈
{s1, . . . , sn} belongs to the target group (= not plagiarized); likewise, let So

denote the event that s belongs to the outlier group (= plagiarized). Given a
document d and a single style marker x, the maximum a-posteriori hypothe-
sis H ∈ {St, So} can be determined with Bayes’ rule:

H = argmax
S∈{St,So}

P(x(s) | S) · P(S)
P(x(s))

, (4.1)

where x(s) denotes the style marker value for section s, and P(x(s) | St) and
P(x(s) | So) denote the respective conditional probabilities that x(s) is observed
under a Gaussian and a uniform distribution. The expectation and the vari-
ance for x are estimated from x(s1), . . . , x(sn). Multiple style markers x1, . . . , xm
require the accounting of multiple conditional probabilities. Under the condi-
tional independence assumption the naïve Bayes approach can be applied; the
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accepted a-posteriori hypothesis then computes as

H = argmax
S∈{So,St}

P(S) ·
m

∏
i=1

P(xi(s) | S). (4.2)

An alternative and, depending on the training corpus, a more powerful approach
is the construction of a Gaussian mixture for the x1, . . . , xm. The respective
weights can be estimated by the linear model of a discriminant analysis.

Coupling stylometry with unmasking In principle, unmasking could be ap-
plied to some decomposition s1, . . . , sn of d, assuming an unknown authorship
for an si, and authorship A for the remaining d \ {si}. In most cases, a single
section si will be too small to be sampled for the unmasking procedure. In this
sense the style outlier analysis is a heuristic generator function that helps to
construct a potentially plagiarized and sufficiently large auxiliary document
of foreign authorships. The underlying search space is the set of all subsets
of a document d. Let k, k < n, denote the minimum number of sections that
must be chosen from a decomposition s1, . . . , sn of d in order to construct an
auxiliary document of foreign authorships. With θ as the plagiarized portion
of d, k′ = dθ · ne defines an upper bound for the number of sections that can be
plagiarized at all. Hence, a brute-force analysis of d has to investigate r auxiliary
documents, with

r =
(

n
k

)
+ . . . +

(
n
k′

)
, k < k′.

An unmasking analysis of r document pairs will not be tractable in most cases;
the preceding style outlier analysis enables one to concentrate on a very small
number of auxiliary documents.

4.6.4 Evaluation

This section reports on the effectiveness of the operationalized analysis chain. To
give the reader an idea of the entire process and its neuralgic points, Figure 4.10
illustrates important analysis aspects: the top row shows documents with non-
plagiarized sections (light gray), plagiarized sections (dark gray), and sections
spotted by the classifier (hashed); the middle row shows the micro and macro-
averaged outlier classification effectiveness; the bottom row shows the heuristic
voting and unmasking for critical stylometric analysis cases. The remainder of
this section gives full particulars.

Corpus To run analyses on a large scale one has to resort to “artificially
plagiarized” documents. We use a subset of the corpus that has been constructed
for the intrinsic plagiarism analysis task of the PAN’09 competition. The PAN’09
corpus comprises about 3 000 generated cases of intrinsic plagiarism, more
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Heuristic voting
Basis: suspicious
sections per document

Unmasking
Basis: document

Post-processing

3 > τ2 < τ   3 1 < τ   3 0 < τ   33 > τ
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suspicious:
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Figure 4.10: Illustration of important analysis aspects. Corpus: a set of documents from
author A, containing sections from a foreign author B ∈ B. One-class classification
effectiveness: micro- and macro-averaged analysis of the classification effectiveness.
Post-processing: heuristic voting decision which may be verified by unmasking. Final
classification: true positives (d), true negatives (b, e), false negatives (a, c). From Stein,
Lipka, and Prettenhofer [294].
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Table 4.15: Selected summary statistics of the four test collections. The statistics of the
columns 2-4 are per collection and consider both the plagiarized and the non-plagiarized
documents; the statistics of the columns 5-7 are per document and consider only the
plagiarized documents of a collection.

Collection # Documents # Sections (total) # Sections (median) Impurity (avg.)
plag. non-plag. plag. non-plag. plag. non-plag.

1 231 231 2 067 44 316 8 76 0.087
2 178 178 451 9 560 2 27 0.090
3 178 178 4 744 21 896 24 50 0.304
4 188 188 1 871 7 814 9 22 0.326

precisely, cases of style contamination with varying degrees of obfuscation. The
corpus is based on books from the English part of the Project Gutenberg and
contains predominantly narrative text. Sections of varying length, ranging from
a few sentences up to many pages, are inserted into other documents according
to heuristic placement rules. In addition, a certain obfuscation of the inserted
sections is performed by replacing, shuffling, deleting, or adding words.

For our experiments the documents of the PAN’09 corpus are uniformly de-
composed into candidate sections of 5 000 characters; each candidate section s
in turn is categorized as being either non-plagiarized, if s contains no words
from an inserted section, or plagiarized, if s consists of more than 50% inserted
sections. Otherwise s is discarded and excluded from further investigations.
Documents with less than seven sections are removed from the corpus because
they are considered to be too short for a reliable stylometric analysis.

To study the effect of the document length and impurity on the effectiveness
of our analysis chain, four disjoint collections are compiled. Two levels of
document lengths are introduced (short versus long) and combined with two
levels of impurity (light versus strong). Short documents consist of less than
250 000 characters, which corresponds to approximately 40 000 words. The
impurity θ of a document is defined as the portion of plagiarized characters, i.e.,
characters that belong to an inserted section. A document has a light impurity
if θ ≤ 0.15, and it has a strong impurity if θ > 0.15. Finally, the number of
plagiarized documents per collection is set to 50%. The resulting test collections
exhibit varying degrees of difficulty, both in terms of training sample scarcity
(document length) and class imbalance (impurity). We number the collections
according to their level of difficulty and show selected summary statistics in
Table 4.15.

Evaluation of stylometry The style outlier identification is approached as a
one-class classification problem; in particular, the density estimation method

7The word “worst” for the POS tri-gram features designates the worst under the 5 best
tri-grams.
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Table 4.16: Stylometric features ranked by their isolated F-measure effectiveness within
a style outlier detection task.

Stylometric feature F-measure
best worst

Average number of syllables per word 0.733 0.534
Gunning Fog index 0.726 0.452
Flesch Reading Ease Score 0.721 0.466
Frequency of the word: of 0.701 0.425
Average word length 0.700 0.355
Honore’s R measure 0.696 0.394
Flesch Kincaid grade level 0.690 0.453
Frequency of the word: the 0.663 0.334
Yule’s K measure 0.653 0.285
Part-of-speech trigrams7 0.630 0.290
Average word-frequency class 0.601 0.339
Frequency of the word: which 0.587 0.093
Frequency of the word: or 0.578 0.100
Consonant-Vowel-Consonant tri-gram 0.571 0.337
Frequency of the word: the 0.560 0.336
Frequency of the word: and 0.548 0.317
Frequency of the word: by 0.542 0.173
Vowel-Consonant-Vowel tri-gram 0.527 0.301
Frequency of the word: i 0.503 0.157
Frequency of the word: so 0.490 0.066
Frequency of the word: a 0.486 0.156
Frequency of the word: that 0.481 0.177
Frequency of the word: they 0.471 0.047
Frequency of the word: on 0.469 0.141
Frequency of the word: not 0.467 0.143
Frequency of the word: was 0.460 0.190
Vowel-Vowel-Consonant tri-gram 0.446 0.201
Frequency of the word: but 0.445 0.120
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Table 4.17: Effectiveness of the one-class classifier in the stylometric analysis stage. The
target class contains all sections from the original author A; the outlier class contains
the sections of a foreign author 6= A.

Collection Target class Outlier class
Prec Rec F Prec Rec F

1 0.98 0.91 0.94 0.20 0.52 0.29
2 0.89 0.90 0.89 0.34 0.32 0.33
3 0.98 0.64 0.77 0.10 0.78 0.18
4 0.89 0.64 0.74 0.27 0.64 0.38

as described in Section 4.6.3 is applied to identify spurious sections in a doc-
ument. To capture the idiosyncratic writing style of an author a diverse set
of style markers is employed: lexical character features, lexical word features,
and syntactical features. Among the employed style markers are the classical
measures for vocabulary richness, text complexity, as well as style markers that
have been reported to be particularly discriminative for authorship analysis,
such as character n-grams and the frequency of function words. To capture
syntactic variations in writing-style, part-of-speech information in the form of
part-of-speech trigrams is exploited; the tagging is done with the probabilistic
part-of-speech tagger QTAG. Table 4.14 summarizes the implemented style
markers.

From the large number of several thousand style markers the top k discrimina-
tory style markers are chosen. For this purpose the effectiveness of each style
marker within a style outlier detection task is assessed under the univariate
model (Equation 4.1). Table 4.16 shows the top 30 style markers in terms of the
F-measure concerning the outlier class.

Based on this set of stylometric features a multivariate classifier according to
Equation 4.2 is constructed. To reduce the influence of numerical and rounding
errors, we resort to the logarithmic variant of Equation 4.2 when computing
the maximum a-posteriori hypothesis. Table 4.17 summarizes the achieved
classification results for both the outlier class and the target class.

Evaluation of meta-classification To assess the effectiveness of the unmasking
approach we evaluate the meta-learner of the basic unmasking procedure.
Unmasking is parameterized as follows: documents are represented under the
bag-of-words model, defined by the 500 most frequent words (including stop
words) of the input document sets D1 and D2, without applying stemming or
feature selection. The imbalance of the input sets is corrected by over-sampling
the minority class, i.e., the outlier class, with the SMOTE approach [55]. In
each iteration i of 30 unmasking iterations the best 10 features ranked by the
information gain heuristic are removed, and the classification accuracy, Acci,
of a linear SVM is computed, applying a 5-fold cross-validation. A similar
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Table 4.18: Evaluation of the unmasking meta-learner. Setting: 10-fold cross validated
with 100 plagiarized documents and 100 non-plagiarized documents from Collection 2.

Collection Non-plagiarized documents Plagiarized documents
Prec Rec F Prec Rec F

1 0.78 0.86 0.82 0.82 0.73 0.77
2 0.77 0.88 0.82 0.48 0.30 0.37
3 0.95 0.94 0.95 0.94 0.95 0.95
4 0.70 0.69 0.70 0.68 0.70 0.69

meta-learner as discussed in Section 4.5 is employed; Table 4.18 reports on its
effectiveness.

Originally, the unmasking approach of Koppel and Schler [153] decides for two
sets of documents whether or not all documents stem from a single author.
If both sets belong to the same author the associated unmasking curve drops
(recall the dashed lines in Figure 4.8). This fact is exploited within our analysis
chain as we utilize unmasking to filter out cases of alleged plagiarism, which
occur because of the insufficient precision in the stylometric analysis stage. In
this sense, 1 minus the recall of the non-plagiarized documents defines an upper
bound for the false positives rate (see the third row in Table 4.18).

Evaluation of intrinsic plagiarism analysis We evaluate three strategies, from
naive to sophisticated, for intrinsic plagiarism analysis for a document d. Under
the minimum risk strategy, d is classified as plagiarized if at least one style outlier
has been announced for d. Under the heuristic voting strategy d is classified as
plagiarized if the detected fraction of outlier text is above a threshold τ. Under
the unmasking strategy d is classified as plagiarized if the detected fraction
of outlier text is above a threshold τ6=; d is classified as non-plagiarized if the
detected fraction of outlier text is below a threshold τ=; for all other cases
unmasking is applied. Note that the values for τ, τ6=, and τ= are collection-
dependent. Table 4.19 summarize the results.

4.6.5 Summary

Intrinsic plagiarism analysis is the spotting of sections with undeclared writing-
style changes in a text document. Intrinsic plagiarism detection is a difficult one-
class classification problem that cannot be tackled with a single technique and
requires the combination of sophisticated algorithmic and statistical building
blocks.

We report on the effectiveness of stylometry, whereas finding elements of the
target class (non-plagiarized sections) can be done with a high precision and
recall. This is not possible for elements of the outlier class (plagiarized section).
We show how the outcome of a style outlier identification can be improved by
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Table 4.19: Overall effectiveness of different solution strategies: minimum risk (col-
umn 2-4), heuristic voting (column 5-7), and unmasking (column 8-10).
Collection Minimum risk Heuristic voting Unmasking

Prec Rec F τ Prec Rec F [τ=; τ6=] Prec Rec F

1 0.50 1.00 0.66 0.1 0.55 0.57 0.63 [0.1; 0.5] 0.83 0.50 0.62
2 0.50 1.00 0.66 0.1 0.50 1.00 0.66 [0.1; 0.5] 0.66 0.57 0.67
3 0.50 1.00 0.66 0.2 0.69 0.30 0.42 [0.2; 0.8] 0.72 0.30 0.43
4 0.50 1.00 0.66 0.2 0.52 0.97 0.68 [0.2; 0.8] 0.98 0.60 0.74

unmasking, which is analyzed in Section 4.5, for the more general question
“Does a document contain a plagiarized section?”.

4.7 Bibliography

Bag of phrases such as word sequences (n-grams) [208, 265] and bag of words are
the most referred type of representations in text classification. These representa-
tions are usually comprised of words as features, whereas stop word removal,
frequent word removal, stemming, as well as normalization and standardization
are common preprocessing routines.

Besides the development of features specialized for (non-standard) text clas-
sification, feature selection, extraction, and generation are important related
research fields, which are more general and not always restricted to text repre-
sentations.

Feature selection Feature selection is the field of reducing the complexity of a
given representation by selecting reliable features that form the basis of further
text representations. Basic feature selection methods remove zero-variance
and redundant features by examining feature characteristics on a training
sample [211]. Advanced feature selection methods rely on the evaluation of
the discriminative power of a feature or a subset of features. The interplay of
features in a subset influences the effectiveness of the classifier, which makes
the selection of the most effective subset NP-hard.

Wrappers evaluate the discriminative power by training a chosen learning algo-
rithm and estimate its effectiveness with a standard evaluation approach and
a chosen effectiveness measure [135, 151]. Wrappers are universal but compu-
tationally expensive and tend to overfitting. For selecting a subset of feature,
exhaustive, greedy, or heuristic search algorithms can be utilized. Backward
selection was applied for the first time by Marill [194], genetic algorithms by
Vafai and De Jong [312], and branch and bound methods by [214]. Branch and
bound is exclusively applicable under the assumption that a larger feature sub-
set can only increase the effectiveness, which is rarely the case. Measures for the
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Figure 4.11: The characteristics of rejected features when the 100 most informative fea-
tures are selected by the scores information gain, chi-squared, and bi-normal separation.
Features that occur often in one class but rarely in the other class are discriminative.
Stop words are typically located on the diagonal. This illustration is based on Figure 1
in [87].

effectiveness evaluation such as mean squared errors or correlation coefficients
were proposed in this context by Mallows [191], first.

Another way of feature selection is to compute for each feature a score, which is
interpreted as their discriminative power, and to keep the top scoring features.
Common scores are information gain, mutual information, chi-squared, and
bi-normal separation [3]. Based on [87], Figure 4.11 illustrates their effects in text
classification. It should be noted that all of these scores evaluate the document
frequencies of the features in isolation. Therefore, the main disadvantage is
that resulting effects from the combination of features are not considered. For
further methods refer to the work by Guyon and Elisseeff [103] and Liu and
Motoda [184]; for further scores refer to the comparative study by Yang and
Pedersen [344].

Feature extraction Feature extraction is the field of transforming a given rep-
resentation by extracting reliable features that form the basis for further text
representations. The majority of feature extraction methods is data-driven and
combines existing features by means of multivariate analyses. The most impor-
tant methods are: linear discriminant analysis [3], principal component analysis
[226], correspondence analysis [115], factor analysis [279, 286], singular value
decomposition [297, 350], clustering algorithms [169, 17, 278, 19, 2], nonlinear
dimensionality reduction algorithms [166] (especially maximum variance unfold-
ing [329]), multilinear subspace learning algorithms [190], and multidimensional
scaling algorithms [61].

Feature generation Feature generation is the field of generating or construct-
ing reliable features that form the basis for further text representations. In-
formation extraction methods “augment” text representations, for example
by part-of-speech tags or linguistic patterns [248], or by named entities [160].
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Also, WordNet synonym set identifiers can be used to represent words with
equivalent semantics [67, 98, 82], which leads to a more abstract representation
overall. Using Wikipedia as external knowledge, texts can be represented by
their similarities to Wikipedia articles, which function as concepts, cf. explicit
semantic analysis by Gabrilovich and Markovitch [92]. More dictionary-based
methods are found, for example, in [311, 323]. One advantage is that infrequent
words, which are usually ignored, are still captured by the external knowl-
edge. Furthermore, with the exploration of the multilingualism in Wikipedia,
cross-lingual representations can be compiled [20]. Texts are represented by
their similarities to a reference set of Wikipedia articles, cf. cross-lingual explicit
semantic analysis by Potthast et al. [234] and Anderka, Lipka, and Stein [6].
More cross-lingual representations are cross-lingual structural correspondence
learning by Prettenhofer and Stein [236] (based on [27]).





Chapter 5

Towards effective text classification
in the wild

Employing a carefully engineered classification solution in the wild, i.e., un-
der non-laboratory conditions, often leads to dissatisfaction, even if it has a
reasonable effectiveness under laboratory conditions—what are the roots? We
consider the relationship between the populations and samples to be decisive.
If the ratio between population and sample sizes becomes extreme, the classifier
and its evaluation are misled, as the sample is no longer representative. This is
also the case if an independently and identically distributed sample contains
almost exclusively examples from the majority class, which often happens if
the population is highly imbalanced. If the degree of imbalance is unknown,
the outcome of an evaluation is difficult to interpret. Even worse, a good deal
of information filtering tasks have dynamic populations and noisy class labels,
which makes it impossible to apply standard machine learning research and
developments.

We face these problems of representativeness in multiple ways, depending on
the particular conditions:

Small sample but balanced classes In Section 5.1, we propose robust feature engi-
neering as a suitable modeling principle if the samples are too small in
relation to the population. The idea is to control the generalization capa-
bilities of a classification solution via the inductive bias that is introduced
by coarse text representations, cf. 3.1.

Imbalanced but stable classes In order to sample more examples from the minority
class in imbalanced problems, we propose an active learning strategy in
Section 5.2, which is trained on past classification tasks. Active learning
has the goal of choosing a small, balanced sample of informative examples,
which replaces a larger independently and identically drawn sample.

Dynamic or noisy complementary but stable and noiseless target classes Modeling a
classification task as a one-class classification problem has the advantage
that the training process is not affected by class imbalances and dynamic or
noisy complementary classes. This is motivated by detecting information
quality flaws in Wikipedia articles, whereas examples of flawed articles
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belong to a well-defined concept. In contrast, non-flawed articles belong
to an unspecified and unknown concept. Section 5.3 and 5.4 concentrate
on learning from the target class only and on improving one-class classi-
fiers; we propose an ensemble method, which combines several one-class
classifiers.

5.1 Improving generalization capabilities via robust
feature engineering

Almost all statistical models underestimate the likelihood of unseen events,
which is a severe problem for machine learning. In addition, training examples
are often hard to acquire, and the smaller the training sample, the more unseen
events exist. Furthermore, if the feature space has a high dimensionality, the
number of possible events grows. This is also known as the “high dimensionality,
small sample size” problem.

The existing research addressing this problem can be distinguished into the
following areas: (1) theoretical analysis of sample complexity, (2) multiple
evaluations of a training sample S, and (3) semi-supervised learning.

(1) The sample complexity is related to the question of how many training
examples are needed such that a learner converges with high probability
to a successful hypothesis [206]. A key factor is the size of the learner’s
underlying hypothesis space. There are upper bounds linear in VC(H),
the Vapnik-Chernovenkis dimension of the hypothesis space, and logarith-
mically in |H|, the size of the hypothesis space [30, 318].

(2) A multiple evaluation of training samples can be realized with ensemble
classifiers and collaborative filtering techniques [280, 220, 49]. An ensemble
can be considered to be a committee of experts, each of which is focusing
on different aspects of the training sample, and the combined expertise
can alleviate the negative impact of a small sample S.

(3) Semi-supervised learning approaches are appropriate, if they are trained
on a small training sample S and a large representative sample of unlabeled
examples [276, 5]. A promising approach in this regard is the integration
of domain knowledge into the learning phase [75].

In contrast to the related work, we put the feature engineering in the focus. In
particular, we propose to identify the robustness of a model with the inductive
bias that is intentionally introduced within the feature engineering.

We provide a case study that allows us to observe these considerations by
comparing variants of the vector space model resulting from different feature
engineering functions. The studied functions are independent of any utilization
of training examples.
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Figure 5.1: The bias-variance trade-off and the estimation of the generalization error
(the sum of variance and bias squared) based on the samples S and S′ with |S| > |S′|.
If S is large enough, the estimate of the generalization error is tighter than if a small S′

is used. For a small S′ and a complex hypothesis, the generalization error tends to be
underestimated because of the variance estimate. (1) The risk of the variance estimator
grows biquadratically with the hypothesis complexity; in contrast, the risk of the bias
estimator only grows quadratically, cf. [301]. (2) With decreasing the size of the sample,
the difference between the risks of these estimators grows exponentially.

The idea of robust models, proposed in this section, can be regarded as a model
selection paradigm that gives preference to the apparently inferior model with
a larger model formation bias. We regard, however, the automatic construction
of robust models as an important open problem in machine learning.

5.1.1 Robust Models

The investigations of this section are motivated by the extreme relations in
information filtering. We are working on classification tasks such as Web genre
analysis or the semi-automatic maintenance of large repositories, where the size
ratio υ between the sample S (comprising training and test data) and the set
of unseen documents is close to zero. As a consequence, even sophisticated
learning strategies are misguided by S if the feature vectors d ∈ S consist of
many and highly variant features. The reason for the misguidance is that the
concept of representativeness inevitably gets lost for υ� 1 and, as a result, it is
no longer possible to apply a standard model or feature selection.

We argue that even in such extreme learning situations, classifiers can be built
that generalize well: the basic idea is to withhold information contained in S
from the learner. Conceptually, such a restriction cannot be left to the learner
but must happen intentionally, by means of a task-oriented feature engineering
by the engineer. The statistical feature selection strategies reviewed in Section 4.7,
cannot address the lack of training samples. These strategies can be exploited
if the number of features is high and the training sample is both plentiful and
representative. Only then it can be utilized for building a classifier with a less
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Figure 5.2: Illustration of a classification task (D, Y) and its solution. The feature
engineering function α associates real-world objects with feature vectors. A restriction
bias is introduced by the feature engineering; other biases are introduced within the
subsequent steps.

complex hypothesis structure and an improved generalization characteristic [103,
339].

Again, the predictive behavior of a classifier is rooted in its inductive bias as
described in Section 3.1). Biases are often implicitly introduced by the employed
text classification model, that is, by feature engineering, by sampling, and by
the learning algorithm. Given a classifier in a concrete learning situation, the
statistical bias quantifies the error that is caused by this simplification, while the
inductive bias can be regarded as the rationale (the logical argument) for this
error. Accepting a higher statistical bias will reduce the variance of the learned
classifier and may entail a lower generalization error—a connection which is
known as bias-variance trade-off as depicted in Figure 5.1.

If only a very small number of training examples is available, choosing among
different complex models by determining the best bias-variance trade-off be-
comes a game of chance. All learning methods that try to build classifier with a
minimum generalization error, rely on the assumption that the examples are
representative.

Recall building a classification solution (Figure 5.2). The starting point is
a classification task (D, Y), where we are given a set of documents D, the
population, which can be classified by a real-world classifier into k classes Y =
{1, . . . , k}. A real-world classifier should be understood as a decision machine
that is unrestricted in every respect. By contrast, computer algorithms work
on an abstraction d of a document d. The process of deriving d from d is
denoted as α, α : D → D. D comprises the feature vectors of the population;
it constitutes a multiset, implying the identity |D| = |D| and preserving in
D the class distribution of D. The task of an inductive learner is to build an
approximation h of the target concept c, exploiting only information contained in
a sample S of training examples {(d, c(d))}. The hypothesis h is characterized by
its generalization error, err(h), which is the probability of wrong classification:

P(h(d) 6= c(d)).

The test error errS(h), which is measured on the sample S, is an estimator
of err(h). The learning algorithm selects a hypothesis h from the space H
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Table 5.1: Document distribution in the top-level categories of RCV1.
Top-level category Number of documents
corporate/industrial 292 348
economics 51 148
government/social 161 523
markets 158 749

of possible hypotheses, and hence H defines a lower bound for err(h). This
lower bound is denoted as structural bias err(h∗) and quantifies the expected
difference between an optimum hypothesis h∗ ∈ H and the target concept c.

Choosing between different functions α1, . . . , αm implies choosing between dif-
ferent text representations D1, . . . , Dm along with different hypotheses spaces
Hα1 , . . . , Hαm , and hence to introduce a more or less rigorous structural bias.
If the training sample is plentiful, the best model can be found by minimiz-
ing errS(h) against the different representations; if the training sample is scarce,
we even may prefer αi over αj although the former is outperformed under S:

errS(h∗αi
) > errS(h∗αj

),

where h∗αi
∈ Hαi , h∗αj

∈ Hαj , and i 6= j. We introduce a higher restriction bias
than suggested by S, accepting a higher error errS, but still expecting a lower
generalization error:

err(h∗αi
) < err(h∗αj

)

We declare the model under αi to be more robust than the model under αj or to
be a robust model for the task (D, Y).

5.1.2 Case study: Topic categorization

The following experiments evaluate the behavior of the generalization error err,
the sample error errS, and the relation between err and errS. In our study we vary
vector space representations by employing different functions α while keeping
the learning algorithm unchanged. This way, the difference in the classification
model’s robustness is reflected by the classification effectiveness of the obtained
solutions. The learner in the setting is again a linear SVM and (D, Y) is a text
categorization task on the Reuters Corpus Volume RCV1 [171]. We consider
the corpus in its entirety in the role of the population D. The set Y of class
labels is defined by the four top-level categories in RCV1: corporate/industrial,
economics, government/social, and markets. The corpus contains |D| = 663 768
uniquely classified documents whose distribution is shown in Table 5.1.

The functions αi lead to different text representations Di. Let S be a sample,
drawn independently and identically distributed from Di, with |S| = 800.
The extreme ratio of υ = 0.0012 between the sizes of S and Di reflects a
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Figure 5.3: Cross-validated error estimates (hashed bars) and generalization errors
(plain bars) for a linear SVM trained on 800 examples. (left) Five different solu-
tions (αi, h) of (D, Y). The α1, . . . , α5 affect H by the employed number of index terms.
(right) Two different solutions (αi, h) of (D, Y). α1 and α2 affect H by using a different
granularity for the feature variable domains.

typical information retrieval situation as it is encountered in the real world; in
fact, υ = 0.0012 may still be considered optimistic.

It is important to note that the introduced bias during the experiments comes
from uninformed feature engineering strategies. We do not employ any sta-
tistical feature selection, extraction, or generation methods. Furthermore, the
mass of words that are captured by each representation remains the same, i.e., a
representation becomes smaller by introducing a more general representation.
In contrast, feature selection might remove features and, therefore, the respective
words are ignored in the on-going processing of examples.

Experiment 1 For a document d ∈ D, αi(d) computes a vector space model,
where i = 1, . . . , 5, is associated with a certain number p of used index terms (see
the x-axis in Figure 5.3 (left) for the actually chosen values for p). The reduction
of the feature number p is achieved by introducing prefix equivalence classes for
the index terms: the weights of words that start with the same letter sequence
are added to build the weight of the new feature that represents the equivalence
class. In our experiments the prefix length varies between 1 and 10.

The plot in Figure 5.3 (left) reveals, as expected, that the cross-validated error
estimates (hashed bars) increase with the impairment of the vector space model.
Interestingly, this monotonic behavior cannot be observed for the generalization
error: for p = 2 729 the value becomes minimal, a further reduction of p leads
to underfitting. To understand the importance of this result, recall that the
generalization error cannot be observed in information retrieval practice. Put
another way, the best solution for (D, Y) can be missed easily since only the
analysis results with respect to S are at our disposal.
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Experiment 2 We now modify αi by coarsening the feature domain D of the
index terms, going from the tf ·idf model to the boolean model. Figure 5.3 (right)
shows the results for the two extremal αi. The cross validated errors for both
models are pretty close to each other; in fact, they differ only by one percent.
Hence, there is a high risk of selecting the wrong model. This is particularly
crucial here since the difference between the achievable generalization errors is
enormous.

That the errS statistic may lead one astray, even if it relies on cross-validation,
has been observed and discussed before [260]. Our analyses go beyond these
and similar results: Firstly, we report on realistic information retrieval experi-
ments and the current practice of experiment implementation and experiment
evaluation. Secondly, and presumably more important, the focus of our analyses
is on the impact of α. The above analysis is distantly related to the feature
selection problem, which also can cause some bias on the estimates of classifier
parameters. This kind of bias is also known as “feature subset selection bias” or
simply “selection bias” [277].

5.1.3 Summary

Robust models are a means for reducing the overfitting problem for classification
tasks where the ratio between the training sample and the population of unseen
examples is extremely small. We argue to identify the bias that is introduced
within the feature engineering with the robustness of the resulting classification
solutions. In a case study, we analyze the impact of the model formation bias on
the generalization capabilities, and we observe that the idea of robust models
is highly usable; it captures effects on the generalization error that cannot be
attributed to properties of the inductive learner nor to the hypothesis structure.
Nevertheless, the systematic determination of robust models is an open problem
in machine learning.

5.2 Sampling informative examples via advanced active
learning

Active learning, a sub-discipline of supervised learning, aims to achieve higher
accuracy with fewer training examples. This is accomplished by allowing the
active learning framework to choose the examples from which it learns. An
active learner poses queries, usually in the form of unlabeled examples to be
labeled by an oracle. From a statistical point of view, a query strategy builds a
sample, which represents the population’s characteristics that are informative for
building discriminative hypotheses. Active learning is regarded as a sampling
strategy β in our context.
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Active learning has numerous applications in the fields of information extraction,
speech recognition, and filtering. Learning to classify documents (e.g., articles or
webpages) requires that users label each document using a given class scheme.
Standard query strategies for active learning are based upon various heuristics,
for example, uncertainty sampling [170], query by committee [268], expected
model change [267], expected error reduction [251], and variance reduction.

Often, uncertainty sampling is the most effective strategy, which selects examples
close to the current decision boundary. Especially discriminative classifiers
benefit from uncertain examples most as they have the largest effect on the
hypothesis determination. Other examples are not required as long as there is
no need to model the class conditional probability distribution.

Uncertainty sampling can be too narrow in exploring the population. Therefore,
we introduce a new query strategy based upon machine learning. The goal
is to predict how informative unlabeled examples are with respect to a given
text classification task. We refer to this as “learning to active learn” and to the
corresponding query strategy as “predicted meta-sampling”.

5.2.1 Learning to active learn

The idea is that a classifier discriminates between examples that are informative
or non-informative with respect to a given classification task. This classifier
is used to predict examples that should be queried and added to the training
sample in an active learning iteration. The predicted meta-sampling strategy
uses meta-knowledge, namely, whether an example has been useful in a past
learning scenario. We refer to the corresponding classifier as “meta-sampling
classifier” hmeta.

In what follows, we will introduce the general active learning procedure, de-
scribe the process of generating metadata to train hmeta, and propose a model
for representing metadata.

Active learning For active learning, the examples are split into three subsets,
namely the initial training sample Strain, the test sample Stest, and the unlabeled
sample U. Strain is used for building a base classifier hbase in the first step of
active learning, whereas its weighted average F-measure is evaluated on Stest.
The unlabeled sample U is processed by the active learning approaches and
used for selecting an example that is queried (labeled by an oracle or an expert)
and added to the initial training sample.

We consider the following general active learning approach, which consists
of two components, a learning algorithm L (here, linear SVMs) and a query
strategy Q:1

1Note, h is a hypothesis and c the target concept.
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Active Learning
Input: L, Q, Strain, Stest, U

Init: i = 1, init Q
while i ≤ query budget do

select: d = Q(U)

query d to obtain y = c(d)
remove: U = U \ d, add: Strain = Strain ∪ d, train: hbase = L(Strain)

evaluate hbase on Stest, update Q
i = i + 1

end while

Generating metadata Metadata is generated on previous labeled examples,
the validation sample, which is gathered from solved classification tasks. The
validation sample is split into an initial training sample Sval,train, a test sam-
ple Sval,test, and an unlabeled sample Uval. The metadata M is computed as
follows:

Computation of metadata M
Input: L, Sval,train, Sval,test, Uval

Output: M
Init: i = 1, init Q
while i ≤ query budget do

select randomly d ∈ U
query d to obtain y = c(d)
remove: U = U \ d, add: Sval,train = Sval,train ∪ d, train: hbase = L(Sval,train)

evaluate hbase on Sval,test
if effectiveness increased by at least 1% then

M ∪ (d,+)

else
if effectiveness decreased by at least 1% then

M ∪ (d,−)
end if

end if
i = i + 1

end while
return M

Informally, a base classifier hbase is updated in each iteration, after a randomly
sampled example is added to the training sample. Then the weighted average
F-measure of hbase is estimated on the test sample Sval,test. The example is added
to the metadata M when there is a substantial change of the effectiveness of hbase.
Its class label is “informative, +” if the estimated weighted average F-measure is
increased by at least one percent compared with the previously added example,
or the class label is “non-informative, −” if the effectiveness decreases by at least
one percent. The metadata is gathered from several datasets, then balanced, and
used for building the meta-sampling classifier hmeta. As the learning algorithm
for the base classifier, we apply a linear SVM where the confidence of the
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Figure 5.4: Illustration of the experimental setup. Variation 1: Compute the metadata
on a set of Reuters categories and evaluate the query strategies on a separated set.
Variation 2: Compute the metadata and evaluate the query strategies on the same set of
Reuters categories (validation and evaluation examples are still disjunct).

prediction is estimated by a logistic regression model [230]. As the learning
algorithm for the meta-sampling classifier we apply naïve Bayes [73].

This algorithm for generating metadata is incremental as examples are added
while the effectiveness of the base classifier is monitored. In a decremental
approach, the interpretation of informativeness is inverse: observing an effec-
tiveness decrease corresponds to an informative example since the removed
example has had a positive influence on the classification solution.

Predicted meta-sampling employs the meta-sampling classifier hmeta = L(M) by
classifying all examples in the unlabeled evaluation sample U. Then, examples
with the highest predicted informative probability are selected for querying.

Representing metadata The examples used for building the meta-sampling
classifier are represented under the following model:

• the disagreement vote using the absolute value of the sum of the predicted
classes {+1,−1} based on a k-nearest neighbor classifier, a linear SVM,
and a naïve Bayes classifier

• the class probability using a k-nearest neighbor classifier (estimated by
1/distance)

• the class probability estimate using a linear SVM (estimated by logistic
regression)

• the class probability estimate using a naïve Bayes classifier

Additionally, we explore descriptive characteristics, such as variance, mean, geo-
metric mean, kurtosis, skewness, maximum value, and minimum value, of the
predicted class probability distributions of each classifier, and the distribution
of labeled and unlabeled examples.
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5.2.2 Evaluation

Corpus We evaluate our proposed learning to active learn approach on the
Reuters Corpus Volume I (RCV1) [171], which comprises 806 791 documents,
each assigned to one or more categories of an ontology of news articles. In
total, 432 499 documents occur in only one path of the ontology. We obtained 38
categories with more than 1 000 documents, whereas each document does not
occur in multiple paths of the ontology and is assigned to the deepest category
in the path. A Reuters document is represented by its word frequency vector,
where the vocabulary consists of 7 392 words that are stemmed and occur at
least ten times in the corpus. All digits and special characters are ignored. We
construct 38 datasets following the one versus all principle. Each dataset has
1 000 documents of one category and another 1 000 documents sampled from all
37 000 documents belonging to the other categories.

The following sampling strategies (query strategies) are implemented:

Random sampling, β1 Query randomly chosen examples from U.

Uncertainty sampling, β2 Query the examples from U that have the least confi-
dent prediction awarded by the base classifier hbase [170].

Query by committee, β3 Query a randomly chosen example from U if one classi-
fier in the committee disagrees [268].

Predicted meta-sampling, β4 Query the most informative example within U based
on hmeta’s predictions.

Gold standard The classifier learns from the training and the unlabeled sample,
whereas the labels for the entire unlabeled sample are provided.

In order to compile the metadata M for building the meta-sampling classi-
fier hmeta, we separate a sample of validation examples from the Reuters data.
We studied two variations as shown in Figure 5.4. In Variation 1, we compute
the metadata for the predicted meta-sampling query strategy on a set of Reuters
categories (validation sample) and apply it on a different set of categories (evalu-
ation sample). In Variation 2, we used the same Reuters categories for metadata
computation and active learning evaluation. Each Reuters category is split into
validation and evaluation samples.

Experiment: Can the meta-sampling classifier predict informative examples?
Variation 1: We randomly select 10 Reuters categories and ran 100 validation
iterations, and we use 1% of the given sample as training sample, 69% as
unlabeled sample, and 30% as test sample. This setting results in 122 examples
for M. The meta-sampling classifier hmeta has an accuracy of 54%, a precision
value of 0.69, and recall value of 0.15 when finding performance increasing
examples.



94 Chapter 5 Towards effective text classification in the wild

size of training data
 40  60  80  100  120  140

Random sampling, β1
Uncertainty sampling, β2

Predicted meta-sampling, β4
Query by committee, β3

Gold standard

w
ei

gh
te

d 
av

er
ag

e 
F

-m
ea

su
re

 0.7

 0.75

 0.8

 0.85

 0.9

 40  60  80  100  120  140
size of training data

 0.75

 0.8

 0.85

 0.9

Figure 5.5: The subfigures show the active learning effectivenesses with different
sampling strategies within two Reuters categories out of 18 categories considered in the
evaluation. The experimental setup corresponds to Variation 2 in Figure 5.4.

Variation 2: We randomly select 18 Reuters categories and ran 100 validation
iterations, and we use 50% of each category as validation sample and 50% as
evaluation sample. Again, the validation and evaluation samples are divided
into 1% training sample, 69% unlabeled sample, and 30% test sample. M com-
prises 228 examples and hmeta has an accuracy of 53%, a precision of 0.62, and
recall of 0.16 for finding informative examples. In both variations, the precision
values of the meta-sampling classifiers imply that informativeness is to some
extent predictable.

Experiment: Can active learning benefit from the meta-sampling classifier?
Figure 5.5 shows two typical scenarios for experiment Variation 2. The sampling
strategy β1, random sampling, leads in most cases to a stable effectiveness
increase when adding examples. The function β2, uncertainty sampling, is
commonly a good choice. The function β4, predicted meta-sampling, shows
a promising effectiveness and is slightly superior compared with the other
sampling strategies.

Experiment: Can the meta-sampling classifier be transferred to other do-
mains? Figure 5.6 shows the effectiveness of the active learning approaches in
the experiment Variation 1. This setup is apparently harder since the metadata
is compiled from completely different Reuters categories. The diagram shows
that predicted meta-sampling is performing well over different domains.

5.2.3 Summary

We present an algorithm for learning a sampling strategy, that is, learning to
active learn. The evaluation demonstrates that our strategy is effective for some
text classification tasks. The prediction of informativeness, which is used for our
proposed sampling approach, however, is difficult. The unrepresentative feature
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Figure 5.6: Active learning effectivenesses with different sampling strategies within
one RCV1 category. The experimental setup corresponds to Variation 1 in Figure 5.4.

space and the distribution-dependent informativeness need to be addressed in
future work.

5.3 Learning target classes via one-class classification

The majority of text classification tasks suffer from the fact that important
characteristics are not represented by the training sample. With a sample that
represents at least the target class, a one-class classifier can be trained. As an
illustrative example, we argue that the prediction of information quality flaws is
essentially a one-class problem. This section gives a formal problem definition of
classifying information quality flaws, and it applies a tailored one-class learning
approach to address this classification problem. In order to model information
quality flaws, we employ the article representation developed by Anderka, Stein,
and Lipka [9].

5.3.1 Classifying information quality flaws in Wikipedia

Problem statement Let D be the population of Wikipedia articles and let F
be a set of information quality flaws. An article d ∈ D can contain up to
|F| flaws, where, without loss of generality, the flaws in F are regarded as being
uncorrelated. A classifier h has to solve the following multi-labeling problem:

h : D→ 2F,

where 2F denotes the power set of F. Basically, there are two strategies to tackle
multi-labeling problems:

multiclass classification a single classifier is learned on the power set of all classes

binary classification for each fi ∈ F a classifier hi : D→ {+1,−1} is learned
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Table 5.2: Two information quality flaws of English Wikipedia articles along with a
description and the number of articles that have been tagged. From Anderka, Stein, and
Lipka [9].

Flaw name Description Tagged articles

Unreferenced The article does not cite any references or sources. 273 230
Advert The article is written like an advertisement. 7 186

Since the high number of classes under a multiclass classification strategy entails
a very large number of training examples, the second strategy is favorable.

In most classification problems, training examples are available for all classes
that occur at the prediction time, and hence it is appropriate to train a classifier hi
with (positive) examples of the target class fi and (negative) examples from
the classes F \ fi. When spotting quality flaws, an unseen article can either
belong to the target class fi or to some unknown class that has been unavailable
during training. The standard discrimination-based classification approaches
(binary or multiclass) are not applicable to learn a class-separating decision
boundary: given a flaw fi, its target class is formed by those articles that contain
flaw fi, but it is impossible to model the complementary class with articles not
containing fi. Even if many counterexamples are available, they could not be
exploited to properly characterize the population of the complementary class.
As a consequence, we model the classification hi(d) of an article d ∈ D with
respect to a quality flaw fi as the following one-class classification problem:
Decide whether or not d contains fi, given a sample of articles containing fi.

As an illustration, Table 5.2 shows a summary of the flaw “Advert”. A large
sample of articles that suffer from this flaw can be compiled as 7 186 articles
have been tagged with this flaw. Nevertheless, it is impossible to compile a
representative sample of articles that have a reasonable writing style and do not
advertise. Although many articles are non-flawed featured articles, they cannot
be considered a representative sample. Featured articles are a biased group of
Wikipedia articles and differ from average articles. Training a binary classifier
using featured articles and flawed articles would lead to a biased classifier that
is not able to predict flaws on the entire Wikipedia. Also, using random articles
and flawed articles to train a binary classier is problematic because random
articles are noisy as some of them are not tagged with flaws. Moreover, it is
more than likely that the distribution of random articles changes over time.

Method Following Tax [303], three principles to construct a one-class classifier
can be distinguished: density estimation methods, boundary methods, and
reconstruction methods. Here we resort to a one-class classification approach,
which combines density estimation with class probability estimation [111]. There
are two reasons for using this approach: (1) Hempstalk et al. [111] show that it
is able to outperform state-of-the-art approaches, including a one-class SVM,
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and (2) it can be used with arbitrary density and class probability estimators.
Instead employing an out-of-the-box classifier, we apply dedicated density and
class probability estimation techniques to address the problem defined above.

The idea is to use a reference distribution to model the probability P(d | f ′i )
of an artificial class f ′i , and to generate artificial examples governed by the
distribution characteristic of f ′i . For a flaw fi let P( fi) and P( fi | d) denote the
a-priori probability and the class probability function respectively. According to
Bayes’ theorem the class-conditional probability for fi is given as follows:

P(d | fi) =
(1− P( fi)) · P( fi | d)
P( fi) · (1− P( fi | d))

P(d | f ′i )

P( fi | d) is estimated by a class probability estimator, which is a classifier whose
output is interpreted as a probability. Since we are in a one-class situation,
we have to rely on the face value of P(d | fi). More specifically, P(d | fi)
cannot be used to determine a maximum a-posterior (MAP) hypothesis among
the fi ∈ F. As a consequence, given P(d | fi) < τ with τ = 0.5, the hypothesis
that d suffers from fi could be rejected. Because of the approximative nature
of P( fi | d) and P( fi), the estimation for P(d | fi) is not a true probability, and
the threshold τ has to be chosen empirically. In practice, the threshold τ is
derived from a user-defined target rejection rate (trr) which is the rejection rate
of the target class training data.

The one-class classifier is built as follows: at first a class with artificial examples
is generated, whereas the feature values obey a Gaussian distribution with µ = 0
and σ2 = 1. We employ the Gaussian distribution in favor of a more complex
reference distribution to underline the robustness of the approach. The pro-
portion of the generated examples is 0.5 compared with the target class. As
class probability estimators, we apply bagged random forest classifiers with
1 000 decision trees and ten bagging iterations. A random forest is a collection
of decision trees where voting over all trees is run in order to obtain a classi-
fication decision [116, 40]. The decision trees of a forest differ with respect to
their features. Each tree is build with a subset of log2(|features|) + 1 randomly
chosen features; no tree minimization strategy is followed at training time. The
learning algorithm stops if either all leaves contain only examples of one class
or if no further splitting is possible. Each decision tree perfectly classifies the
training sample but because of its low bias the obtained generalization capability
is poor [335, 206]. The combination of several classifiers in a voting scheme
reduces the variance and introduces a stronger bias. While the bias of a random
forest results from several feature sets, the bias of the bagging approach results
from the employment of several training samples, and it is considered to be
even stronger [39].
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5.3.2 Evaluation

We report on experiments to assess the effectiveness of our modeling and
classification approach for detecting the two quality flaws shown in Table 5.2,
following Anderka, Stein, and Lipka [9]. The evaluation treats the following
issues:

• Since a bias may not be ruled out when collecting outlier examples for a
classifier’s test sample, we investigate the consequences of the two extreme
(overly optimistic, overly pessimistic) settings.

• Since Wikipedia editors have different expectations regarding the classifica-
tion effectiveness given different flaws, we analyze the optimal operating
point for each flaw-specific classifier within the controlled setting of a
balanced class distribution.

• Since the true flaw-specific class imbalances in Wikipedia can only be
hypothesized, we illustrate the effectiveness of the classifiers in differ-
ent settings, this way enabling users (Wikipedia editors) to assume an
optimistic or pessimistic position.

Outlier selection We propose two strategies for outlier selection to compile
a two-class test sample. These outlier examples are not used for the training
process of the one-class classifier.

Optimistic Setting Use of featured articles as outliers. This approach is based on
the hypothesis that featured articles do not contain a quality flaw at all.
Under this setting one introduces some bias since featured articles cannot
be considered a representative sample of Wikipedia articles.

Pessimistic Setting Use of a random sample from D \ D−i as outliers for each fi,
where D−i is the population of articles that are not tagged with fi. This
approach may introduce considerable noise since D \ D−i is expected to
contain untagged articles that suffer from fi.

The above settings address two extremes: classification under laboratory con-
ditions (overly optimistic) versus classification in the wild (overly pessimistic).
The experiment design is owing to the facts that “no-flaw features” cannot be
stated and that the number of false positives, as well as the number of false
negatives in D− of tagged articles are unknown.

Experiment: Effectiveness of flaw classification In the optimistic setting, out-
liers are randomly sampled from the 3 128 featured articles. In the pessimistic
setting, outliers are randomly sampled from untagged Wikipedia articles, par-
ticularly, for each flaw fi ∈ F from D \ D−i . We evaluate our approach under
both settings by applying the following procedure: for each flaw fi ∈ F, the
corresponding one-class classifier hi is evaluated in a 10-fold cross-validation



5.3 Learning target classes via one-class classification 99

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on
 / 

R
ec

al
l

Target rejection rate trr  (Probability threshold τ)

 0.1  0.2  0.3  0.4  0.5 0
(.997) (.9994) (.9998) (1.0) (1.0)(.953)

Precision (optimistic)

Recall
Optimal operating point

Precision (pessimistic)

Figure 5.7: Precision and recall over target rejection rate for the flaw “Unreferenced”.
The figure illustrates the difference in terms of precision under the optimistic setting,
using featured articles as outliers, and the pessimistic setting, using random articles
as outliers. The recall is the same under both settings. The optimal operating points
correspond to the target rejection rates that maximizes classifier precision. From Anderka,
Stein, and Lipka [9].

setup with 1 000 flawed articles randomly sampled from D−i ; within each cross-
validation run, the classifier hi is trained on 900 articles from D−i , whereas
testing is performed with 100 articles from D−i plus 100 outliers. Note that hi
is trained exclusively with the examples of the respective target class (articles
in D−i ). The training of hi is neither affected by the class distribution nor by the
outlier-selection strategy that is used in the respective setting.

The precision of the one-class classifier is controlled by the target rejection
rate. We empirically determine the optimal operating point for each flaw
under the optimistic and pessimistic settings. The optimal operating point
corresponds to the target rejection rate of the maximum precision classifier;
alternative thresholding methods are described by Shanahan and Roma [271].
Figure 5.7 illustrates the operating point analyses for the flaw “Unreferenced”;
with increasing target rejection rate, the recall value decreases while the precision
values increase. The recall is the same in both settings, since it solely depends
on the target class training sample. For the flaw “Unreferenced”, the optimal
operating points under the optimistic and pessimistic setting are at the target
rejection rates of 0.10 and 0.35 (with precision 0.99 and 0.63).

Table 5.3 shows the effectiveness of flaw prediction. The values correspond to
the effectivenesses at the respective optimal operating points. The employed
measures are precision, recall, and area under ROC curve [81], which is im-
portant to assess the trade-off between specificity and sensitivity of a classifier.
An AUC value of 0.5 means that all specificity-sensitivity-combinations are
equivalent, which in turn means that the classifier is random guessing.
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Table 5.3: Individual effectivenesses of two flaw classification solutions at the optimal
operating point, using featured articles as outliers (optimistic setting) and using random
articles as outliers (pessimistic setting). The class distribution is balanced under
both settings. The flaw ratio 1:n (flawed articles : flawless articles) corresponds to the
estimated actual frequency of a flaw. From Anderka, Stein, and Lipka [9].

Flaw name Optimistic setting Pessimistic setting Flaw
Prec Rec AUC Prec Rec AUC ratio

Unreferenced 0.99 0.90 0.95 0.63 0.63 0.63 1:3
Advert 0.86 0.91 0.88 0.65 0.58 0.63 1:136

5.3.3 Summary

We examine the classification of information quality flaws in Wikipedia as an
example for one-class classification problems in information retrieval. This
problem is typical because it is caused by a dynamic and noisy complementary
class. To improve the reported effectivenesses, the text representations could be
enhanced by new features, and the one-class classification approach could be
specifically parametrized.

5.4 Improving one-class classification via ensembles

Text classification tasks that are one-class problems at heart have often a target
class distribution with multiple modes. For this case, we propose one-class
ensembles that learn each mode separately. In contrast to standard bagging and
boosting techniques [272], multiple classifiers are trained on a structured parti-
tioning of the training sample. Each partition, which results from a clustering
of the given training sample, represents a particular mode instead of the entire
target distribution. For each mode, a single one-class classifier is trained. Our
one-class ensemble is a meta-classification method, which allows the integration
of arbitrary one-class classification technology.

5.4.1 One-class classification for text classification tasks

Again, in a one-class problem one is given information of the target class only.
The task is to define a boundary that encloses as many target examples as
possible while minimizing the chance of accepting examples from outside the
target class, so-called outliers [303]. An example for a one-class problem is
authorship verification [153], where we are given writing examples for a single
author T, and we are asked whether a text of unknown authorship has been
written by T as well, cf. Sections 4.5 and 4.6. Despite the fact that a sheer
endless number of outliers are at our disposal, we are not able to define a closed
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Figure 5.8: Artificially generated dataset with a diverse target class, constructed as a
mixture of Gaussians with one mode for the outlier class and three for the target class.
The black squares are outliers, all other documents belong to the target class. The shape
and gray scale of the documents indicate a k-means clustering with k = 4.

outlier class with texts from other authors. Specialized one-class classifiers can
cope with this setting; however, there is no universal solution for one-class
problems, and additional constraints may render the classification task even
more challenging. Two of which are common in information retrieval: (1) a
highly diverse target class that has a complex, multimodal distribution, and
(2) the presence of noise in the application situation of the one-class classifier. We
proposed a cluster-based one-class ensemble that is able to effectively alleviate
both problems.

Combining binary or multiclass classifiers within an ensemble is proven to in-
crease accuracy in many applications, compared to the best individual classifier
in the ensemble [148]. With regard to one-class problems, only few ensemble
strategies have been proposed, which can be distinguished into two categories.
First, approaches that divide the feature space and train individual one-class
classifiers on the different feature subsets [304, 229]. Second, approaches that
divide the target class sample and train individual one-class classifiers on the
different object subsets [324, 272]. Our approach belongs to the second category
and is related to the work of Wang et al. [324], who employ an agglomerative
hierarchical clustering strategy in order to partition the target class sample. We
employ a suitable clustering technology, apply our approach to real-world in-
formation retrieval tasks, and empirically demonstrate its advantage compared
with a common one-class SVM.

5.4.2 Cluster-based one-class ensemble

Let ST = {d1, . . . , dn} denote the sample of n feature vectors when given
n target examples. The construction of the ensemble classifier happens within
four steps:
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Step (1): Clustering ST is clustered using the k-means algorithm by Hartigan
and Wong [107]. The algorithm aims to find an exclusive clustering C =
{C1, . . . , Ck}, Cj ⊆ ST, j ≤ k ≤ n, such that the variance in each cluster Cj
is minimized. The only free parameter in this step is the cluster number k.
Figure 5.8 shows an example clustering.

Step (2): One-class classification For each cluster Cj ∈ C a one-class SVM hj :
d→ {+1,−1} is learned. Here, a kernel function φ maps the documents into
a higher-dimensional feature space. The goal is to find a maximum-margin
hyperplane in the kernel space that separates (1− v) · n target examples from
the origin. This is formulated as optimization problem [263]:

minw,ξ,ρ
1
2 ||w||2 +

1
v·n ∑n

i=1 ξi − ρ

s.t. (wTφ(di)) ≥ ρ− ξi with ξi ≥ 0, i = 1, .., n,

where w denotes the normal vector of the hyperplane, ρ the margin, and ξi the
slack variables. The value v ∈ (0, 1] is specific to a one-class SVM as it defines
the fraction of target examples outside the target class and controls the number
of support vectors. The decision function hj is of the following form:

hj(d) = sign((wTφ(d))− ρ)

Step (3): Aggregation The ensemble classifier ek combines the decisions of the
k single classifiers for a vector d as follows:

ek(d) =
{

1 if ∃ hj(d) > 0, j = 1, . . . , k
−1 otherwise.

Step (4): Model selection The clustering parameter k runs from 1 to l, and
altogether l(l + 1)/2 one-class SVMs are constructed. We choose the ensemble ek
that has the lowest classification error on a holdout validation sample.

5.4.3 Analysis and results

In the evaluation, we use a random subset Strain ⊂ ST for the training phase; the
test sample Stest comprises a balanced number of target examples from ST \ Strain
and outliers. Each experiment is repeated 15 times. The effectiveness of the
classifier is reported as averaged F-measure and for varying values of the
number of clusters k. In all experiments a one-class SVM with a non-linear
RBF kernel is utilized. The parameters of the classifier hj are optimized on the
respective training sample Cj ⊆ Strain; clusters with less than five elements are
discarded.
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Figure 5.9: Effectiveness of the cluster-based one-class ensemble approach in terms of
the F-measure over the number of clusters k on four datasets. The dotted line shows a
one-class SVM, trained on all target examples.

Figure 5.9 illustrates the results on four different datasets: artificially created
documents with three clusters (Figure 5.8), documents from the 20 Newsgroups
dataset with computer category in the role of the target class, books from dif-
ferent authors for which the authorship is to be verified [153], and Wikipedia
articles tagged with certain quality flaws that are to be detected [9]. All doc-
uments are represented under a vector space model with a tf ·idf weighting,
except for Wikipedia articles where quality-specific features are employed [9].

Table 5.4 summarizes the achieved significant improvements over the baseline,
which is a one-class SVM that has been trained on all target documents, or
equivalently, where |C| = 1. On all four datasets, our approach outperforms the
baseline. Considering the real-world tasks, the filtering of news articles in the
20 Newsgroups dataset befits most from the one-class classification ensemble.

5.4.4 Summary

Both, the employed k-means algorithm and density estimation or our proposed
one-class ensemble can be computed in parallel. Therefore, it can be distributed
for example on a Hadoop cluster and is applicable on huge datasets. When using
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Table 5.4: Percentage of improvement over the baseline for each dataset and for the
optimum number of clusters k.

Artificial Newsgroups Books Wikipedia

+70% (k = 70) +18% (k = 8) +7% (k = 6) +4% (k = 3)

the one-class ensemble in practice, the best working k has to be validated on a
holdout test sample since a higher value of k is not always the best solution. The
effectiveness drops for a large number of clusters because the average number
of training examples in the clusters shrink and get too small for learning at
some point.

5.5 Bibliography

Lack of representativeness The lack of representative training examples is
a symptom of one-class and imbalanced classification problems. Reasons for
unrepresentative samples are based on the nature of the task, where one or
more classes of the classification task have a dynamic distribution or do not
exist during the sampling, or based on scarce labeling resources and tools.

We have discussed one-class classification problems in Section 4.6 and 5.3. Recall,
when learning to classify flaws in Wikipedia, the flaws are well-defined (closed
class) whereas proper articles are arbitrary (open class). A further discussion on
one-class classification can be found in Mazhelis [197], Khan and Madden [144].
In addition, most one-class classification tasks can also be tackled by learning
from positive and unlabeled (PU) examples if a large fraction of unlabeled
examples is available, possibly the entire population [181]. Effective PU learners
are based on a generic two-step algorithm:

Step (1) Identify reliable negative examples.

Step (2) Learn from (labeled) positive and reliable negative examples.

The classifier in Step (2) is applied in Step (1) and proceeds iteratively. However,
for true one-class classification problems, the positive class is stable (training
and test samples are identically distributed), but this is not guaranteed for the
complementary (negetive) class. Therefore, PU learning or negative training
examples can be harmful to text classification [172].

In contrast, for imbalanced text classification problems, we often face the oppo-
site situation [102]. For example, when few examples are positive, but negative
examples are abundant in the training sample. Active learning, as in Section 5.2,
can be employed as a mean against imbalance. Under the condition that the local
ratio of positive and negative examples close to the actual decision boundary is
balanced, an uncertainty sampling strategy would build a better balanced train-
ing sample, which is illustrated in [78, 79]. Building proper training samples is
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also studied in the field instance selection by Liu and Motoda [183]. It should be
noted that an SVM implements implicitly an example-selection strategy. Only
the examples close to the decision boundary, the support vectors, influence
the hypothesis. Therefore, support vectors have a similar effect with respect to
balancing compared with uncertainty sampling. In some cases, an oversampling
of the minority class [55] or an undersampling of the majority class [188] is
appropriate. Finally, the most common research field related to class imbalance
is cost-sensitive learning, with the goal to consider examples of the minority
class more important by a larger impact on the error function [175, 187].

Presence of noise The quality of the training examples has a similar impact on
the effectiveness of a text classification solution as the solution’s inductive bias.
Related work studies the measurement of sample quality [325], the identification
of suspicious examples [159, 356, 45], and the correction or elimination of noisy
examples [306, 355].

Measuring the data quality and improving it via correction methods is only
applicable to some degree. Therefore, as an alternative to tackle this problem,
the learning algorithm has to be able to learn from noisy training examples [113,
354, 357, 25]. The inductive bias of a learning algorithm is directly connected
to its noise sensitivity because a high inductive bias can avoid overfitting noisy
examples. Atla et al. [15] studied classifiers under the influence of noise:
naïve Bayes is more robust to noise than decision trees, SVMs, and logistic
regression when the noise level is above 40%; otherwise, decision trees are
superior. This outcome is supported by Gamberger et al. [93] who show that the
elimination (not the correction) of noisy examples does not affect the learning
process of decision trees that apply a pruning strategy. A classifier with a low
inductive bias, for example a 1-nearest neighbor classifier, is misled by erroneous
examples [336]; a larger neighborhood antagonizes this.





Chapter 6

Model selection for text
classification in the wild

The reliable evaluation of classification solutions is a basic necessity, be it for
model selection purposes or the assessment of effectivenesses with respect to a
given task. Today’s information filtering and retrieval tasks [327, 76, 140, 238]
deal with classifying texts in volatile environments and render their evaluation
more complicated. Large parts of statistical evaluation and machine-learning
research rely on the assumption that the provided and the future examples
are independent and identically distributed (i.i.d.) with regard to the same
underlying probability distribution. It is known that this is not often the case in
real-world scenarios, for example, if texts from a time-varying stream are to be
classified.

User-generated content on the Web such as news articles, blog posts, and tweets
exhibit large variations of the underlying distribution characteristics; especially
Twitter exemplifies the volatile nature of “trendy” topics, as illustrated by Liu
et al. [186] with a new interactive visualization technique.

Forman [88] subdivides the phenomena of distribution changes over time, also
known as concept drift, into three types:

• class distribution shift: the sample of a class remains i.i.d., but the ratio
between the classes varies

• subclass distribution shift: the sample of a subclass remains i.i.d., but the
sample of the class and the classes overall does not

• fickle concept drift: the ground truth of the class labels changes

The second type, a subclass distribution shift, models the dynamics in online
media best and forms the basis of our contribution; it is also known as covariate
shift [24] if the shift occurs across subclass boundaries. It is important to note
that a subclass distribution shift moreover occurs also if

• the distribution of the population is unknown and therefore different to
the training sample, or if

• the training sample is noisy.
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(a) (b) (c)

t (0)
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Figure 6.1: Each of the six plots shows a two-class classification situation (gray, solid
versus black, dotted). Three types of distribution changes are illustrated: (a) class
distribution shift, (b) subclass distribution shift, and (c) fickle concept drift. The
distribution at training time is shown in the upper row (t(0)) and the distribution after
the change is shown in the lower row (t(i)). It should be noted that these types of
distribution changes are illustrated in isolation but may occur in a combined fashion as
well.

All of these senarios are typical for text classification tasks in the wild.

This chapter addresses the problem of evaluating classification solutions if sub-
class distribution shifts are likely to occur and if one has no knowledge about
how a shift will evolve. Research in semi-supervised learning, domain adapta-
tion [236], and sampling bias correction are related to our problem, but the most
approaches assume that knowledge of the target distribution (the distribution
for which a classification solution is applied) is given. Other research, which
disregards the target distribution, focuses on machine learning within concept
drifts and visualization [88, 24].

We propose an evaluation framework that accounts for the nature of text classi-
fication in the wild by estimating the expected effectiveness of a classification
solution under subclass distribution shifts. For example, in online media such
as news streams, articles from the past remain retrievable while a new article
substream emerges whenever a new topic becomes interesting. The evolution
of the article distribution is hence not arbitrary, and one can expect density
changes within local regions that lead to a subclass distribution shift.1 Currently
there is no means for a reliable evaluation nor for a model selection in this
scenario, even if the changes of the target distribution are of a homogeneous
nature.

Our evaluation framework adapts common statistical evaluation measures to
estimate the expected effectiveness and to select the best classification solution in

1Also the growth rate of high density areas over the time is not random: Yang and Leskovec
[342] studied the dynamics of attention of content within online media and identified six
dominant temporal patterns.
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terms of the lowest worst case effectiveness. Given a classification solution m we
partition the test sample and evaluate m on each partition. The partitioning is
constructed by a clustering algorithm that identifies regions of similar examples.
The examples in a cluster are likely to behave similarly, a fact which is known
as cluster hypothesis in information retrieval: “closely associated documents
tend to be relevant to the same requests” [316]. We create new test samples
by varying the ratio between the clusters, and, based on these variations, we
estimate the expected effectiveness. In addition, we consider the effectiveness
of each cluster in isolation and study the effectiveness distribution over the
clustering of the test sample. By assuming a constant effectiveness per cluster we
derive a second statistics that approximates our idea of expected effectiveness
under subclass distribution shifts. Our contributions comprise:

• two statistics to assess the expected effectiveness of a classification solution
under subclass distribution shifts,

• a probabilistic notion of the expected effectiveness for model selection,

• an empirical validation of the assertions of our model selection approach
for different corpora, and

• an example of the applicability of our expected effectiveness framework
for text classification solutions.

6.1 Expected effectiveness under subclass distribution
shifts

Depending on the domain and the characteristics of the data, the selection of an
appropriate effectiveness measure is a crucial step, particularly in the context of
model selection, i.e., preferring one classification solution to another based on
their effectiveness. If the classes are imbalanced [322] and the positive class is
very small, the accuracy of m, which is the probability of correct classifications,
is apparently inappropriate for selecting the better solution. An alternative is to
measure the precision, which is the probability of correct positive predictions.
In cases where the class balance is unknown, precision becomes difficult to
interpret since the number of false positives varies. Recall, however, which is
the probability that positive examples are predicted correctly, still provides a
straightforward interpretation.

It is assumed in this chapter that the documents are emitted by stochastic
processes. It is also assumed that each process is stationary and emits the docu-
ments of a subclass independently and identically distributed. Both assumptions
qualify for many real-world classification problems. A subclass distribution shift
occurs if the emission rates of the processes differ in the course of time. Note
that under a subclass distribution shift, all measures that rely on the confusion
matrix fail.
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We introduce Et [e], the “expected effectiveness” of a classification solution m
under subclass distribution shifts, as the weighted average of the effectiveness
that m achieves under all possible subclass distribution shifts. In situations
where the development of the underlying distribution cannot be predicted, the
expected effectiveness provides a sensible means for model selection. The exact
computation of the expected effectiveness is not possible since the underlying
emission processes cannot be controlled to produce all possible distribution
shifts.

6.2 An expected effectiveness estimate

We estimate the expected effectiveness Et [e] of m under subclass distribution
shifts by identifying subclasses of the underlying stochastic processes and by
modeling different distribution shifts via resampling. We associate subclasses
with the clusters of a clustering C = {C1, . . . , Ck}, Ci ⊆ S, i = 1, . . . , k, where
C is an exclusive and complete partitioning of the feature vectors in the sam-
ple S. The difference between a clustering on the one hand and a categorization
by humans on the other is that the latter is based on the interpretation of
real-world objects, while a clustering analyzes densities (DBSCAN [80], Major-
Clust), variances (k-means, Ward’s method [328]), or distributions (expectation-
maximization clustering) of feature vectors. If the documents within a cluster
are considered to be realizations of a single stochastic process, it is likely that
this process emits documents in a high-similarity region of the population.

Distribution shifts are modeled by resampling the documents within the clusters.
An increase or decrease of the documents in a high-similarity region (as specified
by a cluster) implies that the probability density function of the global probability
distribution of documents and class labels will change. If, for example, the
density values of the global probability density function increase inside a specific
region, the density values outside will decrease due to normalization. In our
considerations, we constrain the modeling of distribution shifts by preserving
the local (cluster-specific) characteristics of the distribution. Stated another
way, the probability distribution of a cluster C, PC(Y|X), remains i.i.d., and the
distribution of clusters sizes varies.

Given a clustering C = {C1, . . . , Ck}, let S be a set of samples where each S ∈ S
is compiled by a unique weighting over C:

S = sample(C1) ∪ · · · ∪ sample(Ck).

The estimate ẽ for the expected effectiveness Et [e] of m under subclass distribu-
tion shifts is defined as the sample mean over S :

ẽ = 1/|S| ∑
S∈S

e(m, S). (6.1)
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Figure 6.2: The estimation of the expected effectiveness of a classification solution m
(with classifier h) happens in the following steps: (a) input for the estimation, which
consists of m and a given test sample of labeled examples, (b) cluster analysis of the
test sample in order to identify the modes of the distribution, (c) variation of the cluster
sizes and application of m, (d) sample statistics (mean ẽ and standard deviation s) of the
achieved effectivenesses.

The sample variance s2 of e can hence be written as:

s2 = 1/|S| ∑
S∈S

(e(m, S)− ẽ)2. (6.2)

The symbol ẽ is used instead of ē to emphasize that the mean is computed from
a specifically constructed set S .

Figure 6.2 illustrates the estimation procedure:

(a) Input. Given is a classification solution m and a test sample. The text
representation is defined by the feature engineering α ; h is a classifier
built by a learning algorithm on a separate training sample, which is not
illustrated in the figure.

(b) Clustering of the test sample. The given test sample is clustered into h clusters
(here, four clusters). Each cluster can comprise documents with different
class labels.

(c) Sample set construction and effectiveness estimation. A set S of samples is
constructed by randomly resizing the clusters via resampling. For each
sample S ∈ S the effectiveness e(m, S) of m is estimated.

(d) Output. Finally, the resulting distribution of e over the set S of samples
is computed. ẽ is the expected effectiveness under a subclass distribution
shift.

6.3 An expected effectiveness heuristic

The estimate ẽ of the expected effectiveness is based on a sufficiently large set S
of samples. We now devise a second statistics ê for Et [e], which considers only
the characteristics of the clustering C of the test set S.
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In this regard we evaluate for each cluster C ∈ C, |C| = k, its cluster-specific
effectiveness eC of m. Since the effectiveness is likely to be the same on similar
documents, it can be assumed that m’s effectiveness for a cluster C remains stable
under a subclass distribution shift. This assumption relates to the clustering
assumption in the field of semi-supervised learning: “If points are in the same
cluster, they are likely to be of the same class” [54]. Recall the clustering
hypothesis: closely associated documents tend to be relevant to the same
requests. In terms of classification this can be interpreted as closely associated
documents tend to have the same class label.

The (overall) effectiveness e of m given S is the weighted sum of the cluster-
specific effectiveness values:

e = w1eC1 + · · ·+ wkeCk ,

where wi is the weight given by the relative size of the cluster |Ci|/|S|. Using
vector notation, with a positive real-valued weight vector w, |w| = k, and
effectiveness vector e = (eC1 , . . . , eCk)

T, the effectiveness is e = wTe, where wT

denotes the transpose of w.

We now assume that the effectiveness for a cluster shows no variation at different
points in time:

e ≡ e(0) = e(1) = . . . (6.3)

Since this assumption depends on the degree to which the clustering assumption
is fulfilled, we call the statistic ê for the expected effectiveness Et [e], introduced
below, a heuristic.

Note that Assumption (6.3) does not imply a constant (overall) effectiveness e.
Under Assumption (6.3), the effectiveness e varies only with the change of the
weights w. We model the weight vector w as a k-dimensional random vari-
able W = (W1, . . . , Wk). Without knowledge about future subclass distributions,
our risk-minimization strategy is to consider all possible vectors w as equally
likely, whereas the ell1-norm of w is always one: ∑k

i=1 wi = 1. As a consequence,
the vectors w lie on a simplex and W is Dirichlet distributed, W ∼ Dir(α), with
concentration hyperparameter α = (1, . . . , 1)T, |α| = k. The resulting mean and
variance are:

E [Wi] =
αi

α0
= 1/k, where α0 =

k

∑
j=1

αj,

Var [Wi] =
αi(α0 − αi)

α2
0(α0 + 1)

=
k− 1

k2(k + 1)
.

Let e′ denote the random variable W1eC1 + · · ·+ WkeCk . Due to the central limit
theorem, e′ is normally distributed. Therefore, the heuristic ê of the expected
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Figure 6.3: Heuristic estimation of the expected effectiveness of m: (a) application of
cluster analysis to the test sample in order to identify the modes of the distribution (this
corresponds to Step (b) in Figure 6.2), (b) adaptive sampling of the clusters in order to
equalize different cluster sizes that may be given in the sample, (c) application of m for
each cluster in isolation, (d) mean ê of the cluster-specific effectiveness values.

effectiveness Et [e] of m under subclass distribution shifts is the mean of e′:

ê = E [W1] eC1 + · · ·+ E [Wk] eCk

= 1/k eC1 + · · ·+ 1/k eCk = 1/k
k

∑
i=1

eCi . (6.4)

The variance of the random variable e′ is:

Var
[
e′
]

=
k− 1

k2(k + 1)
.

Var [e′] is independent of the cluster-specific effectiveness values and hence
constant for all classification solutions. Hence, this variance cannot be exploited
for model selection purposes. We conclude that the difference between Var [e′]
and the sample variance s2 of e (Equation 6.2) reflects to what extent Assump-
tion (6.3) is violated, say, to what extent the effectiveness within the clusters is
not constant.

Assumption (6.3) is strict, but not unrealistic, and we can show in the experi-
mentation section that our heuristic has in practice only a small approximation
error (about 3%) for estimating the expected effectiveness under a subclass
distribution shift.

Figure 6.3 illustrates the computation of the heuristic:

(a) Input. A classification solution m along with a clustering C of the test
sample with k clusters.

(b) Adaptive sampling. The k clusters are scaled to the same size, |C′1| = · · · =
|C′k|, to get better effectiveness estimates for each cluster.

(c) Effectiveness estimation. For each cluster the effectiveness eC′ of m on C′ is
estimated.

(d) Output. ê, the mean of the eC′ , which represents a heuristic estimate
of the expected effectiveness under distribution shifts in the clustering
(Equation 6.4).
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Figure 6.4: Comparison of classification solution m1 (ẽ = 0.88, s = 0.02, dotted line)
to classification solution m2 (ẽ = 0.90, s = 0.04, solid line) with respect to their
accuracies. At confidence level 0.5, solution m2 has a higher expected accuracy than m1.
At confidence level δ = 0.05, however, the lower bound (worst case) θ under m1 is better
than θ under m2.

6.4 Model selection via expected effectiveness

Given a clustering C of a test set S, model selection means to choose a clas-
sification solution m from a set of solution candidates M. If the expected
effectiveness Et [e] is approximated under Assumption (6.3) as ê, the model se-
lection problem can be tackled by choosing the model with the highest ê. If the
expected effectiveness is approximated via the estimation procedure (Figure 6.2)
as ẽ, additional model selection information in form of a probabilistic lower
effectiveness bound θ can be provided.

We present such a lower bound θ to show that the effectiveness of classification
solution m is with a probability of 1− δ larger than θ, if the subclass distribution
varies. The effectiveness e is normally distributed, see Section 6.3, with approx-
imated mean ẽ and variance s2 (Equations (6.1) and (6.2)). We can estimate
the parameters of the normal distribution for each solution in M and infer θ

with the inverse of its cumulative distribution function, also known as quantile
function:

F−1(δ; µ, σ2) = µ + σ
√

2 erf−1(1− 2δ)

θ = F−1(δ; ẽ, s2), (6.5)

where F−1 denotes the quantile function of the normal distribution for 1− δ,
and erf−1 denotes the inverse error function. If δ is chosen to be 0.0228, the
value of θ is ẽ + 2s. Figure 6.4 shows an example for the accuracy Acc.

While the expected effectiveness estimate is useful for selecting the classification
solution with the best expected effectiveness, the probabilistic lower bound is
useful for selecting the solution that minimizes the risk of an effectiveness drop
in the wild.
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6.5 Validation of prior assumptions

The experimentation section validates our theoretical findings and demonstrates
the utilization of the notion of expected effectiveness. We empirically show for
various corpora, classifier, and measures, that

• the expected effectiveness under a shifting subclass distribution is normally
distributed, and therefore,

• the expected effectiveness can be applied within a probabilistic lower
bound for model selection, and finally that

• the heuristic expected effectiveness ê is a tight estimate.

In order to demonstrate the evaluation of classification solutions under subclass
distribution shifts we will focus on standard text classification corpora and
standard learning algorithms. As text classification task the topic categorization
problem is studied: given a set of topics, assign an unseen document to one of
these topics.

6.5.1 Data sources

Reuters (RVC1) [171], the Open Directory Project (ODP)2, and 20 Newsgroups
(20NG)3 are the most frequently used datasets within the field of topic catego-
rization. Our preprocessing of the corpora restricts them to documents that are
uniquely classified and that have a minimum size of 1 kB. We construct binary
classification tasks by selecting two categories instead of pursuing a one-vs-all
strategy. From the large number of tasks that have been considered in our
experiments, we will report results for the task Science vs Sports only since the
categories occur across all corpora.

RVC1 The Reuters corpus contains about 810 000 news documents, categorized
in 4 top-level categories. We have sampled 4 000 documents from the
categories Sports (topic code: GSPO) and Science & Technology (topic
code: GSCI).

ODP The Open Directory Project is a human-edited directory of the Web and
provides an RDF dump of the links within each category. We have down-
loaded about 15 000 000 webpages within 14 out of 16 top-level categories
and extracted the plain texts. 200 000 documents are sampled from the
categories Science (subcategories: Environment, Math, Biology, Physics,
Technology) and Sports (subcategories: Hockey, Basketball, Tennis, Base-
ball, Football). About 92 % of the leaf categories are represented and the
average maximal depth is 6.45.

2http://www.dmoz.org/
3http://people.csail.mit.edu/jrennie/20Newsgroups/
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20NG The 20 Newsgroups dataset contains about 20 000 newsgroup documents
in 20 categories. We have removed duplicates and parsed the plain text
by ignoring all headers. 6 000 documents are selected from the categories
Science (subcategories: Electronics, Space, Cryptography, Medicine) and
Sports (subcategories: Baseball, Hockey).

6.5.2 Classification solutions

As mentioned at the outset, classification solutions comprise a text representa-
tion α and a classifier h. We vary the range of solutions by employing several
learning algorithms, while α remains unchanged.

The text representation is the following: The documents of each considered
corpus are represented under a vector space model with word frequencies
whereas the dimensions correspond to the stemmed alphabetic words that occur
at least 10 times. The Lovins stemmer is employed as stemming technology
and the vectors are normalized. To run a vast amount of experiments within a
reasonable time, 2 500 words with the highest information gain scores remain
after further processing, while the scores are evaluated only on the training
examples with discretized word frequencies.

The following learning algorithms are employed in the experiments to com-
pile h:

• a linear support vector machine (SVM)

• a naïve Bayes classifier (NB)

• a decision tree (C4.5)

• a k-nearest neighbor classifier (k-NN)

6.5.3 Clustering algorithm

The comparison of different clustering algorithms is beyond the scope of this
paper. The appropriate choice depends on the application domain and the
concrete classification task. It cannot be expected that a single algorithm is
always the best choice (no free lunch). Within our experiments the k-means
algorithm is applied whereas k is selected heuristically. The k-means algorithm
generates an non-overlapping (exclusive) clustering, i.e., ∀i,j,i 6=jCi ∩ Cj = ∅.
Formally, the goal of k-means is to find a clustering that minimizes the following
objective function:

argmin
C

k

∑
i=1

|Ci|

∑
dj∈Ci

‖dj − µi‖2.

We set k to
√
|S|/2 and use the Lloyd’s algorithm for approximation. For the

Reuters corpus RCV1 we explicitly show that this setting is able to identify
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Table 6.1: Randomness of the data emission for three categories of the Reuters corpus,
quantified by Bartels and Wald-Wolfowitz tests. The p-values are computed for the
entire sets (overall) as well as for the clusterings (avg. cluster).

Science Sports Politics
avg. cluster overall avg. cluster overall avg. cluster overall

p-values p-value p-values p-value p-values p-value

Bartels Test
0.169 ≈ 0 0.139 ≈ 0 0.141 ≈ 0

Wald-Wolfowitz Test
0.274 ≈ 0 0.202 ≈ 0 0.105 ≈ 0

appropriate subclasses. RCV1 provides time stamps as opposed to ODP and
20NG and has been shown to have a shifting subclass distribution by visualizing
the change of the top 100 most predictive words over time [88].

For the RCV1 we explicitly show that the setting is able to identify appropriate
subclasses: opposed to ODP and 20NG, the RCV1-corpus provides time stamps.
Moreover, by visualizing the change of the top 100 most predictive words over
time, Forman [88] gave evidence for a subclass distribution shift in RCV1. With
statistical randomness tests, we empirically validate the two main properties of
subclass distribution shifts:

(1) the overall samples at different time stamps are not i.i.d. according to the
same distribution, but

(2) the samples of isolated subclasses are i.i.d.

The most practical randomness tests operate on binary sequences, which are
often constructed by dichotomizing a sequences of continuous values. For a
sample S we consider the sequences of the Euclidean distances dist(d(i), d(i−1))
for i = 2 . . . |S|, where d(i−1) is the chronological predecessor of d(i). A sequence
of distances that is i.i.d. according to an unknown distribution indicates a
process of data generation that can produce i.i.d. samples. As an illustrative
example consider a random process that first produces fairly similar news
articles on politics and after a while articles on sports. The corresponding
(non-random) sequence of distances is a series of small distances followed by a
large distance when the generation of sports articles begins. As a consequence,
the samples drawn at different points in time are not representative for the same
distribution.

In the following, we test the randomness of the process of generating Reuters
articles with the Wald-Wolfowitz runs test and the Bartels test on the chrono-
logical sequence of distances. We also test the isolated generation of articles
within subclasses defined by clusters. Table 6.1 shows the results of this study.
The p-values of the respective tests indicate that null hypothesis (the articles are
i.i.d.) is rejected when the data is analyzed as a whole but on average accepted
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Table 6.2: Shapiro-Wilk test for testing whether the expected effectiveness is normally
distributed. The W and the p-value are averaged over all classifiers in Section 6.5.2 and
all measures in Table 3.3.

Science vs Sports
ODP RCV1 20NG

W p-value W p-value W p-value

0.93 0.29 0.92 0.17 0.93 0.37

when each cluster is analyzed in isolation, i.e., the articles are possibly i.i.d.
generated.

6.6 Application and conclusions

To apply model selection as described in Section 6.4 the effectiveness has
to be normally distributed under subclass distribution shifts. We revisit the
theoretical result that the effectiveness is normally distributed by employing
the Shapiro-Wilk test, which has been shown to be one of the most powerful
tests of normality [242, 345]. The value W of the test is the ratio between two
variance estimators for a random sample e1 < e2 < · · · < en. The first variance
estimator is the expected variance of an assumed normal distribution while the
second variance estimator is the bias corrected variance of the given random
sample [242]. A W close to 1 indicates a normal distribution. The high p-value
of the Shapiro-Wilk test indicates that the null hypothesis, the data is normally
distributed, cannot be rejected. For the results reported in Table 6.2, we removed
the 5 highest and lowest values in the evaluation since the test is very sensitive
to outliers. For all measures and classifiers the estimated effectiveness passed
the test under the subclass distribution shift.

Table 6.3 summarizes our proposed notions applied to the selected classification
tasks. We restrict the presentation to the most commonly used measures,
namely accuracy Acc, precision Prec, and recall Rec. The expected effectiveness
is estimated on 1 000 different generated test samples S based on the initial
clustering. The reported results are averaged over 10 different testing and
training samples, which are randomly chosen from the respective corpus. The
values for the probabilistic lower bound θ result from δ = 0.0228.

Notice that with a few exceptions the heuristic expected effectiveness is tight.
The average approximation is about 3 % when comparing ẽ and ê.

The values in Table 6.3 serve as an illustration of the enhancement of common
measures to provide more insights when evaluating classification solutions.
Observing the accuracies of the SVM and NB classifiers on the Reuters corpus,
the SVM performs slightly better on the initial test set, which is still the case,
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Table 6.3: Summarization of characteristics of classification solutions. For various
classifiers, corpora, and measures the table reports: the initial effectiveness e(0), the
heuristic expected effectiveness estimate ê (Equation 6.4), the expected effectiveness ẽ
(Equation 6.1), and the probabilistic effectiveness bound θ (Equation 6.5) based on ẽ and
the sample variance s2 (Equation 6.2).

Classifier Measure

Acc Prec Rec
e(0) ê ẽ θ e(0) ê ẽ θ e(0) ê ẽ θ

RCV1

SVM 0.987 0.995 0.988 0.978 0.99 0.97 0.99 0.98 0.98 0.99 0.99 0.97
NB 0.986 0.993 0.987 0.979 0.98 0.98 0.98 0.97 0.99 0.99 0.99 0.98
C4.5 0.921 0.932 0.934 0.911 0.94 0.82 0.95 0.92 0.90 0.92 0.92 0.89
k-NN 0.965 0.978 0.972 0.951 0.98 0.95 0.98 0.97 0.95 0.98 0.96 0.94

ODP

SVM 0.962 0.951 0.957 0.926 0.95 0.96 0.94 0.90 0.97 0.95 0.98 0.94
NB 0.927 0.941 0.933 0.899 0.93 0.95 0.92 0.88 0.92 0.93 0.94 0.91
C4.5 0.927 0.919 0.924 0.904 0.92 0.92 0.91 0.86 0.93 0.91 0.94 0.91
k-NN 0.878 0.931 0.883 0.836 0.82 0.84 0.82 0.74 0.96 0.98 0.96 0.93

20NG

SVM 0.890 0.968 0.906 0.860 0.90 0.94 0.90 0.82 0.88 0.94 0.91 0.85
NB 0.880 0.882 0.905 0.850 0.94 0.88 0.94 0.88 0.82 0.95 0.86 0.75
C4.5 0.790 0.776 0.788 0.720 0.75 0.72 0.73 0.61 0.90 0.91 0.90 0.84
k-NN 0.700 0.788 0.704 0.640 0.75 0.87 0.72 0.63 0.61 0.69 0.65 0.56

when we assume subclass distribution shifts and compare the expected effec-
tiveness. Nevertheless, the probabilistic lower bound for the NB classifier is
higher. The expected effectiveness does not necessarily has to be worse than the
initial effectiveness. The recall of the considered SVM in the 20NG corpus is
expected to be higher than initially estimated.

We presented the notion of expected effectiveness and its probabilistic lower
bound as a basis for preferring one classification solution over another when
the underlying data source undergoes a shift in the distribution of its subclasses.
Subclass distribution shifts occur in many real-world classification applications,
and quite often one has no knowledge about how such a shift will evolve. Our
idea is to prefer the solution that has the best probabilistic lower bound of its
effectiveness. This bound is based on the expected effectiveness if all shifts are
considered equally likely.

Our estimate of the expected effectiveness relies on a repetitive resampling of
the clustered test sample for different margin distributions. Clustering is an
appropriate method, as exemplified in the experimentation section for news
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articles, for the identification of those subclasses that are not subject to dis-
tribution shifts. The effectiveness within these subclasses is nearly constant.
This observation suggests a heuristic for computing another expected effective-
ness estimate, namely, to use the mean effectiveness over the clustering. In an
empirical evaluation we applied the outlined considerations to standard text
corpora, and we showed that the heuristic for the expected effectiveness has a
low approximation error.

A number of clustering algorithms are available, and we regard the selection of
the most appropriate one, as well as the setting of its hyperparameters as the
task of the engineer. If the clustering algorithm is able to identify subclasses
that are likely to grow with a stationary distribution, the expected effectiveness
estimate is reliable. In this regard, one should recall that is not the main goal
to find semantically meaningful clusterings; in fact, we suggest preferring fine-
granular clusterings to coarse clusterings as long as each cluster contains a
sufficient number of documents. In practice, however, it is also not critical from
a statistical point of view to remove very small clusters from the clustering.

6.7 Bibliography

Concept drift A concept drift is a change of the distribution of examples over
time. Research in this field can be divided into concept drift detection and
concept drift handling. The objective is to compile a learning algorithm that
detects a drift and adapts to it. Concept drifts occur either gradually or abruptly
and are empirically observable in labeled and unlabeled samples [174]. This can
be done, for example, by monitoring the prediction quality, the distribution, or
clustering parameters such as densities, centers, or shapes. Vreeken et al. [321],
for example, estimated the differences between two samples by techniques based
on compression and covering characteristics; Anderson et al. [10] compared the
distances between density estimates. Standard drift detection employs statistical
hypothesis testing for the randomness of samples, such as the Wald-Wolfowitz
test or more advanced tests [74].

Concept drift handling became an important research topic in recent years;
the most common machine-learning methods were adapted to handle it, and
theoretical results were extended to capture concept drift phenomena. Ad-
vanced window-based approaches are given in [352] and [217]: the former
paper proposes a window-based one-class ensemble, whilst the latter proposes
a window-based ensemble for learning from positive and unlabeled examples
in order to accurately select and classify unlabeled examples for reuse. Huang
[127] extended a sampling function for active learning by monitoring concept
drifts in unlabeled data. Aggarwal et al. [4] presented a classification method
that adapts to changes of the underlying data stream by dynamically selecting
an appropriate training sample. Finally, Hulten et al. [128] focussed on novel
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decision tree learning algorithms, where outdated subtrees are revisited and
recreated.

Domain adaptation Within a source domain, where labeled examples are
available, a classification solution m is built with the aim to deploy m to a
different target domain (e.g., using m for classifying tweets while m has been
trained on news articles). For the target domain, unlabeled and sometimes a
small amount of labeled examples are available. The main problem is that the
margin and the conditional distributions of the source and target domain may
differ.

A simple approach for domain adaptation is to ignore these differences and
transform the given problem to a semi-supervised learning problem by consid-
ering source and target domain as a whole and by applying semi-supervised
algorithms as described in [63, 338].

One principle in domain adaptation is to make margin and conditional distribu-
tions of the source domain and the target domain more similar by changing the
representation. Advanced approaches (e.g. [27]) augment the origin representa-
tion by constructed features and it has been shown that the similarity between
source and target distributions is increased [21].

Another principle is to make assumptions about the probability distributions.
Under the assumption that the conditional distributions are the same but the
class distributions of the source and the target domain differ, Chan and Ng [53]
recalibrated the learned probabilities by estimating the shift of the priors. The
assumption that the conditional distributions are the same but the marginal
distributions differ is known as covariate shift [273] and is treated, for example,
in [236].

Sample selection bias Having a biased sample of training examples drawn
from the target distribution, a classification solution that is build on this data
is expected to perform different in the wild. Standard approaches that tackle
the selection bias in a sample commonly use a large amount of unlabeled
examples from the target distribution. They are based on a weighting of the
training examples, a recalibration of the priors, or a resampling to correct the
distribution of the training examples. Again, for most of these approaches, the
target distribution has to be known in terms of unlabeled examples [60, 125].





Chapter 7

Conclusions
If one looks at the Web with all its applications—either for consumers, business
institutions, or professionals—text classification is omnipresent, be it in a mobile
app that filters news articles, in a big data sentiment analysis to monitor public
opinions, or in a Web service that assists professional forensic analysts in
plagiarism cases. Text classification becomes an effective tool if its modeling
process reinforces strengths and diminishes weaknesses of text classification
solutions.

This thesis centers on the process of modeling text classification tasks, which
governs the effectiveness of the resulting solutions. For a successful model in
terms of appropriate representations, sampling strategies, learning algorithms,
and model selection criteria, it is crucial for an engineer to understand the
foundations of these aspects, as well as the domain of the task. This process
has been exemplified for several non-standard text classification tasks during
this thesis. Furthermore, new algorithms that can lead to improvements of the
classification effectiveness have been proposed and analyzed, including text
representations beyond the bag-of-words model, which are appropriate for Web
genre, information quality, language, and authorship analyses. What is more,
methods of facing machine-learning problems in the wild and a risk-minimizing
model selection, when the classification solution is applied under subclass
distribution shifts in the wild, have been introduced.

The research in this thesis is limited in so far as it does not provide a general
framework for arbitrary text classification tasks. This is the nature of things: in
spite of the fact that statistical sampling, computational learning theory, and
model selection are well understood, no general algorithms exist that are ideal
for all tasks in general (no free lunch). This thesis, however, may encourage the
reader to thoughtfully approaching text classification tasks and to conducting
tailored experiments for discovering solutions.

The future impact of text classification on real-world tasks corresponds to the
advancement in finding suitable hypotheses and theories. The chapters “To-
wards effective text classification in the wild” (Chapter 5) and “Model selection
for text classification in the wild” (Chapter 6) have introduced these issues. The
focus of future research should be on relating laboratory conditions, especially
closed world assumptions, to reality. The goal is to ensure the applicability of
text classification solutions and the interpretability of their evaluation.
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